5,618 Matching Annotations
  1. Last 7 days
    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      We thank the Reviewers for their thorough attention to our paper and the interesting discussion about the findings. Before responding to more specific comments, here some general points we would like to clarify:

      (1) Ecological niche models are indeed correlative models, and we used them to highlight environmental factors associated with HPAI outbreaks within two host groups. We will further revise the terminology that could still unintentionally suggest causal inference. The few remaining ambiguities were mainly in the Discussion section, where our intent was to interpret the results in light of the broader scientific literature. Particularly, we will change the following expressions:

      -  “Which factors can explain…” to  “Which factors are associated with…” (line 75);

      -  “the environmental and anthropogenic factors influencing” to “the environmental and anthropogenic factors that are correlated with” (line 273);

      -  “underscoring the influence” to “underscoring the strong association” (line 282).

      (2) We respectfully disagree with the suggestion that an ecological niche modelling (ENM) approach is not appropriate for this work and the research question addressed therein. Ecological niche models are specifically designed to estimate the spatial distribution of the environmental suitability of species and pathogens, making them well suited to our research questions. In our study, we have also explicitly detailed the known limitations of ecological niche models in the Discussion section, in line with prior literature, to ensure their appropriate interpretation in the context of HPAI.

      (3) The environmental layers used in our models were restricted to those available at a global scale, as listed in Supplementary Information Resources S1 (https://github.com/sdellicour/h5nx_risk_mapping/blob/master/Scripts_%26_data/SI_Resource_S1.xlsx). Naturally, not all potentially relevant environmental factors could be included, but the selected layers are explicitly documented and only these were assessed for their importance. Despite this limitation, the performance metrics indicate that the models performed well, suggesting that the chosen covariates capture meaningful associations with HPAI occurrence at a global scale.

      Reviewer #1 (Public review):

      The authors aim to predict ecological suitability for transmission of highly pathogenic avian influenza (HPAI) using ecological niche models. This class of models identify correlations between the locations of species or disease detections and the environment. These correlations are then used to predict habitat suitability (in this work, ecological suitability for disease transmission) in locations where surveillance of the species or disease has not been conducted. The authors fit separate models for HPAI detections in wild birds and farmed birds, for two strains of HPAI (H5N1 and H5Nx) and for two time periods, pre- and post-2020. The authors also validate models fitted to disease occurrence data from pre-2020 using post-2020 occurrence data. I thank the authors for taking the time to respond to my initial review and I provide some follow-up below.

      Detailed comments:

      In my review, I asked the authors to clarify the meaning of "spillover" within the HPAI transmission cycle. This term is still not entirely clear: at lines 409-410, the authors use the term with reference to transmission between wild birds and farmed birds, as distinct to transmission between farmed birds. It is implied but not explicitly stated that "spillover" is relevant to the transmission cycle in farmed birds only. The sentence, "we developed separate ecological niche models for wild and domestic bird HPAI occurrences ..." could have been supported by a clear sentence describing the transmission cycle, to prime the reader for why two separate models were necessary.

      We respectfully disagree that the term “spillover” is unclear in the manuscript. In both the Methods and Discussion sections (lines 387-391 and 409-414), we explicitly define “spillover” as the introduction of HPAI viruses from wild birds into domestic poultry, and we distinguish this from secondary farm-to-farm transmission. Our use of separate ecological niche models for wild and domestic outbreaks reflects not only the distinction between primary spillover and secondary transmission, but also the fundamentally different ecological processes, surveillance systems, and management implications that shape outbreaks in these two groups. We will clarify this choice in the revised manuscript when introducing the separate models. Furthermore, on line 83, we will add “as these two groups are influenced by different ecological processes, surveillance biases, and management contexts”.

      I also queried the importance of (dead-end) mammalian infections to a model of the HPAI transmission risk, to which the authors responded: "While spillover events of HPAI into mammals have been documented, these detections are generally considered dead-end infections and do not currently represent sustained transmission chains. As such, they fall outside the scope of our study, which focuses on avian hosts and models ecological suitability for outbreaks in wild and domestic birds." I would argue that any infections, whether they are in dead-end or competent hosts, represent the presence of environmental conditions to support transmission so are certainly relevant to a niche model and therefore within scope. It is certainly understandable if the authors have not been able to access data of mammalian infections, but it is an oversight to dismiss these infections as irrelevant.

      We understand the Reviewer’s point, but our study was designed to model HPAI occurrence in avian hosts only. We therefore restricted our analysis to wild birds and domestic poultry, which represent the primary hosts for HPAI circulation and the focus of surveillance and control measures. While mammalian detections have been reported, they are outside the scope of this work.

      Correlative ecological niche models, including BRTs, learn relationships between occurrence data and covariate data to make predictions, irrespective of correlations between covariates. I am not convinced that the authors can make any "interpretation" (line 298) that the covariates that are most informative to their models have any "influence" (line 282) on their response variable. Indeed, the observation that "land-use and climatic predictors do not play an important role in the niche ecological models" (line 286), while "intensive chicken population density emerges as a significant predictor" (line 282) begs the question: from an operational perspective, is the best (e.g., most interpretable and quickest to generate) model of HPAI risk a map of poultry farming intensity?

      We agree that poultry density may partly reflect reporting bias, but we also assumed it a meaningful predictor of HPAI risk. Its importance in our models is therefore expected. Importantly, our BRT framework does more than reproduce poultry distribution: it captures non-linear relationships and interactions with other covariates, allowing a more nuanced characterisation of risk than a simple poultry density map. Note also that we distinguished in our models intensive and extensive chicken poultry density and duck density. Therefore, it is not a “map of poultry farming intensity”. 

      At line 282, we used the word “influence” while fully recognising that correlative models cannot establish causality. Indeed, in our analyses, “relative influence” refers to the importance metric produced by the BRT algorithm (Ridgeway, 2020), which measures correlative associations between environmental factors and outbreak occurrences. These scores are interpreted in light of the broader scientific literature, therefore our interpretations build on both our results and existing evidence, rather than on our models alone. However, in the next version of the paper, we will revise the sentence as: “underscoring the strong association of poultry farming practices with HPAI spread (Dhingra et al., 2016)”. 

      I have more significant concerns about the authors' treatment of sampling bias: "We agree with the Reviewer's comment that poultry density could have potentially been considered to guide the sampling effort of the pseudo-absences to consider when training domestic bird models. We however prefer to keep using a human population density layer as a proxy for surveillance bias to define the relative probability to sample pseudo-absence points in the different pixels of the background area considered when training our ecological niche models. Indeed, given that poultry density is precisely one of the predictors that we aim to test, considering this environmental layer for defining the relative probability to sample pseudo-absences would introduce a certain level of circularity in our analytical procedure, e.g. by artificially increasing to influence of that particular variable in our models." The authors have elected to ignore a fundamental feature of distribution modelling with occurrence-only data: if we include a source of sampling bias as a covariate and do not include it when we sample background data, then that covariate would appear to be correlated with presence. They acknowledge this later in their response to my review: "...assuming a sampling bias correlated with poultry density would result in reducing its effect as a risk factor." In other words, the apparent predictive capacity of poultry density is a function of how the authors have constructed the sampling bias for their models. A reader of the manuscript can reasonably ask the question: to what degree are is the model a model of HPAI transmission risk, and to what degree is the model a model of the observation process? The sentence at lines 474-477 is a helpful addition, however the preceding sentence, "Another approach to sampling pseudo-absences would have been to distribute them according to the density of domestic poultry," (line 474) is included without acknowledgement of the flow-on consequence to one of the key findings of the manuscript, that "...intensive chicken population density emerges as a significant predictor..." (line 282). The additional context on the EMPRES-i dataset at line 475-476 ("the locations of outbreaks ... are often georeferenced using place name nomenclatures") is in conflict with the description of the dataset at line 407 ("precise location coordinates"). Ultimately, the choices that the authors have made are entirely defensible through a clear, concise description of model features and assumptions, and precise language to guide the reader through interpretation of results. I am not satisfied that this is provided in the revised manuscript.

      We thank the Reviewer for this important point. To address it, we compared model predictive performance and covariate relative influences obtained when pseudo-absences were weighted by poultry density versus human population density (Author response table 1). The results show that differences between the two approaches are marginal, both in predictive performance (ΔAUC ranging from -0.013 to +0.002) and in the ranking of key predictors (see below Author response images 1 and 2). For instance, intensive chicken density consistently emerged as an important predictor regardless of the bias layer used.

      Note: the comparison was conducted using a simplified BRT configuration for computational efficiency (fewer trees, fixed 5-fold random cross-validation, and standardised parameters). Therefore, absolute values of AUC and variable importance may differ slightly from those in the manuscript, but the relative ranking of predictors and the overall conclusions remain consistent.

      Given these small differences, we retained the approach using human population density. We agree that poultry density partly reflects surveillance bias as well as true epidemiological risk, and we will clarify this in the revised manuscript by noting that the predictive role of poultry density reflects both biological processes and surveillance systems. Furthermore, on line 289, we will add “We note, however, that intensive poultry density may reflect both surveillance intensity and epidemiological risk, and its predictive role in our models should be interpreted in light of both processes”.

      Author response table 1.

      Comparison of model predictive performances (AUC) between pseudo-absence sampling were weighted by poultry density and by human population density across host groups, virus types, and time periods. Differences in AUC values are shown as the value for poultry-weighted minus human-weighted pseudo-absences.

      Author response image 1.

      Comparison of variable relative influence (%) between models trained with pseudo-absences weighted by poultry density (red) and human population density (blue) for domestic bird outbreaks. Results are shown for four datasets: H5N1 (<2020), H5N1 (>2020), H5Nx (<2020), and H5Nx (>2020).

      Author response image 2.

      Comparison of variable relative influence (%) between models trained with pseudo-absences weighted by poultry density (red) and human population density (blue) for wild bird outbreaks. Results are shown for three datasets: H5N1 (>2020), H5Nx (<2020), and H5Nx (>2020).

      The authors have slightly misunderstood my comment on "extrapolation": I referred to "environmental extrapolation" in my review without being particularly explicit about my meaning. By "environmental extrapolation", I meant to ask whether the models were predicting to environments that are outside the extent of environments included in the occurrence data used in the manuscript. The authors appear to have understood this to be a comment on geographic extrapolation, or predicting to areas outside the geographic extent included in occurrence data, e.g.: "For H5Nx post-2020, areas of high predicted ecological suitability, such as Brazil, Bolivia, the Caribbean islands, and Jilin province in China, likely result from extrapolations, as these regions reported few or no outbreaks in the training data" (lines 195-197). Is the model extrapolating in environmental space in these regions? This is unclear. I do not suggest that the authors should carry out further analysis, but the multivariate environmental similarly surface (MESS; see Elith et al., 2010) is a useful tool to visualise environmental extrapolation and aid model interpretation.

      On the subject of "extrapolation", I am also concerned by the additions at lines 362-370: "...our models extrapolate environmental suitability for H5Nx in wild birds in areas where few or no outbreaks have been reported. This discrepancy may be explained by limited surveillance or underreporting in those regions." The "discrepancy" cited here is a feature of the input dataset, a function of the observation distribution that should be captured in pseudo-absence data. The authors state that Kazakhstan and Central Asia are areas of interest, and that the environments in this region are outside the extent of environments captured in the occurrence dataset, although it is unclear whether "extrapolation" is informed by a quantitative tool like a MESS or judged by some other qualitative test. The authors then cite Australia as an example of a region with some predicted suitability but no HPAI outbreaks to date, however this discussion point is not linked to the idea that the presence of environmental conditions to support transmission need not imply the occurrence of transmission (as in the addition, "...spatial isolation may imply a lower risk of actual occurrences..." at line 214). Ultimately, the authors have not added any clear comment on model uncertainty (e.g., variation between replicated BRTs) as I suggested might be helpful to support their description of model predictions.

      Many thanks for the clarification. Indeed, we interpreted your previous comments in terms of geographic extrapolations. We thank the Reviewer for these observations. We will adjust the wording to further clarify that predictions of ecological suitability in areas with few or no reported outbreaks (e.g., Central Asia, Australia) are not model errors but expected extrapolations, since ecological suitability does not imply confirmed transmission (for instance, on Line 362: “our models extrapolate environmental suitability” will be changed to “Interestingly, our models extrapolate geographical”). These predictions indicate potential environments favorable to circulation if the virus were introduced.

      In our study, model uncertainty is formally assessed when comparing the predictive performances of our models (Fig. S3, Table S1), the relative influence (Table S3) and response curves (Fig. 2) associated with each environmental factor (Table S2). All the results confirming a good converge between these replicates. Finally, we indeed did not use a quantitative tool such as a MESS to assess extrapolation but did rely on qualitative interpretation of model outputs.

      All of my criticisms are, of course, applied with the understanding that niche modelling is imperfect for a disease like HPAI, and that data may be biased/incomplete, etc.: these caveats are common across the niche modelling literature. However, if language around the transmission cycle, the niche, and the interpretation of any of the models is imprecise, which I find it to be in the revised manuscript, it undermines all of the science that is presented in this work.

      We respectfully disagree with this comment. The scope of our study and the methods employed are clearly defined in the manuscript, and the limitations of ecological niche modelling in this context are explicitly acknowledged in the Discussion section. While we appreciate the Reviewer’s concern, the comment does not provide specific examples of unclear or imprecise language regarding the transmission cycle, niche, or interpretation of the models. Without such examples, it is difficult to identify further revisions that would improve clarity.

      Reviewer #2 (Public review):

      The geographic range of highly pathogenic avian influenza cases changed substantially around the period 2020, and there is much interest in understanding why. Since 2020 the pathogen irrupted in the Americas and the distribution in Asia changed dramatically. This study aimed to determine which spatial factors (environmental, agronomic and socio-economic) explain the change in numbers and locations of cases reported since 2020 (2020--2023). That's a causal question which they address by applying correlative environmental niche modelling (ENM) approach to the avian influenza case data before (2015--2020) and after 2020 (2020--2023) and separately for confirmed cases in wild and domestic birds. To address their questions they compare the outputs of the respective models, and those of the first global model of the HPAI niche published by Dhingra et al 2016.

      We do not agree with this comment. In the manuscript, it is well established that we are quantitatively assessing factors that are associated with occurrences data before and after 2020. We do not claim to determine the causality. One sentence of the Introduction section (lines 75-76) could be confusing, so we intend to modify it in the final revision of our manuscript. 

      ENM is a correlative approach useful for extrapolating understandings based on sparse geographically referenced observational data over un- or under-sampled areas with similar environmental characteristics in the form of a continuous map. In this case, because the selected covariates about land cover, use, population and environment are broadly available over the entire world, modelled associations between the response and those covariates can be projected (predicted) back to space in the form of a continuous map of the HPAI niche for the entire world.

      We fully agree with this assessment of ENM approaches.

      Strengths:

      The authors are clear about expected bias in the detection of cases, such geographic variation in surveillance effort (testing of symptomatic or dead wildlife, testing domestic flocks) and in general more detections near areas of higher human population density (because if a tree falls in a forest and there is no-one there, etc), and take steps to ameliorate those. The authors use boosted regression trees to implement the ENM, which typically feature among the best performing models for this application (also known as habitat suitability models). They ran replicate sets of the analysis for each of their model targets (wild/domestic x pathogen variant), which can help produce stable predictions. Their code and data is provided, though I did not verify that the work was reproducible.

      The paper can be read as a partial update to the first global model of H5Nx transmission by Dhingra and others published in 2016 and explicitly follows many methodological elements. Because they use the same covariate sets as used by Dhingra et al 2016 (including the comparisons of the performance of the sets in spatial cross-validation) and for both time periods of interest in the current work, comparison of model outputs is possible. The authors further facilitate those comparisons with clear graphics and supplementary analyses and presentation. The models can also be explored interactively at a weblink provided in text, though it would be good to see the model training data there too.

      The authors' comparison of ENM model outputs generated from the distinct HPAI case datasets is interesting and worthwhile, though for me, only as a response to differently framed research questions.

      Weaknesses:

      This well-presented and technically well-executed paper has one major weakness to my mind. I don't believe that ENM models were an appropriate tool to address their stated goal, which was to identify the factors that "explain" changing HPAI epidemiology.

      Here is how I understand and unpack that weakness:

      (1) Because of their fundamentally correlative nature, ENMs are not a strong candidate for exploring or inferring causal relationships.

      (2) Generating ENMs for a species whose distribution is undergoing broad scale range change is complicated and requires particular caution and nuance in interpretation (e.g., Elith et al, 2010, an important general assumption of environmental niche models is that the target species is at some kind of distributional equilibrium (at time scales relevant to the model application). In practice that means the species has had an opportunity to reach all suitable habitats and therefore its absence from some can be interpreted as either unfavourable environment or interactions with other species). Here data sets for the response (N5H1 or N5Hx case data in domestic or wild birds ) were divided into two periods; 2015--2020, and 2020--2023 based on the rationale that the geographic locations and host-species profile of cases detected in the latter period was suggestive of changed epidemiology. In comparing outputs from multiple ENMs for the same target from distinct time periods the authors are expertly working in, or even dancing around, what is a known grey area, and they need to make the necessary assumptions and caveats obvious to readers.

      We thank the Reviewer for this observation. First, we constrained pseudo-absence sampling to countries and regions where outbreaks had been reported, reducing the risk of interpreting non-affected areas as environmentally unsuitable. Second, we deliberately split the outbreak data into two periods (2015-2020 and 2020-2023) because we do not assume a single stable equilibrium across the full study timeframe. This division reflects known epidemiological changes around 2020 and allows each period to be modeled independently. Within each period, ENM outputs are interpreted as associations between outbreaks and covariates, not as equilibrium distributions. Finally, by testing prediction across periods, we assessed both niche stability and potential niche shifts. These clarifications will be added to the manuscript to make our assumptions and limitations explicit.

      Line 66, we will add: “Ecological niche model outputs for range-shifting pathogens must therefore be interpreted with caution (Elith et al., 2010). Despite this limitation, correlative ecological niche models  remain useful for identifying broad-scale associations and potential shifts in distribution. To account for this, we analysed two distinct time periods (2015-2020 and 2020-2023).”

      Line 123, we will revise “These findings underscore the ability of pre-2020 models in forecasting the recent geographic distribution of ecological suitability for H5Nx and H5N1 occurrences” to “These results suggest that pre-2020 models captured broad patterns of suitability for H5Nx and H5N1 outbreaks, while post-2020 models provided a closer fit to the more recent epidemiological situation”.

      (3) To generate global prediction maps via ENM, only variables that exist at appropriate resolution over the desired area can be supplied as covariates. What processes could influence changing epidemiology of a pathogen and are their covariates that represent them? Introduction to a new geographic area (continent) with naive population, immunity in previously exposed populations, control measures to limit spread such as vaccination or destruction of vulnerable populations or flocks? Might those control measures be more or less likely depending on the country as a function of its resources and governance? There aren't globally available datasets that speak to those factors, so the question is not why were they omitted but rather was the authors decision to choose ENMs given their question justified? How valuable are insights based on patterns of correlation change when considering different temporal sets of HPAI cases in relation to a common and somewhat anachronistic set of covariates?

      We agree that the ecological niche models trained in our study are limited to environmental and host factors, as described in the Methods section with the selection of predictors. While such models cannot capture causality or represent processes such as immunity, control measures, or governance, they remain a useful tool for identifying broad associations between outbreak occurrence and environmental context. Our study cannot infer the full mechanisms driving changes in HPAI epidemiology, but it does provide a globally consistent framework to examine how associations with available covariates vary across time periods.

      (4) In general the study is somewhat incoherent with respect to time. Though the case data come from different time periods, each response dataset was modelled separately using exactly the same covariate dataset that predated both sets. That decision should be understood as a strong assumption on the part of the authors that conditions the interpretation: the world (as represented by the covariate set) is immutable, so the model has to return different correlative associations between the case data and the covariates to explain the new data. While the world represented by the selected covariates *may* be relatively stable (could be statistically confirmed), what about the world not represented by the covariates (see point 3)?

      We used the same covariate layers for both periods, which indeed assumes that these environmental and host factors are relatively stable at the global scale over the short timeframe considered. We believe this assumption is reasonable, as poultry density, land cover, and climate baselines do not change drastically between 2015 and 2023 at the resolution of our analysis. We agree, however, that unmeasured processes such as control measures, immunity, or governance may have changed during this time and are not captured by our covariates.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      - Line 400-401: "over the 2003-2016 periods" has an extra "s"; "two host species" (with reference to wild and domestic birds) would be more precise as "two host groups".

      - Remove comma line 404

      Many thanks for these comments, we have modified the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Most of my work this round is encapsulated in the public part of the review.

      The authors responded positively to the review efforts from the previous round, but I was underwhelmed with the changes to the text that resulted. Particularly in regard to limiting assumptions - the way that they augmented the text to refer to limitations raised in review downplayed the importance of the assumptions they've made. So they acknowledge the significance of the limitation in their rejoinder, but in the amended text merely note the limitation without giving any sense of what it means for their interpretation of the findings of this study.

      The abstract and findings are essentially unchanged from the previous draft.

      I still feel the near causal statements of interpretation about the covariates are concerning. These models really are not a good candidate for supporting the inference that they are making and there seem to be very strong arguments in favour of adding covariates that are not globally available.

      We never claimed causal interpretation, and we have consistently framed our analyses in terms of associations rather than mechanisms. We acknowledge that one phrasing in the research questions (“Which factors can explain…”) could be misinterpreted, and we are correcting this in the revised version to read “Which factors are associated with…”. Our approach follows standard ecological niche modelling practice, which identifies statistical associations between occurrence data and covariates. As noted in the Discussion section, these associations should not be interpreted as direct causal mechanisms. Finally, all interpretive points in the manuscript are supported by published literature, and we consider this framing both appropriate and consistent with best practice in ecological niche modelling (ENM) studies.

      We assessed predictor contributions using the “relative influence” metric, the terminology reported by the R package “gbm” (Ridgeway, 2020). This metric quantifies the contribution of each variable to model fit across all trees, rescaled to sum to 100%, and should be interpreted as an association rather than a causal effect.

      L65-66 The general difficulty of interpreting ENM output with range-shifting species should be cited here to alert readers that they should not blithely attempt what follows at home.

      I believe that their analysis is interesting and technically very well executed, so it has been a disappointment and hard work to write this assessment. My rough-cut last paragraph of a reframed intro would go something like - there are many reasons in the literature not to do what we are about to do, but here's why we think it can be instructive and informative, within certain guardrails.

      To acknowledge this comment and the previous one, we revised lines 65-66 to: “However, recent outbreaks raise questions about whether earlier ecological niche models still accurately predict the current distribution of areas ecologically suitable for the local circulation of HPAI H5 viruses. Ecological niche model outputs for range-shifting pathogens must therefore be interpreted with caution (Elith et al., 2010). Despite this limitation, correlative ecological niche models  remain useful for identifying broad-scale associations and potential shifts in distribution.”

      We respectfully disagree with the Reviewer’s statement that “_there are many reasons in the literature not to do what we are about to do”._ All modeling approaches, including mechanistic ones, have limitations, and the literature is clear on both the strengths and constraints of ecological niche models. Our manuscript openly acknowledges these limits and frames our findings accordingly. We therefore believe that our use of an ENM approach is justified and contributes valuable insights within these well-defined boundaries.

      Reference: Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. Update, 1(1), 2007.


      The following is the authors’ response to the original reviews.

      Reviewer #1(Public review):

      I am concerned by the authors' conceptualisation of "niche" within the manuscript. Is the "niche" we are modelling the niche of the pathogen itself? The niche of the (wild) bird host species as a group? The niche of HPAI transmission within (wild) bird host species (i.e., an intersection of pathogen and bird niches)? Or the niche of HPAI transmission in poultry? The precise niche being modelled should be clarified in the Introduction or early in the Methods of the manuscript. The first two definitions of niche listed above are relevant, but separate from the niche modelled in the manuscript - this should be acknowledged.

      We acknowledge that these concepts were probably not enough clearly defined in the previous version of our manuscript, and we have now included an explicit definition in the fourth paragraph of the Introduction section: “We developed separate ecological niche models for wild and domestic bird HPAI occurrences, these models thus predicting the ecological suitability for the risk of local viral circulation leading to the detection of HPAI occurrences within each host group (rather than the niche of the virus or the host species alone).”

      The authors should consider the precise transmission cycle involved in each HPAI case: "index cases" in farmed poultry, caused by "spillover" from wild birds, are relevant to the wildlife transmission cycle, while the ecological conditions coinciding with subsequent transmission in farmed poultry are likely to be fundamentally different. (For example, subsequent transmission is not conditional on the presence of wild birds.) Modelling these two separate, but linked, transmission cycles together may omit important nuances from the modelling framework.

      We thank the Reviewer for highlighting the distinction between primary (wild-todomestic) and secondary (farm-to-farm) transmission cycles. Our modelling framework was designed to assess the ecological suitability of HPAI occurrences in wild and domestic birds separately. In the domestic poultry models, the response variables are the confirmed outbreaks data and do not distinguish between index cases resulting from primary or secondary infections.

      One of the aims of the study is to evaluate the spatial distribution of areas ecologically suitable for local H5N1/x circulation either leading to domestic or wild bird cases, i.e. to identify environmental conditions where the virus may have persisted or spread, whether as a result of introduction by wild birds or farm-to-farm transmission. Introducing mechanistic distinctions in the response variable would not necessarily improve or affect the ecological suitability maps, since each type of transmission is likely to be associated with different covariates that are included in the models.

      Also, the EMPRES-i database does not indicate whether each record corresponds to an index case or a secondary transmission event, so in practice it would not be possible to produce two different models. However, we agree that distinguishing between types of transmission is an interesting perspective for future research. This could be explored, for example, by mapping interfaces between wild and domestic bird populations or by inferring outbreak transmission trees using genomic data when available.

      To avoid confusion, we now explicitly clarify this aspect in the Materials and Methods section: “It is important to note that the EMPRES-i database does not distinguish between index cases (e.g., primary spillover from wild birds) and secondary farm-to-farm transmissions. As such, our ecological niche models are trained on confirmed HPAI outbreaks in poultry that may result from different transmission dynamics — including both initial introduction events influenced by environmental factors and subsequent spread within poultry systems.”

      We now also address this limitation in the Discussion section: “Finally, our models for domestic poultry do not distinguish between primary introduction events (e.g., spillover from wild birds) and secondary transmission between farms due to limitations in the available surveillance data. While environmental factors likely influence the risk of initial spillover events, secondary spread is more often driven by anthropogenic factors such as biosecurity practices and poultry trade, which are not included in our current modelling framework.”

      The authors should clarify the meaning of "spillover" within the HPAI transmission cycle: if spillover transmission is from wild birds to farmed poultry, then subsequent transmission in poultry is separate from the wildlife transmission cycle. This is particularly relevant to the Discussion paragraph beginning at line 244: does "farm to farm transmission" have a distinct ecological niche to transmission between wild birds, and transmission between wild birds and farmed birds? And while there has been a spillover of HPAI to mammals, could the authors clarify that these detections are dead-end? And not represented in the dataset? Dhingra et al., 2016 comment on the contrast between models of "directly transmitted" pathogens, such as HPAI, and vector-borne diseases: for vector-borne diseases, "clear eco-climatic boundaries of vectors can be mapped", whereas "HPAI is probably not as strongly environmentally constrained". This is an important piece of nuance in their Discussion and a comment to a similar effect may be of use in this manuscript.

      Following the Reviewer’s previous comment, we have now added clarifications in the Methods and Discussion sections defining spillover as the transmission of HPAI viruses from wild birds to domestic poultry (index cases), and secondary transmission as onward spread between farms. As mentioned in our answer above, we now emphasise that our models do not distinguish these dynamics, which are likely to be influenced by different drivers — ecological in the case of spillover, and often anthropogenic (e.g., poultry trade movement, biosecurity) in the case of farm-to-farm transmission.

      The discussion regarding farm-to-farm transmission and spillovers is indeed an interpretation derived from the covariates analysis (see the second paragraph in the Discussion section). Specifically, we observed a stronger association between HPAI occurrences and domestic bird density after 2020, which may suggest that secondary infections (e.g., farm-to-farm transmission) became more prominent or more frequently reported. We however acknowledge that our data do not allow us to distinguish primary introductions from secondary transmission events, and we have added a sentence to explicitly clarify this: “However, this remains an interpretation, as the available data do not allow us to distinguish between index cases and secondary transmission events.”

      We thank the Reviewer for raising the point of mammalian infections. While spillover events of HPAI into mammals have been documented, these detections are generally considered dead-end infections and do not currently represent sustained transmission chains. As such, they fall outside the scope of our study, which focuses on avian hosts and models ecological suitability for outbreaks in wild and domestic birds. However, we agree that future work could explore the spatial overlap between mammalian outbreak detections and ecological suitability maps for wild birds to assess whether such spillovers may be linked to localised avian transmission dynamics.

      Finally, we have added a comment about the differences between pathogens strongly constrained by the environments and HPAI: “This suggests that HPAI H5Nx is not as strongly environmentally constrained as vector-borne pathogens, for which clear eco-climatic boundaries (e.g., vector borne diseases) can be mapped (Dhingra et al., 2016).” This aligns with the interpretation provided by Dhingra and colleagues (2016) and helps contextualise the predictive limitations of ecological niche models for directly transmitted pathogens like HPAI.

      There are several places where some simple clarification of language could answer my questions related to ecological niches. For example, on line 74, "the ecological niche" should be followed by "of the pathogen", or "of HPAI transmission in wild birds", or some other qualifier that is most appropriate to the Authors' conceptualisation of the niche modelled in the manuscript. Similarly, in the following sentence, "areas at risk" could be followed by "of transmission in wild birds", to make the transmission cycle that is the subject of modelling clear to the reader. On line 83, it is not clear who or what is the owner of "their ecological niches": is this "poultry and wild birds", or the pathogen?

      We agree with that suggestion and have now modified the related part of the text  accordingly (e.g., “areas at risk for local HPAI circulation” and “of HPAI in wild or domestic birds”).

      I am concerned by the authors' treatment of sampling bias in their BRT modelling framework. If we are modelling the niche of HPAI transmission, we would expect places that are more likely to be subject to disease surveillance to be represented in the set of locations where the disease has been detected. I do not agree that pseudo-absence points are sampled "to account for the lack of virus detection in some areas" - this description is misleading and does not match the following sentence ("pseudo-absence points sampled ... to reflect the greater surveillance efforts ..."). The distribution of pseudo-absences should aim to capture the distribution of probable disease surveillance, as these data act as a stand-in for missing negative surveillance records. It is sensible that pseudo-absences for disease detection in wild birds are sampled proportionately to human population density, as the disease is detected in dead wild birds, which are more likely to be identified close to areas of human occupation (as stated on line 163). However, I do not agree that the same applies to poultry - the density of farmed poultry is likely to be a better proxy for surveillance intensity in farmed birds. Human population density and farmed poultry density may be somewhat correlated (i.e., both are low in remote areas), but poultry density is likely to be higher in rural areas, which are assumed to have relatively lower surveillance intensity under the current approach. The authors allude to this in the Discussion: "monitoring areas with high intensive chicken densities ... remains crucial for the early detection and management of HPAI outbreaks".

      We agree with the Reviewer's comment that poultry density could have potentially been considered to guide the sampling effort of the pseudo-absences to consider when training domestic bird models. We however prefer to keep using a human population density layer as a proxy for surveillance bias to define the relative probability to sample pseudoabsence points in the different pixels of the background area considered when training our ecological niche models. Indeed, given that poultry density is precisely one of the predictors that we aim to test, considering this environmental layer for defining the relative probability to sample pseudo-absences would introduce a certain level of circularity in our analytical procedure, e.g. by artificially increasing to influence of that particular variable in our models.

      Furthermore, it is also worth noting that, to better account for variations in surveillance intensity, we also adjusted the sampling effort by allocating pseudo-absences in proportion to the number of confirmed outbreaks per administrative unit (country or sub-national regions for Russia and China). This approach aimed to reduce bias caused by uneven reporting and surveillance efforts between regions. Additionally, we restricted model training to countries or regions with a minimum surveillance threshold (at least five confirmed outbreaks per administrative unit). Therefore, both presence and pseudo-absence points originated from areas with more consistent surveillance data.

      We acknowledge in the Materials and Methods section that the approach proposed by the Reviewer could have been used: “Another approach to sampling pseudo-absences would have been to distribute them according to the density of domestic poultry.” Finally, our approach is also justified in our response to the next comment of the Reviewer.

      Having written my review, including the paragraph above, I briefly scanned Dhingra et al., and found that they provide justification for the use of human population density to sample pseudoabsences in farmed birds: "the Empres-i database compiles outbreak locations data from very heterogeneous sources and in the absence of explicit GPS location data, the geo-referencing of individual cases is often through the use of place name gazetteers that will tend to force the outbreak location populated place, rather in the exact location of the farm where the disease was found, which would introduce a bias correlated with human population density." This context is entirely missing from the manuscript under review, however, I maintain the comment in the paragraph above - have the Authors trialled sampling pseudo-absences from poultry density layers?

      We agree with the Reviewer’s comment and have now added this precision in the Materials and Methods section (in the third paragraph dedicated to ecological niche modelling): “However, as pointed out by Dhingra and colleagues (2016), the locations of outbreaks in the EMPRES-i database are often georeferenced using place name nomenclatures due to a lack of accurate GPS data, which could introduce a spatial bias towards populated areas.”

      The authors indirectly acknowledge the role of sampling bias in model predictions at line 163, however, this point could be clearer: there is sampling bias in the set of locations where HPAI has been observed and failure to adequately replicate this sampling bias in pseudo-absence data could lead covariates that are correlated with the observation distribution to appear to be correlated with the target distribution. This point is alluded to but should be clearly acknowledged to allow the reader to appropriately interpret your results. I understand the point being made on line 163 is that surveillance of HPAI in wild birds has become more structured and less opportunistic over time - if this is the case, a statement to this effect could replace "which could influence earlier data sets", which is a little ambiguous. The Authors acknowledge the role of sampling bias in lines 241-242 - this may be a good place to remind the reader that they have attempted to incorporate sampling bias through the selection of their pseudoabsence dataset, particularly for wild bird models.

      We thank the Reviewer for this comment. We have now clarified in the text that observed data on HPAI occurrence are inherently influenced by heterogeneous surveillance efforts and that failure to replicate this bias in pseudo-absence sampling could effectively lead to misleading correlations with covariates associated with surveillance effort rather than true ecological suitability. We have now rephrased the related sentence as follows: “This decline may indicate a reduced bias in observation data: typically, dead wild birds are more frequently found near human-populated areas due to opportunistic detections, whereas more recent surveillance efforts have become increasingly proactive (Giacinti et al., 2024).”

      Dhingra et al. aimed to account for the effect of mass vaccination of birds in China. This does not appear to be included in the updated models - is this a relevant covariate to consider in updated models? Are the models trained on pre-2020 data predicting to post-2020 given the same presence dataset as previous models? It may be helpful to provide a comment on this if we consider the pre-2020 models in this work to be representative of pre-2020 models as a cohort. Given the framing of the manuscript as an update to Dhingra et al., it may be useful for the authors to briefly summarise any differences between the existing models and updated models. Dhingra et al., also examine spatial extrapolation, which is not addressed here. Environmental extrapolation may be a useful metric to consider: are there areas where models are extrapolating that are predicted to be at high risk of HPAI transmission? Finally, they also provide some inset panels on global maps of model predictions - something similar here may also be useful.

      We thank the Reviewer for these comments. Vaccination coverage is indeed a relevant covariate for HPAI suitability in domestic birds. However, we did not include this variable in our updated models for two reasons. First, comprehensive vaccination data were only available for China, so it is not possible to include this variable in a global model. Second, available data were outdated and vaccination strategies can vary substantially over time.

      We however agree with the Reviewer that the Materials and Methods section did not clarify clearly the differences with Dhingra et al. (2016), and we now detail these differences at the beginning of the Materials and Methods section: “Our approach is similar to the one implemented by Dhingra and colleagues (2016). While Dhingra et al. (2016) developed their models only for domestic birds over the 2003-2016 periods, our models were developed for two host species separately (wild and domestic birds) and for two time periods (2016-2020 and 2020-2023).”

      We also detail the main difference concerning the pseudo-absences sampling:  Dhingra and colleagues (2016) used human population density to sample pseudo-absences to reflect potential surveillance bias and also account for spatial filtering (min/max distances from presence). We adopted a similar strategy but also incorporated outbreak count per country or province (in the case of China and Russia) into the pseudo-absence sampling process to further account for within-country surveillance heterogeneity. We have now added these specifications in the Materials and Methods section: “To account for heterogeneity in AIV surveillance and minimise the risk of sampling pseudo-absences in poorly monitored regions, we restricted our analysis to countries (or administrative level 1 units in China and Russia) with at least five confirmed outbreaks. Unlike Dhingra et al. (2016), who sampled pseudoabsences across a broader global extent, our sampling was limited to regions with demonstrated surveillance activity. In addition, we adjusted the density of pseudo-absence points according to the number of reported outbreaks in each country or admin-1 unit, as a proxy for surveillance effort — an approach not implemented in this previous study.”

      We have now also provided a comparison between the different outputs, particularly in the Results section: “Our findings were overall consistent with those previously reported by Dhingra and colleagues (Dhingra et al., 2016), who used data from January 2004 to March 2015 for domestic poultry. However, some differences were noted: their maps identified higher ecological suitability for H5 occurrences before 2016 in North America, West Africa, eastern Europe, and Bangladesh, while our maps mainly highlight ecologically suitable regions in China, South-East Asia, and Europe (Fig. S5). In India, analyses consistently identified high ecologically suitable areas for the risk of local H5Nx and H5N1 circulation for the three time periods (pre-2016, 2016-2020, and post-2020). Similar to the results reported by Dhingra and colleagues, we observed an increase in the ecological suitability estimated for H5N1 occurrence in South America's domestic bird populations post-2020. Finally, Dhingra and colleagues identified high suitability areas for H5Nx occurrence in North America, which are predicted to be associated with a low ecological suitability in the 2016-2020 models.”

      We acknowledge that some regions predicted as highly suitable correspond to areas where extrapolation likely occurs due to limited or no recorded outbreaks. We have now added these specifications when discussing the resulting suitability maps obtained for domestic birds: “For H5Nx post-2020, areas of high predicted ecological suitability, such as Brazil, Bolivia, the Caribbean islands, and Jilin province in China, likely result from extrapolations, as these regions reported few or no outbreaks in the training data”, and, for wild birds: “Some of the areas with high predicted ecological suitability reflect the result of extrapolations. This is particularly the case in coastal regions of West and North Africa, the Nile Basin, Central Asia (Kyrgyzstan, Tajikistan, Uzbekistan), Brazil (including the Amazon and coastal areas), southern Australia, and the Caribbean, where ecological conditions are similar to those in areas where outbreaks are known to occur but where records of outbreaks are still rare.”

      For wild birds (H5Nx, post-2020), high ecological suitability was predicted along the West and North African coasts, the Nile basin, Central Asia (e.g., Kyrgyzstan, Tajikistan, Uzbekistan), the Brazilian coast and Amazon region, Caribbean islands, southern Australia, and parts of Southeast Asia. Ecological suitability estimated in these regions may directly result from extrapolations and should therefore be interpreted cautiously.

      We also added a discussion of the extrapolation for wild birds (in the Discussion section): “Interestingly, our models extrapolate environmental suitability for H5Nx in wild birds in areas where few or no outbreaks have been reported. This discrepancy may be explained by limited surveillance or underreporting in those regions. For instance, there is significant evidence that Kazakhstan and Central Asia play a role as a centre for the transmission of avian influenza viruses through migratory birds (Amirgazin et al., 2022; FAO, 2005; Sultankulova et al., 2024). However, very few wild bird cases are reported in EMPRES-i. In contrast, Australia appears environmentally suitable in our models, yet no incursion of HPAI H5N1 2.3.4.4b has occurred despite the arrival of millions of migratory shorebirds and seabirds from Asia and North America. Extensive surveillance in 2022 and 2023 found no active infections nor evidence of prior exposure to the 2.3.4.4b lineage (Wille et al., 2024; Wille and Klaassen, 2023).”

      We agree that inset panels can be helpful for visualising global patterns. However, all resulting maps are available on the MOOD platform (https://app.mood-h2020.eu/core), which provides an interactive interface allowing users to zoom in and out, identify specific locations using a background map, and explore the results in greater detail. This resource is referenced in the manuscript to guide readers to the platform.

      Related to my review of the manuscript's conceptualisation above, there are several inconsistencies in terminology in the manuscript - clearing these up may help to make the methods and their justification clearer to the reader. The "signal" that the models are estimating is variously described as "susceptibility" and "risk" (lines 179-180), "HPAI H5 ecological suitability" (line 78), "likelihood of HPAI occurrences" (line 139), "risk of HPAI circulation" (line 187), "distribution of occurrence data" (line 428). Each of these quantities has slightly different meanings and it is confusing to the reader that all of these descriptors are used for model output. "Likelihood of HPAI occurrences" is particularly misleading: ecological niche models predict high suitability for a species in areas that are similar to environments where it has previously been identified, without imposing constraints on species movement. It is intuitively far more likely that there will be HPAI occurrences in areas where the disease is already established than in areas where an introduction event is required, however, the niche models in this work do not include spatial relationships in their predictions.

      We agree with the Reviewer’s comments. We have now modified the text so that in the Results section we refer to ecological suitability when referring to the outputs of the models. In the context of our Discussion section, we then interpret this ecological suitability in terms of risk, as areas with high ecological suitability being more likely to support local HPAI outbreaks.

      I also caution the authors in their interpretation of the results of BRTs, which are correlative models, so therefore do not tell us what causes a response variable, but rather what is correlated with it. On Line 31, "correlated with" may be more appropriate than "influenced by". On Line 82, "correlated with" is more appropriate than "driving". This is particularly true given the authors' treatment of sampling bias.

      We agree with the Reviewer’s comment and have now rephrased these sentences as follows: “The spatial distribution of HPAI H5 occurrences in wild birds appears to be primarily correlated with urban areas and open water regions” and “Our results provide a better understanding of HPAI dynamics by identifying key environmental factors correlated with the increase in H5Nx and H5N1 cases in poultry and wild birds, investigating potential shifts in their ecological niches, and improving the prediction of at-risk areas.”

      The following sentences in line 201 are ambiguous: "For both H5Nx and H5N1, however, isolated areas on the risk map should be interpreted with caution. These isolated areas may result from sparse data, model limitations, or local environmental conditions that may not accurately reflect true ecological suitability." By "isolated", do the authors mean remote? Or ecologically dissimilar from the set of locations where HPAI has been detected? Or ecologically dissimilar from the set of locations in the joint set of HPAI detection locations and pseudo-absences? Or ecologically similar to the set of locations where HPAI has been detected but spatially isolated? These four descriptors are each slightly different and change the meaning of the sentences. "Model limitations" are also ambiguous - could the authors clarify which specific model limitations they are referring to here? Ultimately, the point being made is probably that a model may predict high ecological suitability for HPAI transmission in areas where the disease has not yet been identified, or where a model is extrapolating in environmental space, however, uncertainty in these predictions may be greater than uncertainty in predictions in areas that are represented in surveillance data. A clear comment on model uncertainty and how it is related to the surveillance dataset and the covariate dataset is currently missing from the manuscript and would be appropriate in this paragraph.

      We understand the Reviewer’s concerns regarding these potential ambiguities, and have now rephrased these sentences as follows: “For both H5Nx and H5N1, certain areas of predicted high ecological suitability appear spatially isolated, i.e. surrounded by regions of low predicted ecological suitability. These areas likely meet the environmental conditions associated with past HPAI occurrences, but their spatial isolation may imply a lower risk of actual occurrences, particularly in the absence of nearby outbreaks or relevant wild bird movements.”

      I am concerned by the wording of the following sentence: "The risk maps reveal that high-risk areas have expanded after 2020" (line 203). This statement could be supported by an acknowledgement of the assumptions the models make of the HPAI niche: are we saying that the niche is unchanged in environmental space and that there are now more geographic areas accessible to the pathogen, or that the niche has shifted or expanded, and that there are now more geographic areas accessible to the pathogen? The authors should review the sentence beginning on line 117: if models trained on data from the old timepoint predicting to the new timepoint are almost as good as models trained on data from the new timepoint predicting to the new timepoint, doesn't this indicate that the niche, as the models are able to capture it, has not changed too much?

      We thank the Reviewer for this comment. The statement that "high-risk areas have expanded after 2020" indeed refers to an increase in the geographic extent of areas predicted to have high ecological suitability in models trained on post-2020 data. This expansion likely reflects new outbreak data from regions that had not previously reported cases, which in turn influenced model training.

      However, models trained on pre-2020 data retain reasonable predictive performance when applied to post-2020 data (see the AUC results reported in Table S1), suggesting that the models suggest an expansion in the ecological suitability, but do not provide definitive evidence of a shift in the ecological niche. We have now added a statement at the end of this paragraph to clarify this point: “However, models trained on pre-2020 data maintained reasonable predictive performance when tested on post-2020 data, suggesting that the overall ecological niche of HPAI did not drastically shift over time.”

      The final two paragraphs of the Results might be more helpful to include at the beginning of the Results, as the data discussed there are inputs to the models. Is it possible that the "rise in Shannon index for sea birds" that "suggests a broadening of species diversity within this category from 2020 onwards" is caused by the increasingly structured surveillance of HPAI in wild birds alluded to earlier in the Results? Is the "prevalence" discussed in line 226 the frequency of the families Laridae and Sulidae being represented in HPAI detection data? Or the abundance of the bird species themselves? The language here is a little ambiguous. Discussion of particular values of Shannon/Simpson indices is slightly out of context as the meanings of the indices are in the Methods - perhaps a brief explanation of the uses of Shannon/Simpson indices may be helpful to the reader here. It may also be helpful to readers who are not acquainted with avian taxonomy to provide common names next to formal names (for example, in brackets) in the body of the text, as this manuscript is published in an interdisciplinary journal.

      We thank the Reviewer for these comments. First, we acknowledge that the paragraphs on species diversity and Shannon/Simpson indices describe important data, but we have chosen to present them after the main modelling results in order to maintain a logical narrative flow. Our manuscript first presents the ecological niche models and their predictive performance, followed by interpretations of the observed patterns, including changes in avian host diversity. Diversity indices were used primarily to support and contextualise the patterns observed in the modelling results.

      For clarity, we have revised the relevant paragraphs in the Results (i) to briefly remind readers of the interpretation of the Shannon and Simpson indices (“Note that these indices reflect the diversity of bird species detected in outbreak records, not necessarily their abundance in the wild”) and (ii) to clarify that “prevalence” refers to the frequency of HPAI detection in wild bird species of the Laridae (gulls) and Sulidae (boobies and gannets) families, and not their total abundance. Family of birds includes several species, so the “common name” of a family can sometimes refer to species from other families. We have now added the common names for each family in the manuscript (even if we indeed acknowledge that “penguins” can be ambiguous).

      In the Methods, it is stated: "To address the heterogeneity of AIV surveillance efforts and to avoid misclassifying low-surveillance areas as unsuitable for virus circulation, we trained the ecological niche models only considering countries in which five or more cases have been confirmed." However, it is not clear how this processing step prevents low-surveillance areas from being misclassified. If pseudo-absences are appropriately sampled, low-surveillance areas should be less represented in the pseudo-absence dataset, which should lead the models to be uncertain in their predictions of these areas. Perhaps "To address the heterogeneity of AIV surveillance efforts and to avoid sampling pseudo-absence data in realistically low-surveillance areas" is a more accurate introduction to the paragraph. I am not entirely convinced that it is appropriate to remove detection data where the national number of cases is low. This may introduce further sampling bias into the dataset.

      We take the opportunity of the Reviewer’s comment to further clarify this important step aiming to mitigate bias associated with countries with substantial uncertainty in reporting and/or potentially insufficient HPAI surveillance data. While we indeed acknowledge that this procedure may exclude countries that had effective surveillance but low virus detection, we argue that it constitutes a relevant conservative approach to minimising the risk of sampling a significant number of pseudo-absence points in areas associated with relatively high yet undetected local HPAI circulation due to insufficient surveillance. Furthermore, given that five cases over two decades is a relatively low threshold — particularly for a highly transmissible virus such as AIV — non-detection or non-reporting remains a more plausible explanation than true absence.

      To improve clarity, we have now revised the related sentence as follows: “To account for heterogeneity in AIV surveillance and minimise the risk of sampling pseudo-absences in poorly monitored regions, we restricted our analysis to countries (or administrative level 1 units in China and Russia) with at least five confirmed outbreaks.”

      The reporting of spatial and temporal resolution of data in the manuscript could be significantly clearer. Is there a reason why human population density is downscaled to 5 arcminutes (~10km at the equator) while environmental covariate data has a resolution of 1km? The projection used is not reported. The authors should clarify the time period/resolution of the covariate data assigned to the occurrence dataset, for example, does "day LST annual mean" represent a particular year pre- or post-2020? Or an average over a number of years? Given that disease detections are associated with observation and reporting dates, and that there may be seasonal patterns in HPAI occurrence, it would be helpful to the reader to include this information when the eco-climatic indices are described. It would also be helpful to the reader to summarise the source, spatial and temporal resolution of all covariates in a table, as in Dhingra et al. Could the Authors clarify whether the duck density layer is farmed ducks or wild ducks?

      The projection is WGS 84 (EPSG:4326) and the resolution of the output maps is around 0.0833 x 0.0833 decimal degrees (i.e. 5 arcmin, or approximately 10 km at the equator). We have now added these specifications in the text: “All maps are in a WGS84 projection with a spatial resolution of 0.0833 decimal degrees (i.e. 5 arcmin, or approximately 10 km at the equator).” In addition, we have now specified in the text that duck refers to domestic duck for clarity. 

      Environmental variables retrieved for our analyses were here available as values averaged over distinct periods of time (for further detail see Supplementary Information Resources S1 — description and source of each environmental variable included in the original sets of variables — available at https://github.com/sdellicour/h5nx_risk_mapping). In future works, this would indeed be interesting to associate the occurrences to a specific season with the variables accordingly, specially for viruses such as HPAI which have been found correlated with seasons. However, we did not conduct this type of analysis in the present study, occurrences being here associated with averaged values of environmental data only.

      In line 407, the authors state a number of pseudo-absence points used in modelling, relative to the number of presence points, without clear justification. Note that relative weights can be assigned to occurrence data in most ECN software (e.g., R package gbm), to allow many pseudo-absence points to be sampled to represent the full extent of probable surveillance effort and subsequently down-weighted.

      We thank the Reviewer for this suggestion. We acknowledge that alternative approaches such as down-weighting pseudo-absence points could offer a certain degree of flexibility in representing surveillance effort. However, we opted for a fixed 1:3 ratio of pseudoabsences to presence points within each administrative unit to ensure a consistent and conservative sampling distribution. This approach aimed to limit overrepresentation of pseudoabsences in areas with sparse presence data, while still reflecting areas of likely surveillance.

      There are a number of typographical errors and phrasing issues in the manuscript. A nonexhaustive list is provided below.

      - Line 21: "its" should be "their" - Line 25: "HPAI cases"

      Modifications have been done.

      - Line 63: sentence beginning "However" is somewhat out of context - what is it (briefly) about recent outbreaks that challenge existing models?

      We have now edited that sentence as follows: “However, recent outbreaks raise questions about whether earlier ecological niche models still accurately predict the current distribution of areas ecologically suitable for the local circulation of HPAI H5 viruses.”

      - Lines 71 and 390: "AIV" is not defined in the text - Line 73: "do" ("are" and "what" are not capitalised)

      Modifications have been done.

      - Line 115: "predictability" should be "predictive capacity"

      We have now replaced “predictability” by “predictive performance”.

      - Line 180: omit "pinpointing"

      - Line 192 sentence beginning "In India," should be re-worded: is the point that there are detections of HPAI here and the model predicts high ecological suitability?

      - Line 195 sentence beginning "Finally," phrasing could be clearer: Dhingra et al. find high suitability areas for H5Nx in North America which are predicted to be low suitability in the new model.

      - Line 237: omit "the" in "with the those"

      - Line 374: missing "."

      - Line 375: "and" should be "to" (the same goes for line 421)

      - Line 448: Rephrase "Simpson index goes" to "The Simpson index ranges"

      Modifications have been done.

      Reviewer #2 (Public Review):

      What is the justification for separating the dataset at 2020? Is it just the gap in-between the avian influenza outbreaks?

      We chose 2020 as a cut-off based on a well-documented shift in HPAI epidemiology, notably the emergence and global spread of clade 2.3.4.4b, which may affect host dynamics and geographic patterns. We have now added this precision in the Materials and Methods section: “We selected 2020 as a cut-off point to reflect a well-documented shift in HPAI epidemiology, notably the emergence and global spread of clade 2.3.4.4b. This event marked a turning point in viral dynamics, influencing both the range of susceptible hosts and the geographical distribution of outbreaks.”

      If the analysis aims to look at changing case numbers and distribution over time, surely the covariate datasets should be contemporaneous with the response?

      Thank you for raising this important point. While we acknowledge that, ideally, covariates should match the response temporally, such high-resolution spatiotemporal environmental data were not available for most environmental factors considered in our ecological niche modelling analyses. While we used predictors (e.g., land-use variables, poultry density) that reflect long-term ecological suitability, we acknowledge that rather considering short-term seasonal variation could be an interesting perspective in future works, which is now explicitly stated in the Discussion section: “In addition, aligning outbreak occurrences with seasonally matched environmental variables could further refine predictions of HPAI risk linked to migratory dynamics.”

      I would expect quite different immunity dynamics between domestic and wild birds as a function of lifespan and birth rates - though no obvious sign of that in the raw data. A statement on assumptions in that respect would be good.

      Thank you for the comment. We agree that domestic and wild birds likely exhibit different immunity dynamics due to differences in lifespan, turnover rates, and exposure. However, our analyses did not explicitly model immunity processes, and the data did not show a clear signal of these differences.

      Decisions and analytical tactics from Dhingra et al are adopted here in a way that doesn't quite convey the rationale, or justify its use here.

      We thank the Reviewer for this observation. However, we do not agree with the notion that the rationale for using Dhingra et al.’s analytical framework is insufficiently conveyed. We adapted key components of their ecological niche modelling approach — such as the use of a boosted regression tree methodology and pseudo-absences sampling procedure — to ensure comparability with their previous findings, while also extending the analysis to additional time periods and host categories (wild vs. domestic birds). This framework aligns with the main objective of our study, which is to assess shifts in ecological suitability for HPAI over time and across host species, in light of changing viral dynamics.  

      Please go over the manuscript and harmonise the language about the model target - it is usually referred to as cases, but sometimes the pathogen, and others the wild and domestic birds where the cases were discovered.

      We agree and we have now modified the text to only use the “cases” or “occurrences” terminology when referring to the model inputs.

      Is the reporting of your BRT implementation correct? The text suggests that only 10 trees were run per replicate (of which there were 10 per response (domestic/wild x H5N1 / H5Nx) x distinct covariate set), but this would suggest that the authors were scarcely benefiting from the 'boosting' part of the BRTs that allow them to accurately estimate curvilinear functions. As additional trees are added, they should still be improving the loss function, and dramatically so in the early stages. The authors seem heavily guided by Elith et al's excellent paper[1] explaining BRTs and the companion tutorial piece, but in that work, the recommended approach is to run an initial model with a relatively quick learning rate that achieves the best fit to the held-out data at somewhere over 1000 trees, and then to refine the model to that number of trees with a slower learning rate. If the authors did indeed run only 10 trees I think that should be explained.

      For each model, we used the “gbm.step” function to fit boosted regression trees, initiating the process with 10 trees and allowing up to 10,000 trees in steps of 5. The optimal number of trees was automatically determined by minimising the cross-validated deviance, following the recommended approach of Elith and colleagues (2008, J. Anim. Ecol.). This setup allows the boosting algorithm to iteratively improve model performance while avoiding overfitting. These aspects are now further clarified in the Materials and Methods section: “All BRT analyses were run and averaged over 10 cross-validated replicates, with a tree complexity of 4, a learning rate of 0.01, a tolerance parameter of 0.001, and while considering 5 spatial folds. Each model was initiated with 10 trees, and additional trees were incrementally added (in steps of 5) up to a maximum of 10,000, with the optimal number selected based on cross-validation tests.”

      I'm uncomfortable with the strong interpretation of changes in indices such as those for diversity in the case of bird species with detected cases of avian influenza, and the relative influence of covariates in the environmental niche models. In the former case, if surveillance effort is increasing it might be expected that more species will be found to be infected. In the latter, I'm just not convinced that these fundamentally correlative models can support the interpretation of changing epidemiology as asserted by authors. This strikes me as particularly problematic in light of static and in some cases anachronistic predictor sets.

      We thank the Reviewer for drawing attention to how changes in surveillance intensity might influence our diversity estimates. We have now integrated a new analysis to evaluate the increase in the number of wild birds tested and discussed the potential impact of this increase on the comparison of the bird species diversity metrics presented in our study, which is now interpreted with more caution: “To evaluate whether the post-2020 increase in species diversity estimated for infected wild birds could result from an increase in the number of tests performed on wild birds, we compared European annual surveillance test counts (EFSA et al., 2025, 2019) before and after 2020 using a Wilcoxon rank-sum test. We relied on European data because it was readily accessible and offered standardised and systematically collected metrics across multiple years, making it suitable for a comparative analysis. Although borderline significant (p-value = 0.063), the Wilcoxon rank-sum test indeed highlighted a recent increase in the number of wild bird tests (on average >11,000/year pre-2020 and >22,000 post-2020), which indicates that the comparison of bird species diversity metrics should be interpreted with caution. However, such an increase in the number of tests conducted in the context of a passive surveillance framework would thus also be in line with an increase in the number of wild birds found dead and thus tested. Therefore, while the increase in the number of tests could indeed impact species diversity metrics such as the Shannon index, it can also reflect an absolute higher wild bird mortality in line with a broadened range of infected bird species.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript, the authors describe a good-quality ancient maize genome from 15th-century Bolivia and try to link the genome characteristics to Inca influence. Overall, the manuscript is below the standard in the field. In particular, the geographic origin of the sample and its archaeological context is not well evidenced. While dating of the sample and the authentication of ancient DNA have been evidenced robustly, the downstream genetic analyses do not support the conclusion that genomic changes can be attributed to Inca influence. Furthermore, sections of the manuscript are written incoherently and with logical mistakes. In its current form, this paper is not robust and possibly of very narrow interest. 

      Strengths: 

      Technical data related to the maize sample are robust. Radiocarbon dating strongly evidenced the sample age, estimated to be around 1474 AD. Authentication of ancient DNA has been done robustly. Spontaneous C-to-T substitutions, which are present in all ancient DNA, are visible in the reported sample with the expected pattern. Despite a low fraction of C-to-T at the 1st base, this number could be consistent with the cool and dry climate in which the sample was preserved. The distribution of DNA fragment sizes is consistent with expectations for a sample of this age. 

      Weaknesses: 

      Thank you for all your thoughtful comments. See below for comments on each.

      (1) Archaeological context for the maize sample is weakly supported by speculation about the origin and has unreasonable claims weighing on it. Perhaps those findings would be more convincing if the authors were to present evidence that supports their conclusions: i) a map of all known tombs near La Paz, ii) evidence supporting the stone tomb origins of this assemblage, and iii) evidence supporting non-Inca provenance of the tomb. 

      We believe we are clear about what information we have about context.  First, the intake records from the MSU Museum from 1890 are not as detailed as we would like, but we cannot enhance them. The mummified girl and her accoutrements, including the maize, came from a stone tower or chullpa south of La Paz, in what is now Bolivia. We do not know which stone chullpa, so a map would be of limited use.  The mortuary group is identified as Inca, but as we note the accoutrements do not appear of high status, so it is possible that she is not an elite.  Mud tombs are normally attributed to the local population, and stone towers to Inca or elites. We have clarified at multiple places in the text that the maize is from the period of Inca incursion in this part of Bolivia and have modified text to reflect greater uncertainty of Inca or local origin, but that selection for environmentally favorable characteristics had taken place.  Regardless, there are three 15th c CE or AD AMS ages on the maize, a cucurbita rind, and a camelid fiber.  The maize is almost certainly mid to late 15th century CE.

      (2) Dismissal of the admixture in the reported samples is not evidenced correctly. Population f3 statistic with an outgroup is indeed one of the most robust metrics for sample relatedness; however, it should not be used as a test of admixture. For an admixture test, the population f3 statistic should be used in the form: i) target population, ii) one possible parental population, iii) another possible parental population. This is typically done iteratively with all combinations of possible parental populations. Even in such a form, the population f3 statistic is not very sensitive to admixture in cases of strong genetic drift, and instead population f4 statistic (with an outgroup) is a recommended test for admixture. 

      We have removed “Our admixture f3-statistics test results suggest aBM is not admixed” in our revised manuscript. Since our goal here is to identify which group(s) has(have) the highest relatedness with aBM, so population f3 statistic with an outgroup is the most robust metric to do the test and to support our conclusion here.

      (3) The geographic placement of the sample based on genetic data is not robust. To make use of the method correctly, it would be necessary to validate that genetic samples in this region follow the assumption of the 'isolation-by-distance' with dense sampling, which has not been done. Additionally, the authors posit that "This suggests that aBM might not only be genetically related to the archaeological maize from ancient Peru, but also in the possible geographic location." The method used to infer the location is based on pure genetic estimation. The above conclusion is not supported by this method, and it directly contradicts the authors' suggestion that the sample comes from Bolivia.  

      We understood that it is necessary to validate the assumption of the 'isolation-by-distance' with dense sampling. But we did not do it because: 1) the ancient maize age ranges from ~5000BP to ~100BP and they were found in very different countries at different times. 2) isolation-by-distance is a population genetic concept and it's often used to test whether populations that are geographically farther apart are also more genetically different. Considering we only have 17 ancient samples in total our sample size is not sufficient for a big population test.

      For "It directly contradicts the authors' suggestion that the sample comes from Bolivia.”, as we described in our manuscript that “Given the provenience of the aBM and its age, it is possible the samples were local or alternatively were introduced into western highland Bolivia from the Inca core area – modern Peru.” The sample recording file did show the aBM sample was found in Bolivia, but we do not know where aBM originally came from before it was found in Bolivia. To answer this question, we used locator.py to predict the potential geographic location that aBM may have originally come from, and our results showed that the predicted location is inside of modern Peru and is also very close to archaeological Peruvian maize.  

      Therefore, our conclusion that "This suggests that aBM might not only be genetically related to the archaeological maize from ancient Peru, but also in the possible geographic location” does not contradict that the sample was found Bolivia.

      (4) The conclusion that Ancient Andean maize is genetically similar to European varieties and hence shares a similar evolutionary history is not well supported. The PCA plot in Figure 4 merely represents sample similarity based on two components (jointly responsible for about 20% of the variation explained), and European samples could be very distant based on other components. Indeed, the direct test using the outgroup f3 statistic does not support that European varieties are particularly closely related to ancient Andean maize. Perhaps these are more closely related to Brazil? We do not know, as this has not been measured. 

      Our conclusion is “We also found that a few types of maize from Europe have a much closer distance to the archaeological maize cluster compared to other modern maize, which indicates maize from Europe might expectedly share certain traits or evolutionary characteristics with ancient maize. It is also consistent with the historical fact that maize spread to Europe after Christopher Columbus's late 15th century voyages to the Americas. But as shown, maize also has diversity inside the European maize cluster. It is possible that European farmers and merchants may have favored different phenotypic traits, and the subsequent spread of specific varieties followed the new global geopolitical maps of the Colonial era”.

      We understood your concerns that two components only explain about 20% of the variation. But as you can see from the Figure 2b in Grzybowski, M.W. et al., 2023 publication, it described that “the first principal component (PC1) of variation for genetic marker data roughly corresponded to the division between domesticated maize and maize wild relatives is only 1.3%”. It shows this is quite common in maize, especially when the datasets include landraces, hybrids, and wild relatives. For our maize dataset, we have archaeological maize data ranging from ~5,000BP to ~100BP, and we also have modern maize, which makes the genetic structure of our data more complicated. Therefore, we think our two components are currently the best explanation currently possible. We also included PCA plot based on component 1 and 3 in Fig4_PCA13.pdf. It does not show that the European samples are very distant.

      For “Perhaps these are more closely related to Brazil?”, thank you for this very good question, but we apologize that we cannot answer this question from our current study because our study focuses on identifying the location where aBM originally came from, establishing and explaining patterns of genetic variability of maize, with a specific focus on maize strains that are related to our current aBM. Thus, we will not explore the story between maize from Brazil and European maize in our current study.

      (5) The conclusion that long branches in the phylogenetic tree are due to selection under local adaptation has no evidence. Long branches could be the result of missing data, nucleotide misincorporations, genetic drift, or simply due to the inability of phylogenetic trees to model complex population-level relationships such as admixture or incomplete lineage sorting. Additionally, captions to Figure S3, do not explain colour-coding.  

      We have removed “aBM tends to have long branches compare to tropicalis maize, which can be explained by adaption for specific local environment by time.” in our revised manuscript.

      We have added the color-coding information under Fig. S3 in our revised manuscript.

      (6) The conclusion that selection detected in aBM sample is due to Inca influence has no support. Firstly, selection signature can be due to environmental or other factors. To disentangle those, the authors would need to generate the data for a large number of samples from similar cultural contexts and from a wide-ranging environmental context, followed by a formal statistical test. Secondly, allele frequency increase can be attributed to selection or demographic processes, and alone is not sufficient evidence for selection. The presented XP-EHH method seems more suitable. Overall, methods used in this paper raise some concerns: i) how accurate are allele-frequency tests of selection when only single individual is used as a proxy for a whole population, ii) the significance threshold has been arbitrary fixed to an absolute number based on other studies, but the standard is to use, for example, top fifth percentile. Finally, linking selection to particular GO terms is not strong evidence, as correlation does not imply causation, and links are unclear anyway. 

      In sum, this manuscript presents new data that seems to be of high quality, but the analyses are frequently inappropriate and/or over-interpreted. 

      Regarding your suggestion that “from similar cultural contexts and from a wide-ranging environmental context, followed by a formal statistical test”, we apologize that this cannot be done in our current study because we could not find other archaeological maize samples/datasets that are from similar cultural contexts.

      For “Secondly, allele frequency increase can be attributed to selection or demographic processes, and alone is not sufficient evidence for selection.” Yes, we agree, and that’s why we said it “inferred” the conclusion instead of “indicated”. Furthermore, we revised the whole manuscript following all reviewers’ comments and reorganized and reduced the part on selection on aBM.

      For “The presented XP-EHH method seems more suitable”, we do not think XP-EHH is the best method that could be used here because we only have one aBM sample, but XP-EHH is more suitable for a population analysis.

      For “Finally, linking selection to particular GO terms is not strong evidence, as correlation does not imply causation, and links are unclear anyway.”, as we described in our manuscript, our results “inferred” instead of “indicated” the conclusion.

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript presents valuable new datasets from two ancient maize seeds that contribute to our growing understanding of the maize evolution and biodiversity landscape in pre-colonial South America. Some of the analyses are robust, but the selection elements are not supported. 

      Strengths: 

      The data collection is robust, and the data appear to be of sufficiently high quality to carry out some interesting analytical procedures. The central finding that aBM maize is closely related to maize from the core Inca region is well supported, although the directionality of dispersal is not supported. 

      Weaknesses: 

      Thank you for your comments and suggestions. See below for responses and explanations.

      The selection results are not justified, see examples in the detailed comments below. 

      (1) The manuscript mentions cultural and natural selection (line 76), but then only gives a couple of examples of selecting for culinary/use traits. There are many examples of selection to tolerate diverse environments that could be relevant for this discussion, if desired. 

      We have added related examples with references supported in our revised manuscript.  

      (2) I would be extremely cautious about interpreting the observations of a Spanish colonizer (lines 95-99) without very significant caveats. Indigenous agriculture and food ways would have been far more nuanced than what could be captured in this context, and the genocidal activities of the Europeans would have impacted food production activities to a degree, and any contemporaneous accounts need to be understood through that lens.  

      We agree with the first part of this comment and have softened our use of this particular textual material such that it is far less central to interpretation.While of interest, we cannot evaluate the impact of colonial European activities or observational bias for purposes of this analysis.

      (3) The f3 stats presented in Figure 2 are not set up to test any specific admixture scenarios, so it is unsupported to conclude that the aBM maize is not admixed on this basis (lines 201-202). The original f3 publication (Patterson et al, 2012) describes some scenarios where f3 characteristics associate with admixture, but in general, there are many caveats to this approach, and it's not the ideal tool for admixture testing, compared with e.g., f4 and D (abba-baba) statistics.  

      You make an important point that f3 stats is not the ideal tool for admixture testing. Since our study goal here is to identify which group(s) has(have) the highest relatedness with aBM, the population f3 statistic with an outgroup is the most robust metrics with which to do the test and to support our conclusion here. We have removed the “Our admixture f3-statistics test results suggest aBM is not admixed” in our revised manuscript.

      (4) I'm a little bit skeptical that the Locator method adds value here, given the small training sample size and the wide geographic spread and genetic diversity of the ancient samples that include Central America. The paper describing that method (Battey et al 2020 eLife) uses much larger datasets, and while the authors do not specifically advise on sample sizes, they caution about small sample size issues. We have already seen that the ancient Peruvian maize has the most shared drift with aBM maize on the basis of the f3 stats, and the Locator analysis seems to just be reiterating that. I would advise against putting any additional weight on the Locator results as far as geographic origins, and personally I would skip this analysis in this case.  

      As we described in our manuscript, we have 17 archaeological samples in total. Please find more detailed information from the “geographical location prediction” section.

      We cannot add more ancient samples because they are all that we could find from all previous publications. We may still want to keep this analysis because f3 stats indicates the genome similarity, but the purpose of locator.py analysis is indicating the predicted location of origin of a genetic sample by comparing it to a set of samples of known geographic origin. 

      (5) The overlap in PCA should not be used to confirm that aBM is authentically ancient, because with proper data handling, PCA placement should be agnostic to modern/ancient status (see lines 224-226). It is somewhat unexpected that the ancient Tehuacan maize (with a major teosinte genomic component) falls near the ancient South American maize, but this could be an artifact of sampling throughout the PCA and the lack of teosinte samples that might attract that individual.  

      We have removed “which supports the authenticity of aBM as archaeological maize” in our revised manuscript. The PCA was only applied for all maize samples, so we did not include any teosinte samples in the analysis.

      (6) What has been established (lines 250-251) is genetic similarity to the Inca core area, not necessarily the directionality. Might aBM have been part of a cultural region supplying maize to the Inca core region, for example? Without a specific test of dispersal directionality, which I don't think is possible with the data at hand, this is somewhat speculative. 

      We added this and re-wrote this part in our revised manuscript.

      (7) Singleton SNPs are not a typical criterion for identifying selection; this method needs some citations supporting the exact approach and validation against neutral expectations (line 278). Without Datasets S2 and S3, which are not included with this submission, it is difficult to assess this result further. However, it is very unexpected that ~18,000 out of ~49,000 SNPs would be unique to the aBM lineage. This most likely reflects some data artifact (unaccounted damage, paralogs not treated for high coverage, which are extremely prevalent in maize, etc). I'm confused about unique SNPs in this context. How can they be unique to the aBM lineage if the SNPs used overlap the Grzybowski set? The GO results do not include any details of the exact method used or a statistical assessment of the results. It is not clear if the GO terms noted are statistically enriched.  

      We have added references 53 and 54 in our revised manuscript, and we also uploaded the Datasets S2 and S3.

      For “I'm confused about unique SNPs in this context. How can they be unique to the aBM lineage if the SNPs used overlap the Grzybowski set?”, as we described in our materials and method part that “To achieve potential unique selection on aBM, we calculated the allele frequency for each SNPs between aBM and other archaeological maize, resulting in allele frequency data for 49,896 SNPs. Of these,18,668 SNPs were unique to aBM.”  Thus, the unique SNPs for aBM came from the comparison between aBM with other archaeological maize, and we did not use any modern maize data from the Grzybowski set.

      For “The GO results do not include any details of the exact method used or a statistical assessment of the results. It is not clear if the GO terms noted are statistically enriched.” We did not do GO Term enrichment, so there are no statistical assessments for the results. What we have done was we retained the GO Terms information for each gene by checking their biological process from MaizeGDB, after that, we summarized the results in Dataset S4.

      (8) The use of XP-EHH with pseudo haplotype variant calls is not viable (line 293). It is not clear what exact implementation of XP-EHH was used, but this method generally relies on phased or sometimes unphased diploid genotype calls to observe shared haplotypes, and some minimum population size to derive statistical power. No implementation of XP-EHH to my knowledge is appropriate for application to this kind of dataset. 

      We used the same XP-EHH as this publication “Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913-918 (2007).” Specifically in our analysis, the SNP information of modern maize was compared with ancient maize. The code is available in https://doi.org/10.5061/dryad.w6m905qtd.

      XP-EHH is a statistical method used in population genetics to detect recent positive selection in one population compared to another, and it often applied in modern large maize populations in previous research. In our study, we wanted to detect recent positive selection in modern maize compared to ancient maize, thus, we applied XP-EHH here. Although the population size of ancient maize is not big, it is the best method that we can apply for our dataset here to detect recent selection on modern maize.

      Reviewer #3 (Public review): 

      Summary: 

      The authors seek to place archaeological maize samples (2 kernels) from Bolivia into genetic and geographical context and to assess signatures of selection. The kernels were dated to the end of the Incan empire, just prior to European colonization. Genetic data and analyses were used to characterize the distance from other ancient and modern maize samples and to predict the origin of the sample, which was discovered in a tomb near La Paz, Bolivia. Given the conquest of this region by the Incan empire, it is possible that the sample could be genetically similar to populations of maize in Peru, the center of the Incan empire. Signatures of selection in the sample could help reveal various environmental variables and cultural preferences that shaped maize genetic diversity in this region at that time. 

      Strengths: 

      The authors have generated substantial genetic data from these archaeological samples and have assembled a data set of published archaeological and modern maize samples that should help to place these samples in context. The samples are dated to an interesting time in the history of South America during a period of expansion of the Incan empire and just prior to European colonization. Much could be learned from even this small set of samples. 

      Weaknesses: 

      Many thanks for your comments and suggestions.  We have addressed these below and provided further explanation.

      (1) Sample preparation and sequencing: 

      Details of the quality of the samples, including the percentage of endogenous DNA are missing from the methods. The low percentage of mapped reads suggests endogenous DNA was low, and this would be useful to characterize more fully. Morphological assessment of the samples and comparison to morphological data from other maize varieties is also missing. It appears that the two kernels were ground separately and that DNA was isolated separately, but data were ultimately pooled across these genetically distinct individuals for analysis. Pooling would violate assumptions of downstream analysis, which included genetic comparison to single archaeological and modern individuals. 

      We did not do the morphological assessment of the samples and comparison to morphological data from other maize varieties because we only have 2 aBM kernels, and we do not have other archaeological samples that could be used to do comparison.

      For “It appears that the two kernels were ground separately and that DNA was isolated separately, but data were ultimately pooled across these genetically distinct individuals for analysis”, as you can see from our Materials and Methods section that “Whole kernels were crushed in a mortar and pestle”, these two kernels were ground together before sequenced. 

      While morphological assessment of the sample would be interesting, most morphological data reported for maize are from microremains (starch, phytoliths, pollen) and this is beyond the scope of our study. Most studies of macrobotanical remains do not appear to focus solely on individual kernels, but instead on (or in combination with) cob and ear shape, which were not available in the assemblage.

      (2) Genetic comparison to other samples: 

      The authors did not meaningfully address the varying ages of the other archaeological samples and modern maize when comparing the genetic distance of their samples. The archaeological samples were as old as >5000 BP to as young as 70 BP and therefore have experienced varying extents of genetic drift from ancestral allele frequencies. For this reason, age should explicitly be included in their analysis of genetic relatedness. 

      We have changed related part in our revised manuscript.

      (3) Assessment of selection in their ancient Bolivian sample: 

      This analysis relied on the identification of alleles that were unique to the ancient sample and inferred selection based on a large number of unique SNPs in two genes related to internode length. This could be a technical artifact due to poor alignment of sequence data, evidence supporting pseudogenization, or within an expected range of genetic differentiation based on population structure and the age of the samples. More rigor is needed to indicate that these genetic patterns are consistent with selection. This analysis may also be affected by the pooling of the Bolivian archaeological samples.  

      We do not think it is because of poor alignment of sequence data since we used BWA v0.7.17 with disabled seed (-l 1024) and 0 mismatch alignment. Therefore, there are no SNPs that could come from poor alignment. Please see our detailed methods description here “For the archaeological maize samples, adapters were removed and paired reads were merged using AdapterRemoval60 with parameters --minquality 20 --minlength 30. All 5՛ thymine and 3՛ adenine residues within 5nt of the two ends were hard-masked, where deamination was most concentrated. Reads were then mapped to soft-masked B73 v5 reference genome using BWA v0.7.17 with disabled seed (-l 1024 -o 0 -E 3) and a quality control threshold (-q 20) based on the recommended parameter61 to improve ancient DNA mapping”.

      For “More rigor is needed to indicate that these genetic patterns are consistent with selection”, Could you please be more specific about which method or approach we should use here? For example, methods from specific publications that could be referenced? Or which specific tool could be used?

      “This analysis may also be affected by the pooling of the Bolivian archaeological samples.” As we could not prove these two seeds came from two different individual plants, we do not think this analysis was affected by the pooling of the Bolivian archaeological samples.

      (4) Evidence of selection in modern vs. ancient maize: In this analysis, samples were pooled into modern and ancient samples and compared using the XP-EHH statistic. One gene related to ovule development was identified as being targeted by selection, likely during modern improvement. Once again, ancient samples span many millennia and both South, Central, and North America. These, and the modern samples included, do not represent meaningfully cohesive populations, likely explaining the extremely small number of loci differentiating the groups. This analysis is also complicated by the pooling of the Bolivian archaeological samples. 

      Yes, it is possible that ovule development might be a modern improvement. We re-wrote this part in our revised manuscript.

      Reviewer #1 (Recommendations for the authors): 

      My suggestion is to address the comments that outline why the methods used or results obtained are not sufficient to support your conclusions. Overall, I suggest limiting the narrative of Inca influence and framing it as speculation in the discussion section. Presenting conclusions of Inca influence in the title and abstract is not appropriate, given the very questionable evidence. 

      We agree and have changed the title to “Fifteenth century CE Bolivian maize reveals genetic affinities with ancient Peruvian maize”.

      Reviewer #2 (Recommendations for the authors): 

      (1) Line 74: Mexicana is another subspecies of teosinte; the distinction is between ssp. mexicana and ssp. parviglumis (Balsas teosinte), not mexicana and teosinte. 

      We have corrected this in our revised manuscript.

      (2) Line 100-102: This is a bit confusing, it cannot have been a symbol of empire "since its first introduction", since its introduction long predates the formation of imperial politics in the region. Reference 17 only treats the late precolonial Inca context, while ref 22 (which cites maize cultivation at 2450 BC, not 3000 BC) makes no reference to ritual/feasting contexts; it simply documents early phytolith evidence for maize cultivation. As such, this statement is not supported by the references offered.

      lines 100-102. This point is well taken and was poor prose on our part.  We have modified this discussion to reflect both the confusing statement and we have corrected our mistake in age for reference 22. associated prose has been modified accordingly.

      We have corrected them as “Indeed, in the Andes, previous research showed that under the Inca empire, maize was fulfilled multiple contextual roles. In some cases, it operated as a sacred crop” and “…since its first introduction to the region around 2500 BC”.

      (3) Line 161: IntCal is likely not the appropriate calibration curve for this region; dates should probably be calibrated using SHCal.  

      We greatly appreciate this important (and correct) observation. We have completely recalibrated the maize AMS result based on the southern hemisphere calibration curve, discussed the new calibrations, and have also invoked two other AMS dates also subjected to the southern hemisphere calibration on associated material for comparison.We are confident in a 15th century AD/CE age for the maize, most likely mid- to late 15th century.  

      (4) Lines 167-169: The increase of G and A residues shown in Supplementary Figure S1a is just before the 5' end of the read within the reference genome context, and is related to fragmentation bias - a different process from postmortem deamination. Deamination leads to 5' C->T and 3' G->A, resulting in increased T at 5' ends and increased A at 3' ends, and the diagnostic damage curve. The reduction of C/T just before reads begin is not a result of deamination. 

      We have removed the “Both features are indicative of postmortem deamination patterns” in our revised manuscript.

      (5) Lines 187-196 This section presents a lot of important external information establishing hypotheses, and needs some references.  

      We have added the related references here.

      (6) Line 421: This makes it sound like damage masking was done BEFORE read mapping. However, this conflicts with the previous paragraph about map Damage, and Supplementary Figure 1 still shows a slight but perceptible damage curve, which is impossible if all terminal Ts and As are hard-masked. This should be reconciled.  

      The Supplementary Figure 1 shows the raw ancient maize DNA sample before damage masking. Specifically, Step1: We used map Damage to check/estimate if the damage exists, and we made the Supplementary Figure 1. Step 2: Then we used our own code hard-masked the damage bases and did read mapping.

      The purpose of Supplementary Figure 1 is to show the authenticity of aBM as archaeological maize. Therefore, it should show a slight but perceptible damage curve.

      (7) Line 460: PCA method is not given (just the LD pruning and the plotting).  

      The merged dataset of SNPs for archaeological and modern maize was used for PCA analysis by using “plink –pca”.

      (8) "tropicalis" maize is not common usage, it is not clear to me what this refers to. 

      We have changed all “tropicalis maize” as “tropical maize” in our revised manuscript.

      (9) The Figure 4 color palette is not accessible for colorblind/color-deficient vision.  

      We have changed the color of Figure 4. Please find the new colors in our upload Figure 4.

      (10) Datasets S2 and S3 are not included with this submission. 

      Thank you for letting us know and your suggestion. We have included Datasets S2 and S3 here.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The authors devote significant effort to characterizing the physical interaction between Bicc1 and Pkd2. However, the study does not examine or discuss how this interaction relates to Bicc1's well-established role in posttranscriptional regulation of Pkd2 mRNA stability and translation efficiency.

      The reviewer is correct that the present study has not addressed the downstream consequences of uthis interaction considering that Bicc1 is a posttranscriptional regulator of Pkd2 (and potentially Pkd1). We think that the complex of Bicc1/Pkd1/Pkd2 retains Bicc1 in the cytoplasm and thus restrict its activity in participating in posttranscriptional regulation (see Author response image 1). We, however, do not yet have data to support this and thus have not included this model in the manuscript. Yet, we have updated the discussion of the manuscript to further elaborate on the potential mechanism of the Bicc1/Pkd1/Pkd2 complex.

      We have updated the discussion to include a discussion on the potential consequences on posttranscriptional regulation by Bicc1.

      Author response image 1.

      Model of BICC1, PC1 and PC2 self-regulation. In this model Bicc1 acts as a positive regulator of PKD gene expression. In the presence of ‘sufficient’ amounts of PC1/PC2 complex, it is tethered to the complex and remains biologically inactive (Fig. 1A). However, once the levels of the PC1/PC2 complex are reduced, Bicc1 is now present in the cytoplasm to promote expression of the PKD proteins, thereby raising their levels (Fig. 4B), which then in turn will ‘shutdown’ Bicc1 activity by again tethering it to the plasma membrane.

      (2) Bicc1 inactivation appears to downregulate Pkd1 expression, yet it remains unclear whether Bicc1 regulates Pkd1 through direct interaction or by antagonizing miR-17, as observed in Pkd2 regulation. This should be further examined or discussed.

      This is a very interesting comment. Vishal Patel published that PKD1 is regulated by a mir-17 binding site in its 3’UTR (PMID: 35965273). We, however, have not evaluated whether BICC1 participates in this regulation. A definitive answer would require utilization of the mice described in above reference, which is beyond the scope of this manuscript. We, however, have revised the discussion to elaborate on this potential mechanism. 

      We have updated the discussion to include a statement on the potential direct regulation of Pkd1 mRNA by Bicc1.

      (3) The evidence supporting Bicc1 and ADPKD gene cooperativity, particularly with Pkd1, in mouse models is not entirely convincing, likely due to substantial variability and the aggressive nature of Bpk/Bpk mice. Increasing the number of animals or using a milder Bicc1 strain, such as jcpk heterozygotes, could help substantiate the genetic interaction.

      We have initially performed the analysis using our Bicc1 complete knockout, we previously reported on (PMID 20215348) focusing on compound heterozygotes. Yet, similar to the Pkd1/Pkd2 compound heterozygotes (PMID 12140187) no cyst development was observed when we sacrificed the mice as late as P21. Our strain is similar to the above mentioned jcpk, which is characterized by a short, abnormal transcript thought to result in a null allele (PMID: 12682776). We thank the reviewer for pointing us to the reference showing the heterozygous mice exhibit glomerular cysts in the adults (PMID: 7723240). This suggestion is an interesting idea we will investigate. In general, we agree with the reviewer that a better understanding of the contribution of Bicc1 to the adult PKD phenotype will be critical. To this end, we are currently generating a floxed allele of Bicc1 that will allow us to address the cooperativity in the adult kidney, when e.g. crossed to the Pkd1<sup>RC/RC</sup> mice. Yet, these experiments are beyond the timeframe for this revision. 

      No changes were made in the revised manuscript. 

      Reviewer #2 (Public review):

      (1) These results are potentially interesting, despite the limitation, also recognized by the authors, that BICC1 mutations seem exceedingly rare in PKD patients and may not "significantly contribute to the mutational load in ADPKD or ARPKD". The manuscript has several intrinsic limitations that must be addressed. 

      As mentioned above, the study was designed to explore whether there is an interaction between BICC1 and the PKD1/PKD2 and whether this interaction is functionally important. How this translates into the clinical relevance will require additional studies (and we have addressed this in the discussion of the manuscript).

      (2) The manuscript contains factual errors, imprecisions, and language ambiguities. This has the effect of making this reviewer wonder how thorough the research reported and analyses have been. 

      We respectfully disagree with the reviewer on the latter interpretation. The study was performed with rigor. We have carefully assessed the critiques raised by the reviewer. As presented below, most of the criticisms raised by the reviewer have been easily addressed in the revised version of the manuscript. Yet, none of the critiques seems to directly impact the overall interpretation of the data. 

      Reviewer #1 (Recommendations for the authors):

      (1) The manuscript requires further editing. For example, figure panels and legends are mismatched in Figure 1

      We have corrected the labeling of Figure 1. 

      (2) Y-axis units and values are inconsistent in Figures 4b-4g, Supplementary Figures S2e and S2f are not referenced in the text, genotypes are missing in Supplementary Figure S3f, and numerous typographical errors are present.

      In respect to the y-axis in Figure 4b-g, the scale is different for each of them, but that is intentional as one would lose the differences if they were all scaled identically. But we have now mentioned this in the figure legend to make the reader aware of it. In respect to the Supplemental Figure S2e,f, we included the panels in the description of the mutant BICC1 lines, but unfortunately forgot to reference them. This has now been done.

      We have updated the labeling of the Y-axis for the cystic indices adding “[%]” as the unit and updated the figure legend of Figure 4. We have included the genotypes in Supplementary Figure S3f. The Supplementary Figure S2e,f is now mentioned in the supplemental material (page 9, 2<sup>nd</sup> paragraph). 

      Reviewer #2 (Recommendations for the authors):

      (1) Previous data from mouse, Xenopus, and zebrafish suggest a crucial role for the RNAbinding protein Bicc1 in the pathogenesis of PKD, although BICC1 mutations in human PKD have not been previously reported." The cited sources (and others that were not cited) link Bicc1 mutations to renal cysts, similar to a report by Kraus (PMID: 21922595) that the authors cite later. However, a more direct link to PKD was reported by Lian and colleagues using whole Pkd1 mice (PMID: 20219263) and by Gamberi and colleagues using Pkd1 kidneys and human microarrays (PMID: 28406902). Although relevant, neither is cited here, and only the former is cited later in the manuscript.

      Thanks for pointing this out. We have added these three citations.

      We have added these three citations (PMID: 21922595, PMID: 20219263 and PMID: 28406902) in the indicated sentence.

      (2) In Figure 1B, the lanes do not seem to correspond among panels, particularly evident in the panel with myc-mBicc1. Hence, it is difficult to agree with the presented conclusions.

      We have corrected the labeling of the lanes in Figure 1b.

      (3) In the Figure 1 legend: "(g) Western blot analysis following co-IP experiments, using an anti-mouse Bicc1 or anti-goat PC2 antibody as bait, identified protein interactions between endogenous PC2 and BICC1 in UCL93 cells. Non-immune goat and mouse IgG were included as a negative control." There is no mention of panel H, although this reviewer can imagine what the authors meant. The capitalization differs in the figure and legend. More troublingly, in panel G, a non-defined star indicates a strong band present in both immune and non-immune control.

      We have corrected the figure legend of Figure 1 and clarified the non-specific band in the figure legend.

      (4) In Figure 4, the authors do not show the matched control for the Bicc1 Pkd1 interaction in panel d, nor do they show a scale bar in either a) or d). Thus, the phenotypic severity cannot be properly assessed.

      Thanks for pointing out the missing scale bars, which have now been added. In respect to the two kidneys shown in Figure 4d, the two kidneys shown are from littermates to illustrate the kidney size in agreement with the cumulative data shown in Figure 4e. Unfortunately, this litter did not have a wildtype control. As the data analysis in Figure 4e is based on littermates, mixing and matching kidneys of different litters does not seem appropriate. Thus, we have omitted showing a wildtype control in this panel. However, the size of the wildtype kidney can be seen in Figure 4a.

      We have added the scale bar to both panels and have updated the figure legend to emphasize that the kidneys shown are from littermates and that no wildtype littermate was present in this litter.

      (5) "Surprisingly, an 8-fold stronger interaction was observed between full-length PC1 and myc-mBicc1-ΔKH compared to mycmBicc1 or myc-mBicc1-ΔSAM." Assuming all the controls for protein folding and expression levels have been carried out and not shown/mentioned, this sentence seems to contradict the previous statement that Bicc1deltaSAM reduced the interaction with PC1 by 55%. Because the full length and SAM deletion have different interaction strengths, the latter sentence makes no sense.

      The reduction in the levels of myc-mBicc1-ΔSAM compared to wildtype mycmBicc1 in respect to PC1 binding was not significant. We have clarified this in the text.

      We have corrected the sentence and modified the Figure accordingly. 

      (6) Imprecise statements make a reader wonder how to interpret the data: "More than three independent experiments were analyzed." Stating the sample size or including it in the figure would save space and improve confidence in the data presented.

      We have stated the exact number of animals per conditions above each of the bars.

      (7) "Next, we performed a similar mouse study for Pkd1 by reducing the gene dose of Pkd1 postnatally in the collecting ducts using a Pkhd1-Cre as previously described40" What did the authors mean?

      The reference was included to cite the mouse strain, but realized that it can be mis-interpreted that the exact experiments has been performed previously. We have clarified this in the text.

      We have reworded the sentence to avoid misinterpretation. 

      (8) The authors examined the additive effects of knocking down Bicc1, Pkd1, and Pkd2 with morpholinos in Xenopus and, genetically, in mice. While the Bicc1[+/-] Pkd1 or 2[+/-] double heterozygote mice did not show phenotypes, the authors report that the Bicc1[-/-] Pkd1 or 2 [+/-] did instead show enlarged kidneys. What is the phenotype of a Bicc1[+/-] Pkd1 or 2 [-/-]? What we learn from the author's findings among the PKD population suggests that the latter situation would be potentially translationally relevant.

      The mouse experiments were designed to address a cooperativity between Bicc1 and either Pkd1 or Pkd2 and whether removal of one copy of Pkd1 or Pkd2 would further worsen the Bicc1 cystic kidney phenotype. Thus, the parental crosses were chosen to maximize the number of animals obtained for these genotypes. Unfortunately, these crosses did not yield the genotypes requested by the reviewer. To address the contribution of Bicc1 towards the PKD population, we will need to perform a different cross, where we eliminate Pkd1 or Pkd2 in a floxed background of Bicc1 postnatally in adult mice. While we are gearing up to perform such an experiment, this is timewise beyond the scope of the manuscript. In addition, please note that we have addressed the question about the translation towards the PKD population already in the discussion of the original submission (page 13/14, last/first paragraph).

      No changes have been made to the revised version of the manuscript.

      (9) How do the authors interpret the milder effects of the Bicc1[-/-] Pkd1[+/-] compared to Bicc1[-/-] Pkd2[+/-] relative to the respective protein-protein interactions?

      The milder effects are due to the nature of the crosses. While the Pkd2 mutant is a germline mutation, the Pkd1 mutant is a conditional allele eliminating Pkd1 only in the collecting ducts of the kidney. As such, we spare other nephron segments such as the proximal tubules, which also significantly contribute to the cyst load. As such these mouse data support the interaction between Pkd1 and Pkd2 with Bicc1, but do not allow us to directly compare the outcomes. While this was mentioned in the previous version of the manuscript, we have expanded on this in the revised version of the manuscript.

      We have expanded the results section in the revised version of the manuscript highlighting that the two different approaches cannot be directly compared.

      (10) How do the authors interpret that the strong Bicc1[Bpk] Pkd1 or Pkd2 double heterozygote mice did not have defects and "kidneys from Bicc1+/-:Pkd2+/- did not exhibit cysts (data not shown)", when the VEO PKD patients and - although not a genetic reduction - also the morpholino-treated Xenopus did?

      VEO PKD patients are characterized by a loss of function of PKD1 or PKD2 and – as we propose in this manuscript - that BICC1 further aggravates the phenotype. Yet, we do not address either in the mouse or Xenopus experiments whether BICC1 is a genetic modifier. We are simply addressing whether the two genes show a genetic interaction. In the mouse studies, we eliminate one copy of Pkd1 or Pkd2 in the background of a hypomorphic allele of Bicc1. Similarly, in the Xenopus experiments, we employ suboptimal doses of the morpholino oligomers, i.e., concentrations that did not yield a phenotypic change and then asked whether removing both together show cooperativity. It is important to state that this is based on a biological readout and not defined based on the amount of protein. While we have described this already in the original manuscript (page 7, first paragraph), we have amended our description of the Xenopus experiment to make this even clearer. 

      Finally, we agree with the reviewer that if we were to address whether Bicc1 is a modifier of the PKD phenotype in mouse, we would need to reduce Bicc1 function in a Pkd1 or Pkd2 mutants. Yet, we have recognized this already in the initial version of the manuscript in the discussion (page 14, first paragraph).

      We have expanded the results section when discussing the suboptimal amounts of the morpholino oligos (Page 6, 1<sup>st</sup> paragraph).

      (11) Unclear: "While variants in BICC1 are very rare, we could identify two patients with BICC1 variants harboring an additional PKD2 or PKD1 variant in trans, respectively." Shortly after, the authors state in apparent contradiction that "the patients had no other variants in any of other PKD genes or genes which phenocopy PKD including PKD1, PKD2, PKHD1, HNF1s, GANAB, IFT140, DZIP1L, CYS1, DNAJB11, ALG5, ALG8, ALG9, LRP5, NEK8, OFD1, or PMM2."

      The reviewer is correct. This should have been phrased differently. We have now added “Besides the variants reported below” to clarify this more adequately.

      The sentence was changed to start with “Besides the variants reported below, […].”

      (12) "The demonstrated interaction of BICC1, PC1, and PC2 now provides a molecular mechanism that can explain some of the phenotypic variability in these families." How do the authors reconcile this statement with their reported ultra-rare occurrence of the BICC1 mutations?

      As mentioned in the manuscript and also in response to the other two reviewers, Bicc1 has been shown to regulate Pkd2 gene expression in mice and frogs via an interaction with the miR-17 family of microRNAs. Moreover, the miR-17 family has been demonstrated to be critical in PKD (PMID: 30760828, PMID: 35965273, PMID: 31515477, PMID: 30760828). In fact, both other reviewers have pointed out that we should stress this more since Bicc1 is part of this regulatory pathway. Future experiments are needed to address whether Bicc1 contributes to the variability in ADPKD onset/severity. Yet, this is beyond the scope of this study. 

      Based on the comments of the two other reviewers we have further addressed the Bicc1/miR-17 interaction.

      (13) The manuscript should use correct genetic conventions of italicization and capitalization. This is an issue affecting the entire manuscript. Some exemplary instances are listed below.

      (a) "We also demonstrate that Pkd1 and Pkd2 modifies the cystic phenotype in Bicc1 mice in a dose-dependent manner and that Bicc1 functionally interacts with Pkd1, Pkd2 and Pkhd1 in the pronephros of Xenopus embryos." Genes? Proteins?

      The data presented in this section show that a hypomorphic allele of Bicc1 in mouse and a knockdown in Xenopus yields this. As both affect the proteins, the spelling should reflect the proteins.

      No changes have been made in the revised manuscript.

      (b) The sentence seems to use both the human and mouse genetic capitalization, although it refers to experiments in the mouse system “to define the Bicc1 interacting domains for PC2 (Fig. 2d,e). Full-length PC2 (PC2-HA) interacted with full-length myc-mBICC1.”

      We agree with the review that stating the species of the molecules used is critical, we have adapted a spelling of Bicc1, where BICC1 is the human homologue, mBicc1 is the mouse homologue and xBicc1 the Xenopus one.

      We have highlighted the species spelling in the methods section and labeled the species accordingly throughout the manuscript and figures. 

      (14) “Together these data supported our biochemical interaction data and demonstrated that BICC1 cooperated with PKD1 and PKD2.” Are the authors implying that these results in mice will translate to the human protein?

      We agree that we have not formally shown that the same applies to the human proteins. Thus, we have changed the spelling accordingly.

      We have revised the capitalization of the proteins. 

      (15) The text is often unclear, terse, or inconsistent.

      (a) “These results suggested that the interaction between PC1 and Bicc1 involves the SAM but not the KH/KHL domains (or the first 132 amino acids of Bicc1). It also suggests that the N-terminus could have an inhibitory effect on PC1-BICC1 association.” How do the authors define the N-terminus? The first 132 aa? KH/KHL domains?

      This was illustrated in the original Figure 2A. The DKH constructs lack the first 351 amino acids. 

      To make this more evident, we have specified this in the text as well.

      (b) Similarly, the authors state below, "Unlike PC1, PC2 interacted with mycmBICC1ΔSAM, but not myc-mBICC1-ΔKH suggesting that PC2 binding is dependent on the N-terminal domains but not the SAM domain." It is unclear if the authors refer to the KH/KHL domains or others. Whatever the reference to the N-terminal region, it should also be consistent with the section above.

      This is now specified in the text.

      (c) Unclear: "We have previously demonstrated that Pkd2 levels are reduced in a complete Bicc1 null mice,22 performing qRT-PCR of P4 kidneys (i.e. before the onset of a strong cystic phenotype), revealed that Bicc1, Pkd1 and Pkd2 were statistically significantly down9 regulated (Fig. 4h-j)".

      We have changed the text to clarify this. 

      (d) “Utilizing recombinant GST domains of PC1 and PC2, we demonstrated that BICC1 binds to both proteins in GST-pulldown assays (Fig. 1a, b)." GST-tagged domains? Fusions?

      We have changed the text to clarify this. 

      (e) "To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells" > genetically engineered.

      We have changed the text to clarify this.

      (f) Capitalization (e.g., see Figure S3, ref. the Bpk allele) and annotation (e.g., Gly821Glu and G821E) are inconsistent.

      We have homogenized the labeling of the capitalization and annotations throughout the manuscript. 

      (g) What do the authors mean by "homozygous evolutionarily well-conserved missense variant"?

      We have changed this is the revised version of the manuscript. 

      Reviewer #3 (Public review/Recommendations to the authors):

      (1) A further study in HUREC cells investigating the critical regulatory role of BICC1 and potential interaction with mir-17 may yet lead to a modifiable therapeutic target.

      (2) This study should ideally include experiments in HUREC material obtained from patients/families with BICC1 mutations and studying its effects on the PKD1/2 complex in primary cell lines.

      This is an excellent suggestion. We agree with the reviewer that it would have been interesting to analyze HUREC material from the affected patients. Unfortunately, besides DNA and the phenotypic analysis described in the manuscript neither human tissue nor primary patient-derived cells collected once the two patients with the BICC1 p.Ser240Pro variant passed away.

      No changes to the revised manuscript have been made to address this point.

      (3) Please remove repeated words in the following sentence in paragraph 2 of the introduction: "BICC1 encodes an evolutionarily conserved protein that is characterized by 3 K-homology (KH) and 2 KH-like (KHL) RNA-binding domains at the N-terminus and a SAM domain at the C-terminus, which are separated by a by a disordered intervening sequence (IVS).23-28".

      This has been changed.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors identified and described the transcriptional trajectories leading to CMs during early mouse development, and characterized the epigenetic landscapes that underlie early mesodermal lineage specification.

      The authors identified two transcriptomic trajectories from a mesodermal population to cardiomyocytes, the MJH and PSH trajectories. These trajectories are relevant to the current model for the First Heart Field (FHF) and the Second Heart Field (SHF) differentiation. Then, the authors characterized both gene expression and enhancer activity of the MJH and PSH trajectories, using a multiomics analysis. They highlighted the role of Gata4, Hand1, Foxf1, and Tead4 in the specification of the MJH trajectory. Finally, they performed a focused analysis of the role of Hand1 and Foxf1 in the MJH trajectory, showing their mutual regulation and their requirement for cardiac lineage specification.

      Strengths:

      The authors performed an extensive transcriptional and epigenetic analysis of early cardiac lineage specification and differentiation which will be of interest to investigators in the field of cardiac development and congenital heart disease. The authors considered the impact of the loss of Hand1 and Foxf1 in-vitro and Hand1 in-vivo.

      Weaknesses:

      The authors used previously published scRNA-seq data to generate two described transcriptomic trajectories.

      We agree that a two-route cardiac development model has been described, which is consistent with our analyses. However, the developmental origins and key events by early lineage specification is unclear. Our study provided new insights from the following aspects:

      a) Computational analyses inferred the earliest cardiac fate segregation by E6.75-7.0.

      b) Provided the new-generated E7.0 multi-omics data which revealed the transcriptomic and chromatin accessibility landscape.

      c) Utilized multi-omics and ChIP-seq data to construct a core regulatory network underlying the JCF lineage specification.

      d) Applied in vitro and in vivo analyses, which elucidated the synergistic and different roles of key transcription factors, HAND1 and FOXF1.

      Q1R1: Details of the re-analysis step should be added, including a careful characterization of the different clusters and maker genes, more details on the WOT analysis, and details on the time stamp distribution along the different pseudotimes. These details would be important to allow readers to gain confidence that the two major trajectories identified are realistic interpretations of the input data.

      R1R1: Thank you for the valuable suggestion. In the last version, we characterized the two major trajectories by identifying their common or specific gene sets, and by profiling the expression dynamics along pseudotime (Figure 1F). But we realized a careful description was not provided. In the revised manuscript, we have made the following improvements:

      a) Provided marker gene analyses based on cell types as well as developmental lineages to support the E7.0 progenitor clusters (Figure S1F).

      b) For Figure 1F: revised the text and introduced characteristic genes for the two trajectories.

      c) For WOT analysis: provided more details in the first paragraph of the ‘Results’ section.

      R2R1: The authors have also renamed the cardiac trajectories/lineages, departing from the convention applied in hundreds of papers, making the interpretation of their results challenging.

      R2R1: Agreed. We have changed the MJH as JCF lineage and PSH as SHF lineage.

      Q3R1: The concept of "reverse reasoning" applied to the Waddington-OT package for directional mass transfer is not adequately explained. While the authors correctly acknowledged Waddington-OT's ability to model cell transitions from ancestors to descendants (using optimal transport theory), the justification for using a "reverse reasoning" approach is missing. Clarifying the rationale behind this strategy would be beneficial.

      R3R1: Thank you for pointing out the unclear explanation. As mentioned in R1R1, we have clarified the rationale in the revised manuscript. 

      We would like to provide some additional details: WOT is designed for time-series scRNA-seq data where the time/stage each single cell is given. At any adjacent time points t<sub>i</sub> and t<sub>i+1</sub>, WOT estimates the transition probability of all cells at t<sub>i</sub> to all cells at t<sub>i+1</sub>. One can select a cell set of interest at any time point t<sub>i</sub> to infer their ancestors at t<sub>i-1</sub> or their descendants at t<sub>i+1</sub> by sums of the transition probabilities. As introduced in the original paper, WOT allows for both ‘forward’ and ‘reverse’ inference (DOI: 10.1016/j.cell.2019.01.006).

      Q3R1: As the authors used the EEM cell cluster as a starting point to build the MJH trajectory, it's unclear whether this trajectory truly represents the cardiac differentiation trajectory of the FHF progenitors:

      - This strategy infers that the FHF progenitors are mixed in the same cluster as the extra-embryonic mesoderm, but no specific characterization of potential different cell populations included in this cluster was performed to confirm this.

      To build the MJH trajectory, we performed a two-step analysis:

      (1) Firstly, we used E8.5 CM cells as a starting point to perform WOT computational reverse lineage tracing and identify CM progenitors at each time point.

      (2) Secondly, we selected EEM cells from the E7.5 CM progenitor pool, as a starting point to perform WOT analysis. Cells along this trajectory consist of the JCF lineage (Figure 1B).

      The reason why we chose to use this subset of E7.5 EEM cells was due to its purity. It is distinct from the SHF lineage as suggested by their separation in the UMAP. It is also different from FHF cells as no FHF/CM markers were detected by E7.5. 

      It is admitted that it is infeasible to achieve 100% purity in this single cell omics analysis, but we believe the current strategy of defining the JCF lineage is reasonable. The distinct gene expression dynamics (Figure 1F) and spatial mapping results (Figure 1C), between JCF and SHF lineages, also supported our conclusion.

      - The authors identified the EEM cluster as a Juxta-cardiac field, without showing the expression of the principal marker Mab21l2 per cluster and/or on UMAPs.

      Thank you for your suggestion. We have added Mab21l2 expression plots in the ICA layout (new Figure S1D), showing its transient expression dynamics, consistent with Tyser et al (DOI: 10.1126/science.abb2986).

      - As the FHF progenitors arise earlier than the Juxta-cardiac field cells, it must be possible to identify an early FHF progenitor population (Nkx2-5+; Mab21l2-) using the time stamp. It would be more accurate to use this FHF cluster as a starting point than the EEM cluster to infer the FHF cardiac differentiation trajectory.

      We appreciate your insights. We used the early FHF progenitor population (E7.75 Nkx2-5+; Mab21l2- CM cells) as the starting point and identified its progenitor cells by E7.0 (Figure S2A). Results suggest both JCF and SHF lineages contribute to the early FHF progenitor population, consistent with live imaging-based single cell tracing by Dominguez et al (DOI: 10.1016/j.cell.2023.01.001).

      These concerns call into question the overall veracity of the trajectory analysis, and in fact, the discrepancies with prior published heart field trajectories are noted but the authors fail to validate their new interpretation. Because their trajectories are followed for the remainder of the paper, many of the interpretations and claims in the paper may be misleading. For example, these trajectories are used subsequently for annotation of the multiomic data, but any errors in the initial trajectories could result in errors in multiomic annotation, etc, etc.

      Thank you for your valuable comments. In the revised manuscript, we have added details about the trajectory analysis including the procedure of WOT lineage inference, marker gene expression and early FHF lineage tracing. We also renamed the two trajectories to avoid confusion with prior published heart field trajectories. Generally, our trajectories are consistent with the published evidence about two major lineages contributing to the linear heart tube:

      a) Clonal analysis: two trajectories exist which demonstrate differential contribution to the E8.5 cardiac tube (Meilhac et al, DOI: 10.1016/s1534-5807(04)00133-9).

      b) Live imaging: JCF cells contribute to the forming heart (Tyser et al, DOI: 10.1126/science.abb2986; Dominguez et al, DOI: 10.1016/j.cell.2023.01.001).

      c) Genetic labelling based lineage tracing: early Hand1+ mesodermal cells differentiate and contribute to the cardiac crescent (Zhang et al, DOI: 10.1161/CIRCRESAHA.121.318943).

      Molecular events by the initial segregation of the two lineages were not characterized before, which are the main focus of our paper. Our analyses suggest that the JCF lineage segregates earlier from the nascent/mixed mesoderm status, also consistent with the clonal analysis (Meilhac et al, DOI: 10.1016/s1534-5807(04)00133-9).

      Q4R1: As mentioned in the discussion, the authors identified the MJH and PSH trajectories as nonoverlapping. But, the authors did not discuss major previously published data showing that both FHF and SHF arise from a common transcriptomic progenitor state in the primitive streak (DOI: 10.1126/science.aao4174; DOI: 10.1007/s11886-022-01681-w). The authors should consider and discuss the specifics of why they obtained two completely separate trajectories from the beginning, how these observations conflict with prior published work, and what efforts they have made at validation.

      R4R1: Thank you for the important question. For trajectory analysis, we assigned cells to the trajectory with higher fate probability, resulting in ‘non-overlapping’ cell sets. However, the statement of ‘two non-overlapping trajectories’ is inaccurate. We performed analysis of fate divergence between two trajectories (which was not shown in the first version), which suggests, before E7.0, mesodermal cells have similar probabilities to choose either trajectory (Figure S1E). We agree with you and previously published data that the JCF and SHF arise from a common progenitor pool. Correction has been made in the revised manuscript.

      Q5R1: Figures 1D and E are confusing, as it's unclear why the authors selected only cells at E7.0. Also, panels 1D 'Trajectory' and 'Pseudotime' suggest that the CM trajectory moves from the PSH cells to the MJH. This result is confusing, and the authors should explain this observation.

      R5R1: Thank you for pointing out the confusion. As mentioned in R4R1, trajectory analysis indicates JCFSHF fate segregation by E7.0 and we used Figures 1D and E to characterize the cellular status. By E7.0, JCF progenitors are at EEM or MM status, while SHF progenitors are still at the earlier differentiation stage (NM). This result is consistent with previous clonal analysis (Meilhac et al, DOI: 10.1016/s1534-5807(04)00133-9) which demonstrates an apparent earlier segregation of the first lineage. Our interpretation of the pseudotime analysis is that it represents different levels of differentiation, instead of developmental direction.

      Q6R1: Regarding the PSH trajectory, it's unclear how the authors can obtain a full cardiac differentiation trajectory from the SHF progenitors as the SHF-derived cardiomyocytes are just starting to invade the heart tube at E8.5 (DOI: 10.7554/eLife.30668).

      R6R1.1: We agree with your opinion. Our trajectory analysis covers E8.5 SHF-derived CM cells and progenitors. Cells that differentiate as CM cells after E8.5 were missed.

      The above notes some of the discrepancies between the author's trajectory analysis and the historical cardiac development literature. Overall, the discrepancies between the author's trajectory analysis and the historical cardiac development literature are glossed over and not adequately validated.

      R6R1.2: Historical cardiac development related literature provided evidence, using multiple techniques, which support the existence of two cardiac lineages with common progenitors at the beginning and overlapping contribution of the four-chamber heart. Our trajectory analysis is in agreement with this model and provides more detailed molecular insights about lineage segregation by E7.0. Thank you for pointing out our mistakes describing the observations. We have corrected the text and provided additional data (Figure S1D-F and S2), aiming to resolved the confusions.

      Q7R1: The authors mention analyzing "activated/inhibited genes" from Peng et al. 2019 but didn't specify when Peng's data was collected. Is it temporally relevant to the current study? How can "later stage" pathway enrichment be interpreted in the context of early-stage gene expression?

      R7R1: The gene sets of "activated/inhibited genes" were collected from several published perturbation datasets (Gene Expression Omnibus accession numbers GSE48092, GSE41260, GSE17879, GSE69669, GSE15268 and GSE31544) using mouse ES cells or embryos. For a specific pathway, the gene set is fixed but the gene expression levels, which change over time, reflect the pathway enrichment. This explains the differential pathway enrichment between early and late stages.

      Q8R1: Motif enrichment: cluster-specific DAEs were analyzed for motifs, but the authors list specific TFs rather than TF families, which is all that motif enrichment can provide. The authors should either list TF families or state clearly that the specific TFs they list were not validated beyond motifs.

      R8R1: Thank you for your comment. For the DAE motif analysis, we firstly inferred the motif and TF families, then tested which specific TFs are expressed in the corresponding cell cluster. We have added this information in the legend of Figure 2D.

      Q9R1: The core regulatory network is purely predictive. The authors again should refrain from language implying that the TFs in the CRN have any validated role.

      R9R1: Thank you for your kind suggestion. We have revised the manuscript to avoid any misleading implications, as follows:

      “Through single-cell multi-omics analysis, a predicted core regulatory network (CRN) in JCF is identified, consisting of transcription factors (TFs) GATA4, TEAD4, HAND1 and FOXF1.”

      Q10R1: Regarding the in vivo analysis of Hand1 CKO embryos, Figures 6 and 7:

      How can the authors explain the presence of a heart tube in the E9.5 Hand1 CKO embryos (Figure 6B) if, following the authors' model, the FHF/Juxta-cardiac field trajectory is disrupted by Hand1 CKO? A more detailed analysis of the cardiac phenotype of Hand1 CKO embryos would help to assess this question.

      R10R1: Thank you for your valuable suggestion. In the revised manuscript, we have added detailed analysis of the cardiac phenotype of Hand1 CKO embryo (Figure S8C). Data suggest that by E8.5 when heart looping initiate in control group (14/17), the hearts of Hand1 CKO embryos (3/3) still demonstrate a linear tube morphology. By E9.5 when atrium and ventricle become distinct in WT embryos, heart looping of Hand1 CKO embryos is abnormal. The cardiac defects of our MESP1CRE driven Hand1 conditional KO are consistent with those of Hand1-null mutant mice (Doi: 10.1038/ng0398-266; D oi: 10.1038/ng0398-271).

      Author response image 1.

      The bright field images of E8.5-E9.5 Ctrl and Hand1 CKO mouse embryos. The arrows indicating the embryonic heart (h) and head folds (hf). Scale bars (E8.5): 200 μm; scale bars (E9.5): 500 μm.

      Q11R1: The cell proportion differences observed between Ctrl and Hand1 CKO in Figure 6D need to be replicated and an appropriate statistical analysis must be performed to definitely conclude the impact of Hand1 CKO on cell proportions.

      R11R1: We appreciate your valuable suggestion. As Figure 6D is based on scRNA-seq experiment, where replicates were merged as one single sequencing library, statistical analysis is infeasible. To address potential concerns about cell proportions, we added IF staining experiments of EEM marker gene, Vim, in serial embryo sections (Figure S8D). Statistical analysis indicates a significant decrease of VIM+ EEM cell proportion of Hand1 CKO embryos.

      Q12R1: The in-vitro cell differentiations are unlikely to recapitulate the complexity of the heart fields invivo, but they are analyzed and interpreted as if they do.

      R12R1: We agree with your opinion. In the revised manuscript, we tuned down the interpretation of the invitro cell differentiation data. 

      Previous version:

      I.  “The analysis indicated that HAND1 and FOXF1 could dually regulate MJH specification through directly activating the MJH specific genes and inhibiting the PSH specific genes.”

      II. “Together, our data indicated that mutual regulation between HAND1 and FOXF1 could play a key role in MJH cardiac progenitor specification.”

      III. “Thus, our data further supported the specific and synergistic roles of HAND1 and FOXF1 in MJH cardiac progenitor specification.”

      Revised version:

      I.  “The analysis indicated that HAND1 and FOXF1 were able to directly activate the JCF specific genes.”

      II. “Together, our in vitro experimental data indicated that mutual regulation between HAND1 and FOXF1 could play a key role in activation of JCF specific genes.”

      III. “These results suggest that HAND1 and FOXF1 may cooperatively regulate early cardiac lineage specification by promoting JCF-associated gene expression and suppressing alternative mesodermal programs.”

      Q13R1: The schematic summary of Figure 7F is confusing and should be adjusted based on the following considerations:

      (a) the 'Wild-type' side presents 3 main trajectories (SHF, Early HT and JCF), but uses a 2-color code and the authors described only two trajectories everywhere else in the article (aka MJH and PSH). It's unclear how the SHF trajectory (blue line) can contribute to the Early HT, when the Early HT is supposed to be FHF-associated only (DOI: 10.7554/eLife.30668). As mentioned previously in Major comment 3., this model suggests a distinction between FHF and JCF trajectories, which is not investigated in the article.

      R13R1(a): Thank you for your great insights. The paper you mentioned used Nkx2.5_cre/+; Rosa26tdtomato+/- and _Nkx2.5_eGFP embryos to reconstruct the cardiac morphologies between E7.5 and E8.2. Their 3D models clearly demonstrate the transition from yolk sac to FHF and then SHF (Figure 2A’ and A’’). The location of yolk sac is defined as JCF in later literature (DOI: 10.1126/science.abb2986). However, as _Nkx2.5 mainly marks cells after the entry of the heart tube, it is unable to reflect the lineage contribution by JCF or SHF. As in R3R1, more and more evidence support the contribution of both lineages to the Early HT, which is discussed in a recent review paper (DOI: 0.1016/j.devcel.2023.01.010).

      (b) the color code suggests that the MJH (FHF-related) trajectory will give rise to the right ventricle and outflow tract (green line), which is contrary to current knowledge.

      R13R1(b): Thank you for pointing out the confusion. The coloring of outflow tract is not an indication of JCF lineage contribution. We have changed the color of JCF/SHF trajectory in the revised model.

      Minor comments:

      Q14R1: How genes were selected to generate Figure 1F? Is this a list of top differentially expressed genes over each pseudotime and/or between pseudotimes?

      R14R1: For each trajectory, we ranked genes by the correlation between expression levels and pseudotime.

      Top 1000 genes for each group were selected.

      Q15R1: Regarding Figure 1G, it's unclear how inhibited signaling can have an increased expression of underlying genes over pseudotimes. Can the authors give more details about this analysis and results?

      R15R1: The increased expression of ‘inhibited genes’ could be explained as an indication of decreasing signaling levels or compensation effect by other signaling pathways. We appreciate your kind suggestion. Details about this analysis have been added in the Method section.

      Q16R1: How do the authors explain the visible Hand1 expression in Hand1 CKO in Figure S7C 'EEM markers'? Is this an expected expression in terms of RNA which is not converted into proteins?

      R16R1: Our opinion is that the visible Hand1 expression caused by the imperfect knock-out efficiency by Mesp1-Cre driven system.

      Q17R1: The authors do not address the potential presence of doublets (merged cells) within their newly generated dataset. While they mention using "SCTransform" for normalization and artifact removal, it's unclear if doublet removal was explicitly performed.

      R17R1: We appreciate your kind reminder. Doublet removal was performed using R package ‘DoubletFinder’ (DOI: 10.1016/j.cels.2019.03.003). We have added this information in the revised manuscript.

      Reviewer #2 (Public review):

      Summary of goals:

      The aims of the study were to identify new lineage trajectories for the cardiac lineages of the heart, and to use computational and cell and animal studies to identify and validate new gene regulatory mechanisms involved in these trajectories.

      Strengths:

      The study addresses the long-standing yet still not fully answered questions of what drives the earliest specification mechanisms of the heart lineages. The introduction demonstrates a good understanding of the relevant lineage trajectories that have been previously established, and the significance of the work is well described. The study takes advantage of several recently published data sets and attempts to use these in combination to uncover any new mechanisms underlying early mesoderm/cardiac specification mechanisms. A strength of the study is the use of an in vitro model system (mESCs) to assess the functional relevance of the key players identified in the computational analysis, including innovative technology such as CRISPR-guided enhancer modulations. Lastly, the study generates mesoderm-specific Hand1 LOF embryos and assesses the differentiation trajectories in these animals, which represents a strong complementary approach to the in vitro and computational analysis earlier in the paper. The manuscript is clearly written and the methods section is detailed and comprehensive.

      Comments and Weaknesses:

      Overall: The computational analysis presented here integrates a large number of published data sets with one new data point (E7.0 single cell ATAC and RNA sequencing). This represents an elegant approach to identifying new information using available data. However, the data presentation at times becomes rather confusing, and relatively strong statements and conclusions are made based on trajectory analysis or other inferred mechanisms while jumping from one data set to another. The cell and in vivo work on Hand1 and Foxf1 is an important part of the study. Some additional experiments in both of these model systems could strongly support the novel aspects that were identified by the computational studies leading into the work.

      We appreciate your positive comments and insightful suggestions. In the revised manuscript, we have incorporated additional analyses and experimental validations to address the concerns raised. Specifically, we added RNA velocity analysis to independently support the identification of the MJH and PSH trajectories, performed immunofluorescence staining of mesodermal and cardiac markers in Hand1 and Foxf1 knockout models, and included Vim staining-based quantification in Hand1 CKO embryos to assess developmental outcomes in vivo. Furthermore, we revised potentially overinterpreted conclusions, clarified methodological details of WOT analysis. These revisions have strengthened both the rigor and clarity of the manuscript.

      Q1R2: Definition of MJH and PSH trajectory:

      The study uses previously published data sets to identify two main new differentiation trajectories: the MJH and the PSH trajectory (Figure 1). A large majority of subsequent conclusions are based on in-depth analysis of these two trajectories. For this reason, the method used to identify these trajectories (WTO, which seems a highly biased analysis with many manually chosen set points) should be supported by other commonly used methods such as for example RNA velocity analysis. This would inspire some additional confidence that the MJH and PSH trajectories were chosen as unbiased and rigorous as possible and that any follow-up analysis is biologically relevant.

      R1R2: We appreciate your valuable comments. It is totally agreed that other commonly used methods help strengthen our conclusion about the two main trajectories. To this end, we performed RNA velocity analysis for the cardiac specification. Results support the contribution to CM along the MJH and PSH routes.

      Author response image 2.

      UMAP layout is colored by cell types. Developmental directions, shown as arrows, are inferred by RNA-velocity analysis.

      Actually, several recent studies indicated a convergence cardiac developing model where progenitors reach a myocardial state along two trajectories (DOI: 10.1016/j.devcel.2023.01.010). However, when and how specification between the two routes were unclear. Our data and analysis revealed a clear fate separation by E7.0 from transcriptomic and epigenetic perspectives, where unbiased RNA velocity analysis was performed (Figure 2C).

      We would like to clarify how we performed WOT (DOI: 10.1016/j.cell.2019.01.006) analysis: the only manually chosen cell set was the starting set, which was all cardiomyocyte cells by E8.5, of computational reverse lineage tracing. The ancestor cells were predicted in an unbiased manner among all mesodermal cells.

      Q2R2.1: Identification of MJH and PSH trajectory progenitors:

      The study defines various mesoderm populations from the published data set (Figure 1A-E), including nascent mesoderm, mixed mesoderm, and extraembryonic mesoderm. It further assigns these mesoderm populations to the newly identified MJH/PSH trajectories. Based on the trajectory definition in Figure 1A it appears that both trajectories include all 3 mesoderm populations, albeit at different proportions and it seems thus challenging to assign these as unique progenitor populations for a distinct trajectory, as is done in the epigenetic study by comparing clusters 8 (MJH) and 2 (PSH)(Figure 2). 

      R2R2.1: According to our model, the most significant difference between the two trajectories is their enrichment of EEM and PM cell types (Figure 1B), which represent the middle stages of cardiac development. Both trajectories begin as Mesp1+ Nascent mesoderm cells (Figure 1F), which is supported by Mesp1 lineage tracing (DOI: 10.1161/CIRCRESAHA.121.318943), and ends as cardiomyocytes. Our epigenetic analysis focused on the E7.0 stage when the two trajectories could be clearly separated and when JCF and SHF lineages were at mixed mesoderm and nascent mesoderm states, respectively. However, SHF lineage was predicted to bypass mixed mesoderm state later on.

      Q2R2.2: Along similar lines, the epigenetic analysis of clusters 2 and 8 did not reveal any distinct differences in H3K4m1, H3K27ac, or H3K4me3 at any of the time points analyzed (Figure 2F). While conceptually very interesting, the data presented do not seem to identify any distinct temporal patterns or differences in clones 2 and 8 (Figure 2H), and thus don't support the conclusion as stated: "the combined transcriptome and chromatin accessibility analysis further supported the early lineage segregation of MJH and the epigenetic priming at gastrulation stage for early cardiac genes".

      R2R2.2: In the epigenetic analysis, we delineated the temporal dynamics of E7.0 cluster-specific DAEs by selecting earlier (E6.5) and later (E7.5) time points. DAEs of C8 and C2 represent regulatory elements for the JCF and SHF lineages, respectively. We also included C1 DAEs as a reference to demonstrate the relative activity of C8 and C2. The overall temporal pattern suggests activation of C8 & C2, as their H3K4me1 and H3K27ac levels surpass C1 over time. Between C8 and C2, the following distinctions could be observed:

      a) H3K4me1 levels of C8 are higher by E6.5 and E7.0, with low H3K27ac levels, indicating early priming of C8 DAEs.

      b) By E7.5, H3K4me1 levels of C8 are caught up by C2 in E7.5 anterior mesoderm (E7.5_AM, Figure 2F column 3), where cardiac mesoderm is located.

      c) H3K4me1 and H3K27ac levels of C8 are similar as C1 in the posterior mesoderm (E7.5_P, Figure 2F column 4) and much higher than C2.

      d) From the perspective of chromatin accessibility, hundreds of characteristic DAEs were identified for C2 and C8 (Figure 2D), exemplified by the primed and active enhancers which were predicted to interact with cluster-specific genes (Figure 2H).

      Together with the transcriptomic analyses (Figure 2C), these data are consistent with our conclusion about early lineage segregation and epigenetic priming.

      Q3R2: Function of Hand1 and Foxf1 during early cardiac differentiation:

      The study incorporated some functional studies by generating Hand1 and Foxf1 KO mESCs and differentiated them into mesoderm cells for RNA sequencing. These lines would present relevant tools to assess the role of Hand1 and Foxf1 in mesoderm formation, and a number of experiments would further support the conclusions, which are made for the most part on transcriptional analysis. For example, the study would benefit from quantification of mesoderm cells and subsequent cardiomyocytes during differentiation (via IF, or more quantitatively, via flow cytometry analysis). These data would help interpret any of the findings in the bulk RNAseq data, and help to assess the function of Hand1 and Foxf1 in generating the cardiac lineages. Conclusions such as "the analysis indicated that HAND1 and FOXF1 could dually regulate MJH specification through directly activating the MJH specific genes and inhibiting PSH specific genes" seem rather strong given the data currently provided.

      R3R2: Thank you for your kind suggestions. We added IF staining of mesodermal (Zic3), JCF (Hand1) and cardiac markers (Tnnt2), followed by cell quantification. Results indicate that Hand1 and Foxf1 knockout leads to reduced commitment to the JCF lineage, evidenced by the loss of Hand1 expression, accumulation of undifferentiated Zic3+ mesoderm, and impaired cardiomyocyte formation (Tnnt2+), consistent with the up-regulation of JCF lineage specific genes and the downregulation of SHF lineage specific genes.

      We also revised the conclusion as “These results suggest that HAND1 and FOXF1 may cooperatively regulate early cardiac lineage specification by promoting JCF-associated gene expression and suppressing alternative mesodermal programs.”.

      (4) Analysis of Hand1 cKO embryos:

      Adding a mouse model to support the computational analysis is a strong way to conclude the study. Given the availability of these early embryos, some of the findings could be strengthened by performing a similar analysis to Figure 7B&C and by including some of the specific EEM markers found to be differentially regulated to complement the structural analysis of the embryos.

      R4R2: hank you for your positive comments and help. In the revised manuscript, we performed IF staining of EEM marker Vim in a similar fashion as Figure 7B&C (Figure S8D). In comparison with control embryos, the Hand1 CKO embryos demonstrated significant less number of Vim+ cells, further strengthening the conclusion that Hand1 CKO blocked the developmental progression toward JCF direction.

      Q5R2: Current findings in the context of previous findings:

      The introduction carefully introduces the concept of lineage specification and different progenitor pools. Given the enormous amount of knowledge already available on Hand1 and Foxf1, and their role in specific lineages of the early heart, some of this information should be added, ideally to the discussion where it can be put into context of what the present findings add to the existing understanding of these transcription factors and their role in early cardiac specification.

      R5R2: We appreciate your positive comments and kind reminder. We have added discussion about how our study could be put into the body of findings on Hand1 and Foxf1. Although these two genes have been validated to be functionally important for heart development, it is unclear when and how they affect this process. Using in-vivo and in-vitro models and single cell multi-omics analyses, we provided evidence to fill the gaps from multiple aspects, including cell state temporal dynamics, regulatory network, and epigenetic regulation underlying the very early cardiac lineage specification.

      Reviewer #3 (Public review):

      Q1R3: In Figure 1A, could the authors justify using E8.5 CMs as the endpoint for the second lineage and better clarify the chamber identities of the E8.5 CMs analysed? Why are the atrial genes in Figure 1C of the PSH trajectory not present in Table S1.1, which lists pseudotime-dependent genes for the MJH/PSH trajectories from Figure 1F?

      R1R3: Thank you for your comments. We used E8.5 CMs as the endpoint of the second (SHF) lineage because this stage represents a critical point where SHF-derived cardiomyocytes have begun distinct differentiation, allowing us to capture terminal lineage states reliably. The chamber identities of E8.5 CMs were determined based on known marker genes (DOI: 10.1186/s13059-025-03633-3). The atrial genes shown in Figure 1C reflect cluster-specific markers that may not meet the strict pseudotime-dependency criteria used to generate Table S1.1, which lists genes dynamically changing along the MJH/PSH trajectories.

      Q2R3: Could the authors increase the resolution of their trajectory and genomic analyses to distinguish between the FHF (Tbx5+ HCN4+) and the JCF (Mab21l2+/ Hand1+) within the MJH lineage? Also, clarify if the early extraembryonic mesoderm contributes to the FHF.

      R2R3: Thank you for your great suggestions. To distinguish between the FHF and JCF trajectories, we used early FHF progenitor population (E7.75 Nkx2-5+; Mab21l2- CM cells) as the starting point and performed WOT lineage inference (Figure S2A). Results suggest that both JCF and SHF progenitors contribute to the FHF, consistent with live imaging-based single cell tracing by Dominguez et al (DOI: 10.1016/j.cell.2023.01.001) and lineage tracing results by Zhang et al (DOI: 10.1161/CIRCRESAHA.121.318943). We also analyzed the expression levels of FHF marker genes (Tbx5, Hcn4) and observed their activation along both trajectories (Figure S2B).

      Q3R3: The authors strongly assume that the juxta-cardiac field (JCF), defined by Mab21l2 expression at E7.5 in the extraembryonic mesoderm, contributes to CMs. Could the authors explain the evidence for this? Could the authors identify Mab21l2 expression in the left ventricle (LV) myocardium and septum transversum at E8.5 (see Saito et al., 2013, Biol Open, 2(8): 779-788)? If such a JCF contribution to CMs exists, the extent to which it influences heart development should be clarified or discussed.

      R3R3: Thank you for the important question. For the JCF contribution to the heart tube, several lines of evidence have been published in recent years using micro-dissection of mouse embryonic heart (DOI: 10.1126/science.abb2986), live imaging (DOI: 10.1016/j.cell.2023.01.001) and lineage tracing approaches (DOI: 10.1161/CIRCRESAHA.121.318943). According to Tyser et al (DOI: 10.1126/science.abb2986), Mab21l2 expression is detected in septum transversum at E8.5 and the Mab21l2+ lineage contribute to LV, basically consistent with the literature you mentioned (Saito et al., 2013, Biol Open, 2(8): 779-788). Our lineage inference analyses further support the model and suggest earlier specification by JCF. However, the focus of our work is the transcriptional and epigenetic regulation of underlying the JCF developmental trajectory.

      Q4R3: Could the authors distinguish the Hand1+ pericardium from JCF progenitors in their single-cell data and explain why they excluded other cell types, such as the endocardium/endothelium and pericardium, or even the endoderm, as endpoints of their trajectory analysis? At the NM and MM mesoderm stages, how did the authors distinguish the earliest cardiac cells from the surrounding developing mesoderm?

      R4R3: We appreciate your insightful question. In our other study (DOI: 10.1186/s13059-025-03633-3), we tried to further divide the CM cells as subclusters and it seems that their difference is mainly driven by the segmentation of the heart tube (e.g. LV, RV, OFT etc.). By the E8.5 stage, we are unable to identify the Hand1+ pericardium cluster. 

      Also, it seems infeasible to distinguish endocardium from other endothelium cells only using singlecell data. High resolution spatial transcriptome data is required. Alternatively, we analyzed the E7.0 mesodermal lineages and determined C5/6 as hematoendothelial progenitors. Marker gene analysis indicate that their lineage segregation has started by this stage (Figure S4C and Author response image 3).

      Author response image 3.

      UMAP layout, using scRNA-seq (Reference data) and snRNA-seq (Multiome data), is colored by cell types (left). Expression of hematoendothelial progenitor marker genes is shown (right).

      We did observe the difference between the earliest cardiac cells from the surrounding developing mesoderm. As in Figure 1D, cells belonging to the JCF lineage (Hand1 high/Lefty2 low) were clustered at the EEM/MM end, in contrast to the NM cells.

      Q5R3: Could the authors contrast their trajectory analysis with those of Lescroart et al. (2018), Zhang et al., Tyser et al., and Krup et al.?

      R5R3: Thank you for the valuable suggestion. We compared our model with the suggested ones and summarized as follows:

      (1) Lescroart et al: The JCF and SHF progenitor cells match their DCT2 (Bmp4+) and DCT3 (Foxc2+) clusters, respectively.

      (2) Zhang et al: The JCF lineage matches their EEM-DC (developing CM)-CM trajectory. The SHF lineage is consistent with their NM-LPM (lateral plate mesoderm)-DC (developing CM)-CM trajectory. Notably, their EEM-DC-CM also expressed FHF marker (Tbx5) at later stages.

      (3) Tyser et al: we performed data integration analysis and found the correspondence between JCF progenitors (EEM cells from the cardiac trajectory) and their Me5, as well as SHF progenitors (PM cells from the cardiac trajectory) with Me7. In their model, both Me5 and Me7 contribute to Me4 (representing the FHF), consistent with our results (see Tyser et al., 2021 and Pijuan-Sala et al., 2019).

      (4) Krup et al also performed URD lineage inference, providing a model with CM (12) and Cardiac mesoderm (29) as cardiac end points. Their model did not seem to suggest distinct trajectories between JCF and SHF lineages, as both JCF (Hand1) and SHF (Isl1) markers co-expressed in CM.

      Q6R3: Previous studies suggest that Mesp2 expression starts at E8 in the presomitic mesoderm (Saga et al., 1997). Could the authors provide in situ hybridization or HCR staining to confirm the early E7 Mesp2 expression suggested by the pseudo-time analysis of the second lineage.

      R6R3: We validated the expression of E7 Mesp2 using Geo-seq spatial transcriptome data (Author response image 4, upper). Results suggest the high spatial enrichment of Mesp2 expression in primitive streak (T+) and/or nascent mesoderm (Mesp1+) cells, which correspond to the progenitors of the second lineage.

      In situ hybridization data (PMID: 17360776) also supports the early expression of Mesp2 by E7 (Author response image 4, lower).

      Author response image 4.

      (Upper) E7 Geo-seq data for selected genes: T, Mesp1, and Mesp2. (Lower) Mesp2 expression during early development; image acquired from Morimoto et al. (PMID: 17360776).

      Q7R3: Could the authors also confirm the complementary Hand1 and Lefty2 expression patterns at E7 using HCR or in situ hybridization? Hand1 expression in the first lineage is plausible, considering lineage tracing results from Zhang et al.

      R7R3: Thank you for your great suggestion. We observed spatially complementary expression patterns of Hand1 and Lefty2 in the Geo-seq spatial transcriptomic data. In the mesoderm layer, Hand1 is highly expressed in the proximal end. While Lefty2+ cells exhibit preference toward the distal direction.

      Author response image 5.

      E7 Geo-seq data for selected genes: Hand1 and Lefty2.

      Q8R3: Could the authors explain why Hand1 and Lefty2+ cells are more likely to be multipotent progenitors, as mentioned in the text?

      R8R3: Thank you for your question. Here, we observed E7.0 Mesp1+ and Lefty2+ nascent mesodermal cells assigned to both the JCF and SHF lineages (Figure 1D), indicating their multipotency. On the other hand, we also found low expressions of JCF markers, Hand1 and Msx2, by the early stage of the SHF trajectory (Figure 1F). Thus, we concluded that both Hand1+ and Lefty2+ E7.0 mesodermal cells are likely to be multipotent.

      Q9R3: Could the authors comment on the low Mesp1 expression in the mesodermal cells (MM) of the MJH trajectory at E7 (Figure 1D)? Is Mesp1 transiently expressed early in MJH progenitors and then turned off by E7? Have all FHF/JCF/SHF cells expressed Mesp1?

      R9R3: Thank you for the insightful questions. Zhang et al. (PMID: 34162224) performed scRNA-seq analysis of Mesp1 lineage-traced cells, which indicate the contribution of Mesp1+ cells to FHF, JCF, and SHF. This is also supported by Dominguez et al. utilizing live imaging approaches (PMID: 36736300). Our temporal dynamics analysis suggests that along the JCF trajectory, Mesp1 is turned off as JCF characteristic genes were up regulated (Figure 1F and S1D).

      Q10R3: Could the authors clarify if their analysis at E7 comprises a mixture of embryonic stages or a precisely defined embryonic stage for both the trajectory and epigenetic analyses? How do the authors know that cells of the second lineage are readily present in the E7 mesoderm they analysed (clusters 0, 1, and 2 for the multiomic analysis)?

      R10R3: Thank you for your questions. Although embryos were collected at E7.0, the developmental stages could be variable. As exemplified by Karl Theiler’s book, “The House Mouse: Atlas of Embryonic Development”, mesoderm was visible for some E7.0 egg cylinders but not in others. To test whether cells of the second lineage are present in the E7.0 mesoderm, we analyzed the WOT lineage tracing results and the cell type composition by E7.0 (Author response image 6, left panel). Most cells belong to the nascent mesoderm (NM) or mixed mesoderm (MM), while almost no cells were assigned to the primitive streak (PS). To avoid the possibility that the E7.0 embryos represented later stages, we also analyzed the E6.75 cells of the second lineage (Author response image 6, middle panel). Results suggest that NM cells were still the dominant contributors to the second lineage, although ~22.6% cells were assigned to the PS. The abovementioned analyses were performed using the scRNA-seq data. The embryos of the E7.0 single-cell multi-omics represent similar developmental stages as the scRNAseq data, as suggested by the well-aligned UMAPs (Figure S1D, right panel). Thus, we conclude that for the multi-omics data, the cells of the second lineage are also readily present in the mesoderm.

      Author response image 6.

      (Left and middle) Lineage inference and cell type composition at E7.0 and E6.75. (Right) UMAPs of E7.0 multi-omics and scRNA-seq data.

      Q11R3: Could the authors further comment on the active Notch signaling observed in the first and second lineages, considering that Notch's role in the early steps of endocardial lineage commitment, but not of CMs, during gastrulation has been previously described by Lescroart et al. (2018)?

      R11R3: We appreciate your kind suggestion. As reported by Lescroart et al. (2018), using Notch1CreERT2/Rosa-tdTomato mice and tamoxifen administration at E6.5, early expression of Notch1 mostly marked endocardial cells (ECs, 76.9-83.9%), with minor contribution to the cardiomyocytes (6.0-16.6%) and to the epicardial cells (EPs, 6.0-6.5%). The lineage specificity of Notch1 is consistent with our E7.0 multi-omics data, where its expression was mainly observed in the NM and hematoendothelial progenitors (Author response image 7). Interestingly, expression of other NOTCH receptor genes (Notch2 and Notch3) and ligand genes (Dll1 and Dll3) in the CM lineages. Notch3 demonstrate higher expression in the first lineage, while Dll1 and Dll3 were highly expressed in the second lineage. The study by Lescroart et al. (2018) emphasized the role of Notch1 as an EC lineage marker, while our analyses aimed at the activity of the NOTCH pathway.

      Author response image 7.

      Expression of representative NOTCH genes at E7.0 (multi-omics data).

      Q12R3: In cluster 8, Figure 2D, it seems that levels of accessibility in cluster 8 are relatively high for genes associated with endothelium/endocardium development in addition to MJH genes. Could the authors comment and/or provide further analysis?

      R12R3: Thanks for you for raising this interesting point. To confirm the association of these genes with endothelium (EC) and/or MJH, we analyzed their expression levels by E7.0 (progenitor stage) and E8.0 (differentiated stage) (Author response image 8). Among target genes of MJH-specific DAEs (cluster 3/7/8 in Figure 2D), Pmp22, Mest, Npr1, Pkp2, and Pdgfb were expressed in the hematoendothelial progenitors. The Nrp1 gene and PDGF pathway play critical roles in endothelial development by modulating cell migration (PMID: 15920019 and 28167492), which is also important for MJH cells. In addition, we observed common ATAC-seq peaks in both hematoendothelial and MJH clusters (Author response image 9), indicating shared regulatory elements. Interestingly, Pdgfb is not expressed by CM in vivo, it is actively expressed in the CM of the in vitro system (Author response image 9). These results indicate regulatory and functional closeness between hematoendothelial and MJH cell groups, at early stages of lineage establishment.

      Author response image 8.

      Regulatory connection between MJH and endothelial cells (ECs).

      Author response image 9.

      Representative genome browser snapshots of scATAC-seq (aggregated gene expression and chromatin accessibility for each cluster) and RNA-seq at the Pdgfb locus.

      Q13R3: Can the authors clarify why they state that cluster 8 DAEs are primed before the full activation of their target genes, considering that Bmp4 and Hand1 peak activities seem to coincide with their gene expression in Figure 2G?

      R13R3: Thanks for your great question. The overall analyses indicate low to medium levels of H3K4me1 and H3K27ac by E6.5-7.0 at cluster 8 DAEs, which were fully activated by E7.5 (Figure 2F). Further inspections suggest different epigenetic status of individual DAEs (Figure 3H), which could be active (K4me1+/K27ac+), primed (K4me1+/K27ac-), or inactive (K4me1-/K27ac-). Thus, we concluded that many DAEs could be primed before full activation. The coincidence of enhancer peak activities and gene expression was observed by aggregating single cell clusters at a single stage E7.0, which does not rule out the possibility that these enhancers are epigenetically primed at earlier stages.

      Q14R3: Did the authors extend the multiomic analysis to Nanog+ epiblast cells at E7 and investigate if cardiac/mesodermal priming exists before mesodermal induction (defined by T/Mesp1 onset of expression)?

      R14R3: We appreciate your kind suggestion. We observed low levels of T/Mesp1 expression in the E7.0 Nanog+ epiblast cells (Author response image 10). Interestingly, the T+/Mesp1+ cells were not clustered toward any specific differentiation directions in the UMAP. We also analyzed DAE activities in each single cell by averaging over the C1/C2/C8 DAE sets. The C2 and C8 DAEs were clearly less active than the C1 DAEs. But C2/C8-DAE active cells were observed among the E7.0 Nanog+ epiblast cells. These data indicate the early priming exists in epiblast cells before the commitment to cardiac/mesodermal differentiation.

      Author response image 10.

      Gene expression and DAE activity levels of E7.0 Nanog+ epiblast cells shown in UMAP layout.

      Q15R3: In the absence of duplicates, it is impossible to statistically compare the proportions of mesodermal cell populations in Hand1 wild-type and knockout (KO) embryos or to assess for abnormal accumulation of PS, NM, and MM cells. Could the authors analyse the proportions of cells by careful imaging of Hand1 wild-type and KO embryos instead?

      R15R3: Thank you for your important question. To assess the proportions of mesodermal cell populations in E7.25 wild-type and Hand1-CKO embryos, we analyzed the serial coronal sections of the extraembryonic portions and performed staining of the Vim gene, which marks the extra-embryonic mesodermal (EEM) cells (Figure S8D). We then counted the numbers of mesodermal/Vim+ EEM cells and calculated the relative proportion of Vim+ EEM cells in each section. The proportion of Vim+ EEM cells was statistically lower in the Hand1-CKO embryo, consistent with our model that Hand1 deletion led to blocked MJH specification.

      Q16R3: Could the authors provide high-resolution images for Figure 7 B-C-D as they are currently hard to interpret?

      R16R3: Thank you for your suggestion. We have replaced Figure 7B-C-D with high-resolution images.

      Recommendations for the authors:  

      Reviewing Editor Comments:

      Discussions among reviewers emphasize the importance of better addressing and validating the trajectory analysis by using more common and alternative bioinformatics and spatial approaches. Further discussion on whether there is a common transcriptional progenitor between the two trajectories is also required to enhance the significance of the study. For functional analysis, further validations are needed as the current data only partially support the claims. Please see public reviews for details.

      Reviewer #2 (Recommendations For The Authors):

      Beyond the suggestions made in the public review, below are some minor aspects for consideration:

      The manuscript is well written overall but may benefit from a thorough read-through and editing of some minor grammatical errors.

      We have carefully read through the manuscript and corrected minor grammatical errors to improve clarity and readability.

      Figure 2C: RNA velocity information gets largely lost due to the color choice of EEM and MM (black) on which the direction of arrows can't be appreciated.

      We have updated the color scheme in Figure 2C.

      Figure 6D: sample information is partially cut off in the graph.

      Sample information is completely shown now.

      The last paragraph of the discussion has some formatting issues with the references.

      We have corrected the formatting issues with the references.

      The methods and results section does not comment on if, or how many embryos were pooled for the sequencing analysis performed for this study.

      We have added the numbers of embryos for sequencing analyses in the methods section.

      Reviewer #3 (Recommendations For The Authors):

      Minor:

      In the discussion, authors could reconsider the sentence: "The process of cardiac lineage segregation is a complex one that may involve TF regulatory networks and signaling pathways," as it is not informative.

      We have re-written the sentence as: “Thus, additional regulation must exist and instructs the process of JCF-SHF lineage segregation.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This manuscript reports a descriptive study of changes in gene expression after knockdown of the nuclear envelope proteins lamin A/C and Nesprin2/SYNE2 in human U2OS cells. The readout is RNA-seq, which is analyzed at the level of gene ontology and focused investigation of isoform variants and non-coding RNAs. In addition, the mobility of telomeres is studied after these knockdowns, although the rationale in relation to the RNA-seq analyses is rather unclear.

      We sincerely thank the reviewer for the thoughtful summary and valuable feedback. Regarding the telomere mobility analyses, our intention was to provide additional evidence supporting the hypothesis that knockdown of lamins and nesprins disrupts nuclear architecture. Although the connection to the RNA-seq data was not explicitly detailed, we believe that the increased telomere mobility may reflect broader changes in chromatin organization, which could contribute to the observed differential gene expression. We have revised the manuscript to clarify this rationale and improve the integration between the two analyses.

      RNA-seq after knockdown of lamin proteins has been reported many times, and the current study does not provide significant new insights that help us to understand how lamins control gene expression. This is particularly because the vast majority of the observed effects on gene expression appear to occur in regions that are not bound by lamin A. It seems likely that these effects are indirect. There is also virtually no overlap between genes affected by laminA/C and by SYNE2, which remains unexplained; for example, it would be good to know whether laminA/C and SYNE2 bind to different genomic regions. The claim in the Title and Abstract that LMNA governs gene expression / acts through chromatin organization appears to be based only on an enrichment of gene ontology terms "DNA conformation change" and "covalent chromatin conformation" in the RNA-seq data. This is a gross over-interpretation, as no experimental data on chromatin conformation are shown in this study. The analyses of transcript isoform switching and ncRNA expression are potentially interesting but lack a mechanistic rationale: why and how would these nuclear envelope proteins regulate these aspects of RNA expression? The effects of lamin A on telomere movements have been reported before; the effects of SYNE2 on telomere mobility are novel (to my knowledge), but should be discussed in the light of previously documented effects of SUN1/2 on the dynamics of dysfunctional telomeres (Lottersberger et al, Cell 2015).

      We sincerely thank the reviewer for this thoughtful and detailed critique. We agree that RNA-seq following knockdown of lamin proteins has been previously reported and appreciate the concern regarding the novelty and mechanistic interpretation of our findings. However, For our study, we revealed novel findings that there is distinct isoform switching and lncRNA affected by lamins and nesprins, which have not been reported yet by previous studies. Furthermore, we also revealed not only lamin A, but also nesprin-2 could also affect chromatin mobility.

      For the analysis of LMNA ChIP-seq data from  human fibroblast (Kohta Ikegami, 2021). Their data revealed that Lamin A/C modulates gene expression through interactions with enhancers. The pathogenesis of disorders associated with LMNA mutations may stem primarily from disruptions in this gene regulatory function, rather than from impaired tethering of chromatin to LADs.

      We acknowledge the reviewer’s concern that gene ontology enrichment related to chromatin conformation alone is insufficient to support claims about chromatin structural changes. We have therefore revised the “Title” and “Abstract” to avoid overstating conclusions and to more accurately reflect the scope of our data.

      Regarding telomere dynamics, while Lamin A's role has indeed been previously documented, our study provides evidence that SYNE2/Nesprin-2 also regulates telomere mobility. We have now expanded the discussion to include prior work, particularly the findings of Lottersberger et al. (Cell, 2015), to better contextualize our results and distinguish the contributions of SYNE2.

      Finally, we appreciate the reviewer’s suggestion about transcript isoform and noncoding RNA expression. While our study primarily provides descriptive data, we agree that further mechanistic investigation is warranted. We have clarified this point in the “Discussion” and framed our findings as a foundation for future studies exploring the broader regulatory roles of nuclear envelope proteins.

      We are grateful for the reviewer’s comments, which have helped us improve the clarity and rigor of our manuscript. Please see the revised highlights in our revised manuscript.

      As indicated below, I have substantial concerns about the experimental design of the knockdown experiments.

      Altogether, the results presented here are primarily descriptive and do not offer a significant advance in our understanding of the roles of LaminA and SYNE2 in gene regulation or chromatin biology, because the results remain unexplained mechanistically and functionally. Furthermore, the RNAseq datasets should be interpreted with caution until off-target effects of the shRNAs can be ruled out.

      We fully acknowledge that the original version of our manuscript lacked sufficient mechanistic insight. In response, we have revised the manuscript to include additional analyses and explanations that clarify the potential functional relevance of our findings. For example, we added following text “These findings further underscore the functional relevance of lamin A in coordinating transcriptional programs through modulation of nuclear architecture. In contrast, LMNA knockdown led to differential expression of genes enriched in pathways related to chromatin organization, suggesting potential disruptions in chromatin regulatory networks. Although direct measurements of chromatin conformation were not performed, these transcriptional changes indicate that LMNA may contribute to maintaining nuclear architecture and genomic stability, which aligns with its established involvement in laminopathies and genome integrity disorders.“ More analyses could be found in the main text.

      Regarding the concern about off-target effects of the shRNA-based knockdowns, we agree that this is an important consideration. While shRNA approaches inherently carry the risk of off-target effects, we have now performed additional analyses that help address this issue. These analyses support the specificity of our observations and suggest that the majority of gene expression changes are likely to be directly related to the targeted knockdown. Nonetheless, we have clearly stated the limitations of the approach in the revised discussion and emphasized the need for future validation using complementary methods.

      We hope that these revisions strengthen the overall impact and interpretability of our study.

      Specific comments:

      (1) Knockdowns were only monitored by qPCR. Efficiency at the protein level (e.g., Western blots) needs to be determined.

      We agree that complementary protein-level validation (e.g., by Western blot) would strengthen the findings, and we are in the process of obtaining suitable reagents to address this point in future experiments. We have now clarified this limitation in the revised manuscript  

      (2) For each knockdown, only a single shRNA was used. shRNAs are infamous for offtarget effects; therefore, multiple shRNAs for each protein, or an alternative method such as CRISPR deletion or degron technology, must be tested to rule out such offtarget effects.

      We fully acknowledge the concern regarding the use of only a single shRNA per knockdown and agree that shRNAs are prone to off-target effects. We recognize the importance of validating our findings using multiple independent shRNAs or alternative knockdown strategies, such as CRISPR deletion or degron-based approaches, to ensure specificity. To address this concern, we have conducted qPCR confirmation the knockdown of target proteins from RNA-seq findings, further supporting the validity of our data. In line with this, we are currently optimizing an auxin-inducible degron system (AtAFB2) for targeted and controlled depletion of lamin C. Our preliminary results indicate approximately a 40% knockdown efficiency after 16 hours of auxin induction, highlighting the necessity for further system optimization (Author response image 1). Future experiments will integrate this improved degron technology alongside multiple independent approaches to rigorously address and mitigate concerns about off-target effects, thereby enhancing the robustness and reproducibility of our data.

      Author response image 1.

      FACS analysis of the lamin C degron system at 0, 1, 3, and 16 hours postinduction with 500 μM indole-3-acetic acid (IAA) (Sigma).

      (3) It is not clear whether the replicate experiments are true biological replicates (i.e., done on different days) or simply parallel dishes of cells done in a single experiment (= technical replicates). The extremely small standard deviations in the RT-qPCR data suggest the latter, which would not be adequate.

      We appreciate the reviewer’s insightful comment regarding the nature of our replicates. The RT-qPCR experiments were indeed performed as true biological replicates, with samples collected on different days and from independently cultured cell batches. We have added this to the manuscript Methods. While we observed some variability in the Scramble control group, the low standard deviations in the shRNAtreated samples likely reflect the consistent and efficient knockdown of target genes.

      For the RNA-seq experiments, samples were collected as two batches during RNA extraction and library preparation. The samples still represent biological replicates, as they were derived from independently prepared cultures in separate experimental setups. This approach was chosen to strike a balance between biological variation and technical consistency, thereby improving the reliability of the RNA-seq results.

      Reviewer #2 (Public review):

      Summary:

      This study focused on the roles of the nuclear envelope proteins lamin A and C, as well as nesprin-2, encoded by the LMNA and SYNE2 genes, respectively, on gene expression and chromatin mobility. It is motivated by the established role of lamins in tethering heterochromatin to the nuclear periphery in lamina-associated domains (LADs) and modulating chromatin organization. The authors show that depletion of lamin A, lamin A and C, or nesprin-2 results in differential effects of mRNA and lncRNA expression, primarily affecting genes outside established LADs. In addition, the authors used fluorescent dCas9 labeling of telomeric genomic regions combined with live-cell imaging to demonstrate that depletion of either lamin A, lamin A/C, or nesprin-2 increased the mobility of chromatin, suggesting an important role of lamins and nesprin2 in chromatin dynamics.

      We sincerely appreciate the reviewer’s thoughtful summary of our study and the key findings. Our work is indeed motivated by the well-established roles of lamin A/C in chromatin tethering at the nuclear periphery and the emerging understanding of their broader influence on chromatin organization and gene regulation. In our study, we aimed to further explore these roles by examining the consequences of depleting lamin A, lamin A/C, and nesprin-2 (SYNE2) on both gene expression and chromatin mobility.

      As the reviewer accurately notes, we observed differential effects on mRNA and lncRNA expression, with many changes occurring outside of previously defined LADs. This finding suggests that lamins and nesprin-2 may also influence transcriptional regulation through mechanisms beyond direct LAD association. Furthermore, using live-cell imaging of fluorescently labeled telomeric regions, we demonstrated that loss of these nuclear envelope components leads to increased chromatin mobility, supporting their role in maintaining chromatin stability and nuclear architecture.

      We thank the reviewer for highlighting these aspects, which we believe contribute to a more nuanced understanding of how nuclear envelope proteins modulate chromatin behavior and gene regulation.

      Strengths:

      The major strength of this study is the detailed characterization of changes in transcript levels and isoforms resulting from depletion of either lamin A, lamin A/C, or nesprin-2 in human osteosarcoma (U2OS) cells. The authors use a variety of advanced tools to demonstrate the effect of protein depletion on specific gene isoforms and to compare the effects on mRNA and lncRNA levels.

      The TIRF imaging of dCas9-labeled telomeres allows for high-resolution tracking of multiple telomeres per cell, thus enabling the authors to obtain detailed measurements of the mobility of telomeres within living cells and the effect of lamin A/C or nesprin-2 depletion.

      We are grateful that the reviewer recognized the comprehensive analysis of transcript and isoform changes upon depletion of lamin A, lamin A/C, or nesprin-2 in U2OS cells. We also thank the reviewer for acknowledging our use of advanced tools to investigate isoform-specific effects and to distinguish between changes in mRNA and lncRNA expression.

      Furthermore, we are pleased that the reviewer highlighted the strength of our TIRF imaging approach using dCas9-labeled telomeres. This technique enabled us to capture high-resolution, multi-locus dynamics within single living cells, and we agree that it is instrumental in revealing the impact of lamin A/C and nesprin-2 depletion on telomere mobility.

      Weaknesses:

      Although the findings presented by the authors overall confirm existing knowledge about the ability of lamins A/C and nesprin to broadly affect gene expression, chromatin organization, and chromatin dynamics, the specific interpretation and the conclusions drawn from the data presented in this manuscript are limited by several technical and conceptual challenges.

      One major limitation is that the authors only assess the knockdown of their target genes on the mRNA level, where they observe reductions of around 70%. Given that lamins A and C have long half-lives, the effect at the protein level might be even lower. This incomplete and poorly characterized depletion on the protein level makes interpretation of the results difficult. The description for the shRNA targeting the LMNA gene encoding lamins A and C given by the authors is at times difficult to follow and might confuse some readers, as the authors do not clearly indicate which regions of the gene are targeted by the shRNA, and they do not make it obvious that lamin A and C result from alternative splicing of the same LMNA gene. Based on the shRNA sequences provided in the manuscript, one can conclude that the shLaminA shRNA targets the 3' UTR region of the LMNA gene specific to prelamin A (which undergoes posttranslational processing in the cell to yield lamin A). In contrast, the shRNA described by the authors as 'shLMNA' targets a region within the coding sequence of the LMNA gene that is common to both lamin A and C, i.e., the region corresponding to amino acids 122-129 (KKEGDLIA) of lamin A and C. The authors confirm the isoform-specific effect of the shLaminA isoform, although they seem somewhat surprised by it, but do not confirm the effect of the shLMNA construct. Assessing the effect of the knockdown on the protein level would provide more detailed information both on the extent of the actual protein depletion and the effect on specific lamin isoforms. Similarly, given that nesprin-2 has numerous isoforms resulting from alternative splicing and transcription initiation. In the current form of the manuscript, it remains unclear which specific nesprin-2 isoforms were depleted, and to what extent (on the protein level).

      We have revised the Methods section to include a clearer and more detailed description of the shRNA design, including the specific regions of the LMNA gene targeted by each construct, as well as the relationship between lamin A and C isoforms resulting from alternative splicing. We agree that this clarification will help prevent confusion for readers.

      Regarding the shLMNA construct, we acknowledge the importance of confirming the knockdown at the protein level, especially given the long half-lives of lamin proteins. In our revised manuscript, we now refer to Supplementary Figure S2, which demonstrates that the shLMNA construct effectively reduces both lamin A and lamin C transcript levels. While we initially focused on mRNA quantification, we recognize that additional proteinlevel validation is valuable and have accordingly emphasized this point in the revised discussion.

      We also appreciate the comment on nesprin-2 isoforms. Given the complexity of nesprin-2 splicing, we are currently working to further characterize the specific isoforms affected and will aim to include protein-level data in a future study. 

      Another substantial limitation of the manuscript is that the current analysis, with the exception of the chromatin mobility measurements, is exclusively based on transcriptomic measurements by RNA-seq and qRT-PCR, without any experimental validation of the predicted protein levels or proposed functional consequences. As such, conclusions about the importance of lamin A/C on RNA synthesis and other functions are derived entirely from gene ontology terms and are not sufficiently supported by experimental data. Thus, the true functional consequences of lamin A/C or nesprin depletion remain unclear. Statements included in the manuscript such as "our findings reveal that lamin A is essential for RNA synthesis, ..." (Lines 79-80) are thus either inaccurate or misleading, as the current data do not show that lamin A is ESSENTIAL for RNA synthesis, and lamin A/C and lamin A deficient cells and mice are viable, suggesting that they are capable of RNA synthesis.

      We agree that our current data do not support the claim that lamin A is essential for RNA synthesis, and we acknowledge the importance of distinguishing between correlation and causal relations in our conclusions. In light of this, we have revised the statement in the manuscript to more accurately reflect our findings:

      “Our findings suggest that lamin A contributes to RNA synthesis, supports chromatin spatial organization through LMNA, and that SYNE2 influences chromatin modifications as reflected in transcript levels.”

      We hope this revision better aligns with the limitations of our dataset and addresses the reviewer’s concerns regarding the interpretation of functional consequences based solely on transcriptomic data.

      Another substantial weakness is that the data and analysis presented in the manuscript raise some concerns about the robustness of the findings. Given that the 'shLMNA' construct is expected to deplete both lamin A and C, i.e., its effect encompasses the depletion of lamin A, which is achieved by the 'shLaminA' construct, one would expect a substantial overlap between the DEGs in the shLMNA and shLaminA conditions, with the shLMNA depletion producing a broader effect as it targets both lamin A and C. However, the Venn Diagram in Figure 4a, the genomic loci distribution in Figure 4b, and the correlation analysis in Supplementary Figure S2 show little overlap between the shLMNA and shLaminA conditions, which is quite surprising. In the mapping of the DEGs shown in Figure 4b, it is also surprising not to see the gene targeted by the shRNA, LMNA, found on chromosome 1,  in the results for the shLMNA and shLamin A depletion.

      We have added the discussion into the revised edition: “Interestingly, although both shLMNA and shLaminA constructs target lamin A, with shLMNA additionally depleting lamin C, the DEGs identified under these two conditions show limited overlap. This unexpected finding suggests that depletion of lamin C in the shLMNA condition may trigger distinct or compensatory transcriptional responses that are not elicited by lamin A knockdown alone. Furthermore, variation in shRNA efficiency or off-target effects may contribute to these differences. Notably, despite directly targeting LMNA, the overlap in DEGs between the two conditions remained limited under our stringent threshold criteria. Together, these observations highlight the complex and non-linear regulatory roles of lamin isoforms in gene expression and underscore the need for further mechanistic studies to dissect their individual and combined contributions [28,29].”

      The correlation analysis in Supplementary Figure S2 raises further questions. The authors use doc-inducible shRNA constructs to target lamin A (shLaminA), lamin A/C (shLMNA), or nesprin-2 (shSYNE2). Thus, the no-dox control (Ctr) for each of these constructs would be expected to be very similar to the non-target scrambled controls (Ctrl.shScramble and Dox.shScramble). However, in the correlation matrix, each of the no-dox controls clusters more closely with the corresponding dox-induced shRNA condition than with the Ctrl.shScramble or Dox.shScramble conditions, suggesting either a very leaky dox-inducible system, strong effects from clonal selection, or substantial batch effects in the processing. Either of these scenarios could substantially affect the interpretation of the findings. For example, differences between different clonal cell lines used for the studies, independent of the targeted gene, could explain the limited overlap between the different shRNA constructs and result in apparent differences when comparing these clones to the scrambled controls, which were derived from different clones.

      We thank the reviewer for this thoughtful observation. We would like to clarify that the samples shown in Supplementary Figure S2 were processed and sequenced in two separate batches, and the data presented in the correlation matrix are unnormalized. As such, batch effects are indeed present and likely contribute to the clustering pattern observed, particularly the closer similarity between the dox-induced and no-dox samples for each individual shRNA construct.

      Importantly, our analyses focus on within-construct comparisons (i.e., doxycyclinetreated vs untreated samples for the same shRNA), rather than direct comparisons across different constructs or scrambled controls. Each experimental pair (dox vs nodox) was processed in parallel within its respective batch to ensure internal consistency. Thus, while the global clustering pattern may reflect batch-related differences or baseline variations between independently derived cell lines, these factors do not affect the main conclusions drawn from the within-construct differential expression analysis.

      The manuscript also contains several factually inaccurate or incorrect statements or depictions. For example, the depiction of the nuclear envelope in Figure 1 shows a single bilipid layer, instead of the actual double bi-lipid layer of the inner and outer nuclear membranes that span the nuclear lumen. The depiction further lacks SUN domain proteins, which, together with nesprins, form the LINC complex essential to transmit forces across the nuclear envelope. The statement in line 214 that "Linker of nucleoskeleton and cytoskeleton (LINC) complex component nesprin-2 locates in the nuclear envelope to link the actin cytoskeleton and the nuclear lamina" is not quite accurate, as nesprin-2 also links to microtubules via dynein and kinesin.

      We sincerely thank the reviewer for pointing out these important inaccuracies. In response, we have revised Figure 1 to accurately depict the nuclear envelope as a double bi-lipid membrane and included SUN domain proteins to better reflect the structural components of the LINC complex. Additionally, we have updated the statement and citations 

      This is the revised part that is incorporated in the manuscript “The linker of nucleoskeleton and cytoskeleton (LINC) complex component nesprin-2 is a nuclear envelope protein that connects the nucleus to the cytoskeleton by interacting not only with actin filaments but also with microtubules through motor proteins such as dynein and kinesin. This structural linkage contributes to cellular architecture and facilitates mechanotransduction between the nuclear interior and the extracellular matrix (ECM) [8,21]

      ”We appreciate the reviewer’s insights, which have helped improve the accuracy and clarity of our manuscript.

      The statement that "Our data show that Lamin A knockdown specifically reduced the usage of its primary isoform, suggesting a potential role in chromatin architecture regulation, while other LMNA isoforms remained unaffected, highlighting a selective effect" (lines 407-409) is confusing, as the 'shLaminA' shRNA specifically targets the 3' UTR of lamin A that is not present in the other isoforms. Thus, the observed effect is entirely consistent with the shRNA-mediated depletion, independent of any effects on chromatin architecture.

      We have rephrased the statement “Our data show that knockdown with shLaminA, which specifically targets the 3' UTR unique to the lamin A isoform, selectively reduced lamin A expression without affecting other LMNA isoforms.”

      The premise of the authors that lamins would only affect peripheral chromatin and genes at LADs neglects the fact that lamins A and C are also found in the nuclear interior, where they form stable structure and influence chromatin organization, and the fact that lamins A and C and nesprins additionally interact with numerous transcriptional regulators such as Rb, c-Fos, and beta-catenins, which could further modulate gene expression when lamins or nesprins are depleted.

      Based on the reviewer’s comment we have added the statement into Discussion part “Beyond their well-established role in tethering heterochromatin at the nuclear periphery through lamina-associated domains (LADs), A-type lamins (lamins A and C) also localize to the nuclear interior, where they contribute to chromatin organization and gene regulation independently of LADs [27,28]. Nuclear lamins can form intranuclear foci that associate with active chromatin and are implicated in supporting transcriptional activity. Additionally, both lamins and nesprins participate in diverse protein-protein interactions that may influence transcriptional regulation. For example, lamin A/C interacts with the retinoblastoma protein (Rb) to modulate E2F-dependent transcription [29], and with c-Fos to regulate its nuclear retention and activity [30]. While βcatenin acts as a co-activator in Wnt signaling relies on nuclear translocation and interaction with transcriptional complexes, and evidence suggests that nuclear architecture and envelope components, including nesprins, can influence this process [31]. Therefore, the observed gene expression changes following depletion of lamins or nesprins are likely not restricted to genes located within lamina-associated domains (LADs), but may also result from broader perturbations in nuclear architecture and transcriptional regulatory networks. This is consistent with our findings that lamins and nesprins influence gene expression in distal, non-LAD regions.”

      The comparison of the identified DEGs to genes contained in LADs might be confounded by the fact that the authors relied on the identification of LADs from a previous study (ref #28), which used a different human cell type (human skin fibroblasts) instead of the U2OS osteosarcoma cells used in the present study. As LADs are often highly cell-type specific, the use of the fibroblast data set could lead to substantial differences in LADs.

      DamID in various mammalian cell types has shown that some LADs are cell-type invariant (constitutive LADs [cLADs]), while others interact with the NL in only certain cell types (facultative LAD [fLADs]) (Bas van Steensel, 2017). We agree that facultative LADs (fLADs), which comprise approximately half of all LADs, are often highly cell-type specific. We acknowledge that this specificity may influence the interpretation of our findings. At present, publicly available LAD datasets for U2OS cells are limited to those associated with LMNB. We concur that generating LMNA-specific LAD maps in U2OS cells would enhance the accuracy and relevance of our analyses, and we view this as an important direction for future research.

      Another limitation of the current manuscript is that, in the current form, some of the figures and results depicted in the figures are difficult to interpret for a reader not deeply familiar with the techniques, based in part on the insufficient labeling and figure legends. This applies, for example, to the isoform use analysis shown in Figure 3d or the GenometriCorr analysis quantifying spatial distance between LADs and DEGs shown in Figure 4c.

      For Figure 3, we added text in the caption to make the figure more readable “Isoform switching analysis reveals differential expression of alternative transcript variants between conditions, highlighting a shift in predominant isoform usage.” For Figure 4c, we added text in the caption “GenometriCorr analysis was used to quantify the spatial relationship between LADs and DEGs, evaluating whether the observed genomic proximity deviates from random expectation through empirical distributionbased statistical testing of pairwise distances between genomic intervals.” And also in the ‘Methods”.

      Overall appraisal and context:

      Despite its limitations, the present study further illustrates the important roles the nuclear envelope proteins lamin A, lamin C, and nesprin-2 have in chromatin organization, dynamics, and gene expression. It thus confirms results from previous studies (not always fully acknowledged in the current manuscript) previously reported for lamin A/C depletion. For example, the effect of lamin A/C depletion on increasing mobility of chromatin had already been demonstrated by several other groups, such as Bronshtein et al. Nature Comm 2015 (PMID: 26299252) and Ranade et al. BMC Mol Cel Biol 2019 (PMID: 31117946). Additionally, the effect of lamin A/C depletion on gene and protein expression has already been extensively studied in a variety of other cell lines and model systems, including detailed proteomic studies (PMIDs 23990565 and 35896617).

      We add more discussions as below “Our findings reinforce the pivotal roles of nuclear envelope proteins lamin A, LMNA and nesprin 2 in regulating chromatin organization, chromatin mobility, and gene expression. These results are consistent with and extend prior studies investigating the consequences of lamin depletion. For instance, increased chromatin mobility following the loss of lamin A/C has been previously demonstrated using live-cell imaging approaches [26,35], supporting our observations of nuclear structural relaxation and chromatin redistribution. Additionally, proteomic profiling following lamin A depletion has been extensively documented across both cellular and mouse models, providing valuable insights into the molecular consequences of nuclear envelope disruption [36,37]. While these earlier studies provide a strong foundation, our work contributes novel insights by integrating isoform-specific perturbations with spatial chromatin measurements. This approach emphasizes contextdependent regulatory mechanisms that involve not only lamina-associated regions but also nesprin-associated domains and distal genomic loci, thereby expanding the current understanding of nuclear envelope protein function in gene regulation.”

      The finding that that lamin A/C or nesprin depletion not only affects genes at the nuclear periphery but also the nuclear interior is not particularly surprising giving the previous studies and the fact that lamins A and C are also founding within the nuclear interior, where they affect chromatin organization and dynamics, and that lamins A/C and nesprins directly interact with numerous transcriptional regulators that could further affect gene expression independent from their role in chromatin organization.

      We have added the following statement into the Discussion part “Beyond their well-established role in tethering heterochromatin at the nuclear periphery through lamina-associated domains (LADs), A-type lamins (lamins A and C) also localize to the nuclear interior, where they contribute to chromatin organization and gene regulation independently of LADs [27,28]. Nuclear lamins can form intranuclear foci that associate with active chromatin and are implicated in supporting transcriptional activity. Additionally, both lamins and nesprins participate in diverse protein-protein interactions that may influence transcriptional regulation. For example, lamin A/C interacts with the retinoblastoma protein (Rb) to modulate E2F-dependent transcription [29], and with c-Fos to regulate its nuclear retention and activity [30]. While β-catenin acts as a co-activator in Wnt signaling relies on nuclear translocation and interaction with transcriptional complexes, and evidence suggests that nuclear architecture and envelope components, including nesprins, can influence this process [31]. Therefore, the observed gene expression changes following depletion of lamins or nesprins are likely not restricted to genes located within lamina-associated domains (LADs), but may also result from broader perturbations in nuclear architecture and transcriptional regulatory networks. This is consistent with our findings that lamins and nesprins influence gene expression in distal, non-LAD regions.”

      The authors provide a detailed analysis of isoform switching in response to lamin A/C or nesprin depletion, but the underlying mechanism remains unclear. Similarly, their analysis of the genomic location of the observed DEGs shows the wide-ranging effects of lamin A/C or nesprin depletion, but lets the reader wonder how these effects are mediated. A more in-depth analysis of predicted regulator factors and their potential interaction with lamins A/C or nesprin would be beneficial in gaining more mechanistic insights.

      We agree that the current findings, while highlighting the broad impact of lamin A/C or nesprin depletion on isoform usage and gene expression, do not fully elucidate the underlying regulatory mechanisms. We acknowledge the importance of identifying upstream regulators and understanding their potential interactions with lamins and nesprins. Future investigations integrating epigenetic approaches, such as ChIP-seq for transcription factors and chromatin-associated proteins, will be essential to clarify how lamins and nesprins contribute to isoform switching and to uncover the mechanistic basis of these regulatory effects.

      Reviewer #3 (Public review):

      Summary:

      This manuscript describes DOX inducible RNAi KD of Lamin A, LMNA coded isoforms as a group, and the LINC component SYNE2. The authors report on differentially expressed genes, on differentially expressed isoforms, on the large numbers of differentially expressed genes that are in iLADs rather than LADs, and on telomere mobility changes induced by 2 of the 3 knockdowns.

      Strengths:

      Overall, the manuscript might be useful as a description for reference data sets that could be of value to the community.

      We acknowledge that the initial version of our manuscript lacked comprehensive comparisons with previous studies. In our revised manuscript, we have included more detailed discussions highlighting how our findings complement and extend existing knowledge. Specifically, our study presents novel insights into the role of lamins and nesprins in regulating non-coding RNAs and isoform switching, areas that have not been extensively explored in prior literatures. We hope these additions will clarify the contribution of our work and demonstrate the potential value to the field.

      Weaknesses:

      The results are presented as a type of data description without formulation of models or explanations of the questions being asked and without follow-up. Thus, conceptually, the manuscript doesn't appear to break new ground.

      In our study, we proposed a conceptual model in which gene expression changes are linked to RNA synthesis, chromatin conformation alterations, and chromatin modifications, potentially mediated by lamin A, LMNA, and nesprin-2 at the transcriptional level. However, we acknowledge that this model remains preliminary and largely unexplored. We agree that additional mechanistic insights and identification of specific regulatory factors are needed to strengthen this framework. Future studies will aim to experimentally validate these hypotheses and clarify the pathways and regulators involved.

      Not discussed is the previous extensive work by others on the nucleoplasmic forms of LMNA isoforms. Also not discussed are similar experiments- for instance, gene expression changes others have seen after lamin A knockdowns or knockouts, or the effect of lamina on chromatin mobility, including telomere mobility - see, for example, a review by Roland Foisner (doi.org/10.1242/jcs.203430) on nucleoplasmic lamina. The authors need to do a thorough search of the literature and compare their results as much as possible with previous work.

      We sincerely thank the reviewer for pointing out the important body of previous work on the nucleoplasmic forms of LMNA isoforms and the impact of lamin A depletion on gene expression and chromatin mobility. In the revised version, we have now included relevant citations. Please see the highlights in the Discussion.

      The authors don't seem to make any attempt to explore the correlation of their findings with any of the previous data or correlate their observed differential gene expression with other epigenetic and chromatin features. There is no attempt to explore the direction of changes in gene expression with changes in nuclear positioning or to ask whether the genes affected are those that interact with nucleoplasmic pools of LMNA isoforms. The authors speculate that the DEG might be related to changing mechanical properties of the cells, but do not develop that further.

      We sincerely appreciate the reviewer’s insightful comments. In our revised manuscript, we have addressed this concern by comparing our telomere mobility results with previously published data (Bronshtein et al., 2015), and we observe consistent findings showing that lamin A depletion leads to increased telomere motility. Furthermore, our study provides novel evidence that nesprin-2 depletion similarly enhances telomere migration, suggesting a broader role for nuclear envelope components in chromatin dynamics.

      We acknowledge the importance of integrating gene expression data with epigenetic and chromatin features. However, to our knowledge, such datasets are currently limited for U2OS cells, particularly in the context of lamin and nesprin perturbation. We agree that understanding the correlation between differentially expressed genes and nuclear positioning or interactions with nucleoplasmic pools of LMNA isoforms is a promising direction. We are actively planning future studies that include chromatin profiling and mechanical perturbation assays to further explore these mechanisms.

      The technical concerns include: 1) Use of only one shRNA per target. Use of additional shRNAs would have reduced concern about possible off-target knockdown of other genes; 2) Use of only one cell clone per inducible shRNA construct. Here, the concern is that some of the observed changes with shRNA KDs might show clonal effects, particularly given that the cell line used is aneuploid. 3) Use of a single, "scrambled" control shRNA rather than a true scrambled shRNA for each target shRNA.

      (1) Regarding the use of a single shRNA per target, we agree that utilizing multiple independent shRNAs would strengthen the conclusions. In our study, we selected validated shRNA sequences with minimal predicted off-targets and confirmed knockdown efficiency at mRNA level (by qPCR).

      (2) As for the use of a single cell clones per inducible construct, we understand the concern that clonal variability, particularly in an aneuploid cell line, could influence the observed phenotypes. To clarify this, we have revised in the manuscript “Multiple independent clones per shRNA were screened for knockdown efficiency using reverse transcription quantitative real-time PCR (RT-qPCR). Three clones demonstrating robust and consistent knockdown were selected and expanded. These clones were subsequently pooled to minimize clonal variability and used for downstream analyses, including RNA-seq”. To mitigate this, we ensured consistent results across biological replicates and used inducible systems to reduce variability introduced by random integration. 

      (3) We also acknowledge that the use of a single scrambled shRNA control, rather than matched scrambled controls for each construct, is a limitation. While we used a standard non-targeting scrambled shRNA commonly applied in similar studies, we understand that distinct scrambled sequences might better control for construct-specific effects. .

      Reviewer #1 (Recommendations for the authors):

      Please make the processed RNA-seq data available for each individual experiment, not only the raw reads and averaged data.

      In response to your suggestion, we have now included the raw count data for each individual experiment in Supplementary Table S5 to enhance transparency and reproducibility.   

      Reviewer #2 (Recommendations for the authors):

      The current text contains numerous typos, and some of the text could benefit from additional editing for clarity and conciseness. In addition, several statements, particularly in the section encompassing lines 321-329, lack supporting references.

      In our revised version, we have carefully edited the text for clarity and conciseness.

      We have included related citations from lines 321-329: “The majority of genes located within LADs tend to be transcriptionally repressed or expressed at low levels. This is because LADs are associated with heterochromatin , a tightly packed form of DNA that is generally inaccessible to the cellular machinery required for gene expression 12,23. Lamin mutations and levels have shown to disrup LAD organization and gene expression that have been implicated in various diseases, including cancer and laminopathies 24,25.”

      The figures would benefit from better labeling, including a clear schematic of which specific regions of the LMNA and SYNE2 genes are targeted by the different shRNA constructs, and by labeling the different isoforms in Figure S1 with the common names. Furthermore, note that lamin A arises from posttranslational processing of prelamin A, not from a different transcript. Likely, the "different LMNA genes" shown in Supplementary Figure S1 are just different annotations, with the exceptions of the splice isoforms lamin C and lamin delta10.

      In the Method, we have clearly denoted the design of corresponding shRNAs as suggested “The shRNA designated as shLMNA targets a region within the coding sequence of LMNA that is shared by both lamin A and lamin C, corresponding to amino acids 122–129 (KKEGDLIA) of lamin A/C (RefSeq: NM_001406985.1). The shRNA against SYNE2 (shSYNE2) targets a sequence encoding amino acids 5133– 5140 (KRYERTEF) of the SYNE2 protein (RefSeq: NM_182914.3).”

      For Figure S1, we have added common isoform names to figure and captions. “lamin A (ENST00000368300.9), LMNA 227 (ENST00000675431.1), pre-lamin A/C (ENST00000676385.2), and lamin C (ENST00000677389.1)."

      Several statements about the novelty of the findings or approach are inaccurate. For example, the authors state in the introduction that "However, whether lamins and nesprins actively govern chromatin remodeling and isoform switching beyond their wellcharacterized functions in mechanotransduction remains an open question", as several previous studies have provided detailed characterization of lamin A/C depletion or mutations on chromatin organization, mobility, and gene expression. The authors should revise these statements and better acknowledge the previous work.

      We have added the citations of previous works and revised the text “While significant progress has been made in understanding the role of lamins in genome organization, the precise mechanisms by which lamins and nesprins regulate gene expression through distal chromatin interactions remain incompletely understood [10,11]. Notably, recent evidence suggests a reciprocal interplay between transcription and chromatin conformation, where gene activity can influence chromatin folding and vice versa [12]. However, whether lamins and nesprins actively govern chromatin remodeling and isoform switching beyond their well-characterized functions in mechanotransduction remains an open question.”

      Reviewer #3 (Recommendations for the authors):

      Overall, the manuscript might be useful as a description for reference data sets that could be of value to the community. Otherwise, I did not derive meaningful biological insights from the manuscript. It was not clear to me also how much might be repeating previous work already reported in the literature (see below). For example, I cited a review on nucleoplasmic lamins by Roland Foisner at the end of the specific comments - scanning it very quickly shows that there are already papers on increased chromatin mobility after lamin perturbations, including telomeres. I know there have also been studies of changes in gene expression after lamin A and B KD. The authors need to do a thorough search of the literature and compare their results as much as possible with previous work.

      We acknowledge that the roles of lamins in regulating chromatin dynamics and gene expression, including the effects of lamin perturbations on chromatin mobility and telomere behavior, have been previously reported. In response, we have revised the manuscript to incorporate relevant citations and to better contextualize our results within the existing literature. Importantly, to our knowledge, the finding that nesprin-2 influences telomere mobility has not been previously reported, and we have highlighted this novel observation in the revised text.

      In response, we have now conducted a more comprehensive literature review and revised the manuscript accordingly to better contextualize our findings. Specifically, we have added comparisons to prior studies reporting chromatin mobility changes following lamin A/C depletion. We also now emphasize the novel aspects of our study, such as the isoform-specific perturbations and the integration of spatial chromatin organization with transcriptomic outcomes.

      We hope these revisions strengthen the manuscript’s contribution as both a useful resource and a mechanistic investigation.

      Not even acknowledged is the previous extensive work on the nucleoplasmic forms of LMNA isoforms - I know Robert Goldman published extensively on this, implicating lamin A, for example, on DNA replication in the nuclear interior as well as transcription. More recently, Roland Foisner worked on this, including with molecular approaches. For example, a 2017 review mentions previous ChIP-seq mapping of lamin A binding to iLAD genes and also describes previous work on chromatin mobility, including telomere mobility. Yet the entire writing in the manuscript seems to only discuss the role of LMNA isoforms in the nuclear lamina per se, explaining the surprise in seeing many iLAD genes differentially expressed after KD.

      We have added related studies as suggested by the reviewer and  added the following statement: “Nucleoplasmic lamins bind to chromatin and have been indicated to regulate chromatin accessibility and spatial chromatin organization [24]. Lamins in the nuclear interior regulate gene expression by dynamically binding to heterochromatic and euchromatic regions, influencing epigenetic pathways and chromatin accessibility. They also contribute to chromatin organization and may mediate mechanosignaling [25]. However, the contribution of nesprins and lamins to isoform switch and chromatin dynamics has not been fully understood [7,10,26]. ”

      Overall, I found a surprising lack of review and citation of previous work (see Specific comments below), including the lack of citations for various declarative statements about previous conclusions in the field about lamin A.

      (1) Introduction:

      "However, the contribution of nesprins and lamins to gene 220 expression has not been fully understood."

      There is a literature about changes in gene expression- at least for lamin KD and KO- both in vitro and in vivo- that the authors could and should review and summarize here.

      To address this, we have now revised the manuscript to include a more comprehensive discussion of the relevant literature and added appropriate citations in the corresponding section. We hope this addition provides better context for our current findings and clarifies the contribution of lamins and nesprins to gene regulation.

      (2) Results:

      "A fragment of shRNA that targeting 3' untranslated region (UTR) in LMNA genes was chosen to knockdown lamin A (shLaminA). A fragment of shRNA that targeting coding sequence (CDS) region in LMNA genes was chosen to knockdown LMNA (shLMNA)". The authors should explain more - does one KD both lamin A and C (shLMNA), versus the other being specific to lamin A but not lamin C? It appears so from later text, but the authors should explicitly explain their targeting strategy right at the beginning to make this clear.

      To make the method clearer, we have clear added the text “The shRNA against lamin A (shLaminA) targets the 3′ untranslated region (UTR) of the LMNA gene, specific to prelamin A, which is post-translationally processed into mature lamin A. The shRNA designated as shLMNA targets a region within the coding sequence of LMNA that is shared by both lamin A and lamin C, corresponding to amino acids 122–129 (KKEGDLIA) of lamin A/C (RefSeq: NM_001406985.1). The shRNA against SYNE2 (shSYNE2) targets a sequence encoding amino acids 5133–5140 (KRYERTEF) of the SYNE2 protein (RefSeq: NM_182914.3).”

      But more importantly, the convention with RNAi is to demonstrate consistent results with at least two different small RNAs. This is to rule out that a physiological result is due to the KD of a non-target gene(s) rather than the target gene. The scrambled shRNA controls are not sufficient for this as they test a general effect of the shRNA culture conditions, including tranfection and dox treatment, etc, rather than a specific KD of a different gene(s) than the target due to off-target RNAi.

      We fully acknowledge the concern regarding the use of only a single shRNA per knockdown and agree that shRNAs are prone to off-target effects. However, we have conducted qPCR confirmation of key RNAseq findings, which strongly supports the specificity and validity of our observed results. Additionally, we recognize the importance of validating our findings using multiple independent shRNAs or alternative knockdown strategies, such as CRISPR deletion or degron-based approaches. To address this rigorously, we are currently optimizing an auxin-inducible degron system (AtAFB2) for targeted depletion of lamin C. Our preliminary data indicate approximately 40% knockdown efficiency after 16 hours of auxin induction, highlighting ongoing optimization efforts (Author response image 1). Future experiments will integrate this improved degron system and multiple independent shRNAs to further substantiate our results and definitively rule out potential off-target effects, thereby enhancing the robustness and reproducibility of our data.

      (3) "Single-cell clones 114 were subsequently isolated and expanded in the presence of 2 μg ml-1 puromycin to 115 establish doxycycline-inducible shRNA-knockdown stable cell lines."

      The authors need to describe explicitly in the Results how exactly they did these experiments. Did they do their analysis using a single clone from each lentivirus shRNA transduction? Did they do analysis - ie RNA-seq- on several clones from the same shRNA transduction and compare? Did they pool clones together?

      In our study, single-cell clones and pooled the three independent clones were mixed following lentiviral transduction with doxycycline-inducible shRNA constructs and selected with 2 μg/ml puromycin. For each shRNA, we screened multiple clones for knockdown efficiency and selected a representative clone exhibiting robust knockdown for downstream experiments, including RNA-seq. We did pool three multiple clones; all functional analyses were performed on pooled clones. We have now revised the Method section to explicitly describe this experimental design: “Multiple independent clones per shRNA were screened for knockdown efficiency using reverse transcription quantitative real-time PCR (RT-qPCR). Three clones demonstrating robust and consistent knockdown were selected and expanded. These clones were subsequently pooled to minimize clonal variability and used for downstream analyses, including RNAseq.”

      One confounding problem is that there are clonal differences among cells cloned from a single cell line. This is particularly true for aneuploid cell lines like U2OS. Ideally, they would use mixed clones, but if not, they should at least explain what they did.

      We added the text to method “Three single-cell clones exhibiting robust knockdown efficiency were individually expanded and subsequently pooled. The pooled clones were maintained in medium containing 2 µg ml ¹ puromycin to establish stable cell lines with doxycycline-inducible shRNA expression. Multiple independent clones per shRNA were screened for knockdown efficiency using reverse transcription quantitative real-time PCR (RT-qPCR). Three clones demonstrating robust and consistent knockdown were selected and expanded. These clones were subsequently pooled to minimize clonal variability and used for downstream analyses, including RNA-seq.”

      (4) I am confused by their shScramble control. This is typically done for each shRNA- ie, a separate scrambled control for each of the different target shRNAs. This is because there are nucleotide composition effects, so the scrambled idea is to keep the nucleotide composition the same.

      However, looking at STable 1 and SFig. 2- shows they used a single scrambled control, thus not controlling for different nucleotide composition among the three shRNAs that they used.

      In our study, we used a single non-targeting shRNA (shScramble) as a control to account for potential effects of the shRNA vector and delivery system. This approach is commonly accepted in the field when the scrambled sequence is validated as non-targeting and does not share significant homology with the genes of interest. While we acknowledge that using separate scrambled controls matched in nucleotide composition for each targeting shRNA can further minimize sequence-dependent effects, we believe that the use of a single validated scramble control is appropriate for the scope of this study.

      (5) In Figure 2 - what is on the x-axis? Number of DEG? Please state this explicitly in the figure legend.

      We have added “Counts” as figure legend, and added the caption “Gene counts are displayed on the x-axis.”

      (6) More importantly, in Figure 2 they only show pathway analysis of DEG. They should show more: a) Fold-change of DEG displayed for all DEG; b) Same for genes in LADs vs iLADs. More explicitly, are the DEG primarily in LADs or iLADs, or a mix? Are the DEGs in LADs biased towards increased expression, as might be expected for LAD derepression? Conversely, what about iLADs - is there a bias towards increased or decreased expression?

      We agree that a more detailed characterization of the differentially expressed genes (DEGs) will strengthen the conclusions. In response we have revised the manuscript as following: “Furthermore, differential expression analysis revealed that the majority of DEGs following depletion of lamins and nesprins were located outside lamina-associated domains (non-LADs). Specifically, for shLaminA knockdown, 8 DEGs within LADs were downregulated and 8 were upregulated, whereas 59 non-LAD DEGs were downregulated and 79 were upregulated. For shLMNA, 7 LAD-associated DEGs were downregulated and 15 were upregulated, with 88 downregulated and 140 upregulated DEGs in non-LAD regions. In the case of shSYNE2 knockdown, 161 LAD DEGs were downregulated and 108 were upregulated, while 2,009 non-LAD DEGs were downregulated and 1,851 were upregulated (Figure 2d). These results indicate that the transcriptional changes resulting from the loss of lamins or nesprins predominantly occur at non-LAD genomic regions.”

      We appreciate the reviewer’s comments, which helped improve the clarity and depth of our analysis.

      (7) Is there a scientific rationale for the authors' focus on DE of isoforms? Is this somehow biologically meaningful and different from the overall DE of all genes? The authors should explain in the Results section what their motivation was in deciding to do this analysis.

      We have add the following statement in response to the reviewer “To uncover transcript-specific regulatory changes, we performed isoform-level differential expression analysis. Many genes produce functionally distinct isoforms, and shifts in their usage can occur without changes in total gene expression, making isoform-level analysis essential for detecting subtle but meaningful transcriptional regulation.  Our analysis demonstrated that depletion of lamins and nesprins induced significant alterations in specific transcript isoforms, indicating regulatory changes in alternative splicing or transcription initiation that are not captured by gene-level differential expression analysis.”

      (8) "Expectedly, the DEGs from 327 depletion of lamin A, LMNA, and SYNE2 seldom intersected with genes in 328 LADs (Figure 4a)."

      Why was this expected? The authors have only cited one review paper. Others have seen significant numbers of genes in LADs that are DE after KD of lamina proteins. What was the fold cutoff used for DE? Was there a cutoff for the level of expression prior to KD? The authors should cite relevant primary literature showing that there are active genes in LADs and that some perturbations of the lamina proteins do result in DE of genes in LADs.

      We acknowledge the reviewer's concerns regarding our statement: "Expectedly, the DEGs from 327 depletion of lamin A, LMNA, and SYNE2 seldom intersected with genes in 328 LADs (Figure 4a)." To clarify, this expectation stems from previous observations that LAD-associated genes are typically transcriptionally silent or expressed at very low levels (Guelen et al., 2008). However, dynamic changes in LADs and gene expression status do occur during cellular differentiation (Peric-Hupkes et al., 2010), and some LAD-resident genes can become active and transcriptionally responsive under specific conditions, such as T cell activation. We applied specific foldchange and baseline expression level thresholds in our analysis, as detailed in the Methods section. We added the following text in the “Method”: “Differential gene expression analysis was performed using thresholds of baseMean > 50, absolute log fold change > 0.5, and p-value < 0.05.”  We agree that additional relevant primary literature demonstrating active gene expression changes within LADs upon perturbation of lamina proteins should be cited and we have added the following statement:

      “LADs exhibit dynamic reorganization and changes in gene expression during cellular differentiation [30]. Although genes within LADs are generally transcriptionally silent or expressed at low levels [31], some LAD-resident genes remain active and can be transcriptionally modulated in response to specific stimuli, such as T cell activation [32].”

      (9) "Expectedly, the DEGs from 327 depletion of lamin A, LMNA, and SYNE2 were seldomly intersected with genes in 328 LADs (Figure 4a)." I disagree with the wording of "seldom" which by definition means rarely. I don't see that this applies to the significant number of genes that are in LADs that are DE as shown in the Venn diagram, Fig. 4a. For example, this includes 57 genes for the shLamin A and ~400 genes for the shSYNE2.

      Is there anything of note about which genes are DE within LADs?

      We have rephrased the text to the following “The Venn diagram analysis revealed limited overlap between DEGs resulting from knockdown of lamin A (shLaminA), LMNA (shLMNA), or SYNE2 (shSYNE2) and genes located within laminaassociated domains (LADs). Specifically, only a small subset of DEGs intersected with LAD-associated genes across all three knockdowns, suggesting that the majority of transcriptional changes occur outside LAD regions”. The DEGs in LADs and non-LADs were shown in supplementary Table S4.

      (10) "The relative distance from DE genes (query features) to LADs (reference feature) is plotted by GenometriCorr package (v 1.1.24). The color depicting deviation from the expected distribution and the line indicating the density of the data at relative distance are shown." The authors should explicitly describe what the reference "expected distribution" was based on. This is all very cryptic right now, so we can't assess the biological possible significance. Third, they should clearly explain what is plotted on the x and y axes of Figure 4C. I really don't have a clue. I assume the x-axis is some measure of "relative distance" but what on earth does that mean? I really don't understand this plot, which is crucial to the whole story. What is on the y-axis? Density of DEGs? What? And they need to explain not only what is plotted on the x and y axes but also provide units.

      We have revised the text to clarify that the GenometriCorr analysis (v1.1.24) was used to assess the spatial association between differentially expressed genes (DEGs, query features) and lamina-associated domains (LADs, reference features). Specifically, this method evaluates whether the observed distances between query and reference genomic intervals significantly deviate from a null distribution generated by random permutation of query features across the genome, while preserving size and chromosomal context.

      In the revised figure legend and main text, we now clarify that the x-axis represents the relative genomic distance between each differentially expressed gene (DEG) and the nearest LAD, scaled between –1 and 1, where values near 0 indicate close proximity, and values approaching –1 or 1 reflect greater distances on either side of the LADs. The y-axis denotes the density (or proportion) of query features (DEGs) at each relative distance bin. The color gradient overlays the plot to indicate deviation from the expected null distribution (based on randomized query positions): red indicates enrichment (closer than expected), while blue indicates depletion (further than expected).

      “GenometriCorr analysis (v1.1.24) was used to assess the spatial relationship between DEGs (query) and LADs (reference) [48]. The x-axis shows the relative genomic distance between each DEG and the nearest LAD, scaled from –1 (far upstream) to 1 (far downstream), with 0 indicating closest proximity. The y-axis represents the density of DEGs at each distance bin. A color gradient indicates deviation from a randomized null distribution: red signifies enrichment (closer than expected), and blue signifies depletion. Statistical significance was determined using the Jaccard test (p < 0.05).”

      Second, to correlate with other features and to give more meaning, the authors should show the chromosome location of the DEGs and scale this by the actual DNA sequence distances. This will be needed to correlate with other features from other studies.

      The genomic positions of DEGs have now been displayed in Figure 4b, with distances shown in base pairs to facilitate cross-reference with other features in future studies.

      Third, they should attempt some kind of analysis themselves to try to understand what might correlate with the DEGs. To begin with, they might try to correlate with lamin A ChiP-seq or other molecular proximity assays. Others in fact have shown that lamin A interacts with 5' regulatory regions of a subset of genes- presumably this is the diffuse nucleoplasmic pool of lamin A that has been studied by others in the past.

      We agree that understanding potential regulatory mechanisms underlying DEG distribution is essential. In response, we have expanded our analysis (Figure 2d) to highlight that a substantial portion of DEGs are located outside of LADs, suggesting potential regulation by the nucleoplasmic pool of lamin A. This is consistent with previous studies showing lamin A interaction with regulatory elements such as 5′ UTRs and enhancers, independent of LAD localization. We have now cited relevant literature to support this hypothesis.

      Fourth, in the table, they should go beyond just giving the fold change in expression. Particularly for genes that are expressed at very low levels, this is not particularly meaningful as it is very sensitive to noise. They should provide a metric related to levels of expression both before and after the KD.

      We acknowledge the reviewer’s concern regarding fold-change interpretation for low-abundance transcripts. To improve clarity and interpretability, we have now included Supplementary Table S4, which provides the raw counts and baseMean values (average normalized expression across all samples) for all DEGs. Additionally, we note that in our differential expression analysis, genes with baseMean < 50 and absolute log<sub>2</sub>fold change > 0.5 were filtered out to reduce potential noise from low-expression genes.

      (11) The figure legend and description in the Results section were completely inadequate. I had little understanding of what was being plotted. It is not sufficient to simply state the name of some software package that they used to measure "XYZ" and to show the results. It has no meaning for the average reader.

      Without some type of explanation of rationale, questions being asked, and conclusions made of biological relevance, this section made zero impact on me.

      Yes- details can be provided in the Methods. But conceptually, the methods and the conceptual underpinnings of the approach and as the question being asked and the rationale for the approach, with the significance of the results, need to be developed in the Results section.

      In response, we have revised the “Results” section to better articulate the rationale behind the analysis, the specific biological questions we aimed to address, and the conceptual relevance of the method used. We have also clarified the meaning of the plotted data and how it supports our conclusions.

      While technical details remain in the “Methods” section, we now provide a more accessible narrative in the Results to guide the reader through the approach and highlight the biological significance of our findings. We hope these revisions make the section more informative and impactful.

      (12) The telomere movement part of the manuscript seems to come out of nowhere. Why telomeres? Where are telomeres normally positioned, particularly relative to the nuclear lamina? Does this change with the KDs - particularly for those that increase motion? The MSD for SYNE2 appears unconstrained- they should explore longer delta time periods to see if it reaches a point of constrained movement.

      If the telomeres are simply tethered at the nuclear lamina, then is that the explanation- that they become untethered? But if they are not typically at the periphery, then where are they relative to other nuclear compartments? And why is there mobility changing? Is it related to the loss of nuclear lamina positioning of adjacent LAD regions to the telomeres? Is it an indirect, secondary effect? What would they see after an acute KD? What about other chromosome regions? Again, there is little explanation for the rationale for these observations. It is one of many possible experiments they could have done. Why did they do this one?

      We added the following explanation “Although telomeres are not uniformly tethered to the nuclear lamina, they can transiently associate with the nuclear periphery, particularly during post-mitotic nuclear reassembly, through interactions involving SUN1 and RAP1 36. Given that lamins and nesprins are key components of the nuclear envelope that regulate chromatin organization and mechanics 37,38, we examined telomere dynamics as a proxy for changes in nuclear architecture. Using EGFP-tagged dCas9 to label telomeric regions in live U2OS cells, we assessed whether knockdown of these proteins leads to increased telomere mobility, reflecting a loss of structural constraint or altered chromatin–nuclear envelope interactions 17.” And “To probe how nuclear envelope components regulate chromatin dynamics, we tracked telomeres as a representative genomic locus whose mobility reflects changes in nuclear mechanics and chromatin organization. Although telomeres are not stably tethered to the nuclear lamina, their motion can be influenced by nuclear architecture and transient peripheral associations [36]. Upon depletion of lamin A, LMNA, or SYNE2, we observed significantly increased telomere mobility and nuclear area explored, quantified by mean square displacement and net displacement (Figure 6b–c, Supplementary Movie S1). These changes likely reflect altered chromatin–lamina interactions or disrupted nuclear mechanical constraints, consistent with prior studies showing that lamins modulate chromatin dynamics and nuclear stiffness [37,38,39]. Thus, our findings support a role for lamins and nesprins in constraining chromatin motion through nuclear structural integrity.”

      (13) "Notably, Lamin A depletion led to enrichment of 392 pathways associated with RNA biosynthesis, supporting its previously suggested role 393 in transcriptional activation and ribonucleotide metabolism."

      There is a literature on this. Say more and cite the references.

      Notably, lamin A depletion led to enrichment of pathways associated with RNA biosynthesis, supporting its previously suggested role in transcriptional activation and ribonucleotide metabolism 45.  

      (14) "This aligns with prior studies indicating that Lamin A contributes to chromatin accessibility and RNA polymerase activity." Again, there is a literature on this. Say more and cite the references.

      This aligns with prior studies indicating that lamin A contributes to chromatin accessibility and RNA polymerase activity 46. These findings further underscore the functional relevance of lamin A in coordinating transcriptional programs through modulation of nuclear architecture.

      (15) "In contrast, LMNA knockdown was linked to alterations in chromatin conformation." No. The authors show gene ontology and implicate perturbed RNA levels for genes implicated in "chromatin conformation". That is not the same thing as measuring chromatin conformation, which is not done, and showing changes in conformation.

      Based on the reviewer’s comment we have revised the text as the following: “In contrast, LMNA knockdown led to differential expression of genes enriched in pathways related to chromatin organization, suggesting potential disruptions in chromatin regulatory networks. Although direct measurements of chromatin conformation were not performed, these transcriptional changes indicate that LMNA may contribute to maintaining nuclear architecture and genomic stability, which aligns with its established involvement in laminopathies and genome integrity disorders.”

      (16) "The findings that DEGs are predominantly located in non-LAD regions highlight a unique regulatory aspect of lamins and nesprins, emphasizing their spatial specificity in gene expression". Is this novel? Can the authors separate direct from indirect effects? Is the percentage of genes in LADs that are altered in expression different from the percentage of genes in iLADs that are altered in expression? There are many more active genes in iLADs, so one expects more DEGs in iLADs even if this is random. Also - how does this correlate with lamin A binding near 5' regulatory regions detected by ChIP-seq? See the following review for references to this question and also previous work on lamin A versus chromatin mobility, including telomeres. J Cell Sci (2017) 130 (13): 2087-2096. https://doi.org/10.1242/jcs.203430

      We appreciate the reviewer’s valuable comments and feedback, we have revised the manuscript as the following to address the feedback. “Furthermore, differential expression analysis revealed that the majority of DEGs following depletion of lamins and nesprins were located outside lamina-associated domains (non-LADs). Specifically, for shLaminA knockdown, 8 DEGs within LADs were downregulated and 8 were upregulated, whereas 59 non-LAD DEGs were downregulated and 79 were upregulated. For shLMNA, 7 LAD-associated DEGs were downregulated and 15 were upregulated, with 88 downregulated and 140 upregulated DEGs in non-LAD regions. In the case of shSYNE2 knockdown, 161 LAD DEGs were downregulated and 108 were upregulated, while 2,009 non-LAD DEGs were downregulated and 1,851 were upregulated (Figure 2d, Supplementary Table S4). These results indicate that the transcriptional changes resulting from the loss of lamins or nesprins predominantly occur at non-LAD genomic regions.

      The percentage of DEGs was consistently higher in non-LADs, which are gene rich and transcriptionally active, whereas LADs, known to be enriched for silent or lowly expressed genes, showed fewer expression changes. These findings are consistent with previous studies demonstrating that active genes are more prevalent in non-LADs and that LAD associated genes are generally repressed or less responsive to perturbation [27,28]. Together, these results support a model in which lamins and nesprins influence gene expression through both structural organization and promoter proximal interactions, particularly within euchromatic nuclear regions [10,26,29].”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Weaknesses:

      While scRNA-seq data clearly revealed different subsets of microglia, macrophages, and DCs in the brain, it remains somewhat challenging to distinguish DC-like cells from P2ry12- macrophages by immunohistochemistry or flow cytometry.

      Indeed, in flow cytometry analyses of adult brain samples, the p2ry12<sup>-</sup>; mpeg1<sup>+</sup> fraction could, in theory, encompass not only DC-like cells but also other macrophage subsets, as well as B cells, since B cells have been reported to express mpeg1 in zebrafish (Ferrero et al., 2020; Moyse et al., 2020). Nevertheless, our data strongly indicate that within the brain parenchyma, DC-like cells represent the predominant component of this population. This conclusion is supported by the pronounced reduction of p2ry12<sup>-</sup>; mpeg1<sup>+</sup> cells in brain sections from ba43 mutants, in which DC development is impaired. Currently, further phenotypic resolution is constrained by the limited availability of zebrafish-specific antibodies and the restricted palette of fluorescent reporter lines capable of distinguishing MNP subsets. We anticipate that future efforts, including the generation of novel transgenic lines informed by our dataset (initiatives already underway in our group), will enable more precise discrimination among these distinct subsets.

      Reviewer #2 (Public Review):

      A weakness of this study is that it is mainly based on FACS sorting, which might modify the proportion of different subtypes.

      We agree that reliance solely on FACS could potentially introduce biases in the proportions of different subtypes. To minimize this concern, we complemented our flow cytometry data with quantification performed directly on brain sections using immunohistochemistry. This approach allowed us to validate cell population distributions in situ, thereby confirming that the trends observed by FACS accurately reflect the cellular composition of microglia and DC-like cells within the brain parenchyma.

      Reviewer#3 (Public Review):

      A weakness is the lack of specific reporters or labeling of this dendritic cell population using specific genes found in their single-cell dataset. Additionally, it is difficult to remove the meningeal layers from the brain samples and thus can lead to confounding conclusions. Overall, I believe this study should be accepted contingent on sufficient labeling of this population and addressing comments.

      While the generation of DC-like specific transgenic lines is indeed a promising direction (and such efforts are currently underway in our group), creating and validating these lines is time-consuming. Importantly, although these additional tools will be valuable for future functional investigations, we believe they would not impact the main conclusions or core message of our current work, where we already provide detailed spatial information on DC-like cells, and we demonstrated their lineage identity through the use of our newly generated batf3 mutant line. 

      Recommendations for the authors:

      Major Comments: 

      The authors should discuss another recent report demonstrating DCs in the zebrafish brain, which also developed independently of Csf1ra, and compare the two datasets (Zhou et al. Cell reports, 2023).

      Thank you for highlighting the study by Zhou et al., which offers complimentary insight into the dendritic cell population in the zebrafish brain. We note that in this work, the authors reclassify ccl34b.1<sup>-</sup> mpeg1<sup>+</sup> brain-resident cells as conventional DCs, thus revising their earlier interpretation of these cells as microglia (Wu et al., 2020). This shift in interpretation is based on their transcriptional comparison between the previously characterized ccl34b.1<sup>-</sup> mpeg1<sup>+</sup> population and a new dataset of brain

      mpeg1<sup>+</sup> cells. This updated classification aligns closely with our findings. Given that our data already demonstrate the equivalence between the DC-like cells described in our study and the ccl34b.1<sup>-</sup> mpeg1<sup>+</sup> population, repeating a direct transcriptional comparison would be redundant. We have now included a discussion of this work in the revised manuscript. Specifically, we have added the following sentences in the discussion: “Importantly, since the submission of our manuscript, the Wen lab published an independent study in which they now reclassify the ccl34b.1<sup>-</sup> mpeg1<sup>+</sup> cells in the zebrafish brain as cDCs, revising their earlier interpretation of these cells as microglia (Zhou et al., 2023)”. 

      Data reported in Figure 5 should be quantified (cell numbers, how many brains analyzed). 

      Thank you for this comment. We would like to clarify that the primary purpose of Figure 5 (and Figure 5 supplement 1) is to provide an initial qualitative overview of the different MNP subsets present in the adult brain, using the currently available transgenic and immunohistochemical tools. These descriptive analyses were instrumental in identifying the most reliable combination, namely the Tg(p2ry12:p2ry12GFP; mpeg1.1:mCherry) double transgenic line in conjunction with L-plastin immunostaining, to distinguish microglia from other parenchymal MNPs. Quantitative analyses using this optimized strategy are presented in Figure 7 (Figure 7 supplement 1), where we systematically enumerate the different MNPs. We therefore believe that performing additional quantification in Figure 5 would be redundant with the more robust data already shown in Figure 7. As requested, we have now included in the Figure 5 legend that images are representative of brain tissue sections from 2-3 fish. 

      The title mentions an "atlas", but there is no searchable database or website associated with the paper. Please provide one.

      We agree and fully support the importance of data accessibility. To facilitate use of our dataset by the scientific community, we have developed a user-friendly, searchable web interface that allows users to explore gene expression pacerns within our dataset. This website is available at https://scrna-analysis zebrafish.shinyapps.io/scatlas/

      This information has now been included in the “Data availability statement” section of the manuscript.  

      Reviewer #1 (Recommendations For The Authors): 

      Specific comments: 

      The authors should discuss another recent report demonstrating DCs in the zebrafish brain, which also developed independently of Csf1ra, and compare the two datasets (Zhou et al. Cell reports, 2023). 

      Thank you for this suggestion. Please refer to our response in the major comments section, where we address this point in detail.

      Within macrophages, the authors identified 5 clusters including 4 microglia clusters and 1 MF cluster (Figure 4). Does the laUer relate to 'BAMs' and express markers previously described in murine BAMs, including Lyve1, CD206, etc.? Or to monocytes? By flow cytometry, monocytes were detected (Figure 1B), but not by scRNA-seq.  

      You have raised an important point here. As described in lines 197-202 (“results” section), the cells in the MF cluster exhibit a macrophage identity, based on their expression of classical macrophage markers such as marco, mfap4 or csf1ra. However, we were unable to confidently annotate this cluster more specifically. We also considered whether this population might resemble mammalian BAMs or monocytes, cell types that, to our knowledge, have not yet been clearly identified in zebrafish. However, orthologous markers typically associated with murine BAMs were not detected (lyve1) or not specifically enriched (mrc1a/mrc1b) in the MF cluster (see below). Based on these findings, we can only cautiously propose that this cluster may represent blood-derived macrophages and / or monocytes.

      To further address your suggestion, we performed a cell type enrichment analysis using the marker genes of the MF cluster, following the same strategy as for the microglia and DC-like clusters presented in Figure 4 supplement 2 C,D. This analysis revealed significant for “monocytes” and “macrophages”, further supporting a general monocytic/macrophage identity (see below). At present, further characterization of this cluster is limited by the lack of zebrafish-specific antibodies and the restricted palette of fluorescent reporter lines that distinguish among MNP subsets. We anticipate that future studies, including the development of new transgenic lines guided by our dataset, will allow for a more precise analysis of this distinct population. 

      Author response image 1.

      Do all 4 DC clusters identified by scRNA-seq represent cDC1s? or are there also cDC2s, and cDC3s present?  

      In our analyses, the four dendritic cell clusters identified by scRNA-seq (DC1-DC4) exhibit transcriptional profiles consistent with a conventional type 1 dendritic cell (cDC1) identity. These clusters uniformly express hallmark cDC1-associated genes, while lacking expression of markers typically associated with mammalian cDC2 or plasmacytoid dendritic cells (pDCs). For instance, irf4, a key transcription factor required for cDC2 development, is not detected in our dataset. Similarly, we do not observe expression of genes characteristic of pDCs. 

      That said, the absence of cDC2 or pDC-like signatures in our dataset does not rule out the presence of these populations in zebrafish.  

      While they show that DC-like cells did not express Csf1rb (Figure 4D) or other macrophage/microglia genes, DC-like cells were affected in the Csf1rb mutants and in double mutants, demonstrating that their development depends on Csf1rb signaling, as known for macrophages but not DCs. Can the authors discuss this in more detail with regard to DC differentiation/precursors? 

      Thank you for pointing this out. As previously demonstrated, CSF1R signaling in zebrafish is more complex than in mammals, due to the presence of two paralogs, csf1ra and csf1rb, which exhibit partially non-overlapping functions (Ferrero et al., 2021). We and others have shown that csf1rb signaling is implicated in the regulation of definitive hematopoiesis, particularly in the regulation of hematopoietic stem cell (HSC)-derived myelopoiesis. Although the developmental origin of zebrafish brain DC-like cells remains uncharacterized, their reduced numbers in the csf1rb mutant, despite their lack of csf1rb expression, supports the current model in which csf1rb acts at the progenitor level, promoting myeloid lineage commitment. According to this, csf1rb disruption affects the differentiation of multiple myeloid subsets, which likely include DC-like cells. We have developed this point in the discussion section (lines 502506).  

      Do the DCs express Csf1ra? 

      Csf1ra transcripts are not found in DCs in our dataset. As shown below, csf1ra expression is restricted to the microglia and macrophage clusters. These observations are in line with those made by Zhou et al., 2023.

      Author response image 2.

      Fig. 5, the number of brains analyzed should be added, and also quantifications of cell numbers included. It is mentioned (line 260) that P2ry12GFP+mpeg1mCherry+ microglia are abundant across brain regions while P2ry12GFP- mpeg1mCherry+ cells particularly localize in the ventral part of the posterior brain parenchyma. It would be nice if images of the different brain regions were provided. 

      Regarding the quantification, we refer to our response in the major comments section, where we explain that detailed quantification of microglia and other MNP subsets is provided in Figure 7, using a more refined strategy for distinguishing cell types.

      As requested, we have now included representative sections from the forebrain, midbrain and hindbrain of adult Tg(mhc2dab:GFP; cd45:DsRed) fish. These images illustrate the spatial distribution of DC-like cells across brain regions. Notably, DC-like cells are most abundant in the ventral areas of the midbrain and hindbrain, and are also present in the posterior telencephalon, particularly concentrated in the region of the commissura anterior. This regional annotation is based on the zebrafish brain atlas by Wullimann et al., 1996 (Neuroanatomy of the zebrafish brain, https://doi.org/10.1007/978-3-0348-8979-7).

      These additional images have been included in Figure 5 Supplement 1 (A-E).

      It is sometimes not evident whether the Pr2y12- cells included DC-like cells and macrophages, which should be discussed. 

      Thank you for bringing this to our attention. Upon review, we agree this point required clearer explanation throughout the text, particularly beginning with the description of putative DC-like cells in Figure 5. We have now revised the manuscript to improve clarity and becer guide readers through the phenotypic identification of DC-like cells using the Tg(p2ry12:p2ry12-GFP;mpeg1:mCherry) line. Specifically, we have modified the titles in the results section from page 5 to page 9, so that readers can more easily follow the step-by-step approach we used to distinguish DC-like cells from microglia. 

      To directly address your comment: the p2ry12<sup>-</sup>; mpeg1<sup>+</sup> fraction may, in theory, include not only DC-like cells but also other macrophage subsets and B cells, as B cells have been shown to express mpeg1 in zebrafish (Ferrero et al., 2020; Moyse et al., 2020). Nevertheless, our data strongly indicate that within the brain parenchyma, DC-like cells represent the predominant component of this population. This conclusion is supported by the pronounced reduction of p2ry12<sup>-</sup>; mpeg1<sup>+</sup> cells in brain sections from ba43 mutants, in which DC development is impaired. 

      We have revised the text accordingly to clarify this point in the results section of the manuscript (line 355).

      For example, the DC-like cell population in Figure 6C appears to include two populations of cells. Thus, it is unclear whether the sorted mhc2dab:GFP+;CD45:DsRedhi population for bulk-seq also contains the MF population identified in Fig. 2. 

      Thank you for this thoughtful observation. During the course of this study, we indeed considered how best to isolate non-microglial macrophages in order to specifically recover the MF population identified in our scRNA-seq analysis. However, with the current repertoire of fluorescent transgenic zebrafish lines, it remains technically challenging to selectively isolate non-microglial macrophages from the adult brain. As a result, the mhc2dab:GFP<sub>+</sub>; cd45:DsRedhi sorted population used for bulk RNA-seq may indeed include a mixture of DC-like and other mononuclear phagocytes, potentially the MF population. In contrast, our data demonstrate that the Tg(p2ry12:p2ry12-GFP) line provides a more selective tool for isolating microglia, minimizing contamination from other mononuclear phagocyte subsets.

      In Figure 7, a reduction of GFP-mpeg+ cells can be seen in baf3 mutants. Could the remaining cells be the (non-microglia) macrophages? Or in Figure 8, could the remaining P2ry12GFP-Lcp1+ cells in Irf8 mutants be macrophages? 

      Indeed, we believe it is likely that the remaining mpeg1<sup>+</sup> cells observed in ba43 mutants include non-microglial macrophages and/or B cells, as we and others previously showed that zebrafish B cells express mpeg1.1 transcripts and are labeled in the mpeg1.1 reporters (Ferrero et al., 2020). This interpretation is further supported by the observation that the reduction in mepg1+ cells is more pronounced in brain sections than in flow cytometry samples, where non-parenchymal mpeg+ cells, such as peripheral macrophages or B cells, are likely enriched. To explore this possibility, we attempted to assess the expression of MF- and B cell-specific markers in the remaining mpeg1+ population isolated from ba43 mutants. However, due to the very low numbers of cells recovered per animal, we were limited to analyzing only a few markers. Despite multiple attempts, qPCR analyses proved unconclusive, likely due to low transcript abundance. We thank you for your understanding of the technical limitations that currently prevent a more definitive characterization of these remaining cells.  

      Regarding the irf8 mutants (Figure 8), irf8 is a well-established master regulator of mononuclear phagocyte development. In mice, deficiency results in developmental defects and functional impairments across multiple myeloid lineages, including microglia, which exhibit reduced density (Kierdorf et al., 2013) and an immature phenotype (Vanhove and al., 2019). Similarly, in zebrafish, irf8 mutants show abnormal macrophage development, with an accumulation of immature and apoptotic cells during embryonic and larval stages (Shiau et al., 2014). Based on these findings, it is plausible that the residual p2ry12:GFP<sup>-</sup> Lcp1<sup>+</sup> cells observed in the irf8 mutant brains represent immature or arrested mononuclear phagocytes, possibly including both microglia and DC-like cells. This is supported by their distinct morphology and specific localization along the ventricle borders. However, as previously noted, our current tools do not permit to conclusively identify these cells.

      Reviewer #2 (Recommendations For The Authors): 

      A few sentences are not easy to understand for a "non zebrafish specialist". 

      (1) Page 3 line 111 The sentence "Interestingly, analyses of brain cell suspensions from double transgenics showed p2ry12:GFP+ microglia accounted for half of cd45:DsRed+ cells (50.9 % {plus minus} 2.9; n=4) (Figure 1D,E). Considering that mpeg1:GFP+ cells comprised ~75% of all leukocytes, these results indicated that approximately 25% of brain mononuclear phagocytes do not express the microglial p2ry12:GFP+ transgene." is not clear. This point is significant and deserves a more detailed explanation. 

      We apologize for the lack of clarity in this section. The quantification presented in Figure 1 refers specifically to cd45:Dsred<sup>+</sup> leukocytes, meaning that the reported percentages of p2ry12:GFP<sup>+</sup> and mpeg1:GFP<sup>+</sup> cells are calculated relative to the total cd45+ population (defined as 100%). Specifically, we observed that approximately 51% of all cd45+ cells were p2r12:GFP<sup>+</sup> microglia, while around ti5% were mpeg1:GFP<sup>+</sup>. From these values, we infer that about 25% of mpeg1:GFP<sup>+</sup> leukocytes do not express the p2ry12:GFP transgene and therefore likely represent non-microglial mononuclear phagocytes. We agree that this distinction is important and have revised the text accordingly to clarify the interpretation for readers who may be less familiar with zebrafish transgenic lines or gating strategies. See page 3, lines 107 117.

      (2) Line 522; Like human and mouse ILC2s, "these cells do not express the T cell receptor cd4-1" is confusing (T cell receptor should be reserved to the ag specific TCR). Also, was TCR isotypes expression analyzed (and how was genome annotation used in this case ?) 

      Thank you for this insightful comment.  We agree that the term “T cell receptor” should be used specifically to refer to antigen-specific TCRs, and we have revised the discussion accordingly to avoid any confusion. Regarding your question on the analysis of TCR isotype expression and the use of genome annotation: due to technical limitations, we did not pursue TCR isotype-level analysis in this study. Instead, we relied on established markers such as cd4-1 and cd8a to distinguish T cell populations, acknowledging that cd4-1 is not expressed by ILC2-like cells in our dataset. We have clarified these points in the relevant sections of the manuscript (see lines 168 and 535)

      The analysis of single-cell data might be more detailed, with more explanation about possible doublet identification and normalization procedures. 

      Thank you for highlighting the need for additional clarity regarding our scRNA-seq analysis.

      As noted in the Seurat tutorial, “cell doublets or multiplets often exhibit abnormally high gene count” (https://sa7jalab.org/seurat/archive/v3.0/pbmc3k_tutorial). To evaluate this, we performed a dedicated doublet detection analysis using the scDblFinder R package (https://rdrr.io/bioc/scDblFinder/f/vigneces/2_scDblFinder.Rmd). Our results indicated that the proportion of predicted doublets is low (see Figure below), and when present, these doublets are distributed among the different clusters. This contrasts with the typical clustering of doublets into discrete groups and indicates that our single-cell sequencing workflow was sufficiently robust to predominantly capture singlets.

      Regarding normalization, we have clarified this in the manuscript. Briefly, single-cell data were normalized using Seurat’s SCTransform method with the following custom parameters: “variable.features.n=4000 and return.only.var.genes=F”. These settings are now clearly described to ensure reproducibility.

      Author response image 3.

      Reviewer #3 (Recommendations For The Authors):

      Major issues

      Though baf3 mutants were generated the manuscript will greatly benefit from in situ labeling by RNAscope or the generation of transgenic reporters to conclusively localize this dendritic cell population and address any potential contamination issues. 

      We thank you for this constructive suggestion. We agree that in situ labeling approaches such as RNAscope would offer valuable complementary insights. In our current study, however, we already provide detailed spatial information on DC-like cells, and we demonstrated their lineage identity through the use of our newly generated batf3 mutant line. 

      To address concerns regarding potential contamination, we have carefully analyzed more than two dozens adult brains to date and consistently observed abundant DC-like cells within the brain parenchyma, exhibiting a reproducible and specific spatial distribution, as described in the manuscript. This consistent localization across multiple samples strongly supports the genuine presence of these cells in the brain rather than artifactual contamination.

      While the generation of DC-like specific transgenic lines is indeed a promising direction (and such efforts are currently underway in our group) we note that creating and validating these lines is time-consuming and falls beyond the scope of the present study. Importantly, although these additional tools will be valuable for future functional investigations, we believe they would not impact the main conclusions or core message of our current work. 

      The morphological characterization of CD45:DsRed+ macrophages stained with May-Grunwald-Giemsa has been previously reported in the paper, "Characterization of the mononuclear phagocyte system in the zebrafish" Wittamer et al., 2011."Morphologic analyses revealed that the majority of cells exhibited the characteristics of monocytes/macrophages namely low nuclear to cytoplasm ratios and a high number of cytoplasmic vacuoles (Figure 3B). 

      We thank you for pointing out the reference to Wittamer et al., 2011. In that study, we indeed provided the first morphological characterization of mononuclear phagocytes (MNPs) in various adult zebrafish organs using the cd45:DsRed line in combination with the mhc2dab:GFP reporter. The focus was primarily on MNPs across peripheral tissues. In the current study, our aim is broader: we investigate the full diversity of brain immune cells, using cd45 as a general marker for leukocytes. As part of this comprehensive characterization, we applied MGG staining, a widely accepted cytological technique, to gain morphological insight into the sorted CD45:DsRed+ population. This method remains a valuable and rapid approach to visually assess cell type heterogeneity, especially when evaluating samples where multiple immune cell lineages may be present. 

      While there is some overlap with the methodology used in Wittamer et al., the context, scope, and tissue examined differ substantially. Thus, the inclusion of MGG staining in this study serves to complement our broader transcriptomic analyses by providing supporting morphological evidence specific to brain-resident immune cells.

      We have now clarified this distinction in the revised manuscript to better differentiate the current work from our previous findings (see line 85).

      Figure 5 data should be quantified.

      Please refer to our response in the major comments section, where we address this question in detail.

      Figure 7- Figure Supplement 1. J, K has no CD45:DsRed positive cells in baf3 mutants, which is counterintuitive because CD45:DsRed should capture all hematopoietic cells and is not specific to dendritic cells. 

      It is correct that cd45 is a general leukocyte marker, labeling all immune cells, including dendritic cells. In this Figure, we used the Tg(cd45:DsRed) transgenic line to visualize the phenotype because it offers an alternative to IHC, with the advantage of strong endogenous fluorescence and easier screening of vibratome sections. However, this technique has limitations: due to fixation, only cells with high fluorescence (e.g. cd45<sup>high</sup>dendritic cells) are captured, while those with medium/low expression (e.g. cd45<sup>low</sup> microglia) are often not visible. This explains why fewer cells are observed in both wild-type and ba43 mutant brains (Figure 5 KN, Figure 7 – supplement 1 JK). While this approach is quicker and allows for thicker sections, IHC remains the preferred method for the rest of the analyses, including the use of additional markers to identify all relevant cell populations. 

      Thank you for bringing this point of confusion to our attention. To improve clarity, we have amended the text in the relevant sections (see lines 704-706, and legend of Figure 7 Supplement 1)

      Minor issues: 

      The terms in the title, "A single-cell transcriptomic atlas..." are used. What is meant by "atlas"? A searchable database or website is not provided.

      Please refer to our response in the major comments section, where we explain that we have made our dataset accessible through a searchable web interface (https://scrna-analysiszebrafish.shinyapps.io/scatlas/) which is now referenced in the Data Availability Statement.

      This reviewer considers that it is offensive to use terminology such as "poorly characterized" in reference to others' work. 

      Thank you for pointing this out. We understand the concern and have revised the wording to ensure it remains respectful and neutral when referring to previous work. The changes are reflected in lines 20 and 49.

      The introduction of this manuscript should consider restructuring and editing. Example: Lines 51-57 introduce the importance of immune cells in zebrafish regeneration studies. However, this study does not investigate such processes. Additionally, the authors focus on the concept of immune heterogeneity in the brain throughout the text however, these studies have been conducted previously by others (Silva et al., 2021) at single-cell level.

      The novelty of this manuscript is the identification of "dendritic-like cells" and yet the introduction and text are limited to 68-71 lines. The introduction would benefit by introducing this cell type "dendritic-like cells" and differences between vertebrates. 

      Thank you for these valuable comments. In response, we have revised the introduction to better align with the focus of the study (see edited text in page 2). We now emphasize that, while macrophages have been extensively studied in zebrafish, dendritic cells remain much less well characterized in this model.  Also, while we acknowledge that Silva et al. addressed aspects of immune heterogeneity in the zebrafish brain, their study primarily focused on mononuclear phagocytes. In contrast, our work provides a broader and more detailed characterization of the brain immune landscape, integrating transcriptomic data with multiple fluorescent reporter lines and hematopoietic mutants to strengthen cell identity assignments. Importantly, we note that Silva et al. classified DC-like cells within the microglial compartment, whereas our findings support that these cells represent a distinct population. While our data challenge this specific aspect of their conclusions, we believe both studies offer complementary insights that collectively advance our understanding of zebrafish brain immunity. 

      Though Figure 6 is a great conformation of scRNA sequencing, it seems redundant and should be supplemental data.

      We respectfully disagree with the reviewer’s suggestion. We believe that presenting the data in Figure 6 as the main figure enhances its visibility and impact, particularly highlighting the distinction between microglia and DC-like cells, an aspect we consider highly valuable information for the zebrafish research community. This is especially important given that our conclusions challenge two previous independent reports, further underscoring the relevance of these findings to the field.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Li and coworkers addresses the important and fundamental question of replication initiation in Escherichia coli, which remains open, despite many classic and recent works. It leverages single-cell mRNA-FISH experiments in strains with titratable DnaA and novel DnaA activity reporters to monitor DNA activity peaks versus size. The authors find oscillations in DnaA activity and show that their peaks correlate well with the estimated population-average replication initiation volume across conditions and imposed dnaA transcription levels. The study also proposes a novel extrusion model where DNA-binding proteins regulate free DnaA availability in response to biomass-DNA imbalance. Experimental perturbations of H-NS support the model validity, addressing key gaps in current replication control frameworks.

      Strengths:

      I find the study interesting and well conducted, and I think its main strong points are:

      (1) the novel reporters obtained with systematic synthetic biology methods, and combined with a titratable dnaA strain.

      (2) the interesting perturbations (titration, production arrest, and H-NS).

      (3) the use of single-cell mRNA FISH to monitor transcripts directly.

      The proposed extrusion model is also interesting, though not fully validated, and I think it will contribute positively to the future debate.

      We thank the reviewer for acknowledging the strengths of our study.

      Weaknesses and Limitations:

      (1) A relevant limitation in novelty is that DnaA activity and concentration oscillations have been reported by the cited Iuliani and coworkers previously by dynamic microscopy, and to a smaller extent by the other cited study by Pountain and coworkers using mRNA FISH.

      (2) An important limitation is that the study is not dynamic. While monitoring mRNA is interesting and relevant, the current study is based on concentrations and not time variations (or nascent mRNA). Conversely, the study by Iuliani and coworkers, while having the drawback of monitoring proteins, can directly assess production rates. It would be interesting for future studies or revisions to monitor the strains and reporters dynamically, as well as using (as a control) the technique of this study on the chromosomal reporters used by Iuliani et al.

      We acknowledge the value of dynamic measurements and clarify our methodological rationale.

      While luliani et al. provided valuable temporal resolution through protein dynamics, our mRNA FISH approach achieves direct decoupling of transcriptional vs. post-translational regulation (Fig 4F-H), and condition flexibility across 7 growth rates (30-66 min doubling times). This trade-off sacrifices temporal resolution for enhanced population-scale resolution and perturbation flexibility. To directly address temporal coupling, future work will implement dual-color live imaging of DnaA activity concurrent with replication initiation events.

      (3) Regarding the mathematical models, a lot of details are missing regarding the definitions and the use of such models, which are only presented briefly in the Methods section. The reader is not given any tools to understand the predictions of different models, and no analytical estimates are used. The falsification procedures are not clear. More transparency and depth in the analysis are needed, unless the models are just used as a heuristic tool for qualitative arguments (but this would weaken the claims). The Berger model, for example, has many parameters and many regimes and behaviors. When models are compared to data (e.g., in Figure 2G), it is not clear which parameters were used, how they were fixed, and whether and how the model prediction depends on parameters.

      We agree that model transparency is essential for quantitative validation. To address this, all model parameters (DnaA synthesis rate, activation/deactivation rates etc.) are explicitly tabulated in Supplementary Information Table S6. For the titration (Hansen et al. 1991) and extrusion models, we derive analytical expressions for initiation mass (IM) sensitivity to DnaA expression in Supplementary Note 1. For Figure 2G/S6, we used published parameters (Berger & Wolde 2022 SI Table 2) with experiment growth conditions (μ = 1.54 h<sup>-1</sup>).

      The extrusion model's validation relies primarily on its ability to resolve paradoxical initiation events under dnaA shutdown (Fig 6C), a test where other models fail categorically. While the Berger titration-switch hybrid can fit steady-state IM trends (Fig S6A), it cannot reproduce post-shutdown dynamics without ad hoc modifications (Fig S6B). We acknowledge that comprehensive analysis of all model regimes exceeds this study's scope but provide full simulation code for independent verification: https://github.com/BaiYangBqdq/dynamics_of_biomass_DNA_coordination

      (4) Importantly, the main statement about tight correlations of peak volumes and average estimated initiation volume does not establish coincidence, and some of the claims by the authors are unclear in these respects (e.g., when they say "we resolve a 1:1 coupling between DnaA activity thresholds and replication initiation", the statement could be correct but is ambiguous). Crucially, the data rely on average initiation volumes (on which there seems to be an eternally open debate, also involving the authors), and the estimate procedure relies on assumptions that could lead to biases and uncertainties added to the population variability (in any case, error bars are not provided).

      We acknowledge the limitations of population-level inference and have refined our claims: "Replication initiation volume scales proportionally with peak DnaA activity volume with a slope of 1.0 (R<sub>2</sub>=0.98, Fig 7G), indicating predictive correspondence rather than absolute coincidence. While population-level  𝑉<sub>𝑖</sub> estimation cannot resolve single-cell stochasticity, the consistent 𝑉*: 𝑉<sub>𝑖</sub> relationship across 20 conditions suggest DnaA activity thresholds predict initiation timing within physiological error margins”. Future work will implement simultaneously DnaA activity and replication forks by using microfluidic single-cell tracking.

      (5) The delays observed by the authors (in both directions) between the peaks of DnaAactivity conditional averages with respect to volume and the average estimated initiation volumes are not incompatible with those observed dynamically by Iuliani and coworkers. The direct experiment to prove the authors' point would be to use a direct proxy of replication initiation, such as SeqA or DnaN, and monitor initiations and quantify DnaA activity peaks jointly, with dynamic measurements.

      We acknowledge the observed temporal deviations between DnaA activity peaks (𝑉*) and population-derived volumes at initiation ( 𝑉<sub>𝑖</sub>) in certain conditions, in line with the findings of Iuliani et al. This might be mechanistically consistent with the time required for orisome assembly or oriC sequestration. They do not contradict our core finding that initiation occurs at a defined DnaA activity threshold (slope=1.0, R<sub>2</sub>=0.98 in 𝑉*: 𝑉<sub>𝑖</sub> correlation).

      (6) While not being an expert, I had some doubt that the fact that the reporters are on plasmid (despite a normalization control that seems very sensible) might affect the measurements. Also, I did not understand how the authors validated the assumptions that the reporters are sensitive to DnaA-ATP specifically. It seems this assumption is validated by previous studies only.

      We employed a plasmid-based reporter system to circumvent the significant confounding effects of chromosomal position on promoter activity, as extensively documented by Pountain et al., where local genomic context (e.g., nucleoid occlusion, supercoiling gradients, and neighboring operons) introduces uncontrolled variability. By housing the P<sub>syn66</sub> test promoter and P<sub>con</sub> normalization control in identical low-copy pSC101 vectors (<8 copies/ cell, Peterson & Phillips, Plasmid 2008), we ensured they experience equivalent physical and biochemical environments. This ratiometric design, where DnaA activity is calculated, actively corrects for global fluctuations in RNA polymerase availability, nucleotide pools, and plasmid copy number. Critically, P<sub>syn66</sub>’s architecture emulates natural DnaA-responsive elements: its strong DnaAboxes report free DnaA concentration, while its weak box is preferentially bound by DnaA-ATP (Speck et al., EMBO journal 1999), mirroring the nucleotide-state sensitivity of oriC and the native dnaA promoter. This system was indispensable for our central finding, as it uniquely enabled the decoupling of DnaA activity oscillations from transcriptional feedback (Fig. 4F-H), an experiment fundamentally impossible with chromosomally integrated reporters due to autoregulatory interference.

      Overall Appraisal:

      In summary, this appears as a very interesting study, providing valuable data and a novel hypothesis, the extrusion model, open to future explorations. However, given several limitations, some of the claims appear overstated. Finally, the text contains some selfevaluations, such as "our findings redefine the paradigm for replication control", etc., that appear exaggerated.

      We thank the reviewer for highlighting the need for precise language in framing our conclusions. We have implemented the following substantive revisions throughout the manuscript to ensure claims align strictly with empirical evidence:

      (1) Changed "redefine the paradigm for replication control" into "advance the paradigm for replication control" (Introduction)

      (2) Changed "redefine bacterial cell cycle control" into "refine bacterial cell cycle control as a dynamic interplay..." (Discussion)

      (3) Removed the term "spatial" from the Discussion's description of DnaA-chromosome interactions (Discussion, first paragraph).

      (4) Changed "provides a blueprint" into "provides a valuable tool for dissecting spatial regulation..." (Discussion, final paragraph)

      (5) Scrutinized all superlatives (e.g., "critical feat" into "important capability"; "fundamental principle of cellular organization" into "potential organizational strategy")

      (6) Replaced the instances of "robust" with evidence-backed descriptors (e.g., "sensitive," "consistent")

      (7) We agree that the extrusion model requires further validation and have emphasized this in Discussion: "While H-NS perturbation supports extrusion mechanism, future work should identify the full extruder interactome and elucidate how metabolic signals modulate their activity" (final paragraph)

      This calibrated language more accurately represents our study as a conceptual advance with testable mechanisms, not a complete paradigm shift.

      Reviewer #2 (Public review):

      Summary:

      The authors show that in E. coli, the initiator protein DnaA oscillates post-translationally: its activity rises and peaks exactly when DNA replication begins, even if dnaA transcription is held constant. To explain this, they propose an "extrusion" mechanism in which nucleoidassociated proteins such as H-NS, whose amount grows with cell volume, dislodge DnaA from chromosomal binding sites; modelling and H-NS perturbations reproduce the observed drop in initiation mass and extra initiations seen after dnaA shut-down. Together, the data and model link biomass growth to replication timing through chromosome-driven, posttranslational control of DnaA, filling gaps left by classic titration and ATP/ADP-switch models.

      Strengths:

      (1) Introduces an "extrusion" model that adds a new post-translational layer to replication control and explains data unexplained by classic titration or ATP/ADP-switch frameworks.

      (2) A major asset of the study is that it bridges the longstanding gap between DnaA oscillations and DNA-replication initiation, providing direct single-cell evidence that pulses of DnaA activity peak exactly at the moment of initiation across multiple growth conditions and genetic perturbations.

      (3) A tunable dnaA strain and targeted H-NS manipulations shift initiation mass exactly as the model predicts, giving model-driven validation across growth conditions.

      (4) A purpose-built Psyn66 reporter combined with mRNA-FISH captures DnaA-activity pulses with cell-cycle resolution, providing direct, compelling data.

      We thank the reviewer for acknowledging the strengths of our study.

      Weaknesses:

      (1) What happens to the (C+D) period and initiation time as the dnaA mRNA level changes? This is not discussed in the text or figure and should be addressed.

      We thank the reviewer for this important observation. Our data demonstrate that increased dnaA mRNA levels induce two compensatory changes in cell cycle progression:

      (1) Earlier replication initiation, manifested as a reduced initiation mass: the initiation mass decreased from 5.6 to 2.6 (OD<sub>600</sub>·ml per 10<sup>10</sup> cells) as the relative dnaA mRNA level increased from 0.2 to 7.2 (normalized to the wild-type level) (Fig. 2F, red).

      (2) Prolonged C+D period: Increased by approximately 60% (from 1.05 to 1.66 hours, Fig. 2F blue).

      The complete quantitative relationship is now explicitly described in the Results section: “Concurrently, the initiation mass was reduced by 50%, and the period from initiation to division (C+D) was increased by ~60% (Fig. 2F)”

      (2) It is unclear what is meant by "relative dnaA mRNA level." Relative to what? Wild-type expression? Maximum expression? This should be explicitly defined.

      The relative dnaA mRNA level was obtained by normalizing to that in wild-type MG1655 cells grown in the same medium. To clarify this point, we have now marked the wild-type level in Fig. 1B, and a clear description of this has also been included in the figure caption.

      (3) It would be helpful to provide some intuition for why an increase in dnaA mRNA level leads to a decrease in initiation mass per ori and an increase in oriC copy number.

      Thank you for your valuable suggestion. Increased dnaA mRNA accelerates DnaA accumulation, causing cells to reach the initiation threshold at a smaller cell size (reducing initiation mass, Fig. 2F red). This earlier initiation increases oriC copies per cell at populational level (Fig. 2E). This mechanistic interpretation now appears in the Results: “As the DnaA expression level increases, DnaA activity reaches the initiation threshold earlier. Given that cell mass remained nearly unchanged, this earlier initiation led to an increase in population-averaged cellular oriC numbers (Fig. 2E).”

      (4) The titration and switch models do not explicitly include dnaA mRNA in the dynamics of DnaA protein. Yet, in Figure 2G, initiation mass is shown to decrease linearly with dnaA mRNA level in these models. How was dnaA mRNA level represented or approximated in these simulations?

      All models presented in this article omit explicit modeling of dnaA mRNA dynamics for simplicity. However, at steady state, the relative level of dnaA mRNA can be approximated by the relative expression rate of DnaA protein, as both reflect the expression level of DnaA. This detail is now clarified in the caption of Figure 2G.

      (5) Is Schaechter's law (i.e., exponential scaling of average cell size with growth rate) still valid under the different dnaA mRNA expression conditions tested?

      Schaechter's law describes the exponential scaling of average cell size with growth rate in bacteria. In our prior work (Zheng et al., Nature Microbiology 2020), where we demonstrated that Schaechter's law fails in slow-growth regimes. However, in current study, growth rate remained constant across different dnaA expression levels (Fig. 2C), and cell mass showed no significant change (Fig. 2D). Since Schaechter's law specifically addresses how cell size scales with growth rate, it does not apply here, as growth rate was invariant in our perturbations, which selectively alter replication initiation dynamics, not growth rate or size scaling.

      (6) The manuscript should explain more explicitly how the extrusion model implements posttranslational control of DnaA and, in particular, how this yields the nonlinear drop in relative initiation mass versus dnaA mRNA seen in Figure 6E. Please provide the governing equation that links total DnaA, the volume-dependent "extruder" pool, and the threshold of free DnaA at initiation, and show - briefly but quantitatively - how this equation produces the observed concave curve.

      The governing equations linking initiation mass and DnaA expression level is now provided in Supplementary Note S1 for both the titration and the extrusion model. In general, the dependence of initiation mass (𝑉<sub>𝐼</sub>) on dnaA expression level (𝛼<sub>𝐴</sub>) dependency takes an inverse 1 proportionality form: . In the extrusion model, the incorporated extruder protein is assumed to have similar synthesis dynamics as DnaA and can release DnaA from DnaA-box. After denoting the synthesis rate of the extruder as 𝛼<sub>𝐻</sub>, the combined effect of DnaA and the extruder on replication initiation can be briefly described as: . Then the additive contribution of 𝛼<sub>𝐻</sub> dampens the sensitivity of initiation mass to changes in 𝛼<sub>𝐴</sub>, resulting in a significantly flattened curve. As a result, the predicted 𝑉<sub>𝐼</sub> − 𝛼<sub>𝐴</sub> relationship has a concave shape in the semi-log plots.

      (7) Does this Extrusion model give well well-known adder per origin, i.e., initiation to initiation is an adder.

      Yes, the extrusion model can provide the initiation-to-initiation adder phenomenon, this information was provided in fig. S3C.

      (8) DnaA protein or activity is never measured; mRNA is treated as a linear proxy. Yet the authors' own narrative stresses post-translational (not transcriptional) control of DnaA. Without parallel immunoblots or activity readouts, it is impossible to know whether a sixfold mRNA increase truly yields a proportional rise in active DnaA.

      We acknowledge the reviewer's valid concern regarding the indirect nature of our DnaA activity measurements. While mRNA levels alone cannot resolve active DnaA dynamics, our approach integrates functional replication outcomes with a validated synthetic reporter to infer activity. Crucially, elevated dnaA mRNA causes demonstrable biological effects: earlier replication initiation (Fig. 2F) and increased oriC copies (Fig. 2E), directly confirming enhanced functional DnaA activity at the oriC locus. The P<sub>syn66</sub> reporter, engineered with DnaA-boxes mirroring oriC's architecture, provides orthogonal validation, showing progressive repression to dnaA induction (Fig. 3C). Our operational metric , bases on P<sub>syn66</sub> responds sensitively to DnaA-chromosome interactions within its characterized 8-fold dynamic range (Fig. 3C). Immunoblots would be inadequate here, as they cannot distinguish functionally critical pools: free versus chromosome-bound DnaA, or DnaA-ATP versus DnaAADP, precisely the post-translational states our study implicates in regulation. We therefore prioritize functional readouts (initiation timing) and the P<sub>syn66</sub> reporter, which probes the biologically active fraction relevant to replication control.

      (9) Figure 2 infers both initiation mass and oriC copy number from bulk measurements (OD<sub>600</sub> per cell and rifampicin-cephalexin run-out) instead of measuring them directly in single cells. Any DnaA-dependent changes in cell size, shape, or antibiotic permeability could skew these bulk proxies, so the plotted relationships may not accurately reflect true initiation events.

      We acknowledge the reviewer's valid methodological concern and clarify that while bulk measurements carry inherent limitations, our approach is grounded in established techniques with demonstrated reliability. Cell mass was inferred from OD600/cell, which correlates strongly with direct dry weight measurements and microscopic cell volumes across diverse growth conditions, as validated in our prior work (Zheng et al., Nature Microbiology 2020). Crucially, cell mass remained invariant across dnaA expression levels (Fig. 2D).

      Regarding oriC quantification, the rifampicin-cephalexin run-out assay is a wildly applied for replication initiation studies. Our data shows expected 2<sup>n</sup> oriC distributions without abnormal ploidy (as shown below). While single-cell methods offer superior resolution, our bulk approach provides accurate population-level trends.

      Author response image 1.

      Recommendations for the authors:

      Reviewing Editor Comments:

      The reviewers felt that the mathematical modeling was not adequately explained in the paper, and that this affected the readability of the manuscript. The authors are encouraged to elaborate on this aspect of the paper (in addition to strengthening other claims, if possible, per the reviewers' comments).

      We thank the editor and reviewers for their constructive feedback. We have comprehensively strengthened the mathematical modeling framework to enhance clarity and rigor.

      Reviewer #1 (Recommendations for the authors):

      The only revision I would do is a recalibration of the claims and a major effort to clarify the modeling part (including a detailed SI appendix), without necessarily performing additional work.

      To enhance mathematical modeling transparency, we have completed model description in the method section and a parameter table with literature-sourced values in Supplementary Information Table S6. Moreover, analytical derivations of initiation mass dependencies are performed and presented in the Supplementary Information Note S1.

      Of course, there are extra experiments (mentioned in the public review) that would help support some of the big claims, but that can be considered a different project.

      Thank you for your suggestion. This will be addressed in our future work.

      Minor suggestion: please put signposts or plot jointly to compare the maxima/minima in Figures 4D, E, G, and H.

      We added dashed lines in Figures 4D, and E, to synchronize visualization of DnaA activity peaks and transcriptional minima across panels, facilitating direct biological comparisons.

      Reviewer #2 (Recommendations for the authors):

      (1) Should define what DNA activity is.

      We have explicitly defined DnaA activity in the Introduction as “the capacity to initiate replication…” and noted that it is “governed by free DnaA concentration, DnaA-ATP/-ADP ratio, and orisome assembly competence”.

      (2) Word repetition - “...grown in in Luria-Bertani (LB) medium...”.

      Corrected.

      (3) Typographical error - “FISH ... was preformed" should be "performed”.

      Corrected.

      (4) The manuscript alternates between “ng ml<sup>-1</sup>” and “ng·ml<sup>-1</sup>”; choose one style and apply it uniformly.

      Standardized the units to ng·ml<sup>-1</sup> throughout.

      (5) Reference duplicates - Some citations appear twice in the bibliography (e.g., "Bintu et al., 2005a/b" and "Bintu et al., 2005b" listed again later).

      The studies by Bintu et al. (2005a, 2005b) represent separate works: 2005a details applications, and 2005b develops models.

    1. Author response:

      Response to Reviewer #1:

      We plan to extend the discussion section to discuss the clinical implications of this new function. We will note the algorithm's applicability to broader genetic counseling contexts beyond cancer risk assessment.

      Response to Reviewer #2:

      We will clarify the four points raised:

      (1) "Close-to-optimal" definition: We will explain that in multiple-mating cases, finding the global optimum is NP-hard (equivalent to the Weighted Feedback Vertex Set problem). We will clarify that our greedy algorithm provides practically efficient solutions suitable for clinical use, though without theoretical optimality guarantees.

      (2) Example clarity: We will improve Figure 1's caption to explain the cost calculations and note that with equal weights, both shown solutions are equivalent.

      (3) Non-optimal examples: We will describe scenarios where the greedy algorithm may not achieve the global optimum, particularly in multiple-mating cases with heterogeneous weights.

      (4) Warning message: The current version not provide a warning when the solution might be non-optimal. This may be added in the future to the function.

      We appreciate your feedback and suggestions to help improve the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer 1:

      Strengths:

      The innovation on the task alone is likely to be impactful for the field, extending recent continuous report (CPR) tasks to examine other aspects of perceptual decision-making and allowing more naturalistic readouts. One interesting and novel finding is the observation of dyadic convergence of confidence estimates even when the partner is incidental to the task performance, and that dyads tend to be more risk-seeking (indicating greater confidence) than when playing solo. The paper is well-written and clear.”

      We thank reviewer 1 for this encouraging evaluation. Below we address the identified weaknesses and recommendations.

      (1) Do we measure metacognitive confidence?

      One concern with the novel task is whether confidence is disambiguated from a tracking of stimulus strength or coherence. […] But in the context of an RDK task, one simple strategy here is to map eccentricity directly to (subjective) motion coherence - such that the joystick position at any moment in time is a vector with motion direction and strength. This would still be an interesting task - but could be solved without invoking metacognition or the need to estimate confidence in one's motion direction decision. […] what the subjects might be doing is tracking two features of the world - motion strength and direction. This possibility needs to be ruled out if the authors want to claim a mapping between eccentricity and decision confidence […].”

      We thank reviewer 1 for pointing out that the joystick tilt responses of our subjects could potentially be driven by stimulus coherence instead of metacognitive decision confidence. Below, we present four arguments to address this point of concern:

      (1.1) Similar physical coherence between high and low confidence states

      Nominal motion coherence is a discrete value, but the random noisiness in the stimulus causes the actual frame-by-frame coherence to be distributed around this nominal value. Because of this, subjects might scale their joystick tilt report according to the coherence fluctuations around the nominal value. To check if this was the case, we use a median split to separate stimulus states into states with large versus small joystick tilt, individually for each nominal coherence. For each stimulus state, we extracted the actual instantaneous (frame-to-frame) motion coherence, which is based on the individual movements of dots in the stimulus patch between two frames, recorded in our data files.

      First, we compared the motion coherence between stimulus states with large versus small joystick tilt. For each stimulus state, we calculated average instantaneous motion coherence, and analyzed the difference of the medians for the large versus small tilt distributions for each subject and each coherence level. The resulting histograms show the distribution of differences across all 38 subjects for each nominal coherence, and are, except for the coherence of 22%, not significantly different from zero across subjects (Author response image 1). For the 22% coherence condition, the difference amounts to 0.19% – a very small, non-perceptible difference. Thus, we do no find systematic differences between the average motion coherence in states with high versus low joystick tilt.

      Author response image 1.

      Histograms of within-subject difference between medians of average coherence distributions with large and small joystick tilt for all subjects. Coherence is color-coded (cyan – 0%, magenta – 98%). On top, the title of each panel illustrates the number of significant differences (Ranksum test in each subject) without correction for multiple comparisons (see Author response table 1 below). In the second row of the title, we show the result of the population t-test against zero. Only 22% coherence shows a significant bias. Positive values indicate higher average coherence for large joystick tilt.  

      Author response table 1.

      List of all individual significantly different coherence distributions between high and low tilt states, without correction for multiple comparisons. Median differences do not show a consistent bias (i.e. positive values) that would indicate higher average coherence for the large tilts.

      (1.2) Short-term stimulus fluctuations have no effect

      […] But to fully characterise the task behaviour it also seems important to ask how and whether fluctuations in motion energy (assuming that the RDK frames were recorded) during a steady state phase are affecting continuous reporting of direction and eccentricity, prior to asking how social information is incorporated into subjects' behaviour.

      In addition to the analysis of stimulus coherence and tilt averaged across each stimulus state (1.1), we analyzed moment-to-moment relationship between instantaneous coherence and ongoing reports of accuracy and tilt. Below, we provide evidence that short-term fluctuations in the instantaneous coherence (i.e. the motion energy of the stimulus) do not result in correlated changes in joystick responses, neither for tilt nor accuracy. For each continuous stimulus state, we calculated cross-correlation functions between the instantaneous coherence, tilt and accuracy, and then averaged the cross-correlation across all states of the same nominal coherence, and then across subjects. The resulting average cross-correlation functions are essentially flat. This further supports our interpretation that the joystick reports do not reflect short-term fluctuations of motion energy.

      Author response image 2.

      Cross-correlation between the length of the resultant vector with joystick accuracy (left) and tilt (right). Coherence is color-coded. Shaded background illustrates 95% confidence intervals.

      (1.3) Joystick tilt changes over time despite stable average stimulus coherence

      If perceptual confidence is derived from evidence integration, we should see changes over time even when the stimulus is stable. Here, we have analyzed the average slope of the joystick tilt as a function of time within each stimulus state for each subject and each coherence, to verify if our participants tilted their joystick more with additional evidence. This is illustrated with a violin plot below (Author response image 3). The linear slopes of the joystick tilt progression over the course of stimulus states are different between coherence levels. High coherence causes more tilt over time, resulting in positive slopes for most subjects. In contrast, low/no coherence results mostly in flat or negative slopes. This tilt progression over time indicates that low coherence results in lower confidence, as subjects do not wager more with weak evidence. In contrast, high coherence causes subjects to exhibit more confidence, indicated by positive slope of the joystick tilt.

      Author response image 3.

      Violin plots showing the fitted slopes of the joystick tilt time course in the last 200 samples (1667 ms) leading up to a next stimulus direction (cf. Figure 2D). Positive values signify an increase in joystick tilt over time. Each dot shows the average slope for one subject. Coherence is color-coded. The dashed line at zero indicates unchanged joystick tilt over the analyzed time window.

      (1.4) Cross-correlation between response accuracy and joystick tilt

      Similar to 1.2 above, we have cross-correlated the frame-by-frame changes of joystick accuracy and tilt for each individual stimulus state and each subject. Across subjects, changes in tilt occur later than changes in accuracy, indicating that changes in the quality of the report are followed by changes in the size of the wager. Given that this process is not driven by short-term changes in the motion energy of the stimulus (see 1.2 above), we interpret this as additional evidence for a metacognitive assessment of the quality of the behavioral report (i.e. accuracy) reflected in the size of the wager (our measure for confidence). (See Figure 2E).

      (2) Peri-decision wagering is different to post-decision wagering

      […] One route to doing this would be to ask whether the eccentricity reports show statistical signatures of confidence that have been established for more classical punctate tasks. Here a key move has been to identify qualitative patterns in the frame of reference of choice accuracy - with confidence scaling positively with stimulus strength for correct decisions, and negatively with stimulus strength for incorrect decisions (the so-called X-pattern, for instance Sanders et al. 2016 Neuron […].

      We thank reviewer 1 for the constructive feedback. Our behavioral data do not show similar signatures to the previously reported post-decision confidence expression (Desender et al., 2021; Sanders et al., 2016). The previously described patterns show, first of all, that confidence for the incorrect type1 decisions diverges from the correct type1 decisions, declining with stimulus strength (e.g. coherence), as compared to increase for correct decisions. In our task, there is a graded accuracy and (putative) confidence expression, but there are no correct or incorrect decisions – instead, there are hits and misses of the reward targets presented at nominal directions. Instead of a decline for misses, we observe an equally positive scaling with coherence for the confidence, both for hits and misses (Author response image 4A). This is because in our peri-decision wagering task, the expression of confidence causally determines the binary hit or miss outcome. The outcome in our task is a function of the two-dimensional joystick response: higher tilt (confidence) requires a more accurate response to successfully hit a target. Thus, a subject can display a high (but not high enough) level of accuracy and confidence but still remain unsuccessful. If we instead median-split the confidence reports by high and low accuracy (Author response image 4C), we observe a slight separation, especially for higher coherences, but still no clear different in slopes.

      We do observe the other two dynamic signatures of confidence (Desender et al., 2021): signature 2 – monotonically increasing accuracy as a function of confidence (Author response image 4), and signature 3 – steeper type 1 psychometric performance (accuracy) for high versus low confidence (Author response image 4D).

      Author response image 4.

      Confidence (i.e., joystick tilt, left column) and accuracy reports (right column) for different stimulus coherence, sorted by discrete outcome (hit versus miss, upper row) and the complementary joystick dimension (lower row, based on median split).

      Author response image 5.

      Accuracy reports correlate positively with confidence reports. For each stimulus state, we averaged the joystick response in the time window between 500 ms (60 samples) after a direction change until the first reward target appearance. If there was no target, we took all samples until the next RDP direction change into account. This corresponds to data snippets averaged in Figure 2D. Thus, for each stimulus state, we extracted a single value for joystick accuracy and for tilt (confidence). Subsequently, we fitted a linear regression to the accuracy-confidence scatter within each subject and within each coherence level. The plot above shows the average linear regression between accuracy and confidence across all subjects (i.e., the slopes and intercepts were averaged across n=38 subjects). Coherence is color-coded.

      (3)  Additional analyses regarding the continuous nature of our data

      I was surprised not to see more analysis of the continuous report data as a function of (lagged) task variables. […]

      Reviewer 1 requested more analyses regarding the continuous nature of our data. We agree that this is a useful addition to our paper, and thank reviewer 1 for this suggestion. To address this point, we revised main Figure 2 and provided additional panels. Panel D illustrates the continuous ramp-up of both accuracy and tilt (confidence) for high coherence levels, suggesting ongoing evidence integration and meta-cognitive assessment. Panel E shows the cross-correlation between frame-by-frame changes in accuracy and tilt (see 1.4 above). Here, we demonstrate that changes in the accuracy precede changes in joystick tilt, characterizing the continuous nature of the perceptual decision-making process.

      (4) Explicit motivation regarding continuous social experiments

      This paper is innovating on a lot of fronts at once - developing a new CPR task for metacognition, and asking exploratory questions about how a social setting influences performance on this novel task. However, the rationale for this combination was not made explicit. Is the social manipulation there to help validate the new task as a measure of confidence as dissociated from other perceptual variables? (see query 1 below). Or is the claim that the social influence can only be properly measured in the naturalistic CPR task, and not in a more established metacognition task?

      Our rationale for the combination of real-time decision making and social settings was twofold:

      i. Primates, including humans, are social species. Naturally, most behavior is centered around a social context and continuously unfolds in real-time. We wanted to showcase a paradigm in which distinct aspects of continuous perceptual decision-making could be assessed over time in individual and social environments.

      ii. Human behavior is susceptible to what others think and do. We wanted to demonstrate that the sheer presence of a co-acting social partner affects continuous decision-making, and quantify the extent and direction of social modulation.

      We agree that the motivation for combining the new task and this specific type of social co-action should be more clear. We have clarified this aspect in the Introduction, line 92-109. In brief, the continuous, free-flowing nature of the CPR task and real-time availability of social information made this design a very suitable paradigm for assessing unconstrained social influences. We see this study as the first step into disentangling the neural basis of social modulation in primates. See also the response to reviewer 2, point 2, below.

      (5) Response to minor points

      (5.1)  Clarification on behavioral modulation patterns

      Lines 295-298, isn't it guaranteed to observe these three behavioral patterns (both participants improving, both getting worse, only one improving while the other gets worse) even in random data?

      The reviewer is correct. We now simply illustrate these possibilities in Figure 4B and how these patterns could lead to divergence or convergence between the participants (see also line 282). Unlike random data, our results predominantly demonstrate convergence.

      (5.2) Clarification on AUC distributions

      Lines 703-707, it wasn't clear what the AUC values referred to here (also in Figure 3) - what are the distributions that are being compared? I think part of the confusion here comes from AUC being mentioned earlier in the paper as a measure of metacognitive sensitivity (correct vs. incorrect trial distributions), whereas my impression here is that here AUC is being used to investigate differences in variables (e.g., confidence) between experimental conditions.

      We apologize for the confusion. Indeed, the AUC analysis was used for the two purposes:

      (i) To assess the metacognitive sensitivity (line 175, Supplementary Figure 2).

      (ii) To assess the social modulation of accuracy and confidence (starting at line 232, Figures 3-6). 

      We now introduce the second AUC approach for assessing social modulation, and the underlying distributions of accuracy and confidence derived from each stimulus state, separately in each subject, in line 232.

      (5.3) Clarification of potential ceiling effects

      Could the findings of the worse solo player benefitting more than the better solo player (Figure 4c) be partly due to a compressive ceiling effect - e.g., there is less room to move up the psychometric function for the higher-scoring player?

      We thank the reviewer for this insight. First, even better performing participants were not at ceiling most of the times, even at the highest coherence (cf. Figure 2 and Supplementary Figure 3C). To test for the potential ceiling effect in the better solo players, we correlated their social modulation (expressed as AUC as in Figure 4) to the solo performance. There was no significant negative correlation for the accuracy (p > 0.063), but there was a negative correlation for the confidence (r = - 0.39, p = 0.0058), indicating that indeed low performing “better players in a dyad” showed more positive social modulation. We note however that this correlation was driven mainly by few such initially low performing “better” players, who mostly belonged to the dyads where both participants improved in confidence (green dots, Figure 4B), and that even the highest solo average confidence was at ceiling (<0.95). To conclude, the asymmetric social modulation effect we observe is mainly due to the better players declining (orange and red dots, Figure 4B), rather than due to both players improving but the better player improving less (green dots, Figure 4B).

      Reviewer 2:

      Strengths:

      There are many things to like about this paper. The visual psychophysics has been undertaken with much expertise and care to detail. The reporting is meticulous and the coverage of the recent previous literature is reasonable. The research question is novel.

      We thank reviewer 2 for this positive evaluation. Below we address the identified weaknesses and recommendations.

      (1) Streamlining the text to make the paper easier to read

      The paper is difficult to read. It is very densely written, with little to distinguish between what is a key message and what is an auxiliary side note. The Figures are often packed with sometimes over 10 panels and very long captions that stick to the descriptive details but avoid clarity. There is much that could be shifted to supplementary material for the reader to get to the main points.

      We thank reviewer 2 for the honest assessment that our article was difficult to read and understand, and for providing specific examples of confusion. We substantially improved the clarity:

      We added a Glossary that defines key terms, including Accuracy and Hit rate. 

      We replaced the confusing term “eccentricity” with joystick “tilt”.

      We simplified Figures 3 and 5, moving some panels into supplementary figures.

      We substantially redesigned and simplified our main Figure 4, displaying the data in a more straightforward, less convoluted way, and removing several panels. This change was accompanied by corresponding changes in the text (section starting at line 277).

      More generally, we shortened the Introduction, substantially revised the Results and the figure legends, and streamlined the Discussion.

      (2) Dyadic co-action vs joint dyadic decision making

      A third and very important one is what the word "dyadic" refers to in the paper. The subjects do not make any joint decisions. However, the authors calculate some "dyadic score" to measure if the group has been able to do better than individuals. So the word dyadic sometimes refers to some "nominal" group. In other places, dyadic refers to the social experimental condition. For example, we see in Figure 3c that AUC is compared for solo vs dyadic conditions. This is confusing.

      […] my key criticism is that the paper makes strong points about collective decision-making and compares its own findings with many papers in that field when, in fact, the experiments do not involve any collective decision-making. The subjects are not incentivized to do better as a group either. […]

      The reviewer is correct to highlight these important aspects. We did, in fact, not investigate a situation where two players had to reach a joint decision with interdependent payoff and there was no incentive to collaborate or even incorporate the information provided by the other player. To make the meaning of “dyadic” in our context more explicit, we have clarified the nature of the co-action and independent payoff (e.g. lines 107, 211, 482, 755 - Glossary), and used the term “nominal combined score” (line 224) and “nominal “average accuracy” within a dyad” (line 439).

      Concerning the key point about embedding our findings into the literature on collective decision-making, we would like to clarify our motivation. Outside of the recent study by Pescetelli and Yeung, 2022, we are not aware of any perceptual decision-making studies that investigated co-action without any explicit joint task. So naturally, we were stimulated by the literature on collective decisions, and felt it is appropriate to compare our findings to the principles derived from this exciting field.  Besides developing continuous – in time and in “space” (direction) – peri-decision wagering CPR game, the social co-action context is the main novel contribution of our work. Although it is possible to formulate cooperative or competitive contexts for the CPR, we leveraged the free-flowing continuous nature of the task that makes it most readily amendable to study spontaneously emerging social information integration.

      We now more explicitly emphasize that most prior work has been done using the joint decision tasks, in contrast to the co-action we study here, in Introduction and Discussion.

      (3) Addition of relevant literature to Discussion

      […] To see why this matters, look at Lorenz et al PNAS (https://www.pnas.org/doi/10.1073/pnas.1008636108) and the subsequent commentary that followed it from Farrell (https://www.pnas.org/doi/full/10.1073/pnas.1109947108). The original paper argued that social influence caused herding which impaired the wisdom of crowds. Farrell's reanalysis of the paper's own data showed that social influence and herding benefited the individuals at the expense of the crowd demonstrating a form of tradeoff between individual and joint payoff. It is naive to think that by exposing the subjects to social information, we should, naturally, expect them to strive to achieve better performance as a group.

      Another paper that is relevant to the relationship between the better and worse performing members of the dyad is Mahmoodi et al PNAS 2015 (https://www.pnas.org/doi/10.1073/pnas.1421692112). Here too the authors demonstrate that two people interacting with one another do not "bother" figuring out each others' competence and operate under "equality assumption". Thus, the lesser competent member turns out to be overconfident, and the more competent one is underconfident. The relevance of this paper is that it manages to explain patterns very similar to Schneider et al by making a much simpler "equality bias" assumption.

      We thank reviewer 2 for pointing out these highly relevant references, which we have now integrated in the Discussion (lines 430 and 467). Regarding the debate of Lorenz et al and Farell, although it is about very different type of tasks – single-shot factual knowledge estimation, it is very illuminating for understanding the differing perspectives on individual vs group benefit. We fully agree that it is naïve to assume that during independent co-action in our highly demanding task participants would strive to achieve better performance as a group – if anything, we expected less normative and more informational, reliability-driven effects as a way to cope with task demands.

      Mahmoodi et al. is a particularly pertinent and elegant study, and the equality bias they demonstrate may indeed underlie the effects we see. We admit that we did not know this paper at the time of our initial writing, but it is encouraging to see the convergence [pun intended] despite task and analysis differences. As highlighted above (2), our novel contributions remain that we observe mutual alignment, or convergence, in real-time without explicitly formulated collective decision task and associated social pressure, and that we separate asymmetric social effects on accuracy and confidence.

      Other reviewer-independent changes:

      Additional information: Angular error in Figure 2

      In panel A of the main Figure 2, we have added the angular error of the solo reports (blue dashed line) to give readers an impression about the average deviation of subjects’ joystick direction from the nominal stimulus direction. We have pointed out that angular error is the basis for accuracy calculation.

      Data alignment

      In the previous version of the manuscript, we have presented data with different alignments: Accuracy values were aligned to the appearance of the first target in a stimulus state (target-alignment) to avoid the predictive influence of target location within the remaining stimulus state, while the joystick tilt was extracted at the end of each stimulus state (state-alignment) to allow subjects more time to make a deliberate, confidence-guided report (Methods). We realized that this is confusing as it compares the social modulation of the two response dimensions at different points in time. In the revision, we use state-aligned data in most figures and analyses and clearly indicate which alignment type has been used. We kept the target-alignment for the illustration of the angular error in the solo-behavior (Figure 2). Specifically, this has only changed the reporting on accuracy statistics. None of the results have changed fundamentally, but the social modulation on accuracy became even stronger in state-aligned data.

      In summary, we hope that these revisions have resulted in an easier-to-understand and convincing article, with clear terminology and concise and important takeaway messages.

      We thank both reviewers and the editors again for their time and effort, and look forward to the reevaluation of our work.

      References

      Desender K, Donner TH, Verguts T. 2021. Dynamic expressions of confidence within an evidence accumulation framework. Cognition 207:104522. doi:10.1016/j.cognition.2020.104522

      Pescetelli N, Yeung N. 2022. Benefits of spontaneous confidence alignment between dyad members. Collective Intelligence 1. doi:10.1177/26339137221126915

      Sanders JI, Hangya B, Kepecs A. 2016. Signatures of a Statistical Computation in the Human Sense of Confidence. Neuron 90:499–506. doi:10.1016/j.neuron.2016.03.025

    1. Author Response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public review):

      The scale bar for fly and ovary images should be included in Figures 9, 10, and 12.

      We agree with this comment and apologize for the oversight. We have now modified Figures 9, 10, and 12 to include the scale bars for the ovary images. The fly images were acquired using a stereo microscope where scale bar calculation was not possible. However, all images were acquired at the same magnification for consistency.

      Reviewer #2 (Public review):

      The authors state in the abstract that a phylogenetic-driven approach led to their identification of Gyc76C as a candidate receptor for ITPa. However, there are weaknesses in this claim. Firstly, because the hypothesis that Gyc76C may be involved in mediating effects of ITPa was first proposed ten years ago by Nagai et al. 2014, so this surely was the primary basis for investigating this protein. Nevertheless, investigating if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins is a valuable approach to addressing this issue. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. Thus, are there protostome species in which both ITP-type and Gyc76C-type genes/proteins have been lost? Furthermore, are there any protostome species in which an ITP-type gene is present but an Gyc76C-type gene is absent or vice versa? If there are protostome species in which an ITP-type gene is present but an Gyc76C-type gene is absent or vice versa, this would be evidence against Gyc76C being a receptor for ITP-type peptides, at least in some species. Thus, a more detailed analysis of protostomes is needed to investigate if there really is correspondence in the phylogenetic distribution of Gyc76C-type and ITP-type genes at the species level.

      We thank the reviewer for their comment which is similar to the one in reference to the original submission and that we believe, respectfully, is partially inaccurate.

      The abstract of our revised manuscript states the following: “Using a phylogenetic-driven approach, an ex vivo secretion assay and a heterologous mammalian cell-based assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as a bona fide Drosophila ITPa receptor.” This statement is correct as we used a combination of these techniques to show that ITPa mediates its effects via Gyc76C. In addition, our anatomical expression data, ITPa overexpression, and knockdown experiments for both ITP and Gyc76C all indicate that ITPa signals via Gyc76C. Thus, we do not place emphasis solely on the phylogenetic analysis to identify the receptor as the reviewer’s statement  implies: “The authors state in the abstract that a phylogenetic-driven approach led to their identification of Gyc76C as a candidate receptor for ITPa.”. Additionally, we do not feel that the abstract is the appropriate place to discuss previous work by Nagai et al. 2014; however, we have discussed it in the main body of the text.

      As rightly pointed out by the reviewer, the involvement of Gyc76C in ITPa signaling was proposed by Nagai et al. 2014. While this previous study implicated Gyc76C in the ITP signaling pathway, how they narrowed down Gyc76C as a candidate was not reported. Further, Nagai et al. 2014 had not conducted a phylogenetic analysis of guanylate cyclase receptors so it was not clear if other receptors could also be involved. Therefore, our phylogenetic approach (albeit not at the high resolution suggested by the reviewer) was necessary and sufficient to ensure that we identified all suitable candidate guanylate cyclase receptors. Indeed, our phylogenetic analysis also identified Gyc32E as another candidate ITP receptor. However, we did not pursue this receptor further as our expression data (Figure 4 Supplement 2) indicated that Gyc32E is not expressed in osmoregulatory tissues and therefore likely does not mediate the osmotic effects of ITPa. We therefore provided the following explanation in the results for focusing on Gyc76C: “Thus, the lack of Gyc32E expression in osmoregulatory tissues, coupled with the fact that Gyc76C was previously implicated in the ITP signaling pathway in Bombyx (Nagai et al., 2014), prompted us to focus on Gyc76C further.” Separately, we have added the following limitation of our study in the discussion: “In addition, it is worth pointing out that our phylogenetic analysis identified a second orphan mGC, Gyc32E, as a putative ITPa receptor. Although tissue expression analysis suggests that this receptor is not suited to mediate the osmoregulatory effects of ITPa, we cannot completely rule out the possibility that it also contributes to the metabolic phenotypes of ITPa via actions on IPCs and/or the fat body.” Hence, we have acknowledged that the findings of Nagai et al. 2014 played a part in our decision to focus on Gyc76C. However, it would be incorrect to ignore our phylogenetic analysis and expression data on Gyc32E and state that the Nagai et al. 2014 results were the main reason for focusing on Gyc76C.

      Lastly, the reviewer recommended performing a fine-grained species level comparison of ITP and Gyc76C genes across protostomes. We are unsure of the utility of this analysis for the present study given that we have now shown that ITPa can activate Gyc76C using both an ex vivo and a heterologous assay, the latter being the gold standard in GPCR and guanylate cyclase discovery (see Huang et al 2025 https://doi.org/10.1073/pnas.2420966122; Beets et al 2023 https://doi.org/10.1016/j.celrep.2023.113058); Chang et al 2009 https://doi.org/10.1073/pnas.0812593106. While this species-level comparison will certainly be useful in the context of ITP-Gyc76C evolution, it will not alter the conclusions of the present study – ITPa acts via Gyc76C in Drosophila. Secondly, this kind of analysis is extremely challenging and difficult to interpret for two reasons: 1) Our search of metazoan proteomes retrieved 659 ITP-like sequences and 297205 membrane guanylate cyclase receptors. In order to determine which species that possess ITP also have Gyc76C, we would first need to conduct a phylogenetic analysis using 297,205 sequences to identify the clade containing Gyc76C-like receptors. We lack the high performance computing infrastructure to perform analysis with so many sequences. Clustering analysis using CLANS (https://toolkit.tuebingen.mpg.de/tools/clans) could also be performed instead of a phylogenetic analysis. However, there is a limit of 10,000 sequences for this webserver. Hence, it is not trivial to perform an unbiased comprehensive analysis. 2) Even if we were able to conduct the above analysis, it would be difficult to interpret the findings. Firstly, absence of a gene in a genome/proteome is hard to prove especially when many/most of the protostomian datasets are not as high-quality as those of model systems (e.g. Drosophila melanogaster and Caenorhabditis elegans). Secondly, based on previous findings in Bombyx mori (Nagai et al. 2014 https://doi.org/10.1074/jbc.m114.590646 and Nagai et al. 2016 https://doi.org/10.1371/journal.pone.0156501) and Drosophila (Xu et al. 2023 https://doi.org/10.1038/s41586-023-06833-8 and our study) it is evident that different products of the ITP gene (ITPa and ITPL) could signal via different receptor types depending on the species. Hence, we would need to explore the presence of several genes (ITP, tachykinin, pyrokinin, tachykinin receptor, pyrokinin receptor, CG30340 orphan receptor and Gyc76C) to fully understand which components of these diverse signaling systems are present in a given species to decipher the potential for cross-talk. While such investigations are of interest in future work, we believe that these analyses are well beyond the scope of the present study.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):  

      Summary:  

      In Drosophila melanogaster, ITP has functions on feeding, drinking, metabolism, excretion, and circadian rhythm. In the current study, the authors characterized and compared the expression of all three ITP isoforms (ITPa and ITPL1&2) in the CNS and peripheral tissues of Drosophila. An important finding is that they functionally characterized and identified Gyc76C as an ITPa receptor in Drosophila using both in vitro and in vivo approaches. In vitro, the authors nicely confirmed that the inhibitory function of recombinant Drosophila ITPa on MT secretion is Gyc76C-dependent (knockdown Gyc76C specifically in two types of cells abolished the anti-diuretic action of Drosophila ITPa on renal tubules). They also used a combination of multiple approaches to investigate the roles of ITPa and Gyc76C on osmotic and metabolic homeostasis modulation in vivo. They revealed that ITPa signaling to renal tubules and fat body modulates osmotic and metabolic homeostasis via Gyc76C.  

      Furthermore, they tried to identify the upstream and downstream of ITP neurons in the nervous system by using connectomics and single-cell transcriptomic analysis. I found this interesting manuscript to be well-written and described. The findings in this study are valuable to help understand how ITP signals work on systemic homeostasis regulation. Both anatomical and single-cell transcriptome analysis here should be useful to many in the field. 

      We thank this reviewer for the positive and thorough assessment of our manuscript.  

      Strengths:  

      The question (what receptors of ITPa in Drosophila) that this study tries to address is important. The authors ruled out the Bombyx ITPa receptor orthologs as potential candidates. They identified a novel ITP receptor by using phylogenetic, anatomical analysis, and both in vitro and in vivo approaches. 

      The authors exhibited detailed anatomical data of both ITP isoforms and Gyc76C (in the main and supplementary figures), which helped audiences understand the expression of the neurons studied in the manuscript.  

      They also performed connectomes and single-cell transcriptomics analysis to study the synaptic and peptidergic connectivity of ITP-expressing neurons. This provided more information for better understanding and further study on systemic homeostasis modulation.  

      Weaknesses:  

      In the discussion section, the authors raised the limitations of the current study, which I mostly agree with, such as the lack of verification of direct binding between ITPa and Gyc76C, even though they provided different data to support that ITPa-Gyc76C signaling pathway regulates systemic homeostasis in adult flies. 

      We now provide evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Reviewer #2 (Public Review):  

      Summary:  

      The physiology and behaviour of animals are regulated by a huge variety of neuropeptide signalling systems. In this paper, the authors focus on the neuropeptide ion transport peptide (ITP), which was first identified and named on account of its effects on the locust hindgut (Audsley et al. 1992). Using Drosophila as an experimental model, the authors have mapped the expression of three different isoforms of ITP (Figures 1, S1, and S2), all of which are encoded by the same gene.  

      The authors then investigated candidate receptors for isoforms of ITP. Firstly, Drosophila orthologs of G-protein coupled receptors (GPCRs) that have been reported to act as receptors for ITPa or ITPL in the insect Bombyx mori were investigated. Importantly, the authors report that ITPa does not act as a ligand for the GPCRs TkR99D and PK2-R1 (Figure S3). Therefore, the authors investigated other putative receptors for ITPs. Informed by a previously reported finding that ITP-type peptides cause an increase in cGMP levels in cells/tissues (Dircksen, 2009, Nagai et al., 2014), the authors investigated guanylyl cyclases as candidate receptors for ITPs. In particular, the authors suggest that Gyc76C may act as an ITP receptor in Drosophila.  

      Evidence that Gyc76C may be involved in mediating effects of ITP in Bombyx was first reported by Nagai et al. (2014) and here the authors present further evidence, based on a proposed concordance in the phylogenetic distribution ITP-type neuropeptides and Gyc76C (Figure 2). Having performed detailed mapping of the expression of Gyc76C in Drosophila (Figures 3, S4, S5, S6), the authors then investigated if Gyc76C knockdown affects the bioactivity of ITPa in Drosophila. The inhibitory effect of ITPa on leucokinin- and diuretic hormone-31-stimulated fluid secretion from Malpighian tubules was found to be abolished when expression of Gyc76C was knocked down in stellate cells and principal cells, respectively (Figure 4). However, as discussed below, this does not provide proof that Gyc76C directly mediates the effect of ITPa by acting as its receptor. The effect of Gyc76C knockdown on the action of ITPa could be an indirect consequence of an alteration in cGMP signalling.  

      Having investigated the proposed mechanism of ITPa in Drosophila, the authors then investigated its physiological roles at a systemic level. In Figure 5 the authors present evidence that ITPa is released during desiccation and accordingly, overexpression of ITPa increases survival when animals are subjected to desiccation. Furthermore, knockdown of Gyc76C in stellate or principal cells of Malphigian tubules decreases survival when animals are subject to desiccation. However, whilst this is correlative, it does not prove that Gyc76C mediates the effects of ITPa. The authors investigated the effects of knockdown of Gyc76C in stellate or principal cells of Malphigian tubules on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. It is not clear, however, why animals overexpressing ITPa were also not tested for its effect on i). survival when animals are subject to salt stress and ii). time taken to recover from of chill coma. In Figures 6 and S8, the authors show the effects of Gyc76C knockdown in the female fat body on metabolism, feeding-associated behaviours and locomotor activity, which are interesting. Furthermore, the relevance of the phenotypes observed to potential in vivo actions of ITPa is explored in Figure 7. The authors conclude that "increased ITPa signaling results in phenotypes that largely mirror those seen following Gyc76C knockdown in the fat body, providing further support that ITPa mediates its effects via Gyc76C." Use of the term "largely mirror" seems inappropriate here because there are opposing effects- e.g. decreased starvation resistance in Figure 6A versus increased starvation resistance in Figure 7A. Furthermore, as discussed above, the results of these experiments do not prove that the effects of ITPa are mediated by Gyc76C because the effects reported here could be correlative, rather than causative. 

      We thank this reviewer for an extremely thorough and fair assessment of our manuscript. 

      We have now performed salt stress tolerance and chill coma recovery assays using flies over-expressing ITPa (new Figure 10 Supplement 1).

      We agree that the use of the term “largely mirrors” to describe the effects of ITPa overexpression and Gyc76C knockdown is not appropriate and have changed this sentence. We also agree that the experiments did not provide direct evidence that the effects of ITPa are mediated by Gyc76C. To address this, we now provide evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Lastly, in Figures 8, S9, and S10 the authors analyse publicly available connectomic data and single-cell transcriptomic data to identify putative inputs and outputs of ITPa-expressing neurons. These data are a valuable addition to our knowledge ITPa expressing neurons; but they do not address the core hypothesis of this paper - namely that Gyc76C acts as an ITPa receptor.  

      The goal of our study was to comprehensively characterize an anti-diuretic system in Drosophila. Hence, in addition to identifying the receptor via which ITPa exerts its effects, we also wanted to understand how ITPa-producing neurons are regulated. Connectomic and single-cell transcriptomic analyses are highly appropriate for this purpose. We have now updated the connectomic analyses using an improved connectome dataset that was released during the revision of this manuscript. Our new analysis shows that lNSC<sup>ITP</sup> are connected to other endocrine cells that produce other homeostatic hormones (new Figure 13F). We also identify a pathway through which other ITP-producing neurons (LNd<sup>ITP</sup>) receive hygrosensory inputs to regulate water seeking behavior (new Figure 13E). Moreover, we now include results which showcase that ITPa-producing neurons (l-NSC<sup>ITP</sup>) are active (new Figure 8A and B) and release ITPa under desiccation. Together with other analyses, these data provide a comprehensive outlook on the when, what and how ITPa regulates systemic homeostasis.  

      Strengths:  

      (1) The main strengths of this paper are i) the detailed analysis of the expression and actions of ITP and the phenotypic consequences of overexpression of ITPa in Drosophila. ii). the detailed analysis of the expression of Gyc76C and the phenotypic consequences of knockdown of Gyc76C expression in Drosophila.  

      (2) Furthermore, the paper is generally well-written and the figures are of good quality. 

      We thank this reviewer for highlighting the strengths of this manuscript.

      Weaknesses:  

      (1) The main weakness of this paper is that the data obtained do not prove that Gyc76C acts as a receptor for ITPa. Therefore, the following statement in the abstract is premature: "Using a phylogenetic-driven approach and the ex vivo secretion assay, we identified and functionally characterized Gyc76C, a membrane guanylate cyclase, as an elusive Drosophila ITPa receptor." Further experimental studies are needed to determine if Gyc76C acts as a receptor for ITPa. In the section of the paper headed "Limitations of the study", the authors recognise this weakness. They state "While our phylogenetic analysis, anatomical mapping, and ex vivo and in vivo functional studies all indicate that Gyc76C functions as an ITPa receptor in Drosophila, we were unable to verify that ITPa directly binds to Gyc76C. This was largely due to the lack of a robust and sensitive reporter system to monitor mGC activation." It is not clear what the authors mean by "the lack of a robust and sensitive reporter system to monitor mGC activation". The discovery of mGCs as receptors for ANP in mammals was dependent on the use of assays that measure GC activity in cells (e.g. by measuring cGMP levels in cells). Furthermore, more recently cGMP reporters have been developed. The use of such assays is needed here to investigate directly whether Gyc76C acts as a receptor for ITPa. In summary, insufficient evidence has been obtained to conclude that Gyc76C acts as a receptor for ITPa. Therefore, I think there are two ways forward, either:  

      (a) The authors obtain additional biochemical evidence that ITPa is a ligand for Gyc76C.  

      or  

      (b) The authors substantially revise the conclusions of the paper (in the title, abstract, and throughout the paper) to state that Gyc76C MAY act as a receptor for ITPa, but that additional experiments are needed to prove this. 

      We thank the reviewer for this comment and agree with the two options they propose. We had previously tried different a cGMP reporter (Promega GloSensor cGMP assay) to monitor activation of Gyc76C by ITPa in a heterologous system. Unfortunately, we were not successful in monitoring Gyc76C activation by ITPa. We now utilized another cGMP sensor, Green cGull, to show that ITPa can indeed activate Gyc76C heterologously expressed in HEK cells (new Figure 7 and Figure 7 Supplement 1). However, we still cannot rule out the possibility that ITPa can act on additional receptors in vivo. This is based on our ex vivo Malpighian tubule assays (new Figure 6E and F). ITPa inhibits DH31- and LK-stimulated secretion and we show that this effect is abolished in Gyc76C knockdown specifically in principal and stellate cells, respectively. Interestingly, application of ITPa alone can stimulate secretion when Gyc76C is knocked down in principal cells (new Figure 6E). This could be explained by: 1) presence of another receptor for ITPa which results in diuretic actions and/or 2) low Gyc76C signaling activity (RNAi based knockdown lowers signaling but does not abolish it completely) could alter other intracellular messenger pathways that promote secretion. We have added text to indicate the possibility of other ITPa receptors. Nonetheless, our conclusions are supported by the heterologous assay results which indicate that ITPa can activate Gyc76C. Therefore, we do not alter the title. 

      (2) The authors state in the abstract that a phylogenetic-driven approach led to their identification of Gyc76C as a candidate receptor for ITPa. However, there are weaknesses in this claim. Firstly, because the hypothesis that Gyc76C may be involved in mediating effects of ITPa was first proposed ten years ago by Nagai et al. 2014, so this surely was the primary basis for investigating this protein. Nevertheless, investigating if there is correspondence in the phylogenetic distribution of ITP-type and Gyc76C-type genes/proteins is a valuable approach to addressing this issue. Unfortunately, the evidence presented is rather limited in scope. Essentially, the authors report that they only found ITP-type and Gyc76C-type genes/proteins in protostomes, but not in deuterostomes. What is needed is a more fine-grained analysis at the species level within the protostomes. Thus, are there protostome species in which both ITP-type and Gyc76C-type genes/proteins have been lost? Furthermore, are there any protostome species in which an ITP-type gene is present but an Gyc76C-type gene is absent, or vice versa? If there are protostome species in which an ITP-type gene is present but a Gyc76C-type gene is absent or vice versa, this would argue against Gyc76C being a receptor for ITPa. In this regard, it is noteworthy that in Figure 2A there are two ITP-type precursors in C. elegans, but there are no Gyc76Ctype proteins shown in the tree in Figure 2B. Thus, what is needed is a more detailed analysis of protostomes to investigate if there really is correspondence in the phylogenetic distribution of Gyc76C-type and ITP-type genes at the species level. 

      We thank the reviewer for this comment. While the previous study by Nagai et al had implicated Gyc76C in the ITP signaling pathway, how they narrowed down Gyc76C as a candidate was not reported. Therefore, our unbiased phylogenetic approach was necessary to ensure that we identified all suitable candidate receptors. Indeed, our phylogenetic analysis also identified Gyc32E as another candidate ITP receptor. However, we did not pursue this receptor further as our expression data (new Figure 4 Supplement 2) indicated that Gyc32E is not expressed in osmoregulatory tissues and therefore likely does not mediate the osmotic effects of ITPa. 

      We also appreciate the suggestion to perform a more detailed phylogenetic analysis for the peptide and receptor. We did not include C. elegans receptors in the phylogenetic analysis because they tend to be highly evolved and routinely cause long-branch attraction (see: Guerra and Zandawala 2024: https://doi.org/10.1093/gbe/evad108). We (specifically the senior author) have previously excluded C. elegans receptors in the phylogenetic analysis of GnRH and Corazonin receptors for similar reasons (see: Tian and Zandawala et al. 2016: 10.1038/srep28788). 

      Unfortunately, absence of a gene in a genome is hard to prove especially when they are not as high-quality as the genomes of model systems (e.g. Drosophila and mice). Moreover, given the concern of this reviewer that our physiological and behavioral data on ITPa and Gyc76C only provide correlative evidence, we decided against performing additional phylogenetic analysis which also provides correlative evidence. Our only goal with this analysis was to identify a candidate ITPa receptor. Since we have now functionally characterized this receptor using a heterologous system, we feel that the current phylogenetic analysis was able to successfully serve its purpose.  

      (3) The manuscript would benefit from a more comprehensive overview and discussion of published literature on Gyc76C in Drosophila, both as a basis for this study and for interpretation of the findings of this study.  

      We thank the reviewer for this comment. We have now included a broader discussion of Gyc76C based on published literature.  

      Reviewer #3 (Public Review):  

      Summary:  

      The goal of this paper is to characterize an anti-diuretic signaling system in insects using Drosophila melanogaster as a model. Specifically, the authors wished to characterize a role of ion transport peptide (ITP) and its isoforms in regulating diverse aspects of physiology and metabolism. The authors combined genetic and comparative genomic approaches with classical physiological techniques and biochemical assays to provide a comprehensive analysis of ITP and its role in regulating fluid balance and metabolic homeostasis in Drosophila. The authors further characterized a previously unrecognized role for Gyc76C as a receptor for ITPa, an amidated isoform of ITP, and in mediating the effects of ITPa on fluid balance and metabolism. The evidence presented in favor of this model is very strong as it combines multiple approaches and employs ideal controls. Taken together, these findings represent an important contribution to the field of insect neuropeptides and neurohormones and have strong relevance for other animals. 

      We thank this reviewer for the positive and thorough assessment of our manuscript.

      Strengths:  

      Many approaches are used to support their model. Experiments were wellcontrolled, used appropriate statistical analyses, and were interpreted properly and without exaggeration.  

      Weaknesses:  

      No major weaknesses were identified by this reviewer. More evidence to support their model would be gained by using a loss-of-function approach with ITPa, and by providing more direct evidence that Gyc76C is the receptor that mediates the effects of ITPa on fat metabolism. However, these weaknesses do not detract from the overall quality of the evidence presented in this manuscript, which is very strong.  

      We agree with this reviewer regarding the need to provide additional evidence using a loss-of-function approach with ITPa. We now characterize the phenotypes following knockdown of ITP in ITP-producing cells (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C. Unfortunately, we are not able to provide evidence that ITPa acts on Gyc76C in the fat body using the assay suggested by this reviewer (explained in detail below). Instead, we now provide direct evidence of Gyc76C activation by ITPa in a heterologous system (new Figure 7 and Figure 7 Supplement 1).

      Reviewer #1 (Recommendations For The Authors):  

      Here, I have several extra concerns about the work as below:  

      (1) The authors confirmed the function of ITPa in regulating both osmotic and metabolic homeostasis by specifically overexpressing ITPa driven by ITP-RCGal4 in adult flies (Figures. 5 and 7). Have authors ever tried to knock down ITP in ITP-RC-Gal4 neurons? What was the phenotype? Especially regarding the impact on metabolic homeostasis, does knocking down ITP in ITP neurons mimic the phenotypes of Gyc76C fat body knockdown flies? 

      We thank the reviewer for this suggestion. We now characterize the phenotypes following knockdown of ITP using ITP-RC-Gal4 (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C.

      The authors mentioned that the existing ITP RNAi lines target all three isoforms. It would be interesting if the authors could overexpress ITPa in ITPRC-Gal4>ITP-RNAi flies and confirm whether any phenotypes induced by ITP knockdown could be rescued. It will further confirm the role of ITPa in homeostasis regulation.  

      We thank the reviewer for this suggestion. Unfortunately, this experiment is not straightforward because knockdown with ITP RNAi does not completely abolish ITP expression (see Figure 9A). Hence, the rescue experiment needs to be ideally performed in an ITP mutant background. However, ITP mutation leads to developmental lethality (unpublished observation) so we cannot generate all the flies necessary for this experiment. Therefore, we cannot perform the rescue experiments at this time. In future studies, we hope to perform knockdown of specific ITP isoforms using the transgenes generated here (Xu et al 2023: 10.1038/s41586-023-06833-8).   

      (2) In Figures 5A and B, the authors nicely show the increased release of ITPa under desiccation by quantifying the ITPa immunolabelling intensity in different neuronal populations. It may be induced by the increased neuronal activity of ITPa neurons under the desiccated condition. Have the authors confirmed whether the activity of ITPa-expressing neurons is impacted by desiccation?  

      The TRIC system may be able to detect the different activity of those neurons before and after desiccation. This may further explain the reduced ITPa peptide levels during desiccation.  

      We thank the reviewer for this suggestion. We have now monitored the activity of ITPa-expressing neurons using the CaLexA system (Masuyama et al 2012: 10.3109/01677063.2011.642910). Our results indicate that ITPa neurons are indeed active under desiccation (new Figure 8A and B). These results are also in agreement with ITPa immunolabelling showing increased peptide release during desiccation (new Figure 8C and D). Together, these results show that ITPa neurons are activated and release ITPa under desiccation.  

      (3) What about the intensity of ITPa immunolabelling in other ITPa-positive neurons (e.g., VNC) under desiccation? If there is no change in other ITPa neurons, it will be a good control. 

      We thank the reviewer for this suggestion. Unfortunately, ITPa immunostaining in VNC neurons is extremely weak preventing accurate quantification of ITPa levels under different conditions. We did hypothesize that ITPa immunolabelling in clock neurons (5<sup>th</sup>-LN<sub>v</sub> and LN<Sub>d</sub><sup>ITP</sup>) would not change depending on the osmotic state of the animal. However, our results (Figure 8C and D) indicate that ITPa from these neurons is also released under desiccation. Interestingly, LNd<sup>ITP</sup>, which also coexpress Neuropeptide F (NPF) have recently been implicated in water seeking during thirst (Ramirez et al, 2025: 10.1101/2025.07.03.662850). Our new connectomic-driven analysis shows that these neurons can receive thermo/hygrosensory inputs (new Figure 13E). Hence, it is conceivable that other ITPa-expressing neurons also release ITPa during thirst/desiccation.

      (4) The adult stage, specifically overexpression of ITPa in ITP neurons, does show significant phenotypes compared to controls in both osmotic and metabolic homeostasis-related assays. It would be helpful if authors could show how much ITPa mRNA levels are increased in the fly heads with ITPa overexpression (under desiccation & starvation or not). 

      We thank the reviewer for this suggestion. We have now included immunohistochemical evidence showing increase in ITPa peptide levels in flies with ITPa overexpression (new Figure 10A). We feel that this is a better indicator of ITPa signaling level instead of ITPa mRNA levels.   

      (5) Another question concerns the bloated abdomens of ITPa-overexpressing flies. Are the bloated abdomens of ITPa OE female flies (Figure 5E) due to increased ovary size (Figure 7G)? Have the authors also detected similar bloated abdomens in male flies with ITPa overexpression? Since both male and female flies show more release of ITPa during the desiccation.  

      We thank the reviewer for this comment. The bloated abdomen phenotype seen in females can be attributed to increased water content since we see a similar phenotype in males (see Author response image 1 below).

      Author response image 1.

      Reviewer #2 (Recommendations For The Authors):  

      (1) Page 1 - change "Homeostasis is obtained by" to "Homeostasis is achieved by".  

      Changed

      (2) Page 1 - change "Physiological responses" to "Physiological processes". 

      Changed

      (3) Page 2 - Change "Recently, ITPL2 was also shown to mediate anti-diuretic effects via the tachykinin receptor" to "Recently, ITPL2 was also shown to exert anti-diuretic effects via the tachykinin receptor". 

      Changed

      (4) Page 9 - "(C) Adult-specific overexpression of ITPa using ITP- RC-GAL4TS (ITP-RC-T2A-GAL4 combined with temperature-sensitive tubulinGAL80) increases desiccation" Unless I am misunderstanding Fig 5C, I think what is shown is that overexpression of ITPa prolongs survival during a period of desiccation. I am not sure what the authors mean by "increases desiccation". In the text (page 9) the authors state "ITPa overexpression improves desiccation tolerance, which is a much clearer statement than what is in the figure legend. 

      We thank the reviewer for identifying this oversight. We have now changed the caption to “increases desiccation tolerance”.  

      (5) Page 11 - The authors conclude that "increased ITPa signaling results in phenotypes that largely mirror those seen following Gyc76C knockdown in the fat body, providing further support that ITPa mediates its effects via Gyc76C." Use of the term "largely mirror" seems inappropriate here because there are opposing effects- e.g. decreased starvation resistance in Figure 6A versus increased starvation resistance in Figure 7A.  

      Perhaps there is a misunderstanding of what is meant by "mirroring" - it means the same, not the opposite. 

      We thank the reviewer for this comment. We agree that the use of the term “largely mirrors” to describe the effects of ITPa overexpression and Gyc76C knockdown is not appropriate and have changed this sentence as follows: “Taken together, the phenotypes seen following Gyc76C knockdown in the fat body largely mirror those seen following ITP knockdown in ITP-RC neurons, providing further support that ITPa mediates its effects via Gyc76C.”

      (6) Page 12 - There appear to be words missing between "neurons during desiccation, as well as their downstream" and "the recently completed FlyWire adult brain connectome" 

      We thank the reviewer for highlighting this mistake. We have changed the sentence as following: “Having characterized the functions of ITP signaling to the renal tubules and the fat body, we wanted to identify the factors and mechanisms regulating the activity of ITP neurons during desiccation, as well as their downstream neuronal pathways. To address this, we took advantage of the recently completed FlyWire adult brain connectome (Dorkenwald et al., 2024, Schlegel et al., 2024) to identify pre- and post-synaptic partners of ITP neurons.”

      (7) Page 15 - "can release up to a staggering 8 neuropeptides" - I suggest that the word "staggering" is removed. The notion that individual neurons release many neuropeptides is now widely recognised (both in vertebrates and invertebrates) based on analysis of single-cell transcriptomic data. 

      Removed staggering.

      (8) Page 16 - "(Farwa and Jean-Paul, 2024)" - this citation needs to be added to the reference list and I think it needs to be changed to "Sajadi and Paluzzi, 2024". 

      We thank the reviewer for highlighting this oversight. The correct citation has now been added.

      (9) It is noteworthy that, based on a PubMed search, there are at least thirteen published papers that report on Gyc76C in Drosophila (PMIDs: 34988396, 32063902, 27642749, 26440503, 24284209, 23862019, 23213443,  21893139, 21350862, 16341244, 15485853, 15282266, 7706258). However, none of these papers are discussed/cited by the authors. This is surprising because the authors' hypothesis that Gyc76C acts as a receptor for ITPa surely needs to be evaluated and discussed with reference to all the published insights into the developmental/physiological roles of this protein. 

      We thank the reviewer for this comment. Some of the references mentioned above (21350862, 16341244, 15485853) mainly report on soluble guanylyl cyclases and not membrane guanylyl cyclase like Gyc76C. Based on other studies on Gyc76C and its role in immunity and development, we have now expanded the discussion on additional roles of ITPa.

      Reviewer #3 (Recommendations For The Authors):  

      I have only a few comments that will help the authors strengthen a couple of aspects of their model.  

      (1) The case for Gyc76C as a receptor for ITPa in regulating fluid homeostasis is clear, given the experiments the authors carried out where they applied ITPa to tubules and showed that the effects of ITPa on tubule secretion were blocked if Gyc76C was absent in tubules. This approach, or something similar, should be used to provide conclusive proof that ITPa's metabolic effects on the fat body go through Gyc76C.  

      At present (unless I missed it) the authors only show that gain of ITPa has the opposite phenotype to fat body-specific loss of Gyc76C. While this would be the expected result if ITPa/Gyc76C is a ligand-receptor pair, it is not quite sufficient to conclusively demonstrate that Gyc76C is definitely the fat body receptor. Ex vivo experiments such as soaking the adult fat body carcasses with and without Gyc76C in ITPa and monitoring fat content via Nile Red could be one way to address this lack of direct evidence. The authors could also make text changes to explicitly mention this lack of conclusive evidence and suggest it as a future direction.

      We thank the reviewer for this comment. We have now conclusively demonstrated that Gyc76C is activated by ITPa in a heterologous assay (new Figure 7 and Figure 7 Supplement 1). With this evidence, we can confidently claim that ITPa can mediate its actions via Gyc76C in various tissues including the Malpighian tubules and fat body. Nonetheless, we liked the suggestion by this reviewer to perform the ex vivo assay and test the effect of ITPa on the fat body. Unfortunately, it is challenging to do this because increased ITPa signaling (chronically using ITPa overexpression) results in increased lipid accumulation in the fat body in vivo. Therefore, we would likely not see the effect of ITPa addition in an ex vivo fat body preparation since lipogenesis will not occur in the absence of glucose. However, ITPa could counteract the effects of other lipolytic factors such as adipokinetic hormone (AKH). To test this hypothesis, we monitored fat content in the fat body incubated with and without AKH (see Author response image 2 below showing representative images from this experiment). Since we did not observe any differences in fat levels between these two conditions, we were unable to test the effects of ITPa on AKH-activity using this assay.

      Author response image 2.

      (2) I did not see any loss of function data for ITPa - is this possible? If so this would strengthen the case for a 1:1 relationship between loss of ligand and loss of receptor. Alternatively, the authors could suggest this as an important future direction. 

      We agree with this reviewer regarding the need to provide additional evidence using a loss-of-function approach with ITPa. We have now characterized the phenotypes following knockdown of ITP in ITP-producing cells (new Figure 9). Our results are in agreement with phenotypes observed following Gyc76C knockdown, lending further support that ITPa mediates its effects via Gyc76C.

      (3) For clarity, please include the sex of all animals in the figure legend. Even though the methods say 'females used unless otherwise indicated' it is still better for the reader to know within the figure legend what sex is displayed. 

      We thank the reviewer for this suggestion and have now included sex of the animals in the figure legends.  

      (4) Please state whether females are mated or not, as this is relevant for taste preferences and food intake. 

      We apologize for this oversight. We used mated females for all experiments. This has now been included in the methods.  

      (5) More discussion on the previous study on metabolic effects of ITP in this study compared with past studies would help readers appreciate any similarities and/or differences between this study and past work (Galikova 2018, 2022) 

      We thank the reviewer for this suggestion. Unfortunately, it is difficult to directly compare our phenotypes with the metabolic effects of ITP reported in Galikova and Klepsatel 2022 because the previous study used a ubiquitous driver (Da-GAL4) to manipulate ITP levels. Ectopically overexpressing ITPa in non-ITP producing cells can result in non-physiological phenotypes. This is evident in their metabolic measurements where both global overexpression and knockdown of ITP results in reduced glycogen and fat levels, and starvation tolerance. Moreover, ITP-RC-GAL4 used in our study to overexpress and knockdown ITPa is more specific than the Da-GAL4 used previously. Da-GAL4 would include other ITP cells (e.g. ITP-RD producing cells). Since ITP is broadly expressed across the animal, it is difficult to parse out the phenotypes of ITPa and other isoforms using manipulations performed with Da-GAL4. We have mentioned this limitation in the results for ITP knockdown as follows: “A previous study employing ubiquitous ITP knockdown and overexpression suggests that Drosophila ITP also regulates feeding and metabolic homeostasis (Galikova and Klepsatel, 2022) in addition to osmotic homeostais (Galikova et al., 2018). However, given the nature of the genetic manipulations (ectopic ITPa overexpression and knockdown of ITP in all tissues) utilized in those studies, it is difficult to parse the effects of ITP signaling from ITPa-producing neurons.”

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This work provides a new Python toolkit for combining generative modeling of neural dynamics and inversion methods to infer likely model parameters that explain empirical neuroimaging data. The authors provided tests to show the toolkit's broad applicability, accuracy, and robustness; hence, it will be very useful for people interested in using computational approaches to better understand the brain.

      Strengths:

      The work's primary strength is the tool's integrative nature, which seamlessly combines forward modelling with backward inference. This is important as available tools in the literature can only do one and not the other, which limits their accessibility to neuroscientists with limited computational expertise. Another strength of the paper is the demonstration of how the tool can be applied to a broad range of computational models popularly used in the field to interrogate diverse neuroimaging data, ensuring that the methodology is not optimal to only one model. Moreover, through extensive in-silico testing, the work provided evidence that the tool can accurately infer ground-truth parameters even in the presence of noise, which is important to ensure results from future hypothesis testing are meaningful.

      We appreciate the positive feedback on our open-source tool that delivers rapid forward simulations and flexible Bayesian model inversion for a broad range of whole-brain models, with extensive in-silico validation, including scenarios with dynamical/additive noise.

      Weaknesses

      The paper still lacks appropriate quantitative benchmarking relative to non-Bayesian-based inference tools, especially with respect to performance accuracy and computational complexity and efficiency. Without this benchmarking, it is difficult to fully comprehend the power of the software or its ability to be extended to contexts beyond large-scale computational brain modelling.

      Non-Bayesian inference methods were beyond the scope of this study, as we focused on full posterior estimation to enable uncertainty quantification and detection of degeneracy. Their advantages and disadvantages are briefly discussed in the Introduction and Discussion sections.

      Reviewer #2 (Public review):

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strength:

      Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.

      Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.

      The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of models. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.

      In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network is well-trained.

      We thank the reviewer for the careful consideration of important aspects of the VBI tool, such as uncertainty quantification rather than point estimation, degeneracy detection, features selection, parallelization, and amortization strategy.

      Weaknesses:

      The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy. - A lot of simulations are required to train the posterior estimator, which is computationally more expensive than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. The payoff is that once the estimator is well-trained, the parameter inversion will be very fast given new data. However, it is not clear to me how often such use cases would be encountered. It would be very helpful if the authors could provide a few more concrete examples of using trained models for hypothesis testing, e.g., in various disease conditions.

      We agree with the reviewer that for some parameters the z-score is large, which could be due to the limited number of simulations, the informativeness of the data features, or non-identifiability, and we do address these possible limitations in the Discussion. In line with our previous study, we stick to Bayesian metrics such as posterior z-scores and shrinkage. The application of an amortized strategy needs to be demonstrated in future work, for example in anonymized personalization of virtual brain twins (Baldy et al., 2025).

      Ref: Baldy N, Woodman MM, Jirsa VK. Amortizing personalization in virtual brain twins. arXiv preprint arXiv:2506.21155.

      Reviewer #1 (Recommendations for the authors):

      (1) The authors want to keep the term "spatio-temporal" data features to make it consistent with the language they use in their code, even though they only refer to statistical and temporal features of the time series. I stand by my previous comment that this is misleading and should be avoided as much as possible because it doesn't take into account the actual spatial characteristics of the data. At the very least, the authors should recognize this in the text.

      We have now recognized this point.

      (2) There are still some things that need further clarification and/or explanation:

      (a) It remains unclear why PCA needs to be applied to the FC/FCD matrices. It was also unclear how many PCs were kept as data features.

      We aim to use as many features as possible as a battery of metrics to reduce the number of simulations. The role of each feature can be investigated in future studies.  For instance, PCA is used in the LEiDA approach (Cabral et al., 2017) to enhance robustness to high-frequency noise, thereby overcoming a limitation common to all quasi-instantaneous measures of FC. In this work, the default setting was two PCA components. 

      Ref:  Cabral J, Vidaurre D, Marques P, Magalhães R, Silva Moreira P, Miguel Soares J, Deco G, Sousa N, Kringelbach ML. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Scientific reports. 2017 Jul 11;7(1):5135.

      (b) It was also unclear which features were used for each model. This is important for reproducibility and to make the users of the software aware of which features are most likely to work best for each model.

      We have done our best to indicate the class of features used in each case. This is illustrated more clearly in the notebook examples provided in the repository.

      Reviewer #2 (Recommendations for the authors):

      Thanks for responding to my suggestions. Here is only one remaining point:

      Section 2.1: Please mention the atlas used to parcellate the brain; without this information, readers won't know what area 88 is in Figure 1, for example. 

      We have now mentioned this point. In this study we used AAL Atlas.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In recent years, our understanding of the nuclear steps of the HIV-1 life cycle has made significant advances. It has emerged that HIV-1 completes reverse transcription in the nucleus and that the host factor CPSF6 forms condensates around the viral capsid. The precise function of these CPSF6 condensates is under investigation, but it is clear that the HIV-1 capsid protein is required for their formation. This study by Tomasini et al. investigates the genesis of the CPSF6 condensates induced by HIV-1 capsid, what other co-factors may be required, and their relationship with nuclear speckels (NS). The authors show that disruption of the condensates by the drug PF74, added post-nuclear entry, blocks HIV-1 infection, which supports their functional role. They generated CPSF6 KO THP-1 cell lines, in which they expressed exogenous CPSF6 constructs to map by microscopy and pull down assays of the regions critical for the formation of condensates. This approach revealed that the LCR region of CPSF6 is required for capsid binding but not for condensates whereas the FG region is essential for both. Using SON and SRRM2 as markers of NS, the authors show that CPSF6 condensates precede their merging with NS but that depletion of SRRM2, or SRRM2 lacking the IDR domain, delays the genesis of condensates, which are also smaller. 

      The study is interesting and well conducted and defines some characteristics of the CPSF6-HIV-1 condensates. Their results on the NS are valuable. The data presented are convincing. 

      I have two main concerns. Firstly, the functional outcome of the various protein mutants and KOs is not evaluated. Although Figure 1 shows that disruption of the CPSF6 puncta by PF74 impairs HIV-1 infection, it is not clear if HIV-1 infection is at all affected by expression of the mutant CPSF6 forms (and SRRM2 mutants) or KO/KD of the various host factors. The cell lines are available, so it should be possible to measure HIV-1 infection and reverse transcription. Secondly, the authors have not assessed if the effects observed on the NS impact HIV-1 gene expression, which would be interesting to know given that NS are sites of highly active gene transcription. With the reagents at hand, it should be possible to investigate this too. 

      We thank the reviewer for her/his valuable feedback on our manuscript. We are pleased to see her/his appreciation of our results, and we did our utmost to address the highlighted points to further improve our work.

      To correctly perform the infectivity assay, we generated stable cell clones—a process that required considerable time, particularly during the selection of clones expressing protein levels comparable to wild-type (WT) cells. To accurately measure infectivity, it was essential to use stable clones expressing the most important deletion mutant, ∆FG CPSF6, at levels similar to those of CPSF6 in WT cells (new Fig.5 A-B). Importantly, we assessed the reproducibility of our experiments by freezing and thawing these clones.

      Regarding SRRM2, in THP-1 cells we were only able to achieve a knockdown, which still retains residual SRRM2 protein, albeit at much lower levels. Due to the essential role of SRRM2 in cell survival, obtaining a complete knockout in this cell line is not feasible, making it difficult to draw definitive conclusions from these experiments.

      In contrast, 293T cells carrying the endogenous SRRM2 deletion mutant (ΔIDR) cannot be infected with replication-competent HIV-1, as they lack expression of CD4 and either CCR4 or CCR5. These cells were instead used to monitor the dynamics of CPSF6 puncta assembly within nuclear speckles. However, they are not a suitable model for studying the impact of the depletion of SRRM2 in viral infection.

      Thus, we performed infectivity assays in a more relevant cell line for HIV-1 infection, THP-1 macrophage-like cells, using both a single-round virus and a replication-competent virus. The new results, shown in Figure 5 C-D, indicate that complete depletion of CPSF6 reduces infectivity, as measured by luciferase expression in a single-round infection (KO: ~65%; ΔFG: ~74%; compared to WT: 100% on average). Notably, a more pronounced defect in viral particle production was observed when WT virus was used for infection (KO: ~21%; ΔFG: ~16%; compared to WT: 100% on average). These findings support the referee’s insightful suggestion that the absence of CPSF6 could also impair HIV-1 gene expression. 

      Reviewer #2 (Public review): 

      Summary: 

      HIV-1 infection induces CPSF6 aggregates in the nucleus that contain the viral protein CA. The study of the functions and composition of these nuclear aggregates have raised considerable interest in the field, and they have emerged as sites in which reverse transcription is completed and in the proximity of which viral DNA becomes integrated. In this work, the authors have mutated several regions of the CPSF6 protein to identify the domains important for nuclear aggregation, in addition to the alreadyknown FG region; they have characterized the kinetics of fusion between CPSF6 aggregates and SC35 nuclear speckles and have determined the role of two nuclear speckle components in this process (SRRM2, SUN2). 

      Strengths: 

      The work examines systematically the domains of CPSF6 of importance for nuclear aggregate formation in an elegant manner in which these mutants complement an otherwise CPSF6-KO cell line. In addition, this work evidences a novel role for the protein SRRM2 in HIV-induced aggregate formation, overall advancing our comprehension of the components required for their formation and regulation. 

      Weaknesses: 

      Some of the results presented in this manuscript, in particular the kinetics of fusion between CPSF6aggregates and SC35 speckles have been published before (PMID: 32665593; 32997983). 

      The observations of the different effects of CPSF6 mutants, as well as SRRM2/SUN2 silencing experiments are not complemented by infection data which would have linked morphological changes in nuclear aggregates to function during viral infection. More importantly, these functional data could have helped stratify otherwise similar morphological appearances in CPSF6 aggregates. 

      Overall, the results could be presented in a more concise and ordered manner to help focus the attention of the reader on the most important issues. Most of the figures extend to 3-4 different pages and some information could be clearly either aggregated or moved to supplementary data. 

      First, we thank the reviewer for her/his appreciation of our study and to give to us the opportunity to better explain our results and to improve our manuscript. We appreciate the reviewer’s positive feedback on our study, and we will do our best to address her/his concerns. In the meantime, we would like to clarify the focus of our study. Our research does not aim to demonstrate an association between CPSF6 condensates (we use the term "condensates" rather than "aggregates," as aggregates are generally non-dynamic (Alberti & Hyman, 2021; Banani et al., 2017; Scoca et al., JMCB 2022), and our work specifically examines the dynamic behavior of CPSF6 puncta formed during infection and nuclear speckles. The association between CPSF6 puncta and NS has already been established in previous studies, as noted in the manuscript (PMID: 32665593; 32997983). The previous studies (PMID: 32665593; 32997983) showed that CPSF6 puncta colocalize with SC35 upon HIV infection and in the submitted study we study their kinetics.

      About the point highlighted by the reviewer: "Kinetics of fusion between CPSF6-aggregates and SC35 speckles have been published before."  

      Our study differs from prior work PMID 32665593 because we utilize a full-length HIV genome, and we did not follow the integrase (IN) fluorescence in trans and its association with CPSF6 but we specifically assess if CPSF6 clusters form in the nucleus independently of NS factors and next to fuse with them. In the current study we evaluated the dynamics of formation of CPSF6/NS puncta, which it has not been explored before. Given this focus, we believe that our work offers a novel perspective on the molecular interactions that facilitate HIV / CPSF6-NS fusion.

      We calculated that 27% of CPSF6 clusters were independent from NS at 6 h post-infection, compared to only 9% at 30 h. This likely reflects a reduction in individual clusters as more become fused with nuclear speckles over time. At the same time, these data suggest that the fusion process can begin even earlier. Indeed, it has been reported that in macrophages, the peak of viral nuclear import occurs before 6 h post-infection (doi: 10.1038/s41564-020-0735-8).

      In addition, we have incorporated new experiments assessing viral infectivity in the absence of CPSF6, or in CPSF6-knockout cells expressing either a CPSF6 mutant lacking the FG peptide or the WT protein. As shown in our new Figure 5, these results demonstrate that the FG peptide is critical for viral replication in THP-1 cells.

      For better clarity, we would like to specify that our study focuses on the role of SON, a scaffold factor of nuclear speckles, rather than SUN2 (SUN domain-containing protein 2), which is a component of the LINC (Linker of Nucleoskeleton and Cytoskeleton) complex.

      As suggested by the reviewer, we have revised the text and combined figures to improve clarity and facilitate reader comprehension. We appreciate the constructive comment of the reviewer.

      Reviewer #3 (Public review): 

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (doi.org/10.1093/nar/gkae769). 

      We thank the reviewer for her/his thoughtful feedback and the opportunity to elaborate on why our findings provide a distinct perspective compared to those of Jang et al. (doi.org/10.1093/nar/gkae769).

      One potential reason for the differences between our findings and those of Jang et al. could be the choice of experimental systems. Jang et al. conducted their study in HEK293T cells with CPSF6 knockouts, as described in Sowd et al., 2016 (doi.org/10.1073/pnas.1524213113). In contrast, our work focused on macrophage-like THP-1 cells, which share closer characteristics with HIV-1’s natural target cells. 

      Our approach utilized a complete CPSF6 knockout in THP-1 cells, enabling us to reintroduce untagged versions of CPSF6, such as wild-type and deletion mutants, to avoid potential artifacts from tagging. Jang et al. employed HA-tagged CPSF6 constructs, which may lead to subtle differences in experimental outcomes due to the presence of the tag.

      Finally, our investigation into the IDR of SRRM2 relied on CRISPR-PAINT to generate targeted deletions directly in the endogenous gene (Lester et al., 2021, DOI: 10.1016/j.neuron.2021.03.026). This approach provided a native context for studying SRRM2’s role.

      We will incorporate these clarifications into the discussion section of the revised manuscript.  

      Reviewer #1 (Recommendations for the authors): 

      (1) Figure 2E: The statistical analysis should be extended to the comparison between the "+HIV" samples. 

      We showed the statistics between only HIV+ cells now new Fig. 2D.  

      (2) Figure 4A top panel is out of focus. 

      We modified the figure now figure 6A.

      Reviewer #2 (Recommendations for the authors): 

      (1) Some of the sentences could be rewritten for the sake of simplicity, also taking care to avoid overstatement. 

      We modified the sentences as best as we could.

      (2) For instance: There is no evidence that "viral genomes in nuclear niches may be contributing to the formation of viral reservoirs" (lines 33-35). 

      We changed the sentence as follows: “Despite antiretroviral treatment, viral genomes can persist in these nuclear niches and reactivate upon treatment interruption, raising the possibility that they could play a role in the establishment of viral reservoirs.”

      (3) Line 53: unclear sentence. "The initial stages of the viral life cycle have been understood....." The authors certainly mean reverse transcription, but as formulated this is not clear. The authors should also bear in mind that reverse transcription starts already in budding/just released virions. 

      We clarified the concept as follows: “the initial stages of the viral life cycle, such as the reverse transcription (the conversion of the viral RNA in DNA) and the uncoating (loss of the capsid), have been understood to mainly occur within the host cytoplasm.”

      (4) Line 124: the results in Figure 1 are not at all explained in the text. PF74 does not act on CPSF6, it acts on CA and this in turn leads to CPS6 puncta disappearance. 

      PF74 binds the same hydrophobic pocket of the viral core as CPSF6. However, when viral cores are located within CPSF6 puncta, treatment with a high dose of PF74 leads to a rapid disassembly of these puncta, while viral cores remain detectable up to 2 hours post-treatment (Ay et al., EMBO J. 2024). Here, we simply describe what we observed by confocal microscopy. Said that HIV-Induced CPSF6 Puncta include both CPSF6 proteins and viral cores as we have now specified.

      (5) Line 130; 'hinges into two key ...' should be 'hinges on'. 

      Thanks we modified it.

      (6) Supplementary Figures are not cited sequentially in the text. 

      We have now modified the numbers of the supplementary figures according to their appearance in the text.

      (7) Line 44: define FG. 

      We defined it.

      Reviewer #3 (Recommendations for the authors): 

      Specific comments that the authors should address are outlined below. 

      (1) As mentioned in the summary above, the authors' findings seem to be in direct contradiction with recent work published by Alan Engelman's lab in NAR. The authors should address the possible reason(s) for this discrepancy. 

      We mention the potential reasons for the differences in the results between our study and Engelman’s lab study in the discussion.

      (2) The major finding here that deletion of the CFSF6 FG repeat prevents the formation of CFSP6 puncta is unsurprising, as the FG repeat is responsible for capsid binding. This has been reported previously and such mutants have been used as controls in other studies. 

      Our study demonstrates that the FG domain is the sole region responsible for the formation of CPSF6 puncta, rather than the LCR or MCD domains. The unique role of the FG domain in CPSF6 that promotes the formation of CPSF6 puncta without the help of the other IDRs during viral infection is a finding particularly novel, as it has not yet been reported in the literature.

      (3) Line 339, the authors state: "incoming viral RNA has been observed to be sequestered in nuclear niches in cells treated with the reversible reverse transcriptase inhibitor, NEV. When macrophage-like cells are infected in the presence of NEV, the incoming viral RNA is held within the nucleus (Rensen et al., 2021; Scoca et al., 2023). This scenario is comparable to what is observed in patients undergoing antiretroviral therapy". In what way is this comparable to what is observed in individuals on ART? I see no basis for this statement. Sequestration of viral RNA in the nucleus is not the basis for maintaining the viral reservoir in individuals on therapy. 

      Thanks, we rephrased the sentence.

      (4) General comment: analyzing single-cell-derived KO clones is very risky because of random clonal variability between individual cells in the population. If single-cell-derived clones are used, phenotypes could be confirmed with multiple, independent clones. 

      We used a clone completely KO for CPSF6 mainly to investigate the role of a specific domain in condensate formation and it will be difficult that clone selection could have introduced artifacts in this context. Other available clones retain residual endogenous protein, which prevents us from accurately assessing CPSF6 cluster formation in the various deletion mutants. A complete CPSF6 knockout is essential for studying puncta formation, as it eliminates potential artifacts arising from protein tags that could alter the phase separation properties of the protein under investigation.

      (5) Line 214. "It is predicted to form two short α helices and a ß strand, arranged as: α helix - FG - ß strand - α helix". What is this based on? No citation is provided and no data are shown. 

      In fact, the statement "It is predicted to form two short α helices and a ß strand, arranged as: α helix - FG - ß strand - α helix" is based on the data shown in Figure 4E presenting data generated by PSIPRED. 

      (6) Figure 1B. "Luciferase values were normalized by total proteins revealed with the Bradford kit". What does this mean? I couldn't find anything explaining how the viral inputs were normalized. 

      The amount of the virus used is the same for all samples, we used MOI 10 as described in the legend of Figure 1. It is important to normalize the RLU (luciferase assay) with the total amount of proteins to be sure that we are comparing similar number of cells. Obviously, the cells were plated on the same amount on each well, the normalization in our case it is just an additional important control.

      (7) I can't interpret what is being shown in the movies. 

      We updated the movie 1B and rephrased the movie legends and we added a new suppl. Fig.4B.

      (8) Figure 5B. The differences seen are very small and of questionable significance. The data suggest that by 6 hpi, around 75% of HIV-induced CPSF6 puncta are already fused with NSs. 

      We calculated that 27% of CPSF6 clusters were independent from NS at 6 h post-infection, compared to only 9% at 30 h. This likely reflects a reduction in individual clusters as more become fused with nuclear speckles over time. At the same time, these data suggest that the fusion process can begin even earlier. Indeed, it has been reported that in macrophages, the peak of viral nuclear import occurs before 6 h post-infection (doi: 10.1038/s41564-020-0735-8).

      (9) Figure 6. Immunofluorescence is not a good method for quantifying KD efficiency. The authors should perform western blotting to measure KD efficiency. This is an important point, because the effect sizes are small, quite likely due to incomplete KD. 

      We performed WB and quantified the results, which correlated with the IF data and their imaging analysis. These new findings have been incorporated into Figure 8A. Of note, deletion of the IDR of SRRM2 does not affect the number of SON puncta (Fig.8C), but significantly reduces the number of CPSF6 puncta in infected cells compared to those expressing full-length SRRM2 (Fig.8D).

      (10) There are a variety of issues with the text that should be corrected. 

      The authors use "RT" to mean both the enzyme (reverse transcriptase) and the process (reverse transcription). This is incorrect and will confuse the reader. RT refers to the enzyme (noun, not verb). 

      The commonly used abbreviation for nevirapine is NVP, not NEV. 

      In line 60, it is stated that the capsid contains 250 hexamers. This number is variable, depending on the size and shape of the capsid. By contrast, the capsid has exactly 12 pentamers. 

      Line 75. Typo: "nuclear niches containing, such as like". 

      Line 82. Typo: "the mechanism behinds". 

      Line 102. Typo: "we aim to elucidate how these HIV-induced CPSF6 form". 

      Line 107. Type: "CPSF6 is responsible for tracking the viral core" ("trafficking the viral core"?). 

      Thanks, we corrected all of them.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Zhu and colleagues used high-density Neuropixel probes to perform laminar recordings in V1 while presenting either small stimuli that stimulated the classical receptive field (CRF) or large stimuli whose border straddled the RF to provide nonclassical RF (nCRF) stimulation. Their main question was to understand the relative contribution of feedforward (FF), feedback (FB), and horizontal circuits to border ownership (Bown), which they addressed by measuring crosscorrelation across layers. They found differences in cross-correlation between feedback/horizontal (FH) and input layers during CRF and nCRF stimulation. 

      Although the data looks high quality and analyses look mostly fine, I had a lot of difficulty understanding the logic in many places. Examples of my concerns are written below. 

      (1) What is the main question? The authors refer to nCRF stimulation emerging from either feedback from higher areas or horizontal connections from within the same area (e.g. lines 136 to 138 and again lines 223-232). I initially thought that the study would aim to distinguish between the two. However, the way the authors have clubbed the layers in 3D, the main question seems to be whether Bown is FF or FH (i.e., feedback and horizontal are clubbed). Is this correct? If so, I don't see the logic, since I can't imagine Bown to be purely FF. Thus, just showing differences between CRF stimulation (which is mainly expected to be FF) and nCRF stimulation is not surprising to me. 

      We thank the reviewer for their thoughtful comments. As explained in the discussion, we grouped cortical layers to reduce uncertainty in precisely assigning laminar boundaries and to increase statistical power. Consequently, this limits our ability to distinguish the relative contributions of feedback inputs, primarily targeting layers 1 and 6, and horizontal connections, mainly within layers 2/3 and 5. Nevertheless, previous findings, especially regarding the rapid emergence of B<sub>own</sub> signals, suggest that feedback is more biologically plausible than horizontal-based mechanisms.

      Importantly, the emergence of B<sub>own</sub> signals in the primate brain should not be taken for granted. Direct physiological evidence that distinguishes feedforward from feedback/horizontal mechanisms has been lacking. While we agree it is unlikely that B<sub>own</sub> is mediated solely by feedforward processing, we felt it was necessary to test this empirically, particularly using highresolution laminar recordings.

      As discussed, feedforward models of B<sub>own</sub> have been proposed (e.g., Super, Romeo, and Keil, 2010; Saki and Nishimura, 2006). These could, in theory, be supported by more general nCRF modulations arising through early feedforward inhibitions, such as those observed in the retinogeniculate pathway (e.g., Webb, Tinsley, Vincent and Derrington, 2005; Blitz and Regehr, 2005; Alitto and Usrey, 2008). However, most B<sub>own</sub> models rely heavily on response latency, yet very few studies have recorded across layers or areas simultaneously to address this directly. Notably, recent findings in area V4 show that B<sub>own</sub> signals emerge earlier in deep layers than in granular (input) layers, suggesting a non-feedforward origin (Franken and Reynolds, 2021).

      Furthermore, although previous studies have shown that the nCRF can modulate firing rates and the timing of neuronal firing across layers, our findings go beyond these effects. We provide clear evidence that nCRF modulation also alters precise spike timing relationships and interlaminar coordination, and that the magnitude of nCRF modulation depends on these interlaminar interactions. This supports the idea that B<sub>own</sub> , or more general nCRF modulation, involves more than local rate changes, reflecting layer-specific network dynamics consistent with feedback or lateral integration.

      (2) Choice of layers for cross-correlation analysis: In the Introduction, and also in Figure 3C, it is mentioned that FF inputs arrive in 4C and 6, while FB/Horizontal inputs arrive at "superficial" and "deep", which I take as layer 2/3 and 5. So it is not clear to me why (i) layer 4A/B is chosen for analysis for Figure 3D (I would have thought layer 6 should have been chosen instead) and (ii) why Layers 5 and 6 are clubbed. 

      We thank the reviewer for raising this important point. The confusion likely stems from our use of the terms “superficial” and “deep” layers when describing the targets of feedback/horizontal inputs. To clarify, by “superficial” and “deep,” we specifically refer to layers 1–3 and layers 5–6, respectively, as illustrated in Figure 3C. Feedback and horizontal inputs relatively avoid entire layer 4, including both 4C and 4A/B.

      We also emphasize that the classification of layers as feedforward or feedback/horizontal recipients is relative rather than absolute. For example, although layer 6 receives both feedforward and feedback/horizontal inputs, it contains a higher proportion of feedback/horizontal inputs compared to layers 4C and 4A/B. 

      We had addressed this rationale in the Discussion, but recognize it may not have been sufficiently emphasized. We have revised the main text accordingly to clarify this point for readers in the final manuscript version.

      (3) Addressing the main question using cross-correlation analysis: I think the nice peaks observed in Figure 3B for some pairs show how spiking in one neuron affects the spiking in another one, with the delay in cross-correlation function arising from the conduction delay. This is shown nicely during CRF stimulation in Figure 3D between 4C -> 2/3, for example. However, the delay (positive or negative) is constrained by anatomical connectivity. For example, unless there are projections from 2/3 back to 4C which causes firing in a 2/3 layer neuron to cause a spike in a layer 4 neuron, we cannot expect to get a negative delay no matter what kind of stimulation (CRF versus nCRF) is used. 

      We thank the reviewer for the insightful comment. The observation that neurons within FH<sub>i</sub> laminar compartments (layers 2/3, 5/6) can lead those in layer 4 (4C, 4A/B) during nCRF stimulation may indeed seem unexpected. However, several anatomical pathways could mediate the propagation of B<sub>own</sub> signals from FH<sub>i</sub> compartments to layer 4. We have revised the Discussion section in the final version of the manuscript to address this point explicitly.

      In Macaque V1, projections from layers 2/3 to 4A/B have been documented (Blasdel et al., 1985; Callaway and Wiser, 1996), and neurons in 4A/B often extend apical dendrites into layers 2/3 (Lund, 1988; Yoshioka et al., 1994). Although direct projections from layers 2/3 to 4C are generally sparse (Callaway, 1998), a subset of neurons in the lower part of layer 3 can give off collateral axons to 4C (Lund and Yoshioka, 1991). Additionally, some 4C neurons extend dendrites into 4B, enabling potential dendritic integration of inputs from more superficial layers (Somogyi and Cowey, 1981; Mates and Lund, 1983; Yabuta and Callaway, 1998). Sparse connections from 2/3 to layer 4 have also been reported in cat V1 (Binzegger, Douglas and Martin, 2004). Moreover, layers 2/3 may influence 4C neurons disynaptically, without requiring dense monosynaptic connections. 

      Importantly, while CCGs can suggest possible circuit arrangements, functional connectivity may arise through mechanisms not fully captured by traditional anatomical tracing. Indeed, the apparent discrepancy between anatomical and functional data is not uncommon. For example, although 4B is known to receive anatomical input primarily from 4Cα, but not 4Cβ, photostimulation experiments have shown that 4B neurons can also be functionally driven by 4Cβ (Sawatari and Callaway, 1996). Our observation of functional inputs from layers 2/3 to layer 4 is also consistent with prior findings in rodent V1, where CCG analysis (e.g., Figure 7 in Senzai, Fernandez-Ruiz and Buzsaki, 2019) or photostimulation (Xu et al., 2016) revealed similar pathways. 

      Layers 5/6 provide dense projections to layers 4A/B (Lund, 1988; Callaway, 1998). In particular, layer 6 pyramidal neurons, especially the subset classified as Type 1 cells, project substantially to layer 4C (Wiser and Callaway, 1996; Fitzpatrick et al., 1985). 

      Reviewer #2 (Public review): 

      Summary: 

      The authors present a study of how modulatory activity from outside the classical receptive field (cRF) differs from cRF stimulation. They study neural activity across the different layers of V1 in two anesthetized monkeys using Neuropixels probes. The monkeys are presented with drifting gratings and border-ownership tuning stimuli. They find that border-ownership tuning is organized into columns within V1, which is unexpected and exciting, and that the flow of activity from cellto-cell (as judged by cross-correlograms between single units) is influenced by the type of visual stimulus: border-ownership tuning stimuli vs. drifting-grating stimuli. 

      Strengths: 

      The questions addressed by the study are of high interest, and the use of Neuropixels probes yields extremely high numbers of single-units and cross-correlation histograms (CCHs) which makes the results robust. The study is well-described. 

      Weaknesses: 

      The weaknesses of the study are (a) the use of anesthetized animals, which raises questions about the nature of the modulatory signal being measured and the underlying logic of why a change in visual stimulus would produce a reversal in information flow through the cortical microcircuit and (b) the choice of visual stimuli, which do not uniquely isolate feedforward from feedback influences. 

      (1) The modulation latency seems quite short in Figure 2C. Have the authors measured the latency of the effect in the manuscript and how it compares to the onset of the visually driven response? It would be surprising if the latency was much shorter than 70ms given previous measurements of BO and figure-ground modulation latency in V2 and V1. On the same note, it might be revealing to make laminar profiles of the modulation (i.e. preferred - non-preferred border orientation) as it develops over time. Does the modulation start in feedback recipient layers? 

      (2) Can the authors show the average time course of the response elicited by preferred and nonpreferred border ownership stimuli across all significant neurons? 

      We thank the reviewer for the insightful comment—this is indeed an important and often overlooked point. As noted in the Discussion, B<sub>own</sub> modulation differs from other forms of figure-ground modulation (e.g., Lamme et al., 1998) in that it can emerge very rapidly in early visual cortex—within ~10–35 ms after response onset (Zhou et al., 2000; Sugihara et al., 2011). This rapid emergence has been interpreted as evidence for the involvement of fast feedback inputs, which can propagate up to ten times faster than horizontal connections (Girard et al., 2001). Moreover, interlaminar interactions via monosynaptic or disynaptic connections can occur on very short timescales (a few milliseconds), further complicating efforts to disentangle feedback influences based solely on latency.

      Thus, while the early onset of modulation in our data may appear surprising, it is consistent with prior B<sub>own</sub> findings, and likely reflects a combination of fast feedback and rapid interlaminar processing. This makes it challenging to use conventional latency measurements to resolve laminar differences in B<sub>own</sub> modulation. Latency comparisons are well known to be susceptible to confounds such as variability in response onset, luminance, contrast, stimulus size, and other sensory parameters. 

      Although we did not explicitly quantify the latency of B<sub>own</sub> modulation in this manuscript, our cross-correlation analysis provides a more sensitive and temporally resolved measure of interlaminar information flow. We therefore focused on this approach rather than laminar modulation profiles, as it more directly addresses our primary research question.

      (3) The logic of assuming that cRF stimulation should produce the opposite signal flow to borderownership tuning stimuli is worth discussing. I suspect the key difference between stimuli is that they used drifting gratings as the cRF stimulus, the movement of the stimulus continually refreshes the retinal image, leading to continuous feedforward dominance of the signals in V1. Had they used a static grating, the spiking during the sustained portion of the response might also show more influence of feedback/horizontal connections. Do the initial spikes fired in response to the borderownership tuning stimuli show the feedforward pattern of responses? The authors state that they did not look at cross-correlations during the initial response, but if they do, do they see the feedforward-dominated pattern? The jitter CCH analysis might suffice in correcting for the response transient. 

      We thank the reviewer for the insightful comment. As noted in the final Results section, our CRF and nCRF stimulation paradigms differ in respects beyond the presence or absence of nonclassical modulation, including stimulus properties within the CRF.

      We agree with the reviewer’s speculation that drifting gratings may continually refresh the retinal image, promoting sustained feedforward dominance in V1, whereas static gratings might allow greater influence from feedback/horizontal inputs during the sustained response. Likewise, the initial response to the B<sub>own</sub> stimulus could be dominated by feedforward activity before feedback/horizontal influences arrive. 

      This contrast was a central motivation for our experimental design: we deliberately used two stimulus conditions — drifting gratings to emphasize feedforward processing, and B<sub>own</sub> stimuli, which are known to engage feedback modulation — to test whether these two conditions yield different patterns of interlaminar information flow. Our results confirm that they do. While we did not separately analyze the very initial spike period, our focus is on interlaminar information flow during the sustained response, which serves as the primary measure of feedback/horizontal engagement in this study.

      Finally, beyond this direct comparison, we show in Figure 5 that under nCRF stimulation alone, the direction and strength of interlaminar information flow correlate with the magnitude of B<sub>own</sub> modulation, further supporting the idea that our cross-correlation approach reveals functionally meaningful differences in cortical processing.

      (4) The term "nCRF stimulation" is not appropriate because the CRF is stimulated by the light/dark edge. 

      We thank the reviewer for the comment. As noted in the Introduction, nCRF effects described in the literature invariably involve stimulation both inside and outside the CRF. Our use of the term “nCRF stimulation” refers to this experimental paradigm, rather than suggesting that the CRF itself is unstimulated. We hope this clarifies our use of the term.

      Reviewer #3 (Public review): 

      Summary: 

      The paper by Zhu et al is on an important topic in visual neuroscience, the emergence in the visual cortex of signals about figures and ground. This topic also goes by the name border ownership. The paper utilizes modern recording techniques very skillfully to extend what is known about border ownership. It offers new evidence about the prevalence of border ownership signals across different cortical layers in V1 cortex. Also, it uses pairwise cross-correlation to study signal flow under different conditions of visual stimulation that include the border ownership paradigm. 

      Strengths: 

      The paper's strengths are its use of multi-electrode probes to study border ownership in many neurons simultaneously across the cortical layers in V1, and its innovation of using crosscorrelation between cortical neurons -- when they are viewing border-ownership patterns or instead are viewing grating patterns restricted to the classical receptive field (CRF). 

      Weaknesses: 

      The paper's weaknesses are its largely incremental approach to the study of border ownership and the lack of a critical analysis of the cross-correlation data. The paper as it is now does not advance our understanding of border ownership; it mainly confirms prior work, and it does not challenge or revise consensus beliefs about mechanisms. However, it is possible that, in the rich dataset the authors have obtained, they do possess data that could be added to the paper to make it much stronger. 

      Critique: 

      The border ownership data on V1 offered in the paper replicates experimental results obtained by Zhou and von der Heydt (2000) and confirms the earlier results using the same analysis methods as Zhou. The incremental addition is that the authors found border ownership in all cortical layers extending Zhou's results that were only about layer 2/3. 

      The cross-correlation results show that the pattern of the cross-correlogram (CCG) is influenced by the visual pattern being presented. However, the results are not analyzed mechanistically, and the interpretation is unclear. For instance, the authors show in Figure 3 (and in Figure S2) that the peak of the CCG can indicate layer 2/3 excites layer 4C when the visual stimulus is the border ownership test pattern, a large square 8 deg on a side. But how can layer 2/3 excite layer 4C? The authors do not raise or offer an answer to this question. Similar questions arise when considering the CCG of layer 4A/B with layer 2/3. What is the proposed pathway for layer 2/3 to excite 4A/B? Other similar questions arise for all the interlaminar CCG data that are presented. What known functional connections would account for the measured CCGs? 

      We thank the reviewer for raising this important point. As noted in our response to a previous comment, several anatomical pathways could mediate apparent functional inputs from layers 2/3 to 4C and 4A/B. In macaque V1, projections from layers 2/3 to 4A/B have been documented (Blasdel et al., 1985; Callaway and Wiser, 1996), and neurons in 4A/B often extend apical dendrites into layers 2/3 (Lund, 1988; Yoshioka et al., 1994). Although direct projections from layers 2/3 to 4C are generally sparse (Callaway, 1998), a subset of lower layer 3 neurons can give off collateral axons to 4C (Lund and Yoshioka, 1991). Some 4C neurons also extend dendrites into 4B, potentially allowing dendritic integration of inputs from more superficial layers (Somogyi and Cowey, 1981; Mates and Lund, 1983; Yabuta and Callaway, 1998). Sparse connections from 2/3 to layer 4 have also been reported in cat V1 (Binzegger et al., 2004).

      Moreover, layers 2/3 may influence 4C neurons disynaptically, without requiring dense monosynaptic connections. While CCGs suggest possible circuit arrangements, functional connectivity may arise through mechanisms not fully captured by anatomical tracing, and apparent discrepancies between anatomical and functional data are not uncommon. For example, although 4B is known to receive anatomical input primarily from 4Cα, 4B neurons can also be functionally driven by 4Cβ using photostimulation (Sawatari and Callaway, 1996). Our observation of functional inputs from layers 2/3 to layer 4 is also consistent with prior findings in rodent V1, where CCG analysis (e.g., Figure 7 in Senzai, Fernandez-Ruiz and Buzsaki, 2019) or photostimulation (Xu et al., 2016) revealed similar pathways. 

      Layers 5/6 also provide dense projections to layers 4A/B (Lund, 1988; Callaway, 1998). In particular, layer 6 pyramidal neurons, especially the subset classified as Type 1 cells, project substantially to layer 4C (Wiser and Callaway, 1996; Fitzpatrick et al., 1985). 

      We have revised the Discussion section to explicitly address these points and clarify the potential anatomical and functional pathways underlying the measured interlaminar CCGs, highlighting how inputs from layers 2/3 and 5/6 to layer 4 can be mediated via both direct and indirect connections.

      The problems in understanding the CCG data are indirectly caused by the lack of a critical analysis of what is happening in the responses that reveal the border ownership signals, as in Figure 2. Let's put it bluntly - are border ownership signals excitatory or inhibitory? The reason I raise this question is that the present authors insightfully place border ownership as examples of the action of the non-classical receptive field (nCRF) of cortical cells. Most previous work on the nCRF (many papers cited by the authors) reveal the nCRF to be inhibitory or suppressive. In order to know whether nCRF signals are excitatory or inhibitory, one needs a baseline response from the CRF, so that when you introduce nCRF signals you can tell whether the change with respect to the CRF is up or down. As far as I know, prior work on border ownership has not addressed this question, and the present paper doesn't either. This is where the rich dataset that the present authors possess might be used to establish a fundamental property of border ownership. 

      Then we must go back to consider what the consequences of knowing the sign of the border ownership signal would mean for interpreting the CCG data. If the border ownership signals from extrastriate feedback or, alternatively, from horizontal intrinsic connections, are excitatory, they might provide a shared excitatory input to pairs of cells that would show up in the CCG as a peak at 0 delay. However, if the border ownership manuscript signals are inhibitory, they might work by exciting only inhibitory neurons in V1. This could have complicated consequences for the CCG.The interpretation of the CCG data in the present version of the m is unclear (see above). Perhaps a clearer interpretation could be developed once the authors know better what the border ownership signals are. 

      We thank the reviewer for raising this fundamental and thought-provoking question. As noted, B<sub>own</sub> signals arise from nCRF, which has often been associated with suppressive effects. However, Zhang and von der Heydt (2010) provided important insight into this issue by systematically varying the placement of figure fragments outside the CRF while keeping an edge centered within the CRF. They found that contextual fragments on the preferred side of B<sub>own</sub> produce facilitation, while those on the non-preferred side produce suppression. Thus, the nCRF contribution to B<sub>own</sub> reflects both excitatory and inhibitory modulation, depending on the spatial configuration of the figure.

      These effects were well explained by their model in which feedback from grouping cells in higher areas selectively enhances or suppresses V1/V2 neuron responses, depending on their B<sub>own</sub> preference. In this framework, the B<sub>own</sub> signal itself is not inherently excitatory or inhibitory; rather, it results from the net effect of feedback, which can be either facilitative or suppressive. Importantly, it is the input that is modulated — not that the receiving neurons are necessarily inhibitory themselves.

      In the current study, our analysis focused on CCGs showing excessive coincident spiking, i.e., positive peaks, which are typically interpreted as evidence for shared excitatory input or excitatory connections. Due to the limited number of connections, we did not analyze inhibitory interactions, such as anti-correlations or delayed suppression in the CCGs, which would be expected if the reference neuron were inhibitory. Therefore, the CCGs we report here likely reflect the excitatory component of the B<sub>own</sub> signal, and possibly its upstream drive via feedback. While a full separation of excitatory and inhibitory components remains an important goal for future work, our data suggest that B<sub>own</sub> modulation is at least partially mediated through excitatory feedback input.

      My critique of the CCG analysis applies to Figure 5 also. I cannot comprehend the point of showing a very weak correlation of CCG asymmetry with Border Ownership Index, especially when what CCG asymmetry means is unclear mechanistically. Figure 5 does not make the paper stronger in my opinion. 

      We thank the reviewer for this comment. As described in the Results section for Figure 5, the observation that interlaminar information flow correlates with B<sub>own</sub> modulation is important because it demonstrates that these flow patterns are specifically related to the magnitude of B<sub>own</sub> signals, independent of the comparisons between CRF and nCRF stimulation. 

      In Figure 3, the authors show two CCGs that involve 4C--4C pairs. It would be nice to know more about such pairs. If there are any 6--6 pairs, what they look like also would be interesting. The authors also in Figure 3 show CCG's of two 4C--4A/B pairs and it would be quite interesting to know how such CCGs behave when CRF and nCRF stimuli are compared. In other words, the authors have shown us they have many data but have chosen not to analyze them further or to explain why they chose not to analyze them. It might help the paper if the authors would present all the CCG types they have. This suggestion would be helpful when the authors know more about the sign of border ownership signals, as discussed at length above. 

      We thank the reviewer for the insightful comment. The rationale for selecting specific laminar pairs is described in the Results section after Figure 3C and further discussed in the Discussion. In brief, we focused on CCGs computed from pairs in which one neuron resided in laminar compartments receiving feedback/horizontal inputs (layers 2/3 and 5/6) and the other within compartments relatively devoid of these inputs (layers 4C and 4A/B).

      To mitigate uncertainty in defining exact laminar boundaries and to maximize statistical power, we combined some anatomical layers into distinct laminar compartments. This approach allowed us to compare the relative spike timing between neuronal pairs during CRF and nCRF stimulation. If feedback/horizontal inputs contribute more during nCRF than CRF stimulation, we expect this to be reflected in the lead-lag relationships of the CCGs. While other pairs (e.g., 5/6–5/6 or 4C– 4A/B) could in principle be analyzed, the hypothesized patterns for these pairs are less clear, and thus they were not the focus of our study. Nonetheless, these additional pairs represent interesting directions for future work.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank all the reviewers for their constructive comments. We have carefully considered your feedback and revised the manuscript accordingly. The major concern raised was the applicability of SegPore to the RNA004 dataset. To address this, we compared SegPore with f5c and Uncalled4 on RNA004, and found that SegPore demonstrated improved performance, as shown in Table 2 of the revised manuscript.

      Following the reviewers’ recommendations, we updated Figures 3 and 4. Additionally, we added one table and three supplementary figures to the revised manuscript:

      · Table 2: Segmentation benchmark on RNA004 data

      · Supplementary Figure S4: RNA translocation hypothesis illustrated on RNA004 data

      · Supplementary Figure S5: Illustration of Nanopolish raw signal segmentation with eventalign results

      · Supplementary Figure S6: Running time of SegPore on datasets of varying sizes

      Below, we provide a point-by-point response to your comments.

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a new computational method (SegPore), which segments the raw signal from nanopore-direct RNA-Seq data to improve the identification of RNA modifications. In addition to signal segmentation, SegPore includes a Gaussian Mixture Model approach to differentiate modified and unmodified bases. SegPore uses Nanopolish to define a first segmentation, which is then refined into base and transition blocks. SegPore also includes a modification prediction model that is included in the output. The authors evaluate the segmentation in comparison to Nanopolish and Tombo, and they evaluate the impact on m6A RNA modification detection using data with known m6A sites. In comparison to existing methods, SegPore appears to improve the ability to detect m6A, suggesting that this approach could be used to improve the analysis of direct RNA-Seq data.

      Strengths:

      SegPore addresses an important problem (signal data segmentation). By refining the signal into transition and base blocks, noise appears to be reduced, leading to improved m6A identification at the site level as well as for single-read predictions. The authors provide a fully documented implementation, including a GPU version that reduces run time. The authors provide a detailed methods description, and the approach to refine segments appears to be new.

      Weaknesses:

      In addition to Nanopolish and Tombo, f5c and Uncalled4 can also be used for segmentation, however, the comparison to these methods is not shown.

      The method was only applied to data from the RNA002 direct RNA-Sequencing version, which is not available anymore, currently, it remains unclear if the methods still work on RNA004.

      Thank you for your comments.

      To clarify the background, there are two kits for Nanopore direct RNA sequencing: RNA002 (the older version) and RNA004 (the newer version). Oxford Nanopore Technologies (ONT) introduced the RNA004 kit in early 2024 and has since discontinued RNA002. Consequently, most public datasets are based on RNA002, with relatively few available for RNA004 (as of 30 June 2025).

      Nanopolish and Tombo were developed for raw signal segmentation and alignment using RNA002 data, whereas f5c and Uncalled4are the only two software supporting RNA004 data.  Since the development of SegPore began in January 2022, we initially focused on RNA002 due to its data availability. Accordingly, our original comparisons were made against Nanopolish and Tombo using RNA002 data.

      We have now updated SegPore to support RNA004 and compared its performance against f5c and Uncalled4 on three public RNA004 datasets.

      As shown in Table 2 of the revised manuscript, SegPore outperforms both f5c and Uncalled4 in raw signal segmentation. Moreover, the jiggling translocation hypothesis underlying SegPore is further supported, as shown in Supplementary Figure S4.

      The overall improvement in accuracy appears to be relatively small.

      Thank you for the comment.

      We understand that the improvements shown in Tables 1 and 2 may appear modest at first glance due to the small differences in the reported standard deviation (std) values. However, even small absolute changes in std can correspond to substantial relative reductions in noise, especially when the total variance is low.

      To better quantify the improvement, we assume that approximately 20% of the std for Nanopolish, Tombo, f5c, and Uncalled4 arises from noise. Using this assumption, we calculate the relative noise reduction rate of SegPore as follows:

      Noise reduction rate = (baseline std − SegPore std) / (0.2 × baseline std) ​​

      Based on this formula, the average noise reduction rates across all datasets are:

      - SegPore vs Nanopolish: 49.52%

      - SegPore vs Tombo: 167.80%

      - SegPore vs f5c: 9.44%

      - SegPore vs Uncalled4: 136.70%

      These results demonstrate that SegPore can reduce the noise level by at least 9% given a noise level of 20%, which we consider a meaningful improvement for downstream tasks, such as base modification detection and signal interpretation. The high noise reduction rates observed in Tombo and Uncalled4 (over 100%) suggest that their actual noise proportion may be higher than our 20% assumption.

      We acknowledge that this 20% noise level assumption is an approximation. Our intention is to illustrate that SegPore provides measurable improvements in relative terms, even when absolute differences appear small.

      The run time and resources that are required to run SegPore are not shown, however, it appears that the GPU version is essential, which could limit the application of this method in practice.

      Thank you for your comment.

      Detailed instructions for running SegPore are provided in github (https://github.com/guangzhaocs/SegPore). Regarding computational resources, SegPore currently requires one CPU core and one Nvidia GPU to perform the segmentation task efficiently.

      We present SegPore’s runtime for typical datasets in Supplementary Figure S6 in the revised manuscript.  For a typical 1 GB fast5 file, the segmentation takes approximately 9.4 hours using a single NVIDIA DGX‑1 V100 GPU and one CPU core.

      Currently, GPU acceleration is essential to achieve practical runtimes with SegPore. We acknowledge that this requirement may limit accessibility in some environments. To address this, we are actively working on a full C++ implementation of SegPore that will support CPU-only execution. While development is ongoing, we aim to release this version in a future update.

      Reviewer #2 (Public review):

      Summary:

      The work seeks to improve the detection of RNA m6A modifications using Nanopore sequencing through improvements in raw data analysis. These improvements are said to be in the segmentation of the raw data, although the work appears to position the alignment of raw data to the reference sequence and some further processing as part of the segmentation, and result statistics are mostly shown on the 'data-assigned-to-kmer' level.

      As such, the title, abstract, and introduction stating the improvement of just the 'segmentation' does not seem to match the work the manuscript actually presents, as the wording seems a bit too limited for the work involved.

      The work itself shows minor improvements in m6Anet when replacing Nanopolish eventalign with this new approach, but clear improvements in the distributions of data assigned per kmer. However, these assignments were improved well enough to enable m6A calling from them directly, both at site-level and at read-level.

      Strengths:

      A large part of the improvements shown appear to stem from the addition of extra, non-base/kmer specific, states in the segmentation/assignment of the raw data, removing a significant portion of what can be considered technical noise for further analysis. Previous methods enforced the assignment of all raw data, forcing a technically optimal alignment that may lead to suboptimal results in downstream processing as data points could be assigned to neighbouring kmers instead, while random noise that is assigned to the correct kmer may also lead to errors in modification detection.

      For an optimal alignment between the raw signal and the reference sequence, this approach may yield improvements for downstream processing using other tools.<br /> Additionally, the GMM used for calling the m6A modifications provides a useful, simple, and understandable logic to explain the reason a modification was called, as opposed to the black models that are nowadays often employed for these types of tasks.

      Weaknesses:

      The work seems limited in applicability largely due to the focus on the R9's 5mer models. The R9 flow cells are phased out and not available to buy anymore. Instead, the R10 flow cells with larger kmer models are the new standard, and the applicability of this tool on such data is not shown. We may expect similar behaviour from the raw sequencing data where the noise and transition states are still helpful, but the increased kmer size introduces a large amount of extra computing required to process data and without knowledge of how SegPore scales, it is difficult to tell how useful it will really be. The discussion suggests possible accuracy improvements moving to 7mers or 9mers, but no reason why this was not attempted.

      Thank you for pointing out this important limitation. Please refer to our response to Point 1 of Reviewer 1 for SegPore’s performance on RNA004 data. Notably, the jiggling behavior is also observed in RNA004 data, and SegPore achieves better performance than both f5c and Uncalled4.

      The increased k-mer size in RNA004 affects only the training phase of SegPore (refer to Supplementary Note 1, Figure 5 for details on the training and testing phases). Once the baseline means and standard deviations for each k-mer are established, applying SegPore to RNA004 data proceeds similarly to RNA002. This is because each k-mer in the reference sequence has, at most, two states (modified and unmodified). While the larger k-mer size increases the size of the parameter table, it does not increase the computational complexity during segmentation. Although estimating the initial k-mer parameter table requires significant time and effort on our part, it does not affect the runtime for end users applying SegPore to RNA004 data.

      Extending SegPore from 5-mers to 7-mers or 9-mers for RNA002 data would require substantial effort to retrain the model and generate sufficient training data. Additionally, such an extension would make SegPore’s output incompatible with widely used upstream and downstream tools such as Nanopolish and m6Anet, complicating integration and comparison. For these reasons, we leave this extension for future work.

      The manuscript suggests the eventalign results are improved compared to Nanopolish. While this is believably shown to be true (Table 1), the effect on the use case presented, downstream differentiation between modified and unmodified status on a base/kmer, is likely limited as during actual modification calling the noisy distributions are usually 'good enough', and not skewed significantly in one direction to really affect the results too terribly.

      Thank you for your comment. While current state-of-the-art (SOTA) methods perform well on benchmark datasets, there remains significant room for improvement. Most SOTA evaluations are based on limited datasets, primarily covering DRACH motifs in human and mouse transcriptomes. However, m6A modifications can also occur in non-DRACH motifs, where current models may underperform. Additionally, other RNA modifications—such as pseudouridine, inosine, and m5C—are less studied, and their detection may benefit from improved signal modeling.

      We would also like to emphasize that raw signal segmentation and RNA modification detection are distinct tasks. SegPore focuses on the former, providing a cleaner, more interpretable signal that can serve as a foundation for downstream tasks. Improved segmentation may facilitate the development of more accurate RNA modification detection algorithms by the community.

      Scientific progress often builds incrementally through targeted improvements to foundational components. We believe that enhancing signal segmentation, as SegPore does, contributes meaningfully to the broader field—the full impact will become clearer as the tool is adopted into more complex workflows.

      Furthermore, looking at alternative approaches where this kind of segmentation could be applied, Nanopolish uses the main segmentation+alignment for a first alignment and follows up with a form of targeted local realignment/HMM test for modification calling (and for training too), decreasing the need for the near-perfect segmentation+alignment this work attempts to provide. Any tool applying a similar strategy probably largely negates the problems this manuscript aims to improve upon.

      We thank the reviewer for this insightful comment.

      To clarify, Nanopolish provides three independent commands: polya, eventalign, and call-methylation.

      - The polya command identifies the adapter, poly(A) tail, and transcript region in the raw signal.

      - The eventalign command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference.

      - The call-methylation command detects methylated bases from DNA sequencing data.

      The eventalign command corresponds to “the main segmentation+alignment for a first alignment,” while call-methylation corresponds to “a form of targeted local realignment/HMM test for modification calling,” as mentioned in the reviewer’s comment. SegPore’s segmentation is similar in purpose to Nanopolish’s eventalign, while its RNA modification estimation component is similar in concept to Nanopolish’s call-methylation.

      We agree the general idea may appear similar, but the implementations are entirely different. Importantly, Nanopolish’s call-methylation is designed for DNA sequencing data, and its models are not trained to recognize RNA modifications. This means they address distinct research questions and cannot be directly compared on the same RNA modification estimation task. However, it is valid to compare them on the segmentation task, where SegPore exhibits better performance (Table 1).

      We infer the reviewer may suggest that because m6Anet is a deep neural network capable of learning from noisy input, the benefit of more accurate segmentation (such as that provided by SegPore) might be limited. This concern may arise from the limited improvement of SegPore+m6Anet over Nanopolish+m6Anet in bulk analysis (Figure 3). Several factors may contribute to this observation:

      (i) For reads aligned to the same gene in the in vivo data, alignment may be inaccurate due to pseudogenes or transcript isoforms.

      (ii) The in vivo benchmark data are inherently more complex than in vitro datasets and may contain additional modifications (e.g., m5C, m7G), which can confound m6A calling by altering the signal baselines of k-mers.

      (iii) m6Anet is trained on events produced by Nanopolish and may not be optimal for SegPore-derived events.

      (iv) The benchmark dataset lacks a modification-free (IVT) control sample, making it difficult to establish a true baseline for each k-mer.

      In the IVT data (Figure 4), SegPore shows a clear improvement in single-molecule m6A identification, with a 3~4% gain in both ROC-AUC and PR-AUC. This demonstrates SegPore’s practical benefit for applications requiring higher sensitivity at the molecule level.

      As noted earlier, SegPore’s contribution lies in denoising and improving the accuracy of raw signal segmentation, which is a foundational step in many downstream analyses. While it may not yet lead to a dramatic improvement in all applications, it already provides valuable insights into the sequencing process (e.g., cleaner signal profiles in Figure 4) and enables measurable gains in modification detection at the single-read level. We believe SegPore lays the groundwork for developing more accurate and generalizable RNA modification detection tools beyond m6A.

      We have also added the following sentence in the discussion to highlight SegPore’s limited performance in bulk analysis:

      “The limited improvement of SegPore combined with m6Anet over Nanopolish+m6Anet in bulk in vivo analysis (Figure 3) may be explained by several factors: potential alignment inaccuracies due to pseudogenes or transcript isoforms, the complexity of in vivo datasets containing additional RNA modifications (e.g., m5C, m7G) affecting signal baselines, and the fact that m6Anet is specifically trained on events produced by Nanopolish rather than SegPore. Additionally, the lack of a modification-free control (in vitro transcribed) sample in the benchmark dataset makes it difficult to establish true baselines for each k-mer. Despite these limitations, SegPore demonstrates clear improvement in single-molecule m6A identification in IVT data (Figure 4), suggesting it is particularly well suited for in vitro transcription data analysis.”

      Finally, in the segmentation/alignment comparison to Nanopolish, the latter was not fitted(/trained) on the same data but appears to use the pre-trained model it comes with. For the sake of comparing segmentation/alignment quality directly, fitting Nanopolish on the same data used for SegPore could remove the influences of using different training datasets and focus on differences stemming from the algorithm itself.

      In the segmentation benchmark (Table 1), SegPore uses the fixed 5-mer parameter table provided by ONT. The hyperparameters of the HHMM are also fixed and not estimated from the raw signal data being segmented. Only in the m6A modification task,  SegPore does perform re-estimation of the baselines for the modified and unmodified states of k-mers. Therefore, the comparison with Nanopolish is fair, as both tools rely on pre-defined models during segmentation.

      Appraisal:

      The authors have shown their method's ability to identify noise in the raw signal and remove their values from the segmentation and alignment, reducing its influences for further analyses. Figures directly comparing the values per kmer do show a visibly improved assignment of raw data per kmer. As a replacement for Nanopolish eventalign it seems to have a rather limited, but improved effect, on m6Anet results. At the single read level modification modification calling this work does appear to improve upon CHEUI.

      Impact:

      With the current developments for Nanopore-based modification largely focusing on Artificial Intelligence, Neural Networks, and the like, improvements made in interpretable approaches provide an important alternative that enables a deeper understanding of the data rather than providing a tool that plainly answers the question of whether a base is modified or not, without further explanation. The work presented is best viewed in the context of a workflow where one aims to get an optimal alignment between raw signal data and the reference base sequence for further processing. For example, as presented, as a possible replacement for Nanopolish eventalign. Here it might enable data exploration and downstream modification calling without the need for local realignments or other approaches that re-consider the distribution of raw data around the target motif, such as a 'local' Hidden Markov Model or Neural Networks. These possibilities are useful for a deeper understanding of the data and further tool development for modification detection works beyond m6A calling.

      Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however, many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well-described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Weaknesses:

      However, the manuscript has a significant drawback in its current version. The most recent nanopore RNA base callers can distinguish between different ribonucleotide modifications, however, SegPore has not been benchmarked against these models.

      I recommend that re-submission of the manuscript that includes benchmarking against the rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0 dorado models, which are reported to detect m5C, m6A_DRACH, inosine_m6A and PseU.<br /> A clear demonstration that SegPore also outperforms the newer RNA base caller models will confirm the utility of this method.

      Thank you for highlighting this important limitation. While Dorado, the new ONT basecaller, is publicly available and supports modification-aware basecalling, suitable public datasets for benchmarking m5C, inosine, m6A, and PseU detection on RNA004 are currently lacking. Dorado’s modification-aware models are trained on ONT’s internal data, which is not publicly released. Therefore, it is not currently feasible to evaluate or directly compare SegPore’s performance against Dorado for m5C, inosine, m6A, and PseU detection.

      We would also like to emphasize that SegPore’s main contribution lies in raw signal segmentation, which is an upstream task in the RNA modification detection pipeline. To assess its performance in this context, we benchmarked SegPore against f5c and Uncalled4 on public RNA004 datasets for segmentation quality. Please refer to our response to Point 1 of Reviewer 1 for details.

      Our results show that the characteristic “jiggling” behavior is also observed in RNA004 data (Supplementary Figure S4), and SegPore achieves better segmentation performance than both f5c and Uncalled4 (Table 2).

      Recommendations for the authors:

      Reviewing Editor:

      Please note that we also received the following comments on the submission, which we encourage you to take into account:

      took a look at the work and for what I saw it only mentions/uses RNA002 chemistry, which is deprecated, effectively making this software unusable by anyone any more, as RNA002 is not commercially available. While the results seem promising, the authors need to show that it would work for RNA004. Notably, there is an alternative software for resquiggling for RNA004 (not Tombo or Nanopolish, but the GPU-accelerated version of Nanopolish (f5C), which does support RNA004. Therefore, they need to show that SegPore works for RNA004, because otherwise it is pointless to see that this method works better than others if it does not support current sequencing chemistries and only works for deprecated chemistries, and people will keep using f5C because its the only one that currently works for RNA004. Alternatively, if there would be biological insights won from the method, one could justify not implementing it in RNA004, but in this case, RNA002 is deprecated since March 2024, and the paper is purely methodological.

      Thank you for the comment. We agree that support for current sequencing chemistries is essential for practical utility. While SegPore was initially developed and benchmarked on RNA002 due to the availability of public data, we have now extended SegPore to support RNA004 chemistry.

      To address this concern, we performed a benchmark comparison using public RNA004 datasets against tools specifically designed for RNA004, including f5c and Uncalled4. Please refer to our response to Point 1 of Reviewer 1 for details. The results show that SegPore consistently outperforms f5c and Uncalled4 in segmentation accuracy on RNA004 data.

      Reviewer #2 (Recommendations for the authors):

      Various statements are made throughout the text that require further explanation, which might actually be defined in more detail elsewhere sometimes but are simply hard to find in the current form.

      (1) Page 2, “In this technique, five nucleotides (5mers) reside in the nanopore at a time, and each 5mer generates a characteristic current signal based on its unique sequence and chemical properties (16).”

      5mer? Still on R9 or just ignoring longer range influences, relevant? It is indeed a R9.4 model from ONT.

      Thank you for the observation. We apologize for the confusion and have clarified the relevant paragraph to indicate that the method is developed for RNA002 data by default. Specifically, we have added the following sentence:

      “Two versions of the direct RNA sequencing (DRS) kits are available: RNA002 and RNA004. Unless otherwise specified, this study focuses on RNA002 data.”

      (2) Page 3, “Employ models like Hidden Markov Models (HMM) to segment the signal, but they are prone to noise and inaccuracies.”

      That's the alignment/calling part, not the segmentation?

      Thank you for the comment. We apologize for the confusion. To clarify the distinction between segmentation and alignment, we added a new paragraph before the one in question to explain the general workflow of Nanopore DRS data analysis and to clearly define the task of segmentation. The added text reads:

      “The general workflow of Nanopore direct RNA sequencing (DRS) data analysis is as follows. First, the raw electrical signal from a read is basecalled using tools such as Guppy or Dorado, which produce the nucleotide sequence of the RNA molecule. However, these basecalled sequences do not include the precise start and end positions of each ribonucleotide (or k-mer) in the signal. Because basecalling errors are common, the sequences are typically mapped to a reference genome or transcriptome using minimap2 to recover the correct reference sequence. Next, tools such as Nanopolish and Tombo align the raw signal to the reference sequence to determine which portion of the signal corresponds to each k-mer. We define this process as the segmentation task, referred to as "eventalign" in Nanopolish. Based on this alignment, Nanopolish extracts various features—such as the start and end positions, mean, and standard deviation of the signal segment corresponding to a k-mer. This signal segment or its derived features is referred to as an "event" in Nanopolish.”

      We also revised the following paragraph describing SegPore to more clearly contrast its approach:

      “In SegPore, we first segment the raw signal into small fragments using a Hierarchical Hidden Markov Model (HHMM), where each fragment corresponds to a sub-state of a k-mer. Unlike Nanopolish and Tombo, which directly align the raw signal to the reference sequence, SegPore aligns the mean values of these small fragments to the reference. After alignment, we concatenate all fragments that map to the same k-mer into a larger segment, analogous to the "eventalign" output in Nanopolish. For RNA modification estimation, we use only the mean signal value of each reconstructed event.”

      We hope this revision clarifies the difference between segmentation and alignment in the context of our method and resolves the reviewer’s concern.

      (3) Page 4, Figure 1, “These segments are then aligned with the 5mer list of the reference sequence fragment using a full/partial alignment algorithm, based on a 5mer parameter table. For example, 𝐴𝑗 denotes the base "A" at the j-th position on the reference.”

      I think I do understand the meaning, but I do not understand the relevance of the Aj bit in the last sentence. What is it used for?

      When aligning the segments (output from Step 2) to the reference sequence in Step 3, it is possible for multiple segments to align to the same k-mer. This can occur particularly when the reference contains consecutive identical bases, such as multiple adenines (A). For example, as shown in Fig. 1A, Step 3, the first two segments (μ₁ and μ₂) are aligned to the first 'A' in the reference sequence, while the third segment is aligned to the second 'A'. In this case, the reference sequence AACTGGTTTC...GTC, which contains exactly two consecutive 'A's at the start. This notation helps to disambiguate segment alignment in regions with repeated bases.

      Additionally, this figure and its subscript include mapping with Guppy and Minimap2 but do not mention Nanopolish at all, while that seems an equally important step in the preprocessing (pg5). As such it is difficult to understand the role Nanopolish exactly plays. It's also not mentioned explicitly in the SegPore Workflow on pg15, perhaps it's part of step 1 there?

      We thank the reviewer for pointing this out. We apologize for the confusion. As mentioned in the public response to point 3 of Reviewer 2, SegPore uses Nanopolish to identify the poly(A) tail and transcript regions from the raw signal. SegPore then performs segmentation and alignment on the transcript portion only. This step is indeed part of Step 1 in the preprocessing workflow, as described in Supplementary Note 1, Section 3.

      To clarify this in the main text, we have updated the preprocessing paragraph on page 6 to explicitly describe the role of Nanopolish:

      “We begin by performing basecalling on the input fast5 file using Guppy, which converts the raw signal data into ribonucleotide sequences. Next, we align the basecalled sequences to the reference genome using Minimap2, generating a mapping between the reads and the reference sequences. Nanopolish provides two independent commands: "polya" and "eventalign".
The "polya" command identifies the adapter, poly(A) tail, and transcript region in the raw signal, which we refer to as the poly(A) detection results. The raw signal segment corresponding to the poly(A) tail is used to standardize the raw signal for each read. The "eventalign" command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference. It also computes summary statistics (e.g., mean, standard deviation) from the signal segment for each k-mer. Each k-mer together with its corresponding signal features is termed an event. These event features are then passed into downstream tools such as m6Anet and CHEUI for RNA modification detection. For full transcriptome analysis (Figure 3), we extract the aligned raw signal segment and reference sequence segment from Nanopolish's events for each read by using the first and last events as start and end points. For in vitro transcription (IVT) data with a known reference sequence (Figure 4), we extract the raw signal segment corresponding to the transcript region for each input read based on Nanopolish’s poly(A) detection results.”

      Additionally, we revised the legend of Figure 1A to explicitly include Nanopolish in step 1 as follows:

      “The raw current signal fragments are paired with the corresponding reference RNA sequence fragments using Nanopolish.”

      (4) Page 5, “The output of Step 3 is the "eventalign," which is analogous to the output generated by the Nanopolish "eventalign" command.”

      Naming the function of Nanopolish, the output file, and later on (pg9) the alignment of the newly introduced methods the exact same "eventalign" is very confusing.

      Thank you for the helpful comment. We acknowledge the potential confusion caused by using the term “eventalign” in multiple contexts. To improve clarity, we now consistently use the term “events” to refer to the output of both Nanopolish and SegPore, rather than using "eventalign" as a noun. We also added the following sentence to Step 3 (page 6) to clearly define what an “event” refers to in our manuscript:

      “An "event" refers to a segment of the raw signal that is aligned to a specific k-mer on a read, along with its associated features such as start and end positions, mean current, standard deviation, and other relevant statistics.”

      We have revised the text throughout the manuscript accordingly to reduce ambiguity and ensure consistent terminology.

      (5) Page 5, “Once aligned, we use Nanopolish's eventalign to obtain paired raw current signal segments and the corresponding fragments of the reference sequence, providing a precise association between the raw signals and the nucleotide sequence.”

      I thought the new method's HHMM was supposed to output an 'eventalign' formatted file. As this is not clearly mentioned elsewhere, is this a mistake in writing? Is this workflow dependent on Nanopolish 'eventalign' function and output or not?

      We apologize for the confusion. To clarify, SegPore is not dependent on Nanopolish’s eventalign function for generating the final segmentation results. As described in our response to your comment point 2 and elaborated in the revised text on page 4, SegPore uses its own HHMM-based segmentation model to divide the raw signal into small fragments, each corresponding to a sub-state of a k-mer. These fragments are then aligned to the reference sequence based on their mean current values.

      As explained in the revised manuscript:

      “In SegPore, we first segment the raw signal into small fragments using a Hierarchical Hidden Markov Model (HHMM), where each fragment corresponds to a sub-state of a k-mer. Unlike Nanopolish and Tombo, which directly align the raw signal to the reference sequence, SegPore aligns the mean values of these small fragments to the reference. After alignment, we concatenate all fragments that map to the same k-mer into a larger segment, analogous to the "eventalign" output in Nanopolish. For RNA modification estimation, we use only the mean signal value of each reconstructed event.”

      To avoid ambiguity, we have also revised the sentence on page 5 to more clearly distinguish the roles of Nanopolish and SegPore in the workflow. The updated sentence now reads:

      “Nanopolish provides two independent commands: "polya" and "eventalign".
The "polya" command identifies the adapter, poly(A) tail, and transcript region in the raw signal, which we refer to as the poly(A) detection results. The raw signal segment corresponding to the poly(A) tail is used to standardize the raw signal for each read. The "eventalign" command aligns the raw signal to a reference sequence, assigning a signal segment to individual k-mers in the reference. It also computes summary statistics (e.g., mean, standard deviation) from the signal segment for each k-mer. Each k-mer together with its corresponding signal features is termed an event. These event features are then passed into downstream tools such as m6Anet and CHEUI for RNA modification detection. For full transcriptome analysis (Figure 3), we extract the aligned raw signal segment and reference sequence segment from Nanopolish's events for each read by using the first and last events as start and end points. For in vitro transcription (IVT) data with a known reference sequence (Figure 4), we extract the raw signal segment corresponding to the transcript region for each input read based on Nanopolish’s poly(A) detection results.”

      (6) Page 5, “Since the polyA tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the polyA tail are consistent across all reads.”

      Perhaps I misread this statement: I interpret it as using the PolyA tail to do the normalization, rather than using the rest of the signal to do the normalization, and that results in consistent PolyA tails across all reads.

      If it's the latter, this should be clarified, and a little detail on how the normalization is done should be added, but if my first interpretation is correct:

      I'm not sure if its standard deviation is consistent across reads. The (true) value spread in this section of a read should be fairly limited compared to the rest of the signal in the read, so the noise would influence the scale quite quickly, and such noise might be introduced to pores wearing down and other technical influences. Is this really better than using the non-PolyA tail part of the reads signal, using Median Absolute Deviation to scale for a first alignment round, then re-fitting the signal scaling using Theil Sen on the resulting alignments (assigned read signal vs reference expected signal), as Tombo/Nanopolish (can) do?

      Additionally, this kind of normalization should have been part of the Nanopolish eventalign already, can this not be re-used? If it's done differently it may result in different distributions than the ONT kmer table obtained for the next step.

      Thank you for this detailed and thoughtful comment. We apologize for the confusion. The poly(A) tail–based normalization is indeed explained in Supplementary Note 1, Section 3, but we agree that the motivation needed to be clarified in the main text.

      We have now added the following sentence in the revised manuscript (before the original statement on page 5 to provide clearer context:

      “Due to inherent variability between nanopores in the sequencing device, the baseline levels and standard deviations of k-mer signals can differ across reads, even for the same transcript. To standardize the signal for downstream analyses, we extract the raw current signal segments corresponding to the poly(A) tail of each read. Since the poly(A) tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the poly(A) tail are consistent across all reads. This step is crucial for reducing…..”

      We chose to use the poly(A) tail for normalization because it is sequence-invariant—i.e., all poly(A) tails consist of identical k-mers, unlike transcript sequences which vary in composition. In contrast, using the transcript region for normalization can introduce biases: for instance, reads with more diverse k-mers (having inherently broader signal distributions) would be forced to match the variance of reads with more uniform k-mers, potentially distorting the baseline across k-mers.

      In our newly added RNA004 benchmark experiment, we used the default normalization provided by f5c, which does not include poly(A) tail normalization. Despite this, SegPore was still able to mask out noise and outperform both f5c and Uncalled4, demonstrating that our segmentation method is robust to different normalization strategies.

      (7) Page 7, “The initialization of the 5mer parameter table is a critical step in SegPore's workflow. By leveraging ONT's established kmer models, we ensure that the initial estimates for unmodified 5mers are grounded in empirical data.”

      It looks like the method uses Nanopolish for a first alignment, then improves the segmentation matching the reference sequence/expected 5mer values. I thought the Nanopolish model/tables are based on the same data, or similarly obtained. If they are different, then why the switch of kmer model? Now the original alignment may have been based on other values, and thus the alignment may seem off with the expected kmer values of this table.

      Thank you for this insightful question. To clarify, SegPore uses Nanopolish only to identify the poly(A) tail and transcript regions from the raw signal. In the bulk in vivo data analysis, we use Nanopolish’s first event as the start and the last event as the end to extract the aligned raw signal chunk and its corresponding reference sequence. Since SegPore relies on Nanopolish solely to delineate the transcript region for each read, it independently aligns the raw signals to the reference sequence without refining or adjusting Nanopolish’s segmentation results.

      While SegPore's 5-mer parameter table is initially seeded using ONT’s published unmodified k-mer models, we acknowledge that empirical signal values may deviate from these reference models due to run-specific technical variation and the presence of RNA modifications. For this reason, SegPore includes a parameter re-estimation step to refine the mean and standard deviation values of each k-mer based on the current dataset.

      The re-estimation process consists of two layers. In the outer layer, we select a set of 5mers that exhibit both modified and unmodified states based on the GMM results (Section 6 of Supplementary Note 1), while the remaining 5mers are assumed to have only unmodified states. In the inner layer, we align the raw signals to the reference sequences using the 5mer parameter table estimated in the outer layer (Section 5 of Supplementary Note 1). Based on the alignment results, we update the 5mer parameter table in the outer layer. This two-layer process is generally repeated for 3~5 iterations until the 5mer parameter table converges.This re-estimation ensures that:

      (1) The adjusted 5mer signal baselines remain close to the ONT reference (for consistency);

      (2) The alignment score between the observed signal and the reference sequence is optimized (as detailed in Equation 11, Section 5 of Supplementary Note 1);

      (3) Only 5mers that show a clear difference between the modified and unmodified components in the GMM are considered subject to modification.

      By doing so, SegPore achieves more accurate signal alignment independent of Nanopolish’s models, and the alignment is directly tuned to the data under analysis.

      (8) Page 9, “The output of the alignment algorithm is an eventalign, which pairs the base blocks with the 5mers from the reference sequence for each read (Fig. 1C).”

      “Modification prediction

      After obtaining the eventalign results, we estimate the modification state of each motif using the 5mer parameter table.”

      This wording seems to have been introduced on page 5 but (also there) reads a bit confusingly as the name of the output format, file, and function are now named the exact same "eventalign". I assume the obtained eventalign results now refer to the output of your HHMM, and not the original Nanopolish eventalign results, based on context only, but I'd rather have a clear naming that enables more differentiation.

      We apologize for the confusion. We have revised the sentence as follows for clarity:

      “A detailed description of both alignment algorithms is provided in Supplementary Note 1. The output of the alignment algorithm is an alignment that pairs the base blocks with the 5mers from the reference sequence for each read (Fig. 1C). Base blocks aligned to the same 5-mer are concatenated into a single raw signal segment (referred to as an “event”), from which various features—such as start and end positions, mean current, and standard deviation—are extracted. Detailed derivation of the mean and standard deviation is provided in Section 5.3 in Supplementary Note 1. In the remainder of this paper, we refer to these resulting events as the output of eventalign analysis or the segmentation task. ”

      (9) Page 9, “Since a single 5mer can be aligned with multiple base blocks, we merge all aligned base blocks by calculating a weighted mean. This weighted mean represents the single base block mean aligned with the given 5mer, allowing us to estimate the modification state for each site of a read.”

      I assume the weights depend on the length of the segment but I don't think it is explicitly stated while it should be.

      Thank you for the helpful observation. To improve clarity, we have moved this explanation to the last paragraph of the previous section (see response to point 8), where we describe the segmentation process in more detail.

      Additionally, a complete explanation of how the weighted mean is computed is provided in Section 5.3 of Supplementary Note 1. It is derived from signal points that are assigned to a given 5mer.

      (10) Page 10, “Afterward, we manually adjust the 5mer parameter table using heuristics to ensure that the modified 5mer distribution is significantly distinct from the unmodified distribution.”

      Using what heuristics? If this is explained in the supplementary notes then please refer to the exact section.

      Thank you for pointing this out. The heuristics used to manually adjust the 5mer parameter table are indeed explained in detail in Section 7 of Supplementary Note 1.

      To clarify this in the manuscript, we have revised the sentence as follows:

      “Afterward, we manually adjust the 5mer parameter table using heuristics to ensure that the modified 5mer distribution is significantly distinct from the unmodified distribution (see details in Section 7 of Supplementary Note 1).”

      (11) Page 10, “Once the table is fixed, it is used for RNA modification estimation in the test data without further updates.”

      By what tool/algorithm? Perhaps it is your own implementation, but with the next section going into segmentation benchmarking and using Nanopolish before this seems undefined.

      Thank you for pointing this out. We use our own implementation. See Algorithm 3 in Section 6 of Supplementary Note 1.

      We have revised the sentence for clarity:

      “Once a stabilized 5mer parameter table is estimated from the training data, it is used for RNA modification estimation in the test data without further updates. A more detailed description of the GMM re-estimation process is provided in Section 6 of Supplementary Note 1.”

      (12) Page 11, “A 5mer was considered significantly modified if its read coverage exceeded 1,500 and the distance between the means of the two Gaussian components in the GMM was greater than 5.”

      Considering the scaling done before also not being very detailed in what range to expect, this cutoff doesn't provide any useful information. Is this a pA value?

      Thank you for the observation. Yes, the value refers to the current difference measured in picoamperes (pA). To clarify this, we have revised the sentence in the manuscript to include the unit explicitly:

      “A 5mer was considered significantly modified if its read coverage exceeded 1,500 and the distance between the means of the two Gaussian components in the GMM was greater than 5 picoamperes (pA).”

      (13) Page 13, “The raw current signals, as shown in Figure 1B.”

      Wrong figure? Figure 2B seems logical.

      Thank you for catching this. You are correct—the reference should be to Figure 2B, not Figure 1B. We have corrected this in the revised manuscript.

      (14) Page 14, Figure 2A, these figures supposedly support the jiggle hypothesis but the examples seem to match only half the explanation. Any of these jiggles seem to be followed shortly by another in the opposite direction, and the amplitude seems to match better within each such pair than the next or previous segments. Perhaps there is a better explanation still, and this behaviour can be modelled as such instead.

      Thank you for your comment. We acknowledge that the observed signal patterns may appear ambiguous and could potentially suggest alternative explanations. However, as shown in Figure 2A, the red dots tend to align closely with the baseline of the previous state, while the blue dots align more closely with the baseline of the next state. We interpret this as evidence for the "jiggling" hypothesis, where k-mer temporarily oscillates between adjacent states during translocation.

      That said, we agree that more sophisticated models could be explored to better capture this behavior, and we welcome suggestions or references to alternative models. We will consider this direction in future work.

      (15) Page 15, “This occurs because subtle transitions within a base block may be mistaken for transitions between blocks, leading to inflated transition counts.”

      Is it really a "subtle transition" if it happens within a base block? It seems this is not a transition and thus shouldn't be named as such.

      Thank you for pointing this out. We agree that the term “subtle transition” may be misleading in this context. We revised the sentence to clarify the potential underlying cause of the inflated transition counts:

      “This may be due to a base block actually corresponding to a sub-state of a single 5mer, rather than each base block corresponding to a full 5mer, leading to inflated transition counts. To address this issue, SegPore’s alignment algorithm was refined to merge multiple base blocks (which may represent sub-states of the same 5mer) into a single 5mer, thereby facilitating further analysis.”

      (16) Page 15, “The SegPore "eventalign" output is similar to Nanopolish's "eventalign" command.”

      To the output of that command, I presume, not to the command itself.

      Thank you for pointing out the ambiguity. We have revised the sentence for clarity:

      “The final outputs of SegPore are the events and modification state predictions. SegPore’s events are similar to the outputs of Nanopolish’s "eventalign" command, in that they pair raw current signal segments with the corresponding RNA reference 5-mers. Each 5-mer is associated with various features — such as start and end positions, mean current, and standard deviation — derived from the paired signal segment.”

      (17) Page 15, “For selected 5mers, SegPore also provides the modification rate for each site and the modification state of that site on individual reads.”

      What selection? Just all kmers with a possible modified base or a more specific subset?

      We revised the sentence to clarify the selection criteria:

      “For selected 5mers that exhibit both a clearly unmodified and a clearly modified signal component, SegPore reports the modification rate at each site, as well as the modification state of that site on individual reads.”

      (18) Page 16, “A key component of SegPore is the 5mer parameter table, which specifies the mean and standard deviation for each 5mer in both modified and unmodified states (Figure 2A).”

      Wrong figure?

      Thank you for pointing this out. You are correct—it should be Figure 1A, not Figure 2A. We intended to visually illustrate the structure of the 5mer parameter table in Figure 1A, and we have corrected this reference in the revised manuscript.

      (19) Page 16, Table 1, I can't quite tell but I assume this is based on all kmers in the table, not just a m6A modified subset. A short added statement to make this clearer would help.

      Yes, you are right—it is averaged over all 5mers. We have revised the sentence for clarity as follows:

      " As shown in Table 1, SegPore consistently achieved the best performance averaged on all 5mers across all datasets..…."

      (20) Page 16, “Since the peaks (representing modified and unmodified states) are separable for only a subset of 5mers, SegPore can provide modification parameters for these specific 5mers. For other 5mers, modification state predictions are unavailable.”

      Can this be improved using some heuristics rather than the 'distance of 5' cutoff as described before? How small or big is this subset, compared to how many there should be to cover all cases?

      We agree that more sophisticated strategies could potentially improve performance. In this study, we adopted a relatively conservative approach to minimize false positives by using a heuristic cutoff of 5 picoamperes. This value was selected empirically and we did not explore alternative cutoffs. Future work could investigate more refined or data-driven thresholding strategies.

      (21) Page 16, “Tombo used the "resquiggle" method to segment the raw signals, and we standardized the segments using the polyA tail to ensure a fair comparison.”

      I don't know what or how something is "standardized" here.

      Standardized’ refers to the poly(A) tail–based signal normalization described in our response to point 6. We applied this normalization to Tombo’s output to ensure a fair comparison across methods. Without this standardization, Tombo’s performance was notably worse. We revised the sentence as follows:

      “Tombo used the "resquiggle" method to segment the raw signals, and we standardized the segments using the poly(A) tail to ensure a fair comparison (See preprocessing section in Materials and Methods).”

      (22) Page 16, “To benchmark segmentation performance, we used two key metrics: (1) the log-likelihood of the segment mean, which measures how closely the segment matches ONT's 5mer parameter table (used as ground truth), and (2) the standard deviation (std) of the segment, where a lower std indicates reduced noise and better segmentation quality. If the raw signal segment aligns correctly with the corresponding 5mer, its mean should closely match ONT's reference, yielding a high log-likelihood. A lower std of the segment reflects less noise and better performance overall.”

      Here the segmentation part becomes a bit odd:

      A: Low std can be/is achieved by dropping any noisy bits, making segments really small (partly what happens here with the transition segments). This may be 'true' here, in the sense that the transition is not really part of the segment, but the comparison table is a bit meaningless as the other tools forcibly assign all data to kmers, instead of ignoring parts as transition states. In other words, it is a benchmark that is easy to cheat by assigning more data to noise/transition states.

      B: The values shown are influenced by the alignment made between the read and expected reference signal. Especially Tombo tends to forcibly assign data to whatever looks the most similar nearby rather than providing the correct alignment. So the "benchmark of the segmentation performance" is more of an "overall benchmark of the raw signal alignment". Which is still a good, useful thing, but the text seems to suggest something else.

      Thank you for raising these important concerns regarding the segmentation benchmarking.

      Regarding point A, the base blocks aligned to the same 5mer are concatenated into a single segment, including the short transition blocks between them. These transition blocks are typically very short (4~10 signal points, average 6 points), while a typical 5mer segment contains around 20~60 signal points. To assess whether SegPore’s performance is inflated by excluding transition segments, we conducted an additional comparison: we removed 6 boundary signal points (3 from the start and 3 from the end) from each 5mer segment in Nanopolish and Tombo’s results to reduce potential noise. The new comparison table is shown in the following:

      SegPore consistently demonstrates superior performance. Its key contribution lies in its ability to recognize structured noise in the raw signal and to derive more accurate mean and standard deviation values that more faithfully represent the true state of the k-mer in the pore. The improved mean estimates are evidenced by the clearly separated peaks of modified and unmodified 5mers in Figures 3A and 4B, while the improved standard deviation is reflected in the segmentation benchmark experiments.

      Regarding point B, we apologize for the confusion. We have added a new paragraph to the introduction to clarify that the segmentation task indeed includes the alignment step.

      “The general workflow of Nanopore direct RNA sequencing (DRS) data analysis is as follows. First, the raw electrical signal from a read is basecalled using tools such as Guppy or Dorado, which produce the nucleotide sequence of the RNA molecule. However, these basecalled sequences do not include the precise start and end positions of each ribonucleotide (or k-mer) in the signal. Because basecalling errors are common, the sequences are typically mapped to a reference genome or transcriptome using minimap2 to recover the correct reference sequence. Next, tools such as Nanopolish and Tombo align the raw signal to the reference sequence to determine which portion of the signal corresponds to each k-mer. We define this process as the segmentation task, referred to as "eventalign" in Nanopolish. Based on this alignment, Nanopolish extracts various features—such as the start and end positions, mean, and standard deviation of the signal segment corresponding to a k-mer. This signal segment or its derived features is referred to as an "event" in Nanopolish. The resulting events serve as input for downstream RNA modification detection tools such as m6Anet and CHEUI.”

      (23) Page 17 “Given the comparable methods and input data requirements, we benchmarked SegPore against several baseline tools, including Tombo, MINES (26), Nanom6A (27), m6Anet, Epinano (28), and CHEUI (29).”

      It seems m6Anet is actually Nanopolish+m6Anet in Figure 3C, this needs a minor clarification here.

      m6Anet uses Nanopolish’s estimated events as input by default.

      (24) Page 18, Figure 3, A and B are figures without any indication of what is on the axis and from the text I believe the position next to each other on the x-axis rather than overlapping is meaningless, while their spread is relevant, as we're looking at the distribution of raw values for this 5mer. The figure as is is rather confusing.

      Thanks for pointing out the confusion. We have added concrete values to the axes in Figures 3A and 3B and revised the figure legend as follows in the manuscript:

      “(A) Histogram of the estimated mean from current signals mapped to an example m6A-modified genomic location (chr10:128548315, GGACT) across all reads in the training data, comparing Nanopolish (left) and SegPore (right). The x-axis represents current in picoamperes (pA).

      (B) Histogram of the estimated mean from current signals mapped to the GGACT motif at all annotated m6A-modified genomic locations in the training data, again comparing Nanopolish (left) and SegPore (right). The x-axis represents current in picoamperes (pA).”

      (25) Page 18 “SegPore's results show a more pronounced bimodal distribution in the raw signal segment mean, indicating clearer separation of modified and unmodified signals.”

      Without knowing the correct values around the target kmer (like Figure 4B), just the more defined bimodal distribution could also indicate the (wrongful) assignment of neighbouring kmer values to this kmer instead, hence this statement lacks some needed support, this is just one interpretation of the possible reasons.

      Thank you for the comment. We have added concrete values to Figures 3A and 3B to support this point. Both peaks fall within a reasonable range: the unmodified peak (125 pA) is approximately 1.17 pA away from its reference value of 123.83 pA, and the modified peak (118 pA) is around 7 pA away from the unmodified peak. This shift is consistent with expected signal changes due to RNA modifications (usually less than 10 pA), and the magnitude of the difference suggests that the observed bimodality is more likely caused by true modification events rather than misalignment.

      (26) Page 18 “Furthermore, when pooling all reads mapped to m6A-modified locations at the GGACT motif, SegPore showed prominent peaks (Fig. 3B), suggesting reduced noise and improved modification detection.”

      I don't think the prominent peaks directly suggest improved detection, this statement is a tad overreaching.

      We revised the sentense to the following:

      “SegPore exhibited more distinct peaks (Fig. 3B), indicating reduced noise and potentially enabling more reliable modification detection”.

      (27) Page18 “(2) direct m6A predictions from SegPore's Gaussian Mixture Model (GMM), which is limited to the six selected 5mers.”

      The 'six selected' refers to what exactly? Also, 'why' this is limited to them is also unclear as it is, and it probably would become clearer if it is clearly defined what this refers to.

      It is explained the page 16 in the SegPore’s workflow in the original manuscript as follows:

      “A key component of SegPore is the 5mer parameter table, which specifies the mean and standard deviation for each 5mer in both modified and unmodified states (Fig. 2A1A). Since the peaks (representing modified and unmodified states) are separable for only a subset of 5mers, SegPore can provide modification parameters for these specific 5mers. For other 5mers, modification state predictions are unavailable.”

      e select a small set of 5mers that show clear peaks (modified and unmodified 5mers) in GMM in the m6A site-level data analysis. These 5mers are provided in Supplementary Fig. S2C, as explained in the section “m6A site level benchmark” in the Material and Methods (page 12 in the original manuscript).

      “…transcript locations into genomic coordinates. It is important to note that the 5mer parameter table was not re-estimated for the test data. Instead, modification states for each read were directly estimated using the fixed 5mer parameter table. Due to the differences between human (Supplementary Fig. S2A) and mouse (Supplementary Fig. S2B), only six 5mers were found to have m6A annotations in the test data’s ground truth (Supplementary Fig. S2C). For a genomic location to be identified as a true m6A modification site, it had to correspond to one of these six common 5mers and have a read coverage of greater than 20. SegPore derived the ROC and PR curves for benchmarking based on the modification rate at each genomic location….”

      We have updated the sentence as follows to increase clarity:

      “which is limited to the six selected 5mers that exhibit clearly separable modified and unmodified components in the GMM (see Materials and Methods for details).”

      (28) Page 19, Figure 4C, the blue 'Unmapped' needs further explanation. If this means the segmentation+alignment resulted in simply not assigning any segment to a kmer, this would indicate issues in the resulting mapping between raw data and kmers as the data that probably belonged to this kmer is likely mapped to a neighbouring kmer, possibly introducing a bimodal distribution there.

      This is due to deletion event in the full alignment algorithm. See Page 8 of SupplementaryNote1:

      During the traceback step of the dynamic programming matrix, not every 5mer in the reference sequence is assigned a corresponding raw signal fragment—particularly when the signal’s mean deviates substantially from the expected mean of that 5mer. In such cases, the algorithm considers the segment to be generated by an unknown 5mer, and the corresponding reference 5mer is marked as unmapped.

      (29) Page 19, “For six selected m6A motifs, SegPore achieved an ROC AUC of 82.7% and a PR AUC of 38.7%, earning the third-best performance compared with deep leaning methods m6Anet and CHEUI (Fig. 3D).”

      How was this selection of motifs made, are these related to the six 5mers in the middle of Supplementary Figure S2? Are these the same six as on page 18? This is not clear to me.

      It is the same, see the response to point 27.

      (30) Page 21 “Biclustering reveals that modifications at the 6th, 7th, and 8th genomic locations are specific to certain clusters of reads (clusters 4, 5, and 6), while the first five genomic locations show similar modification patterns across all reads.”

      This reads rather confusingly. Both the '6th, 7th, and 8th genomic locations' and 'clusters 4,5,6' should be referred to in clearer terms. Either mark them in the figure as such or name them in the text by something that directly matches the text in the figure.

      We have added labels to the clusters and genomic locations Figure 4C, and revised the sentence as follows:

      “Biclustering reveals that modifications at g6 are specific to cluster C4, g7 to cluster C5, and g8 to cluster C6, while the first five genomic locations (g1 to g5) show similar modification patterns across all reads.”

      (31) Page 21, “We developed a segmentation algorithm that leverages the jiggling property in the physical process of DRS, resulting in cleaner current signals for m6A identification at both the site and single-molecule levels.”

      Leverages, or just 'takes into account'?

      We designed our HHMM specifically based on the jiggling hypothesis, so we believe that using the term “leverage” is appropriate.

      (32) Page 21, “Our results show that m6Anet achieves superior performance, driven by SegPore's enhanced segmentation.”

      Superior in what way? It barely improves over Nanopolish in Figure 3C and is outperformed by other methods in Figure 3D. The segmentation may have improved but this statement says something is 'superior' driven by that 'enhanced segmentation', so that cannot refer to the segmentation itself.

      We revise it as follows in the revised manuscript:

      ”Our results demonstrate that SegPore’s segmentation enables clear differentiation between m6A-modified and unmodified adenosines.”

      (33) Page 21, “In SegPore, we assume a drastic change between two consecutive 5mers, which may hold for 5mers with large difference in their current baselines but may not hold for those with small difference.”

      The implications of this assumption don't seem highlighted enough in the work itself and may be cause for falsely discovering bi-modal distributions. What happens if such a 5mer isn't properly split, is there no recovery algorithm later on to resolve these cases?

      We agree that there is a risk of misalignment, which can result in a falsely observed bimodal distribution. This is a known and largely unavoidable issue across all methods, including deep neural network–based methods. For example, many of these models rely on a CTC (Connectionist Temporal Classification) layer, which implicitly performs alignment and may also suffer from similar issues.

      Misalignment is more likely when the current baselines of neighboring k-mers are close. In such cases, the model may struggle to confidently distinguish between adjacent k-mers, increasing the chance that signals from neighboring k-mers are incorrectly assigned. Accurate baseline estimation for each k-mer is therefore critical—when baselines are accurate, the correct alignment typically corresponds to the maximum likelihood.

      We have added the following sentence to the discussion to acknowledge this limitation:

      “As with other RNA modification estimation methods, SegPore can be affected by misalignment errors, particularly when the baseline signals of adjacent k-mers are similar. These cases may lead to spurious bimodal signal distributions and require careful interpretation.”

      (34) Page 21, “Currently, SegPore models only the modification state of the central nucleotide within the 5mer. However, modifications at other positions may also affect the signal, as shown in Figure 4B. Therefore, introducing multiple states to the 5mer could help to improve the performance of the model.”

      The meaning of this statement is unclear to me. Is SegPore unable to combine the information of overlapping kmers around a possibly modified base (central nucleotide), or is this referring to having multiple possible modifications in a single kmer (multiple states)?

      We mean there can be modifications at multiple positions of a single 5mer, e.g. C m5C m6A m7G T. We have revised the sentence to:

      “Therefore, introducing multiple states for a 5mer to accout for modifications at mutliple positions within the same 5mer could help to improve the performance of the model.”

      (35) Page 22, “This causes a problem when apply DNN-based methods to new dataset without short read sequencing-based ground truth. Human could not confidently judge if a predicted m6A modification is a real m6A modification.”

      Grammatical errors in both these sentences. For the 'Human could not' part, is this referring to a single person's attempt or more extensively tested?

      Thanks for the comment. We have revised the sentence as follows:

      “This poses a challenge when applying DNN-based methods to new datasets without short-read sequencing-based ground truth. In such cases, it is difficult for researchers to confidently determine whether a predicted m6A modification is genuine (see Supplmentary Figure S5).”

      (36) Page 22, “…which is easier for human to interpret if a predicted m6A site is real.”

      "a" human, but also this probably meant to say 'whether' instead of 'if', or 'makes it easier'.

      Thanks for the advice. We have revise the sentence as follows:

      “One can generally observe a clear difference in the intensity levels between 5mers with an m6A and those with a normal adenosine, which makes it easier for a researcher to interpret whether a predicted m6A site is genuine.”

      (37) Page 22, “…and noise reduction through its GMM-based approach…”

      Is the GMM providing noise reduction or segmentation?

      Yes, we agree that it is not relevant. We have removed the sentence in the revised manuscript as follows:

      “Although SegPore provides clear interpretability and noise reduction through its GMM-based approach, there is potential to explore DNN-based models that can directly leverage SegPore's segmentation results.”

      (38) Page 23, “SegPore effectively reduces noise in the raw signal, leading to improved m6A identification at both site and single-molecule levels…”

      Without further explanation in what sense this is meant, 'reduces noise' seems to overreach the abilities, and looks more like 'masking out'.

      Following the reviewer’s suggestion, we change it to ‘mask out'’ in the revised manuscript.

      “SegPore effectively masks out noise in the raw signal, leading to improved m6A identification at both site and single-molecule levels.”

      Reviewer #3 (Recommendations for the authors):

      I recommend the publication of this manuscript, provided that the following comments (and the comments above) are addressed.

      In general, the authors state that SegPore represents an improvement on existing software. These statements are largely unquantified, which erodes their credibility. I have specified several of these in the Minor comments section.

      Page 5, Preprocessing: The authors comment that the poly(A) tail provides a stable reference that is crucial for the normalisation of all reads. How would this step handle reads that have variable poly(A) tail lengths? Or have interrupted poly(A) tails (e.g. in the case of mRNA vaccines that employ a linker sequence)?

      We apologize for the confusion. The poly(A) tail–based normalization is explained in Supplementary Note 1, Section 3.

      As shown in Author response image 1 below, the poly(A) tail produces a characteristic signal pattern—a relatively flat, squiggly horizontal line. Due to variability between nanopores, raw current signals often exhibit baseline shifts and scaling of standard deviations. This means that the signal may be shifted up or down along the y-axis and stretched or compressed in scale.

      Author response image 1.

      The normalization remains robust with variable poly(A) tail lengths, as long as the poly(A) region is sufficiently long. The linker sequence will be assigned to the adapter part rather than the poly(A) part.

      To improve clarity in the revised manuscript, we have added the following explanation:

      “Due to inherent variability between nanopores in the sequencing device, the baseline levels and standard deviations of k-mer signals can differ across reads, even for the same transcript. To standardize the signal for downstream analyses, we extract the raw current signal segments corresponding to the poly(A) tail of each read. Since the poly(A) tail provides a stable reference, we normalize the raw current signals across reads, ensuring that the mean and standard deviation of the poly(A) tail are consistent across all reads. This step is crucial for reducing…..”

      We chose to use the poly(A) tail for normalization because it is sequence-invariant—i.e., all poly(A) tails consist of identical k-mers, unlike transcript sequences which vary in composition. In contrast, using the transcript region for normalization can introduce biases: for instance, reads with more diverse k-mers (having inherently broader signal distributions) would be forced to match the variance of reads with more uniform k-mers, potentially distorting the baseline across k-mers.

      Page 7, 5mer parameter table: r9.4_180mv_70bps_5mer_RNA is an older kmer model (>2 years). How does your method perform with the newer RNA kmer models that do permit the detection of multiple ribonucleotide modifications? Addressing this comment is crucial because it is feasible that SegPore will underperform in comparison to the newer RNA base caller models (requiring the use of RNA004 datasets).

      Thank you for highlighting this important point. For RNA004, we have updated SegPore to ensure compatibility with the latest kit. In our revised manuscript, we demonstrate that the translocation-based segmentation hypothesis remains valid for RNA004, as supported by new analyses presented in the supplementary Figure S4.

      Additionally, we performed a new benchmark with f5c and Uncalled4 in RNA004 data in the revised manuscript (Table 2), where SegPore exhibit a better performance than f5c and Uncalled4.

      We agree that benchmarking against the latest Dorado models—specifically rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0, which include built-in modification detection capabilities—would provide valuable context for evaluating the utility of SegPore. However, generating a comprehensive k-mer parameter table for RNA004 requires a large, well-characterized dataset. At present, such data are limited in the public domain. Additionally, Dorado is developed by ONT and its internal training data have not been released, making direct comparisons difficult.

      Our current focus is on improving raw signal segmentation quality, which are upstream tasks critical to many downstream analyses, including RNA modification detection. Future work may include benchmarking SegPore against models like Dorado once appropriate data become available.

      The Methods and Results sections contain redundant information - please streamline the information in these sections and reduce the redundancy. For example, the benchmarking section may be better situated in the Results section.

      Following your advice, we have removed redundant texts about the Segmentation benchmark from Materials and Methods in the revised manuscript.

      Minor comments

      (1) Introduction

      Page 3: "By incorporating these dynamics into its segmentation algorithm...". Please provide an example of how motor protein dynamics can impact RNA translocation. In particular, please elaborate on why motor protein dynamics would impact the translocation of modified ribonucleotides differently to canonical ribonucleotides. This is provided in the results, but please also include details in the Introduction.

      Following your advice, we added one sentence to explain how the motor protein affect the translocation of the DNA/RNA molecule in the revised manuscript.

      “This observation is also supported by previous reports, in which the helicase (the motor protein) translocates the DNA strand through the nanopore in a back-and-forth manner. Depending on ATP or ADP binding, the motor protein may translocate the DNA/RNA forward or backward by 0.5-1 nucleotides.”

      As far as we understand, this translocation mechanism is not specific to modified or unmodified nucleotides. For further details, we refer the reviewer to the original studies cited.

      Page 3: "This lack of interpretability can be problematic when applying these methods to new datasets, as researchers may struggle to trust the predictions without a clear understanding of how the results were generated." Please provide details and citations as to why researchers would struggle to trust the predictions of m6Anet. Is it due to a lack of understanding of how the method works, or an empirically demonstrated lack of reliability?

      Thank you for pointing this out. The lack of interpretability in deep learning models such as m6Anet stems primarily from their “black-box” nature—they provide binary predictions (modified or unmodified) without offering clear reasoning or evidence for each call.

      When we examined the corresponding raw signals, we found it difficult to visually distinguish whether a signal segment originated from a modified or unmodified ribonucleotide. The difference is often too subtle to be judged reliably by a human observer. This is illustrated in the newly added Supplementary Figure S5, which shows Nanopolish-aligned raw signals for the central 5mer GGACT in Figure 4B, displayed both uncolored and colored by modification state (according to the ground truth).

      Although deep neural networks can learn subtle, high-dimensional patterns in the signal that may not be readily interpretable, this opacity makes it difficult for researchers to trust the predictions—especially in new datasets where no ground truth is available. The issue is not necessarily an empirically demonstrated lack of reliability, but rather a lack of transparency and interpretability.

      We have updated the manuscript accordingly and included Supplementary Figure S5 to illustrate the difficulty in interpreting signal differences between modified and unmodified states.

      Page 3: "Instead of relying on complex, opaque features...". Please provide evidence that the research community finds the figures generated by m6Anet to be difficult to interpret, or delete the sections relating to its perceived lack of usability.

      See the figure provided in the response to the previous point. We added a reference to this figure in the revised manuscript.

      “Instead of relying on complex, opaque features (see Supplementary Figure S5), SegPore leverages baseline current levels to distinguish between…..”

      (2) Materials and Methods

      Page 5, Preprocessing: "We begin by performing basecalling on the input fast5 file using Guppy, which converts the raw signal data into base sequences.". Please change "base" to ribonucleotide.

      Revised as requested.

      Page 5 and throughout, please refer to poly(A) tail, rather than polyA tail throughout.

      Revised as requested.

      Page 5, Signal segmentation via hierarchical Hidden Markov model: "...providing more precise estimates of the mean and variance for each base block, which are crucial for downstream analyses such as RNA modification prediction." Please specify which method your HHMM method improves upon.

      Thank you for the suggestion. Since this section does not include a direct comparison, we revised the sentence to avoid unsupported claims. The updated sentence now reads:

      "...providing more precise estimates of the mean and variance for each base block, which are crucial for downstream analyses such as RNA modification prediction."

      Page 10, GMM for 5mer parameter table re-estimation: "Typically, the process is repeated three to five times until the 5mer parameter table stabilizes." How is the stabilisation of the 5mer parameter table quantified? What is a reasonable cut-off that would demonstrate adequate stabilisation of the 5mer parameter table?

      Thank you for the comment. We assess the stabilization of the 5mer parameter table by monitoring the change in baseline values across iterations. If the absolute change in baseline values for all 5mers is less than 1e-5 between two consecutive iterations, we consider the estimation to have stabilized.

      Page 11, M6A site level benchmark: why were these datasets selected? Specifically, why compare human and mouse ribonuclotide modification profiles? Please provide a justification and a brief description of the experiments that these data were derived from, and why they are appropriate for benchmarking SegPore.

      Thank you for the comment. These data are taken from a previous benchmark studie about m6A estimation from RNA002 data in the literature (https://doi.org/10.1038/s41467-023-37596-5). We think the data are appropreciate here.

      Thank you for the comment. The datasets used were taken from a previous benchmark study on m6A estimation using RNA002 data (https://doi.org/10.1038/s41467-023-37596-5). These datasets include human and mouse transcriptomes and have been widely used to evaluate the performance of RNA modification detection tools. We selected them because (i) they are based on RNA002 chemistry, which matches the primary focus of our study, and (ii) they provide a well-characterized and consistent benchmark for assessing m6A detection performance. Therefore, we believe they are appropriate for validating SegPore.

      (3) Results

      Page 13, RNA translocation hypothesis: "The raw current signals, as shown in Fig. 1B...". Please check/correct figure reference - Figure 1B does not show raw current signals.

      Thank you for pointing this out. The correct reference should be Figure 2B. We have updated the figure citation accordingly in the revised manuscript.

      Page 19, m6A identification at the site level: "For six selected m6A motifs, SegPore achieved an ROC AUC of 82.7% and a PR AUC of 38.7%, earning the third best performance compared with deep leaning methods m6Anet and CHEUI (Fig. 3D)." SegPore performs third best of all deep learning methods. Do the authors recommend its use in conjunction with m6Anet for m6A detection? Please clarify in the text.

      This sentence aims to convey that SegPore alone can already achieve good performance. If interpretability is the primary goal, we recommend using SegPore on its own. However, if the objective is to identify more potential m6A sites, we suggest using the combined approach of SegPore and m6Anet. That said, we have chosen not to make explicit recommendations in the main text to avoid oversimplifying the decision or potentially misleading readers.

      Page 19, m6A identification at the single molecule level: "one transcribed with m6A and the other with normal adenosine". I assume that this should be adenine? Please replace adenosine with adenine throughout.

      Thank you for pointing this out. We have revised the sentence to use "adenine" where appropriate. In other instances, we retain "adenosine" when referring specifically to adenine bound to a ribose sugar, which we believe is suitable in those contexts.

      Page 19, m6A identification at the single molecule level: "We used 60% of the data for training and 40% for testing". How many reads were used for training and how many for testing? Please comment on why these are appropriate sizes for training and testing datasets.

      In total, there are 1.9 million reads, with 1.14 million used for training and 0.76 million  for testing (60% and 40%, respectively). We chose this split to ensure that the training set is sufficiently large to reliably estimate model parameters, while the test set remains substantial enough to robustly evaluate model performance. Although the ratio was selected somewhat arbitrarily, it balances the need for effective training with rigorous validation.

      (4) Discussion

      Page 21: "We believe that the de-noised current signals will be beneficial for other downstream tasks." Which tasks? Please list an example.

      We have revised the text for clarity as follows:

      “We believe that the de-noised current signals will be beneficial for other downstream tasks, such as the estimation of m5C, pseudouridine, and other RNA modifications.”

      Page 22: "One can generally observe a clear difference in the intensity levels between 5mers with a m6A and normal adenosine, which is easier for human to interpret if a predicted m6A site is real." This statement is vague and requires qualification. Please reference a study that demonstrates the human ability to interpret two similar graphs, and demonstrate how it relates to the differences observed in your data.

      We apologize for the confusion. We have revised the sentence as follows:

      “One can generally observe a clear difference in the intensity levels between 5mers with an m6A and those with a normal adenosine, which makes it easier for a researcher to interpret whether a predicted m6A site is genuine.”

      We believe that Figures 3A, 3B, and 4B effectively illustrate this concept.

      Page 23: How long does SegPore take for its analyses compared to other similar tools? How long would it take to analyse a typical dataset?

      We have added run-time statistics for datasets of varying sizes in the revised manuscript (see Supplementary Figure S6). This figure illustrates SegPore’s performance across different data volumes to help estimate typical processing times.

      (5) Figures

      Figure 4C. Please number the hierachical clusters and genomic locations in this figure. They are referenced in the text.

      Following your suggestion, we have labeled the hierarchical clusters and genomic locations in Figure 4C in the revised manuscript.

      In addition, we revised the corresponding sentence in the main text as follows: “Biclustering reveals that modifications at g6 are specific to cluster C4, g7 to cluster C5, and g8 to cluster C6, while the first five genomic locations (g1 to g5) show similar modification patterns across all reads.”

    1. Author response:

      We thank the Reviewers and Editors for their time and insightful comments. We are encouraged by their positive assessment and we look forward to addressing the points raised. Areas of primary concern include (1) the use of high concentrations in peptide experiments; (2) improvement of the presentation and discussion of the results; and (3) clarification of the impact of surface adsorption on the mass photometry analyses.

      Regarding (1), we will better explain why some experiments with isolated disordered N-terminal extension were necessarily carried out at high concentrations, in order to demonstrate the potential for these peptides to weakly self-associate. While much lower nucleocapsid protein concentrations are present in the cytosol on average, and are used in our ribonucleoprotein assembly experiments, there are two important physiologically relevant cases where high local concentrations do occur: First, high effective concentrations of tethered disordered N-terminal extensions exist locally in the volume sampled by individual ribonucleoprotein complexes, and, second, high nucleocapsid concentrations are prevalent in its macromolecular condensates. Thus, weak interactions of N-terminal extensions can play a critical role strengthening fuzzy ribonucleoprotein complexes and also altering condensate properties, both of which were confirmed in our experiments. Nonetheless, we do not expect the observed fibrillar state of the concentrated isolated N-terminal peptide to be physiologically relevant, since physiologically they will always remain tethered to the full-length protein impeding fibrillar superstructures.

      (2) We are grateful for the Reviewers’ suggestions to enhance the clarity and accessibility of our findings and to streamline the presentation. We intend to tighten up the text and improve figures throughout, and add discussion points, as proposed.

      (3) We plan to add an analysis of the extent that irreversible surface adsorption decreases solute concentration in mass photometry, and discuss why this has negligible impact on the conclusions drawn under our experimental conditions.In summary, we agree these points all provide opportunities to strengthen the manuscript further and we are glad to revise our manuscript accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews

      Recommendations for the Authors:

      Reviewer #1:

      We think that this manuscript brings an important contribution that will be of interest in the areas of statistical physicists, (microbiota) ecology, and (biological) data science. The evidence of their results is solid and the work improves the state-of-the-art in terms of methods. We have a few concerns that, in our opinion, the authors should address.

      Major concerns:

      (1) While the paper could be of interest for the broad audience of e-Life, the way it is written is accessible mainly to physicists. We encourage the authors to take the broad audience into account by i) explaining better the essence of what is being done at each step, ii) highlighting the relevance of the method compared to other methods, iii) discussing the ecological implications of the results.

      Examples on how to approach i) include: Modify or expand Figure 1 so that non-familiar readers can understand the summary of the work (e.g. with cartoons representing communities, diseased states and bacterial interactions and their relationship with the inference method); in each section, summarize at the beginning the purpose of what is going to be addressed in this section, and summarize at the end what the section has achieved; in Figure 2, replace symbols by their meaning as much as possible-the same for Figure 1, at the very least in the figure caption.

      Example on how to approach ii): Since the authors aim to establish a bridge between disordered systems and microbiome ecology, it could be useful to expand a bit the introduction on disordered systems for biologists/biophysicists. This could be done with an additional text box, which could also highlight the advantages of this approach in comparison to other techniques (e.g. model-free approaches can also classify healthy and diseased states).

      Example on how to approach iii): The authors could discuss with more depth the ecological implications of their results. For example, do they have a hypothesis on why demographic and neutral effects could dominate in healthy patients?

      We thank the reviewer for the observations. Following the suggestion in the revised version, each section outlines the goal of what will be addressed in that section, and summarizes what we have achieved at the end; We also updated Figure 1 and Figure 2.

      (i) For figure 1, we expanded and hopefully made more clear how we conceptualize the problem, use the data, andestablish our method. In Figure 2, we enriched the y labels of each panel with the name associated with the order parameter.

      (ii) We thank the reviewer for helping us improve the readability of the introductory part, thus providing moreinsights into disordered systems techniques for a broader audience. We have added a few explanations at the end of page 2 – to explain the advantages of such methodology compared to other strategies and models.

      (iii) We thank the reviewer for raising the need for a more in-depth ecological discussion of our results. A simple wayto understand why neutral effects may dominate in healthy patients is the following. Neutrality implies that species differences are mainly shaped by stochastic processes such as demographic noise, with species treated as different realizations of the same underlying stochastic ecological dynamics. In our analysis, we observe that healthy individuals tend to exhibit highly similar microbial communities, suggesting that the compositional variability among their microbiomes is compatible—at least in part—with the fluctuations expected from demographic stochasticity alone. In contrast, patients with the disease display significantly more heterogeneous microbial compositions. The diversity and structure of their gut communities cannot be satisfactorily explained by neutral demographic fluctuations alone.

      This discrepancy implies that additional deterministic forces—such as altered ecological interactions—are driving the divergence observed in dysbiotic states. In diseased individuals, the breakdown of such interactions leads to a structurally distinct regime that may correspond to a phase of marginal stability, as indicated by our theoretical modeling. This shift marks a transition from a community governed by neutrality and demographic noise to one dominated by non-neutral ecological forces (as depicted in Figure 4). We added these comments in the discussion section of the revised manuscript.

      (2) Taking into account the broader audience, we invite the authors to edit the abstract, as it seems to jump from one ecological concept to another without explicitly communicating what is the link between these concepts. From the first two sentences, the motivation seems to be species diversity, but no mention of diversity comes after the second sentence. There is no proper introduction/definition of what macroecological states are. After that, the authors switch to healthy and unhealthy states, without previously introducing any link between gut microbiota states and the host’s health (which perhaps could be good in the first or second sentence, although other framings can be as valid). After that, interactions appear in the text and are related to instability, but the reader might not know whether this is surprising or if healthy/unhealthy states are generally related to stability.

      We pointed out a few examples, but the authors could extend their revision on i), ii) and iii) beyond such specific comments. In our opinion, this would really benefit the paper.

      In response to the reviewer’s concern about conceptual clarity and structure, we substantially revised the abstract to improve its accessibility and logical flow. In the revised abstract, we now clearly link species diversity to microbiome structure and function from the outset, addressing initial confusion. We provide a concise definition of ”macroecological states,” framing them as reproducible statistical patterns reflecting community-level properties. Additionally, the revised version explicitly connects gut microbiome states to host health earlier, resolving the previous abrupt shift in focus. Finally, we conclude by highlighting how disordered systems theory advances our understanding of microbiome stability and functioning, reinforcing the novelty and broader significance of our approach. Overall, the revised abstract better serves a broad interdisciplinary audience, including readers unfamiliar with the technicalities of disordered systems or microbial ecology, while preserving the scientific depth and accuracy of our work

      (3) The connection with consumer-resource (CR) models is quite unusual. In Equation (12), why do the authors assume that the consumption term does not depend on R? This should be addressed, since this term is usually dependent on R in microbial ecology models.

      In case this is helpful, it is known that the symmetric Lotka-Volterra model emerges from time-scale separation in the MacArthur model, where resources reproduce logistically and are consumed by other species (e.g., plants eaten by herbivores). Consumer-resource models form a broad category, while the MacArthur model is a specific case featuring logistic resource growth. For microbes, a more meaningful justification of the generalized Lotka-Volterra (GLV) model from a consumer-resource perspective involves the consumer-resource dynamics in a chemostat, where time-scale separation is assumed and higher-order interactions are neglected. See, for example: a) The classic paper by MacArthur: R. MacArthur. Species packing and competitive equilibrium for many species. Theoretical Population Biology, 1(1):1-11, 1970. b) Recent works on time-scale separation in chemostat consumer-resource models: Anna Posfai et al., PRL, 2017 Sireci et al., PNAS, 2023 Akshit Goyal et al., PRX-Life, 2025

      We thank the reviewer for the observation. We apologize for the typo that appeared in the main text and that we promptly corrected. The Consumers-Resources model we had in mind is the classical case proposed by MacArthur, where resources are self-regulated according to a logistic growth mechanism, which leads to the generalized LotkaVolterra model we employ in our work.

      Minor concerns:

      (1) The title has a nice pun for statistical physicists, but we wonder if it can be a bit confusing for the broader audience of e-Life. Although we leave this to the author’s decision, we’d recommend considering changing the title, making it more explicit in communicating the main contribution/result of the work.

      Following the reviewer’s suggestion, we have introduced an explanatory subtitle: “Linking Species Interactions to Dysbiosis through a Disordered Lotka-Volterra Framework”.

      (2) Review the references - some preprints might have already been published: Pasqualini J. 2023, Sireci 2022, Wu 2021.

      We thank the reviewer for pointing our attention to this inaccuracy. We updated the references to Pasqualini and Sireci papers. To our knowledge, Wu’s paper has appeared as an arXiv preprint only.

      (3) Species do not generally exhibit identical carrying capacities (see Grilli, Nat. Commun., 2020; some taxa are generally more abundant than others. The authors could discuss whether the model, with the inferred parameters, can accurately reproduce the distribution of species’ mean abundances.

      We thank the reviewer for this insightful comment. As discussed in the revised manuscript (lines 294–299), our current model does not accurately reproduce the empirical species abundance distribution (SAD). This limitation stems from the assumption of constant carrying capacities across species. While empirical observations (e.g., Grilli et al., Nat. Commun., 2020 [1]) show heterogeneous mean abundances often following power-law or log-normal distributions. However, our model assumes constant carrying capacity, resulting in SADs devoid of fat tails, which diverge from empirical data.

      This simplification is implemented to maintain the analytical tractability of the disordered generalized Lotka-Volterra (dGLV) framework, a common approach also found in prior works such as Bunin (2017) and Barbier et al. (2018) [2, 3]. Introducing heterogeneity in carrying capacities, such as drawing them from a log-normal distribution, or switching to multiplicative (rather than demographic) noise, could indeed produce SADs that better align with empirical data. Nevertheless, implementing changes would significantly complicate the analytical treatment.

      We acknowledge these directions as promising avenues for future research. They could help enhance the empirical realism of the model and its capacity to capture observed macroecological patterns while posing new theoretical challenges for disordered systems analysis

      (4) A substantial number of cited works (Grilli, Nat. Commun., 2020; Zaoli & Grilli, Science Advances, 2021; Sireci et al., PNAS, 2023; Po-Yi Ho et al., eLife, 2022) suggest that environmental fluctuations play a crucial role in shaping microbiome composition and dynamics. Is the authors’ analysis consistent with this perspective? Do they expect their conclusions to remain robust if environmental fluctuations are introduced?

      We thank the reviewer for stressing this point. The introduction of environmental fluctuations in the model formally violates detailed balance, thereby preventing the definition of an energy function. To date, no study has integrated random interactions together with both demographic and environmental noise within a unified analytical framework. This is certainly a highly promising direction that some of the authors are already exploring. However, given the inherently out-of-equilibrium nature of the system and the absence of a free energy, we would need to adopt a Dynamical Mean-Field Theory formalism and eventually analyze the corresponding stationary equations to be solved self-consistently. We added, however, a brief note in the Discussion section.

      (5) The term “order parameters“ may not be intuitive for a biological audience. In any case, the authors should explicitly define each order parameter when first introduced.

      We thank the reviewer for the comment. We introduced the names of the order parameters as soon as they are introduced, along with a brief explanation of their meaning that may be accessible to an audience with biological background.

      (6) Line 242: Should ψU be ψD?

      We thank the reviewer for the observation. We corrected the typo.

      (7) Given that the authors are discussing healthy and diseased states and to avoid confusion, the authors could perhaps use another word for ’pathological’ when they refer to dynamical regimes (e.g., in Appendix 2: ’letting the system enter the pathological regime of unbounded growth’).

      We thank the reviewer for the helpful comment. As suggested, we used the term “unphysical” instead of “pathological” where needed.

      Reviewer #2:

      (1) A technical point that I could not understand is how the authors deal with compositional data. One reason for my confusion is that the order parameters h and q0 are fixed n data to 1/S and 1/S2, and thus I do not see how they can be informative. Same for carrying capacity, why is it not 1 if considering relative abundance?

      We thank the reviewer for raising this point. We acknowledge that the treatment of compositional data and the interpretation of order parameters h and q0 were not sufficiently clarified in the manuscript. Additionally, there was an imprecision in the text regarding the interpretation of these parameters.

      As defined in revised Eq. (4) of the manuscript, h and q0 are to be averaged over the entire dataset, summing across samples α. Specifically, and , where S<sub>α</sub> is the number of species present in sample α and is the average over samples. These parameters are therefore informative, as they encapsulate sample-level ecological diversity, and their variation reflects biological differences between healthy and diseased states. For instance, Pasqualini et al., 2024 [4] reported significant differences in these metrics between health conditions, thereby supporting their ecological relevance.

      Regarding carrying capacities, we clarify that although we work with relative abundance data (i.e., compositional data), we do not fix the carrying capacity K to 1. Instead, we set K to the maximum value of xi (relative abundance) within each sample, to preserve compatibility with empirical data and allow for coexistence. While this remains a modeling assumption, it ensures better ecological realism within the constraints of the disordered GLV framework.

      (2) Obviously I’m missing something, so it would be nice to clarify in simple terms the logic of the argument. I understand that Lagrange multipliers are going to be used in the model analysis, and there are a lot of technical arguments presented in the paper, but I would like a much more intuitive explanation about the way the data can be used to infer order parameters if those are fixed by definition in compositional data.

      We thank the reviewer for the observation. The order parameters can be measured directly from the data, even in the presence of compositionality, as explained above. We can connect those parameters with the theory even for compositional data, because the only effect of adding the compositionality constraint is to shift the linear coefficient in the Hamiltonian, which corresponds to shifting the average interaction µ. However, the resulting phase diagram is mostly affected by the variance of the interactions σ2 (as µ is such that we are in the bounded phase).

      (3) Another point that I did not understand comes from the fact that the authors claim that interaction variance is smaller in unhealthy microbiomes. Yet they also find that those are closer to instability, and are more driven by niche processes. I would have expected the opposite to be true, more variance in the interactions leading to instability (as in May’s original paper for instance). Is this apparent paradox explained by covariations in demographic stochasticity (T) and immigration rate (lambda)? If so, I think it would be very useful to comment on that.

      As Altieri and coworkers showed in their PRL (2021) [5], the phase diagram of our model differs fundamentally from that of Biroli et al. (2018) [6]. In the latter, the intuitive rule – greater interaction variance yields greater instability – indeed holds. For the sake of clarity, we have attached below the resulting phase diagram obtained by Altieri et al.

      The apparent paradox arises because the two phase diagrams are tuned by different parameters. Consequently, even at low temperature and with weak interaction variance, our system may sit nearer to the replica-symmetrybreaking (RSB) line.

      Fig. 3 in the main text it is not a (σ,T) phase diagram where all other parameters are kept constant. Rather, it is a plot of the inferred σ and T parameters from the data (without showing the corresponding µ).

      To capture the full, non-trivial influence of all parameters on stability, we studied the so-called “replicon eigenvalue” in the RS (i.e. single equilibrium) approximation. This leading eigenvalue measures how close a given set of inferred parameters – and hence a microbiome – is to the RSB threshold. For a visual representation of these findings, refer to Figure 4.

      Author response image 1.

      (4) What do the empirical SAD look like? It would be nice to see the actual data and how the theoretical SADs compare.

      The empirical species abundance distributions (SADs) analyzed in our study are presented and discussed in detail in Pasqualini et al., 2024 [4]. Given the overlap in content, we chose not to reproduce these figures in the current manuscript to avoid redundancy.

      As we also clarify in the revised text, the theoretical SAD is derived from the disordered generalized Lotka-Volterra (dGLV) model in the unique fixed point phase typically exhibit exponential tails. These distributions do not match the heavier-tailed patterns (e.g., log-normal or power-law-like) observed in empirical microbiome data. This discrepancy stems from the simplifying assumptions of the dGLV framework, including the use of constant carrying capacities and demographic noise.

      In the revised manuscript, we have added a brief discussion in the revised manuscript to explicitly acknowledge this limitation and emphasize it as a direction for future refinement of the model, such as incorporating heterogeneous carrying capacities or exploring alternative noise structures.

      (5) Some typos: often “niche” is written “nice”.

      We thank the reviewer for this suggestion. After inspecting the text, we corrected the reported typos.

      Reviewer #3:

      Major comments:

      (1) In the S3 text, the authors say that filtered metagenomic reads were processed using the software Kaiju. The description of the pipeline does not mention how core genes were selected, which is often a crucial step in determining the abundance of a species in a metagenomic sample. In addition, the senior author of this manuscript has published a version of Kaiju that leverages marker genes classification methods (deemed Core-Kaiju), but it was not used for either this manuscript or Pasqualini et al. (2014; Tovo et al., 2020). I am not suggesting that the data necessarily needs to be reprocessed, but it would be useful to know how core genes were chosen in Pasqualini et al. and why Core-Kaiju was not used (2014).

      Prior to the current manuscript and the PLOS Computational Biology paper by Pasqualini et al. [4], we applied the core-Kaiju protocol to the same dataset used in both studies. However, this tool was originally developed and validated using general catalogs of culturable organisms, not specifically tuned for gut microbiomes. As a result, we have realized that in many samples Core Kajiu would filter only very few species (in some samples, the number of identified species was as low as 5–10), undermining the reliability of the analysis. Due to these limitations, we opted to use the standard Kaiju version in our work. We are actively developing an improved version of the core-Kaiju protocol that will overcome the discussed limitations and preliminary results (not shown here) indicate the robustness of the obtained patterns also in this case.

      (2) My understanding of Pasqualini et al. was that diseased patients experienced larger fluctuations in abundance, while in this study, they had smaller fluctuations (Figure 3a; 2024). Is this a discrepancy between the two models or is there a more nuanced interpretation?

      We thank the reviewer for the observation. This is only an apparent discrepancy, as the term fluctuation has different meanings in the two contexts. The fluctuations referred to by the reviewer correspond to a parameter of our theory—namely, noise in the interactions. Conversely, in Pasqualini et al. σ indicates environmental fluctuations. Nevertheless, there is no conceptual discrepancy in our results: in both studies, unhealthy microbiomes were found to be less stable. In fact, also in this study, notably Fig. 4, shows that unhealthy microbiomes lie closer to the RSB line, a phenomenon that is also associated with enhanced fluctuations.

      (3) Line 38-41: It would be helpful to explicitly state what “interaction patterns” are being referenced here. The final sentence could also be clarified. Do microbiomes “host“ interactions or are they better described as a property (“have”, “harbor”). The word “host” may confuse some readers since it is often used to refer to the human host. I am also not sure what point is being made by “expected to govern natural ones”. There are interactions between members of a microbiome; experimental studies have characterized some of these interactions, which we expect to relate in some way to interactions in nature. Is this what the authors are saying?

      Thanks. We agree that this sentence was not clear. Indeed, we are referring to pairwise species interactions and not to host-microbiome interactions. We have rewritten this part in the following way: In fact, recent work shows that the network-level properties of species-species interactions —for example, the sign balance, average strength, and connectivity of the inferred interaction matrix— shift systematically between healthy and dysbiotic gut communities (see for instance, [7, 8]). Pairwise species interactions have been quantified in simplified in-vitro consortia [9, 10]; we assume that the same classes of interactions also operate—albeit in a more complex form—in the native gut microbiome.

      (4) Line 43: I appreciate that the authors separated neutral vs. logistic models here.

      (5) Lines 51-75: The framing here is well-written and convincing. Network inference is an ongoing, active subject in ecology, and there is an unfortunate focus on inferring every individual interaction because ecologists with biology backgrounds are not trained to think about the problem in the language of statistical physics.

      We thank the reviewer for these positive comments.

      (6) Line 87: Perhaps I’m missing something obvious, but I don’t see how ρi sets the intrinsic timescale of the dynamics when its units are 1/(time*individuals), assuming the dimensions of ri are inverse time.

      We thank the reviewer for the observation. We corrected this phrase in the main text.

      (7) Lines 189-190: “as close as possible to the data” it would aid the reader if you specified the criteria meant by this statement.

      We thank the reviewer for the observation. We removed the sentence, as it introduced some redundancy in our argument. In the subsequent text, the proposed method is exposed in details.

      (8) Line 198: It would aid the reader if you provided some context for what the T - σ plane represents.

      We thank the referee for the helpful indication. Indeed, we have better clarified the mutual role of the demographic noise amplitude and strength of the random interaction matrix, as theoretically predicted in the PRL (2021) by Altieri and coworkers [5]. Please, find an additional paragraph on page 6 of the resubmitted version.

      (9) Line 217: Specifying what is meant by “internal modes“ would aid the typical life science reader.

      We thank the reviewer for the suggestion. Recognizing that referring to “internal modes” to describe the SAD shape in that context might cause confusion, we replaced “internal modes“ with “peaks”.

      (10) Line 219: Some additional justification and clarification are needed here, as some may think of “m“ as being biomass.

      We added a sentence to better explain this concept. “In classical and quantum field theory, the particle-particle interaction embedded in the quadratic term is typically referred to as a mass source. In the context of this study, captures quadratic fluctuations of species abundances, as also appearing in the expression of the leading eigenvalue of the stability matrix.”

      Minor comments:

      (1) I commend the authors for removing metagenomic reads that mapped to the human genome in the preprocessing stage of their pipeline. This may seem like an obvious pre-processing step, but it is unfortunately not always implemented.

      We thank the referee for pointing this potential issue. The data used in this work, as well as the bioinformatic workflow used to generate them has been described in detail in Pasqualini et al., 2024 [4]. As one of the main steps for preprocessing, we remove reads mapping to the human genome.

      (2) Line 13: “Bacterial“ excludes archaea, and while you may not have many high-abundance archaea in your human gut data, this sentence does not specify the human gut. Usually, this exclusion is averted via the term “microbial“, though sometimes researchers raise objections to the term when the data does not include fungal members (e.g., all 16S studies).

      We thank the reviewer for this suggestion. As to include archaeal organisms, we adopt the term “microbial“ instead of “bacterial“.

      (3) Line 18: This manuscript is being submitted under the “Physics of Living Systems“ tract, but it may be useful to explicitly state in the Abstract that disordered systems are a useful approach for understanding large, complex communities for the benefit of life science researchers coming from a biology background.

      Thank. We have modified the abstract following this suggestion.

      (4) Line 68: Consider using “adapted“ or something similar instead of “mutated“ if there is no specific reason for that word choice.

      We thank the reviewer for this suggestion, which was implemented in the text.

      (5) Line 111: It would be useful to define annealed and quenched for a general life science audience.

      We thank the reviewer for this suggestion. In the “Results” section, we have opted for “time-dependent disordered interactions” to reach a broader audience and avoid any jargon. Moreover, in the Discussion we added a detailed footnote: “In contrast to the quenched approximation, the annealed version assumes that the random couplings are not fixed but instead fluctuate over time, with their covariance governed by independent Ornstein–Uhlenbeck processes.”

      (6) Line 124: Likewise for the replicon sector.

      We thank the reviewer for the suggestion. We added a footnote on page 4, after the formula, to highlight the physical intuition behind the introduction of the replicon mode.

      “The replicon eigenvalue refers to a particular type of fluctuation around the saddle-point (mean-field) solution within the replica framework. When the Hessian matrix of the replicated free energy is diagonalized, fluctuations are divided into three sectors: longitudinal, anomalous, and replicon. The replicon mode is the most sensitive to criticality signaling – by its vanishing trend – the emergence of many nearly-degenerate states. It essentially describes how ‘soft’ the system is to microscopic rearrangements in configuration space.”

      (7) Figure 2: It would be helpful to include y-axis labels for each order parameter alongside the mathematical notation.

      We thank the reviewer for this suggestion. Now the y-axis of Figure 2 includes, along the mathmetical symbol, the label of the represented quantities.

      (8) Line 242: Subscript “U” is used to denote “Unhealthy” microbiomes, but “D” is used to denote “Diseased” in Figs. 2 and 3 (perhaps elsewhere as well).

      We thank the reviewer for this observation. After checking the various subscripts in the text, coherently with figure 2 and 3, we homogenized our notation, adopting the subscript “D“ for symbols related to the diseased/unhealthy condition.

      (9) Line 283: “not to“ should be “not due to“

      We thank the reviewer for this suggestion. After inspecting the text, we corrected the reported error.

      (10) Equations 23, 34: Extra “=“ on the RHS of the first line.

      We consistently follow the same formatting across all the line breaks in the equations throughout the text.

      We are thus resubmitting our paper, hoping to have satisfactorily addressed all referees’ concerns.

      References

      (1) Jacopo Grilli. Macroecological laws describe variation and diversity in microbial communities. Nature communications, 11(1):4743, 2020.

      (2) Guy Bunin. Ecological communities with lotka-volterra dynamics. Physical Review E, 95(4):042414, 2017.

      (3) Matthieu Barbier, Jean-Franc¸ois Arnoldi, Guy Bunin, and Michel Loreau. Generic assembly patterns in complex ecological communities. Proceedings of the National Academy of Sciences, 115(9):2156–2161, 2018.

      (4) Jacopo Pasqualini, Sonia Facchin, Andrea Rinaldo, Amos Maritan, Edoardo Savarino, and Samir Suweis. Emergent ecological patterns and modelling of gut microbiomes in health and in disease. PLOS Computational Biology, 20(9):e1012482, 2024.

      (5) Ada Altieri, Felix Roy, Chiara Cammarota, and Giulio Biroli. Properties of equilibria and glassy phases of the random lotka-volterra model with demographic noise. Physical Review Letters, 126(25):258301, 2021.

      (6) Giulio Biroli, Guy Bunin, and Chiara Cammarota. Marginally stable equilibria in critical ecosystems. New Journal of Physics, 20(8):083051, 2018.

      (7) Amir Bashan, Travis E Gibson, Jonathan Friedman, Vincent J Carey, Scott T Weiss, Elizabeth L Hohmann, and Yang-Yu Liu. Universality of human microbial dynamics. Nature, 534(7606):259–262, 2016.

      (8) Marcello Seppi, Jacopo Pasqualini, Sonia Facchin, Edoardo Vincenzo Savarino, and Samir Suweis. Emergent functional organization of gut microbiomes in health and diseases. Biomolecules, 14(1):5, 2023.

      (9) Jared Kehe, Anthony Ortiz, Anthony Kulesa, Jeff Gore, Paul C Blainey, and Jonathan Friedman. Positive interactions are common among culturable bacteria. Science advances, 7(45):eabi7159, 2021.

      (10) Ophelia S Venturelli, Alex V Carr, Garth Fisher, Ryan H Hsu, Rebecca Lau, Benjamin P Bowen, Susan Hromada, Trent Northen, and Adam P Arkin. Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular systems biology, 14(6):e8157, 2018.

    1. Author response:

      We gratefully acknowledge the comments on our manuscript and the time you took to read and understand our work. Nevertheless, it is the opinion of these authors that the evidence provided in the submitted paper is strong and we performed multiple replicates of the experiments. In particular, gene deletion and complementation is the accepted gold standard for studies in physiology. In the isoleucine auxotroph (IMaux) strain carrying an ilvG deletion, growth is only possible if ilvG is reintroduced on a plasmid and induced. Additionally, isotopic labeling clearly demonstrates the activity of the proposed pathway. Regardless, we agree with the reviewers that the paper and the scientific community would benefit from an in vitro characterization of the promiscuity of IlvG, so we will perform this experiment and resubmit the paper for further revision, and in this revision also provide more detail on the replicates performed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The study explored the biomechanics of kangaroo hopping across both speed and animal size to try and explain the unique and remarkable energetics of kangaroo locomotion.

      Strengths:

      The study brings kangaroo locomotion biomechanics into the 21st century. It is a remarkably difficult project to accomplish. There is excellent attention to detail, supported by clear writing and figures.

      Weaknesses:

      The authors oversell their findings, but the mystery still persists. 

      The manuscript lacks a big-picture summary with pointers to how one might resolve the big question.

      General Comments

      This is a very impressive tour de force by an all-star collaborative team of researchers. The study represents a tremendous leap forward (pun intended) in terms of our understanding of kangaroo locomotion. Some might wonder why such an unusual species is of much interest. But, in my opinion, the classic study by Dawson and Taylor in 1973 of kangaroos launched the modern era of running biomechanics/energetics and applies to varying degrees to all animals that use bouncing gaits (running, trotting, galloping and of course hopping). The puzzling metabolic energetics findings of Dawson & Taylor (little if any increase in metabolic power despite increasing forward speed) remain a giant unsolved problem in comparative locomotor biomechanics and energetics. It is our "dark matter problem".

      Thank you for the kind words.

      This study is certainly a hop towards solving the problem. But, the title of the paper overpromises and the authors present little attempt to provide an overview of the remaining big issues. 

      We have modified the title to reflect this comment.  “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos”

      The study clearly shows that the ankle and to a lesser extent the mtp joint are where the action is. They clearly show in great detail by how much and by what means the ankle joint tendons experience increased stress at faster forward speeds.

      Since these were zoo animals, direct measures were not feasible, but the conclusion that the tendons are storing and returning more elastic energy per hop at faster speeds is solid. The conclusion that net muscle work per hop changes little from slow to fast forward speeds is also solid. 

      Doing less muscle work can only be good if one is trying to minimize metabolic energy consumption. However, to achieve greater tendon stresses, there must be greater muscle forces. Unless one is willing to reject the premise of the cost of generating force hypothesis, that is an important issue to confront. Further, the present data support the Kram & Dawson finding of decreased contact times at faster forward speeds. Kram & Taylor and subsequent applications of (and challenges to) their approach supports the idea that shorter contact times (tc) require recruiting more expensive muscle fibers and hence greater metabolic costs. Therefore, I think that it is incumbent on the present authors to clarify that this study has still not tied up the metabolic energetics across speed problems and placed a bow atop the package. 

      Fortunately, I am confident that the impressive collective brain power that comprises this author list can craft a paragraph or two that summarizes these ideas and points out how the group is now uniquely and enviably poised to explore the problem more using a dynamic SIMM model that incorporates muscle energetics (perhaps ala' Umberger et al.). Or perhaps they have other ideas about how they can really solve the problem.

      You have raised important points, thank you for this feedback. We have added a limitations and considerations section to the discussion which highlights that there are still unanswered questions. Line 311-328

      Considerations and limitations

      “First, we believe it is more likely that the changes in moment arms and EMA can be attributed to speed rather than body mass, given the marked changes in joint angles and ankle height observed at faster hopping speeds. However, our sample included a relatively narrow range of body masses (13.7 to 26.6 kg) compared to the potential range (up to 80 kg), limiting our ability to entirely isolate the effects of speed from those of mass. Future work should examine a broader range of body sizes. Second, kangaroos studied here only hopped at relatively slow speeds, which bounds our estimates of EMA and tendon stress to a less critical region. As such, we were unable to assess tendon stress at fast speeds, where increased forces would reduce tendon safety factors closer to failure. A different experimental or modelling approach may be needed, as kangaroos in enclosures seem unwilling to hop faster over force plates. Finally, we did not determine whether the EMA of proximal hindlimb joints (which are more difficult to track via surface motion capture markers) remained constant with speed. Although the hip and knee contribute substantially less work than the ankle joint (Fig. 4), the majority of kangaroo skeletal muscle is located around these proximal joints. A change in EMA at the hip or knee could influence a larger muscle mass than at the ankle, potentially counteracting or enhancing energy savings in the ankle extensor muscle-tendon units. Further research is needed to understand how posture and muscles throughout the whole body contribute to kangaroo energetics.”

      Additionally, we added a line “Peak GRF also naturally increased with speed together with shorter ground contact durations (Fig. 2b, Suppl. Fig 1b)” (line 238) to highlight that we are not proposing that changes in EMA alone explain the full increase in tendon stress. Both GRF and EMA contribute substantially (almost equally) to stress, and we now give more equal discussion to both. For instance, we now also evaluate how much each contributes: “If peak GRF were constant but EMA changed from the average value of a slow hop to a fast hop, then stress would increase 18%, whereas if EMA remained constant and GRF varied by the same principles, then stress would only increase by 12%. Thus, changing posture and decreasing ground contact duration both appear to influence tendon stress for kangaroos, at least for the range of speeds we examined” (Line 245-249)

      We have added a paragraph in the discussion acknowledging that the cost of generating force problem is not resolved by our work, concluding that “This mechanism may help explain why hopping macropods do not follow the energetic trends observed in other species (Dawson and Taylor 1973, Baudinette et al. 1992, Kram and Dawson 1998), but it does not fully resolve the cost of generating force conundrum” Line 274-276.

      I have a few issues with the other half of this study (i.e. animal size effects). I would enjoy reading a new paragraph by these authors in the Discussion that considers the evolutionary origins and implications of such small safety factors. Surely, it would need to be speculative, but that's OK.

      We appreciate this comment from the reviewer, however could not extend the study to discuss animal size effects because, as we now note in the results: “The range of body masses may not be sufficient to detect an effect of mass on ankle moment in addition to the effect of speed.” Line 193

      Reviewer #2 (Public Review):

      Summary

      This is a fascinating topic that has intrigued scientists for decades. I applaud the authors for trying to tackle this enigma. In this manuscript, the authors primarily measured hopping biomechanics data from kangaroos and performed inverse dynamics. 

      While these biomechanical analyses were thorough and impressively incorporated collected anatomical data and an Opensim model, I'm afraid that they did not satisfactorily address how kangaroos can hop faster and not consume more metabolic energy, unique from other animals.  Noticeably, the authors did not collect metabolic data nor did they model metabolic rates using their modelling framework. Instead, they performed a somewhat traditional inverse dynamics analysis from multiple animals hopping at a self-selected speed.

      In the current study, we aimed to provide a joint-level explanation for the increases of tendon stress that are likely linked to metabolic energy consumption.

      We have now included a limitations section in the manuscript (See response to Rev 1). We plan to expand upon muscle level energetics in the future with a more detailed musculoskeletal model.

      Within these analyses, the authors largely focused on ankle EMA, discussing its potential importance (because it affects tendon stress, which affects tendon strain energy, which affects muscle mechanics) on the metabolic cost of hopping. However, EMA was roughly estimated (CoP was fixed to the foot, not measured) and did not detectibly associate with hopping speed (see results Yet, the authors interpret their EMA findings as though it systematically related with speed to explain their theory on how metabolic cost is unique in kangaroos vs. other animals

      As noted in our methods, EMA was not calculated from a fixed centre of pressure (CoP). We did fix the medial-lateral position, owing to the fact that both feet contacted the force plate together, but the anteroposterior movement of the CoP was recorded by the force plate and thus allowed to move. We report the movement (or lack of movement) in our results. The anterior-posterior axis is the most relevant to lengthening or shortening the distance of the ‘out-lever’ R, and thereby EMA. It is necessary to assume fixed medial-lateral position because a single force trace and CoP is recorded when two feet land on the force plate. The mediallateral forces on each foot cancel out so there is no overall medial-lateral movement if the forces are symmetrical (e.g. if the kangaroo is hopping in a straight path and one foot is not in front of the other). We only used symmetrical trials so that the anterior-posterior movement of the CoP would be reliable. We have now added additional details into the text to clarify this

      Indeed, the relationship between R and speed (and therefore EMA and speed) was not significant. However, the significant change in ankle height with speed, combined with no systematic change in COP at midstance, demonstrates that R would be greater at faster speeds. If we consider the nonsignificant relationship between R and speed to indicate that there is no change in R, then these two results conflict. We could not find a flaw in our methods, so instead concluded that the nonsignificant relationship between R and speed may be due to a small change in R being undetectable in our data. Taking both results into account, we believe it is more likely that there is a non-detectable change in R, rather than no change in R with speed, but we presented both results for transparency. We have added an additional section into the results to make this clearer (Line 177-185) “If we consider the nonsignificant relationship between R (and EMA) and speed to indicate that there is no change in R, then it conflicts with the ankle height and CoP result. Taking both into account, we think it is more likely that there is a small, but important, change in R, rather than no change in R with speed. It may be undetectable because we expect small effect sizes compared to the measurement range and measurement error (Suppl. Fig. 3h), or be obscured by a similar change in R with body mass. R is highly dependent on the length of the metatarsal segment, which is longer in larger kangaroos (1 kg BM corresponded to ~1% longer segment, P<0.001, R<sup>2</sup>=0.449). If R does indeed increase with speed, both R and r will tend to decrease EMA at faster speeds.”

      These speed vs. biomechanics relationships were limited by comparisons across different animals hopping at different speeds and could have been strengthened using repeated measures design

      There is significant variation in speed within individuals, not just between individuals. The preferred speed of kangaroos is 2-4.5 m/s, but most individuals showed a wide speed range within this. Eight of our 16 kangaroos had a maximum speed that was 1-2m/s faster than their slowest trial. Repeated measures of these eight individuals comprises 78 out of the 100 trials.   It would be ideal to collect data across the full range of speeds for all individuals, but it is not feasible in this type of experimental setting. Interference with animals such as chasing is dangerous to kangaroos as they are prone to adverse reactions to stress. We have now added additional information about the chosen hopping speeds into the results and methods sections to clarify this “The kangaroos elected to hop between 1.99 and 4.48 m s<sup>-1</sup>, with a range of speeds and number of trials for each individual (Suppl. Fig. 9).”  (Line 381-382)

      There are also multiple inconsistencies between the authors' theory on how mechanics affect energetics and the cited literature, which leaves me somewhat confused and wanting more clarification and information on how mechanics and energetics relate

      We thank the reviewer for this comment. Upon rereading we now understand the reviewers position, and have made substantial revisions to the introduction and discussion (See comments below) 

      My apologies for the less-than-favorable review, I think that this is a neat biomechanics study - but am unsure if it adds much to the literature on the topic of kangaroo hopping energetics in its current form.

      Again we thank the reviewer for their time and appreciate their efforts to strengthen our manuscript.

      Reviewer #3 (Public Review):

      Summary:

      The goal of this study is to understand how, unlike other mammals, kangaroos are able to increase hopping speed without a concomitant increase in metabolic cost. They use a biomechanical analysis of kangaroo hopping data across a range of speeds to investigate how posture, effective mechanical advantage, and tendon stress vary with speed and mass. The main finding is that a change in posture leads to increasing effective mechanical advantage with speed, which ultimately increases tendon elastic energy storage and returns via greater tendon strain. Thus kangaroos may be able to conserve energy with increasing speed by flexing more, which increases tendon strain.

      Strengths:

      The approach and effort invested into collecting this valuable dataset of kangaroo locomotion is impressive. The dataset alone is a valuable contribution.

      Thank you!

      Weaknesses:

      Despite these strengths, I have concerns regarding the strength of the results and the overall clarity of the paper and methods used (which likely influences how convincingly the main results come across).

      (1) The paper seems to hinge on the finding that EMA decreases with increasing speed and that this contributes significantly to greater tendon strain estimated with increasing speed. It is very difficult to be convinced by this result for a number of reasons:

      It appears that kangaroos hopped at their preferred speed. Thus the variability observed is across individuals not within. Is this large enough of a range (either within or across subjects) to make conclusions about the effect of speed, without results being susceptible to differences between subjects? 

      Apologies, this was not clear in the manuscript. Kangaroos hopping at their preferred speed means we did not chase or startle them into high speeds to comply with ethics and enclosure limitations. Thus we did not record a wide range of speeds within the bounds of what kangaroos are capable of in the wild (up to 12 m/s), but for the range we did measure (~2-4.5 m/s), there is a large amount of variation in hopping speed within each individual kangaroo. Out of 16 individuals, eight individuals had a difference of 1-2m/s between their slowest and fastest trials, and these kangaroos accounted for 78 out of 100 trials. Of the remainder, six individuals had three for fewer trials each, and two individuals had highly repeatable speeds (3 out of 4, and 6 out of 7 trials were within 0.5 m/s). We have now removed the terminology “preferred speed” e.g line 115. We have added additional information about the chosen hopping speeds into the results and methods, including an appendix figure “The kangaroos elected to hop between 1.99 and 4.48 m s<sup>-1</sup>, with a range of speeds and number of trials for each individual (Suppl. Fig. 9).” (Line 381-382)

      In the literature cited, what was the range of speeds measured, and was it within or between subjects?

      For other literature, to our knowledge the highest speed measured is ~9.5m/s (see supplementary Fig1b) and there were multiple measures for several individuals (see methods Kram & Dawson 1998). 

      Assuming that there is a compelling relationship between EMA and velocity, how reasonable is it to extrapolate to the conclusion that this increases tendon strain and ultimately saves metabolic cost?  They correlate EMA with tendon strain, but this would still not suggest a causal relationship (incidentally the p-value for the correlation is not reported). 

      The functions that underpin these results (e.g. moment = GRF*R) come from physical mechanics and geometry, rather than statistical correlations. Additionally, a p-value is not appropriate in the relationship between EMA and stress (rather than strain) because the relationship does not appear to be linear. We have made it clearer in the discussion that we are not proposing that entire change in stress is caused by changes in EMA, but that the increase in GRF that naturally occurs with speed will also explain some of the increase in stress, along with other potential mechanisms. The discussion has been extensively revised to reflect this. 

      Tendon strain could be increasing with ground reaction force, independent of EMA. Even if there is a correlation between strain and EMA, is it not a mathematical necessity in their model that all else being equal, tendon stress will increase as ema decreases? I may be missing something, but nonetheless, it would be helpful for the authors to clarify the strength of the evidence supporting their conclusions.

      Yes, GRF also contributes to the increase in tendon stress in the mechanism we propose (Suppl. Fig. 8), see the formulas in Fig 6, and we have made this clearer in the revised discussion (see above comment).  You are correct that mathematically stress is inversely proportional to EMA, which can be observed in Fig. 7a, and we did find that EMA decreases. 

      The statistical approach is not well-described. It is not clear what the form of the statistical model used was and whether the analysis treated each trial individually or grouped trials by the kangaroo. There is also no mention of how many trials per kangaroo, or the range of speeds (or masses) tested. 

      The methods include the statistical model with the variables that we used, as well as the kangaroo masses (13.7 to 26.6 kg, mean: 20.9 ± 3.4 kg). We did not have sufficient within individual sample size to use a linear mixed effect model including subject as a random factor, thus all trials were treated individually. We have included this information in the results section. 

      We have now moved the range of speeds from the supplementary material to the results and figure captions. We have added information on the number of trials per kangaroo to the methods, and added Suppl. Fig. 9 showing the distribution of speeds per kangaroo.

      We did not group the data e.g. by using an average speed per individual for all their trials, or by comparing fast to slow groups for statistical analysis (the latter was only for display purposes in our figures, which we have now made clearer in the methods statistics section). 

      Related to this, there is no mention of how different speeds were obtained. It seems that kangaroos hopped at a self-selected pace, thus it appears that not much variation was observed. I appreciate the difficulty of conducting these experiments in a controlled manner, but this doesn’t exempt the authors from providing the details of their approach.

      Apologies, this was not clear in the manuscript. Kangaroos hopping at their preferred speed means we did not chase or startle them into high speeds to comply with ethics and enclosure limitations. Thus we did not record a wide range of speeds within the bounds of what kangaroos are capable of in the wild (up to 12 m/s). We have now removed the terminology “preferred speed” e.g. line 115. We have added additional information about the chosen hopping speeds into the results and methods, including an appendix figure (see above comment). (Line 381-382)

      Some figures (Figure 2 for example) present means for one of three speeds, yet the speeds are not reported (except in the legend) nor how these bins were determined, nor how many trials or kangaroos fit in each bin. A similar comment applies to the mass categories. It would be more convincing if the authors plotted the main metrics vs. speed to illustrate the significant trends they are reporting.

      Thank you for this comment. The bins are used only for display purposes and not within the statistical analysis. We have clarified this in the revised manuscript: “The data was grouped into body mass (small 17.6±2.96 kg, medium 21.5±0.74 kg, large 24.0±1.46 kg) and speed (slow 2.52±0.25 m s<sup>-1</sup>, medium 3.11±0.16 m s<sup>-1</sup>, fast 3.79±0.27 m s<sup>-1</sup>) subsets for display purposes only”. (Line 495-497)

      (2) The significance of the effects of mass is not clear. The introduction and abstract suggest that the paper is focused on the effect of speed, yet the effects of mass are reported throughout as well, without a clear understanding of the significance. This weakness is further exaggerated by the fact that the details of the subject masses are not reported.

      Indeed, the primary aim of our study was to explore the influence of speed, given the uncoupling of energy from hopping speed in kangaroos. We included mass to ensure that the effects of speed were not driven by body mass (i.e.: that larger kangaroos hopped faster). Subject masses were reported in the first paragraph of the methods, albeit some were estimated as outlined in the same paragraph.

      (3) The paper needs to be significantly re-written to better incorporate the methods into the results section. Since the results come before the methods, some of the methods must necessarily be described such that the study can be understood at some level without turning to the dedicated methods section. As written, it is very difficult to understand the basis of the approach, analysis, and metrics without turning to the methods.

      The methods after the discussion is a requirement of the journal. We have incorporated some methods in the results where necessary but not too repetitive or disruptive, e.g. Fig. 1 caption, and specifying we are only analysing EMA for the ankle joint

      Reviewing Editor (Recommendations For The Authors):

      Below is a list of specific recommendations that the authors could address to improve the eLife assessment:

      (1) Based on the data presented and the fact that metabolic energy was not measured, the authors should temper their conclusions and statements throughout the manuscript regarding the link between speed and metabolic energy savings. We recommend adding text to the discussion summarizing the strengths and limitations of the evidence provided and suggesting future steps to more conclusively answer this mystery.

      There is a significant body of work linking metabolic energy savings to measured increases in tendon stress in macropods. However, the purpose of this paper was to address the unanswered questions about why tendon stress increases. We found that stress did not only increase due to GRF increasing with speed as expected, but also due to novel postural changes which decreased EMA. In the revised manuscript, we have tempered our conclusions to make it clearer that it is not just EMA affecting stress, and added limitations throughout the manuscript (see response to Rev 1). 

      (2) To provide stronger evidence of a link between speed, mechanics, and metabolic savings the authors can consider estimating metabolic energy expenditure from their OpenSIM model. This is one suggestion, but the authors likely have other, possibly better ideas. Such a model should also be able to explain why the metabolic rate increases with speed during uphill hopping.

      Extending the model to provide direct metabolic cost estimates will be the goal of a future paper, however the models does not have detailed muscle characteristics to do this in the formulation presented here. It would be a very large undertaking which is beyond the scope of the current manuscript. As per the comment above, the results of this paper are not reliant on metabolic performance. 

      (3) The authors attempt to relate the newly quantified hopping biomechanics to previously published metabolic data. However, all reviewers agree that the logic in many instances is not clear or contradictory. Could one potential explanation be that at slow speeds, forces and tendon strain are small, and thus muscle fascicle work is high? Then, with faster speeds, even though the cost of generating isometric force increases, this is offset by the reduction in the metabolic cost of muscular work. The paper could provide stronger support for their hypotheses with a much clearer explanation of how the kinematics relate to the mechanics and ultimately energy savings.

      In response to the reviewers comments, we have substantially modified the discussion to provide clearer rationale.

      (4) The methods and the effort expended to collect these data are impressive, but there are a number of underlying assumptions made that undermine the conclusions. This is due partly to the methods used, but also the paper's incomplete description of their methods. We provide a few examples below:

      It would be helpful if the authors could speak to the effect of the limited speeds tested and between-animal comparisons on the ability to draw strong conclusions from the present dataset. ·

      Throughout the discussion, the authors highlight the relationship between EMA and speed. However, this is misleading since there was no significant effect of speed on EMA. Speed only affected the muscle moment arm, r. At minimum, this should be clarified and the effect on EMA not be overstated. Additionally, the resulting implications on their ability to confidently say something about the effect of speed on muscle stress should be discussed. 

      We have now provided additional details, (see responses above) to these concerns. For instance, we added a supplementary figure showing the speed distribution per individual. The primary reviewer concern (that each kangaroo travelled at a single speed) was due to a miscommunication around the terminology “preferred” which has now been corrected. 

      We now elaborate in the results why we are not very concerned that EMA is insignificant. The statistical insignificance of EMA is ultimately due to the insignificance of the direct measurement of R, however, we now better explain in the results why we believe that this statistical insignificance is due to error/noise of the measurement which is relatively large compared to the effect size. Indirect indications of how R may increase with speed (via ankle height from the ground) are statistically significant. Lines 177-185. 

      We consider this worth reporting because, for instance, an 18% change in EMA will be undetectable by measurement, but corresponds to an 18% change in tendon stress which is measurable and physiologically significant (safety factor would decrease from 2 to 1.67).  We presented both significant and insignificant results for transparency. 

      We have also discussed this within a revised limitations section of the manuscript (Line 311328). 

      Reviewer #1 (Recommendations For The Authors):

      Title: I would cut the first half of the title. At least hedge it a bit. "Clues" instead of "Unlocking the secrets".

      We have revised the title to: “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos”

      In my comments, ... typically indicates a stylistic change suggested to the text.

      Overall, the paper covers speed and size. Unfortunately, the authors were not 100% consistent in the order of presenting size then speed, or speed then size. Just choose one and stick with it.

      We have attempted to keep the order of presenting size and speed consistent, however there are several cases where this would reduce the readability of the manuscript and so in some cases this may vary. 

      One must admit that there is a lot of vertical scatter in almost all of the plots. I understand that these animals were not in a lab on a treadmill at a controlled speed and the animals wear fur coats so marker placements vary/move etc. But the spread is quite striking, e.g. Figure 5a the span at one speed is almost 10x. Can the authors address this somewhere? Limitations section?

      The variation seen likely results from attempting to display data in a 2D format, when it is in fact the result of multiple variables, including speed, mass, stride frequency and subject specific lengths. Slight variations in these would be expected to produce some noise around the mean, and I think it’s important to consider this while showing the more dominant effects. 

      In many locations in the manuscript, the term "work" is used, but rarely if ever specified that this is the work "per hop". The big question revolves around the rate of metabolic energy consumption (i.e. energy per time or average metabolic power), one must not forget that hop frequency changes somewhat across speed, so work per hop is not the final calculation.

      Thank you for this comment. We have now explicitly stated work per hop in figure captions and in the results (line 208). The change in stride frequency at this range of speeds is very small, particularly compared to the variance in stride frequency (Suppl. Fig. 1d), which is consistent with other researchers who found that stride frequency was constant or near constant in macropods at analogous speeds (e.g. Dawson and Taylor 1973, Baudinette et al. 1987). 

      Line 61 ....is likely related.

      Added “likely” (line 59)

      Line 86 I think the Allen reference is incomplete. Wasn't it in J Exp Biology?

      Thank you. Changed. 

      Line 122 ... at faster speeds and in larger individuals.

      Changed: “We hypothesised that (i) the hindlimb would be more crouched at faster speeds, primarily due to the distal hindlimb joints (ankle and metatarsophalangeal), independent of changes with body mass” (Line 121-122).

      Line 124 I found this confusing. Try to re-word so that you explain you mean more work done by the tendons and less by the ankle musculature.

      Amended: “changes in moment arms resulting from the change in posture would contribute to the increase in tendon stress with speed, and may thereby contribute to energetic savings by increasing the amount of positive and negative work done by the ankle without requiring additional muscle work” (Line 123)

      Line 129 hopefully "braking" not "breaking"!

      Thank you. Fixed. (Line 130)

      Line 129 specify fore-aft horizontal force.

      Added "fore-aft" to "negative fore-aft horizontal component" (Line 130-131)

      Line 130 add something like "of course" or "naturally" since if there is zero fore-aft force, the GRF vector of course must be vertical. 

      Added "naturally" (Line 132)

      Line 138 clarify that this section is all stance phase. I don't recall reading any swing phase data.

      Changed to: "Kangaroo hindlimb stance phase kinematics varied…" (Line 141)

      Line 143 and elsewhere. I found the use of dorsiflexion and plantarflexion confusing. In Figure 3, I see the ankle never flexing more than 90 degrees. So, the ankle joint is always in something of a flexed position, though of course it flexes and extends during contact. I urge the authors to simplify to flextion/extension and drop the plantar/dorsi.

      We have edited this section to describe both movements as greater extension (plantarflexion). (Line 147). We have further clarified this in the figure caption for figure 3.  

      Line 147 ...changes were…

      Fixed, line 150

      Line 155 I'm a bit confused here. Are the authors calculating some sort of overall EMA or are they saying all of the individual joint EMAs all decreased?

      Thank you, we clarified that it is at the ankle. Line 158

      Line 158 since kangaroos hop and are thus positioned high and low throughout the stance phase, try to avoid using "high" and "low" for describing variables, e.g. GRF or other variables. Just use "greater/greatest" etc.

      Thanks for this suggestion. We have changed "higher" into "greater" where appropriate throughout the manuscript e.g. line 161

      Lines 162 and 168 same comment here about "r" and "R". Do you mean ankle or all joints?

      Clarified that it is the gastrocnemius and plantaris r, and the R to the ankle. (Lines 164-165)

      Line 173 really, ankle height?

      Added: ankle height is "vertical distance from the ground". Line 177

      Line 177 is this just the ankle r?

      Added "of the ankle" line 158 and “Achilles” line 187 

      Line 183 same idea, which tendon/tendons are you talking about here?

      Added "Achilles" to be more clear (Line 187)

      Line 195 substitute "converted" for "transferred".

      Done (Line 210)

      Line 223 why so vague? i.e. why use "may"? Believe in your data. ...stress was also modulated by changes....

      Changed "may" to "is"

      Line 229 smaller ankle EMA (especially since you earlier talked about ankle "height").

      Changed “lower” to “smaller” Line 254

      Line 2236 ...and return elastic energy…

      Added "elastic" line 262

      Line 244 IMPORTANT: Need to explain this better! I think you are saying that the net work at the ankle is staying the same across speed, BUT it is the tendons that are storing and returning that work, it's not that the muscles are doing a lot of negative/positive work.

      Changed: “The consistent net work observed among all speeds suggests the ankle extensor muscle-tendon units are performing similar amounts of ankle work independent of speed, which would predominantly be done by the tendon.” Line 270-272)

      Line 258-261 I think here is where you are over-selling the data/story. Although you do say "a" mechanism (and not "the" mechanism, you still need to deal with the cost of generating more force and generating that force faster.

      We removed this sentence and replaced it with a discussion of the cost of generating force hypothesis, and alternative scenarios for the how force and metabolics could be uncoupled. 

      Line 278 "the" tendon? Which tendon?

      Added "Achilles"

      Line 289. I don't think one can project into the past.

      Changed “projected” to "estimated"

      Line 303 no problem, but I've never seen a paper in biology where the authors admit they don't know what species they were studying!

      Can’t be helped unfortunately. It is an old dataset and there aren’t photos of every kangaroo. Fortunately, from the grey and red kangaroos we can distinguish between, we know there are no discernible species effects on the data. 

      Lines 304-306 I'm not clear here. Did you use vertical impulse (and aerial time) to calculate body weight? Or did you somehow use the braking/propulsive impulse to calculate mass? I would have just put some apples on the force plate and waited for them to stop for a snack.

      Stationary weights were recorded for some kangaroos which did stand on the force plate long enough, but unfortunately not all of them were willing to do so. In those cases, yes, we used impulse from steady-speed trials to estimate mass. We cross-checked by estimated mass from segment lengths (as size and mass are correlated). This is outlined in the first paragraph of the methods.

      Lines 367 & 401 When you use the word "scaled" do you mean you assumed geometric similarity?

      No, rather than geometric scaling, we allowed scaling to individual dimensions by using the markers at midstance for measurements. We have amended the paragraph to clarify that the shape of the kangaroo changes and that mass distribution was preserved during the shape change (line 441-446) 

      Lines 381-82 specify "joint work"

      Added "joint work"  (Line 457)

      Figure 1 is gorgeous. Why not add the CF equation to the left panel of the caption?

      We decided to keep the information in the figure caption. “Total leg length was calculated as the sum of the segment lengths (solid black lines) in the hindlimb and compared to the pelvisto-toe distance (dashed line) to calculate the crouch factor”

      Figure 2 specify Horizontal fore-aft.

      Done

      Figure 3g I'd prefer the same Min. Max Flexion vertical axis labels as you use for hip & knee.

      While we appreciate the reviewer trying to increase the clarity of this figure, we have left it as plantar/dorsi flexion since these are recognised biomechanical terms. To avoid confusion, we have further defined these in the figure caption “For (f-g), increased plantarflexion represents a decrease in joint flexion, while increased dorsiflexion represents increased flexion of the joint.”

      Figure 4. I like it and I think that you scaled all panels the same, i.e. 400 W is represented by the same vertical distance in all panels. But if that's true, please state so in the Caption. It's remarkable how little work occurs at the hip and knee despite the relatively huge muscles there.

      Is it true that the y axes are all at the same scale. We have added this to the caption. 

      Figure 5 Caption should specify "work per hop".

      Added

      Figure 7 is another beauty.

      Thank you!

      Supplementary Figure 3 is this all ANKLE? Please specify.

      Clarified that it is the gastrocnemius and plantaris r, and the R to the ankle.

      Reviewer #2 (Recommendations For The Authors):

      To 'unlock the secrets of kangaroo locomotor energetics' I expected the authors to measure the secretive outcome variable, metabolic rate using laboratory measures. Rather, the authors relied on reviewing historic metabolic data and collecting biomechanics data across different animals, which limits the conclusions of this manuscript.

      We have revised to the title to make it clearer that we are investigating a subset of the energetics problem, specifically posture. “Postural adaptations may contribute to the unique locomotor energetics seen in hopping kangaroos.” We have also substantially modified the discussion to temper the conclusions from the paper. 

      After reading the hypothesis, why do the authors hypothesize about joint flexion and not EMA? Because the following hypothesis discusses the implications of moment arms on tendon stress, EMA predictions are more relevant (and much more discussed throughout the manuscript).

      Ankle and MTP angles are the primary drivers of changes in r, R & thus, EMA. We used a two part hypothesis to capture this. We have rephased the hypotheses: “We hypothesised that (i) the hindlimb would be more crouched at faster speeds, primarily due to the distal hindlimb joints (ankle and metatarsophalangeal), independent of changes with body mass, and (ii) changes in moment arms resulting from the change in posture would contribute to the increase in tendon stress with speed, and may thereby contribute to energetic savings by increasing the amount of positive and negative work done by the ankle without requiring additional muscle work.”

      If there were no detectable effects of speed on EMA, are kangaroos mechanically like other animals (Biewener Science 89 & JAP 04) who don't vary EMA across speeds? Despite no detectible effects, the authors state [lines 228-229] "we found larger and faster kangaroos were more crouched, leading to lower ankle EMA". Can the authors explain this inconsistency? Lines 236 "Kangaroos appear to use changes in posture and EMA". I interpret the paper as EMA does not change across speed.

      Apologies, we did not sufficiently explain this originally. We now explain in the results our reasoning behind our belief that EMA and R may change with speed. “If we consider the nonsignificant relationship between R (and EMA) and speed to indicate that there is no change in R, then it conflicts with the ankle height and CoP result. Taking both into account, we think it is more likely that there is a small, but important, change in R, rather than no change in R with speed. It may be undetectable because we expect small effect sizes compared to the measurement range and measurement error (Suppl. Fig. 3h), or be obscured by a similar change in R with body mass. R is highly dependent on the length of the metatarsal segment, which is longer in larger kangaroos (1 kg BM corresponded to ~1% longer segment, P<0.001, R<sup>2</sup>=0.449). If R does indeed increase with speed, both R and r will tend to decrease EMA at faster speeds.” (Line 177-185)

      Lines 335-339: "We assumed the force was applied along phalanx IV and that there was no medial or lateral movement of the centre of pressure (CoP)". I'm confused, did the authors not measure CoP location with respect to the kangaroo limb? If not, this simple estimation undermines primary results (EMA analyses).

      We have changed "The anterior or posterior movement of the CoP was recorded by the force plate" to read: "The fore-aft movement of the CoP was recorded by the force plate within the motion capture coordinate system" (Line 406-407) and added more justification for fixing the CoP movement in the other axis: “It was necessary to assume the CoP was fixed in the mediallateral axis because when two feet land on the force plate, the lateral forces on each foot are not recorded, and indeed cancel if the forces are symmetrical (i.e. if the kangaroo is hopping in a straight path and one foot is not in front of the other). We only used symmetrical trials to ensure reliable measures of the anterior-posterior movement of the CoP.” (Line 408-413)

      The introduction makes many assertions about the generalities of locomotion and the relationship between mechanics and energetics. I'm afraid that the authors are selectively choosing references without thoroughly evaluating alternative theories. For example, Taylor, Kram, & others have multiple papers suggesting that decreasing EMA and increasing muscle force (and active muscle volume) increase metabolic costs during terrestrial locomotion. Rather, the authors suggest that decreasing EMA and increasingly high muscle force at faster speeds don't affect energetics unless muscle work increases substantially (paragraph 2)? If I am following correctly, does this theory conflict with active muscle volume ideas that are peppered throughout this manuscript?

      Yes, as you point out, the same mechanism does lead to different results in kangaroos vs humans, for instance, but this is not a contradiction. In all species, decreasing EMA will result in an increase in muscle force due to less efficient leverage (i.e. lower EMA) of the muscles, and the muscle-tendon unit will be required to produce more force to balance the joint moment. As a consequence, human muscles activate a greater volume in order for the muscle-tendon unit to increase muscle work and produce enough force. We are proposing that in kangaroos, the increase in work is done by the achilles tendon rather than the muscles. Previous research suggests that macropod ankle muscles contract isometrically or that the fibres do not shorten more at faster speeds i.e. muscle work does not increase with speed. Instead, the additional force seems to come from the tendon storing and subsequently returning more strain energy (indicated by higher stress). We found that the increase in tendon stress comes from higher ground force at faster speeds, and from it adopting a more crouched posture which increases the tendons’ stresses compared to an upright posture for a given speed (think of this as increasing the tendon’s stress capacity). We have substantially revised the discussion to highlight this.

      Similarly, does increased gross or net tendon mechanical energy storage & return improve hopping energetics? Would more tendon stress and strain energy storage with a given hysteresis value also dissipate more mechanical energy, requiring leg muscles to produce more net work? Does net or gross muscle work drive metabolic energy consumption?

      Based on the cost of generating force hypothesis, we think that gross muscle work would be linked to driving metabolic energy consumption. Our idea here is that the total body work is a product of the work done by the tendon and the muscle combined. If the tendon has the potential to do more work, then the total work can increase without muscle work needing to increase.

      The results interpret speed effects on biomechanics, but each kangaroo was only collected at 1 speed. Are inter-animal comparisons enough to satisfy this investigation?

      We have added a figure (Suppl Fig 9) to demonstrate the distribution of speed and number of trials per kangaroo. We have also removed "preferred" from the manuscript as this seems to cause confusion. Most kangaroos travelled at a range of “casual” speeds.

      Abstract: Can the authors more fully connect the concept of tendon stress and low metabolic rates during hopping across speeds? Surely, tendon mechanics don't directly drive the metabolic cost of hopping, but they affect muscle mechanics to affect energetics.

      Amended to: " This phenomenon may be related to greater elastic energy savings due to increasing tendon stress; however, the mechanisms which enable the rise in stress, without additional muscle work remain poorly understood." (Lines 25-27).

      The topic sentence in lines 61-63 may be misleading. The ensuing paragraph does not substantiate the topic sentence stating that ankle MTUs decouple speeds and energetics.

      We added "likely" to soften the statement. (Line 59)

      Lines 84-86: In humans, does more limb flexion and worse EMA necessitate greater active muscle volume? What about muscle contractile dynamics - See recent papers by Sawicki & colleagues that include Hill-type muscle mechanics in active muscle volume estimates.

      Added: “Smaller EMA requires greater muscle force to produce a given force on the ground, thereby demanding a greater volume of active muscle, and presumably greater metabolic rates than larger EMA for the same physiology”. (Line 80-82)

      Lines 106: can you give the context of what normal tendon safety factors are?

      Good idea. Added: "far lower than the typical safety factor of four to eight for mammalian tendons (Ker et al. 1988)." Line 106-107

      I thought EMA was relatively stable across speeds as per Biewener [Science & JAP '04]. However the authors gave an example of an elephant to suggest that it is typically inversely related to speed. Can the authors please explain the disconnect and the most appropriate explanation in this paragraph?

      Knee EMA in particular changed with speed in Biewener 2004. What is “typical” probably depends on the group of animals studied; e.g., cursorial quadrupedal mammals generally seem to maintain constant EMA, but other groups do not.

      These cases are presented to show a range of consequences for changing EMA (usually with mass, but sometimes with speed). We have made several adjustments to the paragraph to make this clearer. Lines 85-93.

      The results depend on the modeled internal moment arm (r). How confident are the authors in their little r prediction? Considering complications of joint mechanics in vivo including muscle bulging. Holzer et al. '20 Sci Rep demonstrated that different models of the human Achilles tendon moment arm predict vastly different relationships between the moment arm and joint angle.

      Our values for r and EMA closely align with previous papers which measured/calculate these values in kangaroos, such as Kram 1998, and thus we are confident in our interpretation.  

      This is a misleading results sentence: Small decreases in EMA correspond to a nontrivial increase in tendon stress, for instance, reducing EMA from 0.242 (mean minimum EMA of the slow group) to 0.206 (mean minimum EMA of the fast group) was associated with an ~18% increase in tendon stress. The authors could alternatively say that a ~15% decrease in EMA was associated with an ~18% increase in tendon stress, which seems pretty comparable.

      Thank you for pointing this out, it is important that it is made clearer. Although the change in relative magnitude is approximately the same (as it should be), this does not detract from the importance. The "small decrease in EMA" is referring to the absolute values, particularly in respect to the measurement error/noise. The difference is small enough to have been undetectable with other methods used in previous studies. We have amended the sentence to clarify this.

      It now reads: “Subtle decreases in EMA which may have been undetected in previous studies correspond to discernible increases in tendon stress. For instance, reducing EMA from 0.242 (mean minimum EMA of the slow group) to 0.206 (mean minimum EMA of the fast group) was associated with an increase in tendon stress from ~50 MPa to ~60 MPa, decreasing safety factor from 2 to 1.67 (where 1 indicates failure), which is both measurable and physiologically significant.” (Line 195-200)

      Lines 243-245: "The consistent net work observed among all speeds suggests the ankle extensors are performing similar amounts of ankle work independent of speed." If this is true, and presumably there is greater limb work performed on the center of mass at faster speeds (Donelan, Kram, Kuo), do more proximal leg joints increase work and energy consumption at faster speeds?

      The skin over the proximal leg joints (knee and hip) moves too much to get reliable measures of EMA from the ratio of moment arms. This will be pursued in future work when all muscles are incorporated in the model so knee and hip EMA can be determined from muscle force.

      We have added limitations and considerations paragraph to the manuscript: “Finally, we did not determine whether the EMA of proximal hindlimb joints (which are more difficult to track via surface motion capture markers) remained constant with speed. Although the hip and knee contribute substantially less work than the ankle joint (Fig. 4), the majority of kangaroo skeletal muscle is located around these proximal joints. A change in EMA at the hip or knee could influence a larger muscle mass than at the ankle, potentially counteracting or enhancing energy savings in the ankle extensor muscle-tendon units. Further research is needed to understand how posture and muscles throughout the whole body contribute to kangaroo energetics.” (Line 321-328)

      Lines 245-246: "Previous studies using sonomicrometry have shown that the muscles of tammar wallabies do not shorten considerably during hops, but rather act near-isometrically as a strut" Which muscles? All muscles? Extensors at a single joint?

      Added "gastrocnemius and plantaris" Line 164-165

      Lines 249-254: "The cost of generating force hypothesis suggests that faster movement speeds require greater rates of muscle force development, and in turn greater cross-bridge cycling rates, driving up metabolic costs (Taylor et al. 1980, Kram and Taylor 1990). The ability for the ankle extensor muscle fibres to remain isometric and produce similar amounts of work at all speeds may help explain why hopping macropods do not follow the energetic trends observed in quadrupedal species." These sentences confuse me. Kram & Taylor's cost of force-generating hypothesis assumes that producing the same average force over shorter contact times increases metabolic rate. How does 'similar muscle work' across all speeds explain the ability of macropods to use unique energetic trends in the cost of force-generating hypothesis context?

      Thank you for highlighting this confusion. We have substantially revised the discussion clarify where the mechanisms presented deviate from the cost of generating force hypothesis. Lines 270-309

      Reviewer #3 (Recommendations For The Authors):

      In addition to the points described in the public review, I have additional, related, specific comments:

      (1) Results: Please refer to the hypotheses in the results, and relate the the findings back to the hypotheses.

      We now relate the findings back to the hypotheses 

      Line 142 “In partial support of hypothesis (i), greater masses and faster speeds were associated with more crouched hindlimb postures (Fig. 3a,c).”.

      Lines 205-206: “The increase in tendon stress with speed, facilitated in part by the change in moment arms by the shift in posture, may explain changes in ankle work (c.f. Hypothesis (ii)).” 

      (2) Results: please provide the main statistical results either in-line or in a table in the main text.

      We (the co-authors) have discussed this at length, and have agreed that the manuscript is far more readable in the format whereby most statistics lie within the supplementary tables, otherwise a reader is met with a wall of statistics. We only include values in the main text when the magnitude is relevant to the arguments presented in the results and discussion.

      (3) Line 140: Describe how 'crouched' was defined.

      We have now added a brief definition of ‘Crouch factor’ after the figure caption. (Line 143) (Fig. 3a,c; where crouch factor is the ratio of total limb length to pelvis to toe distance).

      (4) Line 162: This seems to be a main finding and should be a figure in the main text not supplemental. Additionally, Supplementary Figures 3a and b do not show this finding convincingly There should be a figure plotting r vs speed and r vs mass.

      The combination of r and R are represented in the EMA plot in the main text. The r and R plots are relegated to the supplementary because the main text is already very crowded.  Thank you for the suggestion for the figure plotting r and R versus speed, this is now included as Suppl. Fig. 3h

      (5) Line 166: Supplementary Figure 3g does not show the range of dorsiflexion angles as a function of speed. It shows r vs dorsiflexion angle. Please correct.

      Thanks for noticing this, it was supposed to reference Fig 3g rather than Suppl Fig 3g in the sentence regarding speed. We have fixed this, Line 170. 

      We had added a reference to Suppl Fig 3 on Line 169 as this shows where the peak in r with ankle angle occurs (114.4 degrees).

      (6) Line 184: Where are the statistical results for this statement?

      The relationship between stress and EMA does not appear to be linear, thus we only present R<sup>^</sup>2 for the power relationship rather than a p-value. 

      (7) Line 192: The authors should explain how joint work and power relate/support the overall hypotheses. This section also refers to Figures 4 and 5 even though Figures 6 and 7 have already been described. Please reorganize.

      We have added a sentence at the end of the work and power section to mention hypothesis (ii) and lead into the discussion where it is elaborated upon. 

      “The increase in positive and negative ankle work may be due to the increase in tendon stress rather than additional muscle work.” Line 219-220 We have rearranged the figure order.

      (8) The statistics are not reported in the main text, but in the supplementary tables. If a result is reported in the main text, please report either in-line or with a table in the main text.

      We leave most statistics in the supplementary tables to preserve the readability of the manuscript. We only include values in the main text when the magnitude is relevant to the arguments raised in the results and discussion.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      This is a contribution to the field of developmental bioelectricity. How do changes of resting potential at the cell membrane affect downstream processes? Zhou et al. reported in 2015 that phosphatidylserine and K-Ras cluster upon plasma membrane depolarization and that voltage-dependent ERK activation occurs when constitutively active K-RasG12V mutants are overexpressed. In this paper, the authors advance the knowledge of this phenomenon by showing that membrane depolarization up-regulates mitosis and that this process is dependent on voltage-dependent activation of ERK. ERK activity's voltage-dependence is derived from changes in the dynamics of phosphatidylserine in the plasma membrane and not by extracellular calcium dynamics. This paper reports an interesting and important finding. It is somewhat derivative of Zhou et al., 2015. (https://www.science.org/doi/full/10.1126/science.aaa5619). The main novelty seems to be that they find quantitatively different conclusions upon conducting similar experiments, albeit with a different cell line (U2OS) than those used by Zhou et al. Sasaki et al. do show that increased K+ levels increase proliferation, which Zhou et al. did not look at. The data presented in this paper are a useful contribution to a field often lacking such data.

      Strengths:

      Bioelectricity is an important field for areas of cell, developmental, and evolutionary biology, as well as for biomedicine. Confirmation of ERK as a transduction mechanism and a characterization of the molecular details involved in the control of cell proliferation are interesting and impactful.

      Weaknesses:

      The authors lean heavily on the assumption that the Nernst equation is an accurate predictor of membrane potential based on K+ level. This is a large oversimplification that undermines the author's conclusions, most glaringly in Figure 2C. The author's conclusions should be weakened to reflect that the activity of voltage gated ion channels and homeostatic compensation are unaccounted for.

      We appreciate the reviewer’s thoughtful comment regarding our reliance on the Nernst equation to estimate membrane potential. We agree that the Nernst equation is a simplification and does not account for the activity of other ions, voltage-gated channels, or homeostatic compensation mechanisms. To address this concern, we conducted electrophysiological experiments in which the membrane potential was directly controlled using the perforated patch-clamp technique (Fig. 3). Under these conditions, we also monitored the membrane potential and confirmed that there was negligible drift within 20 minutes of perfusion with 145 mM K<sup>⁺</sup> (only a 1–5 mV change). These results suggest that the influence of voltage-gated channels and homeostatic compensation is minimal in our experimental setup. We revised the manuscript to clarify these limitations and to present our conclusions more cautiously in light of this point.

      “A potential limitation of extracellular K<sup>⁺</sup>-based approaches is their reliance on the Nernst equation to estimate membrane potential, which oversimplifies the actual situation by neglecting voltage-gated ion channel activity and compensatory mechanisms. To directly address this concern, we measured membrane potential using the perforated patch-clamp technique and confirmed that the potential was stable during perfusion with 145 mM K<sup>⁺</sup> (only a 1–5 mV drift within 20 min). Moreover, we used a voltage clamp to precisely control the membrane potential and demonstrated that ERK activity was directly regulated by the voltage itself, excluding the influence of other secondary factors. An additional strength of electrophysiology is its ability to examine the effects of repolarization, which is difficult to assess with conventional perfusion-based methods owing to slow solution exchange.”

      There are grammatical tense errors are made throughout the paper (ex line 99 "This kinetics should be these kinetics")

      We thank the reviewer for pointing out the grammatical errors. We carefully revised the entire manuscript.

      Line 71: Zhou et al. use BHK, N2A, PSA-3 cells, this paper uses U2OS (osteosarcoma) cells. Could that explain the differences in bioelectric properties that they describe? In general, there should be more discussion of the choice of cell line. Why were U2OS cells chosen? What are the implications of the fact that these are cancer cells, and bone cancer cells in particular? Does this paper provide specific insights for bone cancers? And crucially, how applicable are findings from these cells to other contexts?

      We thank the reviewer for this valuable comment regarding the choice of cell line. We selected U2OS cells primarily because they are well suited for live-cell FRET imaging. We did not use BHK, N2A, or PSA-3 cells, and therefore it is difficult for us to provide a clear comparison with the specific bioelectric properties reported in Zhou et al. Nevertheless, we agree that cancer cell lines, including U2OS, may exhibit bioelectric properties that differ from those of non-cancerous cells. While this could be a potential limitation, we are inclined to consider voltage-dependent ERK activation to be a fundamental and generalizable phenomenon, not restricted to osteosarcoma cells. The key components of this pathway—phosphatidylserine, Ras, MAPK (including ERK)—are expressed in essentially all mammalian cells. In support of our view, we observed voltage-dependent ERK activation not only in U2OS cells but also in HeLa, HEK293, and A431 cells. These results strongly suggest that the mechanism we describe is not cell-type specific but rather a universal feature of mammalian cells. In the revised Discussion, we expanded our rationale to choose U2OS cells, while addressing the potential implications of using a cancer-derived cell line. 

      “In this study, we primarily used U2OS cells because their flat morphology makes them suitable for live-cell FRET imaging. Although cancer cell lines, including U2OS, may display bioelectric properties that differ from those of noncancerous cells, our findings raise the possibility that voltage-dependent ERK activation is a fundamental and broadly applicable phenomenon rather than a feature specific to osteosarcoma cells. This conclusion is supported by the fact that essential components of this pathway, namely phosphatidylserine, Ras, and MAPK (including ERK), are ubiquitously expressed in mammalian cells. Consistent with this finding, we observed voltage-dependent ERK activation across multiple cell lines: U2OS, HeLa, HEK293, and A431 cells (Fig.S2). These observations indicate that the mechanism we describe is not cell-type-restricted, but rather a universal property of mammalian cells.”

      Line 115: The authors use EGF to calibrate 'maximal' ERK stimulation. Is this level near saturation? Either way is fine, but it would be useful to clarify.

      We thank the reviewer for raising this important point. The YFP/CFP ratio obtained after EGF stimulation is generally considered to represent saturation levels detectable by EKAREV imaging. However, we acknowledge that it remains uncertain whether 10 ng/mL EGF induces the absolute maximal ERK activity in all contexts. To clarify this point, we revised the manuscript (result) text as follows:

      “To normalize variation among cells, cells were stimulated with EGF (10 ng/mL) at the end of the experiment, which presumably yielded a near-saturated YFP/CFP value (ERK activity). This value was used to determine the maximum ERK activity in each cell”

      Line 121: Starting line 121 the authors say "Of note, U2OS cells expressed wild-type K-Ras but not an active mutant of K-Ras, which means voltage dependent ERK activation occurs not only in tumor cells but also in normal cells". Given that U2OS cells are bone sarcoma cells, is it appropriate to refer to these as 'normal' cells in contrast to 'tumor' cells?

      We thank the reviewer for pointing this out. We agree that it is not appropriate to contrast U2OS cells with “normal” cells, since they are sarcoma-derived. To address this point, we revised the sentence to weaken the claim and avoid the misleading terminology.

      “Importantly, as U2OS cells express wild-type K-Ras rather than an oncogenic mutant (16), our results raise the possibility that voltage-dependent ERK activation may also occur in non-transformed cells.”

      Line 101: These normalizations seem reasonable, the conclusions sufficiently supported and the requisite assumptions clearly presented. Because the dish-to-dish and cell-to-cell variation may reflect biologically relevant phenomena it would be ideal if non-normalized data could be added in supplemental data where feasible.

      We thank the reviewer for this helpful suggestion. As recommended, we added representative non-normalized data in the Supplemental Figure S1, which illustrates the non-normalized variation across cells and dishes.

      Figure 2C is listed as Figure 2D in the text

      There is no Figure 2F (Referenced in line 148)

      We thank the reviewer for pointing out these errors. The incorrect figure citations were corrected.

      Reviewer #2 (Public review):

      Sasaki et al. use a combination of live-cell biosensors and patch-clamp electrophysiology to investigate the effect of membrane potential on the ERK MAPK signaling pathway, and probe associated effects on proliferation. This is an effect that has long been proposed, but a convincing demonstration has remained elusive, because it is difficult to perturb membrane potential without disturbing other aspects of cell physiology in complex ways. The time-resolved measurements here are a nice contribution to this question, and the perforated patch clamp experiments with an ERK biosensor are fantastic - they come closer to addressing the above difficulty of perturbing voltage than any prior work. It would have been difficult to obtain these observations with any other combination of tools.

      However, there are still some concerns as detailed in specific comments below:

      Specific comments:

      (1) All the observations of ERK activation, by both high extracellular K+ and voltage clamp, could be explained by cell volume increase (more discussion in subsequent comments). There is a substantial literature on ERK activation by hypotonic cell swelling (e.g. https://doi.org/10.1042/bj3090013, https://doi.org/10.1002/j.1460-2075.1996.tb00938.x, among others). Here are some possible observations that could demonstrate that ERK activation by volume change is distinct from the effects reported here:

      (i) Does hypotonic shock activate ERK in U2OS cells?

      (ii) Can hypotonic shock activate ERK even after PS depletion, whereas extracellular K+ cannot?

      (iii) Does high extracellular K+ change cell volume in U2OS cells, measured via an accurate method such as fluorescence exclusion microscopy?

      (iv) It would be helpful to check the osmolality of all the extracellular solutions, even though they were nominally targeted to be iso-osmotic.

      (2) Some more details about the experimental design and the results are needed from Figure 1:

      (i) For how long are the cells serum-starved? From the Methods section, it seems like the G1 release in different K+ concentration is done without serum, is this correct? Is the prior thymidine treatment also performed in the absence of serum?

      (ii) There is a question of whether depolarization constitutes a physiologically relevant mechanism to regulate proliferation, and how depolarization interacts with other extracellular signals that might be present in an in vivo context. Does depolarization only promote proliferation after extended serum starvation (in what is presumably a stressed cell state)? What fraction of total cells are observed to be mitotic (without normalization), and how does this compare to the proliferation of these cells growing in serum-supplemented media? Can K+ concentration tune proliferation rate even in serum-supplemented media?

      (3) In Figure 2, there are some possible concerns with the perfusion experiment:

      (i) Is the buffer static in the period before perfusion with high K+, or is it perfused? This is not clear from the Methods. If it is static, how does the ERK activity change when perfused with 5 mM K+? In other words, how much of the response is due to flow/media exchange versus change in K+ concentration?

      (ii) Why do there appear to be population-average decreases in ERK activity in the period before perfusion with high K+ (especially in contrast to Fig. 3)? The imaging period does not seem frequent enough for photobleaching to be significant.

      (4) Figure 3 contains important results on couplings between membrane potential and MAPK signaling. However, there are a few concerns:

      (i) Does cell volume change upon voltage clamping? Previous authors have shown that depolarizing voltage clamp can cause cells to swell, at least in the whole-cell configuration: https://www.cell.com/biophysj/fulltext/S0006-3495(18)30441-7 . Could it be possible that the clamping protocol induces changes in ERK signaling due to changes in cell volume, and not by an independent mechanism?

      (ii) Does the -80 mV clamp begin at time 0 minutes? If so, one might expect a transient decrease in sensor FRET ratio, depending on the original resting potential of the cells. Typical estimates for resting potential in HEK293 cells range from -40 mV to -15 mV, which would reach the range that induces an ERK response by depolarizing clamp in Fig. 3B. What are the resting potentials of the cells before they are clamped to -80 mV, and why do we not see this downward transient?

      (5) The activation of ERK by perforated voltage clamp and by high extracellular K+ are each convincing, but it is unclear whether they need to act purely through the same mechanism - while additional extracellular K+ does depolarize the cell, it could also be affecting function of voltage-independent transporters and cell volume regulatory mechanisms on the timescales studied. To more strongly show this, the following should be done with the HEK cells where there is already voltage clamp data:

      (i) Measure resting potential using the perforated patch in zero-current configuration in the high K+ medium. Ideally this should be done in the time window after high K+ addition where ERK activation is observed (10-20 minutes) to minimize the possibility of drift due to changes in transporter and channel activity due to post-translational regulation.

      (ii) Measure YFP/CFP ratio of the HEK cells in the high K+ medium (in contrast to the U2OS cells from Fig. 2 where there is no patch data).

      (iii) The assertion that high K+ is equivalent to changes in Vmem for ERK signaling would be supported if the YFP/CFP change from K+ addition is comparable to that induced by voltage clamp to the same potential. This would be particularly convincing if the experiment could be done with each of the 15 mM, 30 mM, and 145 mM conditions.

      (6) Line 170: "ERK activity was reduced with a fast time course (within 1 minute) after repolarization to -80 mV." I don't see this in the data: in Fig. 3C, it looks like ERK remains elevated for > 10 min after the electrical stimulus has returned to -80 mV

      Comments on revisions:

      The authors have done a good job addressing the comments on the previous submission.

      Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses

      A weakness of the study is the data in Figure 1 showing that membrane depolarization results in an increase of cells entering mitosis. There are very few cells entering mitosis in their sample in any condition. This should be done with many more cells to increase the confidence in the results. The study also lacks a mechanistic link between ERK activation by membrane depolarization and increased cell proliferation.

      The authors did achieve their aims with the caveat that the cell proliferation results could be strengthened. The results, for the most par,t support the conclusions.

      This work suggests that alterations in membrane potential may have more physiological functions than action potential in the neural system as it has an effect on intracellular signalling and potentially cell proliferation.

      In the revised manuscript, the authors have now addressed the issues with Figure 1, and the data presented are much clearer. They did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

      Reviewer #2 (Recommendations for the authors):

      Small issues:

      Fig. 1A. Please add a mark on the timeline showing when the K+ concentration is changed. Also, please add a time axis that matches the time axis in (C), so readers can know when in C the medium was changed.

      1B caption: unclear what "the images were 20 min before and after cytokinesis" means, given that the images go from -30 min to +20 min. Maybe the authors mean, "the indicated times are measured relative to cytokinesis."

      Thank you for bringing these points to our attention that can confuse readers. We revised the figure legend.

      Line 214: nonoclusters --> nanoclusters

      Line 475: 10 mm -> 10 ¥mum

      Corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This paper presents results from four independent experiments, each of which tests for rhythmicity in auditory perception. The authors report rhythmic fluctuations in discrimination performance at frequencies between 2 and 6 Hz. The exact frequency depends on the ear and experimental paradigm, although some frequencies seem to be more common than others.

      Strengths:

      The first sentence in the abstract describes the state of the art perfectly: "Numerous studies advocate for a rhythmic mode of perception; however, the evidence in the context of auditory perception remains inconsistent". This is precisely why the data from the present study is so valuable. This is probably the study with the highest sample size (total of > 100 in 4 experiments) in the field. The analysis is very thorough and transparent, due to the comparison of several statistical approaches and simulations of their sensitivity. Each of the experiments differs from the others in a clearly defined experimental parameter, and the authors test how this impacts auditory rhythmicity, measured in pitch discrimination performance (accuracy, sensitivity, bias) of a target presented at various delays after noise onset.

      Weaknesses:

      (1) The authors find that the frequency of auditory perception changes between experiments. I think they could exploit differences between experiments better to interpret and understand the obtained results. These differences are very well described in the Introduction, but don't seem to be used for the interpretation of results. For instance, what does it mean if perceptual frequency changes from between- to within-trial pitch discrimination? Why did the authors choose this experimental manipulation? Based on differences between experiments, is there any systematic pattern in the results that allows conclusions about the roles of different frequencies? I think the Discussion would benefit from an extension to cover this aspect.

      We believe that interpreting these differences remains difficult and a precise, detailed (and possibly mechanistic) interpretation is beyond the goal of the present study. The main goal of this study was to explore the consistency and variability of effects across variations of the experimental design and samples of participants. Interpreting specific effects, e.g. at particular frequencies, would make sense mostly if differences between experiments have been confirmed in a separate reproduction. Still, we do provide specific arguments for why differences in the outcome between different experiments, e.g. with and without explicit trial initialization by the participants, could be expected. See lines 91ff in the introduction and 786ff in the discussion.

      (2) The Results give the impression of clear-cut differences in relevant frequencies between experiments (e.g., 2 Hz in Experiment 1, 6 Hz in Exp 2, etc), but they might not be so different. For instance, a 6 Hz effect is also visible in Experiment 1, but it just does not reach conventional significance. The average across the three experiments is therefore very useful, and also seems to suggest that differences between experiments are not very pronounced (otherwise the average would not produce clear peaks in the spectrum). I suggest making this point clearer in the text.

      We have revised the conclusions to note that the present data do not support clear cut differences between experiments. For this reason we also refrain from detailed interpretations of specific effects, as suggested by this reviewer in point 1 above.

      (3) I struggle to understand the hypothesis that rhythmic sampling differs between ears. In most everyday scenarios, the same sounds arrive at both ears, and the time difference between the two is too small to play a role for the frequencies tested. If both ears operate at different frequencies, the effects of the rhythm on overall perception would then often cancel out. But if this is the case, why would the two ears have different rhythms to begin with? This could be described in more detail.

      This hypothesis was not invented by us, but in essence put forward in previous work. The study by Ho et al. CurrBiol 2017 has reported rhythmic effects at different frequencies in the left and right ears, and we here tried to reproduce these effects. One could speculate about an ear-difference based on studies reporting a right-ear advantage in specific listening tasks, and the idea that different time scales of rhythmic brain activity may be specifically prevail in the left and right cortical hemispheres; hence it does not seem improbable that there could be rhythmic effects in both ears at different frequencies. We note this in the introduction, l. 65ff.

      Reviewer #2 (Public review):

      Summary:

      The current study aims to shed light on why previous work on perceptual rhythmicity has led to inconsistent results. They propose that the differences may stem from conceptual and methodological issues. In a series of experiments, the current study reports perceptual rhythmicity in different frequency bands that differ between different ear stimulations and behavioral measures.

      The study suggests challenges regarding the idea of universal perceptual rhythmicity in hearing.

      Strengths:

      The study aims to address differences observed in previous studies about perceptual rhythmicity. This is important and timely because the existing literature provides quite inconsistent findings. Several experiments were conducted to assess perceptual rhythmicity in hearing from different angles. The authors use sophisticated approaches to address the research questions.

      Weaknesses:

      (1) Conceptional concerns:

      The authors place their research in the context of a rhythmic mode of perception. They also discuss continuous vs rhythmic mode processing. Their study further follows a design that seems to be based on paradigms that assume a recent phase in neural oscillations that subsequently influence perception (e.g., Fiebelkorn et al.; Landau & Fries). In my view, these are different facets in the neural oscillation research space that require a bit more nuanced separation. Continuous mode processing is associated with vigilance tasks (work by Schroeder and Lakatos; reduction of low frequency oscillations and sustained gamma activity), whereas the authors of this study seem to link it to hearing tasks specifically (e.g., line 694). Rhythmic mode processing is associated with rhythmic stimulation by which neural oscillations entrain and influence perception (also, Schroeder and Lakatos; greater low-frequency fluctuations and more rhythmic gamma activity). The current study mirrors the continuous rather than the rhythmic mode (i.e., there was no rhythmic stimulation), but even the former seems not fully fitting, because trials are 1.8 s short and do not really reflect a vigilance task. Finally, previous paradigms on phase-resetting reflect more closely the design of the current study (i.e., different times of a target stimulus relative to the reset of an oscillation). This is the work by Fiebelkorn et al., Landau & Fries, and others, which do not seem to be cited here, which I find surprising. Moreover, the authors would want to discuss the role of the background noise in resetting the phase of an oscillation, and the role of the fixation cross also possibly resetting the phase of an oscillation. Regardless, the conceptional mixture of all these facets makes interpretations really challenging. The phase-reset nature of the paradigm is not (or not well) explained, and the discussion mixes the different concepts and approaches. I recommend that the authors frame their work more clearly in the context of these different concepts (affecting large portions of the manuscript).

      Indeed, the paradigms used here and in many similar previous studies incorporate an aspect of phase-resetting, as the presentation of a background noisy may effectively reset ongoing auditory cortical processes. Studies trying to probe for rhythmicity in auditory perception in the absence any background noise have not shown any effect (Zoefel and Heil, 2013), perhaps because the necessary rhythmic processes along auditory pathways are only engaged when some sound is present. We now discuss these points, and also acknowledge the mentioned studies in the visual system; l. 57.

      (2) Methodological concerns:

      The authors use a relatively unorthodox approach to statistical testing. I understand that they try to capture and characterize the sensitivity of the different analysis approaches to rhythmic behavioral effects. However, it is a bit unclear what meaningful effects are in the study. For example, the bootstrapping approach that identifies the percentage of significant variations of sample selections is rather descriptive (Figures 5-7). The authors seem to suggest that 50% of the samples are meaningful (given the dashed line in the figure), even though this is rarely reached in any of the analyses. Perhaps >80% of samples should show a significant effect to be meaningful (at least to my subjective mind). To me, the low percentage rather suggests that there is not too much meaningful rhythmicity present. 

      We note that there is no clear consensus on what fraction of experiments should be expected or how this way of quantifying effects should be precisely valued (l. 441ff). However, we now also clearly acknowledge in the discussion that the effective prevalence is not very high (l. 663).

      I suggest that the authors also present more traditional, perhaps multi-level, analyses: Calculation of spectra, binning, or single-trial analysis for each participant and condition, and the respective calculation of the surrogate data analysis, and then comparison of the surrogate data to the original data on the second (participant) level using t-tests. I also thought the statistical approach undertaken here could have been a bit more clearly/didactically described as well.

      We here realize that our description of the methods was possibly not fully clear. We do follow the strategy as suggested by this reviewer, but rather than comparing actual and surrogate data based on a parametric t-test, we compare these based on a non-parametric percentile-based approach. This has the advantage of not making specific (and possibly not-warranted) assumptions about the distribution of the data. We have revised the methods to clarify this, l. 332ff. 

      The authors used an adaptive procedure during the experimental blocks such that the stimulus intensity was adjusted throughout. In practice, this can be a disadvantage relative to keeping the intensity constant throughout, because, on average, correct trials will be associated with a higher intensity than incorrect trials, potentially making observations of perceptual rhythmicity more challenging. The authors would want to discuss this potential issue. Intensity adjustments could perhaps contribute to the observed rhythmicity effects. Perhaps the rhythmicity of the stimulus intensity could be analyzed as well. In any case, the adaptive procedure may add variance to the data.

      We have added an analysis of task difficulty to the results (new section “Effects of adaptive task difficulty“) to address this. Overall we do not find systematic changes in task difficulty across participants for most of the experiments, but for sure one cannot rule out that this aspect of the design also affects the outcomes.  Importantly, we relied on an adaptive task difficulty to actually (or hopefully) reduce variance in the data, by keeping the task-difficulty around a certain level. Give the large number of trials collected, not using such an adaptive produce may result in performance levels around chance or near ceiling, which would make impossible to detect rhythmic variations in behavior. 

      Additional methodological concerns relate to Figure 8. Figures 8A and C seem to indicate that a baseline correction for a very short time window was calculated (I could not find anything about this in the methods section). The data seem very variable and artificially constrained in the baseline time window. It was unclear what the reader might take from Figure 8.

      This figure was intended mostly for illustration of the eye tracking data, but we agree that there is no specific key insight to be taken from this. We removed this. 

      Motivation and discussion of eye-movement/pupillometry and motor activity: The dual task paradigm of Experiment 4 and the reasons for assessing eye metrics in the current study could have been better motivated. The experiment somehow does not fit in very well. There is recent evidence that eye movements decrease during effortful tasks (e.g., Contadini-Wright et al. 2023 J Neurosci; Herrmann & Ryan 2024 J Cog Neurosci), which appears to contradict the results presented in the current study. Moreover, by appealing to active sensing frameworks, the authors suggest that active movements can facilitate listening outcomes (line 677; they should provide a reference for this claim), but it is unclear how this would relate to eye movements. Certainly, a person may move their head closer to a sound source in the presence of competing sound to increase the signal-to-noise ratio, but this is not really the active movements that are measured here. A more detailed discussion may be important. The authors further frame the difference between Experiments 1 and 2 as being related to participants' motor activity. However, there are other factors that could explain differences between experiments. Self-paced trials give participants the opportunity to rest more (inter-trial durations were likely longer in Experiment 2), perhaps affecting attentional engagement. I think a more nuanced discussion may be warranted.

      We expanded the motivation of why self-pacing trials may effectively alter how rhythmic processes affect perception, and now also allude to attention and expectation related effects (l. 786ff). Regarding eye movements we now discuss the results in the light of the previously mentioned studies, but again refrain from a very detailed and mechanistic interpretation (l. 782).

      Discussion:

      The main data in Figure 3 showed little rhythmicity. The authors seem to glance over this fact by simply stating that the same phase is not necessary for their statistical analysis. Previous work, however, showed rhythmicity in the across-participant average (e.g., Fiebelkorn's and similar work). Moreover, one would expect that some of the effects in the low-frequency band (e.g., 2-4 Hz) are somewhat similar across participants. Conduction delays in the auditory system are much smaller than the 0.25-0.5 s associated with 2-4 Hz. The authors would want to discuss why different participants would express so vastly different phases that the across-participant average does not show any rhythmicity, and what this would mean neurophysiologically.

      We now discussion the assumptions and implications of similar or distinct phases of rhythmic processes within and between participants (l. 695ff). In particular we note that different origins of the underlying neurophysiological processes eventually may suggest that such assumptions are or a not warranted.  

      An additional point that may require more nuanced discussion is related to the rhythmicity of response bias versus sensitivity. The authors could discuss what the rhythmicity of these different measures in different frequency bands means, with respect to underlying neural oscillations.

      We expanded discussion to interpret what rhythmic changes in each of the behavioral metric could imply (l. 706ff).

      Figures:

      Much of the text in the figures seems really small. Perhaps the authors would want to ensure it is readable even for those with low vision abilities. Moreover, Figure 1A is not as intuitive as it could be and may perhaps be made clearer. I also suggest the authors discuss a bit more the potential monoaural vs binaural issues, because the perceptual rhythmicity is much slower than any conduction delays in the auditory system that could lead to interference.

      We tried to improve the font sizes where possible, and discuss the potential monaural origins as suggested by other reviewers. 

      Reviewer #3 (Public review):

      Summary:

      The finding of rhythmic activity in the brain has, for a long time, engendered the theory of rhythmic modes of perception, that humans might oscillate between improved and worse perception depending on states of our internal systems. However, experiments looking for such modes have resulted in conflicting findings, particularly in those where the stimulus itself is not rhythmic. This paper seeks to take a comprehensive look at the effect and various experimental parameters which might generate these competing findings: in particular, the presentation of the stimulus to one ear or the other, the relevance of motor involvement, attentional demands, and memory: each of which are revealed to effect the consistency of this rhythmicity.

      The need the paper attempts to resolve is a critical one for the field. However, as presented, I remain unconvinced that the data would not be better interpreted as showing no consistent rhythmic mode effect. It lacks a conceptual framework to understand why effects might be consistent in each ear but at different frequencies and only for some tasks with slight variants, some affecting sensitivity and some affecting bias.

      Strengths:

      The paper is strong in its experimental protocol and its comprehensive analysis, which seeks to compare effects across several analysis types and slight experiment changes to investigate which parameters could affect the presence or absence of an effect of rhythmicity. The prescribed nature of its hypotheses and its manner of setting out to test them is very clear, which allows for a straightforward assessment of its results

      Weaknesses:

      There is a weakness throughout the paper in terms of establishing a conceptual framework both for the source of "rhythmic modes" and for the interpretation of the results. Before understanding the data on this matter, it would be useful to discuss why one would posit such a theory to begin with. From a perceptual side, rhythmic modes of processing in the absence of rhythmic stimuli would not appear to provide any benefit to processing. From a biological or homeostatic argument, it's unclear why we would expect such fluctuations to occur in such a narrow-band way when neither the stimulus nor the neurobiological circuits require it.

      We believe that the framework for why there may be rhythmic activity along auditory pathways that shapes behavioral outcomes has been laid out in many previous studies, prominently here (Schroeder et al., 2008; Schroeder and Lakatos, 2009; Obleser and Kayser, 2019). Many of the relevant studies are cited in the introduction, which is already rather long given the many points covered in this study. 

      Secondly, for the analysis to detect a "rhythmic mode", it must assume that the phase of fluctuations across an experiment (i.e., whether fluctuations are in an up-state or down-state at onset) is constant at stimulus onset, whereas most oscillations do not have such a total phase-reset as a result of input. Therefore, some theoretical positing of what kind of mechanism could generate this fluctuation is critical toward understanding whether the analysis is well-suited to the studied mechanism.

      In line with this and previous comments (by reviewer 2) we have expanded the discussion to consider the issue of phase alignment (l. 695ff). 

      Thirdly, an interpretation of why we should expect left and right ears to have distinct frequency ranges of fluctuations is required. There are a large number of statistical tests in this paper, and it's not clear how multiple comparisons are controlled for, apart from experiment 4 (which specifies B&H false discovery rate). As such, one critical method to identify whether the results are not the result of noise or sample-specific biases is the plausibility of the finding. On its face, maintaining distinct frequencies of perception in each ear does not fit an obvious conceptual framework.

      Again this point was also noted by another reviewer and we expanded the introduction and discussion in this regard (l. 65ff).

      Reviewer #1 (Recommendations for the authors):

      (1) An update of the AR-surrogate method has recently been published (https://doi.org/10.1101/2024.08.22.609278). I appreciate that this is a lot of work, and it is of coursee up to the authors, but given the higher sensitivity of this method, it might be worth applying it to the four datasets described here.

      Reading this article we note that our implementation of the AR-surrogate method was essentially as suggested here, and not as implemented by Brookshire. In fact we had not realized that Brookshire had apparently computed the spectrum based on the group-average data. As explained in the Methods section, as now clarified even better, we compute for each participant the actual spectrum of this participant’s data, and a set of surrogate spectra. We then perform a group-average of both to compute the p-value of the actual group-average based on the percentile of the distribution of surrogate averages. This send step differs from Harris & Beale, which used a one-sided t-test. The latter is most likely not appropriate in a strict statistical sense, but possibly more powerful for detecting true results compared to the percentile-based approach that we used (see l. 332ff).

      (2) When results for the four experiments are reported, a reminder for the reader of how these experiments differ from each other would be useful.

      We have added this in the Results section.

      "considerable prevalence of differences around 4Hz, with dual‐task requirements leading to stronger rhythmicity in perceptual sensitivity". There is a striking similarity to recently published data (https://doi.org/10.1101/2024.08.10.607439 ) demonstrating a 4-Hz rhythm in auditory divided attention (rather than between modalities as in the present case). This could be a useful addition to the paragraph.

      We have added a reference to this preprint, and additional previous work pointing in the same direction mentioned in there.  

      (3) There are two typos in the Introduction: "related by different from the question", and below, there is one "presented" too much.

      These have been fixed.

      Reviewer #3 (Recommendations for the authors):

      My major suggestion is that these results must be replicated in a new sample. I understand this is not simple to do and not always possible, but at this point, no effect is replicated from one experiment to the next, despite very small changes in protocol (especially experiment 1 vs 2). It's therefore very difficult to justify explaining the different effects as real as opposed to random effects of this particular sample. While the bootstrapping effects show the level of consistency of the effect within the sample studied, it can not be a substitute for a true replication of the results in a new sample.

      We agree that only an independent replication can demonstrate the robustness of the results. We do consider experiment 1 a replication test of Ho et al. CurrBiol 2017, which results in different results than reported there. But more importantly, we consider the analysis of ‘reproducibility’ by simulating participant samples a key novelty of the present work, and want to emphasize this over the within-study replication of the same experiment.  In fact, in light of the present interpretation of the data, even a within-study replication would most likely not offer a clear-cut answer. 

      As I said in the public review, the interpretation of the results, and of why perceptual cycles in arhythmic stimuli could be a plausible theory to begin with, is lacking. A conceptual framework would vastly improve the impact and understanding of the results.

      We tried to strengthen the conceptual framework in the introduction. We believe that this is in large provided by previous work, and the aim of the present study was to explore the robustness of effects and not to suggest and discover novel effects. 

      Minor comments:

      (1) The authors adapt the difficulty as a function of performance, which seems to me a strange choice for an experiment that is analyzing the differences in performance across the experiment. Could you add a sentence to discuss the motivation for this choice?

      We now mention the rationale in the Methods section and in a new section of the Results. There we also provide additional analyses on this parameter.

      (2) The choice to plot the p-values as opposed to the values of the actual analysis feels ill-advised to me. It invites comparison across analyses that isn't necessarily fair. It would be more informative to plot the respective analysis outputs (spectral power, regression, or delta R2) and highlight the windows of significance and their overlap across analyses. In my opinion, this would be more fair and accurate depiction of the analyses as they are meant to be used.

      We do disagree. As explained in the Methods (l. 374ff): “(Showing p-values) … allows presenting the results on a scale that can be directly compared between analysis approaches, metrics, frequencies and analyses focusing on individual ears or the combined data. Each approach has a different statistical sensitivity, and the underlying effect sizes (e.g. spectral power) vary with frequency for both the actual data and null distribution. As a result, the effect size reaching statistical significance varies with frequency, metrics and analyses.” 

      The fact that the level of power (or R2 or whatever metric we consider) required to reach significance differs between analyses (one ear, both ears), metrics (d-prime, bias, RT) and between analyses approaches makes showing the results difficult, as we would need a separate panel for each of those. This would multiply the number of panels required e.g. for Figure 4 by 3, making it a figure with 81 axes. Also neither the original quantities of each analysis (e.g. spectral power) nor the p-values that we show constitute a proper measure of effect size in a statistical sense. In that sense, neither of these is truly ideal for comparing between analyses, metrics etc. 

      We do agree thought that many readers may want to see the original quantification and thresholds for statistical significance. We now show these in an exemplary manner for the Binned analysis of Experiment 1, which provides a positive result and also is an attempt to replicate the findings by  Ho et al 2017. This is shown in new Figure 5. 

      (3) Typo in line 555 (+ should be plus minus).

      (4) Typo in line 572: "Comparison of 572 blocks with minus dual task those without"

      (5) Typo in line 616: remove "one".

      (6) Line 666 refers to effects in alpha band activity, but it's unclear what the relationship is to the authors' findings, which peak around 6 Hz, lower than alpha (~10 Hz).

      (7) Line 688 typo, remove "amount of".

      These points have been addressed.  

      (8) Oculomotor effect that drives greater rhythmicity at 3-4 Hz. Did the authors analyze the eye movements to see if saccades were also occurring at this rate? It would be useful to know if the 3-4 Hz effect is driven by "internal circuitry" in the auditory system or by the typical rate of eye movement.

      A preliminary analysis of eye movement data was in previous Figure 8, which was removed on the recommendation of another review.  This showed that the average saccade rate is about 0.01 saccade /per trial per time bin, amounting to on average less than one detected saccade per trial. Hence rhythmicity in saccades is unlikely to explain rhythmicity in behavioral data at the scale of 34Hz. We now note this in the Results.

      Obleser J, Kayser C (2019) Neural Entrainment and Attentional Selection in the Listening Brain. Trends Cogn Sci 23:913-926.

      Schroeder CE, Lakatos P (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci 32:9-18.

      Schroeder CE, Lakatos P, Kajikawa Y, Partan S, Puce A (2008) Neuronal oscillations and visual amplification of speech. Trends Cogn Sci 12:106-113.

      Zoefel B, Heil P (2013) Detection of Near-Threshold Sounds is Independent of EEG Phase in Common Frequency Bands. Front Psychol 4:262.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This is an interesting study characterizing and engineering so-called bathy phytochromes, i.e., those that respond to near infrared (NIR) light in the ground state, for optogenetic control of bacterial gene expression. Previously, the authors have developed a structure-guided approach to functionally link several light-responsive protein domains to the signaling domain of the histidine kinase FixL, which ultimately controls gene expression. Here, the authors use the same strategy to link bathy phytochrome light-responsive domains to FixL, resulting in sensors of NIR light. Interestingly, they also link these bathy phytochrome light-sensing domains to signaling domains from the tetrathionate-sensing SHK TtrS and the toluene-sensing SHK TodS, demonstrating the generality of their protein engineering approach more broadly across bacterial two-component systems.

      This is an exciting result that should inspire future bacterial sensor design. They go on to leverage this result to develop what is, to my knowledge, the first system for orthogonally controlling the expression of two separate genes in the same cell with NIR and Red light, a valuable contribution to the field.

      Finally, the authors reveal new details of the pH-dependent photocycle of bathy phytochromes and demonstrate that their sensors work in the gut - and plant-relevant strains E. coli Nissle 1917 and A. tumefaciens.

      Strengths:

      (1) The experiments are well-founded, well-executed, and rigorous.

      (2) The manuscript is clearly written.

      (3) The sensors developed exhibit large responses to light, making them valuable tools for ontogenetic applications.

      (4) This study is a valuable contribution to photobiology and optogenetics.

      We thank the reviewer for the positive verdict on our manuscript.

      Weaknesses:

      (1) As the authors note, the sensors are relatively insensitive to NIR light due to the rapid dark reversion process in bathy phytochromes. Though NIR light is generally non-phototoxic, one would expect this characteristic to be a limitation in some downstream applications where light intensities are not high (e.g., in vivo).

      We principally concur with this reviewer’s assessment that delivery of light (of any color) into living tissue can be severely limited by absorption, reflection, and scattering. That notwithstanding, at least two considerations suggest that in-vivo deployment of the pNIRusk setups we presently advance may be feasible.

      First, while the pNIRusk setups are indeed less light-sensitive compared to, e.g., our earlier redlight-responsive pREDusk and pDERusk setups (see Meier et al. Nat Commun 2024), we note that the overall light fluences required for triggering them are in the range of tens of µW per cm<sub>2</sub>. By contrast, optogenetic experiments in vivo, in particular in the neurosciences, often employ light area intensities on the order of mW per cm<sub>2</sub> and above. Put another way, compared to the optogenetic tools used in these experiments, the pNIRusk setups are actually quite sensitive to light.

      Second, sensitivity to NIR light brings the advantage of superior tissue penetration, see data reported by Weissleder Nat Biotech 2001 and Ash et al. Lasers Med Sci 2017 (both papers are cited in our manuscript). Based on these data, the intensity of blue light (450 nm) therefore falls off 5-10 times more strongly with penetration depth than that of NIR light (800 nm).

      We have added a brief treatment of these aspects in the Discussion section.

      (2) Though they can be multiplexed with Red light sensors, these bathy phytochrome NIR sensors are more difficult to multiplex with other commonly used light sensors (e.g., blue) due to the broad light responsivity of the Pfr state. This challenge may be overcome by careful dosing of blue light, as the authors discuss, but other bacterial NIR sensing systems with less cross-talk may be preferred in some applications.

      The reviewer is correct in noting that, at least to a certain extent, the pNIRusk systems also respond to blue light owing to their Soret absorbance bands (see Fig. 1). That said, we note two points:

      First, a given photoreceptor that preferentially responds to certain wavelengths, e.g., 700 nm in the case of conventional bacterial phytochromes (BphP), generally absorbs shorter wavelengths to some degree as well. Absorption of these shorter wavelengths suffices for driving electronic and/or vibronic transitions of the chromophore to higher energy levels which often give rise to productive photochemistry and downstream signal transduction. Put another way, a certain response of sensory photoreceptors to shorter wavelengths is hence fully expected and indeed experimentally borne out, as for instance shown by Ochoa-Fernandez et al. in the so-called PULSE setup (Nat Meth 2020, doi: 10.1038/s41592-020-0868-y).

      Second, known BphPs share similar Pr and Pfr absorbance spectra. We therefore expect other BphP-based optogenetic setups to also respond to blue light to some degree. Currently, there are insufficient data to gauge whether individual BphPs systematically differ in their relative sensitivity to blue compared to red or NIR light. Arguably, pertinent experiments may be an interesting subject for future study.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Meier et al. engineer a new class of light-regulated two-component systems. These systems are built using bathy-bacteriophytochromes that respond to near-infrared (NIR) light. Through a combination of genetic engineering and systematic linker optimization, the authors generate bacterial strains capable of selective and tunable gene expression in response to NIR stimulation. Overall, these results are an interesting expansion of the optogenetic toolkit into the NIR range. The cross-species functionality of the system, modularity, and orthogonality have the potential to make these tools useful for a range of applications.

      Strengths:

      (1) The authors introduce a novel class of near-infrared light-responsive two-component systems in bacteria, expanding the optogenetic toolbox into this spectral range.

      (2) Through engineering and linker optimization, the authors achieve specific and tunable gene expression, with minimal cross-activation from red light in some cases.

      (3) The authors show that the engineered systems function robustly in multiple bacterial strains, including laboratory E. coli, the probiotic E. coli Nissle 1917, and Agrobacterium tumefaciens.

      (4) The combination of orthogonal two-component systems can allow for simultaneous and independent control of multiple gene expression pathways using different wavelengths of light.

      (5) The authors explore the photophysical properties of the photosensors, investigating how environmental factors such as pH influence light sensitivity.

      Weaknesses:

      (1) The expression of multi-gene operons and fluorescent reporters could impose a metabolic burden. The authors should present data comparing optical density for growth curves of engineered strains versus the corresponding empty-vector control to provide insight into the burden and overall impact of the system on host viability and growth.

      In response to this comment, we have recorded growth kinetics of bacteria harboring the pNIRusk-DsRed plasmids or empty vectors under both inducing (i.e., under NIR light) and noninducing conditions (i.e., darkness). We did not observe systematic differences in the growth kinetics between the different cultures, thus suggesting that under the conditions tested there is no adverse effect on cell viability.

      We include the new data in Suppl. Fig. 5c-d and refer to them in the main text.

      (2) The manuscript consistently presents normalized fluorescence values, but the method of normalization is not clear (Figure 2 caption describes normalizing to the maximal fluorescence, but the maximum fluorescence of what?). The authors should provide a more detailed explanation of how the raw fluorescence data were processed. In addition, or potentially in exchange for the current presentation, the authors should include the raw fluorescence values in supplementary materials to help readers assess the actual magnitude of the reported responses.

      We appreciate this valid comment and have altered the representation of the fluorescence data. All values for a given fluorescent protein (i.e., either DsRed or YPet) across all systems are now normalized to a single reference value, thus enabling direct comparison between experiments.

      (3) Related to the prior point, it would be useful to have a positive control for fluorescence that could be used to compare results across different figure panels.

      As all data are now normalized to the same reference value, direct comparison across all figures is enabled.

      (4) Real-time gene expression data are not presented in the current manuscript, but it would be helpful to include a time-course for some of the key designs to help readers assess the speed of response to NIR light.

      In response to this comment, we include in the revised manuscript induction kinetics of bacterial cultures bearing pNIRusk upon transfer to inducing NIR-light conditions. To this end, aliquots were taken at discrete timepoints, transcriptionally and translationally arrested, and analyzed for optical density and DsRed reporter fluorescence after allowing for chromophore maturation.

      We include the new data in Suppl. Fig. 5e and refer to them in the manuscript.

      Moreover, we note that the experiments in Agrobacterium tumefaciens used a luciferase reporter thus enabling the continuous monitoring of the light-induced expression kinetics. These data (unchanged in revision) are to be found in Suppl. Fig. 9.

      Reviewer #3 (Public review):

      Summary:

      This paper by Meier et al introduces a new optogenetic module for the regulation of bacterial gene expression based on "bathy-BphP" proteins. Their paper begins with a careful characterization of kinetics and pH dependence of a few family members, followed by extensive engineering to produce infrared-regulated transcriptional systems based on the authors' previous design of the pDusk and pDERusk systems, and closing with characterization of the systems in bacterial species relevant for biotechnology.

      Strengths:

      The paper is important from the perspective of fundamental protein characterization, since bathyBphPs are relatively poorly characterized compared to their phytochrome and cyanobacteriochrome cousins. It is also important from a technology development perspective: the optogenetic toolbox currently lacks infrared-stimulated transcriptional systems. Infrared light offers two major advantages: it can be multiplexed with additional tools, and it can penetrate into deep tissues with ease relative to the more widely used blue light-activated systems. The experiments are performed carefully, and the manuscript is well written.

      Weaknesses:

      My major criticism is that some information is difficult to obtain, and some data is presented with limited interpretation, making it difficult to obtain intuition for why certain responses are observed. For example, the changes in red/infrared responses across different figures and cellular contexts are reported but not rationalized. Extensive experiments with variable linker sequences were performed, but the rationale for linker choices was not clearly explained. These are minor weaknesses in an overall very strong paper.

      We are grateful for the positive take on our manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) As eLife is a broad audience journal, please define the Soret and Q-bands (line 125).

      We concur and have added labels in fig. 1a that designate the Soret and Q bands.

      (2) The initial (0) Ac design in Figure 2b is activated by NIR and Red light, albeit modestly. The authors state that this construct shows "constant reporter fluorescence, largely independent of illumination" (line 167). This language should be changed to reflect the fact that this Ac construct responds to both of these wavelengths.

      Agreed. We have amended the text accordingly.

      (3) pNIRusk Ac 0 appears to show a greater light response than pNIRusk Av -5. However, the authors claim that the former is not light-responsive and the latter is. This conclusion should be explained or changed.

      The assignment of pNIRusk Av-5 as light-responsive is based on the relative difference in reporter fluorescence between darkness and illumination with either red or NIR light. Although the overall fluorescence is much lower in Av-5 than for Av-0, the relative change upon illumination is much more pronounced. We add a statement to this effect to the text.

      (4) The authors state that "when combining DmDERusk-Str-YPet with AvTod+21-DsRed expression rose under red and NIR light, respectively, whereas the joint application of both light colors induced both reporter genes" (lines 258-261). In contrast, Figure 3c shows that application of both wavelengths of light results in exclusive activation of YPet expression. It appears the description of the data is wrong and must be corrected. That said, this error does not impact their conclusion that two separate target genes can be independently activated by NIR and red light.

      We thank the reviewer for catching this error which we have corrected in the revised manuscript.

      (5) Line 278: I don't agree with the authors' blanket statement that the use of upconversion nanoparticles is a "grave" limitation for NIR-light mediated activation of bacterial gene expression in vivo. The authors should either expound on the severity of the limitation or use more moderate language.

      We have replaced the word ‘grave’ by ‘potential’ and thereby toned down our wording.

      Reviewer #2 (Recommendations for the authors):

      (1) Please include a discussion on the expected depth penetration of different light wavelengths. This is most relevant in the context of the discussion about how these NIR systems could be used with living therapeutics.

      Given the heterogeneity of biological tissue, it is challenging to state precise penetration depths for different wavelengths of light. That said, blue light for instance is typically attenuated by biological tissue around 5 to 10 times as strongly as near-infrared light is.

      We have expanded the Discussion chapter to cover these aspects.

      (2) It would be helpful for Figure 2C (or supplementary) to also include the response to blue light stimulation.

      We agree and have acquired pertinent data for the blue-light response. The new data are included in an updated Fig. 2c. Data acquired at varying NIR-light intensities, originally included in Fig. 2c, have been moved to Suppl. Fig. 5a-b.

      (3) In Figure 4A, data on the response of E. coli Nissle to blue and red light are missing. Including this would help identify whether the reduced sensitivity to non-NIR wavelengths observed in the E. coli lab strain is preserved in the probiotic background.

      In response to this comment, we have acquired pertinent data on E. coli Nissle. While the results were overall similar to those in the laboratory strain, the response to blue and NIR light was yet lower in the Nissle bacteria which stands to benefit optogenetic applications.

      We have updated Fig. 4a accordingly. For clarity, we only show the data for AvNIRusk in the main paper but have relegated the data on AcNIRusk to Suppl. Fig. 8. (Note that this has necessitated a renumbering of the subsequent Suppl. Figs.)

      (4) On many of the figures, there are thin gray lines that appear between the panels that it would be nice to eliminate because, in some cases, they cut through words and numbers.

      The grey lines likely arose from embedding the figures into the text document. In the typeset manuscript, which has become available on the eLife webpage in the meantime, there are no such lines. That said, we will carefully check throughout the submission/publishing/proofing process lest these lines reappear.

      (5) Page 7, line 155: "As not least seen" typo or awkward phrasing.

      We have restructured the sentence and thereby hopefully clarified the unclear phrasing.

      (6) Page 7, line 167: It does not appear to be the case that the initial pNIRusk designs show constant fluorescence that is largely independent of illumination. AcNIRusk shows an almost twofold change from dark to NIR. Reword this to avoid confusion.

      We concur with this comment, similar to reviewer #1’s remark, and have adjusted the text accordingly.

      (7) Page 8, line 174: Related to the previous point, AvNIRusk has one design that is very minimally light switchable (-5), so stating that six light switchable designs have been identified is also confusing.

      As stated in our response to reviewer #1 above, the assignment of AvNIRusk-5 as light-switchable is based on the relative fluorescence change upon illumination. We have added an explanation to the text.

      (8) Page 10, line 228-229: I was not able to find the data showing that expression levels were higher for the DmTtr systems than the pREDusk and pNIRusk setups. This may be an issue related to the normalization point. It was not clear to me how to compare these values.

      We apologize for the initially unclear representation of the data. In response to this reviewer’s general comments above, we have now normalized all fluorescence values to a single reference value, thus allowing their direct comparison.

      (9) Page 12, line 264: "finer-grained expression control can be exerted..." Either show data or adjust the language so that it is clear this is a prediction.

      True, we have replaced ‘can’ by ‘could’.

      (10) Page 25, line 590: CmpX13 cells have a reference that is given later, but it should be added where it first appears.

      Agreed, we have added the reference in the indicated place.

      (11) Page 25, line 592: define LB/Kan.

      We had already defined this abbreviation further up but, for clarity, we have added it again in the indicated position.

      (12) Page 40, line 946: "normalized by" rather than "to".

      We have implemented the requested change in the indicated and several other positions of the manuscript.

      (13) Figures 2C, 3C, and similar plots in the supplementary material would benefit from having a legend for the colors.

      We agree and have added pertinent legends to the corresponding main and supplementary figures.

      (14) As a reader, I had some trouble following all the acronyms. This is at the author's discretion, but I would eliminate ones that are not strictly essential (e.g. MTP for microtiter plate; I was unable to identify what "MCS" meant; look for other opportunities to remove acronyms).

      In the revised manuscript, we have defined the abbreviation ‘MCS’ (for ‘multiple-cloning site’) upon first occurrence. We have decided to retain the abbreviation ‘MTP’ in the text.

      (15) Could the authors briefly speculate on why A. tumefaciens activation with red light might occur?

      While we can but speculate as to the underlying reasons for the divergent red-light response in A. tumefaciens, we discuss possible scenarios below.

      Commonly, two-component systems (TCS) exhibit highly cooperative and steep responses to signal. As a consequence, even small differences in the intracellular amounts of phosphorylated and unphosphorylated response regulator (RR) can give to significantly changed gene-expression output. Put another way, the gene-expression output need not scale linearly with the extent of RR phosphorylation but, rather, is expected to show nonlinear dependence with pronounced thresholding effects.

      Differences in the pertinent RR levels can for instance arise from variations in the expression levels of the pNIRusk system components between E. coli and A. tumefaciens. Moreover, the two bacteria greatly differ in their two-component-system (TCS) repertoire. Although TCSs are commonly well insulated from each other, cross-talk with endogenous TCSs, even if limited, may cause changes in the levels of phosphorylated RR and hence gene-expression output. In a similar vein, the RR can also be phosphorylated and dephosphorylated non-enzymatically, e.g., by reaction with high-energy anhydrides (such as acetyl phosphate) and hydrolysis, respectively. Other potential origins for the divergent red-light response include differences in the strength of the promoters driving expression of the pNIRusk system components and the fluorescent/luminescent reporters, respectively.

      (16) It would be helpful for the authors to briefly explain why they needed to switch to luminescence from fluorescence for the A. tumeraciens studies.

      While there was no strict necessity to switch from the fluorescence-based system used in E. coli to a luminescence-based system in A. tumefaciens, we opted for luminescence based on prior experience with other Alphaproteobacteria (e.g., 10.1128/mSystems.00893-21), where luminescence offered significant advantages. Specifically, it provides essentially background-free signal detection and greater sensitivity for monitoring gene expression. In addition, as demonstrated in Suppl. Fig. 9c and d, the luminescence system enables real-time tracking of gene expression dynamics, which further supported its use in our experimental setup (see our response to reviewer #2’s general comments).

      (17) This is a very minor comment that the authors can take or leave, but I got hung up on the word "implement" when it appeared a few times in the manuscript because I tended to read it as "put a plan into place" rather than its other meaning.

      In the abstract, we have replaced one instance of the word ‘implement’ by ‘instrument’.

      (18) The authors should include the relevant constructs on AddGene or another public strainsharing service.

      We whole-heartedly subscribe to the idea of freely sharing research materials with fellow scientists. Therefore, we had already deposited the most relevant AvNIRusk in Addgene, even prior to the initial submission of the manuscript (accession number 235084). In the meantime, we have released the deposition, and the plasmid can be obtained from Addgene since May 15<sub>th</sub> of this year.

      Reviewer #3 (Recommendations for the authors):

      Suggestion for improvement:

      This paper relies heavily on variations in linker sequences to shift responses. I am familiar with prior work from the Moglich lab in which helical linkers were employed to shift responses in synthetic two-component systems, with interesting periodicity in responses with every 7 residues (as expected for an alpha helix) and inversion of responses at smaller linker shifts. There is no mention in this paper whether their current engineering follows a similar rationale, what types of linkers are employed (e.g. flexible vs helical), and whether there is an interpretation for how linker lengths alter responses. Can you explain what classes of linker sequences are used throughout Figures 2 and 3, and whether length or periodicity affects the outcome? This would be very helpful for readers who are new to this approach, or if the rationale here differs from the authors' prior work.

      The PATCHY approach employed at present followed a closely similar rationale as in our previous studies. That is, linkers were extended/shortened and varied in their sequence by recombining different fragments of the natural linkers of the parental receptors, i.e., the bacteriophytochrome and the FixL sensor histidine kinase, respectively. We have added a statement to this effect in the text and a reference to Suppl. Fig. 3 which illustrates the principal approach.

      Compared to our earlier studies, we isolated fewer receptor variants supporting light-regulated responses, despite covering a larger sequence space. Owing to the sparsity of the light-regulated variants, an interpretation of the linker properties and their correlation with light-regulated activity is challenging. Although doubtless unsatisfying from a mechanistic viewpoint, we therefore refrain from a pertinent discussion which would be premature and speculative at this point. As the reviewer raises a valid and important point, we have expanded the text by referring to our earlier studies and the observed dependence of functional properties on linker composition.

      It is sometimes difficult to intuit or rationalize the differences in red/IR sensitivity across closely related variants. An important example appears in Figure 3C vs 3B. I think the AvTod+21 in 3B should be the equivalent to the DsRed response in the second column of 3C (AvTod+21 + DmDERusk), except, of course, that the bacteria in 3C carry an additional plasmid for the DERusk system. However, in 3B, the response to red light is substantial - ~50% as strong as that for IR, whereas in 3C, red light elicits no response at all. What is the difference? The reason this is important is that the AvTod+21 and DMDERusk represent the best "orthogonal" red and infrared light responses, but this is not at all obvious from 3B, where AvTod+21 still causes a substantial (and for orthogonality, undesirable) response under red light. Perhaps subtle differences in expression level due to plasmid changes cause these differences in light responses? Could the authors test how the expression level affects these responses? The paper would be greatly improved if observations of the diverse red/IR responses could be rationalized by some design criteria.

      As noted above in our response to reviewer #2, we have now normalized all fluorescence readings to joint reference values, thus allowing a better comparison across experiments.

      The reviewer is correct in noting that upon multiplexing, the individual plasmid systems support lower fluorescence levels than when used in isolation. We speculate that the combination of two plasmids may affect their copy numbers (despite the use of different resistance markers and origins of replications) and hence their performance. Likewise, the cellular metabolism may be affected when multiple plasmids are combined. These aspects may well account for the absent red-light response in AvTod+21 in the multiplexing experiments which is – indeed – unexpected. As, at present, we cannot provide a clear rationalization for this effect, we recommend verifying the performance of the plasmid setups when multiplexing.

      The paper uses "red" and "infrared" to refer to ~624 nm and ~800 nm light, respectively. I wonder whether it might be possible to shift these peak wavelengths to obtain even better separation for the multiplexing experiments. Perhaps shifting the specific red wavelength could result in better separation between DERusk and AvTod systems, for example? Could the authors comment on this (maybe based on action spectra of their previously developed tools) or perhaps test a few additional stimulation wavelengths?

      The choice of illumination wavelengths used in these experiments is dictated by the LED setups available for illumination of microtiter plates. On the one hand, we are using an SMD (surface-mount device) three-color LED with a fixed wavelength of the red channel around 624 nm (see Hennemann et al., 2018). On the other hand, we are deploying a custom-built device with LEDs emitting at around 800 nm (see Stüven et al., 2019 and this work). Adjusting these wavelengths is therefore challenging, although without doubt potentially interesting.

      To address this reviewer comment, we have added a statement to the text that the excitation wavelengths may be varied to improve multiplexed applications.

      Additional minor comments:

      (1) Figure 2C: It would be very helpful to place a legend on the figure panel for what the colors indicate, since they are unique to this panel and non-intuitive.

      This comment coincides with one by reviewer #2, and we have added pertinent legends to this and related supplementary figures.

      (2) Figure 3C: it is not obvious which system uses DsRed and which uses YPet in each combination, since the text indicates that all combinations were cloned, and this is not clearly described in the legend. Is it always the first construct in the figure legend listed for DsRed and the second for YPet?

      For clarification, we have revised the x-axis labels in Fig. 3C. (And yes, it is as this reviewer surmises: the first of the two constructs harbored DsRed and the second one YPet.)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The Major Histocompatibility Complex (MHC) region is a collection of numerous genes involved in both innate and adaptive immunity. MHC genes are famed for their role in rapid evolution and extensive polymorphism in a variety of vertebrates. This paper presents a summary of gene-level gain and loss of orthologs and paralogs within MHC across the diversity of primates, using publicly available data.

      Strengths:

      This paper provides a strong case that MHC genes are rapidly gained (by paralog duplication) and lost over millions of years of macroevolution. The authors are able to identify MHC loci by homology across species, and from this infer gene duplications and losses using phylogenetic analyses. There is a remarkable amount of genic turnover, summarized in Figure 6 and Figure 7, either of which might be a future textbook figure of immune gene family evolution. The authors draw on state-of-the-art phylogenetic methods, and their inferences are robust insofar as the data might be complete enough to draw such conclusions.

      Weaknesses:

      One concern about the present work is that it relies on public databases to draw inferences about gene loss, which is potentially risky if the publicly available sequence data are incomplete. To say, for example, that a particular MHC gene copy is absent in a taxon (e.g., Class I locus F absent in Guenons according to Figure 1), we need to trust that its absence from the available databases is an accurate reflection of its absence in the genome of the actual organisms. This may be a safe assumption, but it rests on the completeness of genome assembly (and gene annotations?) or people uploading relevant data. This reviewer would have been far more comfortable had the authors engaged in some active spot-checking, doing the lab work to try to confirm absences at least for some loci and some species. Without this, a reader is left to wonder whether gene loss is simply reflecting imperfect databases, which then undercuts confidence in estimates of rates of gene loss.

      Indeed, just because a locus has not been confirmed in a species does not necessarily mean that it is absent. As we explain in the Figure 1 caption, only a few species have had their genomes extensively studied (gray background), and only for these species does the absence of a point in this figure mean that a locus is absent. The white background rows represent species that are not extensively studied, and we point out that the absence of a point does not mean that a locus is absent from the species, rather undiscovered. We have also added a parenthetical to the text to explain this (line 156): “Only species with rows highlighted in gray have had their MHC regions extensively studied (and thus only for these rows is the absence of a gene symbol meaningful).”

      While we agree that spot-checking may be a helpful next step, one of the goals of this manuscript is to collect and synthesize the enormous volume of MHC evolution research in the primates, which will serve as a jumping-off point for other researchers to perform important wet lab work.

      Some context is useful for comparing rates of gene turnover in MHC, to other loci. Changing gene copy numbers, duplications, and loss of duplicates, are common it seems across many loci and many organisms; is MHC exceptional in this regard, or merely behaving like any moderately large gene family? I would very much have liked to see comparable analyses done for other gene families (immune, like TLRs, or non-immune), and quantitative comparisons of evolutionary rates between MHC versus other genes. Does MHC gene composition evolve any faster than a random gene family? At present readers may be tempted to infer this, but evidence is not provided.

      Our companion paper (Fortier and Pritchard, 2025) demonstrates that the MHC is a unique locus in many regards, such as its evidence for deep balancing selection and its excess of disease associations. Thus, we expect that it is evolving faster than any random gene family. It would be interesting to repeat this analysis for other gene families, but that is outside of the scope of this project. Additionally, allele databases for other gene families are not nearly as developed, but as more alleles become available for other polymorphic families, a comparable analysis could become possible.

      We have added a paragraph to the discussion (lines 530-546) to clarify that we do not know for certain whether the MHC gene family is evolving rapidly compared to other gene families.

      While on the topic of making comparisons, the authors make a few statements about relative rates. For instance, lines 447-8 compare gene topology of classical versus non-classical genes; and line 450 states that classical genes experience more turnover. But there are no quantitative values given to these rates to provide numerical comparisons, nor confidence intervals provided (these are needed, given that they are estimates), nor formal statistical comparisons to confirm our confidence that rates differ between types of genes.

      More broadly, the paper uses sophisticated phylogenetic methods, but without taking advantage of macroevolutionary comparative methods that allow model-based estimation of macroevolutionary rates. I found the lack of quantitative measurements of rates of gene gain/loss to be a weakness of the present version of the paper, and something that should be readily remedied. When claiming that MHC Class I genes "turn over rapidly" (line 476) - what does rapidly mean? How rapidly? How does that compare to rates of genetic turnover at other families? Quantitative statements should be supported by quantitative estimates (and their confidence intervals).

      These statements refer to qualitative observations, so we cannot provide numerical values. We simply conclude that certain gene groups evolve faster or slower based on the species and genes present in each clade. It is difficult to provide estimates because of the incomplete sampling of genes that survived to the present day. In addition, the presence or absence of various orthologs in different species still needs to be confirmed, at which point it might be useful to be more quantitative. We have also added a paragraph to the discussion to address this concern and advocate for similar analyses of other gene families in the future when more data is available (lines 530-546).

      The authors refer to 'shared function of the MHC across species' (e.g. line 22); while this is likely true, they are not here presenting any functional data to confirm this, nor can they rule out neofunctionalization or subfunctionalization of gene duplicates. There is evidence in other vertebrates (e.g., cod) of MHC evolving appreciably altered functions, so one may not safely assume the function of a locus is static over long macroevolutionary periods, although that would be a plausible assumption at first glance.

      Indeed, we cannot assume that the function of a locus is static across time, especially for the MHC region. In our research, we read hundreds of papers that each focused on a small number of species or genes and gathered some information about them, sometimes based on functional experiments and sometimes on measures such as dN/dS. These provide some indication of a gene’s broad classification in a species or clade, even if the evidence is preliminary. Where possible, we used this preliminary evidence to give genes descriptors “classical,” “non-classical,” “dual characteristics,” “pseudogene,” “fixed”, or “unfixed.” Sometimes multiple individuals and haplotypes were analyzed, so we could even assign a minimum number of gene copies present in a species. We have aggregated all of these references into Supplementary Table 1 (for Class I/Figure 1) and Supplementary Table 2 (for Class II/Figure 2) along with specific details about which data points in these figures that each reference supports. We realize that many of these classifications are based on a small number of individuals or indirect measures, so they may change in the future as more functional data is generated.

      Reviewer #2 (Public review):

      Summary:

      The authors aim to provide a comprehensive understanding of the evolutionary history of the Major Histocompatibility Complex (MHC) gene family across primate species. Specifically, they sought to:

      (1) Analyze the evolutionary patterns of MHC genes and pseudogenes across the entire primate order, spanning 60 million years of evolution.

      (2) Build gene and allele trees to compare the evolutionary rates of MHC Class I and Class II genes, with a focus on identifying which genes have evolved rapidly and which have remained stable.

      (3) Investigate the role of often-overlooked pseudogenes in reconstructing evolutionary events, especially within the Class I region.

      (4) Highlight how different primate species use varied MHC genes, haplotypes, and genetic variation to mount successful immune responses, despite the shared function of the MHC across species.

      (5) Fill gaps in the current understanding of MHC evolution by taking a broader, multi-species perspective using (a) phylogenomic analytical computing methods such as Beast2, Geneconv, BLAST, and the much larger computing capacities that have been developed and made available to researchers over the past few decades, (b) literature review for gene content and arrangement, and genomic rearrangements via haplotype comparisons.

      (6) The authors overall conclusions based on their analyses and results are that 'different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response'.

      Strengths:

      Essentially, much of the information presented in this paper is already well-known in the MHC field of genomic and genetic research, with few new conclusions and with insufficient respect to past studies. Nevertheless, while MHC evolution is a well-studied area, this paper potentially adds some originality through its comprehensive, cross-species evolutionary analysis of primates, focus on pseudogenes and the modern, large-scale methods employed. Its originality lies in its broad evolutionary scope of the primate order among mammals with solid methodological and phylogenetic analyses.

      The main strengths of this study are the use of large publicly available databases for primate MHC sequences, the intensive computing involved, the phylogenetic tool Beast2 to create multigene Bayesian phylogenetic trees using sequences from all genes and species, separated into Class I and Class II groups to provide a backbone of broad relationships to investigate subtrees, and the presentation of various subtrees as species and gene trees in an attempt to elucidate the unique gene duplications within the different species. The study provides some additional insights with summaries of MHC reference genomes and haplotypes in the context of a literature review to identify the gene content and haplotypes known to be present in different primate species. The phylogenetic overlays or ideograms (Figures 6 and 7) in part show the complexity of the evolution and organisation of the primate MHC genes via the orthologous and paralogous gene and species pathways progressively from the poorly-studied NWM, across a few moderately studied ape species, to the better-studied human MHC genes and haplotypes.

      Weaknesses:

      The title 'The Primate Major Histocompatibility Complex: An Illustrative Example of GeneFamily Evolution' suggests that the paper will explore how the Major Histocompatibility Complex (MHC) in primates serves as a model for understanding gene family evolution. The term 'Illustrative Example' in the title would be appropriate if the paper aimed to use the primate Major Histocompatibility Complex (MHC) as a clear and representative case to demonstrate broader principles of gene family evolution. That is, the MHC gene family is not just one instance of gene family evolution but serves as a well-studied, insightful example that can highlight key mechanisms and concepts applicable to other gene families. However, this is not the case, this paper only covers specific details of primate MHC evolution without drawing broader lessons to any other gene families. So, the term 'Illustrative Example' is too broad or generalizing. In this case, a term like 'Case Study' or simply 'Example' would be more suitable. Perhaps, 'An Example of Gene Family Diversity' would be more precise. Also, an explanation or 'reminder' is suggested that this study is not about the origins of the MHC genes from the earliest jawed vertebrates per se (~600 mya), but it is an extension within a subspecies set that has emerged relatively late (~60 mya) in the evolutionary divergent pathways of the MHC genes, systems, and various vertebrate species.

      Thank you for your input on the title; we have changed it to “A case study of gene family evolution” instead.

      Thank you also for pointing out the potential confusion about the time span of our study. We have added “Having originated in the jawed vertebrates,” to a sentence in the introduction (lines 38-39). We have also added the sentence “Here, we focus on the primates, spanning approximately 60 million years within the over 500-million-year evolution of the family \citep{Flajnik2010}.“ to be more explicit about the context for our work (lines 59-61).

      Phylogenomics. Particular weaknesses in this study are the limitations and problems associated with providing phylogenetic gene and species trees to try and solve the complex issue of the molecular mechanisms involved with imperfect gene duplications, losses, and rearrangements in a complex genomic region such as the MHC that is involved in various effects on the response and regulation of the immune system. A particular deficiency is drawing conclusions based on a single exon of the genes. Different exons present different trees. Which are the more reliable? Why were introns not included in the analyses? The authors attempt to overcome these limitations by including genomic haplotype analysis, duplication models, and the supporting or contradictory information available in previous publications. They succeed in part with this multidiscipline approach, but much is missed because of biased literature selection. The authors should include a paragraph about the benefits and limitations of the software that they have chosen for their analysis, and perhaps suggest some alternative tools that they might have tried comparatively. How were problems with Bayesian phylogeny such as computational intensity, choosing probabilities, choosing particular exons for analysis, assumptions of evolutionary models, rates of evolution, systemic bias, and absence of structural and functional information addressed and controlled for in this study?

      We agree that different exons have different trees, which is exactly why we repeated our analysis for each exon in order to compare and contrast them. In particular, the exons encoding the binding site of the resulting protein (exons 2 and 3 for Class I and exon 2 for Class II) show evidence for trans-species polymorphism and gene conversion. These phenomena lead to trees that do not follow the species tree and are fascinating in and of themselves, which we explore in detail in our companion paper (Fortier and Pritchard, 2025). Meanwhile, the non-peptide-binding extracellular-domain-encoding exon (exon 4 for Class I and exon 3 for Class II) is comparably sized to the binding-site-encoding exons and provides an interesting functional contrast. As this exon is likely less affected by trans-species polymorphism, gene conversion, and convergent evolution, we present results from it most often in the main text, though we occasionally touch on differences between the exons. See lines 191-196, 223-226, and 407-414 for some examples of how we discuss the exons in the text. Additionally, all trees from all of these exons can be found in the supplement. 

      We agree that introns would valuable to study in this context. Even though the non--binding-site-encoding exons are probably *less* affected by trans-species polymorphism, gene conversion, and convergent evolution, they are still functional. The introns, however, experience much more relaxed selection, if any, and comparing their trees to those for the exons would be valuable and illuminating. We did not generate intron trees for two reasons. Most importantly, there is a dearth of data available for the introns; in the databases we used, there was often intron data available only for human, chimpanzee, and sometimes macaque, and only for a small subset of the genes. This limitation is at odds with the comprehensive, many-gene-many-species approach which we feel is the main novelty of this work. Secondly, the introns that *are* available are difficult to align. Even aligning the exons across such a highly-diverged set of genes and pseudogenes was difficult and required manual effort. The introns proved even more difficult to try to align across genes. In the future, when more intron data is available and sufficient effort is put into aligning them, it will be possible and desirable to do a comparable analysis. We also added a sentence to the “Data” section to briefly explain why we did not include introns (lines 134-135).

      We explain our Bayesian phylogenetics approach in detail in the Methods (lines 650-725), including our assumptions and our solutions to challenges specific to this application. For further explanation of the method itself, we suggest reading the original BEAST and BEAST2 papers (Drummond & Rambaut (2007), Drummond et al. (2012), Bouckaert et al. (2014), and Bouckaert et al. (2019)). Known structural and functional information helped us validate the alignments we used in this study, but the fact that such information is not fully known for every gene and species should not affect the method itself.

      Gene families as haplotypes. In the Introduction, the MHC is referred to as a 'gene family', and in paragraph 2, it is described as being united by the 'MHC fold', despite exhibiting 'very diverse functions'. However, the MHC region is more accurately described as a multigene region containing diverse, haplotype-specific Conserved Polymorphic Sequences, many of which are likely to be regulatory rather than protein-coding. These regulatory elements are essential for controlling the expression of multiple MHC-related products, such as TNF and complement proteins, a relationship demonstrated over 30 years ago. Non-MHC fold loci such as TNF, complement, POU5F1, lncRNA, TRIM genes, LTA, LTB, NFkBIL1, etc, are present across all MHC haplotypes and play significant roles in regulation. Evolutionary selection must act on genotypes, considering both paternal and maternal haplotypes, rather than on individual genes alone. While it is valuable to compile databases for public use, their utility is diminished if they perpetuate outdated theories like the 'birth-and-death model'. The inclusion of prior information or assumptions used in a statistical or computational model, typically in Bayesian analysis, is commendable, but they should be based on genotypic data rather than older models. A more robust approach would consider the imperfect duplication of segments, the history of their conservation, and the functional differences in inheritance patterns. Additionally, the MHC should be examined as a genomic region, with ancestral haplotypes and sequence changes or rearrangements serving as key indicators of human evolution after the 'Out of Africa' migration, and with disease susceptibility providing a measurable outcome. There are more than 7000 different HLA-B and -C alleles at each locus, which suggests that there are many thousands of human HLA haplotypes to study. In this regard, the studies by Dawkins et al (1999 Immunol Rev 167,275), Shiina et al. (2006 Genetics 173,1555) on human MHC gene diversity and disease hitchhiking (haplotypes), and Sznarkowska et al. (2020 Cancers 12,1155) on the complex regulatory networks governing MHC expression, both in terms of immune transcription factor binding sites and regulatory non-coding RNAs, should be examined in greater detail, particularly in the context of MHC gene allelic diversity and locus organization in humans and other primates.

      Thank you for these comments. To clarify that the MHC “region” is different from (and contains) the MHC “gene family” as we describe it, we changed a sentence in the abstract (lines 8-10) from “One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity.” to “One large gene family that has experienced rapid evolution lies within the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity.” We know that the region is complex and contains many other genes and regulatory sequences; Figure 1 of our companion paper (Fortier and Pritchard, 2025) depicts these in order to show the reader that the MHC genes we focus on are just one part of the entire region.

      We love the suggestion to look at the many thousands of alleles present at each of the classical loci. This is the focus of our complimentary paper (Fortier and Pritchard, 2025) which explores variation at the allele level. In the current paper, we look mainly at the differences between genes and the use of different genes in different species.

      Diversifying and/or concerted evolution. Both this and past studies highlight diversifying selection or balancing selection model is the dominant force in MHC evolution. This is primarily because the extreme polymorphism observed in MHC genes is advantageous for populations in terms of pathogen defence. Diversification increases the range of peptides that can be presented to T cells, enhancing the immune response. The peptide-binding regions of MHC genes are highly variable, and this variability is maintained through selection for immune function, especially in the face of rapidly evolving pathogens. In contrast, concerted evolution, which typically involves the homogenization of gene duplicates through processes like gene conversion or unequal crossing-over, seems to play a minimal role in MHC evolution. Although gene duplication events have occurred in the MHC region leading to the expansion of gene families, the resulting paralogs often undergo divergent evolution rather than being kept similar or homozygous by concerted evolution. Therefore, unlike gene families such as ribosomal RNA genes or histone genes, where concerted evolution leads to highly similar copies, MHC genes display much higher levels of allelic and functional diversification. Each MHC gene copy tends to evolve independently after duplication, acquiring unique polymorphisms that enhance the repertoire of antigen presentation, rather than undergoing homogenization through gene conversion. Also, in some populations with high polymorphism or genetic drift, allele frequencies may become similar over time without the influence of gene conversion. This similarity can be mistaken for gene conversion when it is simply due to neutral evolution or drift, particularly in small populations or bottlenecked species. Moreover, gene conversion might contribute to greater diversity by creating hybrids or mosaics between different MHC genes. In this regard, can the authors indicate what percentage of the gene numbers in their study have been homogenised by gene conversion compared to those that have been diversified by gene conversion?

      We appreciate the summary, and we feel we have appropriately discussed both gene conversion and diversifying selection in the context of the MHC genes. Because we cannot know for sure when and where gene conversion has occurred, we cannot quantify percentages of genes that have been homogenized or diversified.  

      Duplication models. The phylogenetic overlays or ideograms (Figures 6 and 7) show considerable imperfect multigene duplications, losses, and rearrangements, but the paper's Discussion provides no in-depth consideration of the various multigenic models or mechanisms that can be used to explain the occurrence of such events. How do their duplication models compare to those proposed by others? For example, their text simply says on line 292, 'the proposed series of events is not always consistent with phylogenetic data'. How, why, when? Duplication models for the generation and extension of the human MHC class I genes as duplicons (extended gene or segmental genomic structures) by parsimonious imperfect tandem duplications with deletions and rearrangements in the alpha, beta, and kappa blocks were already formulated in the late 1990s and extended to the rhesus macaque in 2004 based on genomic haplotypic sequences. These studies were based on genomic sequences (genes, pseudogenes, retroelements), dot plot matrix comparisons, and phylogenetic analyses of gene and retroelement sequences using computer programs. It already was noted or proposed in these earlier 1999 studies that (1) the ancestor of HLA-P(90)/-T(16)/W(80) represented an old lineage separate from the other HLA class I genes in the alpha block, (2) HLA-U(21) is a duplicated fragment of HLA-A, (3) HLA-F and HLA-V(75) are among the earliest (progenitor) genes or outgroups within the alpha block, (4) distinct Alu and L1 retroelement sequences adjoining HLA-L(30), and HLA-N genomic segments (duplicons) in the kappa block are closely related to those in the HLA-B and HLA-C in the beta block; suggesting an inverted duplication and transposition of the HLA genes and retroelements between the beta and kappa regions. None of these prior human studies were referenced by Fortier and Pritchard in their paper. How does their human MHC class I gene duplication model (Fig. 6) such as gene duplication numbers and turnovers differ from those previously proposed and described by Kulski et al (1997 JME 45,599), (1999 JME 49,84), (2000 JME 50,510), Dawkins et al (1999 Immunol Rev 167,275), and Gaudieri et al (1999 GR 9,541)? Is this a case of reinventing the wheel?

      Figures 6 and 7 are intended to synthesize and reconcile past findings and our own trees, so they do not strictly adhere to the findings of any particular study and cannot fully match all studies. In the supplement, Figure 6 - figure supplement 1 and Figure 7 - figure supplement 1 duly credit all of the past work that went into making these trees. Most previous papers focus on just one aspect of these trees, such as haplotypes within a species, a specific gene or allelic lineage relationship, or the branching pattern of particular gene groups. We believe it was necessary to bring all of these pieces of evidence together. Even among papers with the same focus (to understand the block duplications that generated the current physical layout of the MHC), results differ. For example, Geraghty (1992), Hughes (1995), Kulski (2004)/Kulski (2005),  and Shiina (1999) all disagree on the exact branching order of the genes MHC-W, -P, and -T, and of MHC-G, -J, and -K. While the Kulski studies you pointed out were very thorough for their era, they still only relied on data from three species and one haplotype per species. Our work is not intended to replace or discredit these past works, simply build upon them with a larger set of species and sequences. We hope the hypotheses we propose in Figures 6 and 7 can help unify existing research and provide a more easily accessible jumping-off-point for future work.

      Results. The results are presented as new findings, whereas most if not all of the results' significance and importance already have been discussed in various other publications. Therefore, the authors might do better to combine the results and discussion into a single section with appropriate citations to previously published findings presented among their results for comparison. Do the trees and subsets differ from previous publications, albeit that they might have fewer comparative examples and samples than the present preprint? Alternatively, the results and discussion could be combined and presented as a review of the field, which would make more sense and be more honest than the current format of essentially rehashing old data.

      In starting this project, we found that a large barrier to entry to this field of study is the immense amount of published literature over 30+ years. It is both time-consuming and confusing to read up on the many nuances of the MHC genes, their changing names, and their evolution, making it difficult to start new, innovative projects. We acknowledge that while our results are not entirely novel, the main advantage of our work is that it provides a thorough, comprehensive starting point for others to learn about the MHC quickly and dive into new research. We feel that we have appropriately cited past literature in both the main text, appendices, and supplement, so that readers may dive into a particular area with ease.

      Minor corrections:

      (1) Abstract, line 19: 'modern methods'. Too general. What modern methods?

      To keep the abstract brief, the methods are introduced in the main text when each becomes relevant as well as in the methods section.

      (2) Abstract, line 25: 'look into [primate] MHC evolution.' The analysis is on the primate MHC genes, not on the entire vertebrate MHC evolution with a gene collection from sharks to humans. The non-primate MHC genes are often differently organised and structurally evolved in comparison to primate MHC.

      Thank you! We have added the word “primate” to the abstract (line 25).

      (3) Introduction, line 113. 'In a companion paper (Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.

      This paper is undergoing the eLife editorial process at the same time; it will have a proper citation in the final version.

      (4) Figures 1 and 2. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. 'Asterisks "within symbols" indicate new information.

      Thank you, the word “symbol” is much clearer! We have changed “points” to “symbols” in the captions for Figure 1, Figure 1 - figure supplement 1, Figure 2, and Figure 2 - figure supplement 1. We also changed this in the text (lines 157-158 and 170).

      (5) Figures. A variety of colours have been applied for visualisation. However, some coloured texts are so light in colour that they are difficult to read against a white background. Could darker colours or black be used for all or most texts?

      With such a large number of genes and species to handle in this work, it was nearly impossible to choose a set of colors that were distinct enough from each other. We decided to prioritize consistency (across this paper, its supplement, and our companion paper) as well as at-a-glance grouping of similar sequences. Unfortunately, this means we had to sacrifice readability on a white background, but readers may turn to the supplement if they need to access specific sequence names.

      (6) Results, line 135. '(Fortier and Pritchard, 2024)' This paper appears to be unpublished. If it's unpublished, it should not be referenced.

      Repeat of (3). This paper is undergoing the eLife editorial process at the same time; it will have a proper citation in the final version.

      (7) Results, lines 152 to 153, 164, 165, etc. 'Points with an asterisk'. Use the term 'gene symbols' (circle, square, triangle, inverted triangle, diamond) or 'gene markers' instead of 'points'. A point is a small dot such as those used in data points for plotting graphs .... The figures are so small that the asterisks in the circles, squares, triangles, etc, look like points (dots) and the points/asterisks terminology that is used is very confusing visually.

      Repeat of (4). Thank you, the word “symbol” is much clearer! We have changed “points” to “symbols” in the captions for Figure 1, Figure 1 - figure supplement 1, Figure 2, and Figure 2 - figure supplement 1. We also changed this in the text (lines 157-158 and 170).

      (8) Line 178 (BEA, 2024) is not listed alphabetically in the References.

      Thank you for catching this! This reference maps to the first bibliography entry, “SUMMARIZING POSTERIOR TREES.” We are unsure how to cite a webpage that has no explicit author within the eLife Overleaf template, so we will consult with the editor.

      (9) Lines 188-190. 'NWM MHC-G does not group with ape/OWM MHC-G, instead falling outside of the clade containing ape/OWM MHC-A, -G, -J and -K.' This is not surprising given that MHC-A, -G, -J, and -K are paralogs of each other and that some of them, especially in NWM have diverged over time from the paralogs and/or orthologs and might be closer to one paralog than another and not be an actual ortholog of OWM, apes or humans.

      We included this sentence to clarify the relationships between genes and to help describe what is happening in Figure 6. Figure 6 - figure supplement 1 includes all of the references that go into such a statement and Appendix 3 details our reasoning for this and other statements.

      (10) Line 249. Gene conversion: This is recombination between two different genes where a portion of the genes are exchanged with one another so that different portions of the gene can group within one or other of the two gene clades. Alternatively, the gene has been annotated incorrectly if the gene does not group within either of the two alternative clades. Another possibility is that one or two nucleotide mutations have occurred without a recombination resulting in a mistaken interpretation or conclusion of a recombination event. What measures are taken to avoid false-positive conclusions? How many MHC gene conversion (recombination) events have occurred according to the authors' estimates? What measures are taken to avoid false-positive conclusions?

      All of these possibilities are certainly valid. We used the program GENECONV to infer gene conversion events, but there is considerable uncertainty owing to the ages of the genes and the inevitable point mutations that have occurred post-event. Gene conversion was not the focus of our paper, so we did our best to acknowledge it (and the resulting differences between trees from different exons) without spending too much time diving into it. A list of inferred gene conversion events can be found in Figure 3 - source data 1 and Figure 4 - source data 1.

      (11) Lines 284-286. 'The Class I MHC region is further divided into three polymorphic blocks-alpha, beta, and kappa blocks-that each contains MHC genes but are separated by well-conserved non-MHC genes.' The MHC class I region was first designated into conserved polymorphic duplication blocks, alpha and beta by Dawkins et al (1999 Immunol Rev 167,275), and kappa by Kulski et al (2002 Immunol Rev 190,95), and should be acknowledged (cited) accordingly.

      Thank you for catching this! We have added these citations (lines 302-303)!

      (12) Lines 285-286. 'The majority of the Class I genes are located in the alpha-block, which in humans includes 12 MHC genes and pseudogenes.' This is not strictly correct for many other species, because the majority of class I genes might be in the beta block of new and old-world monkeys, and the authors haven't provided respective counts of duplication numbers to show otherwise. The alpha block in some non-primate mammalian species such as pigs, rats, and mice has no MHC class I genes or only a few. Most MHC class I genes in non-primate mammalian species are found in other regions. For example, see Ando et al (2005 Immunogenetics 57,864) for the pig alpha, beta, and kappa regions in the MHC class I region. There are no pig MHC genes in the alpha block.

      Yes, which is exactly why we use the phrase “in humans” in that particular sentence. The arrangement of the MHC in several other primate reference genomes is shown in Figure 1 - figure supplement 2.

      (13) Line 297 to 299. 'The alpha-block also contains a large number of repetitive elements and gene fragments belonging to other gene families, and their specific repeating pattern in humans led to the conclusion that the region was formed by successive block duplications (Shiina et al., 1999).' There are different models for successive block duplications in the alpha block and some are more parsimonious based on imperfect multigenic segmental duplications (Kulski et al 1999, 2000) than others (Shiina et al., 1999). In this regard, Kulski et al (1999, 2000) also used duplicated repetitive elements neighbouring MHC genes to support their phylogenetic analyses and multigenic segmental duplication models. For comparison, can the authors indicate how many duplications and deletions they have in their models for each species?

      We have added citations to this sentence to show that there are different published models to describe the successive block duplications (line 307). Our models in Figure 6 and Figure 7 are meant to aggregate past work and integrate our own, and thus they were not built strictly by parsimony. References can be found in Figure 6 - figure supplement 1 and Figure 7 - figure supplement 1.

      (14) Lines 315-315. 'Ours is the first work to show that MHC-U is actually an MHC-A-related gene fragment.' This sentence should be deleted. Other researchers had already inferred that MHC-U is actually an MHC-A-related gene fragment more than 25 years ago (Kulski et al 1999, 2000) when the MHC-U was originally named MHC-21.

      While these works certainly describe MHC-U/MHC-21 as a fragment in the 𝛼-block, any relation to MHC-A was by association only and very few species/haplotypes were examined. So although the idea is not wholly novel, we provide convincing evidence that not only is MHC-U related to MHC-A by sequence, but also that it is a very recent partial duplicate of MHC-A. We show this with Bayesian phylogenetic trees as well as an analysis of haplotypes across many more species than were included in those papers.  

      (15) Lines 361-362. 'Notably, our work has revealed that MHC-V is an old fragment.' This is not a new finding or hypothesis. Previous phylogenetic analysis and gene duplication modelling had already inferred HLA-V (formerly HLA-75) to be an old fragment (Kulski et al 1999, 2000).

      By “old,” we mean older than previous hypotheses suggest. Previous work has proposed that MHC-V and -P were duplicated together, with MHC-V deriving from an MHC-A/H/V ancestral gene and MHC-P deriving from an MHC-W/T/P ancestral gene (Kulski (2005), Shiina (1999)). However, our analysis (Figure 5A) shows that MHC-V sequences form a monophyletic clade outside of the MHC-W/P/T group of genes as well as outside of the MHC-A/B/C/E/F/G/J/K/L group of genes, which is not consistent with MHC-A and -V being closely related. Thus, we conclude that MHC-V split off earlier than the differentiation of these other gene groups and is thus older than previously thought. We explain this in the text as well (lines 317-327) and in Appendix 3.  

      (16) Line 431-433. 'the Class II genes have been largely stable across the mammals, although we do see some lineage-specific expansions and contractions (Figure 2 and Figure 2-gure Supplement 2).' Please provide one or two references to support this statement. Is 'gure' a typo?

      We corrected this typo, thank you! This conclusion is simply drawn from the data presented in Figure 2 and Figure 2 - figure supplement 2. The data itself comes from a variety of sources, which are already included in the supplement as Figure 2 - source data 1.

      (17) Line 437. 'We discovered far more "specific" events in Class I, while "broad-scale" events were predominant in Class II.' Please define the difference between 'specific' and 'broad-scale'.

      These terms are defined in the previous sentence (lines 466-469).

      450-451. 'This shows that classical genes experience more turnover and are more often affected by long-term balancing selection or convergent evolution.' Is balancing selection a form of divergent evolution that is different from convergent evolution? Please explain in more detail how and why balancing selection or convergent evolution affects classical and nonclassical genes differently.

      Balancing selection acts to keep alleles at moderate frequencies, preventing any from fixing in the population. In contrast, convergent evolution describes sequences or traits becoming similar over time even though they are not similar by descent. While we cannot know exactly what selective forces have occurred in the past, we observe different patterns in the trees for each type of gene. In Figures 1 and 2, viewers can see at first glance that the nonclassical genes (which are named throughout the text and thoroughly described in Appendix 3) appear to be longer-lived than the classical genes. In addition, lines 204-222 and 475-488 describe topological differences in the BEAST2 trees of these two types of genes. However, we acknowledge that it could be helpful to have additional, complimentary information about the classical vs. non-classical genes. Thus, we have added a sentence and reference to our companion paper (Fortier and Pritchard, 2025), which focuses on long-term balancing selection and draws further contrast between classical and non-classical genes. In lines 481-484, we added  “We further explore the differences between classical and non-classical genes in our companion paper, finding ancient trans-species polymorphism at the classical genes but not at the non-classical genes \citep{Fortier2025b}.”

      References

      Some references in the supplementary materials such as Alvarez (1997), Daza-Vamenta (2004), Rojo (2005), Aarnink (2014), Kulski (2022), and others are missing from the Reference list. Please check that all the references in the text and the supplementary materials are listed correctly and alphabetically.

      We will make sure that these all show up properly in the proof.

      Reviewer #3 (Public review):

      Summary:

      The article provides the most comprehensive overview of primate MHC class I and class II genes to date, combining published data with an exploration of the available genome assemblies in a coherent phylogenetic framework and formulating new hypotheses about the evolution of the primate MHC genomic region.

      Strengths:

      I think this is a solid piece of work that will be the reference for years to come, at least until population-scale haplotype-resolved whole-genome resequencing of any mammalian species becomes standard. The work is timely because there is an obvious need to move beyond short amplicon-based polymorphism surveys and classical comparative genomic studies. The paper is data-rich and the approach taken by the authors, i.e. an integrative phylogeny of all MHC genes within a given class across species and the inclusion of often ignored pseudogenes, makes a lot of sense. The focus on primates is a good idea because of the wealth of genomic and, in some cases, functional data, and the relatively densely populated phylogenetic tree facilitates the reconstruction of rapid evolutionary events, providing insights into the mechanisms of MHC evolution. Appendices 1-2 may seem unusual at first glance, but I found them helpful in distilling the information that the authors consider essential, thus reducing the need for the reader to wade through a vast amount of literature. Appendix 3 is an extremely valuable companion in navigating the maze of primate MHC genes and associated terminology.

      Weaknesses:

      I have not identified major weaknesses and my comments are mostly requests for clarification and justification of some methodological choices.

      Thank you so much for your kind and supportive review!

      Reviewer #1 (Recommendations for the authors):

      (1) Line 151: How is 'extensively studied' defined?

      Extensively studied is not a strict definition, but a few organisms clearly stand apart from the rest in terms of how thoroughly their MHC regions have been studied. For example, the macaque is a model organism, and individuals from many different species and populations have had their MHC regions fully sequenced. This is in contrast to the gibbon, for example, in which there is some experimental evidence for the presence of certain genes, but no MHC region has been fully sequenced from these animals.

      (2) Can you clarify how 'classical' and 'non-classical' MHC genes are being determined in your analysis?

      Classical genes are those whose protein products perform antigen presentation to T cells and are directly involved in adaptive immunity, while non-classical genes are those whose protein products do not do this. For example, these non-classical genes might code for proteins that interact with receptors on Natural Killer cells and influence innate immunity. The roles of these proteins are not necessarily conserved between closely related species, and experimental evidence is needed to evaluate this. However, in the absence of such evidence, wherever possible we have provided our best guess as to the roles of the orthologous genes in other species, presented in Figure 1 - source data 1 and Figure 2 - source data 1. This is based on whatever evidence is available at the moment, sometimes experimental but typically based on dN/dS ratios and other indirect measures.

      (3) I find the overall tone of the paper to be very descriptive, and at times meandering and repetitive, with a lot of similar kinds of statements being repeated about gene gain/loss. This is perhaps inevitable because a single question is being asked of each of many subsets of MHC gene types, and even exons within gene types, so there is a lot of repetition in content with a slightly different focus each time. This does not help the reader stay focused or keep track. I found myself wishing for a clearly defined question or hypothesis, or some rate parameter in need of estimation. I would encourage the authors to tighten up their phrasing, or consider streamlining the results with some better signposting to organize ideas within the results.

      We totally understand your critique, as we talk about a wide range of specific genes and gene groups in this paper. To improve readability, we have added many more signposting phrases and sentences:

      “Aside from MHC-DRB, …” (line 173)

      “Now that we had a better picture of the landscape of MHC genes present in different primates, we wanted to understand the genes’ relationships. Treating Class I, Class IIA, and Class IIB separately, ...” (line 179-180)

      “We focus first on the Class I genes.” (line 191)

      “... for visualization purposes…” (line195)

      “We find that sequences do not always assort by locus, as would be expected for a typical gene.” (lines 196-197)

      “... rather than being directly orthologous to the ape/OWM MHC-G genes.” (lines 201-202)

      “Appendix 3 explains each of these genes in detail, including previous work and findings from this study.“ (lines 202-203)

      “... (but not with NWM) …” (line 208)

      “While genes such as MHC-F have trees which closely match the overall species tree, other genes show markedly different patterns, …” (lines 212-213)

      “Thus, while some MHC-G duplications appear to have occurred prior to speciation events within the NWM, others are species-specific.” (lines 218-219)

      “... indicating rapid evolution of many of the Class I genes” (lines 220-221)

      “Now turning to the Class II genes, …“ (line 223)

      “(see Appendix 2 for details on allele nomenclature) “ (line 238)

      “(e.g. MHC-DRB1 or -DRB2)” (line 254)

      “...  meaning their names reflect previously-observed functional similarity more than evolutionary relatedness.” (lines 257-258)

      “(see Appendix 3 for more detail)” (line 311)

      “(a 5'-end fragment)” (line 324)

      “Therefore, we support past work that has deemed MHC-V an old fragment.” (lines 326-327)

      “We next focus on MHC-U, a previously-uncharacterized fragment pseudogene containing only exon 3.” (line 328-329)

      “However, it is present on both chimpanzee haplotypes and nearly all human haplotypes, and we know that these haplotypes diverged earlier---in the ancestor of human and gorilla. Therefore, ...” (lines 331-333)

      “Ours is the first work to show that MHC-U is actually an MHC-A-related gene fragment and that it likely originated in the human-gorilla ancestor.” (lines 334-336)  

      “These pieces of evidence suggest that MHC-K and -KL duplicated in the ancestor of the apes.” (lines 341-342)

      “Another large group of related pseudogenes in the Class I $\alpha$-block includes MHC-W, -P, and -T (see Appendix 3 for more detail).” (lines 349-350)

      “...to form the current physical arrangement” (lines 354)

      “Thus, we next focus on the behavior of this subgroup in the trees.” (line 358)

      “(see Appendix 3 for further explanation).” (line 369)

      “Thus, for the first time we show that there must have been three distinct MHC-W-like genes in the ape/OWM ancestor.” (lines 369-371)

      “... and thus not included in the previous analysis. ” (lines 376-377)

      “MHC-Y has also been identified in gorillas (Gogo-Y) (Hans et al., 2017), so we anticipate that Gogo-OLI will soon be confirmed. This evidence suggests that the MHC-Y and -OLI-containing haplotype is at least as old as the human-gorilla split. Our study is the first to place MHC-OLI in the overall story of MHC haplotype evolution“ (lines 381-384)

      “Appendix 3 explains the pieces of evidence leading to all of these conclusions (and more!) in more detail.” (lines 395-396)

      “However, looking at this exon alone does not give us a complete picture.” (lines 410-411)

      “...instead of with other ape/OWM sequences, …” (lines 413-414)

      “Figure 7 shows plausible steps that might have generated the current haplotypes and patterns of variation that we see in present-day primates. However, some species are poorly represented in the data, so the relationships between their genes and haplotypes are somewhat unclear.” (lines 427-429)

      “(and more-diverged)” (line 473)

      “(of both classes)” (line 476)

      “..., although the classes differ in their rate of evolution.”  (line 487-488)

      “Including these pseudogenes in our trees helped us construct a new model of $\alpha$-block haplotype evolution. “ (lines 517-518)

      (4) Line 480-82: "Notably...." why is this notable? Don't merely state that something is notable, explain what makes it especially worth drawing the reader's attention to: in what way is it particularly significant or surprising?

      We have changed the text from “Notably” to “In particular” (line 390) so that readers are expecting us to list some specific findings. Similarly, we changed “Notably” to “Specifically” (line 515).

      (5) The end of the discussion is weak: "provide context" is too vague and not a strong statement of something that we learned that we didn't know before, or its importance. This is followed by "This work will provide a jumping-off point for further exploration..." such as? What questions does this paper raise that merit further work?

      We have made this paragraph more specific and added some possible future research directions. It now reads “By treating the MHC genes as a gene family and including more data than ever before, this work enhances our understanding of the evolutionary history of this remarkable region. Our extensive set of trees incorporating classical genes, non-classical genes, pseudogenes, gene fragments, and alleles of medical interest across a wide range of species will provide context for future evolutionary, genomic, disease, and immunologic studies. For example, this work provides a jumping-off-point for further exploration of the evolutionary processes affecting different subsets of the gene family and the nuances of immune system function in different species. This study also provides a necessary framework for understanding the evolution of particular allelic lineages within specific MHC genes, which we explore further in our companion paper \citep{Fortier2025b}. Both studies shed light on MHC gene family evolutionary dynamics and bring us closer to understanding the evolutionary tradeoffs involved in MHC disease associations.” (lines 576-586)

      Reviewer #3 (Recommendations for the authors):

      (1) Figure 1 et seq. Classifying genes as having 'classical', 'non-classical' and 'dual' properties is notoriously difficult in non-model organisms due to the lack of relevant information. As you have characterised a number of genes for the first time in this paper and could not rely entirely on published classifications, please indicate the criteria you used for classification.

      The roles of these proteins are not necessarily conserved between closely related species, and experimental evidence is needed to evaluate this. However, in the absence of such evidence, wherever possible we have provided our best guess as to the roles of the orthologous genes in other species, presented in Figure 1 - source data 1 and Figure 2 - source data 1. This is based on whatever evidence is available at the moment, sometimes experimental but typically based on dN/dS ratios and other indirect measures.

      (2) Line 61 It's important to mention that classical MHC molecules present antigenic peptides to T cells with variable alphabeta T cell receptors, as non-classical MHC molecules may interact with other T cell subsets/types.

      Thank you for pointing this out; we have updated the text to make this clearer (lines 63-65). We changed “‘Classical’ MHC molecules perform antigen presentation to T cells---a key part of adaptive immunity---while ‘non-classical’ molecules have niche immune roles.” to “‘Classical’ MHC molecules perform antigen presentation to T cells with variable alphabeta TCRs---a key part of adaptive immunity---while ‘non-classical’ molecules have niche immune roles.”

      (3) Perhaps it's worth mentioning in the introduction that you are deliberately excluding highly divergent non-classical MHC molecules such as CD1.

      Thank you, it’s worth clarifying exactly what molecules we are discussing. We have added a sentence to the introduction (lines 38-43): “Having originated in the jawed vertebrates, this group of genes is now involved in diverse functions including lipid metabolism, iron uptake regulation, and immune system function (proteins such as zinc-𝛼2-glycoprotein (ZAG), human hemochromatosis protein (HFE), MHC class I chain–related proteins (MICA, MICB), and the CD1 family) \citep{Hansen2007,Kupfermann1999,Kaufman2022,Adams2013}. However, here we focus on…”

      (4) Line 94-105 This material presents results, it could be moved to the results section as it now somewhat disrupts the flow.

      We feel it is important to include a “teaser” of the results in the introduction, which can be slightly more detailed than that in the abstract.

      (5) Line 118-131 This opening section of the results sets the stage for the whole presentation and contains important information that I feel needs to be expanded to include an overview and justification of your methodological choices. As the M&M section is at the end of the MS (and contains limited justification), some information on two aspects is needed here for the benefit of the reader. First, as far as I understand, all phylogenetic inferences were based entirely on DNA sequences of individual (in some cases concatenated) exons. It would be useful for the reader to explain why you've chosen to rely on DNA rather than protein sequences, even though some of the genes you include in the phylogenetic analysis are highly divergent. Second, a reader might wonder how the "maximum clade credibility tree" from the Bayesian analysis compares to commonly seen trees with bootstrap support or posterior probability values assigned to particular clades. Personally, I think that the authors' approach to identifying and presenting representative trees is reasonable (although one might wonder why "Maximum clade credibility tree" and not "Maximum credibility tree" https://www.beast2.org/summarizing-posterior-trees/), since they are working with a large number of short, sometimes divergent and sometimes rather similar sequences - in such cases, a requirement for strict clade support could result in trees composed largely of polytomies. However, I feel it's necessary to be explicit about this and to acknowledge that the relationships represented by fully resolved bifurcating representative trees and interpreted in the study may not actually be highly supported in the sense that many readers might expect. In other words, the reader should be aware from the outset of what the phylogenies that are so central to the paper represent.

      We chose to rely on DNA rather than protein sequences because convergent evolution is likely to happen in regions that code for extremely important functions such as adaptive and innate immunity. Convergent evolution acts upon proteins while trans-species polymorphism retains ancient nucleotide variation, so studying the DNA sequence can help tease apart convergent evolution from trans-species polymorphism.

      As for the “maximum clade credibility tree”, this is a matter of confusing nomenclature. In the online reference guide (https://www.beast2.org/summarizing-posterior-trees/), the tree with the maximum product of the posterior clade probabilities is called the “maximum credibility tree” while the tree that has the maximum sum of posterior clade probabilities is called the “Maximum credibility tree”. The “Maximum credibility tree” (referring to the sum) appears to have only been named in this way in the first version of TreeAnnotator. However, the version of TreeAnnotator that I used lists the options “maximum clade credibility tree” and “maximum sum of clade probabilities”. So the context suggests that the “maximum clade credibility tree” option is actually maximizing the product. This “maximum clade credibility tree” is the setting I used for this project (in TreeAnnotator version 2.6.3).

      We agree that readers may not fully grasp what the collapsed trees represent upon first read. We have added a sentence to the beginning of the results (line 188-190) to make this more explicit.

      (6) Line 224, you're referring to the DPB1*09 lineage, not the DRB1*09 lineage.

      Indeed! We have changed these typos.

      (7) Line 409, why "Differences between MHC subfamilies" and not "Differences between MHC classes"?

      We chose the word “subfamilies” because we discuss the difference between classical and non-classical genes in addition to differences between Class I and Class II genes.

      (8) Line 529-544 This might work better as a table.

      We agree! This information is now presented as Table 1.

      (9) Line 547 MHC-DRB9 appears out of the blue here - please say why you are singling it out.

      Great point! We added a paragraph (lines 614-623) to explain why this was necessary.

      (10) Line 550-551 Even though you've screened the hits manually, it would be helpful to outline your criteria for this search.

      Thank you! We’ve added a couple of sentences to explain how we did this (lines 607-610).

      (11) Line 556-580 please provide nucleotide alignments as supplementary data so that the reader can get an idea of the actual divergence of the sequences that have been aligned together.

      Thank you! We’ve added nucleotide alignments as supplementary files.

      (12) Line 651-652 Why "Maximum clade credibility tree" and not "Maximum credibility tree"? 

      Repeat of (5). This is a matter of confusing nomenclature. In the online reference guide (https://www.beast2.org/summarizing-posterior-trees/), the tree with the maximum product of the posterior clade probabilities is called the “maximum credibility tree” while the tree that has the maximum sum of posterior clade probabilities is called the “Maximum credibility tree”. The “Maximum credibility tree” (referring to the sum) appears to have only been named in this way in the first version of TreeAnnotator. However, the version of TreeAnnotator that I used lists the options “maximum clade credibility tree” and “maximum sum of clade probabilities”. So the context suggests that the “maximum clade credibility tree” option is actually maximizing the product. This “maximum clade credibility tree” is the setting I used for this project (in TreeAnnotator version 2.6.3).

      (13) In the appendices, links to references do not work as expected.

      We will make sure these work properly when we receive the proofs.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      This is an interesting study of the nature of representations across the visual field. The question of how peripheral vision differs from foveal vision is a fascinating and important one. The majority of our visual field is extra-foveal yet our sensory and perceptual capabilities decline in pronounced and well-documented ways away from the fovea. Part of the decline is thought to be due to spatial averaging (’pooling’) of features. Here, the authors contrast two models of such feature pooling with human judgments of image content. They use much larger visual stimuli than in most previous studies, and some sophisticated image synthesis methods to tease apart the prediction of the distinct models.

      More importantly, in so doing, the researchers thoroughly explore the general approach of probing visual representations through metamers-stimuli that are physically distinct but perceptually indistinguishable. The work is embedded within a rigorous and general mathematical framework for expressing equivalence classes of images and how visual representations influence these. They describe how image-computable models can be used to make predictions about metamers, which can then be compared to make inferences about the underlying sensory representations. The main merit of the work lies in providing a formal framework for reasoning about metamers and their implications, for comparing models of sensory processing in terms of the metamers that they predict, and for mapping such models onto physiology. Importantly, they also consider the limits of what can be inferred about sensory processing from metamers derived from different models.

      Overall, the work is of a very high standard and represents a significant advance over our current understanding of perceptual representations of image structure at different locations across the visual field. The authors do a good job of capturing the limits of their approach and I particularly appreciated the detailed and thoughtful Discussion section and the suggestion to extend the metamer-based approach described in the MS with observer models. The work will have an impact on researchers studying many different aspects of visual function including texture perception, crowding, natural image statistics, and the physiology of low- and mid-level vision.

      The main weaknesses of the original submission relate to the writing. A clearer motivation could have been provided for the specific models that they consider, and the text could have been written in a more didactic and easy-to-follow manner. The authors could also have been more explicit about the assumptions that they make.

      Thank you for the summary. We appreciate the positives noted above. We address the weaknesses point by point below.

      Reviewer #2 (Public Review):

      Summary

      This paper expands on the literature on spatial metamers, evaluating different aspects of spatial metamers including the effect of different models and initialization conditions, as well as the relationship between metamers of the human visual system and metamers for a model. The authors conduct psychophysics experiments testing variations of metamer synthesis parameters including type of target image, scaling factor, and initialization parameters, and also compare two different metamer models (luminance vs energy). An additional contribution is doing this for a field of view larger than has been explored previously

      General Comments

      Overall, this paper addresses some important outstanding questions regarding comparing original to synthesized images in metamer experiments and begins to explore the effect of noise vs image seed on the resulting syntheses. While the paper tests some model classes that could be better motivated, and the results are not particularly groundbreaking, the contributions are convincing and undoubtedly important to the field. The paper includes an interesting Voronoi-like schematic of how to think about perceptual metamers, which I found helpful, but for which I do have some questions and suggestions. I also have some major concerns regarding incomplete psychophysical methodology including lack of eye-tracking, results inferred from a single subject, and a huge number of trials. I have only minor typographical criticisms and suggestions to improve clarity. The authors also use very good data reproducibility practices.

      Thank you for the summary. We appreciate the positives noted above. We address the weaknesses point by point below.

      Specific Comments

      Experimental Setup

      Firstly, the experiments do not appear to utilize an eye tracker to monitor fixation. Without eye tracking or another manipulation to ensure fixation, we cannot ensure the subjects were fixating the center of the image, and viewing the metamer as intended. While the short stimulus time (200ms) can help minimize eye movements, this does not guarantee that subjects began the trial with correct fixation, especially in such a long experiment. While Covid-19 did at one point limit in-person eye-tracked experiments, the paper reports no such restrictions that would have made the addition of eye-tracking impossible. While such a large-scale experiment may be difficult to repeat with the addition of eye tracking, the paper would be greatly improved with, at a minimum, an explanation as to why eye tracking was not included.

      Addressed on pg. 25, starting on line 658.

      Secondly, many of the comparisons later in the paper (Figures 9,10) are made from a single subject. N=1 is not typically accepted as sufficient to draw conclusions in such a psychophysics experiment. Again, if there were restrictions limiting this it should be discussed. Also (P11) Is subject sub-00 is this an author? Other expert? A naive subject? The subject’s expertise in viewing metamers will likely affect their performance.

      Addressed on pg. 14, starting on line 308.

      Finally, the number of trials per subject is quite large. 13,000 over 9 sessions is much larger than most human experiments in this area. The reason for this should be justified.

      In general, we needed a large number of trials to fit full psychometric functions for stimuli derived for both models, with both types of comparison, both initializations, and over many target images. We could have eliminated some of these, but feel that having a consistent dataset across all these conditions is a strength of the paper.

      In addition to the sentence on pg. 14, line 318, a full enumeration of trials is now described on pg. 23, starting on line 580.

      Model

      For the main experiment, the authors compare the results of two models: a ’luminance model’ that spatially pools mean luminance values, and an ’energy model’ that spatially pools energy calculated from a multi-scale pyramid decomposition. They show that these models create metamers that result in different thresholds for human performance, and therefore different critical scaling parameters, with the basic luminance pooling model producing a scaling factor 1/4 that of the energy model. While this is certain to be true, due to the luminance model being so much simpler, the motivation for the simple luminance-based model as a comparison is unclear.

      The use of simple models is now addressed on pg. 3, starting on line 98, as well as the sentence starting on pg. 4 line 148: the luminance model is intended as the simplest possible pooling model.

      The authors claim that this luminance model captures the response of retinal ganglion cells, often modeled as a center-surround operation (Rodieck, 1964). I am unclear in what aspect(s) the authors claim these center-surround neurons mimic a simple mean luminance, especially in the context of evidence supporting a much more complex role of RGCs in vision (Atick & Redlich, 1992). Why do the authors not compare the energy model to a model that captures center-surround responses instead? Do the authors mean to claim that the luminance model captures only the pooling aspects of an RGC model? This is particularly confusing as Figures 6 and 9 show the luminance and energy models for original vs synth aligning with the scaling of Midget and Parasol RGCs, respectively. These claims should be more clearly stated, and citations included to motivate this. Similarly, with the energy model, the physiological evidence is very loosely connected to the model discussed.

      We have removed the bars showing potential scaling values measured by electrophysiology in the primate visual system and attempted to clarify our language around the relationship between these models and physiology. Our metamer models are only loosely connected to the physiology, and we’ve decided in revision not to imply any direct connection between the model parameters and physiological measurements. The models should instead be understood as loosely inspired by physiology, but not as a tool to localize the representation (as was done in the Freeman paper).

      The physiological scaling values are still used as the mean of the priors on the critical scaling value for model fitting, as described on pg. 27, starting on line 698.

      Prior Work:

      While the explorations in this paper clearly have value, it does not present any particularly groundbreaking results, and those reported are consistent with previous literature.The explorations around critical eccentricity measurement have been done for texture models (Figure 11) in multiple papers (Freeman 2011, Wallis, 2019, Balas 2009). In particular, Freeman 20111 demonstrated that simpler models, representing measurements presumed to occur earlier in visual processing need smaller pooling regions to achieve metamerism. This work’s measurements for the simpler models tested here are consistent with those results, though the model details are different. In addition, Brown, 2023 (which is miscited) also used an extended field of view (though not as large as in this work). Both Brown 2023, and Wallis 2019 performed an exploration of the effect of the target image. Also, much of the more recent previous work uses color images, while the author’s exploration is only done for greyscale.

      We were pleased to find consistency of our results with previous studies, given the (many) differences in stimuli and experimental conditions (especially viewing angle), while also extending to new results with the luminance model, and the effects of initialization. Note that only one of the previous studies (Freeman and Simoncelli, 2011) used a pooled spectral energy model. Moreover, of the previous studies, only one (Brown et al., 2023) used color images (we have corrected that citation - thanks for catching the error).

      Discussion of Prior Work:

      The prior work on testing metamerism between original vs. synthesized and synthesized vs. synthesized images is presented in a misleading way. Wallis et al.’s prior work on this should not be a minor remark in the post-experiment discussion. Rather, it was surely a motivation for the experiment. The text should make this clear; a discussion of Wallis et al. should appear at the start of that section. The authors similarly cite much of the most relevant literature in this area as a minor remark at the end of the introduction (P3L72).

      The large differences we observed between comparison types (original vs synthesized, compared to synthesized vs synthesized) surprised us. Understanding such difference was not a primary motivation for the work, but it is certainly an important component of our results. In the introduction, we thought it best to lay out the basic logic of the metamer paradigm for foveated vision before mentioning the complications that are introduced in both the Wallis and Brown papers (paragraph beginning p. 3, line 109). Our results confirm and bolster the results of both of those earlier works, which are now discussed more fully in the Introduction (lines 109 and following).

      White Noise: The authors make an analogy to the inability of humans to distinguish samples of white noise. It is unclear however that human difficulty distinguishing samples of white noise is a perceptual issue- It could instead perhaps be due to cognitive/memory limitations. If one concentrates on an individual patch one can usually tell apart two samples. Support for these difficulties emerging from perceptual limitations, or a discussion of the possibility of these limitations being more cognitive should be discussed, or a different analogy employed.

      We now note the possibility of cognitive limits on pg. 8, starting on line 243, as well as pg. 22, line 571. The ability of observers to distinguish samples of white noise is highly dependent on display conditions. A small patch of noise (i.e., large pixels, not too many) can be distinguished, but a larger patch cannot, especially when presented in the periphery. This is more generally true for textures (as shown in Ziemba and Simoncelli (2021)). Samples of white noise at the resolution used in our study are indistinguishable.

      Relatedly, in Figure 14, the authors do not explain why the white noise seeds would be more likely to produce syntheses that end up in different human equivalence classes.

      In figure 14, we claim that white noise seeds are more likely to end up in the same human equivalence classes than natural image seeds. The explanation as to why we think this may be the case is now addressed on pg. 19, starting on line 423.

      It would be nice to see the effect of pink noise seeds, which mirror the power spectrum of natural images, but do not contain the same structure as natural images - this may address the artifacts noted in Figure 9b.

      The lack of pink noise seeds is now addressed on pg. 19, starting on line 429.

      Finally, the authors note high-frequency artifacts in Figure 4 & P5L135, that remain after syntheses from the luminance model. They hypothesize that this is due to a lack of constraints on frequencies above that defined by the pooling region size. Could these be addressed with a white noise image seed that is pre-blurred with a low pass filter removing the frequencies above the spatial frequency constrained at the given eccentricity?

      The explanation for this is similar to the lack of pink noise seeds in the previous point: the goal of metamer synthesis is model testing, and so for a given model, we want to find model metamers that result in the smallest possible critical scaling value. Taking white noise seed images and blurring them will almost certainly remove the high frequencies visible in luminance metamers in figure 4 and thus result in a larger critical scaling value, as the reviewer points out. However, the logic of the experiments requires finding the smallest critical scaling value, and so these model metamers would be uninformative. In an early stage of the project, we did indeed synthesize model metamers using pink noise seeds, and observed that the high frequency artifacts were less prominent.

      Schematic of metamerism: Figures 1,2,12, and 13 show a visual schematic of the state space of images, and their relationship to both model and human metamers. This is depicted as a Voronoi diagram, with individual images near the center of each shape, and other images that fall at different locations within the same cell producing the same human visual system response. I felt this conceptualization was helpful. However, implicitly it seems to make a distinction between metamerism and JND (just noticeable difference). I felt this would be better made explicit. In the case of JND, neighboring points, despite having different visual system responses, might not be distinguishable to a human observer.

      Thanks for noting this – in general, metamers are subthreshold, and for the purpose of the diagram, we had to discretize the space showing metameric regions (Voronoi regions) around a set of stimuli. We’ve rewritten the captions to explain this better. We address the binary subthreshold nature of the metamer paradigm in the discussion section (pg. 19, line 438).

      In these diagrams and throughout the paper, the phrase ’visual stimulus’ rather than ’image’ would improve clarity, because the location of the stimulus in relation to the fovea matters whereas the image can be interpreted as the pixels displayed on the computer.

      We agree and have tried to make this change, describing this choice on pg. 3 line 73.

      Other

      The authors show good reproducibility practices with links to relevant code, datasets, and figures.

      Reviewer #1 (Recommendations For The Authors):

      In its current form, I found the introduction to be too cursory. I felt that the article would benefit from a clearer motivation for the two models that are considered as the reader is left unclear why these particular models are of special scientific significance. The luminance model is intended to capture some aspects of retinal ganglion cells response characteristics and the spectral energy model is intended to capture some aspects of the primary visual cortex. However, one can easily imagine models that include the pooling of other kinds of features, and it would be helpful to get an idea of why these are not considered. Which aspects of processing in the retina and V1 are being considered and which are being left out, and why? Why not consider representations that capture even higher-order statistical structure than those covered by the spectral energy model (or even semantics)? I think a bit of rewriting with this in mind could improve the introduction.

      Along similar lines, I would have appreciated having the logic of the study explained more explicitly and didactically: which overarching research question is being asked, how it is operationalised in the models and experiments, and what are the predictions of the different models. Figures 2 and 3 are certainly helpful, but I felt further explanations would have made it easier for the reader to follow. Throughout, the writing could be improved by a careful re-reading with a view to making it easier to understand. For example, where results are presented, a sentence or two expanding on the implications would be helpful.

      I think the authors could also be more explicit about the assumptions they make. While these are obviously (tacitly) included in the description of the models themselves, it would be helpful to state them more openly. To give one example, when introducing the notion of critical scaling, on p.6 the authors state as if it is a self-evident fact that "metamers can be achieved with windows whose size is matched to that of the underlying visual neurons". This presumably is true only under particular conditions, or when specific assumptions about readout from populations of neurons are invoked. It would be good to identify and state such assumptions more directly (this is partly covered in the Discussion section ’The linking proposition underlying the metamer paradigm’, but this should be anticipated or moved earlier in the text).

      We agree that our introduction was too cursory and have reworked it. We have also backed off of the direct comparison to physiology and clarified that we chose these two as the simplest possible pooling models. We have also added sentences at the end of each result section attempting to summarize the implication (before discussing them fully in the discussion). Hopefully the logic and assumptions are now clearer.

      There are also some findings that warrant a more extensive discussion. For example, what is the broader implication of the finding that original vs. synthesised and synthesised vs. synthesised comparisons exhibit very different scaling values? Does this tell us something about internal visual representations, or is it simply capturing something about the stimuli?

      We believe this difference is a result of the stimuli that are used in the experiment and thus the synthesis procedure itself, which interacts with the model’s pooled image feature. We have attempted to update the relevant figures and discussions to clarify this, in the sections starting on pg 17 line 396 and pg. 19 line 417.

      At some points in the paper, a third model (’texture model’) creeps into the discussion, without much explanation. I assume that this refers to models that consider joint (rather than marginal) statistics of wavelet responses, as in the famous Portilla & Simoncelli texture model. However, it would be helpful to the reader if the authors could explain this.

      Addressed on pg. 3, starting on line 94.

      Minor corrections.

      Caption of Figure 3: ’top’ and ’bottom’ should be ’left’ and ’right’

      Line 177: ’smallest tested scaling values tested’. Remove one instance of ’tested’

      Line 212: ’the images-specific psychometric functions’ -> ’image-specific’

      Line 215: ’cloud-like pink noise’. It’s not literally pink noise, so I would drop this.

      Line 236: ’Importantly, these results cannot be predicted from the model, which gives no specific insight as to why some pairs are more discriminable than others’. The authors should specify what we do learn from the model if it fails to provide insight into why some image pairs are more discriminable than others.

      Figure 9: it might be helpful to include small insets with the ’highway’ and ’tiles’ source images to aid the reader in understanding how the images in 9B were generated.

      Table 1 placement should be after it is first referred to on line 258.

      In the Discussion section "Why does critical scaling depend on the comparison being performed", it would be helpful to consider the case where the two model metamers *are* distinguishable from each other even though each is indistinguishable from the target image. I would assume that this is possible (e.g., if the target image is at the midpoint between the two model images in image space and each of the stimuli is just below 1 JND away from the target). Or is this not possible for some reason?

      Regarding line 236: this specific line has been removed, and the discussion about this issue has all been consolidated in the final section of the discussion, starting on pg. 19 line 438.

      Regarding the final comment: this is addressed in the paragraph starting on pg. 16 line 386. To expand upon that: the situation laid out by the reviewer is not possible in our conceptualization, in which metamerism is transitive and image discriminability is binary. In order to investigate situations like the one laid out by the reviewer, one needs models whose representations have metric properties, i.e., which allow you to measure and reason about perceptual distance, which we refer to in the paragraph starting on pg. 20 line 460. We also note that this situation has not been observed in this or any other pooling model metamer study that we are aware of. All other minor changes have been addressed.

      Reviewer #2 (Recommendations For The Authors):

      Original image T should be marked in the Voronoi diagrams.

      Brown et al is miscited as 2021 should be ACM Transactions on Applied Perception 2023.

      Figure 3 caption: models are left and right, not top and bottom.

      Thanks, all of the above have been addressed.

      References

      BrownReral Encoding, in the Human Visual System. ACM Transactions on Applied Perception. 2023 Jan; 20(1):1–22.http://dx.doi.org/10.1145/356460, Dutell V, Walter B, Rosenholtz R, Shirley P, McGuire M, Luebke D. Efficient Dataflow Modeling of Periph-5, doi: 10.1145/3564605.

      Freeman Jdoi: 10.1038/nn.2889, Simoncelli EP. Metamers of the ventral stream. Nature Neuroscience. 2011 aug; 14(9):1195–1201..

      Ziemba CMnications. 2021 jul; 12(1)., Simoncelli EP. Opposing Effects of Selectivity and Invariance in Peripheral Vision. Nature Commu-https://doi.org/10.1038/s41467-021-24880-5, doi: 10.1038/s41467-021-24880-5.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) The authors make fairly strong claims that "arousal-related fluctuations are isolated from neurons in the deep layers of the SC" (emphasis added). This conclusion is based on comparisons between a "slow drift axis", a low-dimensional representation of neuronal drift, and other measures of arousal (Figures 2C, 3) and motor output sensitivity (Figures 2B, 3B). However, the metrics used to compare the slow-drift axis and motor activity were computed during separate task epochs: the delay period (600-1100 ms) and a perisaccade epoch (25 ms before and after saccade initiation), respectively. As the authors reference, deep-layer SC neurons are typically active only around the time of a saccade. Therefore, it is not clear if the lack of arousal-related modulations reported for deep-layer SC neurons is because those neurons are truly insensitive to those modulations, or if the modulations were not apparent because they were assessed in an epoch in which the neurons were not active. A potentially more valuable comparison would be to calculate a slow-drift axis aligned to saccade onset. 

      The reviewer makes an important point that the calculation of an axis can depend critically on the time window of neuronal response. We find when considering this that the slow drift axis is less sensitive to this issue because it is calculated on time-averaged activity over multiple trials. In previous work we found that slow drift calculated on the stimulus evoked response in V4 was very well aligned to slow drift calculated on pre-stimulus spontaneous activity (Cowley et al, Neuron, 2020, Supplemental Figure 3A and 3B). To address this issue in the present data, we compared the axis computed for an example session for neural activity during the delay period and neural activity aligned to saccade onset. As shown new Figure 2 – figure supplement 1 in the revised manuscript, we found a similar lack of arousal-related modulations for deep-layer SC neurons when slow drift was computed using the saccade epoch (25ms before to 25ms after the onset of the saccade). Figure 2 – figure supplement 1A shows loadings for the SC slow drift axis when it was computed using spiking responses during the delay period (as in the main manuscript analysis). In contrast, Figure 2 – figure supplement 1B shows loadings from the same session when the SC slow drift axis was computed using spiking responses during the saccade epoch. The plots are highly similar and in both cases the loadings were weaker for neurons recorded from channels at the bottom of the probe which have a higher motor index. Finally, we found that projections onto the SC slow drift axis for this session were strongly correlated when the slow drift axis was computed using spiking responses during the delay period and the saccade epoch (r = 0.66, p < 0.001, Figure 1C). Taken together, these results suggest that arousal-related modulations are less evident in deep-layer SC neurons irrespective of whether slow drift was computed during the delay or saccade epoch (see also Public Reviews, Reviewer 1, Point 2).

      (2) More generally, arousal-related signals may persist throughout multiple different epochs of the task. It would be worthwhile to determine whether similar "slow-drift" dynamics are observed for baseline, sensory-evoked, and saccade-related activity. Although it may not be possible to examine pupil responses during a saccade, there may be systematic relationships between baseline and evoked responses. 

      Similar to the point above, slow drift dynamics tend to be similar across different response epochs because they are averaged across many trials and seem to tap into responsivity trends that are robust across epochs. As shown in Author response image 1 below, and the Figure 2 – figure supplement 1 in the revised manuscript, similar dynamics were observed when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade epochs. We did not investigate differences between baseline and evoked pupil responses in the current paper. However, these effects were characterized in one of our previous papers that focused exclusively on the relationship between slow drift and eye-related metrics (Johnston et al., 2022, Cereb. Cortex, Figure 6). In this previous work, we found a negative correlation between baseline and evoked pupil size. Both variables were significantly correlated with slow drift, the only difference being the sign of the correlation.

      Author response image 1.

      (A-C) Dynamics of slow drift for three example sessions when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade epochs. Baseline = 100ms before the onset of the target stimulus; Delay = 600 to 1100ms after the offset of the target stimulus; Stim = 25ms to 125ms after the onset of the target stimulus; Sac = 25ms before to 25ms after the onset of the saccade.

      Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA (2022) The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 32:3331–3346.

      (3) The relationships between changes in SC activity and pupil size are quite small (Figures 2C & 5C). Although the distribution across sessions (Figure 2C) is greater than chance, they are nearly 1/4 of the size compared to the PFC-SC axis comparisons. Likewise, the distribution of r2 values relating pupil size and spiking activity directly (Figure 5) is quite low. We remain skeptical that these drifts are truly due to arousal and cannot be accounted for by other factors. For example, does the relationship persist if accounting for a very simple, monotonic (e.g., linear) drift in pupil size and overall firing rate over the course of an individual session? 

      Firstly, it is important to note that the strength of the relationship between projections onto the SC slow drift axis and pupil size (r<sup>2</sup> = 0.06) is within the range reported by Joshi et al. (2016, Neuron, Figure 3). They investigated the median variance explained between the spiking responses of individual SC neurons and pupil size and found it to be approximately 0.02 across sessions. Secondly, our statistical approach of testing the actual distribution of r<sup>2</sup> values against a shuffled distribution was specifically designed to rule out the possibility that the relationship between SC spiking responses and pupil size occurred due to linear drifts. The shuffled distribution in Figure 2C of the main manuscript represents the variance that can be explained by one session’s slow drift correlated with another session’s pupil, which would contain effects that occurred due to linear drifts alone. That the actual proportion of variance explained was significantly greater than this distribution suggests that the relationship between projections onto the SC slow drift axis and pupil size reflects changes in arousal rather than other factors related to linear drifts.

      Joshi S, Li Y, Kalwani RM, Gold JI (2016) Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 89:221–234.

      (4) It is not clear how the final analysis (Figure 6) contributes to the authors' conclusions. The authors perform PCA on: (i) residual spiking responses during the delay period binned according to pupil size, and (ii) spiking responses in the saccade epoch binned according to target location (i.e., the saccade tuning curve). The corresponding PCs are the spike-pupil axis and the saccade tuning axis, respectively. Unsurprisingly, the spikepupil axis that captures variance associated with arousal (and removes variance associated with saccade direction) was not correlated with a saccade-tuning axis that captures variance associated with saccade direction and omits arousal. Had these measures been related it would imply a unique association between a neuron's preferred saccade direction and pupil control- which seems unlikely. The separation of these axes thus seems trivial and does not provide evidence of a "mechanism...in the SC to prevent arousal-related signals interfering with the motor output." It remains unknown whether, for example, arousal-related signals may impact trial-by-trial changes in neuronal gain near the time of a saccade, or alter saccade dynamics such as acceleration, precision, and reaction time. 

      The reviewer makes a good point, and we agree that more evidence is needed to determine if the separation of the pupil size axis and saccade tuning axis is the mechanism through which cognitive and arousal-related signals can be intermixed in the SC. In the revised manuscript (lines 679-682), we have raised this as a possible explanation that necessitates further study rather than stating definitively that it is the exact mechanism through which these signals are kept separate. Our analysis here is similar to the one from Smoulder et al (2024, Neuron, Fig. 2F), in which the interactions between reward signals and target tuning in M1 were examined (and found to be orthogonal). While we agree with the reviewer that it may seem “trivial” for these axes to be orthogonal, it does not have to be so. If, for example, neural tuning curves shifted with changes in pupil size through gain changes that revealed tuning or affected tuning curve shape, there could be projections of the pupil axis onto the target tuning axis. Thus, while we agree with the reviewer that it appears sensible for these two axes to be orthogonal, our result is nonetheless a novel finding. We have edited the text in our revised manuscript, however, to make sure the nuance of this point is conveyed to the reader.

      Smoulder AL, Marino PJ, Oby ER, Snyder SE, Miyata H, Pavlovsky NP, Bishop WE, Yu BM, Chase SM, Batista AP. A neural basis of choking under pressure. Neuron. 2024 Oct 23;112(20):3424-33.

      Reviewer #2 (Public Review):

      (1) The greatest weakness in the present research is the fact that arousal is a functionally less important non-motoric variable. The authors themselves introduce the problem with a discussion of attention, which is without any doubt the most important cognitive process that needs to be functionally isolated from oculomotor processes. Given this introduction, one cannot help but wonder, why the authors did not design an experiment, in which spatial attention and oculomotor control are differentiated. Absent such an experiment, the authors should spend more time explaining the importance of arousal and how it could interfere with oculomotor behavior. 

      Although attention does represent an important cognitive process, we did not design an experiment in which attention and oculomotor control are differentiated because attention does not appear to be related to slow drift. In our first paper that reported on this phenomenon, we investigated the effects of spatial attention on slow fluctuations in neural activity by cueing the monkeys to attend to a stimulus in the left or right visual field in a block-wise manner. Each block lasted ~20 minutes and we found that slow drift did not covary with the timing of cued blocks (see Figure 4A, Cowley et al., 2020, Neuron). Furthermore, there is a large body of work showing that arousal also impacts motor behavior leading to changes in a range of eye-related metrics (e.g., pupil size, microsaccade rate and saccadic reaction time - for review, see Di Stasi et al. 2013, Neurosci. Biobehav. Rev.). We also note that the terms attention and arousal are often used in nonspecific and overlapping ways in the literature, adding to some potential confusion here. Nonetheless, pupil-linked arousal is an important variable that impacts motor performance. This has now been stated clearly in the Introduction of the revised manuscript (lines 108-114) to address the reviewer’s concerns and highlight the importance of studying how precise fixation and eye movements are maintained even in the presence of signals related to ongoing changes in brain state. 

      Cowley BR, Snyder AC, Acar K, Williamson RC, Yu BM, Smith MA (2020) Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex. Neuron 108:551-567.e8.

      (2) In this context, it is particularly puzzling that one actually would expect effects of arousal on oculomotor behavior. Specifically, saccade reaction time, accuracy, and speed could be influenced by arousal. The authors should include an analysis of such effects. They should also discuss the absence or presence of such effects and how they affect their other results. 

      As described above, several studies across species have demonstrated that arousal impacts motor behavior e.g., saccade reaction time, saccade velocity and microsaccade rate (for review, see Di Stasi et al. 2013, Neurosci. Biobehav. Rev.). This has been clarified in the Introduction of the revised manuscript to address the reviewer's concerns (lines 108-114). Our prior work (Johnston et al, Cerebral Cortex, 2022) shows that slow drift impacts several types of oculomotor behavior. Overall, these studies highlight the impact of arousal on eye movements as a robust effect, and support the present investigation into arousal and oculomotor control signals. While we agree reaction time, accuracy, and speed all can be influenced by arousal depending on task demands, the present study is focused on the connection between slow fluctuations in neural activity, linked to arousal, and different subpopulations of SC neurons. 

      Di Stasi LL, Catena A, Cañas JJ, Macknik SL, Martinez-Conde S (2013) Saccadic velocity as an arousal index in naturalistic tasks. Neurosci Biobehav Rev 37:968–975.

      Johnston R, Snyder AC, Khanna SB, Issar D, Smith MA (2022) The eyes reflect an internal cognitive state hidden in the population activity of cortical neurons. Cereb Cortex 32:3331–3346.

      (3) The authors use the analysis shown in Figure 6D to argue that across recording sessions the activity components capturing variance in pupil size and saccade tuning are uncorrelated. however, the distribution (green) seems to be non-uniform with a peak at very low and very high correlation specifically. The authors should test if such an interpretation is correct. If yes, where are the low and high correlations respectively? Are there potentially two functional areas in SC? 

      We agree with the reviewer that our actual data distribution was non-uniform. We examined individual sessions with high and low variance explained and did not find notable differences. One source of this variation has to do with session length. Longer sessions in principle should have a chance distribution of variance explained closer to zero because they contained more time bins. Given that we had no specific hypothesis for a non-uniform distribution, we have simply displayed the full distribution of values in our figure and the statistical result of a comparison to a shuffled distribution.

      Reviewer #3 (Public Review):

      (1) However, I am concerned about two main points: First, the authors repeatedly say that the "output" layers of the SC are the ones with the highest motor indices. This might not necessarily be accurate. For example, current thresholds for evoking saccades are lowest in the intermediate layers, and Mohler & Wurtz 1972 suggested that the output of the SC might be in the intermediate layers. Also, even if it were true that the high motor index neurons are the output, they are very few in the authors' data (this is also true in a lot of other labs, where it is less likely to see purely motor neurons in the SC). So, this makes one wonder if the electrode channels were simply too deep and already out of the SC? In other words, it seems important to show distributions of encountered neurons (regardless of the motor index) across depth, in order to better know how to interpret the tails of the distributions in the motor index histogram and in the other panels of Figure Supplement 1. I elaborate more on these points in the detailed comments below. 

      The reviewer makes a good point about the efferent signals from SC. It is true that electrical thresholds are often lowest in intermediate layers, though deep layers do project to the oculomotor nuclei (Sparks, 1986; Sparks & Hartwich-Young, 1989) and often intermediate and deep layers are considered to function together to control eye movements (Wurtz & Albano, 1980). As suggested by the reviewer, we have edited the text throughout the manuscript to say that slow drift was less evident in SC neurons with a higher motor index, as well as included the above references and points about the intermediate and deep layers (Lines 73-81). Aside from the question of which layers of the SC function as the “motor output”, the reviewer raises a separate and important question – are our deep recordings still in SC. Here, we can say definitively that they are. We removed neurons if they did not exhibit elevated (above baseline) firing rates during the visual or saccade epochs of the MGS task (see Methods section on “Exclusion criteria”). All included neurons possessed a visual, visuomotor or motor response, consistent with the response properties of neurons in the SC. In addition, we found a number of neurons well above the bottom of the probe with strong motor responses and minimal loadings onto the slow drift axis (see Figure 2 – figure supplement 1A), consistent with the reviewer’s comment that intermediate layer neurons are tuned for movement and play a role in saccade production.

      Mohler CW, Wurtz RH. Organization of monkey superior colliculus: intermediate layer cells discharging before eye movements. Journal of neurophysiology. 1976 Jul 1;39(4):722-44.

      Sparks DL. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol Rev. 1986 Jan;66(1):118-71. doi: 10.1152/physrev.1986.66.1.118. PMID: 3511480.

      Sparks DL, Hartwich-Young R. The deep layers of the superior colliculus. Reviews of oculomotor research. 1989 Jan 1;3:213-55.

      Wurtz RH, Albano JE. Visual-motor function of the primate superior colliculus. Annu Rev Neurosci. 1980;3:189-226. doi: 10.1146/annurev.ne.03.030180.001201. PMID: 6774653.

      (2) Second, the authors find that the SC cells with a low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual responses. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC. 

      The reviewer makes an important point about the SC’s visual responses. Neurons with a low motor index are, conversely, likely to have a stronger visual response index. However, we do not believe that changes in luminance can explain why the correlation between SC spiking response and pupil size is weaker for neurons with a lower motor index. Firstly, the changes in pupil size observed in the current paper and our previous work are slow and occur on a timescale of minutes (Cowley et al., 2020, Neuron) and are correlated with eye movement measures such as reaction time and microsaccade rate (Johnston et al., 2022, Cerebral Cortex). This is in stark contrast to luminance-evoked changes in pupil size that occur on a timescale of less than a second. Secondly, as shown the new Figure 5 – figure supplement 1 in the revised manuscript, very similar results were found when SC spiking responses were correlated with pupil size during the baseline period, when only the fixation point was on the screen. Although the luminance of the small peripheral target stimulus can result in small luminance-evoked changes in pupil size, no changes in luminance occurred during the baseline period which was defined as 100ms before the onset of the target stimulus. In Figure 2 – figure supplement 1 and Author response image 1 above, we show that slow drift is the same whether calculated on the baseline response, delay period, or peri-saccadic epoch. Thus, the measurement of slow drift is insensitive to the precise timing of the selection of both the window for the spiking response and the window for the pupil measurement. If luminance were the explanation for the slow changes in firing observed in visually responsive SC neurons, it would require those neurons to exhibit robust, sustained tuned responses to the small changes in retinal illuminance induced by the relatively small fluctuations in pupil size we observed from minute to minute. We are aware of no reports of such behavior in visually-responsive neurons in SC. We have included these analyses and this reasoning in the revised manuscript on lines 478-495.

      Reviewer#1 (Recommendations for the author):

      (1) It would be useful to provide line numbers in subsequent manuscripts for reviewers.

      Line numbers have been added in the revised version of the manuscript.

      (2) Page #6; last sentence: "...even impact processing at the early to mid stages of the visuomotor transformation, without leading to unwanted changes in motor output." I do not believe the authors have provided evidence that arousal levels were not associated with changes in motor output.

      As suggested by Reviewer 3 (see Public Reviews, Reviewer 3, Point 2), we have edited the text throughout the manuscript to say that slow drift was less evident in SC neurons with a higher motor index. This sentence in the revised manuscript now reads:

      “This provides a potential mechanism through which signals related to cognition and arousal can exist in the SC, and even impact processing at the early to mid stages of the visuomotor transformation, without leading to unwanted changes in SC neurons that are linked to saccade execution.”

      (3) Page #8; last paragraph: Although deep-layer SC neurons may not have been obtained during every recording session, a summary of the motor index scores observed along the probe across sessions would be useful to confirm their assumptions. 

      See Author response image 2 below which shows the motor index of each recoded SC neuron on the x-axis and session number on the y-axis. The points are colored by to the squared factor loading which represents the variance explained between the response a neuron and the slow drift axis (see Figure 3B of the main manuscript). You can see from this plot that neurons with a stronger component loading (shown in teal to yellow) typically have a lower motor index whereas the opposite is true for neurons with a weaker component loading (shown in dark blue).

      Author response image 2.

      Scatter plot showing the motor index of each recorded neuron along with the session number in which it was recorded. The points are colored by to the squared factor loading for each neuron along the slow drift axis. Note that loadings above 0.5 (33 data points in total) have been thresholded at 0.5 so that we could effectively use the color range to show all of the slow drift axis loadings.

      (4) Page #10; first paragraph: The authors should state the time window of the delay period used, since it may be distinct from the pupil analysis (first 200ms of delay). 

      This has been stated in the revised version of the manuscript. The sentence now reads:

      “We first asked if arousal-related fluctuations are present in the SC. As in previous studies that recorded from neurons in the cortex (Cowley et al., 2020), we found that the mean spiking responses of individual SC neurons during the delay period (chosen at random on each trial from a uniform distribution spanning 600-1100ms, see Methods) fluctuated over the course of a session while the monkeys performed the MGS task (Figure 2A, left).”

      (5) Page #10; second paragraph: Extra period at the end of a sentence: " most variance in the data..". 

      Fixed in the revised version of the manuscript.

      (6) Page #12: "between projections onto the SC slow drift axis and mean pupil size during the first 200ms of the delay period when a task-related pupil response could be observed." What criteria was used to determine whether a task-related pupil response was observed? 

      This was chosen based on the results of a previous study in our lab that used the same memory-guided saccade task to investigate the relationship between slow drift and changes in based and evoked pupil size (see Johnston et al., 2022, Cereb. Cortex, Figure 6B). The period was chosen based on plotting the average pupil size aligned on different trial epochs. As we show in Figure 5-figure supplement 3 above, the pupil interactions with slow drift did not depend on the particular time window of the pupil we chose.  

      (7) Page #14; Figure 2A: The axes for the individual channels are strangely floating and quite different from all other figures. Please label the channel in the figure legend that was used as an example of the projected values onto the slow drift axis.

      The figure has been changed in the revised version of the manuscript so that the tick mark denoting zero residual spikes per second is on the top layer of each plot. A scale bar was chosen instead of individual axes to reduce clutter in the figure as it was used to demonstrate how slow drift was computed. Residual spiking responses from all neurons were projected on the slow drift axis to generate the scatter plot in the bottom right-hand corner of Figure 2A. There is no single neuron to label.

      (8) Page #16: "These results demonstrate that even though arousal-related fluctuations are present in the SC, they are isolated from deep-layer neurons that elicit a strong saccadic response and presumably reside closer to the motor output." In line with our major comments, lack of arousal-related activity during the delay period is meaningless for deep-layer SC neurons that are generally inactive during this time. It does not imply that there is no arousal signal! 

      Addressed in Public Reviews, Reviewer 1, Point 1 & 2. We found a similar lack of arousal-related modulations reported for deep-layer SC neurons when slow drift was computed using the saccade epoch (Figure 1 above). In addition, similar dynamics were observed when the SC slow drift axis was computed using spiking responses during the baseline, delay, visual and saccade period (Figure 2).

      (9) Page #18: "These findings provide additional support for the hypothesis that arousalrelated fluctuations are isolated from neurons in the deep layers of the SC." The same criticism from above applies.

      Addressed in Public Reviews, Reviewer 1, Point 1 & 2.

      (10) Page #20; paragraph 3: "Taken together, the findings outlined above..." Would be useful to be more specific when referring to "activity" ; e.g., "...these neurons did not exhibit large fluctuations in delay-period activity over time".

      This sentence has been changed in the revised manuscript in light of the reviewer’s comments. It now reads:

      “In addition to being more weakly correlated with pupil size, the spiking responses of these neurons did not exhibit large fluctuations over time (Figure 2), and when considering the neuronal population as a whole, explained less variance in the slow drift axis when it was computed using population activity in the SC (Figure 3) and PFC (Figure 4).”

      Reviewer #3 (Recommendations for the author):

      The paper is clear and well-written. However, I am concerned about two main points: 

      (1) First, the authors repeatedly say that the "output" layers of the SC are the ones with the highest motor indices. This might not necessarily be accurate. For example, current thresholds for evoking saccades are lowest in the intermediate layers, and Mohler & Wurtz 1972 suggested that the output of the SC might be in the intermediate layers. Also, even if it were true that the high motor index neurons are the output, they are very few in the authors' data (this is also true in a lot of other labs, where it is less likely to see purely motor neurons in the SC). So, this makes one wonder if the electrode channels were simply too deep and already out of the SC. In other words, it seems important to show distributions of encountered neurons (regardless of motor index) across depth, in order to better know how to interpret the tails of the distributions in the motor index histogram and in the other panels of the figure supplement 1. I elaborate more on these points in the detailed comments below. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (2) Second, the authors find that the SC cells with a low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual responses. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC. 

      Addressed in Public Reviews, Reviewer 3, Point 2.

      (3) I think that a remedy to the first point above is to change the text to make it a bit more descriptive and less interpretive. For example, just say that the slow drifts were less evident among the neurons with high motor index. 

      We thank the reviewer for this suggestion (see Public Reviews, Reviewer 3, Point 1).

      (4) For the second point, I think that it is important to consider the alternative caveat of different amounts of light entering the system. Changes in light level caused by pupil diameter variations can be quite large. 

      We thank the reviewer for this suggestion (see Public Reviews, Reviewer 3, Point 2).

      (5) Line 31: I'm a bit underwhelmed by this kind of statement. i.e. we already know that cognitive processes and brain states do alter eye movements, so why is it "critical" that high precision fixation and eye movements are maintained? And, isn't the next sentence already nulling this idea of criticality because it does show that the brain state alters the SC neurons? In fact, cognitive processes are already known to be most prevalent in the intermediate and deep layers of the SC. 

      It seems clear that while cognitive state does affect eye movements, it is desirable to have some separation between cognitive state and eye movement control. Covert attention, for instance, is precisely a situation where eye movement control is maintained to avoid overt saccades to the attended stimulus, and yet there are clear indications of attention’s impact on microsaccades and fixation. We stand by our statement that an important goal of vision is to have precise fixation and movements of the eye, and yet at the same time the eyes are subject to numerous influences by cognitive state.

      (6) Line 65: it is better to clarify that these are "functional layers" because there are actually more anatomical layers. 

      We have edited this sentence in the revised version of the manuscript so that it now reads:

      “The role of these projections in the visuomotor transformation depends on the functional layer of the SC in which they terminate”.

      (7) Line 73: this makes it sound like only the deepest layers are topographically organized, which is not true. Also, as early as Mohler & Wurtz, 1972, it was suggested that the intermediate layers have the biggest impacts downstream of the SC. This is also consistent with electrical microstimulation current thresholds for evoking saccades from the SC. 

      We have addressed the reviewers’ comments about the intermediate layers having the biggest impact downstream of the SC in Public Reviews, Reviewer 3, Point 1. Furthermore, line 73 has been changed in the revised manuscript so that it now reads:

      “As is the case for neurons in the superficial and intermediate layers, they [SC motor neurons] form a topographically organized map of visual space (White et al. 2017; Robinson 1972; Katnani and Gandhi 2011)”.  

      (8) Line 100: there is an analogous literature regarding the question of why unwanted muscle contractions do not happen. Specifically, in the context of why SC visual bursts do not automatically cause saccades (which is a similar problem to the ones you mention about cognitive signals interfering by generating unwanted eye movements), both Jagadisan & Gandhi, Curr Bio, 2022 and Baumann et al, PNAS, 2023 also showed that SC population activity not only has different temporal structure (Jagadisan & Gandhi) but also occupy different subspaces (Baumann et al) under these two different conditions (visual burst versus saccade burst). This is conceptually similar to the idea that you are mentioning here with respect to arousal. So, it is worth it to mention these studies here and again in the discussion. 

      We are grateful to the reviewer for these suggestions and have included text in the Introduction (Lines 125-128) and Discussion (Lines 678-682) of the revised manuscript along with the references cited above.

      (9) Line 147: as mentioned above, it is now generally accepted that there are quite a few "pure" motor neurons in the SC. This is consistent with what you find. E.g. Baumann et al., 2023. And, again see Mohler and Wurtz in the 1970's. So, I wonder how useful it is to go too much into this idea of the deeper motor neurons (e.g. the correlations in the other panels of the Figure 1 supplement). 

      This is related to the reviewer’s comment that the output of the SC might be in the intermediate layers. This concern has been addressed in Public Reviews, Reviewer 3, Point 1.

      (10) Figure 1 should say where the RF was for the shown spike rasters. i.e. were these the same saccade target across trials? And where was that location relative to the RF? It would help also in the text to say whether the saccade was always to the RF center or whether you were randomizing the target location. 

      We centered the array of saccade targets using the microstimulation-evoked eye movement for SC (see Methods section “Memory-guided saccade task”) to find the evoked eccentricity, and then used saccade targets with equal spacing of 45 degrees starting at zero (rightward saccade target). We did not do extensive RF mapping beyond this microstimulation centering. In Figure 1, the spike rasters are shown for a target that was visually identified to be within the neuron’s RF based on assessing responses to all 8 target angles. We have added information about this to the figure caption.

      (11) Line 218: but were there changes in the eye movement statistics? For example, the slow drift eye movements during fixation? Or even the microsaccades? 

      Addressed in Public Reviews, Reviewer 2, Point 2.  

      (12) Line 248: shuffling what exactly? I think that more explanation would be needed here. 

      Addressed in Public Reviews, Reviewer 1, Point 3.  

      (13) Line 263: but isn't this reflecting a sensory transient in the pupil diameter, since the target just disappeared? 

      Addressed in Public Reviews, Reviewer 3, Point 2.  

      (14) Line 271: I suspect that slow drift eye movements (in between microsaccades) would show higher correlations. Not sure how well you can analyze those with a video-based eye tracker. 

      We agree that fixational drift would be a worthwhile metric, but it is not one we have focused on here and to our knowledge does require higher precision tracking. 

      (15) Line 286: again, see above about similar demonstrations with respect to the visual and motor burst intervals, which clearly cause the same problem (even stronger) as the one studied here. 

      See reply, including Figure 2.

      (16) Line 330: again, I'm not sure deeper necessarily automatically means closer to the output. For example, current thresholds for evoked saccades grow higher as you go deeper. Maybe the authors can ask their colleague Neeraj Gandhi about this point specifically, just to be safe. Maybe the safest would be to remain descriptive about the data, and just say something like: arousal-related fluctuations were absent in our deepest recorded sites. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (17) Line 332: likewise, statements like this one here would be qualified if the output was the intermediate layers......anyway if I understand what I read so far in the paper, the signal will be anyway orthogonal to the motor burst population subspace. So, maybe there's no need to emphasize that it goes away in the very deepest layers. 

      See reply above, Public Reviews, Reviewer 1, Point 4.

      (18) Figure 3A: related to the above, I think one issue could be that the deeper contacts might already be out of the SC. Maybe some cell count distribution from each channel should help in this regard. i.e. were you finding way fewer saccade-related neurons in the deepest channels (even though the few that you found were with high motor index)? If so, then wouldn't this just mean that the channel was too deep? I think there needs to be an analysis like this, to convince readers that the channels were still in the SC. Ideally, electrical stimulation current thresholds for evoking saccades at different depths would be tested, but I understand that this can be difficult at this stage. 

      Addressed in Public Reviews, Reviewer 3, Point 1.

      (19) I keep repeating this because in general, cognitive effects are stronger in the intermediate/deeper layers than in the superficial layers. If these interfere with eye movements like arousal, then why should arousal be different?

      Few studies have investigated the effects of attention on “pure” movement SC neurons that only discharge during a saccade. One study, which we cited in Introduction (Ignashchenkova et al., 2004, Nat. Neurosci.), found significant differences in spiking responses between trials with and without attentional cueing for visual and visuomotor neurons. No significant difference was found for motor neurons, consistent with our hypothesis that signals related to cognition and arousal are kept separate from saccade-related signals in the SC.

      (20) The problem with Figure 5 and its related text is that the neurons with low motor index are additionally visual. So, of course, they can be modulated if the pupil diameter changes!

      Addressed in Public Reviews, Reviewer 3, Point 2.  

      (21) I had a hard time understanding Figure 6. 

      See reply above, Public Reviews, Reviewer 1, Point 4.

      (22) Line 586: these cells have more visual responses and will be affected by the amount of light entering the eye. 

      Addressed in Public Reviews, Reviewer 3, Point 2.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      (1) Glycogen biosynthesis typically involves several enzymes. In this context, could the authors comment on the effect of overexpressing a single enzyme - especially a mutant version - on the structure or quality of the glycogen synthesized?

      While quantitative molecular weight analysis of synthesized glycogen was not performed, we documented changes in glycogen particle morphology. GYSmut overexpression resulted in significantly enlarged singular glycogen granules, suggesting potential high molecular mass, while GYS-GYG co-overexpression in MSCs (GYG being the essential enzyme for glycogen synthesis initiation) produced a diffuse glycogen distribution pattern rather than particulate structures. We have incorporated this result as new Figure S2C.

      These results suggest that overexpression of specific glycogen-metabolizing enzymes significantly influences glycogen structure. Consequently, targeted modulation of glycogen architecture and properties through key enzymes represents a potential avenue for future investigation.

      (2) Regarding the in vitro starvation experiments (Figure 2C), what oxygen conditions (pO₂) were used? Are these conditions physiologically relevant and representative of the in vivo lung microenvironment?

      Our in vitro starvation experiments (Figure 3C) were conducted under normoxic (21%). The oxygen concentration in human lungs is physiologically lower than atmospheric levels, with healthy individuals exhaling air containing approximately 16% oxygen (Thalakkotur Lazar Mathew, Diagnostics 2015). To our knowledge, direct measurements of alveolar oxygen concentration in pulmonary fibrosis are rare. Therefore, to evaluate the performance of GYSmut under hypoxic conditions, in the revised manuscript, Figure S2 has been augmented to include assessment of cell performance under combined hypoxia (oxygen concentration < 5%)and nutrient deprivation stress, which further corroborate the superiority of the GYSmut group over the control under different oxygen concentrations. 

      (3) In the in vitro model, how many hours does it take for the intracellular glycogen reserve to be completely depleted under starvation conditions?

      While quantitative cell viability data were recorded up to 72 hours post-implantation (Fig 3C), we observed cell viability at approximately 96 hours. We noticed that the presence of glycogen particles exhibited a correlation with sustained cell viability. However, reliable quantitative assessment of glycogen became increasingly challenging upon significant depletion of viable cells, thereby limiting our measurements during later time points.

      (4) For the in vivo model, is there a quantitative analysis of the survival kinetics of the transplanted cells over time for each group? This would help to better assess the role and duration of glycogen stores as an energy buffer after implantation.

      We tracked the in vivo distribution and persistence of implanted MSCs using enzymatic activity quantification assays (using Gluc luciferase assay) and live animal imaging (using Akaluc luciferase). The revised manuscript includes quantitative analysis of the in vivo fluorescence imaging data, which has been supplemented as Figure S4. Glycogen-engineered MSCs and control cells were quantitatively assessed at three discrete time points post-implantation. This quantification revealed a transient divergence in cell viability between the experimental and control groups around day 7. However, fluorescence in both cohorts subsequently declined to similar levels over the extended observation period.

      (5) Finally, the study was performed in male mice only. Could sex differences exist in the efficacy or metabolism of the engineered MSCs? It would be helpful to discuss whether the approach could be expected to be similarly effective in female subjects.

      We appreciate the reviewer’s important question regarding potential sex differences. Our study used male mice based on three key considerations: 1) Clinical Relevance: Idiopathic pulmonary fibrosis (IPF) shows significant male predominance, with diagnosis rates 3.5-fold higher in men (37.8% vs 10.6%, p<0.0001) and greater diagnostic confidence (Assayag et al., Thorax 2020). 2) Model Consistency: The bleomycin model (our chosen method) demonstrates more consistent fibrotic responses in male mice (Gul et al., BMC Pulm Med 2023). 3) Biological Rationale:

      Estrogen’s protective effects in females may confound therapeutic assessments (cited in Assayag et al.).

      We fully acknowledge this limitation and will include female subjects in subsequent translational studies. The therapeutic principle should theoretically apply to both sexes, but we agree this requires experimental validation.

      (6) The number of mice for each group and time point should be specified.

      The manuscript text has been revised to enhance clarity, and the number of mice for each group and time point has been specified (line 170 to 182).

      Reviewer #2 (Public Review):

      (4) Inconsistencies in In Vivo Data: There is a discrepancy between the number of animals shown in the figures and the graph (three individuals vs. five animals), as well as missing details on how luciferase signal intensity was quantified, requiring further clarification.

      To assess MSC survival in vivo, we employed two strategies utilizing distinct luciferases optimized for specific detection modalities. MSC viability was quantified ex vivo through Gaussia luciferase (Gluc) activity, leveraging its high sensitivity and established commercial assay kits (n = 3 mice per group per time point). For non-invasive longitudinal tracking within living animals, MSC distribution and viability were monitored via in vivo bioluminescence imaging using Akaluc luciferase, selected for its superior tissue penetration and sensitivity in situ (n = 5 mice per group).The manuscript text has been revised to enhance clarity, and the experiment protocols for luciferase signal detection and quantification has been added into Methods.

      (1) (2) (3) (5):

      We fully agree that further investigation into the functional consequences of glycogen engineering in MSCs – encompassing core cellular functions, immunomodulatory properties, and associated signaling pathways – is important to fully elucidate the underlying mechanisms. Cellular metabolism is intrinsically intertwined with diverse physiological processes. Consequently, we believe that glycogen engineering exerts multifaceted effects on MSCs, likely extending beyond the modulation of any single specific pathway. Studying the metabolic perturbation induced by such engineering approaches in mammalian cells represents an interesting field. The exploration of these aspects remains an long-term research objective within our group.

      Reviewer #2 (Recommendations for the authors):

      (6) Clarification of Data in the Murine Model:

      In Figure 4B, there is a discrepancy between the number of animals shown in the image (five) and those represented in the graph (three). This discrepancy needs clarification. Additionally, the study lacks information regarding the intensity of the signal in the luciferase assays. It is unclear how luciferase expression in the mice was quantified, and providing this detail would enhance the understanding of the data presented.

      We sincerely appreciate these valuable suggestions. We have revised the relevant text for greater clarity. Figure 4B and Figure 4C present results from two distinct experimental approaches, each employing different luciferase reporters and measurement methodologies, and different num of mice were used in these two experiments.

      Quantitative data derived from the in vivo bioluminescence imaging has been supplemented as Figure S4. The experiment protocols for luciferase signal detection and quantification has been added into Methods.

      To other recommendations of reviewer 2:

      We sincerely appreciate your valuable insights, which demonstrate your deep expertise. We fully agree that beyond nutrient availability, factors such as reactive oxygen species (ROS) and the immune microenvironment are also critical limitations affecting the survival and therapeutic efficacy of implanted MSCs.

      We propose that glycogen engineering exerts broad effects on MSCs. These effects manifest as changes in multiple cellular characteristics, including proliferation, differentiation, surface marker expression, antioxidant capacity, and immunomodulatory activity – all crucial factors for the therapeutic purpose of MSCs.

      We believe these changes likely involve complex networks of interconnected regulatory factors. The underlying mechanisms might be clarified through proteomic and metabolomic profiling.

      However, comprehensively investigating these interconnected aspects requires significant time and resources. Some components of this research extend beyond the current scope of our project. Nevertheless, exploring these mechanisms remains an important objective, and we will actively work to investigate them further in our ongoing studies.

    1. Author response

      We would like to thank the editors and two reviewers for the assessment and the constructive feedback on our manuscript, “Toward Robust Neuroanatomical Normative Models: Influence of Sample Size and Covariates Distributions”. We appreciate the thorough reviews and believe the constructive suggestions will substantially strengthen the clarity and quality of our work. We plan to submit a revised version of the manuscript and a full point-by-point response addressing both the public reviews and the recommendations to the authors. 

      Reviewer 1. 

      In revision, we plan to address the reviewer’s comments by: (i) strengthen the interpretation of model fit through reporting the proportion of healthy controls within and outside the extreme percentile bounds; (ii) adding age-resolved overlays of model-derived percentile curves compared to those from the full reference cohort for key sample sizes and regions; (iii) quantifying age-distribution alignment between train and test set; and (iv) summarizing model performance as a joint function of age-distribution alignment and sample size.

      Reviewer 2. 

      In the revised manuscript, we will (i) expand the Discussion to more clearly outline the trade-offs between simple regression frameworks and hierarchical models for normative modeling (e.g., scalability, handling of multi-site variation, computational considerations), and discuss alternative approaches and harmonization as important directions for multi-site settings; (ii) contextualize OASIS-3 vs AIBL differences by quantifying train– test age-alignment across sampling strategies and emphasize that skewness should be interpreted relative to the target cohort’s alignment rather than absolute numbers. (iii) reassess sex-imbalance effects by reporting expected age distributions per condition and re-evaluate sex effects while controlling for age; (iv) investigate the apparent dip at n≈300 dip by increasing sub-sampling seeds, testing neighboring sample sizes, and using an alternative age-binning scheme to clarify the observed artifact; (v) clarify potential divergence between tOC separation and global fit under discrepancies in demographic distributions and relate tOC to age-alignment distance; (vi)  reframe the sample-size guidance in terms of distributional alignment rather than an absolute n.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:

      The authors describe the degradation of an intrinsically disordered transcription factor (LMO2) via PROTACs (VHL and CRBN) in T-ALL cells. Given the challenges of drugging transcription factors, I find the work solid and a significant scientific contribution to the field. 

      Strengths: 

      (1) Validation of LMO2 degradation by starting with biodegraders, then progressing to chemical degrades. 

      (2)interrogation of the biology and downstream pathways upon LMO2 degradation (collateral degradation §

      (3) Cell line models that are dependent/overexpression of LMO2 vs LMO2 null cell lines. 

      (4) CRBN and VHL-derived PROTACs were synthesized and evaluated. 

      Weaknesses: 

      (1) The conventional method used to characterize PROTACs in the literature is to calculate the DC50 and Dmax of the degraders, I did not find this information in the manuscript. 

      As noted in the reply to referee’s point 4 below, our first generation compounds are not highly potent. The DC<sub>50</sub> values have been computed specifically using Western blot reflected in the data shown in Fig. 2. The revised version Supplementary Fig. S3 shows these quantified Western blot data from a time course of treating KOPT-K1 cells with either Abd-CRBN and Abd-VHL, where the 24 hour blot data are shown in Figure 2, G and E, and the quantified data from each 24 hour treatment are quantified in Supplementary Fig. S3). With these data, the DC<sub>50</sub> values 9 μM for Abd-CRBN and 15 μM Abd-VHL), included in in the main text and the Supplementary Fig. S3 figure legend.

      In addition, the loss of signal of the LMO2-Rluc reporter protein from PROTAC treated cells shown in Fig. 2M has been used to calculate a half-point of degradation; although strictly not DC<sub>50</sub>, as it measures a reporter protein, this yielded values are 10 μM for Abd-CRBN and 9 μM Abd-VHL. 

      (2) The proteomics data is not very convincing, and it is not clear why LMO2 does not show in the volcano plot (were higher concentrations of the PROTAC tested? and why only VHL was tested and not CRBN-based PROTAC?).

      Due to the relatively small size of the LMO2 protein, it is challenging to produce enough unique peptides for reliable identification, especially to distinguish some proteins in the LMO2 complex.  

      (3) The correlation between degradation potency and cell growth is not well-established (compare Figure 4C: P12-Ichikawa blots show great degradation at 24 and 48 hrs, but it is unclear if the cell growth in this cell line is any better than in PF-382 or MOLT-16) - Can the authors comment on the correlation between degradation and cell growth?  

      In this study (Fig. 4) we did not aim to compare the effect of LMO2 loss on cell growth among LMO2 positive cells. Rather, we aimed to evaluate the LMO2 importance for cell growth in LMO2-expressing T-ALL cells compared to non-expressing cells and to correlate the loss of the protein with this effect on the cell growth. In addition, the treatment of cells with the LMO2 compounds did now show an effect to LMO2 negative cells until at least 48 hours of treatment indicating that low toxicity of our PROTAC compounds and providing correlation between LMO2 loss and cell growth. 

      (4) The PROTACs are not very potent (double-digit micromolar range?) - can the authors elaborate on any challenges in the optimization of the degradation potency? 

      The Abd methodology to use intracellular domain antibodies to screen for compounds that bind to intrinsically disordered proteins such as the LMO2 transcription factors offers a tractable approach to hard drug targets but, in so doing, creates challenging factors to improve the potency that are not the same as those targets for which structural data are available. LMO2 is an intrinsically disordered protein, for which soluble recombinant protein is not readily available to identify the binding pocket of compounds. The potency has so far been optimized solely based on the different moieties substituted in cell-based SAR studies (http://advances.sciencemag.org/cgi/content/full/7/15/eabg1950/DC1) and all new compounds were tested with BRET assays. Thus, currently optimization of the degradation potency (including properties such as improved solubility) for the LMO2-binding compounds relies on chemical modification the three areas of the compounds indicated in Fig. 2 B,C.  

      (5) The authors mentioned trying six iDAb-E3 ligase proteins; I would recommend listing the E3 ligases tried and commenting on the results in the main text. 

      The six chimaeric iDAb-E3 ligase proteins involved one anti-LMO2 iDAb and three different E3 ligase where either fused at the N- or the C-terminus of the VH (giving six protein formats). These six fusion proteins were described in the text referring to the degrader studies described in Supplementary Fig. 1. 

      Reviewer #2 (Public review): 

      Summary: 

      Sereesongsaeng et al. aimed to develop degraders for LMO2, an intrinsically disordered transcription factor activated by chromosomal translocation in T-ALL. The authors first focused on developing biodegraders, which are fusions of an anti-LMO2 intracellular domain antibody (iDAb) with cereblon. Following demonstrations of degradation and collateral degradation of associated proteins with biodegraders, the authors proceeded to develop PROTACs using antibody paratopes (Abd) that recruit VHL (Abd-VHL) or cereblon (Abd-CRBN). The authors show dose-dependent degradation of LMO2 in LMO2+ T-ALL cell lines, as well as concomitant dose-dependent degradation of associated bHLH proteins in the DNA-binding complex. LMO2 degradation via Abd-VHL was also determined to inhibit proliferation and induce apoptosis in LMO2+ T-ALL cell lines. 

      Strengths: 

      The topic of degrader development for intrinsically disordered proteins is of high interest, and the authors aimed to tackle a difficult drug target. The authors evaluated methods, including the development of biodegraders, as well as PROTACs that recruit two different E3 ligases. The study includes important chemical control experiments, as well as proteomic profiling to evaluate selectivity. 

      Weaknesses: 

      The overall degradation is relatively weak, and the mechanism of potential collateral degradation is not thoroughly evaluated

      The purpose of the study was to evaluate effects of LMO2 degraders. The mechanism of the observed collateral degradation could not be investigated directly within the scope of our study. In the main text, discussed two possible, not exclusive, explanations. One being that our work (and previously published, cited work) indicates that the DNA-binding bHLH proteins have relatively short half file (Supplementary Fig. S12) and may therefore be subject to normal turnover when the LMO2, which is in the complex, turns over. Further, the known structure of the LMO2-bHLH interactions (from Omari et al, doi: 10.1016/j.celrep.2013.06.008) was also examined for the location of lysines in the TAL1 & E47 partners (Supplementary Fig. S11). It is possible that their local association with the LMO2-E3-ligase complex created by the PROTAC interaction, could cause their concurrent degradation. Mutagenesis and structural analysis would be needed to establish this point.

      In addition, experiments comparing the authors' prior work with their anti-LMO2 iDAb or Abl-L are lacking, which would improve our understanding of the potential advantages of a degrader strategy for LMO2.  

      A major motivation behind developing the Antibody-derived (Abd) method to select compounds, which are surrogates of the antibody paratope, is because using iDAbs directly as inhibitors requires the development of delivery technologies for these macromolecules, as protein directly or as vectors or mRNA for their expression. Ultimately, high affinity anti-LMO2 iDAbs should directly be used as tractable inhibitors when delivery methods redeveloped. In the meantime, Abd compounds were envisaged as being surrogates suitable for development into reagents, and potentially drugs, by medicinal chemistry. We evaluated selected first generation LMO2-binding Abd compounds previously, finding their ability to interfere with LMO2-iDAb BRET signal to EC<sub>max</sub> about 50% but these compounds do not have potency to have an effect on the interaction of LMO2 with a non-mutated iDAb (nM affinity). These data indicated that efficacy improvement for the PROTACs was needed. In addition, in the current study, we observed viability effects in T-ALL lines at high concentrations (20 μM) irrespective of LMO2 expression (Supplementary Fig. S 2A, B) These data indicated that efficacy improvement was needed and potentially converting the degraders (PROTACs) would add to in-cell potency. By adding the E3 ligase ligands, we found the toxicity of non-LMO2 expressing Jurkat was significantly reduced (Supplementary Fig. S 2E, F). 

      Reviewer #2 (Recommendations for the authors): 

      Suggestions for additional experiments: 

      (1) The data presented is primarily focused on demonstrating targeted degradation of LMO2, with a focus on phenotypes such as proliferation and apoptosis. In this manuscript, there are limited comparative evaluations of anti-LMO2 iDAb or Abl-L to show the potential benefits of a degrader approach to their previously described work, as well as why targeted degradation is in fact, advantageous. For example, the authors' previous work has shown that anti-LMO2 iDAb inhibits tumor growth in a mouse transplantation model. Comparisons in vitro would be supportive of the importance of continued degrader optimization/development.  

      we have previously shown that an anti-LMO2 scFv inhibits tumour growth in a mouse model but this work used an expressed scFv antibody that binds to LMO2 in nM range. The Abd compounds are much lower potency that the antibody and, because recombinant LMO2 is difficult to work with, we could only evaluate interactions of compounds with LMO2 in cell-based assays like BRET (LMO2-iDAb BRET). In this cell-based assay, the first generation Abd compounds do not have sufficient potency to block LMO2-iDAb interaction unless the affinity of the iDAb is reduced to sub-μM. The justification for proceeding on the degrader process rather than just using the protein-protein interaction (PPI) inhibition was based largely around the low potency of the first generation PPI compounds in cell assays and that incorporation protein degradation with PPI inhibition would enhance the efficacy.

      In addition, the viability experiments are also very short-term; is there a reason why the authors did not carry out these experiments for 3-5 days to fully understand the impacts on proliferation? 

      In Supplementary Fig. S5, we did show assays up to 3 days. In KOPT-K1 (LMO2+), the LMO2 levels were reduced during the time course of this assay (from a single compound dose at time zero) (Supplementary Fig S 5A, B). We also show CellTitreGlo assays up to 3 days and, with these second generation compounds, we observed sustained effects on KOPT-K1 (LMO2+) but low non-DMSO toxicity in Jurkat (LMO2-) (revised version Supplementary (Fig S5 C, D).

      (2) The potential mechanism of collateral degradation is interesting and important in evaluating the on-target responses and consequences of degrading LMO2. At this time, the data supporting collateral degradation is limited and would be strengthened by showing that it is not due to a change in mRNA levels and not due to complex dissociation. Overall, the kinetics and depth of loss of complex members such as E47 in Figure 3 appear more substantial than LMO2 itself, and as presented, collateral degradation is not effectively demonstrated. In addition, to aid in the readers' assessments, additional background and references around the roles of TAL1 and E47 would be helpful. For example, structurally, where do they (and other associated proteins that are not degraded) fit in the complex? 

      We have responded above in relation to the Public Review Comments and note that a structure of the complex was in submitted version (now revised version Supplementary Fig. S11). 

      (3) In Figure 1A, the blots show decreased levels of endogenous CRBN with iDAB-CRBN. Is this a known consequence of this approach in these cell lines? Does the partial recovery of endogenous CRBN in KOPTK1 cells have any indication of iDAB-CRBN levels? 

      We cannot be sure why the endogenous level of CRBN decreases in doxycycline treated cells. It has been shown (DOI:10.1371/journal.pone.0064561) that doxycycline used in the inducible expression system (and its derivatives), such as the lentivirus we used, has an effect to gene expression patterns, which can be increase or decrease expression. Although the published study did not examine CRBN expression, the effect might explain the CRBN expression decrease on doxycycline addition and remains the same level after that. 

      (4) In Figure S7, the authors do not fully explain the results and why there is minimal rescue with epoxomicin (S7A) or MLN4924 (S7J). This could indicate an alternative mechanism of degradation and loss at play, given the lack of rescue. Can the authors comment on this discrepancy, and have they looked autophagy inhibitor or other agents to achieve the chemical rescue? 

      In the experiments such as in revised version Supplementary Fig. S6, we used KOPT-K1 cells with a single concentration of the inhibitors and the cells may less susceptible to the epoxomicin (0.8 μM) but lenalidomide and free thalidomide restored the LMO2 levels fully. In the main text Fig. 3D, we also showed that including epoxomicin and thalidomide with the Abd-CRBN in KOPT-K1 and CCRF-CEM restore LMO2 levels, supporting the conclusion that the main mechanism of degradation is through ubiquitination proteosomal route.

      (5) For the proteomics data, it would be helpful to have the proteins in yellow highlighted to have them noted in 5D and 5E. In addition, can the authors comment on why LMO2 or their collateral targets are not confirmed in the table? Furthermore, 5C is difficult to interpret; if there are no significantly changing proteins in the Jurkat cells, why are there pathways that are identified? 

      As mentioned in reply to referee 1, due to the relatively small size of the LMO2 protein, it is challenging to produce enough unique peptides for reliable identification, especially to distinguish some proteins in the LMO2 complex where expression levels are low.

    1. Author response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Confirmation of daf-7::GFP data and inheritance beyond F2

      Reviewer suggested confirming daf-7::GFP molecular marker data and testing inheritance beyond the F2 generation to further strengthen the findings.

      We agree these experiments would provide valuable mechanistic insights into the molecular basis of transgenerational inheritance. However, our study was specifically designed as a reproducibility study focusing on the central controversy regarding F2 inheritance (Gainey et al. vs. Murphy lab findings). The daf-7::GFP molecular marker experiments, while important for understanding mechanisms, represent a different research question requiring extensive additional resources and expertise beyond the scope of this validation study. Our primary goal was to provide independent confirmation of the disputed F2 inheritance using standardized behavioral assays. It is our hope that future work will pursue these important mechanistic validations.

      "Exhaustive attempts" language

      Reviewer disagreed with characterizing Gainey et al.'s efforts as "exhaustive attempts" since they modified the original protocol.

      We revised this statement in the Results and Discussion to more accurately reflect the experimental situation: "In contrast, Gainey et al. (2025), representing the Hunter group, reported that while parental and F1 avoidance behaviors were evident, transgenerational inheritance was not reliably observed beyond the F1 generation under their experimental conditions."

      Importance of sodium azide

      Reviewer suggested including more discussion about the recent findings on the importance of sodium azide in the assay, referencing the Murphy group's response paper.

      We have prominently highlighted the critical role of sodium azide in our Introduction with strengthened language that emphasizes its importance for resolving the scientific controversy: "Critically, Kaletsky et al. (2025) demonstrated that omission of sodium azide during scoring can completely abolish detection of inherited avoidance, revealing that this key methodological difference may explain the conflicting results between laboratories. The use of sodium azide to immobilize worms at the moment of initial bacterial choice appears essential for capturing the inherited behavioral response. These findings highlight how seemingly minor methodological variations can dramatically impact detection of transgenerational inheritance and underscore the need for independent replication using standardized protocols."

      Protocol fidelity statement

      Reviewer requested a more direct statement clarifying that we followed the Murphy group protocol, noting that we made some modifications.

      We followed the core Murphy lab protocol with two evidence-based optimizations that preserve the essential experimental elements: 1) We used 400 mM sodium azide instead of 1 M based on preliminary data showing the higher concentration caused premature paralysis before worms could make behavioral choices, and 2) We used liquid NGM buffer instead of M9 to maintain chemical consistency with the solid NGM plates used for worm culture, minimizing potential osmotic stress. These modifications improved experimental reliability while maintaining the critical components: sodium azide immobilization, bacterial lawn density standardization (OD<sub>600</sub> = 1.0), and synchronized scoring conditions that are essential for detecting inherited avoidance.

      Overstated dilution claim

      Reviewer noted that the statement about "gradual decrease" in avoidance strength was overstated and didn't reflect the actual data presented in the manuscript.

      We removed this statement.

      Environmental variables phrasing

      Reviewer found the sentence about environmental variables unclear, noting that Gainey et al. didn't actually acknowledge variability but saw it as indicating error or stochastic processes.

      We refined this statement for greater precision and clarity: "This underscores the assay's sensitivity to environmental variables, such as synchronization method and bacterial lawn density. This highlights the importance of consistency across experimental setups and support the view that context-dependent variation may underlie previously reported discrepancies."

      Reviewer #2 (Public Review):

      Reagent sourcing

      Reviewer suggested listing the sources of media ingredients with company names and catalog numbers, as this might be important for reproducibility.

      To ensure complete reproducibility, we created a comprehensive Table S3 listing all reagents, suppliers, and catalog numbers used in our experiments. This detailed information enables exact replication of our experimental conditions and addresses potential variability that might arise from different reagent sources between laboratories.

      Reviewer #3 (Public Review):

      Raw data transparency

      Reviewer noted that while a spreadsheet with choice assay results was provided, the individual raw data from assays was not included, which would be helpful for assessing sample sizes.

      We now provide complete experimental transparency through Table S2, which contains individual choice indices from all 138 assays conducted across four independent trials. This comprehensive dataset allows full assessment of our experimental outcomes, statistical robustness, and reproducibility while enabling other researchers to perform independent statistical analyses.

      F1/F2 assay disparity

      Reviewer questioned whether the higher number of F2 assays compared to F1 represented truly independent assays, asking if multiple F2 assays were performed from offspring of one F1 plate (which would not represent independent assays).

      We clarified this important statistical consideration in Methods (Transgenerational Testing): "Each behavioral assay was conducted using animals from a biologically independent growth plate. While F2 plates were derived from pooled embryos from multiple F1 parents, each assay represents an independent biological replicate with no reuse of animals across assays. F2 assays (n=45) exceeded F1 assays (n=20) due to PA14-induced fecundity reduction in trained worms, limiting the number of viable F1 progeny. The higher number of F2 assays reflects the greater reproductive success of healthy F1 animals and provides additional statistical power for population-level behavioral comparisons." We also enhanced our Controls section to clarify that "Our experimental design employed population-level comparisons across generations using unpaired statistical analyses, with no attempt to track individual lineages across generations."

      Methodological variations overstatement

      Reviewer felt the Introduction overstated the findings by suggesting the authors "address potential methodological variations," when they only used one assay setup throughout.

      We have corrected the Introduction to accurately reflect our study design and scope: "Here, we adapted the protocol established by the Murphy group, maintaining the critical use of sodium azide to paralyze worms at the time of choice, to test whether parental exposure to PA14 elicits consistent avoidance in subsequent generations. Our study specifically focuses on the transmission of learned avoidance through the F2 generation, beyond the intergenerational (F1) effect, because this is where divergence between published studies begins."

      Reviewer #1 (Recommendations for the authors):

      Worm numbers

      Reviewer noted that information about the number of worms used should be included in the training and choice assay methods section rather than separated.

      We clarified worm numbers and sample sizes in the Methods (Controls and Additional Considerations): "Each individual assay averaged 62 ± 43 animals (range: 15-150 worms per assay), with a total of 138 assays conducted across four independent experimental trials. The variation in worm numbers per assay reflects natural variation in worm recovery and immobilization efficiency during choice assays. We conducted an average of 8.5 assays per condition during each of the four replicates."

      Figure 1 legend and consistency

      Reviewer identified several issues: inconsistent terminology ("treated" vs "trained"), incorrect statistical test naming, missing p-value annotations, and need for consistency between figure and legend. We have systematically addressed all figure consistency and statistical annotation issues:

      Replaced inconsistent "treated" terminology with "trained" throughout

      Corrected the statistical test description to accurately reflect our analysis: "Kruskal-Wallis oneway ANOVA followed by Dunn's post hoc" which properly corresponds to the statistical tests detailed in Table S1

      Added explicit p-value annotations in the figure legend: "*p<0.05, **p<0.01 means and SEM shown (see Table S1 for statistics and Table S2 for raw data)"

      Ensured consistent terminology between figure and legend

      NGM vs. M9 buffer

      Reviewer questioned whether we used NGM buffer or M9 buffer for washing steps, noting that NGM isn't usually referred to as "buffer."

      We have prominently featured and thoroughly clarified our rationale for using liquid NGM buffer in the Methods (Synchronization of Worms section). The explanation now appears upfront in the methods: "We used liquid NGM buffer instead of M9 buffer (as specified in the original Murphy protocol) to maintain chemical consistency with the solid NGM culture plates. This modification minimizes potential osmotic stress since liquid NGM matches the pH (6.0) and ionic composition of the growth medium, whereas M9 buffer has a different pH (7.0) and ionic profile." We provide detailed chemical differences and explain that this modification maintains consistency with culture conditions while preserving essential experimental procedures.

      Grammar/typos

      Reviewer noted that the manuscript needed thorough proofreading to address grammatical errors and typographical mistakes.

      We have conducted comprehensive proofreading and editing throughout the manuscript to resolve grammatical and typographical errors. Specific improvements include: clarified sentence structure in the Introduction and Results sections, corrected technical terminology consistency, improved figure legend clarity, and enhanced overall readability while maintaining scientific precision.

      Sodium azide concentration

      Reviewer noted that our sodium azide concentration differed from the Moore paper and requested comment on this difference.

      We have included explicit justification for our sodium azide concentration choice in the Methods (Training and Choice Assay): "We used 400 mM sodium azide rather than the 1 M concentration reported by Moore et al. (2019) because preliminary trials showed that higher concentrations caused premature paralysis before worms could reach either bacterial spot, potentially biasing choice measurements. The 400 mM concentration provided sufficient immobilization while preserving the behavioral choice window."

      Reviewer #2 (Recommendations for the authors):

      Comparative reagent analysis

      Reviewer suggested creating a supplemental table comparing reagent sources between our study, Gainey et al., and Murphy et al., proposing that media ingredient differences might explain the discrepancies.

      While direct reagent comparison between laboratories was beyond the scope of this validation study, we recognize this as an important consideration for understanding experimental variability. Our comprehensive reagent sourcing information (Table S3) provides the foundation for future comparative studies. We encourage collaborative efforts to systematically compare reagent sources across laboratories, as media component differences could contribute to the experimental variability observed between research groups. Such analyses would be valuable for establishing standardized protocols across the field.

      Conclusion

      We hope that these revisions satisfactorily address the reviewers’ concerns. We believe these improvements significantly strengthened the manuscript's contribution to resolving this important scientific controversy.

      We thank the reviewers again for their invaluable insights and constructive feedback, which have substantially improved the quality and impact of our work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      The authors present MerQuaCo, a computational tool that fills a critical gap in the field of spatial transcriptomics: the absence of standardized quality control (QC) tools for image-based datasets. Spatial transcriptomics is an emerging field where datasets are often imperfect, and current practices lack systematic methods to quantify and address these imperfections. MerQuaCo offers an objective and reproducible framework to evaluate issues like data loss, transcript detection variability, and efficiency differences across imaging planes.

      Strengths:

      (1) The study draws on an impressive dataset comprising 641 mouse brain sections collected on the Vizgen MERSCOPE platform over two years. This scale ensures that the documented imperfections are not isolated or anecdotal but represent systemic challenges in spatial transcriptomics. The variability observed across this large dataset underscores the importance of using sufficiently large sample sizes when benchmarking different image-based spatial technologies. Smaller datasets risk producing misleading results by over-representing unusually successful or unsuccessful experiments. This comprehensive dataset not only highlights systemic challenges in spatial transcriptomics but also provides a robust foundation for evaluating MerQuaCo's metrics. The study sets a valuable precedent for future quality assessment and benchmarking efforts as the field continues to evolve.

      (2) MerQuaCo introduces thoughtful metrics and filters that address a wide range of quality control needs. These include pixel classification, transcript density, and detection efficiency across both x-y axes (periodicity) and z-planes (p6/p0 ratio). The tool also effectively quantifies data loss due to dropped images, providing tangible metrics for researchers to evaluate and standardize their data. Additionally, the authors' decision to include examples of imperfections detectable by visual inspection but not flagged by MerQuaCo reflects a transparent and balanced assessment of the tool's current capabilities.

      Weaknesses:

      (1) The study focuses on cell-type label changes as the main downstream impact of imperfections. Broadening the scope to explore expression response changes of downstream analyses would offer a more complete picture of the biological consequences of these imperfections and enhance the utility of the tool.

      Here, we focused on the consequences of imperfections on cell-type labels, one common use for spatial transcriptomics datasets. Spatial datasets are used for so many other purposes that there are almost endless ways in which imperfections could impact downstream analyses. It is difficult to see how we might broaden the scope to include more downstream effects, while providing enough analysis to derive meaningful conclusions, all within the scope of a single paper. Existing studies bring some insight into the impact of imperfections and we expect future studies will extend our understanding of consequences in other biological contexts.

      (2) While the manuscript identifies and quantifies imperfections effectively, it does not propose post-imaging data processing solutions to correct these issues, aside from the exclusion of problematic sections or transcript species. While this is understandable given the study is aimed at the highest quality atlas effort, many researchers don't need that level of quality to compare groups. It would be important to include discussion points as to how those cut-offs should be decided for a specific study.

      Studies differ greatly in their aims and, as a result, the impact of imperfections in the underlying data will differ also, preventing us from offering meaningful guidance on how cut-offs might best be identified. Rather, our aim with MerQuaCo was to provide researchers with tools to generate information on their spatial datasets, to facilitate downstream decisions on data inclusion and cut-offs.

      (3) Although the authors demonstrate the applicability of MerQuaCo on a large MERFISH dataset, and the limited number of sections from other platforms, it would be helpful to describe its limitations in its generalizability.

      In figure 9, we addressed the limitations and generalizability of MerQuaCo as best we could with the available datasets. Gaining deep insight into the limitations and generalizability of MerQuaCo would require application to multiple large datasets and, to the best of our knowledge, these datasets are not available.

      Reviewer #2 (Public review):

      The authors present MerQuaCo, a computational tool for quality control in image-based spatial transcriptomic, especially MERSCOPE. They assessed MerQuaCo on 641 slides that are produced in their institute in terms of the ratio of imperfection, transcript density, and variations of quality by different planes (x-axis).

      Strengths:

      This looks to be a valuable work that can be a good guideline of quality control in future spatial transcriptomics. A well-controlled spatial transcriptomics dataset is also important for the downstream analysis.

      Weaknesses:

      The results section needs to be more structured.

      We have split the ‘Transcript density’ subsection of the results into 3 new subsections.

      Reviewer #3 (Public review):

      MerQuaCo is an open-source computational tool developed for quality control in imagebased spatial transcriptomics data, with a primary focus on data generated by the Vizgen MERSCOPE platform. The authors analyzed a substantial dataset of 641 freshfrozen adult mouse brain sections to identify and quantify common imperfections, aiming to replace manual quality assessment with an automated, objective approach, providing standardized data integrity measures for spatial transcriptomics experiments.

      Strengths:

      The manuscript's strengths lie in its timely utility, rigorous empirical validation, and practical contributions to methodology and biological discovery in spatial transcriptomics.

      Weaknesses:

      While MerQuaCo demonstrates utility in large datasets and cross-platform potential, its generalizability and validation require expansion, particularly for non-MERSCOPE platforms and real-world biological impact.

      We agree that there is value in expanding our analyses to non-Merscope platforms, to tissues other than brain, and to analyses other than cell typing. The limiting factor in all these directions is the availability of large enough datasets to probe the limits of MerQuaCo. We look forward to a future in which more datasets are available and it’s possible to extend our analyses

      Reviewer #1(Recommendation for the Author):

      (1) To better capture the downstream impacts of imperfections, consider extending the analysis to additional metrics, such as specificity variation across cell types, gene coexpression, or spatial gene patterning. This would deepen insights into how these imperfections shape biological interpretations and further demonstrate the versatility of MerQuaCo.

      These are compelling ideas, but we are unable to study so many possible downstream impacts in sufficient depth in a single study. Insights into these topics will likely come from future studies.

      (2) In Figure 7 legend, panel label (D) is repeated thus panels E-F are mislabelled. 

      We have corrected this error.

      (3) Ensure that the image quality is high for the figures. 

      We will upload Illustrator files, ensuring that images are at full resolution.

      Reviewer #2 (Recommendation for the Author):

      (1) A result subsection "Transcript density" looks too long. Please provide a subsection heading for each figure. 

      We have split this section into 3 with new subheadings.

      (2) The result subsection title "Transcript density" sounds ambiguous. Please provide a detailed title describing what information this subsection contains. 

      We have renamed this section ‘Differences in transcript density between MERSCOPE experiments’.

      Minor: 

      (1) There is no explanation of the black and grey bars in Figure 2A.

      We have added information to the figure legend, identifying the datasets underlying the grey and black bars.

      (2) In the abstract, the phrase "High-dimension" should be "High-dimensional". 

      We have changed ‘high-dimension’ to ‘high-dimensional’.

      (3) In the abstract, "Spatial results" is an unclear expression. What does it stand for? 

      We have replaced the term ‘spatial results’ with ‘the outputs of spatial transcriptomics platforms’.

      Reviewer #3 (Recommendation for the Author):

      (1) While the tool claims broad applicability, validation is heavily centered on MERSCOPE data, with limited testing on other platforms. The authors should expand validation to include more diverse platforms and add a small analysis of non-brain tissue. If broader validation isn't feasible, modify the title and abstract to reflect the focus on the mouse brain explicitly.

      We agree that expansion to other platforms is desirable, but to the best of our knowledge sufficient datasets from other platforms are not available. In the abstract, we state that ‘… we describe imperfections in a dataset of 641 fresh-frozen adult mouse brain sections collected using the Vizgen MERSCOPE.’

      (2) The impact of data imperfections on downstream analysis needs a more comprehensive evaluation. The authors should expand beyond cluster label changes to include a) differential expression analysis with simulated imperfections, b) impact on spatial statistics and pattern detection, and c) effects on cell-cell interactions. 

      Each of these ideas could support a substantial study. We are unable to do them justice in the limited space available as an addition to the current study.

      (3) The pixel classification workflow and validation process need more detailed documentation. 

      The methods and results together describe the workflow and validation in depth. We are unclear what details are missing.

      (4) The manuscript lacks comparison to existing. QC pipelines such as Squidpy and Giotto. The authors should benchmark MerQuaCo against them and provide integration options with popular spatial analysis tools with clear documentation.

      To the best of our knowledge, Squidpy and Giotto lack QC benchmarks, certainly of the parameters characterized by MerQuaCo. Direct comparison isn’t possible.

    1. Author response:

      The following is the authors’ response to the original reviews

      General Statements:

      In our manuscript, we demonstrate for the first time that RNA Polymerase I (Pol I) can prematurely release nascent transcripts at the 5' end of ribosomal DNA transcription units in vivo. This achievement was made possible by comparing wild-type Pol I with a mutant form of Pol I, hereafter called SuperPol previously isolated in our lab (Darrière at al., 2019). By combining in vivo analysis of rRNA synthesis (using pulse-labelling of nascent transcript and cross-linking of nascent transcript - CRAC) with in vitro analysis, we could show that Superpol reduced premature transcript release due to altered elongation dynamics and reduced RNA cleavage activity. Such premature release could reflect regulatory mechanisms controlling rRNA synthesis. Importantly, This increased processivity of SuperPol is correlated with resistance with BMH-21, a novel anticancer drugs inhibiting Pol I, showing the relevance of targeting Pol I during transcriptional pauses to kill cancer cells. This work offers critical insights into Pol I dynamics, rRNA transcription regulation, and implications for cancer therapeutics.

      We sincerely thank the three reviewers for their insightful comments and recognition of the strengths and weaknesses of our study. Their acknowledgment of our rigorous methodology, the relevance of our findings on rRNA transcription regulation, and the significant enzymatic properties of the SuperPol mutant is highly appreciated. We are particularly grateful for their appreciation of the potential scientific impact of this work. Additionally, we value the reviewer’s suggestion that this article could address a broad scientific community, including in transcription biology and cancer therapy research. These encouraging remarks motivate us to refine and expand upon our findings further.

      All three reviewers acknowledged the increased processivity of SuperPol compared to its wildtype counterpart. However, two out of three questions our claims that premature termination of transcription can regulate ribosomal RNA transcription. This conclusion is based on SuperPol mutant increasing rRNA production. Proving that modulation of early transcription termination is used to regulate rRNA production under physiological conditions is beyond the scope of this study. Therefore, we propose to change the title of this manuscript to focus on what we have unambiguously demonstrated:

      “Ribosomal RNA synthesis by RNA polymerase I is subjected to premature termination of transcription”.

      Reviewer 1 main criticisms centers on the use of the CRAC technique in our study. While we address this point in detail below, we would like to emphasize that, although we agree with the reviewer’s comments regarding its application to Pol II studies, by limiting contamination with mature rRNA, CRAC remains the only suitable method for studying Pol I elongation over the entire transcription units. All other methods are massively contaminated with fragments of mature RNA which prevents any quantitative analysis of read distribution within rDNA.  This perspective is widely accepted within the Pol I research community, as CRAC provides a robust approach to capturing transcriptional dynamics specific to Pol I activity. 

      We hope that these findings will resonate with the readership of your journal and contribute significantly to advancing discussions in transcription biology and related fields.

      Description of the planned revisions:

      Despite numerous text modification (see below), we agree that one major point of discussion is the consequence of increased processivity in SuperPol mutant on the “quality” of produced rRNA. Reviewer 3 suggested comparisons with other processive alleles, such as the rpb1-E1103G mutant of the RNAPII subunit (Malagon et al., 2006). This comparison has already been addressed by the Schneider lab (Viktorovskaya OV, Cell Rep., 2013 - PMID: 23994471), which explored Pol II (rpb1-E1103G) and Pol I (rpa190-E1224G). The rpa190-E1224G mutant revealed enhanced pausing in vitro, highlighting key differences between Pol I and Pol II catalytic ratelimiting steps (see David Schneider's review on this topic for further details).

      Reviewer 2 and 3 suggested that a decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. Pol I mutant with decreased rRNA cleavage have been characterized previously, and resulted in increased errorrate. We already started to address this point. Preliminary results from in vitro experiments suggest that SuperPol mutants exhibit an elevated error rate during transcription. However, these findings remain preliminary and require further experimental validation to confirm their reproducibility and robustness. We propose to consolidate these data and incorporate into the manuscript to address this question comprehensively. This could provide valuable insights into the mechanistic differences between SuperPol and the wild-type enzyme. SuperPol is the first pol I mutant described with an increased processivity in vitro and in vivo, and we agree that this might be at the cost of a decreased fidelity.

      Regulatory aspect of the process:

      To address the reviewer’s remarks, we propose to test our model by performing experiments that would evaluate PTT levels in Pol I mutant’s or under different growth conditions. These experiments would provide crucial data to support our model, which suggests that PTT is a regulatory element of Pol I transcription. By demonstrating how PTT varies with environmental factors, we aim to strengthen the hypothesis that premature termination plays an important role in regulating Pol I activity.

      We propose revising the title and conclusions of the manuscript. The updated version will better reflect the study's focus and temper claims regarding the regulatory aspects of termination events, while maintaining the value of our proposed model.

      Description of the revisions that have already been incorporated in the transferred manuscript:

      Some very important modifications have now been incorporated:

      Statistical Analyses and CRAC Replicates:

      Unlike reviewers 2 and 3, reviewer 1 suggests that we did not analyze the results statistically. In fact, the CRAC analyses were conducted in biological triplicate, ensuring robustness and reproducibility. The statistical analyses are presented in Figure 2C, which highlights significant findings supporting the fact WT Pol I and SuperPol distribution profiles are different. We CRAC replicates exhibit a high correlation and we confirmed significant effect in each region of interest (5’ETS, 18S.2, 25S.1 and 3’ ETS, Figure 1) to confirm consistency across experiments. We finally took care not to overinterpret the results, maintaining a rigorous and cautious approach in our analysis to ensure accurate conclusions.

      CRAC vs. Net-seq:

      Reviewer 1 ask to comment differences between CRAC and Net-seq. Both methods complement each other but serve different purposes depending on the biological question on the context of transcription analysis. Net-seq has originally been designed for Pol II analysis. It captures nascent RNAs but does not eliminate mature ribosomal RNAs (rRNAs), leading to high levels of contamination. While this is manageable for Pol II analysis (in silico elimination of reads corresponding to rRNAs), it poses a significant problem for Pol I due to the dominance of rRNAs (60% of total RNAs in yeast), which share sequences with nascent Pol I transcripts. As a result, large Net-seq peaks are observed at mature rRNA extremities (Clarke 2018, Jacobs 2022). This limits the interpretation of the results to the short lived pre-rRNA species. In contrast, CRAC has been specifically adapted by the laboratory of David Tollervey to map Pol I distribution while minimizing contamination from mature rRNAs (The CRAC protocol used exclusively recovers RNAs with 3′ hydroxyl groups that represent endogenous 3′ ends of nascent transcripts, thus removing RNAs with 3’-Phosphate, found in mature rRNAs). This makes CRAC more suitable for studying Pol I transcription, including polymerase pausing and distribution along rDNA, providing quantitative dataset for the entire rDNA gene.

      CRAC vs. Other Methods:

      Reviewer 1 suggests using GRO-seq or TT-seq, but the experiments in Figure 2 aim to assess the distribution profile of Pol I along the rDNA, which requires a method optimized for this specific purpose. While GRO-seq and TT-seq are excellent for measuring RNA synthesis and cotranscriptional processing, they rely on Sarkosyl treatment to permeabilize cellular and nuclear membranes. Sarkosyl is known to artificially induces polymerase pausing and inhibits RNase activities which are involved in the process. To avoid these artifacts, CRAC analysis is a direct and fully in vivo approach. In CRAC experiment, cells are grown exponentially in rich media and arrested via rapid cross-linking, providing precise and artifact-free data on Pol I activity and pausing.

      Pol I ChIP Signal Comparison:

      The ChIP experiments previously published in Darrière et al. lack the statistical depth and resolution offered by our CRAC analyses. The detailed results obtained through CRAC would have been impossible to detect using classical ChIP. The current study provides a more refined and precise understanding of Pol I distribution and dynamics, highlighting the advantages of CRAC over traditional methods in addressing these complex transcriptional processes.

      BMH-21 Effects:

      As highlighted by Reviewer 1, the effects of BMH-21 observed in our study differ slightly from those reported in earlier work (Ref Schneider 2022), likely due to variations in experimental conditions, such as methodologies (CRAC vs. Net-seq), as discussed earlier. We also identified variations in the response to BMH-21 treatment associated with differences in cell growth phases and/or cell density. These factors likely contribute to the observed discrepancies, offering a potential explanation for the variations between our findings and those reported in previous studies. In our approach, we prioritized reproducibility by carefully controlling BMH-21 experimental conditions to mitigate these factors. These variables can significantly influence results, potentially leading to subtle discrepancies. Nevertheless, the overall conclusions regarding BMH-21's effects on WT Pol I are largely consistent across studies, with differences primarily observed at the nucleotide resolution. This is a strength of our CRAC-based analysis, which provides precise insights into Pol I activity.

      We will address these nuances in the revised manuscript to clarify how such differences may impact results and provide context for interpreting our findings in light of previous studies.

      Minor points:

      Reviewer #1:

      In general, the writing style is not clear, and there are some word mistakes or poor descriptions of the results, for example: 

      On page 14: "SuperPol accumulation is decreased (compared to Pol I)". 

      On page 16: "Compared to WT Pol I, the cumulative distribution of SuperPol is indeed shifted on the right of the graph." 

      We clarified and increased the global writing style according to reviewer comment.

      There are also issues with the literature, for example: Turowski et al, 2020a and Turowski et al, 2020b are the same article (preprint and peer-reviewed). Is there any reason to include both references? Please, double-check the references.  

      This was corrected in this version of the manuscript.

      In the manuscript, 5S rRNA is mentioned as an internal control for TMA normalisation. Why are Figure 1C data normalised to 18S rRNA instead of 5S rRNA? 

      Data are effectively normalized relative to the 5S rRNA, but the value for the 18S rRNA is arbitrarily set to 100%.

      Figure 4 should be a supplementary figure, and Figure 7D doesn't have a y-axis labelling. 

      The presence of all Pol I specific subunits (Rpa12, Rpa34 and Rpa49) is crucial for the enzymatic activity we performed. In the absence of these subunits (which can vary depending on the purification batch), Pol I pausing, cleavage and elongation are known to be affected. To strengthen our conclusion, we really wanted to show the subunit composition of the purified enzyme. This important control should be shown, but can indeed be shown in a supplementary figure if desired.

      Y-axis is figure 7D is now correctly labelled

      In Figure 7C, BMH-21 treatment causes the accumulation of ~140bp rRNA transcripts only in SuperPol-expressing cells that are Rrp6-sensitive (line 6 vs line 8), suggesting that BHM-21 treatment does affect SuperPol. Could the author comment on the interpretation of this result? 

      The 140 nt product is a degradation fragment resulting from trimming, which explains its lower accumulation in the absence of Rrp6. BMH21 significantly affects WT Pol I transcription but has also a mild effect on SuperPol transcription. As a result, the 140 nt product accumulates under these conditions.

      Reviewer #2:

      pp. 14-15: The authors note local differences in peak detection in the 5'-ETS among replicates, preventing a nucleotide-resolution analysis of pausing sites. Still, they report consistent global differences between wild-type and SuperPol CRAC signals in the 5'ETS (and other regions of the rDNA). These global differences are clear in the quantification shown in Figures 2B-C. A simpler statement might be less confusing, avoiding references to a "first and second set of replicates" 

      According to reviewer, statement has been simplified in this version of the manuscript.

      Figures 2A and 2C: Based on these data and quantification, it appears that SuperPol signals in the body and 3' end of the rDNA unit are higher than those in the wild type. This finding supports the conclusion that reduced pausing (and termination) in the 5'ETS leads to an increased Pol I signal downstream. Since the average increase in the SuperPol signal is distributed over a larger region, this might also explain why even a relatively modest decrease in 5'ETS pausing results in higher rRNA production. This point merits discussion by the authors. 

      We agree that this is a very important discussion of our results. Transcription is a very dynamic process in which paused polymerase is easily detected using the CRAC assay. Elongated polymerases are distributed over a much larger gene body, and even a small amount of polymerase detected in the gene body can represent a very large rRNA synthesis. This point is of paramount importance and, as suggested by the reviewer, is now discussed in detail.

      A decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. Have the authors observed any evidence supporting this possibility? 

      Reviewer suggested that a decreased efficiency of cleavage upon backtracking might imply an increased error rate in SuperPol compared to the wild-type enzyme. We thank Reviewer #2 to point it as in our opinion, this is an important point what should be added to the manuscript. We have now included new data (panels 5G, 5H and 5I) in the manuscript showing that SuperPol in vitro exhibits an increased error rate compared to the WT enzyme. From these results obtained in vitro, we concluded that SuperPol shows reduced nascent transcript cleavage, associated with more efficient transcript elongation, but to the detriment of transcriptional fidelity.

      pp. 15 and 22: Premature transcription termination as a regulator of gene expression is welldocumented in yeast, with significant contributions from the Corden, Brow, Libri, and Tollervey labs. These studies should be referenced along with relevant bacterial and mammalian research. 

      According to reviewer suggestion, we referenced these studies.

      p. 23: "SuperPol and Rpa190-KR have a synergistic effect on BMH-21 resistance." A citation should be added for this statement. 

      This represents some unpublished data from our lab. KR and SuperPol are the only two known mutants resistant to BMH-21. We observed that resistance between both alleles is synergistic, with a much higher resistance to BMH-21 in the double mutant than in each single mutant (data not shown). Comparing their resistance mechanisms is a very important point that we could provide upon request. This was added to the statement.

      p. 23: "The released of the premature transcript" - this phrase contains a typo 

      This is now corrected.

      Reviewer #3:

      Figure 1B: it would be opportune to separate the technique's schematic representation from the actual data. Concerning the data, would the authors consider adding an experiment with rrp6D cells? Some RNAs could be degraded even in such short period of time, as even stated by the authors, so maybe an exosome depleted background could provide a more complete picture. Could also the authors explain why the increase is only observed at the level of 18S and 25S? To further prove the robustness of the Pol I TMA method could be good to add already characterized mutations or other drugs to show that the technique can readily detect also well-known and expected changes. 

      The precise objective of this experiment is to avoid the use of the Rrp6 mutant. Under these conditions, we prevent the accumulation of transcripts that would result from a maturation defect. While it is possible to conduct the experiment with the Rrp6 mutant, it would be impossible to draw reliable conclusions due to this artificial accumulation of transcripts.

      Figure 1C: the NTS1 probe signal is missing (it is referenced in Figure 1A but not listed in the Methods section or the oligo table). If this probe was unused, please correct Figure 1A accordingly. 

      We corrected Figure 1A.  

      Figure 2A: the RNAPI occupancy map by CRAC is hard to interpret. The red color (SuperPol) is stacked on top of the blue line, and we are not able to observe the signal of the WT for most of the position along the rDNA unit. It would be preferable to use some kind of opacity that allows to visualize both curves. Moreover, the analysis of the behavior of the polymerase is always restricted to the 5'ETS region in the rest of the manuscript. We are thus not able to observe whether termination events also occur in other regions of the rDNA unit. A Northern blot analysis displaying higher sizes would provide a more complete picture. 

      We addressed this point to make the figure more visually informative. In Northern Blot analysis, we use a TSS (Transcription Start Site) probe, which detects only transcripts containing the 5' extremity. Due to co-transcriptional processing, most of the rRNA undergoing transcription lacks its 5' extremity and is not detectable using this technique. We have the data, but it does not show any difference between Pol I and SuperPol. This information could be included in the supplementary data if asked.

      "Importantly, despite some local variations, we could reproducibly observe an increased occupancy of WT Pol I in 5'-ETS compared to SuperPol (Figure 1C)." should be Figure 2C. 

      Thanks for pointing out this mistake. It has been corrected.

      Figure 3D: most of the difference in the cumulative proportion of CRAC reads is observed in the region ~750 to 3000. In line with my previous point, I think it would be worth exploring also termination events beyond the 5'-ETS region. 

      We agree that such an analysis would have been interesting. However, with the exception of the pre-rRNA starting at the transcription start site (TSS) studied here, any cleaved rRNA at its 5' end could result from premature termination and/or abnormal processing events. Exploring the production of other abnormal rRNAs produced by premature termination is a project in itself, beyond this initial work aimed at demonstrating the existence of premature termination events in ribosomal RNA production.

      Figure 4: should probably be provided as supplementary material. 

      As l mentioned earlier (see comments), the presence of all Pol I specific subunits (Rpa12, Rpa34 and Rpa49) is crucial for the enzymatic activity we performed. This important control should be shown, but can indeed be shown in a supplementary figure if desired.

      "While the growth of cells expressing SuperPol appeared unaffected, the fitness of WT cells was severely reduced under the same conditions." I think the growth of cells expressing SuperPol is slightly affected. 

      We agree with this comment and we modified the text accordingly.

      Figure 7D: the legend of the y-axis is missing as well as the title of the plot. 

      Legend of the y-axis and title of the plot are now present.

      The statements concerning BMH-21, SuperPol and Rpa190-KR in the Discussion section should be removed, or data should be provided.

      This was discussed previously. See comment above.

      Some references are missing from the Bibliography, for example Merkl et al., 2020; Pilsl et al., 2016a, 2016b. 

      Bibliography is now fixed

      Description of analyses that authors prefer not to carry out:

      Does SuperPol mutant produces more functional rRNAs ?

      As Reviewer 1 requested, we agree that this point requires clarification.. In cells expressing SuperPol, a higher steady state of (pre)-rRNAs is only observed in absence of degradation machinery suggesting that overproduced rRNAs are rapidly eliminated. We know that (pre)rRNas are unable to accumulate in absence of ribosomal proteins and/or Assembly Factors (AF). In consequence, overproducing rRNAs would not be sufficient to increase ribosome content. This specific point is further address in our lab but is beyond the scope of this article.

      Is premature termination coupled with rRNA processing 

      We appreciate the reviewer’s insightful comments. The suggested experiments regarding the UTP-A complex's regulatory potential are valuable and ongoing in our lab, but they extend beyond the scope of this study and are not suitable for inclusion in the current manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Liu et al., present glmSMA, a network-regularized linear model that integrates single-cell RNA-seq data with spatial transcriptomics, enabling high-resolution mapping of cellular locations across diverse datasets. Its dual regularization framework (L1 for sparsity and generalized L2 via a graph Laplacian for spatial smoothness) demonstrates robust performance of their model and offers novel tools for spatial biology, despite some gaps in fully addressing spatial communication.

      Overall, the manuscript is commendable for its comprehensive benchmarking across different spatial omics platforms and its novel application of regularized linear models for cell mapping. I think this manuscript can be improved by addressing method assumptions, expanding the discussion on feature dependence and cell type-specific biases, and clarifying the mechanism of spatial communication.

      The conclusions of this paper are mostly well supported by data, but some aspects of model developmentand performance evaluation need to be clarified and extended.

      We are thankful for the positive comments and have made changes following the reviewer's advice, as detailed below.

      (1) What were the assumptions made behind the model? One of them could be the linear relationship between cellular gene expression and spatial location. In complex biological tissues, non-linear relationships could be present, and this would also vary across organ systems and species. Similarly, with regularization parameters, they can be tuned to balance sparsity and smoothness adequately but may not hold uniformly across different tissue types or data quality levels. The model also seems to assume independent errors with normal distribution and linear additive effects - a simplification that may overlook overdispersion or heteroscedasticity commonly observed in RNA-seq data.

      Thank you for this comment. We acknowledge that the non-linear relationships can be present in complex tissues and may not be fully captured by a linear model. 

      Our choice of a linear model was guided by an investigation of the relationship in the current datasets, which include intestinal villus, mouse brain, and fly embryo.There is a linear correlation between expression distance and physical distance [Nitzan et al]. Within a given anatomical structure, cells in closer proximity exhibit more similar expression patterns (Fig. 3c). In tissues where non-linear relationships are more prevalent—such as the human PDAC sample—our mapping results remain robust. We acknowledge that we have not yet tested our algorithm in highly heterogeneous regions like the liver, and we plan to include such analyses in future work if necessary.

      Regarding the regularization parameters, we agree that the balance between sparsity and smoothness is sensitive to tissue-specific variation and data quality. In our current implementation, we explored a range of values to find robust defaults. Supplementary Figure 7 illustrates the regularization path for cell assignment in the fly embryo.  

      The choice of L1 and L2 regularization parameters is crucial for balancing sparsity and smoothness in spatial mapping. 

      For Structured Tissues (brain):

      Moderate L1 to ensure cells are localized.

      Small to moderate L2 to maintain local smoothness without blurring distinct regions.

      For Less Structured (PDAC):

      Slightly lower L1 to allow cells to be associated with multiple regions if boundaries are ambiguous.

      Higher L2 to stabilize mappings in noisy or mixed regions.

      (2) The performance of glmSMA is likely sensitive to the number and quality of features used. With too few features, the model may struggle to anchor cells correctly due to insufficient discriminatory power, whereas too many features could lead to overfitting unless appropriately regularized. The manuscript briefly acknowledges this issue, but further systematic evaluation of how varying feature numbers affect mapping accuracy would strengthen the claims, particularly in settings where marker gene availability is limited. A simple way to show some of this would be testing on multiple spatial omics (imaging-based) platforms with varying panel sizes and organ systems. Related to this, based on the figures, it also seems like the performance varies by cell type. What are the factors that contribute to this? Variability in expression levels, RNA quantity/quality? Biases in the panel? Personally, I am also curious how this model can be used similarly/differently if we have a FISH-based, high-plex reference atlas. Additional explanation around these points would be helpful for the readers.

      Thank you for this thoughtful comment. The performance of our method is indeed sensitive to the number and quality of selected features. To optimize feature selection, we employed multiple strategies, including Moran’s I statistic, identification of highly variable genes, and the Seurat pipeline to detect anchor genes linking the spatial transcriptomics data with the reference atlas. The number of selected markers depends on the quality of the data. For highquality datasets, fewer than 100 markers are typically sufficient for prediction. To select marker genes, we applied the following optional strategies:

      (1) Identifying highly variable genes (HVGs).

      (2) Calculating Moran’s I scores for all genes to assess spatial autocorrelation.

      (3) Generating anchor genes based on the integration of the reference atlas and scRNA-seq data using Seurat.

      We evaluated our method across diverse tissue types and platforms—including Slide-seq, 10x Visium, and Virtual-FISH—which represent both sequencing-based and imaging-based spatial transcriptomics technologies. Our model consistently achieved strong performance across these settings. It's worth noting that the performance of other methods, such as CellTrek [Wei et al] and novoSpaRc [Nitzan et al], also depends heavily on feature selection. In particular, performance degrades substantially when fewer features are used. For fair comparison across different methods, the same set of marker genes was used. Under this condition, our method outperformed the others based on KL divergence (Fig. 2b, Fig. 5g). 

      To assess the effect of marker gene quantity, we randomly selected subsets of 2,000, 1500, 1,000, 700, 500, and 200 markers from the original set. As the number of markers decreases, mapping performance declines, which is expected due to the reduction in available spatial information. This result underscores the general dependence of spatial mapping accuracy on both the number and quality of informative marker genes (Supplementary Fig. 10).

      We do not believe that the observed performance is directly influenced by cell type composition. Major cell types are typically well-defined, and rare cell types comprise only a small fraction of the dataset. For these rare populations, a single misclassification can disproportionately impact metrics like KL divergence due to small sample size. However, this does not necessarily indicate a systematic cell type–specific bias in the mapping. We incorporated a high-resolution Slide-seq dataset from the mouse hippocampus to evaluate the influence of cell type composition on the algorithm’s performance [Stickels et al., 2020]. Most cell types within the CA1, CA2, CA3, and DG regions were accurately mapped to their original anatomical locations (Fig. 5e, f, g).

      (3) Application 3 (spatial communication) in the graphical abstract appears relatively underdeveloped. While it is clear that the model infers spatial proximities, further explanation of how these mappings translate into insights into cell-cell communication networks would enhance the biological relevance of the findings.

      Thank you for this valuable feedback. We agree that further elaboration on the connection between spatial proximity and cell–cell communication would enhance the biological interpretation of our results. While our current model focuses on inferring spatial relationships,  we may provide some cell-cell communications in the future.

      (4) What is the final resolution of the model outputs? I am assuming this is dictated by the granularity of the reference atlas and the imposed sparsity via the L1 norm, but if there are clear examples that would be good. In figures (or maybe in practice too), cells seem to be assigned to small, contiguous patches rather than pinpoint single-cell locations, which is a pragmatic compromise given the inherent limitations of current spatial transcriptomics technologies. Clarification on the precise spatial scale (e.g., pixel or micrometer resolution) and any post-mapping refinement steps would be beneficial for the users to make informed decisions on the right bioinformatic tools to use.

      Thank you for the comment. For each cell, our algorithm generates a probability vector that indicates its likely spatial assignment along with coordinate information. In our framework, each cell is mapped to one or more spatial spots with associated probabilities. Depending on the amount of regularization through L1 and L2 norms, a cell may be localized to a small patch or distributed over a broader domain (Supplementary Fig. 5 & 7). For the 10x Visium data, we applied a repelling algorithm to enhance visualization [Wei et al]. If a cell’s original location is already occupied, it is reassigned to a nearby neighborhood to avoid overlap. The users can also see the entire regularization path by varying the penalty terms. 

      Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene expression cartography. Nature. 2019;576(7785):132-137. doi:10.1038/s41586-019-1773-3

      Wei, R. et al. (2022) ‘Spatial charting of single-cell transcriptomes in tissues’, Nature Biotechnology, 40(8), pp. 1190–1199. doi:10.1038/s41587-022-01233-1.

      Stickels, R.R. et al. (2020) ‘Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-SEQV2’, Nature Biotechnology, 39(3), pp. 313–319. doi:10.1038/s41587-020-0739-1. 

      Reviewer #2 (Public review):

      Summary:

      The author proposes a novel method for mapping single-cell data to specific locations with higher resolution than several existing tools.

      Strengths:

      The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus.

      Weakness:

      (1) Although the researchers claim that glmSMA seamlessly accommodates both sequencing-based and image-based spatial transcriptomics (ST) data, their testing primarily focused on sequencingbased ST data, such as Visium and Slide-seq. To demonstrate its versatility for spatial analysis, the authors should extend their evaluation to imaging-based spatial data.

      Thank you for the comment. We have tested our algorithm on the virtual FISH dataset from the fly embryo, which serves as an example of image-based spatial omics data (Fig. 4c). However, such datasets often contain a limited number of available genes. To address this, we will conduct additional testing on image-based data if needed. The Allen Brain Atlas provides high-quality ISH data, and we can select specific brain regions from this resource to further evaluate our algorithm if necessary [Lein et al]. Currently, we plan to focus more on the 10x Visium platform, as it supports whole-transcriptome profiling and offers a wide range of tissue samples for analysis.

      (2) The definition of "ground truth" for spatial distribution is unclear. A more detailed explanation is needed on how the "ground truth" was established for each spatial dataset and how it was utilized for comparison with the predicted distribution generated by various spatial mapping tools.

      Thank you for the comment. To clarify how ground truth is defined across different tissues, we provided the following details. Direct ground truth for cell locations is often unavailable in scRNA-seq data due to experimental constraints. To address this, we adopted alternative strategies for estimating ground truth in each dataset:

      10x Visium Data: We used the cell type distribution derived from spatial transcriptomics (ST) data as a proxy for ground truth. We then computed the KL divergence between this distribution and our model's predictions for performance assessment.

      Slide-seq Data: We validated predictions by comparing the expression of marker genes between the reconstructed and original spatial data.

      Fly Embryo Data: We used predicted cell locations from novoSpaRc as a reference for evaluating our algorithm.

      These strategies allowed us to evaluate model performance even in the absence of direct cell location data. In addition, we can apply multiple evaluation strategies within a single dataset.

      (3) In the analysis of spatial mapping results using intestinal villus tissue, only Figure 3d supports their findings. The researchers should consider adding supplemental figures illustrating the spatial distribution of single cells in comparison to the ground truth distribu tion to enhance the clarity and robustness of their investigation.

      Thank you for the comment. In the intestinal dataset, only six large domains were defined. As a result, the task for this dataset is relatively simple—each cell only needs to be assigned to one of the six domains. As the intestinal villus is a relatively simple tissue, most existing algorithms performed well on it. For this reason, we did not initially provide extensive details in the main text.

      (4) The spatial mapping tests were conducted on various tissues, including the mouse cortex, human PDAC, and intestinal villus. However, the original anatomical regions are not displayed, making it difficult to directly compare them with the predicted mapping results. Providing ground truth distributions for each tested tissue would enhance clarity and facilitate interpretation. For instance, in Figure 2a and  Supplementary Figures 1 and 2, only the predicted mapping results are shown without the corresponding original spatial distribution of regions in the mouse cortex. Additionally, in Figure 3c, four anatomical regions are displayed, but it is unclear whether the figure represents the original spatial regions or those predicted by glmSMA. The authors are encouraged to clarify this by incorporating ground truth distributions for each tissue.

      Thank you for the comment. To improve visualization, we included anatomical structures alongside the mapping results in the next version, wherever such structures are available (e.g., mouse brain cortex, human PDAC sample, etc.). Major cell type assignments for the PDAC samples, along with anatomical structures, are shown in Supplementary Figure 9. Most of these cell types were correctly mapped to their corresponding anatomical regions.

      (5) The cell assignment results from the mouse hippocampus (Supplementary Figure 6) lack a corresponding ground truth distribution for comparison. DG and CA cells were evaluated solely based on the gene expression of specific marker genes. Additional analyses are needed to further validate the robustness of glmSMA's mapping performance on Slide-seq data from the mouse hippocampus.

      Thank you for the comment. The ground truth for DG and CA cells was not available. To better evaluate the model's performance, we computed the KL divergence between the original and predicted cell type distributions, following the same approach used for the 10x Visium dataset. We identified a higher-quality dataset for the mouse hippocampus and used it to evaluate our algorithm. Additionally, we employed KL divergence as an alternative strategy to validate and benchmark our results (Fig. 5e, f, g). Most CA cells, including CA1, CA2, and CA3 principal cells, were correctly assigned back to the CA region. Dentate principal cells were accurately mapped to the DG region (Fig. 5e, f).

      (6) The tested spatial datasets primarily consist of highly structured tissues with well-defined anatomical regions, such as the brain and intestinal villus. Anatomical regions are not distinctly separated, such as liver tissue. Further evaluation of such tissues would help determine the method's broader applicability.

      Thank you for the insightful comment. We agree that many spatial datasets used in our study are from tissues with well-defined anatomical regions. To address the applicability of glmSMA in tissues without clearly separated anatomical structures, we applied glmSMA to the Drosophila embryo, which represents a tissue with relatively continuous spatial patterns and lacks well-demarcated anatomical boundaries compared to organs like the brain or intestinal villus.

      Despite this less structured spatial organization, glmSMA demonstrated robust performance in the fly embryo, accurately mapping cells to their correct spatial spots based on gene expression profiles. This result indicates that glmSMA is not strictly limited to highly structured tissues and can generalize to tissues with more continuous or gradient-like spatial architectures. These results suggest that glmSMA has broader applicability beyond highly compartmentalized tissues.

      Lein, E., Hawrylycz, M., Ao, N. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). https://doi.org/10.1038/nature05453

      Reviewer #3 (Public review):

      The authors aim to develop glmSMA, a network-regularized linear model that accurately infers spatial gene expression patterns by integrating single-cell RNA sequencing data with spatial transcriptomics reference atlases. Their goal is to reconstruct the spatial organization of individual cells within tissues, overcoming the limitations of existing methods that either lack spatial resolution or sensitivity.

      Strengths:

      (1) Comprehensive Benchmarking:

      Compared against CellTrek and Novosparc, glmSMA consistently achieved lower Kullback-Leibler divergence (KL divergence) scores, indicating better cell assignment accuracy.

      Outperformed CellTrek in mouse cortex mapping (90% accuracy vs. CellTrek's 60%) and provided more spatially coherent distributions.

      (2) Experimental Validation with Multiple Real-World Datasets:

      The study used multiple biological systems (mouse brain, Drosophila embryo, human PDAC, intestinal villus) to demonstrate generalizability.

      Validation through correlation analyses, Pearson's coefficient, and KL divergence support the accuracy of glmSMA's predictions.

      We thank reviewer #3 for their positive feedback and thoughtful recommendations.

      Weaknesses:

      (1) The accuracy of glmSMA depends on the selection of marker genes, which might be limited by current FISH-based reference atlases.

      We agree that the accuracy of glmSMA is influenced by the selection of marker genes, and that current FISH-based reference atlases may offer a limited gene set. To address this, we incorporate multiple feature selection strategies, including highly variable genes and spatially informative genes (e.g., via Moran’s I), to optimize performance within the available gene space. As more comprehensive reference atlases become available, we expect the model’s accuracy to improve further.

      (2) glmSMA operates under the assumption that cells with similar gene expression profiles are likely to be physically close to each other in space which not be true under various heterogeneous environments.

      Thank you for raising this important point. We agree that glmSMA operates under the assumption that cells with similar gene expression profiles tend to be spatially proximal, and this assumption may not strictly hold in highly heterogeneous tissues where spatial organization is less coupled to transcriptional similarity.

      To address this concern, we specifically tested glmSMA on human PDAC samples, which represent moderately heterogeneous environments characterized by complex tumor microenvironments, including a mixture of ductal cells, cancer cells, stromal cells, and other components. Despite this heterogeneity, glmSMA successfully mapped major cell types to their expected anatomical regions, demonstrating that the method is robust even in the presence of substantial cellular diversity and spatial complexity.

      This result suggests that while glmSMA relies on the assumption of spatialtranscriptomic correlation, the method can tolerate a reasonable degree of spatial heterogeneity without a significant loss of performance. Nevertheless, we acknowledge that in extremely disorganized or highly mixed tissues where transcriptional similarity is decoupled from spatial proximity, the performance may be affected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This study provides a comprehensive single-cell and multiomic characterization of trabecular meshwork (TM) cells in the mouse eye, a structure critical to intraocular pressure (IOP) regulation and glaucoma pathogenesis. Using scRNA-seq, snATAC-seq, immunofluorescence, and in situ hybridization, the authors identify three transcriptionally and spatially distinct TM cell subtypes. The study further demonstrates that mitochondrial dysfunction, specifically in one subtype (TM3), contributes to elevated IOP in a genetic mouse model of glaucoma carrying a mutation in the transcription factor Lmx1b. Importantly, treatment with nicotinamide (vitamin B3), known to support mitochondrial health, prevents IOP elevation in this model. The authors also link their findings to human datasets, suggesting the existence of analogous TM3-like cells with potential relevance to human glaucoma.

      Strengths:

      The study is methodologically rigorous, integrating single-cell transcriptomic and chromatin accessibility profiling with spatial validation and in vivo functional testing. The identification of TM subtypes is consistent across mouse strains and institutions, providing robust evidence of conserved TM cell heterogeneity. The use of a glaucoma model to show subtype-specific vulnerability, combined with a therapeutic intervention-gives the study strong mechanistic and translational significance. The inclusion of chromatin accessibility data adds further depth by implicating active transcription factors such as LMX1B, a gene known to be associated with glaucoma risk. The integration with human single-cell datasets enhances the potential relevance of the findings to human disease.

      We thank the reviewers for their thorough reading of our manuscript and helpful comments.

      Weaknesses:

      (1) Although the LMX1B transcription factor is implicated as a key regulator in TM3 cells, its role in directly controlling mitochondrial gene expression is not fully explored. Additional analysis of motif accessibility or binding enrichment near relevant target genes could substantiate this mechanistic link. 

      We show that the Lmx1b mutation induces mitochondrial dysfunction with mitochondrial gene expression changes but agree with the referee in that we do not show direct regulation of mitochondrial genes by LMX1B. Emerging data suggest that LMX1B regulates the expression of mitochondrial genes in other cell types [1, 2] making the direct link reasonable. Future work that is beyond the scope of the current paper will focus on sequencing cells at earlier timepoints to help distinguish gene expression changes associated with the V265D mutation from those secondary to ongoing disease and elevated IOP. Additional studies, including ATAC seq at more ages, ChIP-seq and/or Cut and Run/Tag (in TM cells) will be necessary to directly investigate LMX1B target genes.

      As we studied adult mice, mitochondrial gene expression changes could be secondary to other disease induced stresses. Because we did not intend to say we have shown a direct link, we have now added a sentence to the discussion ensure clarity. 

      Lines 932-934: “Although our studies show a clear effect of the Lmx1b mutation on mitochondria, future studies are needed to determine if LMX1B directly modulates mitochondrial genes in V265D mutant TM cells”

      (2) The therapeutic effect of vitamin B3 is clearly demonstrated phenotypically, but the underlying cellular and molecular mechanisms remain somewhat underdeveloped - for instance, changes in mitochondrial function, oxidative stress markers, or NAD+ levels are not directly measured. 

      We agree that further experiments towards a fuller mechanistic understanding of vitamin B3’s therapeutic effects are needed. Such experiments are planned but are beyond the scope of this paper, which is already very large (7 Figures and 16 Supplemental Figures).

      (3) While the human relevance of TM3 cells is suggested through marker overlap, more quantitative approaches, such as cell identity mapping or gene signature scoring in human datasets, would strengthen the translational connection.

      We appreciate the reviewer’s suggestion and agree that additional quantitative analyses will further strengthen the translational relevance of TM3 cells. It is not yet clear if humans have a direct TM3 counterpart or if TM cell roles are compartmentalized differently between human cell types. We are currently limited in our ability to perform these comparative analyses. Specifically, we were unable to obtain permission to use the underlying dataset from Patel et al., and our access to the Van Zyl et al. dataset was through the Single Cell Portal, which does not support more complex analyses (ex. cell identity mapping or gene signature scoring). Differences between human studies themselves also affect these comparisons. Future work aimed at resolving differences and standardizing human TM cell annotations, as well as cross species comparisons are needed (working groups exist and this ongoing effort supports 3 human TM cell subtypes as also reported by Van Zyl). This is beyond what we are currently able to do for this paper. We present a comprehensive assessment using readily available published resources.

      Reviewer #2 (Public review):

      Summary:

      This elegant study by Tolman and colleagues provides fundamental findings that substantially advance our knowledge of the major cell types within the limbus of the mouse eye, focusing on the aqueous humor outflow pathway. The authors used single-cell and single-nuclei RNAseq to very clearly identify 3 subtypes of the trabecular meshwork (TM) cells in the mouse eye, with each subtype having unique markers and proposed functions. The U. Columbia results are strengthened by an independent replication in a different mouse strain at a separate laboratory (Duke). Bioinformatics analyses of these expression data were used to identify cellular compartments, molecular functions, and biological processes. Although there were some common pathways among the 3 subtypes of TM cells (e.g., ECM metabolism), there also were distinct functions. For example:

      TM1 cell expression supports heavy engagement in ECM metabolism and structure, as well as TGFb2 signaling.

      TM2 cells were enriched in laminin and pathways involved in phagocytosis, lysosomal function, and antigen expression, as well as End3/VEGF/angiopoietin signaling.

      TM3 cells were enriched in actin binding and mitochondrial metabolism.

      They used high-resolution immunostaining and in situ hybridization to show that these 3 TM subtypes express distinct markers and occupy distinct locations within the TM tissue. The authors compared their expression data with other published scRNAseq studies of the mouse as well as the human aqueous outflow pathway. They used ATAC-seq to map open chromatin regions in order to predict transcription factor binding sites. Their results were also evaluated in the context of human IOP and glaucoma risk alleles from published GWAS data, with interesting and meaningful correlations. Although not discussed in their manuscript, their expression data support other signaling pathways/ proteins/ genes that have been implicated in glaucoma, including: TGFb2, BMP signaling (including involvement of ID proteins), MYOC, actin cytoskeleton (CLANs), WNT signaling, etc.

      In addition to these very impressive data, the authors used scRNAseq to examine changes in TM cell gene expression in the mouse glaucoma model of mutant Lmxb1-induced ocular hypertension. In man, LMX1B is associated with Nail-Patella syndrome, which can include the development of glaucoma, demonstrating the clinical relevance of this mouse model. Among the gene expression changes detected, TM3 cells had altered expression of genes associated with mitochondrial metabolism. The authors used their previous experience using nicotinamide to metabolically protect DBA2/J mice from glaucomatous damage, and they hypothesized that nicotinamide supplementation of mutant Lmx1b mice would help restore normal mitochondrial metabolism in the TM and prevent Lmx1b-mediated ocular hypertension. Adding nicotinamide to the drinking water significantly prevented Lmxb1 mutant mice from developing high intraocular pressure. This is a laudable example of dissecting the molecular pathogenic mechanisms responsible for a disease (glaucoma) and then discovering and testing a potential therapy that directly intervenes in the disease process and thereby protects from the disease.

      Strengths:

      There are numerous strengths in this comprehensive study including:

      Deep scRNA sequencing that was confirmed by an independent dataset in another mouse strain at another university.

      Identification and validation of molecular markers for each mouse TM cell subset along with localization of these subsets within the mouse aqueous outflow pathway.

      Rigorous bioinformatics analysis of these data as well as comparison of the current data with previously published mouse and human scRNAseq data.

      Correlating their current data with GWAS glaucoma and IOP "hits".

      Discovering gene expression changes in the 3 TM subgroups in the mouse mutant Lmx1b model of glaucoma.

      Further pursuing the indication of dysfunctional mitochondrial metabolism in TM3 cells from Lmx1b mutant mice to test the efficacy of dietary supplementation with nicotinamide. The authors nicely demonstrate the disease modifying efficacy of nicotinamide in preventing IOP elevation in these Lmx1b mutant mice, preventing the development of glaucoma. These results have clinical implications for new glaucoma therapies.

      We thank the reviewer for these generous and thoughtful comments on the strengths of this study.

      Weaknesses:

      (1) Occasional over-interpretation of data. The authors have used changes in gene expression (RNAseq) to implicate functions and signaling pathways. For example: they have not directly measured "changes in metabolism", "mitochondrial dysfunction" or "activity of Lmx1b".

      We thank the reviewer for this feedback. We did not intend to overstate and agree. Our gene expression changes support, but do not by themselves prove, metabolic disturbances. We had felt that this was obvious and did not want to clutter the text. We have revised the manuscript to clarify that our conclusions about metabolic changes and LMX1B activity are based on gene expression patterns rather than direct functional assays and have added EM data (see below under “Recommendations for the authors”).

      We have also added the following to the results:

      Lines 715-721: “Although the documented gene expression changes strongly suggest metabolic and mitochondrial dysfunction, they do not directly prove it. Using electron microscopy to directly evaluate mitochondria in the TM, we found a reduction in total mitochondria number per cell in mutants (P = 0.015, Figure 6G). In addition, mitochondria in mutants had increased area and reduced cristae (inner membrane folds) in mutants consistent with mitochondrial swelling and metabolic dysfunction (all P < 0.001 compared to WT, Figure 6G-H).”

      More detailed EM and metabolic studies are underway but are beyond the scope of this paper.

      (2) In their very thorough data set, there is enrichment of or changes in gene expression that support other pathways that have been previously reported to be associated with glaucoma (such as TGFb2, BMP signaling, actin cytoskeletal organization (CLANs), WNT signaling, ossification, etc. that appears to be a lost opportunity to further enhance the significance of this work.

      We appreciate the reviewer’s suggestions for enhancing the relevance of our work, we had not initially discussed this due to length concerns. We have now incorporated some of this information into the manuscript (see below under “Recommendations for the authors”).

      Reviewer #3 (Public review):

      Summary: In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable crossspecies insights.

      Strengths: 

      (1) Comprehensive dataset with high single-cell resolution

      (2) Use of multiple bioinformatic and cross-comparative approaches

      (3) Integration of 3D imaging of TM and SC for anatomical context

      (4) Convincing identification and validation of three TM subtypes using molecular markers.

      We thank the reviewer for their comments on the strengths of this study.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.

      We agree and refer the reviewer to our responses to the other referees including Reviewer 1, Comment 1 and Reviewer 2 comments 1 and 17. As noted there, these mechanistic questions are the focus of ongoing and future studies. We have revised the text where appropriate to ensure it accurately reflects the scope of our current data.

      (2) Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      We again refer the reviewer to our other response including Reviewer 1, Comment 1 and Reviewer 2 comments 1 and 17.

      (3) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      We refer the reviewer to our response to Reviewer 1, Comment 2.

      (4) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      We refer the reviewer to our response to Reviewer 1, Comment 1.

      (5) Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Our analysis (Figure 5F) indicates that Lmx1b is the transcription factor most strongly associated with its predicted target gene expression across all TM cells, as reflected by its highest value along the X-axis. While other transcription factors exhibit greater motif accessibility (Y-axis), this likely reflects their broader expression across TM subtypes. In contrast, Lmx1b is minimally expressed in TM1 and TM2 cells, which may account for its lower motif accessibility overall (motifs not accessible in cells where Lmx1b is not / minimally expressed).

      Our emphasis on LMX1B is further supported by its direct genetic association with glaucoma. In contrast, the other transcription factors lack clear links to glaucoma and are supported primarily by indirect evidence. Nonetheless, we agree that the transcription factors highlighted in our analysis are promising candidates for future investigation. However, to maintain focus on the central narrative of this study, we have chosen not to include an extended discussion of these additional genes.

      (6) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      We thank the reviewer for noticing this oversight and have added this value to the abstract and results section. 

      Lines 41 and 696: 2,491 mutant TM cells.  

      (7) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.

      Water intake was monitored in both treatment groups, and dosing was based on the average volume consumed by adult mice (lines 1017–1018, young pups do not drink water and so drug is largely delivered through mothers’ milk until weaning and so we do not know an accurate dose for young pups). Mouse health was assessed throughout the experiment through regular monitoring of body weight and general condition.

      Depending on genetic context, Lmx1b mutations can cause kidney disease and impact other systems. Non-ocular phenotypes were not the focus of this study and were not characterized.

      We added a comment to the method to clarify the NAM treatment timeline. NAM was administered continuously in the drinking water starting at P2 and maintained throughout the experiment. IOP was measured beginning at 2 months and then at monthly time points. NAM lessened IOP at 2 and 3 months. We terminated IOP assessment at 3 months.

      Lines 1028-1029: “Treatment was started at postnatal day 2 and continued throughout the experiment.”

      (8) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.

      We have added supplemental table 7 with the statistical information. Regarding the high IOP values observed in a subset of untreated V265D mutant mice, we consistently detect individual mutant eyes with IOPs exceeding 30 mmHg across independent cohorts and time points [3-5]. It is important to note that IOP is subject to fluctuation and in disease states such as glaucoma, circadian rhythms can be disrupted with stochastic and episodic IOP spikes throughout the day. This may be occurring in those untreated mice. This is also why we strive to use sample sizes of 40 or more. Additionally, we observe that some mutant eyes with IOPs measured within the normal range have anterior chamber deepening (ACD) - a persistent anatomical change associated with sustained or recurrent high IOP that stretches the cornea and may posteriorly displace the lens. This suggests mutant mice experience transient IOP elevations that are not always captured at a single time point due to the stochastic nature of these fluctuations. To account for this, we include ACD as an additional readout alongside IOP measurements. The reduction in ACD observed in NAM-treated mice provides independent evidence supporting the biological relevance of NAM-mediated IOP reduction.   

      (9) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.

      We again thank the referee. We note the possibility of dual IOP protection and neuroprotection in the manuscript (lines 961–963). The goal of the present study, however, was to determine mechanisms underlying IOP elevation in patients with LMX1B variants. Therefore, we limited our focus to IOP elevation (LMX1B is expressed in the TM but not RGCs). Studies of the RGCs and optic nerve in V265D mutant mice treated with NAM take considerable effort but are underway. They will be reported in a subsequent manuscript. Initial data support protection, but that is a work in progress.  

      Additionally, we recently reported a similar pattern of IOP protection to that reported here using pyruvate - in experiments where we analyzed the optic nerve as the focus of the study was assessment of pyruvate as a resilience factor against high genetic risk of glaucoma [4]. In that case, there was statistically significant protection from glaucomatous optic nerve damage, arguing for translational relevance again with a possible synergistic effect through both IOP reduction and direct neuroprotection.

      (10) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?

      We agree with the reviewer on the importance of further functional validation of pathways active in TM cell subtypes that influence IOP. However, comprehensive investigation of the pathways active in subtypes need to be in future studies. It is beyond the scope of his already large paper.

      (11) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

      We appreciate the reviewer’s suggestion and have added additional images to Figure S1 to show our limbal strip dissection. However, we clarify that we do not intend to suggest that TM and endothelial cells are the most abundant populations in these dissected strips.  When we say “are enriched for drainage tissues” we mean in comparison to dissecting the anterior segment as a whole. We have clarified this in the text. In fact, epithelial cells (primarily from the cornea) constituted the largest cluster in our dataset (Figure 1A). Additionally, to avoid misinterpretation, we generally refrain from drawing conclusions about the relative abundance of cell types based on sequencing data. Single-cell and single nucleus RNA sequencing results are sensitive to technical factors that alter cell proportions depending on exact methodological details. In our study, TM cells comprised 24.4% of the single-cell dataset and 11.8% of the single-nucleus dataset, illustrating the impact of methodological variability. 

      Lines 163-164: “Individual eyes were dissected to isolate a strip of limbal tissue, which is enriched for TM cells in comparison to dissecting the anterior segment as a whole.”

      Reviewer #1 (Recommendations for the authors):

      To enhance the reproducibility and transparency of the findings presented in this study, we strongly recommend that the authors make all analysis scripts and computational tools publicly available.

      We agree with the reviewer’s emphasis on transparency and are currently building a GitHub page to share our scripts. However, we did not develop any new tools for this study. All tools that we used are publicly available and provided in our methods section. All data will be available as raw data and through the Broad Institute’s Single Cell Portal.

      Reviewer #2 (Recommendations for the authors):

      The authors are to be commended for a well-written presentation of high-quality data, their comparisons of datasets (other mouse and human scRNAseq data), correlation with clinical glaucoma risk alleles, and curative therapy for the mouse model of Lmx1b glaucoma. There are several minor suggestions that the authors might consider to further improve their manuscript:

      (1) Lines 42-43: Although their data strongly support the role of mitochondrial dysfunction in Lmx1b glaucoma, they might want to soften their conclusion "supports a primary role of mitochondrial dysfunction within TM3 cells initiating the IOP elevation that causes glaucoma".

      With the inclusion of EM data supporting mitochondrial dysfunction in Lmx1b mutant TM cells, we have revised this sentence to more accurately reflect our findings.

      Lines 42-44 (previously lines 42-43): “Mitochondria in TM cells of V265D/+ mice are swollen with a reduced cristae area, further supporting a role for mitochondrial dysfunction in the initiation of IOP elevation in these mice.”

      (2) Figure 1: Why is the shape of the "TM containing" cluster in 1A so different than the cluster shown in 1B?

      We isolated cells from the 'TM-containing' cluster and performed unbiased reclustering, which alters their positioning in UMAP space. The figure legend has been updated to clarify this point.

      Lines 143-144 “A separate UMAP representation of the trabecular meshwork (TM) containing cluster following subclustering.”

      (3) Line 160: change "data was" to "data were"

      Corrected

      (4) S4 Fig C: Please comment on why the Columbia and Duke heatmaps for TM3 are not as congruent as the heatmaps for TM1 and TM2.

      We cannot definitively determine the reason for this. However, differences in tissue processing techniques between the Columbia and Duke preparations may contribute. Such variations have been shown to affect cellular transcriptomes in certain contexts. It is possible that TM3 cells are more susceptible to these effects than others. We have added a statement addressing this point to the figure legend.

      Lines 238-240: “Because tissue processing techniques can alter gene expression [52], the heatmap variation between institutes likely reflects differences in processing techniques (Methods) and suggests that TM3 cells are more susceptible to these effects than other cell types.”

      (5) S9 Fig: It is very difficult to see any staining for TM1 CHIL1 (2nd panel), TM2 End3 (2nd panel), and TM3 Lypd1 (both panels)

      We apologize for the difficulty in visualizing these panels. To improve clarity, we have increased the brightness of all relevant marker signals, within standard bounds, to facilitate easier interpretation.

      (6) Line 380: "are significantly higher"; since statistical analysis was not reported, please do not use "significantly"

      Done

      (7) The authors should consider discussing several of their findings that agree with published literature. For example:

      Figure 3B: "Wnt protein binding" (PMID: 18274669), "TGFb "binding" (numerous references), "integrin binding" (work of Donna Peters), "actin binding"/"actin filament binding"/"actin filament bundle" (CLANs references)

      S10 Fig c: "ossification" (work of Torretta Borres)

      S11 Fig A: ID2/ID3 (PMID: 33938911); (B) BMP4 (PMID: 17325163)

      S12 Fig A: MYOC in TM1 cells (numerous references)

      We appreciate the reviewer’s diligent review and comments regarding these pathways. We have added a comment to the discussion regarding the agreement of these pathways.

      Lines 855-858: In addition, the expression of genes that we document generally agrees with the literature. For example, the following genes and signaling molecules have been reported in TM cells, WNT signaling [78], TGF-β signaling [79-85], integrin binding [86-88], actin cytoskeletal networks [89], calcification genes [90, 91], and Myocilin [91-94].

      (8) Line 541: was confocal microscopy used to measure the "3D shapes" of nuclei or was this done with a single image to determine sphericity?

      This analysis was performed using confocal microscopy and 3D reconstructed models of the TM nuclei. We have added text to clarify this in the figure legend 

      Lines 553-556: “To rigorously assess whether TM1 nuclei are more spherical, we analyzed their reconstructed 3D shapes from whole mounts images by confocal microscopy, comparing them to TM3 nuclei using the ‘Sphericity’ tool in Imaris.”

      (9) Line 545: please add a close parentheses after "scoring 1"

      Done

      (10) S15 Fig: (A) There does not appear to be "good agreement" (line 653) between the datasets for TM1. (C) please provide a better explanation on how to interpret these "Confusion Matrix" results.

      We understand the referee's concern, the patterns likely appear different to the referee due to limited sampling in snRNA-seq data. Based on our results, TM1 seems particularly susceptible, possibly because these cells do not tolerate the isolation process as well. Although we are confident that TM1 shows good agreement between the two techniques based on our experience, we have revised the language in the text to “generally” to reflect this nuance.

      Lines 633-635 (previously line 653): The generated clusters and their marker genes generally agreed with our scRNA-seq analyses (Fig 5A-B, S15A Fig).

      We have also added additional clarification for how to interpret the Confusion Matrix. 

      Lines 669-672: “Colors indicate the fraction of cells identified in each ATAC cluster (row) which are also identified in each RNA cell type (columns), where darker colors represent stronger correspondence between RNA and ATAC clusters.”

      (11) Line 676: The transition from discussing the sc/snRNAseq data to the work in Lmx1b mutant mice is quite abrupt and could use a better transition to introduce this metabolism work.

      We have revised this transition for improved flow but prefer to keep all transitions brief due to the paper's length.

      Lines 691-694 (previously line 676): To evaluate the utility of our new TM cell atlas, we used it to examine how Lmx1b mutations affect the TM cell transcriptome and to identify potential mechanisms underlying IOP elevation. We selected LMX1B because it causes IOP elevation and glaucoma in humans and was identified as a highly active transcription factor in our TM cell dataset.

      (12) Lines 696-697: It appears counter-intuitive that upregulation of ubiquitin pathways would lead to proteostasis (proteosome protein degradation requires ubiquination).

      We have clarified that the protein tagging pathway was significantly upregulated. However, polyubiquitin precursor itself was downregulated. In general, the statistical significance of the protein tagging pathway suggests perturbation of the system tagging proteins for degradation. We have clarified this in the text. 

      Lines 711-714 (previously lines 696-697): “In addition, mutant TM3 cells showed an upregulation of protein tagging genes. However, there is a downregulation of the polyubiquitin precursor gene (Ubb, P = 4.5E-30), indicating a general dysregulation of pathways that tag proteins for degradation.”

      (13) Line 715: Please justify why "perturbed metabolism" was chosen to pursue vs the other differentially expressed pathways

      We chose to narrow our focus on TM3 cells because of the enrichment for Lmx1b expression.Most pathways identified in our analysis of TM3 cells implicate mitochondrial metabolism.Therefore, we chose to further explore this avenue. We clarified that perturbed metabolism was the strongest gene expression signature in the text. 

      Lines 753-754 (previously line 715): “Our findings most strongly implicate perturbed metabolism within TM3 cells as responsible for IOP elevation in an Lmx1b glaucoma model.”

      (14) Line 759: The authors clearly demonstrate that Lmx1b is most expressed in TM3 cells; however, they did not demonstrate that "Lmx1b was most active"

      ATAC analysis showed that Lmx1b was most active in TM cells overall. We inferred its activity in TM3 because Lmx1b is most enriched in that subtype. This has been clarified in the text.

      Lines 799-800 (previously line 759): “More specifically, we demonstrate that Lmx1b is the most active TM cell TF and is enriched in TM3 cells,…”

      (15) Lines 830-835: Please include references documenting increased TGFβ2 concentrations in POAG aqueous humor and TM, effects of TGFβ2 on TM ECM deposition, and TGFβ2 induced ocular hypertension ex vivo and in vivo.

      Done.

      (16) Line 875: The authors provide no direct evidence for enhances "oxidative stress" in Lmx1b TM3 cells

      The mitochondrial abnormalities and changed pathways support oxidative stress, but we have not directly tested this. Experiments are currently underway to evaluate its role, but these additional analyses are beyond the scope of this paper. We removed oxidative stress from the sentence.

      Lines 920-922 (previously line 875): “Importantly, in heterozygous mutant V265D/+ mice, TM3 cells had pronounced gene expression changes that implicate mitochondrial dysfunction, but that were absent or much lower in other cells including TM1 and TM2.”

      (17) Line 880: Similarly, the authors have not directly assessed effects on metabolism in TM3 cells; they only have shown changes in the expression of mitochondrial genes that may affect metabolism

      We have no way to specifically isolating TM3 cells to test this. Future work is underway to test this more broadly in isolated TM cells but is beyond the scope of this is already large paper. Considering our gene expression data and the addition of supporting EM data, we have qualified the text.

      Lines 930-931 (previously 880): “Our data extend these published findings by showing that inheritance of a single dominant mutation in Lmx1b similarly affects mitochondria in TM cells.”

      (18) Line 892: What markers were used to detect "cell stress"?

      We have revised the text. Although our RNA data show stress gene changes, characterization of these markers is beyond the scope of the current study and will be included in a subsequent paper.

      Lines 945-948 (previously line 892): “However, these processes were not limited to TM3 cells or even to cell types that express detectable Lmx1b, suggesting that they are secondary damaging processes that are subsequent to the initiating, Lmx1b-induced perturbations in TM3 cells.”

      Additional author driven change

      While revising and reviewing our data, we identified a coding error that resulted in the WT and V265D mutant group labels being switched in Figure 6. Importantly, the significance of the differentially expressed genes (DEGs), the implicated biological pathways, and the interpretation of pathway directionality in the manuscript remain accurate. The only issue was the incorrect labeling in the figure. We have corrected the labels in Figure 6 to accurately reflect the data. As noted above, all data and code will be made available to ensure full reproducibility of our results.

      References

      (1) Doucet-Beaupre H, Gilbert C, Profes MS, Chabrat A, Pacelli C, Giguere N, et al. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proc Natl Acad Sci U S A. 2016;113(30):E4387-96. Epub 2016/07/14. doi: 10.1073/pnas.1520387113. PubMed PMID: 27407143; PubMed Central PMCID: PMCPMC4968767.

      (2) Jimenez-Moreno N, Kollareddy M, Stathakos P, Moss JJ, Anton Z, Shoemark DK, et al. ATG8-dependent LMX1B-autophagy crosstalk shapes human midbrain dopaminergic neuronal resilience. J Cell Biol. 2023;222(5). Epub 2023/04/05. doi: 10.1083/jcb.201910133. PubMed PMID: 37014324; PubMed Central PMCID: PMCPMC10075225.

      (3) Cross SH, Macalinao DG, McKie L, Rose L, Kearney AL, Rainger J, et al. A dominantnegative mutation of mouse Lmx1b causes glaucoma and is semi-lethal via LDB1mediated dimerization [corrected]. PLoS Genet. 2014;10(5):e1004359. Epub 2014/05/09. doi: 10.1371/journal.pgen.1004359. PubMed PMID: 24809698; PubMed Central PMCID: PMCPMC4014447.

      (4) Li K, Tolman N, Segre AV, Stuart KV, Zeleznik OA, Vallabh NA, et al. Pyruvate and related energetic metabolites modulate resilience against high genetic risk for glaucoma. Elife. 2025;14. Epub 2025/04/24. doi: 10.7554/eLife.105576. PubMed PMID: 40272416; PubMed Central PMCID: PMCPMC12021409.

      (5) Tolman NG, Balasubramanian R, Macalinao DG, Kearney AL, MacNicoll KH, Montgomery CL, et al. Genetic background modifies vulnerability to glaucoma-related phenotypes in Lmx1b mutant mice. Dis Model Mech. 2021;14(2). Epub 2021/01/20. doi: 10.1242/dmm.046953. PubMed PMID: 33462143; PubMed Central PMCID: PMCPMC7903917.

    1. Author response:

      Below we outline our provisional responses to the major points raised in the public reviews, and our planned revisions:

      (1) Mechanistic model of how ZDHHC18/MARCH8 engage the cGAS–DNA condensate (Reviewer #1 & #2

      We will add a dedicated subsection and a working-model figure describing our current view: IDRs of ZDHHC18 (Golgi) and MARCH8 (endosomes) engage pre-formed cGAS–DNA condensates at organelle membranes, and thereby tune cGAS activity through PTMs. We will explicitly discuss bridge-like versus allosteric modes by perform additional LLPS experiment (e.g. FRAP assay) to detect any IDR-driven changes in condensate properties, and explain how these scenarios fit our data.

      (2) Selectivity beyond ZDHHC18/MARCH8 (Reviewer #1)

      We will expand the text to explain existing evidence indicating that, in addition to ZDHHC18 or MARCH8, other post-translational modification (PTM) enzymes and/or membrane-associated scaffolds may also modulate cGAS. We will summarize our current datasets that support this possibility and outline how this selectivity relates to organelle identity.

      (3) Why membrane association suppresses cGAS activity (Reviewer #1)

      We will provide a concise mechanistic rationale—integrating our published work—to explain how membrane-proximal sequestration can limit cGAS catalysis despite cGAS–DNA coexistence within condensates. Specifically, we will discuss (i) IDR-dependent changes in condensate properties, and (ii) PTMs by ZDHHC18/MARCH8 that allosterically reduce catalytic efficiency; we will clearly cross-reference our prior publications that bear on these points.

      (4) Reconciling Fig. S7 (DNA-dependent binding) with Fig. 5 (recruitment to IDR droplets) (Reviewer #2)

      We will add text to clarify experimental context and readouts to prove that there is no real contradiction between Fig. S7 and Fig. 5. In the experiment shown in Fig. 5, PEG (a macromolecular crowding agent) was added to the system, which facilitates the formation of IDR phase-separated droplets. Under these conditions, cGAS partitions into the IDR condensates, leading to the observed recruitment. In contrast, Fig. S7 examines the direct physical interaction between cGAS and the IDRs using biochemical pull-down assays and shows that no direct interaction occurs in the absence of DNA. These two results reflect different experimental contexts and are therefore not mutually exclusive.

      (5) Planned additional tests to address specificity and mechanism (Reviewer #2)

      DNA pull-down: to test whether IDRs alter cGAS–DNA affinity, we will compare cGAS binding to DNA with/without MEMCA IDRs (and with charged-residue mutants).

      Domain mapping: to determine which region of cGAS engages MEMCA IDRs, we will map binding using cGAS N-terminus/core-domain truncations and key surface mutants.

      Physiological in vitro LLPS: we will repeat cGAS–DNA–IDR LLPS assays under physiological buffer conditions and report partition coefficients, FRAP, and phase diagrams to ensure physiological relevance.

      (6) Image clarity and data presentation (Reviewer #2):

      We will improve image resolution, add zoomed-in insets with organelle markers, and provide more significant Cy5-ISD signal.

      (7) Nuclear localization of cGAS and system considerations (Reviewer #3)

      We will explicitly document the nuclear signal of cGAS observed in our confocal experiments, detail the cell lines and expression systems used. We will also clarify cGAS nuclear localization in the cell lines used.

      (8) Endogenous validation and cell line consistency (Reviewer #3):

      We will perform experiments in primary cells (knockout macrophages) to address the concern of relying on overexpression.

      (9) Language and grammar (Reviewer #3):

      We will thoroughly revise the manuscript for grammar and clarity.

      Together, these planned revisions will strengthen the mechanistic basis of our findings and provide direct evidence for the physiological role of organelle-tethered IDRs in regulating cGAS activity.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We have significant concerns about the eLife assessment and the reviews. The reviewers acknowledged substantial strengths in our work:

      • Reviewer 3 noted that “the single-unit analyses of tuning direction are robustly characterized”, “the differences in neural correlations across behaviors, regions and perturbations are robust”, and “The evidence for these claims is solid.”

      • Reviewer 2 stated that “the manuscript has been improved” with “new analyses [that] provide improved rigor”.

      Despite these, the final eLife assessment inexplicably downplayed the significance of the findings and strength of evidence.

      Broader Impact and Significance. The findings, not only the data, have theoretical and/or practical implications extending well beyond a single subfield relevant to:

      1. behavioral neuroscientists studying sensorimotor integration

      2. systems and theoretical neuroscientists

      3. neural and biomechanical engineers working on brain-computer interfaces for speech or oral or limb prosthetics

      4. soft robotics researchers

      5. comparative motor control researchers

      6. clinicians involved in the evaluation and rehabilitation of orolingual function (e.g., after stroke or glossectomy, dysphagia)

      Given this broad relevance, we question why the significance was characterized as merely "useful" rather than "important."

      Dismissive Tone Toward Descriptive Research. Some reviews displayed a dismissive or skeptical tone of the findings and their significance, even when methods were solid and support for the claims were strong. They critiqued the “descriptive nature” of our study, faulting the lack of mechanistic explanation. However, in poorly understood fields such as orofacial sensorimotor control, descriptive studies provide the empirical foundation for mechanistic studies. Rich descriptive data generate testable hypotheses that drive mechanistic discoveries forward, while mechanistic studies conducted without this groundwork often pursue precise answers to poorly formulated questions.

      Specific Issues with Reviews:

      1. Significant omission in study description:

      The eLife Assessment’s second sentence states: “The data, which include both electrophysiology and nerve block manipulations, will be of value to neuroscientists and

      neural engineers interested in tongue use.”

      This description omits our simultaneously recorded high-resolution 3D kinematics data—a significant oversight given that combining high-density electrophysiological recording from multiple cortical regions with high-resolution 3D tongue kinematics during naturalistic behaviors in non-human primates represents one of our study's key strengths. Currently, only two research labs in the US possess this capability.

      2. Overemphasis on the “smaller” and “inconsistent” findings

      While we acknowledge some inconsistent findings between animals, the reviews overemphasized these inconsistencies in ways that cast unwarranted doubt on our more significant and consistent results.

      a. Reviewer 1: “[...] the discrepancies in tuning changes across the two NHPs, coupled with the overall exploratory nature of the study, render the interpretation of these subtle differences somewhat speculative. “[...] in some recording sessions, they blocked sensory feedback using bilateral nerve block injections, which seemed to result in fewer directionally tuned units and changes in the overall distribution of the preferred direction of the units.”

      The skeptical tone of the critique is in opposition to Reviewer 3’s statement that: “the evidence for these claims were solid”. In this statement, the reviewer characterized our findings as “somewhat speculative”, seemingly overlooking robust and consistent changes we documented:

      • “Following nerve block, MIo and SIo showed significant decreases in the proportion of directionally modulated neurons across both tasks (Fig. 10A; Chi-square, MIo: p <0.001, SIo: p < 0.05).”

      • “Nerve block significantly altered PD distributions during both tasks. During feeding, MIo neurons in both subjects exhibited a significant clockwise shift in mean PD toward the center (0°), resulting in more uniform distributions (Fig. 11A; circular k-test, p < 0.01).”

      These results were obtained through careful subsampling of trials with similar kinematics for both feeding and drinking tasks, ensuring that the tuning changes in the nerve block experiments could not be attributed to differing kinematics.

      b. Reviewer 2: “One weakness of the current study is that there is substantial variability in results between monkeys.”

      This vague critique, without specifying which results showed “substantial variability”, reads as though most findings were inconsistent, unfairly casting doubt on our study’s validity.

      3. Inaccurate statements in the Reviewers’ summaries

      Several reviewer statements contain factual inaccuracies:

      a. Reviewer 2: “A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulation depending on the direction of movement (i.e., exhibited directional tuning).”

      Reviewer 2's characterization of directional tuning misrepresents our findings. We reported substantial differences in the proportion of directionally tuned neurons between MIo and SIo during the feeding task but a smaller difference in the drinking task:

      • “The proportion of directionally tuned neurons [...] differed significantly between MIo and SIo during the feeding task in both subjects (Chi-square, p < 0.001). In rostral and caudal MIo, 80% of neurons were modulated to 3D direction (bootstrap, p < 0.05, Fig. 3B, left), compared to 52% in areas 1/2 and 3a/3b.

      • “During drinking, the proportion of directionally modulated neurons was more similar between regions (69% in MIo vs. 60% in SIo: Chi-square, p > 0.05, Fig. 3B right).”

      b. Reviewer 2: “There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during licking.”

      Reviewer 2's claim about task differences directly contradicts our findings. We consistently reported stronger tuning in feeding compared to drinking across multiple measures:

      • “The proportion of directionally tuned neurons was higher in the feeding vs. drinking task (Chi-square, p < 0.05, feeding: 72%, drinking: 66%)”;

      • “Cumulative explained variance for the first three factors was higher in feeding (MIo: 82%, SIo: 81%) than in drinking (MIo: 74%, SIo: 63%)”;

      • “Decoding using LSTM showed consistently higher accuracies in feeding compared to drinking regardless of the length of intervals used ..., behavioral window .., and directional angles ...”

      These results were also summarized in the Discussion.

      c. Reviewer 1: In Figure 12, factor 2 and 3 are plotted against each other? and factor 1 is left out?

      Reviewer 1’s observation about Figure 12 is incorrect. Factor 1 was included: Top subplots (feeding) show Factor 1 vs 3 (MIo) and Factor 1 vs 2 (SIo) while the bottom subplots (drinking) show Factor 2 vs 3 (MIo) and Factor 1 vs 2 (SIo). We plotted the two latent factors with highest explained variance for clarity, though all 20 factors were included in intertrajectory distance calculations.

      4. Framing and interpretive over-scrutiny

      Several critiques targeted framing rather than methodological rigor and emphasized that interpretations were speculative even when appropriately hedged:

      a. Reviewer 2: “A revised version of the manuscript incorporates more population-level analyses, but with inconsistent use of quantifications/statistics and without sufficient contextualization of what the reader is to make of these results.”

      Reviewer 2 mentioned "inconsistent use of quantifications/statistics" without specifying which analyses were problematic or updating their summary to include our additional population-level findings.

      b. Reviewer 2: “The described changes in tuning after nerve block could also be explained by changes in kinematics between these conditions, which temper the interpretation of these interesting results”

      Despite our addressing kinematic concerns through subsampled data analysis, Reviewer 2 remained unsatisfied, contrasting sharply with Reviewer 3's assessment that our arguments were "convincing" with "solid" evidence.

      c. Reviewer 2: “I am not convinced of the claim that tongue directional encoding fundamentally changes between drinking and feeding given the dramatically different kinematics and the involvement of other body parts like the jaw”

      Reviewer 2 expressed skepticism about fundamental encoding differences between tasks, despite our comprehensive controls including subsampled data with similar kinematics and multiple verification analyses (equal neuron numbers, stable neurons, various interval lengths, behavioral windows, and directional angles).

      Without describing why these analyses were insufficient, this criticism goes beyond methods or statistics. It casts doubt and challenges whether the conclusions are even worth drawing despite careful experimental controls.

      d. Reviewer 2: “The manuscript states that "An alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somatosensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer".

      By not updating this section, Reviewer 2 failed to acknowledge our responsive revisions, including Fano factor analysis showing higher variability in SIo during feeding versus drinking, and our updated discussion addressing their concerns about trial-to-trial variability: “Varying tongue shape, tongue’s contact with varying bolus properties (size and texture) and other oral structures (palate, teeth) may weaken the directional signal contained in SIo activity. Thus, small differences in tongue kinematics might create large differences in sensory signals across trials. When looking at trial-averaged signals, this natural variability could make the neural response patterns appear less precise or specific than they are. These are consistent with our findings that for both tasks, spiking variability was higher in SIo.”

      Authors’ Response to Recommendations for the authors:

      We thank the editors and the reviewers for their helpful comments. We have provided a response to reviewers’ recommendations and made some revisions on the manuscript. 

      Reviewer #1 (Recommendations for the authors): 

      In the newly added population factor analysis, several methodological decisions remain unclear to me:

      In Figure 7, why do the authors compare the mean distance between conditions in the latent spaces of MIo and SIo? Since these latent spaces are derived separately, they exist on different scales (with MIo appearing roughly four times larger than SIo), and this discrepancy is reflected in the reported mean distances (Figure 7, inset plots). Wouldn't this undermine a direct comparison?

      Thank you for this helpful feedback. The reviewer is correct that the latent spaces are derived separately for MIo and SIo, thus they exist on different scales as we have noted in the caption of Figure 7: “Axes for SIo are 1/4 scale of MIo.” 

      To allow for a direct comparison between MIo and SIo, we corrected the analysis by comparing their normalized mean inter-trajectory distances obtained by first calculating the geometric index (GI) of the inter-trajectory distances, d, between each pair of population trajectories per region as: GI= (d<sub>1</sub>-d<sub>2</sub>)/ (d<sub>1</sub>+d<sub>2</sub>). We then performed the statistics on the GIs and found a significant difference between mean inter-trajectory distances in MIo vs. SIo. We performed the same analysis comparing the distance travelled between MIo and SIo trajectories by getting the normalized difference in distances travelled and still found a significant difference in both tasks. We have updated the results and figure inset to reflect these changes.

      In Figure 12, unlike Figure 7 which shows three latent dimensions, only two factors are plotted. While the methods section describes a procedure for selecting the optimal number of latent factors, Figure 7 - figure supplement 3 shows that variance explained continues to increase up to about five latent dimensions across all areas. Why, then, are fewer dimensions shown?

      Thank you for the opportunity to clarify the figure. The m obtained from the 3-fold crossvalidation varied for the full sample and was 20 factors for the subsample. We clarify that all statistical analyses were done using 20 latent factors. Using the full sample of neurons, the first 3 factors explained 81% of variance in feeding data compared to 71% in drinking data. When extended to 5 factors, feeding maintained its advantage with 91% variance explained versus 82% for drinking. Because feeding showed higher variance explained than drinking across 3 or 5 factors, only three factors were shown in Figure 7 for better visualization. We added this clarification to the Methods and Results.

      Figure 12 shows the differences in the neural trajectories between the control and nerve block conditions. The control vs. nerve block comparison complicated the visualization of the results. Thus, we plotted only the two latent factors with the highest separation between population trajectories. This was clarified in the Methods and caption of Figure 12.

      In Figure 12, factor 2 and 3 are plotted against each other? and factor 1 is left out?

      This observation is incorrect; Factor 1 was included: Top subplots (feeding) show Factor 1 vs 3 (MIo) and Factor 1 vs 2 (SIo) while the bottom subplots (drinking) show Factor 2 vs 3 (MIo) and Factor 1 vs 2 (SIo).  We have clarified this in the Methods and caption of Figure 12.

      Finally, why are factor analysis results shown only for monkey R? 

      Factor analysis results were performed on both animals, but the results were shown only for monkey R to decrease the number of figures in the manuscript. Figure 7- figure supplement 1 shows the data for both monkeys. Here are the equivalent Figure 7 plots for monkey Y. 

      Author response image 1.

      Reviewer #2 (Recommendations for the authors): 

      Overall, the manuscript has been improved. 

      New analyses provide improved rigor (as just one example, organizing the feeding data into three-category split to better match the three-direction drinking data decoding analysis and also matching the neuron counts).

      The updated nerve block change method (using an equal number of trials with a similar leftright angle of movement in the last 100 ms of the tongue trajectory) somewhat reduces my concern that kinematic differences could account for the neural changes, but on the other hand the neural analyses use 250 ms (meaning that the neural differences could be related to behavioral differences earlier in the trial). Why not subselect to trials with similar trajectories throughout the whole movement(or at least show that as an additional analysis, albeit one with lower trial counts). 

      As the reviewer pointed out, selecting similar trajectories throughout the whole movement would result in lower trial counts that lead to poor statistical power. We think that the 100 ms prior to maximum tongue protrusion is a more important movement segment to control for similar kinematics between the control and nerve block conditions since this represents the subject’s intended movement endpoint. 

      A lot of the Results seemed like a list of measurements without sufficient hand-holding or guide-posting to explain what the take-away for the reader should be. Just one example to make concrete this broadly-applicable feedback: "Cumulative explained variance for the first three factors was higher in feeding (MIo: 82%, SIo: 81%) than in drinking (MIo: 74%, SIo: 63%) when all neurons were used for the factor analysis (Fig. 7)": why should we care about 3 factors specifically? Does this mean that in feeding, the neural dimensionality is lower (since 3 factors explain more of it)? Does that mean feeding is a "simpler" behavior (which is counter-intuitive and does not conform to the authors' comments about the higher complexity of feeding). And from later in that paragraph: what are we do make of the differences in neural trajectory distances (aside from quantifying using a different metric the same larger changes in firing rates that could just as well be quantified as statistics across single-neuron PETHs)?

      Thank you for the feedback on the writing style. We have made some revisions to describe the takeaway for the reader. That fewer latent factors explain 80% of the variance in the feeding data means that the underlying network activity is relatively simple despite apparent complexity. When neural population trajectories are farther away from each other in state space, it means that the patterns of activity across tongue directions are more distinct and separable, thus, less likely to be confused with each other. This signifies that neural representations of 3D tongue directions are more robust. When there is better neural discrimination and more reliable information processing, it is easier for downstream brain regions to distinguish between different tongue directions.  

      The addition of more population-level analyses is nice as it provides a more efficient summary of the neural measurements. However, it's a surface-level dive into these methods; ultimately the goal of ensemble "computation through dynamics" analyses is to discover simpler structure / organizational principles at the ensemble level (i.e., show things not evidence from single neurons), rather than just using them as a way to summarize data. For instance, here neural rotations are remarked upon in the Results, without referencing influential prior work describing such rotations and why neural circuits may use this computational motif to separate out conditions and shape muscle activity-generating readouts (Churchland et al. Nature 2012 and subsequent theoretical iterations including the Russo et al.). That said, the Russo et al tangling study was well-referenced and the present tangling results were eGectively contextualized with respect to that paper in terms of the interpretation. I wish more of the results were interpreted with comparable depth. 

      Speaking of Russo et al: the authors note qualitative differences in tangling between brain areas, but do not actually quantify tangling in either. These observations would be stronger if quantified and accompanied with statistics.

      Contrary to the reviewer’s critique, we did frame these results in the context of structure/organizational principles at the ensemble level. We had already cited prior work of Churchland et al., 2012; Michaels et al., 2016and Russo et al., 2018. In the Discussion, Differences across behaviors, we wrote: “In contrast, MIo trajectories in drinking exhibited a consistent rotational direction regardless of spout location (Fig. 7). This may reflect a predominant non-directional information such as condition-independent time-varying spiking activity during drinking (Kaufman et al., 2016; Kobak et al., 2016; Arce-McShane et al., 2023).” 

      Minor suggestions: 

      Some typos, e.g. 

      • no opening parenthesis in "We quantified directional differences in population activity by calculating the Euclidean distance over m latent factors)"

      • missing space in "independent neurons(Santhanam et al., 2009;..."); 

      • missing closing parentheses in "followed by the Posterior Inferior (Figure 3 - figure supplement 1."

      There is a one-page long paragraph in the Discussion. Please consider breaking up the text into more paragraphs each organized around one key idea to aid readability.

      Thank you, we have corrected these typos.

      Could it be that the Kaufman et al 2013 reference was intended to be Kaufman et al 2015 eNeuro (the condition-invariant signal paper)?

      Thank you, we have corrected this reference.

      At the end of the Clinical Implications subsection of the Discussion, the authors note the growing field of brain-computer interfaces with references for motor read-out or sensory write-in of hand motor/sensory cortices, respectively. Given that this study looks at orofacial cortices, an even more clinically relevant development is the more recent progress in speech BCIs (two     recent reviews: https://www.nature.com/articles/s41583-024-00819-9, https://www.annualreviews.org/content/journals/10.1146/annurev-bioeng-110122012818) many of which record from human ventral motor cortex and aspirations towards FES-like approaches for orofacial movements (e.g., https://link.springer.com/article/10.1186/s12984-023-01272-y).  

      Thank you, we have included these references.

      Reviewer #3 (Recommendations for the authors): 

      Major Suggestions 

      (1) For the factor analysis of feeding vs licking, it appears that the factors were calculated separately for the two behaviors. It could be informative to calculate the factors under both conditions and project the neural data for the two behaviors into that space. The overlap/separations of the subspace could be informative. 

      We clarify that we performed a factor analysis that included both feeding and licking for MIo, as stated in the Results: “To control for factors such as different neurons and kinematics that might influence the results, we performed factor analysis on stable neurons across both tasks using all trials (Fig. 7- figure supplement 2A) and using trials with similar kinematics (Fig. 7- figure supplement 2B).” We have revised the manuscript to reflect this more clearly.

      (2) For the LSTM, the Factor analyses and the decoding it is unclear if the firing rates are mean subtracted and being normalized (the methods section was a little unclear). Typically, papers in the field either z-score the data or do a softmax.

      The firing rates were z-scored for the LSTM and KNN. For the factor analysis, the spike counts were not z-scored, but the results were normalized. We clarified this in the Methods section.

      Minor: 

      Page 1: Abstract- '... how OSMCx contributes to...' 

      Since there are no direct causal manipulations of OSMCx in this manuscript, this study doesn't directly study the OSMCx's contribution to movement - I would recommend rewording this sentence.

      Similarly, Page 2: 'OSMCx plays an important role in coordination...' the citations in this paragraph are correlative, and do not demonstrate a causal role.

      There are similar usages of 'OSMCx coordinates...' in other places e.g. Page 8. 

      Thank you, we revised these sentences.

      Page 7: the LSTM here has 400 units, which is a very large network and contains >12000 parameters. Networks of this size are prone to memorization, it would be wise to test the rsquare of the validation set against a shuGled dataset to see if the network is actually working as intended. 

      Thank you for bringing up this important point of verifying that the network is learning meaningful patterns versus memorizing. Considering the size of our training samples, the ratio of samples to parameters is appropriate and thus the risk of memorization is low. Indeed, validation tests and cross-validation performed indicated expected network behavior and the R squared values obtained here were similar to those reported in our previous paper (Laurence-Chasen et al., 2023).


      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In their paper, Hosack and Arce-McShane investigate how the 3D movement direction of the tongue is represented in the orofacial part of the sensory-motor cortex and how this representation changes with the loss of oral sensation. They examine the firing patterns of neurons in the orofacial parts of the primary motor cortex (MIo) and somatosensory cortex (SIo) in non-human primates (NHPs) during drinking and feeding tasks. While recording neural activity, they also tracked the kinematics of tongue movement using biplanar videoradiography of markers implanted in the tongue. Their findings indicate that most units in both MIo and SIo are directionally tuned during the drinking task. However, during the feeding task, directional turning was more frequent in MIo units and less prominent in SIo units. Additionally, in some recording sessions, they blocked sensory feedback using bilateral nerve block injections, which resulted in fewer directionally tuned units and changes in the overall distribution of the preferred direction of the units.

      Strengths:

      The most significant strength of this paper lies in its unique combination of experimental tools. The author utilized a video-radiography method to capture 3D kinematics of the tongue movement during two behavioral tasks while simultaneously recording activity from two brain areas. Moreover, they employed a nerve-blocking procedure to halt sensory feedback. This specific dataset and experimental setup hold great potential for future research on the understudied orofacial segment of the sensory-motor area.

      Weaknesses:

      Aside from the last part of the result section, the majority of the analyses in this paper are focused on single units. I understand the need to characterize the number of single units that directly code for external variables like movement direction, especially for less-studied areas like the orofacial part of the sensory-motor cortex. However, as a field, our decadelong experience in the arm region of sensory-motor cortices suggests that many of the idiosyncratic behaviors of single units can be better understood when the neural activity is studied at the level of the state space of the population. By doing so, for the arm region, we were able to explain why units have "mixed selectivity" for external variables, why the tuning of units changes in the planning and execution phase of the movement, why activity in the planning phase does not lead to undesired muscle activity, etc. See (Gallego et al. 2017; Vyas et al. 2020; Churchland and Shenoy 2024) for a review. Therefore, I believe investigating the dynamics of the population activity in orofacial regions can similarly help the reader go beyond the peculiarities of single units and in a broader view, inform us if the same principles found in the arm region can be generalized to other segments of sensorymotor cortex.

      We thank and agree with the reviewer on the value of information gained from studying population activity. We also appreciate that population analyses have led to the understanding that individual neurons have “mixed selectivity”. We have shown previously that OSMCx neurons exhibit mixed selectivity in their population activity and clear separation between latent factors associated with gape and bite force levels (Arce-McShane FI, Sessle BJ, Ram Y, Ross CF, Hatsopoulos NG (2023) Multiple regions of primate orofacial sensorimotor cortex encode bite force and gape. Front Systems Neurosci. doi: 10.3389/fnsys.2023.1213279. PMID: 37808467 PMCID: 10556252), and chew-side and food types (Li Z & Arce-McShane FI (2023). Cortical representation of mastication in the primate orofacial sensorimotor cortex. Program No. NANO06.05. 2023 Neuroscience Meeting Planner. Washington, D.C.: Society for Neuroscience, 2023. Online.). 

      The primary goal of this paper was to characterize single units in the orofacial region and to do a follow-up paper on population activity. In the revised manuscript, we have now incorporated the results of population-level analyses. The combined results of the single unit and population analyses provide a deeper understanding of the cortical representation of 3D direction of tongue movements during natural feeding and drinking behaviors. 

      Further, for the nerve-blocking experiments, the authors demonstrate that the lack of sensory feedback severely alters how the movement is executed at the level of behavior and neural activity. However, I had a hard time interpreting these results since any change in neural activity after blocking the orofacial nerves could be due to either the lack of the sensory signal or, as the authors suggest, due to the NHPs executing a different movement to compensate for the lack of sensory information or the combination of both of these factors. Hence, it would be helpful to know if the authors have any hint in the data that can tease apart these factors. For example, analyzing a subset of nerve-blocked trials that have similar kinematics to the control.

      Thank you for bringing this important point. We agree with the reviewer that any change in the neural activity may be attributed to lack of sensory signal or to compensatory changes or a combination of these factors. To tease apart these factors, we sampled an equal number of trials with similar kinematics for both control and nerve block feeding sessions. We added clarifying description of this approach in the Results section of the revised manuscript: “To confirm this e ect was not merely due to altered kinematics, we conducted parallel analyses using carefully subsampled trials with matched kinematic profiles from both control and nerve-blocked conditions.”

      Furthermore, we ran additional analysis for the drinking datasets by subsampling a similar distribution of drinking movements from each condition. We compared the neural data from an equal number of trials with a similar left-right angle of movement in the last 100 ms of the tongue trajectory, nearest the spout. We compared the directional tuning across an equal number of trials with a similar left-right angle of movement in the last 100 ms of the tongue trajectory, nearest the spout. These analyses that control for similar kinematics showed that there was still a decrease in the proportion of directionally modulated neurons with nerve block compared to the control. This confirms that the results may be attributed to the lack of tactile information. These are now integrated in the revised paper under Methods section: Directional tuning of single neurons, as well as Results section: E ects of nerve block: Decreased directional tuning of MIo and SIo neurons and Figure 10 – figure supplement 1.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Hosack and Arce-McShane examines the directional tuning of neurons in macaque primary motor (MIo) and somatosensory (SIo) cortex. The neural basis of tongue control is far less studied than, for example, forelimb movements, partly because the tongue's kinematics and kinetics are difficult to measure. A major technical advantage of this study is using biplanar video-radiography, processed with modern motion tracking analysis software, to track the movement of the tongue inside the oral cavity. Compared to prior work, the behaviors are more naturalistic behaviors (feeding and licking water from one of three spouts), although the animals were still head-fixed.

      The study's main findings are that:

      • A majority of neurons in MIo and a (somewhat smaller) percentage of SIo modulated their firing rates during tongue movements, with different modulations depending on the direction of movement (i.e., exhibited directional tuning). Examining the statistics of tuning across neurons, there was anisotropy (e.g., more neurons preferring anterior movement) and a lateral bias in which tongue direction neurons preferred that was consistent with the innervation patterns of tongue control muscles (although with some inconsistency between monkeys).

      • Consistent with this encoding, tongue position could be decoded with moderate accuracy even from small ensembles of ~28 neurons.

      • There were differences observed in the proportion and extent of directional tuning between the feeding and licking behaviors, with stronger tuning overall during licking. This potentially suggests behavioral context-dependent encoding.

      • The authors then went one step further and used a bilateral nerve block to the sensory inputs (trigeminal nerve) from the tongue. This impaired the precision of tongue movements and resulted in an apparent reduction and change in neural tuning in Mio and SIo.

      Strengths:

      The data are difficult to obtain and appear to have been rigorously measured, and provide a valuable contribution to this under-explored subfield of sensorimotor neuroscience. The analyses adopt well-established methods, especially from the arm motor control literature, and represent a natural starting point for characterizing tongue 3D direction tuning.

      Weaknesses:

      There are alternative explanations for some of the interpretations, but those interpretations are described in a way that clearly distinguishes results from interpretations, and readers can make their own assessments. Some of these limitations are described in more detail below.

      One weakness of the current study is that there is substantial variability in results between monkeys, and that only one session of data per monkey/condition is analyzed (8 sessions total). This raises the concern that the results could be idiosyncratic. The Methods mention that other datasets were collected, but not analyzed because the imaging pre-processing is very labor-intensive. While I recognize that time is precious, I do think in this case the manuscript would be substantially strengthened by showing that the results are similar on other sessions.

      We acknowledge the reviewer’s concern about inter-subject variability. Animal feeding and drinking behaviors are quite stable across sessions, thus, we do not think that additional sessions will address the concern that the results could be idiosyncratic. Each of the eight datasets analyzed here have su icient neural and kinematic data to capture neural and behavioral patterns.  Nevertheless, we performed some of the analyses on a second feeding dataset from Monkey R. The results from analyses on a subset of this data were consistent across datasets; for example, (1) similar proportions of directionally tuned neurons, (2) similar distances between population trajectories (t-test p > 0.9), and (3) a consistently smaller distance between Anterior-Posterior pairs than others in MIo (t-test p < 0.05) but not SIo (p > 0.1). 

      This study focuses on describing directional tuning using the preferred direction (PD) / cosine tuning model popularized by Georgopoulous and colleagues for understanding neural control of arm reaching in the 1980s. This is a reasonable starting point and a decent first-order description of neural tuning. However, the arm motor control field has moved far past that viewpoint, and in some ways, an over-fixation on static representational encoding models and PDs held that field back for many years. The manuscript benefits from drawing the readers' attention (perhaps in their Discussion) that PDs are a very simple starting point for characterizing how cortical activity relates to kinematics, but that there is likely much richer population-level dynamical structure and that a more mechanistic, control-focused analytical framework may be fruitful. A good review of this evolution in the arm field can be found in Vyas S, Golub MD, Sussillo D, Shenoy K. 2020. Computation Through Neural Population Dynamics. Annual Review of Neuroscience. 43(1):249-75

      Thank you for highlighting this important point. Research on orofacial movements hasn't progressed at the same pace as limb movement studies. Our manuscript focused specifically on characterizing the 3D directional tuning properties of individual neurons in the orofacial area—an analysis that has not been conducted previously for orofacial sensorimotor control. While we initially prioritized this individual neuron analysis, we recognize the value of broader population-level insights.

      Based on your helpful feedback, we have incorporated additional population analyses to provide a more comprehensive picture of orofacial sensorimotor control and expanded our discussion section. We appreciate your expertise in pushing our work to be more thorough and aligned with current neuroscience approaches.

      Can the authors explain (or at least speculate) why there was such a large difference in behavioral e ect due to nerve block between the two monkeys (Figure 7)?

      We acknowledge this as a variable inherent to this type of experimentation. Previous studies have found large kinematic variation in the effect of oral nerve block as well as in the following compensatory strategies between subjects. Each animal’s biology and response to perturbation vary naturally. Indeed, our subjects exhibited different feeding behavior even in the absence of nerve block perturbation (see Figure 2 in Laurence-Chasen et al., 2022). This is why each individual serves as its own control.

      Do the analyses showing a decrease in tuning after nerve block take into account the changes (and sometimes reduction in variability) of the kinematics between these conditions? In other words, if you subsampled trials to have similar distributions of kinematics between Control and Block conditions, does the effect hold true? The extreme scenario to illustrate my concern is that if Block conditions resulted in all identical movements (which of course they don't), the tuning analysis would find no tuned neurons. The lack of change in decoding accuracy is another yellow flag that there may be a methodological explanation for the decreased tuning result.

      Thank you for bringing up this point. We accounted for the changes in the variability of the kinematics between the control and nerve block conditions in the feeding dataset where we sampled an equal number of trials with similar kinematics for both control and nerve block. However, we did not control for similar kinematics in the drinking task. In the revised manuscript, we have clarified this and performed similar analysis for the drinking task. We sampled a similar distribution of drinking movements from each condition. We compared the neural data from an equal number of trials with a similar left-right angle of movement in the last 100 ms of the tongue trajectory, nearest the spout. There was a decrease in the percentage of neurons that were directionally modulated (between 30 and 80%) with nerve block compared to the control. These results have been included in the revised paper under Methods section: Directional tuning of single neurons, as well as Results section: E ects of nerve block: Decreased directionality of MIo and SIo neurons.

      While the results from decoding using KNN did not show significant differences between decoding accuracies in control vs. nerve block conditions, the results from the additional factor analysis and decoding using LSTM were consistent with the decrease in directional tuning at the level of individual neurons.  

      The manuscript states that "Our results suggest that the somatosensory cortex may be less involved than the motor areas during feeding, possibly because it is a more ingrained and stereotyped behavior as opposed to tongue protrusion or drinking tasks". Could an alternative explanation be more statistical/technical in nature: that during feeding, there will be more variability in exactly what somato sensation afferent signals are being received from trial to trial (because slight differences in kinematics can have large differences in exactly where the tongue is and the where/when/how of what parts of it are touching other parts of the oral cavity)? This variability could "smear out" the apparent tuning using these types of trial-averaged analyses. Given how important proprioception and somatosensation are for not biting the tongue or choking, the speculation that somatosensory cortical activity is suppressed during feedback is very counter-intuitive to this reviewer.

      Thank you for bringing up this point. We have now incorporated this in our revised Discussion (see Comparison between MIo and SIo). We agree with the reviewer that trialby-trial variability in the a erent signals may account for the lower directional signal in SIo during feeding than in drinking. Indeed, SIo’s mean-matched Fano factor in feeding was significantly higher than those in drinking (Author response image 1). Moreover, the results of the additional population and decoding analyses also support this.  

      Author response image 1.

      Comparison of mean-matched Fano Factor between Sio neurons during feeding and drinking control tasks across both subjects (Wilcoxon rank sum test, p < 0.001).

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors aim to uncover how 3D tongue direction is represented in the Motor (M1o) and Somatosensory (S1o) cortex. In non-human primates implanted with chronic electrode arrays, they use X-ray-based imaging to track the kinematics of the tongue and jaw as the animal is either chewing food or licking from a spout. They then correlate the tongue kinematics with the recorded neural activity. Using linear regressions, they characterize the tuning properties and distributions of the recorded population during feeding and licking. Then, they recharacterize the tuning properties after bilateral lidocaine injections in the two sensory branches of the trigeminal nerve. They report that their nerve block causes a reorganization of the tuning properties. Overall, this paper concludes that M1o and S1o both contain representations of the tongue direction, but their numbers, their tuning properties, and susceptibility to perturbed sensory input are different.

      Strengths:

      The major strengths of this paper are in the state-of-the-art experimental methods employed to collect the electrophysiological and kinematic data.

      Weaknesses:

      However, this paper has a number of weaknesses in the analysis of this data.

      It is unclear how reliable the neural responses are to the stimuli. The trial-by-trial variability of the neural firing rates is not reported. Thus, it is unclear if the methods used for establishing that a neuron is modulated and tuned to a direction are susceptible to spurious correlations. The authors do not use shuffling or bootstrapping tests to determine the robustness of their fits or determining the 'preferred direction' of the neurons. This weakness colors the rest of the paper.

      Thank you for raising these points. We have performed the following additional analyses: (1) We have added analyses to ensure that the results could not be explained by neural variability. To show the trial-by-trial variability of the neural firing rates, we have calculated the Fano factor (mean overall = 1.34747; control = 1.46471; nerve block = 1.23023). The distribution was similar across directions, suggesting that responses of MIo and SIo neurons to varying 3D directions were reliable. (2) We have used a bootstrap procedure to ensure that directional tuning cannot be explained by mere chance. (3) To test the robustness of our PDs we also performed a bootstrap test, which yielded the same results for >90% of neurons, and a multiple linear regression test for fit to a cosine-tuning function. In the revised manuscript, the Methods and Results sections have been updated to include these analyses.  

      Author response image 2.

      Comparison of Fano Factor across directions for MIo and SIo Feeding Control (Kruskal-Wallis, p > 0.7).

      The authors compare the tuning properties during feeding to those during licking but only focus on the tongue-tip. However, the two behaviors are different also in their engagement of the jaw muscles. Thus many of the differences observed between the two 'tasks' might have very little to do with an alternation in the properties of the neural code - and more to do with the differences in the movements involved. 

      Using the tongue tip for the kinematic analysis of tongue directional movements was a deliberate choice as the anterior region of the tongue is highly mobile and sensitive due to a higher density of mechanoreceptors. The tongue tip is the first region that touches the spout in the drinking task and moves the food into the oral cavity for chewing and subsequent swallowing. 

      We agree with the reviewer that the jaw muscles are engaged differently in feeding vs. drinking (see Fig. 2). For example, a wider variety of jaw movements along the three axes are observed in feeding compared to the smaller amplitude and mostly vertical jaw movements in drinking. Also, the tongue movements are very different between the two behaviors. In feeding, the tongue moves in varied directions to position the food between left-right tooth rows during chewing, whereas in the drinking task, the tongue moves to discrete locations to receive the juice reward. Moreover, the tongue-jaw coordination differs between tasks; maximum tongue protrusion coincides with maximum gape in drinking but with minimum gape in the feeding behavior. Thus, the different tongue and jaw movements required in each behavior may account for some of the differences observed in the directional tuning properties of individual neurons and population activity. These points have been included in the revised Discussion.

      Author response image 3.

      Tongue tip position (mm) and jaw pitch(degree) during feeding (left) and drinking (right) behaviors. Most protruded tongue position coincides with minimum gape (jaw pitch at 0°) during  feeding but with maximum gape during drinking.

      Many of the neurons are likely correlated with both Jaw movements and tongue movements - this complicates the interpretations and raises the possibility that the differences in tuning properties across tasks are trivial.

      We thank the reviewer for raising this important point. In fact, we verified in a previous study whether the correlation between the tongue and jaw kinematics might explain differences in the encoding of tongue kinematics and shape in MIo (see Supplementary Fig. 4 in Laurence-Chasen et al., 2023): “Through iterative sampling of sub-regions of the test trials, we found that correlation of tongue kinematic variables with mandibular motion does not account for decoding accuracy. Even at times where tongue motion was completely un-correlated with the jaw, decoding accuracy could be quite high.” 

      The results obtained from population analyses showing distinct properties of population trajectories in feeding vs. drinking behaviors provide strong support to the interpretation that directional information varies between these behaviors.

      The population analyses for decoding are rudimentary and provide very coarse estimates (left, center, or right), it is also unclear what the major takeaways from the population decoding analyses are. The reduced classification accuracy could very well be a consequence of linear models being unable to account for the complexity of feeding movements, while the licking movements are 'simpler' and thus are better accounted for.

      We thank the reviewer for raising this point. The population decoding analyses provide additional insight on the directional information in population activity,  as well as a point of comparison with the results of numerous decoding studies on the arm region of the sensorimotor cortex. In the revised version, we have included the results from decoding tongue direction using a long short-term memory (LSTM) network for sequence-tosequence decoding. These results differed from the KNN results, indicating that a linear model such as KNN was better for drinking and that a non-linear and continuous decoder was better suited for feeding.  These results have been included in the revised manuscript.

      The nature of the nerve block and what sensory pathways are being affected is unclear - the trigeminal nerve contains many different sensory afferents - is there a characterization of how e ectively the nerve impulses are being blocked? Have the authors confirmed or characterized the strength of their inactivation or block, I was unable to find any electrophysiological evidence characterizing the perturbation.

      The strength of the nerve block is characterized by a decrease in the baseline firing rate of SIo neurons, as shown in Supplementary Figure 6 of “Loss of oral sensation impairs feeding performance and consistency of tongue–jaw coordination” (Laurence-Chasen et al., 2022)..

      Overall, while this paper provides a descriptive account of the observed neural correlations and their alteration by perturbation, a synthesis of the observed changes and some insight into neural processing of tongue kinematics would strengthen this paper.

      We thank the reviewer for this suggestion. We have revised the Discussion to provide a synthesis of the results and insights into the neural processing of tongue kinematics.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The procedure for anesthesia explained in the method section was not clear to me. The following information was missing: what drug/dose was used? How long the animal was under anesthesia? How long after the recovery the experiments were done?

      The animals were fully sedated with ketamine (100 mg/ml, 10 mg/kg) for less than 30 minutes, and all of the data was collected within 90 minutes after the nerve block was administered.

      (2) In Figure 10, panels A and B are very close together, it was not at first clear whether the text "Monkey R, Monkey Y" belongs to panel A or B.

      We have separated the two panels further in the revised figure.

      (3) I found Figure 11 very busy and hard to interpret. Separating monkeys, fitting the line for each condition, or using a bar plot can help with the readability of the figure.

      Thank you for the suggestion. We agree with you and have reworked this figure. To simplify it we have shown the mean accuracy across iterations.

      (4) I found the laterality discussions like "This signifies that there are more neurons in the left hemisphere contributes toward one direction of tongue movement, suggesting that there is some laterality in the PDs of OSMCx neurons that varies between individuals" bit of an over-interpretation of data, given the low n value and the dissimilarity in how strongly the nerve blocking altered monkies behavior.

      Thank you for sharing this viewpoint. We do think that laterality is a good point of comparison with studies on M1 neurons in the arm/hand region. In our study, we found that the peak of the PD distribution coincides with leftward tongue movements in feeding. The distribution of PDs provides insight into how tongue muscles are coordinated during movement. Intrinsic and extrinsic tongue muscles are involved in shaping the tongue (e.g., elongation, broadening) and positioning the tongue (e.g., protrusion/retraction, elevation/depression), respectively. These muscles receive bilateral motor innervation except for genioglossus. Straight tongue protrusion requires the balanced action of the right and left genioglossi while the lateral protrusion involves primarily the contralateral genioglossus. Given this unilateral innervation pattern, we hypothesized that left MIo/SIo neurons would preferentially respond to leftward tongue movements, corresponding to right genioglossus activation. 

      Reviewer #2 (Recommendations for the authors):

      Are the observation of tuning peaks being most frequently observed toward the anterior and superior directions consistent with the statistics of the movements the tongue typically makes? This could be analogous to anisotropies previously reported in the arm literature, e.g., Lillicrap TP, Scott SH. 2013. Preference Distributions of Primary Motor Cortex Neurons Reflect Control Solutions Optimized for Limb Biomechanics. Neuron. 77(1):168-79

      Thank you for bringing our attention to analogous findings by Lillicrap & Scott, 2013. Indeed, we do observe the highest number of movements in the Anterior Superior directions, followed by the Posterior Inferior. This does align with the distribution of tuning peaks that we observed. Author response image 4 shows the proportions of observed movements in each group of directions across all feeding datasets. We have incorporated this data in the Results section: Neuronal modulation patterns differ between MIo and SIo, as well as added this point in the Discussion.

      Author response image 4.

      Proportion of feeding trials in each group of directions. Error bars represent ±1 standard deviation across datasets (n = 4).

      "The Euclidean distance was used to identify nearest neighbors, and the number of nearest neighbors used was K = 7. This K value was determined after testing different Ks which yielded comparable results." In general, it's a decoding best practice to tune hyperparameters (like K) on fully held-out data from the data used for evaluation. Otherwise, this tends to slightly inflate performance because one picks the hyperparameter that happened to give the best result. It sounds like that held-out validation set wasn't used here. I don't think that's going to change the results much at all (especially given the "comparable results" comment), but providing this suggestion for the future. If the authors replicate results on other datasets, I suggest they keep K = 7 to lock in the method.

      K = 7 was chosen based on the size of our smallest training dataset (n = 55). The purpose of testing different K values was not to select which value gave the best result, but to demonstrate that similar K values did not affect the results significantly. We tested the different K values on a subset of the feeding data, but that data was not fully held-out from the training set. We will keep your suggestion in mind for future analysis.

      The smoothing applied to Figure 2 PSTHs appears perhaps excessive (i.e., it may be obscuring interesting finer-grained details of these fast movements). Can the authors reduce the 50 ms Gaussian smoothing (I assume this is the s.d.?) ~25 ms is often used in studying arm kinematics. It also looks like the movement-related modulation may not be finished in these 200 ms / 500 ms windows. I suggest extending the shown time window. It would also be helpful to show some trial-averaged behavior (e.g. speed or % displacement from start) under or behind the PSTHs, to give a sense of what phase of the movement the neural activity corresponds to.

      Thank you for the suggestion. We have taken your suggestions into consideration and modified Figure 2 accordingly. We decreased the Gaussian kernel to 25 ms and extended the time window shown. The trial-averaged anterior/posterior displacement was also added to the drinking PSTHs.

      Reviewer #3 (Recommendations for the authors):

      The major consideration here is that the data reported for feeding appears to be very similar to that reported in a previous study:

      "Robust cortical encoding of 3D tongue shape during feeding in macaques"

      Are the neurons reported here the same as the ones used in this previous paper? It is deeply concerning that this is not reported anywhere in the methods section.

      These are the same neurons as in our previous paper, though here we include several additional datasets of the nerve block and drinking sessions. We have now included this in the methods section.

      Second, I strongly recommend that the authors consider a thorough rewrite of this manuscript and improve the presentation of the figures. As written, it was not easy to follow the paper, the logic of the experiments, or the specific data being presented in the figures.

      Thank you for this suggestion. We have done an extensive rewrite of the manuscript and revision of the figures.

      A few recommendations:

      (1) Please structure your results sections and use descriptive topic sentences to focus the reader. In the current version, it is unclear what the major point being conveyed for each analysis is.

      Thank you for this suggestion. We have added topic sentences to the begin each section of the results.

      (2) Please show raster plots for at least a few example neurons so that the readers have a sense of what the neural responses look like across trials. Is all of Figure 2 one example neuron or are they different neurons? Error bars for PETH would be useful to show the reliability and robustness of the tuning.

      Figure 2 shows different neurons, one from MIo and one from SIo for each task. There is shading showing ±1 standard error around the line for each direction, however this was a bit difficult to see. In addition to the other changes we have made to these figures, we made the lines smaller and darkened the error bar shading to accentuate this. We also added raster plots corresponding to the same neurons represented in Figure 2 as a supplement.

      (3) Since there are only two data points, I am not sure I understand why the authors have bar graphs and error bars for graphs such as Figure 3B, Figure 5B, etc. How can one have an error bar and means with just 2 data points?

      Those bars represent the standard error of the proportion. We have changed the y-axis label on these figures to make this clearer.

      (4) Results in Figure 6 could be due to differential placement of the electrodes across the animals. How is this being accounted for?

      Yes, this is a possibility which we have mentioned in the discussion. Even with careful placement there is no guarantee to capture a set of neurons with the exact same function in two subjects, as every individual is different. Rather we focus on analyses of data within the same animal. The purpose of Figure 6 is to show the difference between MIo and SIo, and between the two tasks, within the same subject. The more salient result from calculating the preferred direction is that there is a change in the distribution between control and nerve block within the same exact population. Discussions relating to the comparison between individuals are speculative and cannot be confirmed without the inclusion of many more subjects.

      (5) For Figure 7, I would recommend showing the results of the Sham injection in the same figure instead of a supplement.

      Thank you for the suggestion, we have added these results to the figure.

      (6) I think the e ects of the sensory block on the tongue kinematics are underexplored in Figure 7 and Figure 8. The authors could explore the deficits in tongue shape, and the temporal components of the trajectory.

      Some of these effects on feeding have been explored in a previous paper, LaurenceChasen et al., 2022. We performed some additional analyses on changes to kinematics during drinking, including the number of licks per 10 second trial and the length of individual licks. The results of these are included below. We also calculated the difference in the speed of tongue movement during drinking, which generally decreased and exhibited an increase in variance with nerve block (f-test, p < 0.001). However, we have not included these figures in the main paper as they do not inform us about directionality.

      Author response image 5.

      Left halves of hemi-violins (black) are control and right halves (red) are nerve block for an individual. Horizontal black lines represent the mean and horizontal red lines the median. Results of two-tailed t-test and f-test are indicated by asterisks and crosses, respectively: *,† p < 0.05; **,†† p < 0.01; ***,††† p < 0.001.

      (9) In Figures 9 and 10. Are the same neurons being recorded before and after the nerve block? It is unclear if the overall "population" properties are different, or if the properties of individual neurons are changing due to the nerve block.

      Yes, the same neurons are being recorded before and after nerve block. Specifically, Figure 9B shows that the properties of many individual neurons do change due to the nerve block. Differences in the overall population response may be attributed to some of the units having reduced/no activity during the nerve block session.

      Additionally, I recommend that the authors improve their introduction and provide more context to their discussion. Please elaborate on what you think are the main conceptual advances in your study, and place them in the context of the existing literature. By my count, there are 26 citations in this paper, 4 of which are self-citations - clearly, this can be improved upon.

      Thank you for this suggestion. We have done an extensive rewrite of the Introduction and Discussion. We discussed the main conceptual advances in our study and place them in the context of the existing literature.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      Liver cancer shows a high incidence in males than females with incompletely understood causes. This study utilized a mouse model that lacks the bile acid feedback mechanisms (FXR/SHP DKO mice) to study how dysregulation of bile acid homeostasis and a high circulating bile acid may underlie the gender-dependent prevalence and prognosis of HCC. By transcriptomics analysis comparing male and female mice, unique sets of gene signatures were identified and correlated with HCC outcomes in human patients. The study showed that ovariectomy procedure increased HCC incidence in female FXR/SHP DKO mice that were otherwise resistant to agedependent HCC development, and that removing bile acids by blocking intestine bile acid absorption reduced HCC progression in FXR/SHP DKO mice. Based on these findings, the authors suggest that gender-dependent bile acid metabolism may play a role in the male-dominant HCC incidence, and that reducing bile acid level and signaling may be beneficial in HCC treatment. 

      strengths:

      (1) Chronic liver diseases often proceed the development of liver and bile duct cancer. Advanced chronic liver diseases are often associated with dysregulation of bile acid homeostasis and cholestasis. This study takes advantage of a unique FXR/SHP DKO model that develop high organ bile acid exposure and spontaneous age-dependent HCC development in males but not females to identify unique HCC-associated gene signatures. The study showed that the unique gene signature in female DKO mice that had lower HCC incidence also correlated with lower grade HCC and better survival in human HCC patients. 2. The study also suggests that differentially regulated bile acid signaling or gender-dependent response to altered bile acids may contribute to gender-dependent susceptibility to HCC development and/or progression. 3. The sex-dependent differences in bile acidmediated pathology clearly exist but are still not fully understood at the mechanistic level. Female mice have been shown to be more sensitive to bile acid toxicity in a few cholestasis models, while this study showed a male dominance of bile acid promotion of HCC. This study used ovariectomy to demonstrate that female hormones are possible underlying factors. Future studies are needed to understand the interaction of sex hormones, bile acids, and chronic liver diseases and cancer. 

      We thank Reviewer 1 for their positive and thorough assessment of our manuscript

      Weaknesses:

      (1) HCC shows heterogeneity, and it is unclear what tissues (tumor or normal) were used from the DKO mice and human HCC gene expression dataset to obtain the gene signature, and how the authors reconcile these gene signatures with HCC prognosis.

      Mice studies: Aged DKO mice develop aggressive tumors (major and minor nodules, See Figure 1), and the entire liver is burdened with multiple tumor nodules. It is technically challenging to demarcate the tumor boundaries as most of the surrounding tissues do not display normal tissue architecture. Therefore, livers from age- and sexmatched wild-type C57/BL6 mice were used as control tissue. All the mice were inbred in our facility. Spatial transcriptomics and longitudinal studies are ongoing to collect tumors at earlier time points wherein we can differentiate tumor and non-tumor tissue. 

      Human Studies: We mined five separate clinical data sets. The human HCC gene expression comprised of samples from the (i) National Cancer Institute (NCI) cohort (GEO accession numbers, GSE1898 and GSE4024) and (ii) Korea, (iii) Samsung, (iv) Modena, and (v) Fudan cohorts as previously described (GEO accession numbers, GSE14520, GSE16757, GSE43619, GSE36376, and GSE54236). We have added a new supplemental table 4, giving details of these datasets. Depending on the cohort, they are primarily HCC samples- surgical resections of HCC, control samples, with some tumors and paired non-tumor tissues.

      (2) The authors identified a unique set of gene expression signatures that are linked to HCC patient outcomes, but analysis of these gene sets to understand the causes of cancer promotion is still lacking. The studies of urea cycle metabolism and estrogen signaling were preliminary and inconclusive. These mechanistic aspects may be followed up in revision or future studies.

      We agree. Experiments to elicit HCC causality and promotion are complex, given the heterogeneous nature of liver cancer. Moreover, the length of time (12 months) needed to spontaneously develop cancer in this DKO mouse model makes it challenging. As mentioned by the reviewer, mechanistic studies are ongoing, and longitudinal time course experiments are actively being pursued to delineate causality. Having said that, we mined the TCGA LIHC (The Cancer Genome Atlas Liver Hepatocellular Carcinoma) database to examine the expression of the individual urea cycle genes and found them suppressed in liver tumorigenesis (new Supplementary Figure 4). We also evaluated if estrogen receptor  (Er) targets altered in DKO females (DKO_Estrogen) correlate with overall survival in HCC (new Supplementary Figure 6). We note that Er expression per se is reduced in males and females upon liver tumorigenesis. Also, DKO_Estrogen signature positively corroborated with better overall survival (new Supplementary Figure 6). These findings further bolster the relevance of urea cycle metabolism and estrogen signaling during HCC. 

      (3) While high levels of bile acids are convincingly shown to promote HCC progression, their role in HCC initiation is not established. The DKO model may be limited to conditions of extremely high levels of organ bile acid exposure. The DKO mice do not model the human population of HCC patients with various etiology and shared liver pathology (i.e. cirrhosis). Therefore, high circulating bile acids may not fully explain the male prevalence of HCC incidence.

      We agree with this comment that our studies do not show bile acids can initiate HCC and may act as one of the many factors that contribute to the high male prevalence of HCC. This is exactly the reason why throughout the manuscript we do not write about HCC initiation. To clarify further, in the revised discussion of the manuscript, we have added a sentence to highlight this aspect, “while this study demonstrates bile acids promote HCC progression it does not investigate or provide evidence if excess bile acids are sufficient for HCC initiation.”

      (4) The authors showed lower circulating bile acids and increased fecal bile acid excretion in female mice and hypothesized that this may be a mechanism underlying the lower bile acid exposure that contributed to lower HCC incidence in female DKO mice. Additional analysis of organ bile acids within the enterohepatic circulation may be performed because a more accurate interpretation of the circulating bile acids and fecal bile acids can be made in reference to organ bile acids and total bile acid pool changes in these mice.

      As shown in this manuscript- we provide BA compositional analyses from the liver, serum, urine, and feces (Figures 5 and 6, new Supplementary Figure 8, Supplementary Tables 4 and 5). Unfortunately, we did not collect the intestinal tissue or gallbladders for BA analysis in this study. Separate cohorts of mice are being aged for future BA analyses from different organs within the enterohepatic loop. We thank you for this suggestion. Nevertheless, we have previously measured and reported BA values to be elevated in the intestines and the gall bladder of young DKO mice (PMC3007143).

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The translational value to human HCC is not so strong yet. Authors show that there is a correlation between the female-selective gene signature and low-grade tumors and better survival in HCC patients overall. However, these data do not show whether this signature is more highly correlated with female tumor burden and survival. In other words, whether the mechanisms of female protection may be similar between humans and mice. In that respect, it would also be good to elaborate on whether women have higher fecal BA excretion and lower serum BA concentration.

      The reviewer poses an interesting question to test if the DKO female-specific signatures are altered differently in male vs. female HCC samples. As we found the urea cycle and estrogen signaling to be protective and enriched in our mouse model, we tested their expression pattern using the TCGA-LIHC RNA-seq data. We found urea cycle genes and Er transcripts broadly reduced in tumor samples irrespective of the sex (new Supplementary Figure 4 and Supplementary Figure 6), indicating that these pathways are compromised upon tumorigenesis even in the female livers. 

      While prior studies have shown (i) a smaller BA pool w synthesis in men than women (PMID: 22003820), we did not find a study that systematically investigated BA excretion between the sexes in HCC context. The reviewer is spot on in suggesting BA analysis from HCC and unaffected human fecal samples from both sexes. Designing and performing such studies in the future will provide concrete proof of whether BA excretion protects female livers from developing liver cancer. We thank you for these suggestions.

      (2) The authors should perform a thorough spelling and grammar check.

      We apologize for the typos, which have been fixed, and as suggested by the reviewer, we have performed a grammar check.

      (3) There are quite some errors and inaccuracies in the result section, figures, and legends. The authors should correct this.

      We apologize for the inadvertent errors in the manuscript, and we have clarified these inaccuracies in the revised version. Thank you.

      Reviewer#1 (Recommendations for the authors).

      (1) Figures 1A-F, This statement of altered liver steatosis needs to be further supported by measurement of liver triglycerides. Lower magnification images of Sirius red stain should be shown for better evaluation of liver fibrosis.

      Unfortunately, we did not measure liver triglycerides and sirius red stained samples have faded, and lower magnification is unavailable at this juncture. We have modified our results accordingly.  

      We did not take the gross picture of WT female and DKO female livers in the same frame as shown below. Since the manuscript is focused on male and female differences in liver cancer incidence, we provided DKO male and female liver images as Figure 1D in the paper.

      Author response image 1.

      Gross liver images of a year-old WT and DKO mice which show prominent hepatocarcinogenesis in DKO male mice

      (2) Can the authors clarify if the gene transcriptomics was performed with normal or tumor tissues of DKO mice?

      Gene transcriptomics were performed with the tumor tissue of DKO mice. We have previously published data from younger non tumor bearing DKO male mice (PMCID: PMC3007143). 

      (3) Supplementary Figure 3C. Could the authors confirm if this is F vs M or just DKO female since it does not seem to match the result description in the main text? It is better practice to indicate the sub-panels of the Supplementary Figures in the main text while describing the results.

      As the reviewer correctly points out Supplementary Figure 3C is DKO F vs M signature not DKO_female signature and this has been clarified in the text. We have also included DKO_F data now to reduce the confusion.

      (4) Figure 3. Legend, the data presented are not well explained in the Legend, especially the labeling and what is being presented and compared.

      As suggested by the reviewer, we have modified the legend accordingly.

      (5) Supplementary Table 4 does not contain total serum bile acid as described in the main text.

      We agree with the reviewer. We provided primary and secondary BA concentrations, Supplementary Table 4 (currently Supplementary Table 5 in the revised version): Rows 20 and 21. but not their added total. We have modified the text accordingly.

      (6) Method section: many experiments lack descriptions of details.

      We have added details to the animal experimental design, ER ChIP-PCR, schematics of experiments are included within the main and supplemental figures, metabolomics and BA analysis have been expanded. 

      Reviewer #2 (Recommendations For The Authors):

      General:

      (1) The authors are advised to do a thorough grammar and spelling check.

      We have performed spelling and grammar check as suggested using an online platform Grammarly. Thank You.

      Results:

      (1) Figure 1 o The authors should show in Figure 1D female WT and female DKO liver.

      See Figure 1 added in our responses to point 1 of reviewer 1’s comment.

      In the Figure legend, (A-E) should be replaced by (A+D). 

      Thank you. We have modified it accordingly.

      The authors do not refer to 1J in the text, please add this reference.

      Thank you for pointing it. We have referenced 1J in the text.

      The description of 1H does not elaborate on the sex differences in ALT/AST levels, as this is the focus of the manuscript.

      We have added a sentence to show that the injury markers are higher in DKO males, which is consistent with an advanced disease. Thanks.

      The authors should use the correct nomenclature in Figure 1I/1J (gene vs protein and capitals vs non-capitals).

      The Figure 1I and 1J show gene expression of Fxr and Shp and hence we used the non-capital italicized nomenclature. Thanks.

      (2) Figure 2:

      The x-axis length is different in Figures 2A and 2B. Please correct to visualize the differences between males and females better.

      The x axis length has been fixed as suggested. Thanks

      (3) Figure 3:

      The authors should elaborate on how the patients were assigned to each gene signature. This is not fully clear.

      The gene set obtained from the WT and DKO mice were used. The process used is shown as a schematic in Supplemental Fig 2C and the gene list is included  in an excel sheet as Supplemental table 1. 

      We are curious how these data (F3A-C) would look when separating male and female human patients.

      We performed an overall survival analysis with a subgroup of patients and provide it. We segregated the HCC cohort data on sex and age (>55 yr, since we assumed 55 as an age for menopause) and evaluated the DKO gene signature. Similar to the original figure 3, we find that irrespective of sex, and age, DKO FvsM gene signature corresponds with better overall survival in men and in women. These findings align with the combined analysis in overall survival shown in original Figure 3 of the manuscript, and therefore we did not modify it. If deemed necessary, we are happy to include the figure below to reviewers in the main manuscript.

      Author response image 2.

      Correlation of gene signatures obtained from WT and DKO mouse model with the survival data of HCC patients segregated by age and sex. The Kaplan Meier Survival graphs were generated based on WT and DKO transcriptome changes using five HCC clinical cohorts. Analysis of OS (Overall Survival) in patients ((A) Men and (B) Women) using the gene signatures representative of either male WT or male DKO, female WT or female DKO, and unique changes observed in female DKO mice but not in male DKO mice.

      What was used as the control signature in Figure 3C? Please specify this.

      For Figure 3C we compared the DKO_M signature to that of DKOF vs M signature. These genes are listed as an Excel Sheet (Supplementary Table 1).

      The authors claim that DKO female mice display chronic cholestasis, similar to their male counterparts. Please refer to previous work or show the data.

      Serum BA levels are elevated in DKO females are reported in supplementary table 5 and we find comparable hepatic BA composition in Figure 5 F.

      (4) Figure 4: Labels for the x-axis are missing in Figure 4C. Please add legends or labels to the bars.

      The x axis label is included in the top Serum BAs in (M)

      In Figure 4I, the percentage of input is quite low. An IgG control would show whether recruitment of ERalpha to the shown loci is significant above background levels. Also, ChIP on the OVX liver could serve as a negative control.

      We did use IgG as control pull down and the signals above this background were considered. We have not performed this in OVX, which would be an excellent negative control for future studies. Thank You.

      The results and legends refer to ChIP-qPCR, while methods only mention ChIP-seq.Please adapt.

      We sincerely apologize for the mistake. We used published ChIP-seq to identify putative binding site and then performed ChIP PCR to validate it. We have clarified and rectified this error. Thank You.

      Significance indications in the figure legend do not correspond with significance indications in the figure. Please explain the used significance symbols in the figure in the legend.

      Thank You. The legends and their significance have been matched.

      (5) Figure 5:

      Authors claim lowered total serum BA in females compared to males, and reference to Supplementary Table 4. However, these data are not provided, only percentages and ratios are displayed.

      In the revised version, this has become Table 5. See response to the same concern noted by Reviewer 1, Point 5 above.

      Figure 5D: Are sulphated BA also elevated in WT females? Please provide these data.

      There is no significant urinary excretion of BAs in WT control animals. We have previously measured and found none. But under cholestatic conditions BAs are observed in urine. Therefore, sulphated BA levels were found only in the DKO mice. 

      Figure 5H: Is the fecal BA excretion in WT females also proportionally higher than in males? Please provide these data.

      We were unable to perform the untargeted metabolomics profiling of WT fecal samples. When we measured for BAs in the feces, as expected very low conc were present irrespective of the sex (~0.01 M) and we did not find any sex difference.  Also, prior studies in 129SVJ strain exhibited comparable fecal excretion (PMC150802). We did not find any clinical studies that measured fecal BA between the sexes.

      (6) Figure 6:

      References in the text of the result section to Figure 6 are wrong. The authors should change this.

      Thank You. This has been rectified.

      Significance indications in the legend do not correspond with significance indications in the figure. Please explain the used significance symbols in the figure in the legend.

      Thank You. The legends and their significance have been matched.

      (7) Supplemental Figure 3:

      Please adapt the title of this figure; the sentence is incorrect. The description of this figure is very poor.

      We have modified the legend and the title of the Supplemental Figure 3 to make it more appropriate. Thanks

      Please explain what the blue and red dots represent.

      Each dot in blue and yellow indicate the Bayesian probability generated from our BCCP model.

      What are the bold horizontal lines representing? Why are there no dots in some box plots? Please elaborate.

      The box represents the interquartile range (IQR), encompassing the middle 50% of the data. The bottom and top edges correspond to the 25th and 75th percentiles, respectively, while the bold horizontal line indicates the median value.

      The absence of visible dots in certain categories—particularly in higher CLIP and TNM stages—is due to the small number of patients, all of whom had similar Bayesian prediction probabilities. As these values cluster tightly around the median, the individual dots may be overlapped and hidden behind the median line.

      The figure is not visually easy to understand, please reconsider the representation.  

      We hope the modified figure legends with the explanation of the lines and the points in the graphs increases the clarity and makes them acceptable.

      Please add the DKO_female signature plot.

      We have added these graph to Supplemental figure 3

      (8) Supplemental 4A:

      Fold change at Z-score is missing. This should be added.

      Thank you we have added this information

      (9) Supplemental 5:

      The scale bar is missing. This should be included.

      The figure is now supplemental figure 8 and the scale bar has been added.

      Methods:

      (1) Did the authors use ChIP-sequencing or ChIP-qPCR? Please describe the correct method.

      We apologize for the error. We have used ChIP-PCR and rectified it in our methods and in our response to a figure 4 query.

      (2) It is unclear how the mouse model was generated. Please refer to earlier publications.

      The mice were generated in house at UIUC, and we have added this sentence to the Methods section. The original reference has been cited in the text (PMCID: PMC3007143).

      Discussion:

      (1) The authors claim in the discussion: 'consistently higher recruitment of ER to the classical BA synthetic genes ...' This is not shown in Figure 4I, only ER recruitment to Cyp7a1 is significantly higher in females. Please rephrase.

      We agree and we have modified the sentence Cyp7A1 accounts for ~75% of BA synthesis and is a rate-limiting gene in the classical BA synthesis pathway. 

      (2) The authors could make their statements stronger if they could elaborate on whether women have more fecal BA excretion, and if there are differences in serum BA concentration in HCC between male and female patients. 

      Unfortunately, we were unable to find clinical studies with appropriate controls which examined and reported serum BA in HCC in a sex specific manner.

      In addition, to understand whether the female-specific protections in humans are similar to mice, it would be nice to show correlations of the female-specific mouse signature with male and female liver signatures.

      At this time, we do not have large n numbers of control or precancerous early-stage patient datasets from both sexes to make such comparisons. Nevertheless, there is translational relevance of these sex-specific signature. Figure 2 included in the reviewer response shows that DKO male signature correlates with poor overall survival in males, whereas neither DKO male nor DKO female signature predict outcome in females. In contrast, DKO female-specific gene signature (DKOFvsM) correlates with better overall survival in both men and in women. 

      (3) The authors state in the discussion: 'Currently we do not know how to reconcile this data other than indicating a potential ER independent mechanism.' We do not understand the reasoning behind this statement. Please clarify.

      We find that increased Erα expression in DKO coincides with CA-mediated suppression of BA synthesis genes in the absence of Fxr and Shp. But we also noticed that in OVX DKO mice, Erα expression is blunted, and so is basal BA synthesis gene expression. Putting together these data, it is intriguing that Erα expression correlates both positively and negatively with BA synthesis genes. To reconcile these contrasting results, we have written the following sentence in the discussion.

      “These findings suggest Erα expression is linked to both positive and negative regulation of BA synthesis genes. But we do not know how ER elicits these differential effects on BA synthesis.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      (1) Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.

      We thank the reviewer for this positive comment. We fully agree, as our fragmentation experiments on division-formed colonies clearly demonstrate their strong mechanical resistance in naturally occurring flows.

      (2) The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.

      The two idealized models of colony fragmentation, namely erosion of single cells and fragmentation into equal sizes (or binary fission), lead to distinguishable final size distributions. We believe that our experiments for division-formed colonies support the hypothesis of the erosion mechanism. Specifically, Figure 2E shows that colony fragmentation resulted in a decrease of large colonies and a strong increase of single cells and dimers (two cells). In our view, the strong increase of single cells and dimers provides quite convincing (but indirect) evidence supporting the erosion mechanism. This is described on lines 112-121. To further address the reviewer’s concern, we have included in the revised version of Figure 2 (panels B and D) a direct comparison between these two fragmentation models for large division-formed colonies fragmented at a high dissipation rate of ε = 5.8 m<sup>2</sup>/s<sup>3</sup>. Furthermore, we have included the new Supplementary Figure S9, which details the model predictions for the colony size distribution at various time points.

      The ideal equal fragments model (i.e., where every fracture event produces two identical fragments with half the original biovolume) does not capture the biovolume transfer from large colonies to single cells, as observed for the experimental results in panel D of Figure 2 and panel E of Figure S9. In contrast, the erosion model, in panel D of Figure 2 and panel D of Figure S9, provides a good prediction of the experimental results within the experimental uncertainty. The different fragmentation models are discussed in lines 226-228 of the revised manuscript and lines 865-873 of the SI.

      (3) Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by and large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested.

      We thank the reviewer for this positive comment. We agree that our experimental results show clear evidence that aggregated colonies have a weaker structure in comparison to division-formed colonies, thus supporting the hypothesis that clonal expansion is the main mechanism for colony formation under most natural settings. The range of energy dissipation rates of our experimental setup covers almost entirely the region for which aggregated and division-formed colonies differ in their fragmentation behavior (Zone III of Figure 5). Within this zone, aggregated colonies are fragmented and only the division-formed colonies are able to withstand the hydrodynamic stresses. Furthermore, we show that this fragmentation behavior has a low sensitivity to the total biovolume fraction, as displayed in the Supplementary Figures S2 and S4 and discussed in lines 151-154 and 160-163. We agree that our cone-and-plate setup covers a limited parameter range, and we have added a detailed discussion of these limitations in the revised manuscript, under section Materials and Methods in lines 462-473.

      (4) The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.

      We agree with the reviewer that Zone (II) of Figure 5 is of great importance to dense bloom formation under wind mixing and that this parameter range was not covered by our experiments using a cone-and-plate shear flow. The measuring range of our device was motivated by engineering applications such as artificial mixing of eutrophic lakes using bubble plumes, as well as preliminary experiments which demonstrated that high levels of dissipation rate were required to achieve fragmentation. The range of dissipation rates that can be achieved by the cone-and-plate setup is limited at the lower end by the accumulation of colonies near the stagnation point at the conical tip and at the upper end by the spillage of fluid out of the chamber. We now discuss this measuring range in lines 462-473 of the revised manuscript.

      Although our setup does not cover Zone (II), we now refer to recent results in the literature for evidence of aggregation-dominance at Zone (II). The experimental study of Wu et al. (2024) (reference number 64 of the revised manuscript) investigated the formation of Microcystis surface scum layers in wind-mixed mesocosms. Their study identified aggregation of colonies in the scum layer, resulting in increases of colony size at rates faster than cell division. These results agree with our model, and the parameters range investigated fall within the Zone II. We have included in the revised version, lines 328-337, a detailed discussion elucidating the parameter range covered in our experiments and the findings of Wu et al. (2024).

      Other items that could use more clarity:

      (5) The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.

      We agree with the reviewer that more details of the correction function should be included. We have included in the revised version of the Supporting Information, in lines 785-796, a more detailed explanation of the correction function. Furthermore, a direct comparison of raw and corrected histograms of the size distribution and its associated uncertainty is presented in the new Supplementary Figure S8.

      (6) Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8)

      We agree with the reviewer that more details on the estimation of fractal dimension are needed. The revised version, under Materials and Methods in lines 508-515, now includes the detailed estimation procedure, the number of colonies analysed, and the associated uncertainty.

      Reviewer #1 (Recommendations For The Authors):

      In light of the weak evidence for claim #2 outlined above, I believe the paper would benefit from a more explicit comparison in Figure 2C of the two models - idealized erosion, and idealized binary fission. With such a comparison, the authors would have stronger footing to claim that one process is more important than the other.

      As mentioned in our answer above to comment #2 of public review, we have included in the revised version of Figure 2 (panels B and D) a direct comparison between the erosion and equal fragments (binary fission) models for large division-formed colonies fragmented under ε = 5.8 m<sup>2</sup>/s<sup>3</sup>. The comparison is further detailed in the new Supplementary Figure S9 for representative time points. Only the erosion models can recover the biovolume transfer from large colonies to single cells, as observed for the experimental results in Figure 2D and further detailed in Figure S9D. We believe that the revised version of Figure 2 and the new Supplementary Figure S9 provide strong evidence in support of the erosion fragmentation model.

      Would the authors comment on their chosen range of experimental dissipation rates? For instance, was their goal more to investigate industrial/engineering applications where the goal is to disrupt the cyanobacteria, but not really typical natural conditions under which the groups might form?

      The choice of experimental dissipation rates in our experiment was such that it covers engineering applications such as artificial mixing of eutrophic lakes using bubble plumes. We have now clarified in the Introduction, on lines 37-39, that artificial mixing has been successfully applied in several lakes to suppress cyanobacterial blooms. Furthermore, we have now clarified in the caption of Figure 5 that the bars on the right side indicate typical values of dissipation rates induced by natural wind-mixing, bubble plumes in artificially mixed lakes, and laboratory-scale experiments such as cone-and-plate systems and stirred tanks. The dissipation rates induced by the bubble plumes in artificially mixed lakes could potentially fragment aggregated cyanobacterial colonies and thus disrupt bloom formation. However, our preliminary experiments demonstrated that high levels of dissipation rate were required to achieve fragmentation, therefore we’ve focused on the upper range of values (0.01 to 10 m<sup>2</sup>/s<sup>3</sup>).

      The dissipation rates generated by the cone-and-plate approach are indeed higher than the dissipation rates under typical natural conditions in lakes. We have now added a detailed discussion of the range of dissipation rates generated by the cone-and-plate approach in the revised manuscript, under section Materials and Methods in lines 462-473, where we also explain that these values are higher than the natural dissipation rates generated by wind action in lakes. However, the more generic insights obtained by our study, shown in Figure 5, are relevant for dissipation rates of natural lakes (e.g., Zone II). Therefore, in our discussion of Figure 5 we have now included the recent findings of Wu et al. (2024) (reference number [64] of the revised manuscript), who studied bloom formation of Microcystis in mesocosm experiments at dissipation rates representative of natural conditions; see also our reply to the next comment.

      The authors should consider testing the space of Zone II on their phase map, for instance at very high particle concentrations and even lower rotational speeds, in order to show that their derivations match experiments.

      Good point. As mentioned in our answer above to comment #4 of the public review, Zone II lies beyond the measuring range of our experimental setup. Instead, we refer to the recent study of Wu et al. (2024) (reference number [64] of the revised manuscript) which demonstrated that dense scum layers of Microcystis colonies are aggregation-dominated. These mesocosm experiments agree with our model predictions and their parameter range falls within Zone II. We have included in the revised version, lines 328-337, a detailed discussion where we elucidate the parameter range covered in our experiments and compare our predictions for Zone II with the recent findings of Wu et al. (2024).

      The authors should show their calibration data and fit for the correction function of equation S1. Additionally, you may consider showing "raw" and "corrected" histograms of the size distribution, to demonstrate exactly what corrections are made.

      As mentioned in our answer above to comment #5 of the public review, we have included in the revised version of the Supporting Information the new Supplementary Figure S8, which shows the raw and adjusted histograms of the size distribution, including the associated uncertainties. Furthermore, the correction function is now explained in detail in the new Supporting Information Text in lines 785-796.

      The authors might consider commenting on Figure S3 a bit more in the main text. Even at very high dissipation rates, the cyanobacterial groups don't plummet to size 1, but stay in an equilibrium around 10-20x the diameter of a single cell. What might this mean for industrial applications trying to break up the groups?

      We agree with the reviewer that further discussion of Figure S3, panels E and F, is warranted. In the revised version of the manuscript, under section Fragmentation of Microcystis colonies occurs through erosion in lines 133-137, we have now included a discussion of this figure. Figure S3F shows that more than 90% of the total biovolume ends up in the category “small colonies” (mostly single cells and dimers); hence, most of the initially large colonies do fragment to single cells or dimers. Only about 5-10% of the biovolume remains as “large colonies” of 10-20 cells. Although it is challenging to draw definitive conclusions about the behavior of these remaining large colonies, as they account for only a minor fraction of the suspension, one hypothesis is that variability in mechanical properties between colonies results in a subset of colonies exhibiting exceptional resistance even to very high dissipation rates (see lines 133-137).

      Minor comments:

      Typo Caption of Figure 2: Should read [m^2/s^3] for units

      Thanks for catching this typo. The units in the caption of Figure 2 has been corrected to [m^2/s^3].

      There is no Equation 10 in Materials and Methods as indicated in the rheology section.

      We thank the reviewer for pointing out the lack of clarity in this algebraic manipulation. In fact, the yield stress has to be substituted in the current Equation 11 (previously Eq.10), from which the critical dissipation rate must be substituted in Equation 3. The result is the critical colony size (l* = 2.8) mentioned in line 243 of the revised manuscript. The correct equation numbers and algebraic substitutions are now indicated in lines 241-243 of the revised version of the manuscript.

      <Reviewer #2 (Public review):

      Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.

      We would like to emphasize several key findings that our study reveals about the impacts of fluid flow on cyanobacterial colonies:

      (I) Quantification of mechanical strength in cyanobacterial colonies: Our results demonstrate the high mechanical strength of cyanobacterial colonies, as evidenced by the requirement of high shear rates to achieve fragmentation. This is new knowledge, that was not known before for cyanobacterial colonies. To this end, our study highlights the resilience of these colonies against naturally occurring flows and bridges the gap between theoretical assumptions about colony strength and experimentally measured mechanical properties.

      (II) The discovery that the mechanical strength of colonies differs between colonies formed by cell division and colonies formed by aggregation. This is again new knowledge, that was not known before for cyanobacterial colonies.

      (III) Validation of a hypothesis regarding colony formation: Using a fluid-mechanical approach, we confirm the findings of recent genetic studies (references 25 and 67 of the revised version of the manuscript) which indicated that colony formation occurs predominantly via cell division rather than cell aggregation under natural conditions (except in very dense blooms).

      (IV) Practical guidelines for cyanobacterial bloom control: Our findings provide valuable insights into the design of artificial mixing systems applied in several lakes. Artificial mixing of lakes is based on fundamentals of fluid flow, aiming at preventing aggregation of buoyant cyanobacteria in scum layers at the water surface. Our results show that the dissipation rates generated by bubble blumes in artificially mixed lakes can fragment cyanobacterial colonies formed by aggregation, but are not intense enough to cause fragmentation of division-formed colonies (see Figure 5 and lines 348-360).

      The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.

      The influence of the fit parameters (namely the stickiness α1 and the pairs of colony strength parameters S1,q1,S2,q2) is discussed in the sections Dynamical changes in colony size modelled by a two-category distribution in lines 247-253 and Materials and Methods in lines 559-565. We kept the discussion concise to maintain readability. However, we agree with the reviewer that additional details about the importance of the fit parameters and the sensitivity of the results to these parameters could be beneficial. In the revised version of the section Materials and Methods in lines 560-563, we have included a detailed discussion of the fit parameters.

      The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.

      We apologize for the limited readability of the description of the experimental setup and model used. In the revised version of the manuscript and the SI, we have detailed further the new methods presented here. The modifications include a detailed description of the operating range of the cone-and-plate shear setup (subsection Cone-and-plate shear of the section Materials and Methods, in lines 462-473). Furthermore, we think that incorporation of the recent experimental results of Wu et al. (2024), on lines 331-337 of the manuscript, will appeal to readers with a biology background. Their mesocosm experiments support our model prediction that aggregation is the dominant mechanism for colony formation in region (II) of Figure 5.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors seem too modest in claiming technological advance. They should describe the technological advance of combining microscopy with rheometry, in such a way that this invites others to apply this or similar approaches on biological samples. Even though I feel that the advancement of knowledge of this system by their method is relatively modest, there may be more advances in other systems.

      We appreciate the positive view of the reviewer towards the importance of this technology and we agree that its advantages should be advertised to researchers investigating similar systems. We have now given more attention to the technological advance of combining microscopic imaging with rheometry in the final paragraph of the Conclusions (lines 386400), where we now also briefly discuss an interesting recent study of marine snow (Song et al. 2023, Song and Rau 2022, reference numbers 70 and 71 of the revised manuscript), which used a similar combination of microscopy and rheometry as in our study. Furthermore, in the Methods section, we now briefly explain how the rheometry can be adjusted to investigate other systems (lines 474-480).

      (2) It seems reasonable -also based on what we already know about these aggregates - to assume that the main difference in shear sensitivity between field samples and cultures lies in the production of extracellular polysaccharide substance (EPS). To go beyond what is already known, the study could try to provide more direct and quantitative evidence for EPS involvement. For example, using a chemical quantification of EPS levels, or perturbing EPS levels using digestive enzymes.

      We agree with the reviewer that further characterization of the EPS is highly relevant to understand the mechanical strength of colonies. However, we believe that chemical quantification and/or degradation of EPS lies beyond the scope of our article and should be addressed by future studies.

      (3) Assuming EPS is indeed the reason for the differences in shear resistance: the authors speculate the reason why the field samples have more EPS lies in chemical composition (Calcium/nitrogen levels). In addition, there could be grazing that is known to promote aggregation (possibly increasing EPS), or just inherent genetic differences between strains. I am not necessarily expecting the authors to explore this direction experimentally, but it seems certainly feasible and would make the final result less speculative.

      We agree with the reviewer that there are more biotic and abiotic factors that can influence EPS amount and composition. The influence of grazing and other relevant factors on cell adhesion is discussed in references [26-29], cited in our introduction in lines 50-53. As discussed in our answer to recommendation #2, we believe that a quantitative investigation of these various factors is beyond the scope of this work and should be addressed in future studies.

      (4) A cool finding seems to be the critical relative diameter (Fig 2E), a colony size that seems invariant under shear. I was slightly surprised that the authors seem to take little effort to understand this critical diameter mechanistically (for example by predicting it, or experimentally perturbing it). Again, not a necessary requirement, but this is where the study could harness its technological advantage to provide a more quantitative understanding of something that goes beyond the existing knowledge of the system.

      We apologize to the reviewer if our descriptions and discussions of Figure 2 were unclear. One of the key conclusions from our experiments is that the critical relative diameter depends on the dissipation rate, as shown in Figure 2F. This dependence is also incorporated into the model through the constitutive equation (2). Furthermore, we expect the mechanical resistance of colonies, quantified by the critical relative diameter, to be affected by other biotic and abiotic factors that influence EPS amount and composition.

      (5) The jump from 0.019 to 1.1 m²/s³ seems large. What was the reason for not exploring intermediate values? The authors should also define low, modest and intense dissipation rates more clearly. Currently, they seem somewhat arbitrarily defined, i.e. 0.019 m²/s³ is described as low (methods) and moderate (results). In Fig 2, the authors further talk about low dissipation rates without a quantitative description.

      We thank the reviewer for pointing out the lack of clarity in the choice of parameter range and the nomenclature. Regarding the former, the suspension of division-formed colonies of Microcystis strain V163 displayed negligible fragmentation for dissipation rates between 0.019 to 1.1 m<sup>2</sup>/s<sup>3</sup>, as seen in Figures S2A and S3A. Due to the low sensitivity of the fragmentation results in this region, we don’t expect change in behavior for intermediate values. Regarding the nomenclature, we have corrected the inconsistencies throughout the text. We have chosen to name the dissipation rate values as: low for values typical of windmixing, moderate for values typical of the core of bubble plumes, and intense for values typical of propellers. Whenever mentioned in the text, the numerical value of dissipation rate is also included to avoid doubt.

      (6.) The structure and narrative of the paper can be improved. The article first describes all lab culture experiments and then the model, while the first figure already shows model fits. Perhaps it would be better to first describe the aggregation experiments, to constrain the appropriate terms of the model, and then move to fragmentation.

      We appreciate the recommendation of the reviewer regarding the structure. We have chosen to describe first the fragmentation experiments (Fig. 2), as these can be understood without introducing the aggregation effects. In contrast, the steady state results in the aggregation experiments (Fig. 3) come from the balance between aggregation and fragmentation. Therefore, we judged the current order to be more appropriate. The model fits are combined with the experimental results in Figures 2 and 3 to have a concise display. We have ensured that all the concepts required to understand each figure panel are explained prior to their discussion.

      (7) The number of data points that go into the histogram needs to be indicated. The main reason is that the authors report the distribution in terms of the biovolume fraction, suggesting the numerical counts are converted into volume. This to me seems like the most sensible parameter, but I could not find how this conversion is calculated (my apologies if I missed it). This seems especially relevant because a single large colony can impact this histogram quite considerably.

      We apologize for the lack of clarity in the calibration and conversion steps of the size distribution. As discussed above in the answer to comment #5 of the reviewer #1, more details of the calibration process have been added to the revised version of the Supporting Information Text in lines 785-796. Furthermore, the new Supplementary Figure S8 presents examples of the raw and adjusted size distribution, including the total number of counted colonies per histogram and the associated uncertainties in the concentration and biovolume distributions.

      (8) Over the timescales measured here, colonies could start sinking (or floating), possibly in a size-dependent manner, that could lead to a bias due to boundary effects. Did the authors consider this potential artifact?

      The sinking or floating of colonies is a relevant process which was taken into account in the choice of our parameter range for the dissipation rate. The minimum dissipation rate used in our experiments ensures that the upward inertial velocity near stagnation is sufficient to counteract the sedimentation of colonies. A detailed discussion of the choice of the parameter range is now included in the revised version of the Materials and Methods in lines 462-473.

      (9) "On the one hand, sequencing of the genetic diversity within Microcystis colonies supports the hypothesis that colony formation undernatural conditions is primarily driven by cell division [25]. On the other hand, cell aggregation can occur on a shorter time scale and may offer improved protection against high grazing pressure [26]." This appears somewhat constructed, as what is described as "on the other hand" is not evidence against the genetic diversity.

      We agree that the suggested dichotomy in this text appeared somewhat constructed, and we have now removed the wording “on the one hand” and “on the other hand”. The studies from reference [25] demonstrated that the genetic diversity between independent Microcystis colonies is much greater than the diversity within colonies. If cell aggregation was the dominant mechanism, a similar genetic diversity would be observed between and within colonies, which contrasts the findings from reference [25]. We have adjusted the text in the revised manuscript, in lines 46-54, to clarify this point.

      (10) The phase diagram seems largely based on extrapolations that are made outside of the measurement regime (e.g. dark red bars indicating the dissipation rate, Fig 5 - by the way 1 this color scheme could use some better contrast, by the way 2 Fig S7 suggests a wider dissipation rate range as indicated in Fig 5, why?). Hence there seems to be the need to more clearly lineate experimental results, simulations, and extrapolations in the phase diagram.

      We agree with the reviewer that further clarifications should be given about the parameter range covered in our experiments and apologize for the lack of readability in the color scheme of Fig 5. In lines 329-337, 346-347, 353-355, we have highlighted the parameters range covered by our experiments as well as the range covered by previous studies of windmixed mesocosm (namely reference [64] of the revised manuscript). Regarding the color scheme of Figure 5, we have modified the legend of the figure to improve readability. The color contrast was increased and leader lines were added to connect the colored bars with the respective label.

      (11) Unfortunately, the manuscript did not contain line numbers.

      We apologize to the reviewer for the lack of line numbers in our initial version. The revised version of the manuscript now contains line numbers, both in the main text and the supporting information.

      (12) Fig 2D. Caption is too minimal. Y-axis could better be named "Fraction of colonies" as both small and large colonies are plotted.

      The caption for Figure 2D was extended to better describe the plot. We have kept the y-axis label as “Fraction of small colonies”, since this is the quantity displayed by the three curves in the plot.

      (13) An inset should have axis labels.

      All the insets in our plots display the same variables as their respective plots. In order to keep the plots light and preserve readability, we therefore prefer to present the axis labels only along the x-axis and y-axis of the main plots, which implies by convention that the same axis labels also apply to the insets. To the best of our knowledge, this is a common approach.

      (14) Page 5, first words. Likely Fig 3A, not 2A was meant.

      We thank the reviewer for pointing out this readability issue. We intend to compare both Figures 2A and 3A. The text of the revised manuscript, in lines 146-148, has been adjusted with the correct figure numbers.

      (15) Introduction, second last paragraph, third last line. "suspension leaded to a broad distribution" I assume you meant "... led to a ..."

      We thank the reviewer for pointing out this typo. It has been corrected (line 122).

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      The authors have done a good job of responding to the reviewer's comments, and the paper is now much improved.

      Again, we thank the reviewer for positive comments during review.

      Reviewer #2 (Public review):

      I would like to thank the authors for the revision and the input they invested in this study.

      We are grateful for your thoughtful feedback and enthusiasms, which helps us improve our manuscript. 

      With the revised text of the study, my earlier criticism holds, and your arguments about the counterfactual approach are irrelevant to that. The recent rise of the counterfactual approach might likely mirror the fact that there are too many scientists behind their computers, and few go into the field to collect in situ data. Studies like the one presented here are a good intellectual exercise but the real impact is questionable. 

      We understand your concern about the relevance of the counterfactual approach used in our study. Our intent in using a counterfactual scenario (reconstructing migration patterns assuming pre-uplift conditions on the QTP) was to isolate the potential influence of the plateau’s geological history on current migration routes. Similar approach was widely used to estimate how biogeographic barriers facilitated the divergent vertebrate communities across the world  (e.g., Williams et al. 2024). We agree that such an approach must be used carefully. In the revision, we have explicitly clarified why this counterfactual comparison is useful – namely it provides a theoretical baseline to test how much the QTP’s uplift (and the associated monsoon system) might have redirected migration paths (Gilbert and Lambert 2010, Sanmartín 2012, Bull et al. 2021). We acknowledge that the counterfactual results are theoretical and have explicitly emphasised the assumptions involved (i.e., species–environment relationships hold between pre- and post- lift environments) in the main text (Lines 91- 98). Nonetheless, we defend the approach as a valuable study design: it helps generate testable hypotheses about migration (for instance, that the plateau’s monsoon-driven climate, rather than just its elevation, introduces an east–west shift en route). 

      References:

      Bull, J. W., N. Strange, R. J. Smith, and A. Gordon. 2021. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social-ecological systems. Conservation Biology 35:510-521.

      Gilbert, D., and D. Lambert. 2010. Counterfactual geographies: worlds that might have been. Journal of Historical Geography 36:245-252.

      Sanmartín, I. 2012. Historical Biogeography: Evolution in Time and Space. Evolution: Education and Outreach 5:555-568.

      Williams, P. J., E. F. Zipkin, and J. F. Brodie. 2024. Deep biogeographic barriers explain divergent global vertebrate communities. Nature Communications 15:2457.

      All your main conclusions are inferred from published studies on 7! bird species. In addition, spatial sampling in those seven species was not ideal in relation to your target questions. Thus, no matter how fancy your findings look, the basic fact remains that your input data were for 7 bird species only! Your conclusion, “our study provides a novel understanding of how QTP shapes migration patterns of birds” is simply overstretching.

      We appreciate the reviewer’s comment here. We would like to clarify that our conclusions regarding longitudinal shifts in migratory distributions are based on distribution models derived from eBird data of 50 species, not merely on migration tracks from seven species. These species-level spatiotemporal models allow us to infer large-scale biogeographic patterns across the Qinghai-Tibet Plateau (QTP).

      The original seven tracking species were used specifically for analysing the relationship between migration directions (azimuths) and environmental variables, offering independent support for the patterns revealed in the eBird-based distribution models. Recognising the reviewer’s concern on sample size and coverage, we have now expanded this part by incorporating migration tracks from 12 additional species, derived through georeferenced digitisation of published migratory maps. Importantly, this expansion did not change our conclusions, i.e., the monsoons instead of the high elevations act as a prominent role in shaping the current migration direction of birds in the QTP. While the overall conclusion remains unchanged, the expanded dataset led to slight changes in difference between spring and autumn migration. We have updated the Figure 2 and the corresponding results and conclusions throughout the manuscript. We have also clarified in the Discussion that regions of the QTP with relatively less data might lead to underestimation of some migration routes to make sure readers are aware of these data limitations (Lines 211-218).

      The way you respond to my criticism on L 81-93 is something different than what you admit in the rebuttal letter. The text of the ms is silent about the drawbacks and instead highlights your perspective. I understand you; you are trying to sell the story in a nice wrapper. In the rebuttal you state: “we assume species' responses to environments are conservative and their evolution should not discount our findings.” But I do not see that clearly stated in the main text.

      Thanks, as suggested we have clearly stated the assumptions of niche conservatism in the Introduction (Lines 91-98).

      In your rebuttal, you respond to my criticism of "No matter how good the data eBird provides is, you do not know population-specific connections between wintering and breeding sites" when you responded: ... "we can track the movement of species every week, and capture the breeding and wintering areas for specific populations" I am having a feeling that you either play with words with me or do not understand that from eBird data nobody will be ever able to estimate population-specific teleconnections between breeding and wintering areas. It is simply impossible as you do not track individuals. eBird gives you a global picture per species but not for particular populations. You cannot resolve this critical drawback of your study. 

      We agree that inferring population-specific migratory connections (teleconnections) from eBird data is challenging and inherently limited. eBird provides occurrence records for species, but it generally cannot distinguish which breeding population an individual bird came from or exactly where it goes for winter. Our objective is not to determine one-to-one migratory links between specific populations, but to identify general broad-scale directional shifts when birds cross the QTP during their migration. We regret any confusion caused by our earlier wording. To make this clearer, we have now emphasised that our interests focus on the migratory direction and their environmental correlates, rather than population assignments. We have also rephrased the relevant text to explicitly clarify that our study operates at the species level and at large spatial scales (Lines 253–257). We exemplify how distribution of eBird observations and GPS tracking data of four species can be different from each other whilst showing similar migration patterns (Figure S10). We have also explicitly stated in the Discussion that confirming population connectivity would require targeted tracking or genetic studies, and that our eBird-based analysis could only suggest plausible routes and region-to-region linkages (Lines 200-202).

      I am sorry that you invested so much energy into this study, but I see it as a very limited contribution to understanding the role of a major barrier in shaping migration.

      We thank the reviewer’s honest assessment and understand the concern regarding the scope of our contribution. Our intention was not to provide an exhaustive account of all aspects of the QTP as a migratory barrier, but to address a specific and underexplored question: how the uplift of the plateau and the resulting monsoon system may have influenced the orientation of avian migration routes. By integrating both satellite tracking and community-contributed data, we have explored how the uplift of the QTP could shape avian migration across the area. We believe our findings provide important insights of how birds balance their responses to large-scale climate change and geological barrier, which yields the most comprehensive picture to date of how the QTP uplift have shaped migratory patterns of birds. We have also discussed the study’s limitations – including the small number of tracking species (Lines 205218), the use of occurrence data as a proxy for breeding and wintering regions (Lines 200-202), the uneven sampling coverage in the QTP (Lines 202-205) and the assumptions behind the counterfactual scenario (Lines 91-98). This ensures that readers understand the context and constraints of our findings.

      My modest suggestion for you is: go into the field. Ideally use bird radars along the plateau to document whether the birds shift the directions when facing the barrier.

      We thank the reviewer for this suggestion. We agree that radar holds promise for understanding certain aspects of bird migration, particularly for detecting flight intensity, altitudes, and timing. However, the radar systems are currently challenging to resolve migration at the level of species, populations, or individuals, which are central to questions of migratory connectivity and route selection. Most radar signals cannot distinguish between species in mixed flocks, nor can they link breeding and wintering sites for tracked individuals. In addition, the spatial coverage of radar installations remains limited, especially across remote and high-elevation regions like the Qinghai-Tibet Plateau, where infrastructure and continuous power supply are still logistically prohibitive. 

      The eBird dataset used in our study is itself a form of field-based observation, contributed by tens of thousands of birdwatchers across continents, including the QTP region (Figure S11). While eBird cannot provide individual-level tracking, it captures spatiotemporal patterns of occurrence at broad scales, making it a valuable complement to satellite tracking data. We would also emphasis that our team has extensive field experience in the Qinghai-Tibet Plateau (about twenty years), including multi-year expeditions to deploy satellite tags and observe migration at stopover sites. 

      We agree that more direct tracking (e.g. GPS tagging) would be an ideal way to validate migration pathways and population connectivity. Using the satellite-tracking data, we have showed that most tracking species shifted their migration direction when facing the QTP (Figure S6). In this revision, as stated we managed to add a number of 12 more species with satellite tracking routes. We have also noted that future studies should build on our findings by using dedicated tracking of more individual birds and monitoring of migration over the QTP. We have cited recent advances in these techniques and suggested that incorporating more tracking data could further test the hypotheses generated by our work (Lines 205-218).

      Reviewer #2 (Recommendations for the authors):

      L55 "an important animal movement behaviour is.." Is there any unimportant animal movement? I mean this sentence is floppy, empty.

      We used this sentence to introduce migration. We have removed “important” to reduce ambiguous phrasing.

      L 152-154 This sentence is full of nonsense or you misinterpretation. First of all, the issue of inflexible initiation of migration was related to long-distance migrants only! The way you present it mixes apples and oranges (long- and short-distance migrants). It is not "owing to insufficient responses" but due to inherited patterns of when to take off, photoperiod and local conditions.

      We stated that this claim is invoked for long-distance migrants before this sentence and have rewritten the sentence to highlight that this interpretation is for long-distance migrants. 

      L 158 what is a migration circle? I do not know such a term.

      We have amended it as “annual migration cycle”, which is a more common way to describe the yearly round-trip journey between breeding and wintering grounds of birds.

      L 193 The way you present and mix capital and income breeding theory with your simulation study is quite tricky and super speculative.

      We thank the reviewer for raising this important concern. We have presented this idea as an inference rather than a conclusion: “This pattern could be consistent with a ‘capital breeding’ strategy — where birds rely on endogenous reserved energy gained prior to reproduction — rather than an ‘income’ strategy where birds ingest nutrients mainly collected during the period of reproductive activity. This collaborates with studies on breeding strategies of migratory birds in Asian flyways. However, we note that this interpretation would require further study.” By adding this caution, we made it clear that we are not asserting this link as proven fact, only suggesting it as one possible explanation. We have also doublechecked that the rest of the discussion around this point is framed appropriately. Moreover, to help illustrate why we raised this ecological interpretation, we would also draw attention to examples of satellite tracking points from several species (e.g., Beijing Swift, Demoiselle Crane) in the following, which show obvious shifts in migratory direction near the QTP region. These turning points suggest potential behavioral responses to environmental constraints, such as climatic corridors or energy availability, which could help motivate our discussion of possible capital breeding strategies in these species.

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this study, the authors offer a theoretical explanation for the emergence of nematic bundles in the actin cortex, carrying implications for the assembly of actomyosin stress fibers. As such, the study is a valuable contribution to the field actomyosin organization in the actin cortex. While the theoretical work is solid, experimental evidence in support of the model assumptions remains incomplete. The presentation could be improved to enhance accessibility for readers without a strong background in hydrodynamic and nematic theories.

      To address the weaknesses identified in this assessment, we have expanded the motivation and description of the theoretical model, specifically insisting on the experimental evidence supporting its rationale and assumptions. These changes in the revised manuscript are implemented in the two first paragraphs of Section “Theoretical model” and in a more detailed description and justification of the different mathematical terms that appear in that section. We have made an effort to map in our narrative different terms to mechanistic processes in the actomyosin network. Even if the nature of the manuscript is inevitably theoretical, we think that the revised manuscript will be more accessible to a broader spectrum of readers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths:

      The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      We thank the referee for these comments.

      Weaknesses:

      (A) This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative.

      We understand the point of the referee. While it is unavoidable to present the continuum hydrodynamic theory behind our results, we have made an effort in the revised manuscript to (1) motivate the essential features required from a theoretical model of the actomyosin cytoskeleton capable of describing its nematic self organization (two first paragraphs of Section “Theoretical model”), and to (2) explicitly explain the physical meaning of each of the mathematical terms in the theory, and when appropriate, relate them to molecular mechanisms in the cytoskeleton. We hope that the revised manuscript addresses the concern of the referee.

      Regarding the comparison with experiments, they are indeed qualitative because the main point of the paper is to establish a physical basis for the self-organization of dense nematic structures in actomyosin gels. Somewhat surprisingly, we argue that a compelling mechanism explaining the tendency of actomyosin gels to form patterns of dense nematic bundles has been lacking. As we review in the introduction, these patterns are qualitatively diverse across cell types and organisms in terms of geometry and dynamics, and for this reason, our goal is to show that the same material in different parameter regimes can exhibit such qualitative diversity. A quantitative comparison is difficult for several reasons. First, many of the parameters in our theory have not been measured and are expected to vary wildly between cell types. In fact, estimates in the literature often rely on comparison with hydrodynamic models such as ours. For this reason, we chose to delineate regimes leading to qualitatively different emerging architectures and dynamics. Second, the patterns of nematic bundles found across cell types depend on the interaction between (1) the intrinsic tendency of actomyosin gels to form such structures studied here and (2) other elements of the cellular context. For instance, polymerization and retrograde flow from the lamellipodium, the physical barrier of the nucleus, and the interaction with the focal adhesion machinery are essential to understand the emergence of stress fibers in adherent cells. Cell shape and curvature anisotropy control the orientation of actin bundles in parallel patterns in the wings and trachea of insects. Nuclear positions guide the actin bundles organizing the cellularization of Sphaeroforma arctica [11]. Here, we focus on establishing that actomyosin gels have an intrinsic ability to self organize into dense nematic bundles, and leave how this property enables the morphogenesis of specific structures for future work. We have emphasized this point in the revised section of conclusions.

      (B) It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination.

      We thank the referee for this comment. Our theory is applicable to actomyosin gels originating from living cells. To our knowledge, the ability of reconstituted actomyosin gels from purified proteins to sustain the kind of contractile dynamical steady-states observed in living cells is very limited. In the revised manuscript, we cite a very recent preprint presenting very exciting but partial results in this direction [49]. Instead, reconstituted in vitro systems encapsulating actomyosin cell extracts robustly recapitulate contractile steady-states. This point has been clarified in the first paragraph of Section “Theoretical model”.

      (C) The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns.

      We agree with the referee and in the revised manuscript we have avoided the term “sarcomeric” because it refers to very specific organizations in cells. What we previously called “sarcomeric patterns”, where bands of high density exhibit nematic order perpendicular to the axis of the bands, is not a structure observed to our knowledge in cells. It is introduced to delimit the relevant region in parameter space. In the revised manuscript, we refer to this pattern as “banded pattern with perpendicular nematic organization” or “banded pattern” in short.

      (D) Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim.

      We thank the referee for raising this point, which was not sufficiently clarified in the original manuscript. We first note that in incompressible active nematic models, active tension is deviatoric (traceless and anisotropic) because an isotropic component would simply get absorbed by the pressure field enforcing incompressibility. Being compressible, our model admits an active tension tensor with deviatoric and isotropic components. We consider always a contractile (positive) isotropic component of active tension, but the deviatoric component can be either contractile (𝜅 > 0) or extensile (𝜅 < 0), where we follow the common terminology according to which in contractile/extensile active nematics the active stress is proportional to q with a positive/negative proportionality constant [see e.g. https://doi.org/10.1038/s41467018-05666-8]. Furthermore, as clarified in the revised manuscript, total active stresses accounting for the deviatoric and isotropic components are always contractile (positive) in all directions, as enforced by the condition |𝜅| < 1.

      For fibrillar patterns, we need 𝜅 < 0, and therefore active stresses are larger perpendicular to the nematic direction. This means that the anisotropic component of the active tension is extensile, although, accounting for the isotropic component, total active tension is contractile (see Fig. 1c). This is now clarified in the text following Eq. 7 and in Fig. 1.

      However, following fibrillar pattern formation and as a result of the interplay between active and viscous stresses, the total stress can be larger along the emergent dense nematic structures (“contractile structures”) or perpendicular to them (“extensile structures”). To clarify this point, in the revised Fig. 4 and the text referring to it, we have expanded our explanation and plotted the difference between the total stress component parallel to the nematic direction (𝜎∥) and the component perpendicular to the nematic direction (𝜎⊥), with contractile structures satisfying 𝜎∥ − 𝜎⊥ > 0 and extensile structures satisfying 𝜎∥ − 𝜎⊥ < 0. See lines 280 to 303. This is consistent with the common notion of contractile/extensile systems in incompressible nematic systems [see e.g. https://doi.org/10.1038/s41467-018-05666-8].

      (E) Additionally, its unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase.

      In the present work, we focus on the self-organization of a periodic patch of actomyosin gel. However, in adherent cells boundary conditions play an essential role, as discussed in our response to comment (A) by this referee. In ongoing work, we are studying with the present model the dynamics of assembly and reconfiguration of dense nematic structures in domains with boundary conditions mimicking in adherent cells, possibly interacting with the adhesion machinery, finding dynamical interactions as those suggested by the referee. As an example, we show a video of a simulation where at the edge of the circular domain, there is an actin influx modeling the lamellipodium, and in four small regions friction is higher simulating focal adhesions. Under these boundary conditions, the model presented in the paper exhibits the kind of dynamical reorganizations alluded by the referee.

      Author response video 1.

      We would like to note, however, that the prominent stress fibers in cells adhered to stiff substrates, so abundantly reported in the literature, are not the only instance of dense nematic actin bundles. In the present manuscript, we emphasize the relation of the predicted organizations with those found in different in vivo contexts not related to stress fibers, such as the aligned patterns of bundles in insects (trachea, scales in butterfly wings), in hydra, or in reproductive organs of C elegans; the highly dynamical network of bundles observed in C elegans early embryos; or the labyrinth patters of micro-ridges in the apical surface of epidermal cells in fish.

      (F) Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

      We thank the referee for raising this question, which needs further clarification. The goal of the microscopic model is not to reproduce the self-organized patterns predicted by the active gel theory. The microscopic model lacks essential ingredients, notably a realistic description of hydrodynamics and turnover. Our goal with the agent-based simulations is to extract the relation between nematic order and active stresses for a small homogeneous sample of the network. This small domain is meant to represent the homogeneous active gel prior to pattern formation, and it allows us to substantiate key assumptions of the continuum model leading to pattern formation, notably the dependence of isotropic and deviatoric components of the active stress on density and nematic order (Eq. 7) and the active generalized stress promoting ordering.

      We should mention that reproducing the range of out-of-equilibrium mesoscale architectures predicted by our active gel model with agent-based simulations seems at present not possible, or at least significantly beyond the state-of-the-art. To our knowledge, these models have not been able to reproduce the heterogeneous nonequilibrium contractile states involving sustained self-reinforcing flows underlying the pattern formation mechanism studied in our work. The scope of the discrete network simulations has been clarified in lines 340 to 349 in the revised manuscript.

      While agent-based cytoskeletal simulations are very attractive because they directly connect with molecular mechanisms, active gel continuum models are better suited to describe out-of-equilibrium emergent hydrodynamics at a mesoscale. We believe that these two complementary modeling frameworks are rather disconnected in the literature, and for this reason, we have attempted substantiate some aspects of our continuum modeling with discrete simulations. We have emphasized the complementarity of the two approaches in the conclusions.

      Reviewer #1 (Recommendations For The Authors):

      Questions on the theory:

      Does rho describe the density of actin or myosin? The authors say that they are modeling actomyosin material as a whole, but the actin and myosin should be modeled separately. Along, similar lines, does Q define the ordering of actin or myosin?

      Active gel models of the actomyosin cytoskeleton have been formulated with independent densities for actin and for myosin or using a single density field, implicitly assuming a fixed stoichiometry. Super-resolution imaging of the actomyosin cytoskeleton also suggest that in principle it makes sense to consider different nematic fields for actin and for myosin filaments. In the revised manuscript, we now explicitly mention that our density and nematic field are effective descriptions of the entire actomyosin gel (lines 82-84).

      A more detailed model would entail additional material parameters, not available experimentally, which may help reproduce specific experiments but that would make the systematic study of the different behaviors much more difficult. Our approach has been to keep the model minimal meeting the fundamental requirements outlined in the first paragraphs of Section “Theoretical model”.

      Should the active stress depend on material density? It seems strange (from Eq. 3) that active stress could be non-zero even where density is zero, since sigma_act does not depend on rho.

      Yes, active stress is assumed to be proportional to density. Eq. 3 in the original manuscript was misleading (it was multiplied by rho in Eq. 2). In the revised manuscript, we have explained with a bit more detail the theoretical model, clarifying this point.

      The authors should clearly explain their rationale for retaining certain types of nonlinear terms while ignoring others in theory. For instance, the nonlinearities in the equations of motion are sometimes quadratic in the fields, while there are also some cubic terms. Please remark up to what order in the fields the various interactions are modeled.

      We thank the referee for raising this point. The nonlinearities in the theory are easily explained on the basis of a small number of choices. We have added a new paragraph towards the end of Section “Theoretical model” (lines 145 to 152) providing a rationale for the origin and underlying assumptions leading to different nonlinearities.

      To connect with experiments and the biological context, please explain the biological origin of various terms in the model: (1) L-dependent terms in Eq. 2 and 4, (2) Flowalignment of nematic order and experimental evidence in support of it, (3) densitydependent susceptibility terms in Eq. 4

      (1) Unfortunately, the L-dependent terms are very bulky, but are very standard in nematic theories. The best way to understand their physical significance is through the expression of the nematic free-energy, which is now given and explained in the revised manuscript (Eq. 3). The resulting complicated expression for the molecular field and the nematic stress (Eqs. 4 and 5) are mathematical consequences of the choice of nematic free energy. In the revised manuscript, we also attempt to provide a basis for these terms in the context of the actin cytoskeleton. (2) To our knowledge, the best reference supporting this term from experiments is Reymann et al, eLife (2016). In the revised manuscript, we have provided a physical interpretation. (3) We have expanded the motivation and plausible microscopic justification of this term.

      There are different 'activity' terms in the model. Their biophysical origin is not made clear. For example, the authors should make clear if these activities arise from filament or motor activity. Relatedly, the authors should provide a comprehensive discussion of the signs of the different active parameters and their physical interpretations.

      In an active gel model, activity parameters are phenomenological and how they map to molecular mechanisms is not precisely known, although conventionally contractile active tension is ascribed to the mechanical transduction of chemical power by myosin motors. The fact is that, besides myosin activity, there are many nonequilibrium processes in the actomyosin cytoskeleton that may lead to active stresses including (de)polymerization of filaments or (un)binding of crosslinkers. In the revised manuscript, we have added sentences illustrating how different terms may result from microscopic mechanisms, but providing a precise mapping between our model and nonequilibrium dynamics of proteins is beyond the scope of our work, although our discrete network simulations address this issue to a certain degree.

      Following the suggestion of the referee, our description of the theory now discusses much more extensively the signs of activity parameters and their physical interpretations, e.g. the text following Eq. 7.

      Throughout the paper, various activity terms are varied independently of each other. Is that a reasonable assumption given that activities should depend on ATP and are thus not independent of one another?

      We agree that, ultimately, all active process depend on the conversion of chemical energy into mechanical energy. However, recent work has highlighted how active tension also depends on the microscopic architecture of the network controlled by multiple regulators of the actomyosin cytoskeleton (e.g. Chug et al, Nat Cell Biol, 2017). It is reasonable to expect that, for a given rate of ATP consumption, chemical power will be converted into mechanical power in different ways depending on the micro-architecture of the cytoskeleton, e.g. the stoichiometry of filaments, crosslinkers, myosins, or the length distribution of filaments (very long filaments crosslinked by myosins may be difficult to reorient but may contract efficiently).

      We have added a paragraph in Section “Theoretical model” with a discussion, lines 153 to 156.

      Sarcomeres are muscle fibers that exhibit alternating polarity pattern. Such patterning is not evident in what the authors call 'sarcomeres' in Fig. 2. I believe the authors should revise their terminology and not loosely interpret existing classifications in the field.

      We thank the referee for raising this point. We have changed the terminology.

      Fig 2a: Is the cartoon for filament alignment incorrect for kappa>0?

      The cartoon is correct. In the revised manuscript we have explained more clearly the physical meaning of kappa in the text following Eq. 7. In the caption of Fig. 1 and of Fig. 2a, we have also clarified that when the absolute value of kappa is <1, then active tension is positive in all directions.

      Within the section "Requirements for fibrillar and banded patterns", it will be useful to show the figures for varying the different active parameters in the main figures.

      We have followed the referee’s suggestion and moved Supp. Fig. 1 of the original manuscript to the main figures.

      How do the authors decide if bundles are contractile or extensile? Why are contractile bundles under tension while extensile bundles are under compression? I would expect the opposite.

      We agree that this point deserves a more detailed explanation. In the revised manuscript and in the new Figure 4, we further develop this point. The fibrillar pattern forms when kappa<0. We further assume that -1<kappa<0, so that active tension is positive in all directions. In this regime, the deviatoric (anisotropic) part of active tension is extensile. However, following pattern formation and because of the interplay between active and viscous stresses, the total stress in the emerging bundles may become extensile or contractile, depending on whether the largest component of stress is perpendicular or along the bundle axis. This is now presented in the updated figure, with new panels presenting maps of the total tension. The text discussing this point has been rewritten and we hope that the new version is much clearer (lines 280 to 303).

      A contractile bundle tends to shorten, but it cannot do it because of boundary conditions or the interaction with other bundles. As a result they are in tension. Conversely, an extensile bundle tries to elongate, but being constrained, it becomes compressed. As an analogy, consider the cortex of a suspended cell. The cortex is contractile, but it cannot contract because of volume regulation in th cell, which is typically pressurized. As a result, tension in the cortex is positive, as shown by Laplace’s law [10.1016/j.tcb.2020.03.005]. We have tried to clarify this point in the revised manuscript.

      Can the authors reproduce alternating density patterns using the cytosim simulations? This is an important step in establishing the correspondence between the continuum theory and the agent-based model.

      We have addressed this point in our response to public comment (F) of this referee.

      The authors do not provide code or data.

      The finite element code with an input file require to run a representative simulation in the paper is now made available, see Ref. [74].

      The customizations of Cytosim needed to account for nematic order in our discrete network simulations are available, see Ref. [98].

      Reviewer #2 (Public Review):

      Summary:

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article.

      We thank the referee for these comments. In the revised manuscript, we have highlighted the novelty, particularly in the last paragraph of the introduction, the first two paragraphs of Section “Theoretical model”, and in the conclusions. Despite a very large literature on theoretical models of stress fibers, actin rings, and active nematics, we argue that the active self-organization of dense nematic structures from an isotropic and low-density gel has not been compellingly explained so far. Many models assume from the outset the presence of actin bundles, or explain their formation using localized activity gradients. The literature of active nematics has extensively studied symmetry breaking and the self-organization. However, most of the works assume initial orientational order. Only a few works study the emergence of nematic order from a uniform isotropic state, but consider dry systems lacking hydrodynamic interactions or incompressible and density-independent systems [37,38]. Yet, pattern formation in actomyosin gels is characterized by large density variations, and by highly compressible flows, which coordinate in a mechanism relying on an advective instability and self-reinforcing flows.

      Our theoretical model is not particularly novel, and as we mention in the manuscript, it can be particularized to different models used in the literature. However, we argue that it has the right minimal features to capture nematic self-organization in actomyosin gels. To our knowledge, no previous study explains the emergence of dense and nematic structures from a low-density isotropic gel as a result of activity and involving the advective instability typical of symmetry-breaking and patterning in the actomyosin cytoskeleton. These are important qualitative features of our results that resonate with a large experimental record, and as such, we believe that our work provides a new and compelling mechanism relying on self-organization to explain the prominence and diversity of patterns involving dense nematic bundles in the actomyosin cytoskeleton across species.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      We agree with the referee that this was a weakness of the original manuscript. In the revised manuscript, within reasonable space constraints given the size and dynamism of the field of active nematics, we have placed our work in the context of this field (end of introduction and first two paragraphs of Section “Theoretical model”). The published version of our companion manuscript [45] also contributes to providing a clear context to our theoretical model within the field.

      Reviewer #2 (Recommendations For The Authors):

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article. I explain my questions comments below.

      We have responded to this comment above.

      (i) Active nematics including density variations have been dealt quite extensively in the literature. For example, the works of Sriram Ramaswami have dealt with this system including linear stability analysis, simulations etc. In what way is the present work different from the system that they have considered?

      (ii) Active flows leading to self organization has been a topic of discussion in many works. For example: (i) Annual Review of Fluid Mechanics, Vol. 43:637-659, 2010, https://doi.org/10.1146/annurev-fluid-121108-145434 (ii) S Santhosh, MR Nejad, A Doostmohammadi, JM Yeomans, SP Thampi, Journal of Statistical Physics 180, 699-709 (iii) M. G. Giordano1, F. Bonelli2, L. N. Carenza1,3, G. Gonnella1 and G. Negro1, Europhysics Letters, Volume 133, Number 5. In what way this work is different from any of these?

      (iii) I am confused about the models used in the paper. There is significant literature from Prof. Mike Cates group, Prof. Julia Yeomans group, Prof. Marchetti's group who all use similar governing equations. In the present paper, I find it hard to understand whether the model used is similar to the existing ones in literature or are there significant differences. It should be clarified.

      Response to (i), (ii) and (iii).

      We completely agree with this referee (and also the previous referee), that the contextualization of our work in the field of active nematics was very insufficient. In the revised manuscript, the last paragraph of the introduction and the first two paragraphs of Section “Theoretical model” now address this point. In short, previous active nematic models predicting patterns with density variations have been either for dry active matter (disregarding hydrodynamic interactions), or for suspensions of active particles moving in an incompressible flow. None of these previous works predict nematic pattern formation as a result of activity relying on the advective instability and self-reinforcing compressible flows, leading to high density and high order bundles surrounded by an isotropic low density phase. Yet, these are fundamental features observed in actomyosin gels. Many works deal with symmetry-breaking of a system with pre-existing order, but very few address how order emerges actively from an isotropic state. We thank the referee for pointing at the paper by Santhosh et al, who nicely make this argument and is now cited. Our mechanism is fundamentally different from that in Santhosh, whose model is incompressible and ignores density variations.

      We hope that the revised manuscript addresses this important concern.

      (i) >(iv) Below Eqn 6, it starts by saying that the “...origin..is clear...” Its not. I don't understand the physical origin of the instability, and this should be clarified, may be with some illustrations.

      We apologize for this unfortunate sentence, which we have rewritten in the revised manuscript (lines 181 to 185).

      Reviewer #3 (Public Review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripelike patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the conclusions drawn from continuum simulations.

      The paper is well written, figures are mostly clear and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not yet stated this way by the authors, I would argue that combining these two is of the key ingredients that distinguishes this theoretical paper from similar ones. The diversity of patterning processes experimentally observed is nicely elaborated on in the introduction of the paper, though other closely related previous work could also have been included in these references (see below for examples).

      We thank the referee for these comments and for the suggestion to emphasize the interplay of isotropic and anisotropic active tension, which is possible only in a compressible gel, as mentioned in the revised manuscript. We have emphasized this point in different places in the revised manuscript. We thank the suggestions of the referee to better connect with existing literature.

      To introduce the continuum model, the authors exclusively cite their own, unpublished pre-print, even though the final equations take the same form as previously derived and used by other groups working in the field of active hydrodynamics (a certainly incomplete list: Marenduzzo et al (PRL, 2007), Salbreux et al (PRL, 2009, cited elsewhere in the paper), Jülicher et al (Rep Prog Phys, 2018), Giomi (PRX, 2015),...). To make better contact with the broad active liquid crystal community and to delineate the present work more compellingly from existing results, it would be helpful to include a more comprehensive discussion of the background of the existing theoretical understanding on active nematics. In fact, I found it often agrees nicely with the observations made in the present work, an opportunity to consolidate the results that is sometimes currently missed out on. For example, it is known that self-organised active isotropic fluids form in 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019), just as shown and discussed in Fig. 2. It is also known that extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis (the other way around for \kappa>0, see e.g. Doostmohammadi et al, Nat Comm, 2018 "Active Nematics" for a review that makes this point), consistent with all relative nematic director/flow orientations shown in Figs. 2 and 3 of the present work.

      We thank the referee for these suggestions. Indeed, in the original submission we had outsourced much of the justification of the model and the relevant literature to a related pre-print, but this is not reasonable. The companion publication has now been accepted in the New Journal of Physics, with significant changes to better connect the work to the field of active nematics. A preprint reflecting those changes is available in Ref. [64], but we hope to reference the published paper that will come out soon.

      In the revised manuscript, we have significantly rewritten the Section “Theoretical model” to frame the continuum model in the context of the field of active nematics. While our model and results have commonalities with previous work, there are also important differences. We have highlighted the novelty of the present work along with the relation with previous studies and theoretical models in the last paragraph of the introduction and the first two paragraphs of Section “Theoretical model”. Furthermore, as suggested by the referee, we have made an effort to connect our results with previous work by Kumar, Mietke, Doostmohammadi and others.

      Regarding the last point alluded by the referee (“extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis”), the picture raised by the referee would be nuanced for our compressible system as compared to the incompressible systems discussed in that reference. As we have elaborated in our response to point (D) of Referee #1, our systems are overall contractile (with positive active tension in all directions), but the deviatoric component of the active tension can be either extensile or contractile. In our “extensile” models (left in Fig. 2c), material is drawn to laterally to the nematic axis but it is not expelled along this axis. Instead, it is “expelled” by turnover. In the revised manuscript, we have added a comment about this.

      The results of numerical simulations are well-presented. Large parts of the discussion of numerical observations - specifically around Fig. 3 - are qualitative and it is not clear why the analysis is restricted to \kappa<0. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (https://arxiv.org/abs/2309.04224). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      We thank the referee for these comments. We are reluctant to extend the detailed analysis of emergent architectures and dynamics to the case \kappa > 0 as it leads to architectures not observed, to our knowledge, in actin networks. In the revised manuscript, we have expanded and clarified the characterization of emergent contractile/extensile networks by reporting the relative magnitude of stress along and perpendicular to the nematic direction. Our revised manuscript clearly shows that even though all of our simulations describe locally contractile systems with extensile anisotropic active tension, the emergent meso-structures can be either extensile or contractile, with the extensile ones exhibiting the usual bend-type instability (a secondary instability in our system) described classically for extensile active nematic systems. We have rewritten the text discussing this (lines 280 to 303), where we have placed these results in the context of recent work reporting the nontrivial relation between the contractility/extensibility of the local units vs the nematic pattern.

      I compliment the authors for trying to gain further mechanistic insights into this conclusion with microscopic filament simulations that are diligently performed. It is rightfully stated that these simulations only provide plausibility tests and, within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 (which is dropped ad-hoc from Fig. 3 onward) microscopically, in which the continuum theory does also predict the formation of stripe patterns - besides the short comment at the very end? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa?

      We thank the referee for this compliment. We think that the point raised by the referee is very interesting. It is reasonable to expect that the sign of \kappa may not be a constant but rather depend on S and \rho. Indeed, for a sparse network with low order, the progressive bundling by crosslinkers acting on nearby filaments is likely to produce a large active stress perpendicular to the nematic direction, whereas in a dense and highly ordered region, myosin motors are more likely to effectively contract along the nematic direction whereas there is little room for additional lateral contraction by additional bundling. As discussed in our response to referee #1, we believe that studying the formation of patterns using the discrete network simulations is far beyond the scope of our work. We discuss in lines 332 to 341, as well as in the last paragraph of the conclusions, the scope and limitations of our discrete network simulations.

      Overall, the paper represents a valuable contribution to the field of active matter and, if strengthened further, might provide a fruitful basis to develop new hypothesis about the dynamic self-organisation of dense filamentous bundles in biological systems.

      Reviewer #3 (Recommendations For The Authors):

      • The statement "the porous actin cytoskeleton is not a nematic liquid-crystal because it can adopt extended isotropic/low-order phases" is difficult to understand and should be clarified, as the next paragraph starts formulating a nematic active liquid crystal theory. Do the authors mean a crystal that "Tends to be in a disordered phase?", according to its equilibrium properties? It would still be a "nematic liquid crystal", only its ground state is not a nematic phase.

      We agree with the referee, and we hope that changes in the introduction and in Section “Theoretical model” address this comment.

      • I could not find what Frank energy is precisely used, that would be helpful information.

      In the revised manuscript, we have provided the expression for the nematic free energy in Eq. 3.

      • The Significance of green/purple arrows in Fig 2a sketch unclear, green arrows also in b,c, do they represent the same quantity? From the simulations images it is overall it is very difficult to see how the flows are oriented near the high-density regions (i.e. if they are towards / away from the strip).

      We thank the referee for bringing this up. The colorcodings of the sketches were confusing. The modified figures (Fig. 1(c) and Fig. 2(a)) present now a clearer and unified representation of anisotropic tension. The green arrows in Fig. 2(c) represent the out-of-equilibrium flows in the steady state. We agree that the zoom is insufficient to resolve the flow structure. For this reason, in the revised Fig. 2, we have added additional panels showing the flow with higher resolution.

      • It is currently unclear how the linear stability results - beyond identification of the parameter \delta - inform any of the remaining manuscript. Quantitative comparisons of the various length scales seen in simulated patterns (e.g. Fig. 2b, 3c etc) with linear predictions and known characteristic length scales would be instructive mechanistically, would make the overall presentation more compelling and probes limitations of linear results.

      In the revised manuscript, we have provided further information so that the readers can appreciate the predictions and limitations of the linear stability results. We have added a sentence and a Figure to show that, in addition to the critical activity, the linear theory provides a good prediction of the wavelengh of the pattern. See lines 199 to 201.

      • It is not clear what is meant by "[bundle-formation] requires that active tension perpendicular to nematic orientation is larger than along this direction", and therefore also not why that would be "counter-intuitive". If interpreted naively, I would say that a large tension brings in more filaments into the bundle, so that may well be an obviously helpful feature for bundle formation and maintenance. In any case, it would be helpful if clarity is improved throughout when arguments about "directions of tensions" are made.

      We have significantly rewritten the first paragraphs of section “Microscopic origin…” to clarify this point (lines 330 to 339). This paragraph, along with other changes in the manuscript such as the explanation of Eq. 7 or the discussion about the stress anisotropy in the new version of Fig. 4 (see lines 280 to 303), provide a better explanation of this important point.

      • All density color bars: Shouldn't they rather be labelled \rho/\rho_0?

      Yes! We have corrected this typo.

      • Scalar product missing in caption definition of order parameter Fig. 2

      We have corrected this typo.

      • Fig. 3a: I suggest to put the expression for q0 in the caption

      We have changed q_0 by S_0 and clarified its meaning in the caption of what now is Fig 4.

      • Paragraph on bottom right of page 6 should several times probably refer to Fig. 3c(...), instead of Fig. 3b

      We have corrected this typo.

    1. Author response:

      We thank all three reviewers for their thoughtful and constructive evaluations of our manuscript, “Generation of knock-in Cre and FlpO mouse lines for precise targeting of striatal projection neurons and dopaminergic neurons.” We are encouraged that the reviewers recognize the value, specificity, and utility of these new lines for the basal ganglia and dopamine research communities. Below, we summarize our planned revisions and clarifications in response to the reviewers’ comments.

      (1) Novelty and comparison with existing lines

      We appreciate Reviewer 1’s point regarding the existence of previously generated Cre and Flp lines targeting similar neuronal populations. Our project was initiated six years ago, and during the course of generating and characterizing all five lines, we became aware that similar individual lines have since been developed by other groups. Nevertheless, our study provides a coordinated and independently validated set of lines created using a standardized knock-in (KI) strategy and distributed through Jackson Laboratories for unrestricted community use. Importantly, whereas previous BAC transgenic approaches rely on random insertion, which can lead to position effects and ectopic expression, our design places the recombinase coding sequence immediately downstream of the endogenous stop codon using a self-cleaving T2A peptide. This ensures expression under native promoter and regulatory control, preserving physiological gene regulation.

      To address the Reviewers’ points, we will (i) expand the Introduction and Discussion to clarify the rationale and advantages of endogenous promoter–driven recombinase expression over BAC-based systems, emphasizing that our lines provide a uniform, promoter-controlled, and publicly accessible toolkit for the community, (ii) and explore including a comparative table summarizing differences in construct design, expression fidelity, and recombination efficiency across published lines (e.g., PMID 33979604, 38965445).

      (2) Quantification, validation, and comparison of Cre vs FlpO

      We agree with Reviewers 1 and 2 that further quantification and discussion of Cre versus FlpO fidelity will strengthen the manuscript. The observed difference in expression breadth between Cre and FlpO lines likely reflects a fundamental property of the recombinases themselves rather than a discrepancy in targeting. Cre recombinase is significantly more enzymatically efficient than FlpO, meaning that even very low endogenous levels of gene expression (e.g., Drd1a or Adora2a) can drive Cre-dependent recombination, whereas FlpO requires higher expression thresholds. Consequently, reporter-based readouts will inherently appear broader for Cre lines, despite both being driven by the same endogenous promoters.

      To address these points, we will (i) provide quantitative co-labeling analyses for the DAT-FlpO line with TH immunostaining to assess efficiency and specificity, (ii) clarify in the Results and Discussion that differences between Cre and FlpO expression patterns largely stem from differences in recombinase kinetics and sensitivity, not mismatched promoter activity, (iii) and include representative high-resolution images and relevant statistics in the revised figures. Importantly, we would like to note that RNAscope may not be an ideal validation approach in this context, as in situ transcript detection cannot capture the enzymatic threshold differences that determine reporter recombination and thus will not help address observed differences between Cre and FlpO lines. Finally, we are actively performing electrophysiological comparisons between Cre and FlpO lines to rigorously quantify potential physiological differences between them. Updated analyses will be incorporated as available or described as ongoing future work.

      (3) Discussion of scope and interpretation

      We appreciate the reviewers’ suggestions to better contextualize the scope of this resource. We will revise the Discussion to (i) highlight that the Cre–FlpO pairings enable powerful intersectional and cross-line strategies for dissecting basal ganglia and midbrain circuitry, (ii) and clarify that our goal was to generate a rigorously validated foundational resource, with detailed functional comparisons and manipulation studies to be explored in subsequent work.

      In summary, we thank the reviewers for their insightful feedback. The planned revisions and clarifications will underscore the unique strengths of our knock-in design, explore potential Cre–FlpO differences, and highlight the value of this standardized and accessible toolkit for the neuroscience community.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors report the structure of the human CTF18-RFC complex bound to PCNA. Similar structures (and more) have been reported by the O'Donnell and Li labs. This study should add to our understanding of CTF18-RFC in DNA replication and clamp loaders in general. However, there are numerous major issues that I recommend the authors fix. 

      Strengths: 

      The structures reported are strong and useful for comparison with other clamp loader structures that have been reported lately. 

      Weaknesses: 

      The structures don't show how CTF18-RFC opens or loads PCNA. There are recent structures from other groups that do examine these steps in more detail, although this does not really dampen this reviewer's enthusiasm. It does mean that the authors should spend their time investigating aspects of CTF18-RFC function that were overlooked or not explored in detail in the competing papers. The paper poorly describes the interactions of CTF18-RFC with PCNA and the ATPase active sites, which are the main interest points. The nomenclature choices made by the authors make the manuscript very difficult to read. 

      Reviewer #2 (Public review): 

      Summary 

      Briola and co-authors have performed a structural analysis of the human CTF18 clamp loader bound to PCNA. The authors purified the complexes and formed a complex in solution. They used cryo-EM to determine the structure to high resolution. The complex assumed an auto-inhibited conformation, where DNA binding is blocked, which is of regulatory importance and suggests that additional factors could be required to support PCNA loading on DNA. The authors carefully analysed the structure and compared it to RFC and related structures. 

      Strength & Weakness 

      Their overall analysis is of high quality, and they identified, among other things, a human-specific beta-hairpin in Ctf18 that flexibly tethers Ctf18 to Rfc2-5. Indeed, deletion of the beta-hairpin resulted in reduced complex stability and a reduction in a primer extension assay with Pol ε. This is potentially very interesting, although some more work is needed on the quantification. Moreover, the authors argue that the Ctf18 ATP-binding domain assumes a more flexible organisation, but their visual representation could be improved. 

      The data are discussed accurately and relevantly, which provides an important framework for rationalising the results. 

      All in all, this is a high-quality manuscript that identifies a key intermediate in CTF18dependent clamp loading. 

      Reviewer #3 (Public review): 

      Summary: 

      CTF18-RFC is an alternative eukaryotic PCNA sliding clamp loader that is thought to specialize in loading PCNA on the leading strand. Eukaryotic clamp loaders (RFC complexes) have an interchangeable large subunit that is responsible for their specialized functions. The authors show that the CTF18 large subunit has several features responsible for its weaker PCNA loading activity and that the resulting weakened stability of the complex is compensated by a novel beta hairpin backside hook. The authors show this hook is required for the optimal stability and activity of the complex. 

      Relevance: 

      The structural findings are important for understanding RFC enzymology and novel ways that the widespread class of AAA ATPases can be adapted to specialized functions. A better understanding of CTF18-RFC function will also provide clarity into aspects of DNA replication, cohesion establishment, and the DNA damage response. 

      Strengths: 

      The cryo-EM structures are of high quality enabling accurate modelling of the complex and providing a strong basis for analyzing differences and similarities with other RFC complexes. 

      Weaknesses: 

      The manuscript would have benefitted from more detailed biochemical analysis to tease apart the differences with the canonical RFC complex. 

      I'm not aware of using Mg depletion to trap active states of AAA ATPases. Perhaps the authors could provide a reference to successful examples of this and explain why they chose not to use the more standard practice in the field of using ATP analogues to increase the lifespan of reaction intermediates. 

      Overall appraisal: 

      Overall the work presented here is solid and important. The data is sufficient to support the stated conclusions and so I do not suggest any additional experiments. 

      Reviewer #1 (Recommendations for the authors): 

      We thank the reviewer for their positive comments and for their thorough review. All raised points have been addressed below.

      Major points 

      (1) The nomenclature used in the paper is very confusing and sometimes incorrect. The authors refer to CTF18 protein as "Ctf18", and the entire CTF18-RFC complex as "CTF18". This results in massive confusion because it is hard to ascertain whether the authors are discussing the individual subunits or the entire complex. Because these are human proteins, each protein name should be fully capitalized (i.e. CTF18, RFC4 etc). The full complex should be referred to more clearly with the designation CTF18-RFC or CTF18-RLC (RFC-like complex). Also, because the yeast and human clamp loader complexes use the same nomenclature for different subunits, it would be best for the authors to use the "A, B, C, D, E subunit" nomenclature that has been standard in the field for the past 20 years. Finally, the authors try to distinguish PCNA subunits by labeling them "PCNA2" or "PCNA1" (see Page 8 lines 180,181 for an example). This is confusing because the names of the RFC subunits have similar formats (RFC2, RFC3, RFC4, etc). In the case of RFC this denotes unique genes, whereas PCNA is a homotrimer. Could the authors think of another way to denote the different subunits, such as super/subscript? PCNA-I, PCNA-II, PCNA-III? 

      We thank the reviewer for pointing out the confusing nomenclature. Following the referee suggestion, we now refer to the CTF18 full complex as “CTF18-RFC”. We prefer keeping the nomenclature used for CTFC18 subunits as RFC2, RFC3 etc., as recently used in Yuan et al, Science, 2024. However, we followed the referee’s suggestion for PCNA subunits, now referred to as PCNA-I, PCNA-II and PCNA-III.

      (2) I believe that the authors are over-interpreting their data in Figure 1. The claim that "less sharp definition" of the map corresponding to the AAA+ domain of Ctf18 supports a relatively high mobility of this subunit is largely unsubstantiated. There are several reasons why one could get varying resolution in a cryo-EM reconstruction, such as compositional heterogeneity, preferred orientation artifacts, or how the complex interacts with the air-water interface. If other data were presented that showed this subunit is flexible, this evidence would support that data but cannot alone as justification for subunit mobility. Along these lines, how was the buried surface area (2300 vs 1400 A2) calculated? Is this the total surface area or only the buried surface area involving the AAA+ domains? It is surprising that these numbers are so different considering that the subunits and complexes look so similar (Figures 1c and 2b). 

      We respectfully disagree with the suggestion that our interpretation of local flexibility in the AAA+ domain of Ctf18 is overreaching. Several lines of evidence support this interpretation. First, compositional heterogeneity is unlikely, as the A′ domain of Ctf18 is well-resolved and forms stable interactions with RFC3, indicating that Ctf18 is consistently incorporated into the complex. Second, preferred orientation artifacts are excluded, as the particle distribution shows excellent angular coverage (Fig. S9a). Third, we now include a 3D variability analysis (3DVA; Supplementary Video 1), which reveals local conformational heterogeneity centered around the AAA+ domain of Ctf18, consistent with intrinsic flexibility.

      Regarding the buried surface area values, the reported numbers refer specifically to the interfaces between the AAA+ domain of Ctf18 and RFC2, and are derived from buried surface area calculations performed with PISA. The smaller interface (~1400 Ų) compared to RFC1–RFC2 (~2300 Ų) reflects low sequence identity (~26%) and divergent structural features, including the absence of conserved elements such as the canonical PIP-box in Ctf18. We have clarified and expanded this explanation in the revised manuscript (Page 7).

      (3) The authors very briefly discuss interactions with PCNA and how the CTF18-RFC complex differs from the RFC complex. This is amongst the most interesting results from their work, but also not well-developed. Moreover, Figure 3D describing these interactions is extremely unclear. I feel like this observation had potential to be interesting, but is largely ignored by the authors. 

      We thank the referee for pointing this out. We have expanded the section describing the interactions of CTF18-RFC and PCNA (Page 9 in the new manuscript), and made a new panel figure with further details (Fig. 3D).  

      (4) The authors make the observation that key ATP-binding residues in RFC4 are displaced and incompatible with nucleotide binding in their CTF18-RFC structure compared to the hRFC structure. This should be a main-text figure showing these displacements and how it is incompatible with ATP binding. Again, this is likely an interesting finding that is largely glossed over by the authors. 

      We now discuss this feature in detail (Pag 11 in the new manuscript), and added two figure insets (Fig. 4c) describing the incompatibility of RFC4 with nucleotide binding.

      (5) The authors claim that the work of another group (citation 50) "validate(s) our predictions regarding the significant similarities between CTF18-RFC and canonical RFC in loading PCNA onto a ss/dsDNA junction." However, as far as this reviewer can tell the work in citation 50 was posted online before the first draft of this manuscript appeared on biorxiv, so it is dubious to claim that these were "predictions." 

      We agree with the referee about this claim. We have now revised the text as follows:

      “While our work was being finalized, several cryo-EM structures of human CTF18-RFC bound to PCNA and primer/template DNA were reported by another group (He et al, PNAS, 2024). These findings are consistent with the distinct features of CTF18-RFC observed in our structures and independently support the notion of significant mechanistic similarity between CTF18-RFC and canonical RFC in loading PCNA onto a ss/dsDNA junction”.

      (6) The authors use a primer extension assay to test the effects of truncating the Nterminal beta hairpin of CTF18. However, this assay is only a proxy for loading efficiency and the observed effects of the mutation are rather subtle. The authors could test their hypothesis more clearly if they performed an ATPase assay or even better a clamp loading assay. 

      We thank the referee for this valuable suggestion. In response, we have performed clamp loading assays comparing the activities of human RFC, wild-type CTF18-RFC, and the β-hairpin–truncated CTF18-RFC mutant. The results, now presented in Fig. 6 and Table 1 of the revised manuscript, clearly show that truncation of the N-terminal βhairpin results in a slower rate of PCNA loading. We propose that this reduced loading rate likely contributes to the diminished Pol ε–mediated DNA synthesis observed in the primer extension assays.

      Minor points 

      (1) Page 3 line 53 the introduction suggests that ATP hydrolysis prompts clamp closure. While this may be the case, to my knowledge all recent structural work shows that closure can occur without ATP hydrolysis. It may be better to rephrase it to highlight that under normal loading conditions, ATP hydrolysis occurs before clamp closure. 

      The text now reads (Page 3): 

      “DNA binding prompts the closure of the clamp and hydrolysis of ATP induces the concurrent disassembly of the closed clamp loader from the sliding clamp-DNA complex, completing the cycle necessary for the engagement of the replicative polymerases to start DNA synthesis.”

      (2) Page 3 line 60, I do not see how the employment of alternative loaders highlights the specificity of the loading mechanism - would it not be possible for multiple loaders to have promiscuous clamp loading? 

      We thank the referee for this comment. The text now reads (Page 3):

      “However, eukaryotes also employ alternative loaders (20), including CTF18-RFC (6, 21-24), which likely use a conserved loading mechanism but are functionally specialized through specific protein interactions and context-dependent roles in DNA replication.”

      (3) Page 4 line 75 could you please cite a study that shows Ctf8 and Dcc1 bind to the Ctf18 C-terminus and that a long linker is predicted to be flexible? 

      Two references have been added (Stokes et al, NAR, 2020 and Grabarczyk et al, Structure, 2018)

      (4) Figure 2A has the N-terminal region of Ctf18 as bound to RFC3 but should likely be labeled as bound to RFC5. This caused significant confusion while trying to parse this figure. Further, the inclusion of "X" as a sequence - does this refer to a sequence that was not buildable in the cryo-EM map? I would be surprised that density immediately after the conserved DEXX box motif is unbuildable. If this is the case, it should be clearly stated in the figure legend that "X" denotes an unbuildable sequence. For the conserved beta-hairpin in the sequence, could the authors superimpose the AlphaFold prediction onto their structure? It would be more informative than just looking at the sequence. 

      We apologize for this confusion. The error in Figure 2A has been corrected. The figure caption now explicitely says that “X” refers to amino acid residues in the sequence which were not modelled. A superposition of the cryo-EM model of the N-terminal Beta hairpin in human Ctf18 and AlphaFold predictions for this feature in drosophila and yeast Ctf18 is now presented in Figure 2A.

      (5) Page 8 line 168, the use of the term "RFC5" here feels improper, since the "C" subunit is not RFC5 in all lower eukaryotes (see comment above about nomenclature). For instance, in S cerevisiae, the C subunit is RFC3. I would expect this interaction to be maintained in all C subunits, not all RFC5 subunits. 

      The text now reads (Page 8):

      “Therefore, lower eukaryotes may use a similar b-hairpin motif to bind the corresponding subunit of the RFC-module complex (RFC5 in human, Rfc3 in S. cerevisiae), emphasizing its importance.”  

      (6) Page 10 line 228, the authors claim that hydrolysis is dispensable at the Ctf18/RFC2 interface based on evidence from RFC1/RFC2 interface, by analogy that this is the "A/B" interface in both loaders. However, the wording makes it sound as if the cited data were collected while studying Ctf18 loaders. The authors should clarify this point. 

      The text has been modified as follows (Pag 11): 

      “Prior research has indicated that hydrolysis at the large subunit/RFC2 interface is not essential for clamp loading by various loaders (48-51), while the others are critical for the clamp-loading activity of eukaryotic RFCs. “

      (7) Page 11 line 243/244 the authors introduce the separation pin. Could they clarify whether Ctf18 contains any aromatic residues in this structural motif that would suggest it serves the same functional purpose? Also, the authors highlight this is similar to yeast RFC, which makes it sound like this is not conserved in human RFC, but the structural motif is also conserved in human RFC. 

      We thank the reviewer for this helpful comment. We have clarified in the revised text (Page 12) that the separation pin is conserved not only in yeast RFC but also in human RFC, and now note that human Ctf18 also harbors aromatic residues at the corresponding positions. This observation is supported by the new panel in Figure 4e.

      Minutia 

      (1) Page 2 line 37 please remove the word "and" before PCNA. 

      This has been corrected.

      (2) Please define AAA+ and update the language to clarify that not all pentameric AAA+ ATPases are clamp loaders. 

      AAA+ has been now defined (Page 3).

      (3) Page 4 line 86 Given the relatively weak interaction of Pol ε. 

      This has been corrected.

      (4) Page 8 line 204 the authors likely mean "leucine" and not "lysine". 

      We thank the reviewer for catching this. The error has been corrected.

      (5) Page 14 line 300, the authors claim that CTF18 utilizes three subunits but then list four. 

      We have corrected this.

      Reviewer #2 (Recommendations for the authors): 

      We thank the reviewer for their positive comments and valuable suggestions. The points raised by the referee have been addressed below.

      Major point: 

      (1) Please quantify Figure 6 and S9 from 3 independent repeats and determine the standard deviation to show the variability of the Ctf18 beta hairpin deletion.  The authors suggest that a suboptimal Ctf18 complex interaction with PCNA impacts the stability of the complex, but do not test this hypothesis. Could the suboptimal PIP motif in Ctf18 be changed to an improved motif and the impact tested in the primer extension assay? Although not essential, it would be a nice way to explore the mechanism. 

      We thank the reviewer for the suggestion. However, we note that Figure 6b (now 7b) already presents the quantification of the primer extension assay from three independent replicates, with error bars showing standard deviations, and includes the calculated rate of product accumulation. These data clearly indicate a 42% reduction in primer synthesis rate upon deletion of the Ctf18 β-hairpin.

      We agree that we do not provide direct evidence of impaired complex stability upon deletion of the Ctf18 β-hairpin. However, the 2D classification of the cryo-EM dataset (Figure S9) shows a marked reduction in the number of particles corresponding to intact CTF18-RFC–PCNA complexes in the β-hairpin deletion sample, with the majority of particles corresponding to free PCNA. This contrasts with the wild-type dataset, where complex particles are predominant. These findings indirectly suggest that deletion of the β-hairpin compromises the stability or assembly of the clamp-loader–clamp complex.

      We thank the reviewer for the valuable suggestion to mutate the weak PIP-box of Ctf18. While an interesting direction, we instead sought to directly test the mechanism by performing quantitative clamp loading assays. These assays revealed a significant reduction in the rate of PCNA loading by the CTF18<sup>Δ165–194</sup>-RFCmutant (Figure 6), supporting the conclusion that the β-hairpin contributes to productive PCNA loading. This loading delay likely underlies the reduced rate of primer extension observed in the Pol ε assay (Figure 7), consistent with impaired formation of processive polymerase– clamp complexes.

      (2) I did not see the method describing how the 2D classes were quantified to evaluate the impact of the Ctf18 beta hairpin deletion on complex formation. Please add the relevant information. 

      The relevant information has been added to the Method section:

      “For quantification of complex stability, the number of particles contributing to each 2D class was extracted from the classification metadata (Datasets 1 and 3). All classes showing isolated PCNA rings were summed and compared to the total number of particles in classes representing intact CTF18-RFC–PCNA complexes. This analysis was performed for both wild-type and β-hairpin deletion mutant datasets. Notably, no 2D classes corresponding to free PCNA were observed in the wild-type dataset, whereas in the mutant dataset, a substantial fraction of particles corresponded to isolated PCNA, suggesting reduced stability of the mutant complex.”

      Minor point: 

      (1) Page 2, line 25. Detail what type of mobility is referred to. Do you mean flexibility in the EM-map? 

      We have clarified this. The text now reads:

      “The unique RFC1 (Ctf18) large subunit of CTF18-RFC, which based on the cryo-EM map shows high relative flexibility, is anchored to PCNA through an atypical low-affinity PIP box”

      (2) Page 4, line 82. Please introduce CMGE, or at least state what the abbreviation stands for. 

      This has been addressed.

      (3) Page 4, line 89. Specify that the architecture of the HUMAN CTF18-RFC module is not known, as the yeast one has been published. 

      At the time our study was initiated, the architecture of the human CTF18-RFC module was unknown. A structure of the human complex was published by another group during the final stages of our work and is now properly acknowledged in the Discussion.

      (4) Page 6. Is it possible to illustrate why the autoinhibited state cannot bind to DNA? A visual representation would be nice. 

      We thank the reviewer for this suggestion. Figure 4b in the original manuscript already illustrates why the autoinhibited, overtwisted conformation of the CTF18-RFC pentamer cannot accommodate DNA. In this state, the inner chamber of the loader is sterically occluded, precluding the binding of duplex DNA.

      Reviewer #3 (Recommendations for the authors): 

      We thank Reviewer #3 for their constructive feedback and positive overall assessment of our work.

      We also thank the reviewer for their remarks on the use of Mg depletion to halt hydrolysis. Magnesium is an essential cofactor for ATP hydrolysis, and its depletion is expected to effectively prevent catalysis by destabilizing the transition state, possibly more completely than the use of slowly hydrolysable analogues such as ATPγS. We have recently employed Mg<sup>²+</sup> depletion to successfully trap a pre-hydrolytic intermediate in a replicative AAA+ helicase engaged in DNA unwinding (Shahid et al., Nature, 2025). This precedent supports the rationale for our choice, and the reference has now been included in the revised manuscript.

      I think the authors deposited the FSC curve for the +Mg structure in the -Mg structure PDB/EMDB entry according to the validation report. 

      We thank the reviewer for their careful inspection of the deposition materials. The discrepancy in the deposited FSC curve has now been corrected, and the appropriate FSC curves have been assigned to the correct PDB/EMDB entries.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Strengths: 

      Overall, this manuscript is well-written and contains a large amount of high-quality data and analyses. At its core, it helps to shed light on the overlapping roles of Edc3 and Scd6 in sculpting the yeast transcriptome. 

      Weaknesses: 

      (1) While the data presented makes conclusions about mRNA stability based on corresponding ChIP-Seq analyses and analyzing other mutants (e.g. Dcp2 knockout), at no point is mRNA stability actually ever directly assessed. This direct assessment, even for select transcripts, would further strengthen their conclusions. 

      We appreciate the reviewer’s concern but wish to emphasize that we conducted ChIP-Seq analysis of RNA Polymerase II occupancies in the CDSs of all genes, known to be a reliable indicator of transcription rate, and found only small increases in Pol II occupancies that cannot account for the increased transcript levels of the cohort of mRNAs up-regulated in the scd∆6edc3∆ double mutant (Fig. 3E). This provides strong evidence that increased transcription is not the main driver of increased mRNA abundance in this mutant.  Bolstering this conclusion, we showed that the Hap2/Hap3/Hap4/Hap5 complex of transcription factors responsible for induction of Ox. Phos. genes was not activated in scd6Δedc3Δ cells in glucose medium (Fig. 6F(ii)); nor was the Adr1 activator of CCR genes activated (Fig. S9C(i)), ruling out transcriptional induction of their target genes in glucose-replete scd6Δ/edc3Δ cells and instead favoring reduced degradation as the mechanism underlying derepression of Ox. Phos. and CCR gene transcripts in this mutant. In Fig. 3B, we further showed that the majority of mRNAs up-regulated in the scd6Δedc3Δ double mutant are also derepressed by dcp2Δ, and in Fig. 3D that the mRNAs up-regulated in scd∆6edc3∆ cells exhibit a higher than average codon protection index (CPI) indicating a heightened involvement of decapping and co-translational degradation by Xrn1 in their decay. To provide additional support for our conclusion, we have conducted new experiments to measure the abundance of capped mRNAs genome-wide by CAGE sequencing of total mRNA in both WT and scd∆6edc3∆ cells.  As established previously, normalizing CAGE TPMs to total mRNA TPMs determined by RNA-Seq, dubbed the C/T ratio, provides a reliable measure of the capped proportion of each transcript.  The new data presented in Fig. 3C indicate that the mRNAs up-regulated in the scd∆6edc3∆ mutant have significantly lower than average C/T ratios in WT cells, whereas the C/T ratios for the down-regulated transcripts are higher than average, and that these differences between the two groups and all expressed mRNAs are diminished in the scd∆6edc3∆ double mutant. These are the results expected if the up-regulated mRNAs are selectively targeted for decapping in WT cells dependent on Edc3/Scd6, whereas the downregulated mRNAs are targeted by Edc3/Scd6 less than the average transcript. In the original version of the paper, we came to the same conclusion by analyzing our previous CAGE data for the dhh1∆ mutant for the same transcripts dysregulated scd∆6edc3∆ cells, now presented as supportive data in Fig. S3F. Finally, we added the fact that among all four Dhh1 target mRNAs examined in the previous study of He et al. (2022) and found here to be up-regulated selectively in the scd6∆edc3∆ double mutant (Fig. S10), two of them (SDS23 and HXT6) were shown directly to have longer half-lives in dhh1∆ vs. WT cells by He et al. (2018). Hence, the combined evidence is compelling that selective up-regulation of particular mRNAs in the scd∆6edc3∆ mutant results from diminished decapping/decay rather than enhanced transcription; and we feel that the additional supporting evidence that would be provided by measuring half-lives of a small group of up-regulated transcripts would not justify the considerable effort required to do so.  Moreover, the standard approach for such experiments of impairing transcription with an inhibitor of Pol II or a Pol II Ts<sup>-</sup> mutation has been criticized because of the known buffering (suppression) of mRNA decay rates in response to impaired transcription.

      (2) Scd6 and Edc3 show a high level of functional redundancy, as demonstrated by the double mutant. As these proteins form complexes with other decapping factors/activators, I'm curious if depleting both proteins in the double mutant destabilizes any of these other factors. Have the authors ever assessed the levels of other key decapping factors in the double mutants (i.e. Dhh1, Pat1, Dcp2...etc)? I wonder if depleting both proteins leads to a general destabilization of key complexes. It would also be interesting to see if depleting Edc3 or Scd6 leads to a concomitant increase in the other protein as a compensatory mechanism. 

      We thank the reviewer for this insight.  Examining our Ribo-Seq and TMT-MS data revealed that Dhh1 expression and steady-state abundance are increased ~2-fold in the scd6∆edc3∆ strain, indicating that the up-regulation of many of the same mRNAs by scd6∆edc3∆ and dhh1∆ does not result indirectly from reduced levels of Dhh1 in the scd6∆edc3∆ mutant. The predicted increased in Dhh1 expression might signify a compensatory response to the absence of Scd6/Edc3.  We also observed an ~40% reduction in Dcp2 translation (RPFs) and mRNA abundance in the scd6∆edc3∆ strain, which might contribute to the up-regulation of mRNAs dysregulated in this mutant. However, our new immunoblot analyses revealed no significant reduction in steady-state Dcp2 levels in scd6∆edc3∆ cells (Input lanes in Figs. 3F and S4C(i)-(ii)). Moreover, our previous finding that the majority of mRNAs subject to NMD, up-regulated by both upf1∆ and dcp2∆, are not upregulated by scd6∆edc3∆ implies that Dcp2 abundance in scd6∆edc3∆ cells is adequate for normal levels of NMD and favors a direct role for Scd6/Edc3 in accelerating degradation of most transcripts up-regulated in this mutant. We have added these points to the DISCUSSION.

      (3) While not essential, it would be interesting if the authors carried out add-back experiments to determine which domain within Scd6/Edce3 plays a critical role in enforcing the regulation that they see. Their double mutant now puts them in a perfect position to carry out such experiments. 

      We agree with the reviewer that our scd6∆edc3∆ strain provides an opportunity to dissect the Scd6 and Edc3 proteins to determine which domains and motifs of each protein are most critically required for their functions in activating mRNA decay. However, if conducted thoroughly, this would entail an extensive analysis requiring a combination of genetics, biochemistry and genomics.  Considering the large amount of data already presented in 43 and 34 panels of main and supplementary figures, respectively, we feel that these additional experiments would be conducted more appropriately as a stand-alone follow-up study.

      Reviewer #2 (Public review): 

      Weaknesses: 

      The authors show very nicely in Figure S1A that growth phenotypes from scd6Δedc3∆ can be rescued by transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). The manuscript might benefit from using these rescue strategies in the analysis performed (e.g. RNA-seq, ribosome occupancies, and translational efficiencies). Also, these rescue assays could provide a good platform to further characterise the protein-protein interactions between Edc3, Scd6, and Dhh1. 

      We responded to this point immediately above in responding to Rev. #1.

      Reviewer #3 (Public review): 

      Weaknesses: 

      The limitations of the study include the use of indirect evidence to support claims that Edc3 and Scd6 recruit Dhh1 to the Dcp2 complex, which is inferred from correlations in mRNA abundance and ribosome profiling data rather than direct biochemical evidence. 

      While the reviewer makes a valid point, it is important to note that the greater correlations between effects of scd6∆edc3∆ with those conferred by dhh1∆ vs. pat1∆ also extended to changes in metabolites (Fig. 7A-C). To provide more direct evidence that Edc3 and Scd6 recruit Dhh1 to the Dcp2 complex, we have now conducted co-immunoprecipitation experiments (presented in new Figs. 3F and S5) demonstrating that association of Dhh1 with Dcp2 is diminished in the scd6∆edc3∆ double mutant but not in either scd6∆ or edc3∆ single mutant, thus providing biochemical support for our proposal.

      Also, there is limited exploration of other signals as the study is focused on glucose availability, and it is unclear whether the findings would apply broadly across different environmental stresses or metabolic pathways. Nonetheless, the study provides new insights into how mRNA decapping and degradation are tightly linked to metabolic regulation and nutrient responses in yeast. The RNA-seq and ribosome profiling datasets are valuable resources for the scientific community, providing quantitative information on the role of decapping activators in mRNA stability and translation control. 

      While not disputing the facts of this comment, we think it is unjustified to label as a weakness that our study focused on glucose-grown cells considering the large amount of new data and insights made possible by our multi-omics approach, presented in >70 separate figure panels and nine supplementary datafiles, which the reviewer has characterized as being valuable to the scientific community.  Parallel studies in non-preferred carbon or nitrogen sources are underway and represent large-scale investigations in their own right, for which the current dataset in glucose-replete cells provides the critical reference condition.

      Reviewer #1 (Recommendations for the authors): 

      The authors made a note that a set of 37 mRNAs is repressed exclusively by Edc3 with little contribution by Scd6, a list that includes the RPS28B mRNA. Edc3 has been previously reported to promote the decay of this mRNA in a deadenylation-independent fashion by binding to an element in its 3'UTR (PMIDs 15225544, 24492965). Can the authors comment on whether Edc3 may be binding to similar elements in the 3'UTRs of these transcripts in their shortlist? This could be an interesting topic matter for discussion as well. 

      While an interesting idea, this seems unlikely because the 3’UTR sequence in RPS28B mRNA was shown to bind Rps28 protein itself to confer heightened decapping and decay dependent on Edc3 in a negative autoregulatory loop that exerts tight control over Rps28 protein levels.  It would be surprising if Edc3mediated repression of the other 36 mRNAs would involve Rps28 as none of them encode cytoplasmic ribosomal proteins. Nevertheless, we searched for a conserved motif among the 3’UTRs of the 37 mRNAs using the MEME suite and found enrichment for motifs identified for RNA binding proteins Hrp1 and Nab2 and two novel motifs, but none of these motifs could be recognized within in the Rps28 autoregulatory loop.  We have chosen not to comment on these findings in the revised manuscript to avoid lengthening it unnecessarily with inconclusive observations.

      Reviewer #2 (Recommendations for the authors): 

      The authors show very nicely in Figure S1A that growth phenotypes from scd6Δedc3∆ can be rescued by the transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). The manuscript might benefit from using these rescue strategies on the analysis performed (e.g. RNA-seq, ribosome occupancies, and translational efficiencies); or expressing truncated mutants of EDC3 (pLfz614-7) or SCD6 (pLfz615-5), to show that they can act as dominant negative competitors, either on the binding to Dhh1 and Dcp2. 

      We addressed this comment above in our response to this Reviewer.

      Reviewer #3 (Recommendations for the authors): 

      (1) Labels such as "mRNA_up_s6,e3" are not defined in figures or the text. I suggest clearer sample labeling throughout. 

      The labels had been defined at first mention in the RESULTS but are now indicated there more explicitly, as well as in the legend to Fig. 1.

      (2) In Figure 1D it is surprising that the mRNA profile has a peak in the 5' UTR. I would expect to see such a peak in ribosome footprinting data. Is it possible these are incorrectly labeled?

      The figure is correctly labeled. Generally, one does not expect to see RPFs in the 5’UTR region unless there is an efficiently translated uORF, which appears not to be the case for MDH2.

      In general, the information in this panel and C is inadequate. None of the numbers are clearly explained in the figure legend or in the figure. 

      We had cited the legend to Fig. S3C for details of all such gene browser images but have now inserted this information into the Fig. 1D legend, at the first occurrence of such data in the regular figures. 

      (3) Figures 1C and 1D are in the wrong order.

      Corrected.

      (4) Figure 2D is a very complicated Venn Diagram. I suggest using UpSet plots as an alternative to Venn diagrams to more clearly convey overlaps between sets.  

      We provided additional explanatory text in the Fig. 2D legend to facilitate understanding.

      (5) The use of the same color scheme to represent different sets in panels of the same figure is a source of confusion. E.g. the cyan in Figures 2A, 2D, and 2E indicates unrelated categories, but one would think they are related.

      The use of the same cyan color in these three figure panels actually does designate results for the same set of 591 mRNAs up-regulated in the three mutants.  The application of the color schemes is now mentioned explicitly in Figs. 1, 2, and S3.

      (6) Reporting of p-values = 0 in figures is not useful.

      Corrected.

      (7) The whole manuscript is extremely long which reduces the overall impact. For example, the introduction is six pages long. I suggest reducing redundant text and being more concise to enhance readability. 

      We tried to streamline the text wherever possible, in particular shortening the Introduction by two pages.

      (8) Many abbreviations are used throughout the text that are not introduced the first time they are used. 

      Corrected throughout.

      (9) The ERCC normalization is unclear. Were the spike-ins added before cell lysis to allow estimation of per-cell RNA counts or to the extracted RNA? If added to extracted RNA rather than cells it is not clear to me how the claim can be made regarding increased mRNA abundance in the mutants. 

      We thank the reviewer for this comment. As we explained in the Methods, 2.4 µl of 1:100 diluted ERCC RNA Spike-In Control Mix 1 was added to 1.2 µg of each total RNA sample prior to cDNA library preparation.  Because the majority of total mRNA is comprised of rRNA, this normalization yields the abundance of each mRNA relative to rRNA. Owing to repression of rESR mRNAs encoding ribosomal proteins and biogenesis factors in the scd6∆edc3∆ strain (Fig. S3D), the ribosome content per cell is expected to be reduced in this mutant vs. WT. We showed previously that the isogenic dcp2∆ mutant that elicits an ESR response of similar magnitude, showed a 30% reduction in bulk ribosomal subunits per cell compared to same WT strain examined here {Vijjamarri, 2023 #7866}.  Assuming a similar reduction in ribosome abundance in the scd6∆edc3∆ mutant, the changes in mRNA per cell conferred by the scd6∆edc3∆ mutation are expected to be 0.7-fold of the ERCCnormalized values given in Fig. 3E, yielding fold-changes of 2.00 and 0.62 for the mRNA_up and mRNA_dn, groups, respectively, which still differ substantially from the corresponding changes in normalized Rpb1 occupancies of 1.2 and 0.93, respectively.  We have added this new analysis to the text of RESULTS.

      (10) The use of the terms "up-regulated" and "derepressed" throughout is confusing. Both refer to observed increased abundance of mRNAs, but they imply different causes which are never clearly defined. 

      We changed all occurrences of “derepressed” to “up-regulated”.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      This study on potassium ion transport by the protein complex KdpFABC from E. coli reveals a 2.1 Å cryo-EM structure of the nanodisc-embedded transporter under turnover conditions. The results confirm that K+ ions pass through a previously identified tunnel that connects the channel-like subunit with the P-type ATPase-type subunit. 

      Strengths: 

      The excellent resolution of the structure and the thorough analysis of mutants using ATPase and ion transport measurements help to strengthen new and previous interpretations. The evidence supporting the conclusions is solid, including biochemical assays and analysis of mutants. The work will be of interest to the membrane transporter and channel communities and to microbiologists interested in osmoregulation and potassium homeostasis. 

      Weaknesses: 

      There is insufficient credit and citation of previous work. 

      The manuscript has been thoroughly revised with special attention to acknowledging all past work relevant to the study.

      Reviewer #2 (Public review): 

      Summary: 

      The paper describes the high-resolution structure of KdpFABC, a bacterial pump regulating intracellular potassium concentrations. The pump consists of a subunit with an overall structure similar to that of a canonical potassium channel and a subunit with a structure similar to a canonical ATP-driven ion pump. The ions enter through the channel subunit and then traverse the subunit interface via a long channel that lies parallel to the membrane to enter the pump, followed by their release into the cytoplasm. 

      Strengths: 

      The work builds on the previous structural and mechanistic studies from the authors' and other labs. While the overall architecture and mechanism have already been established, a detailed understanding was lacking. The study provides a 2.1 Å resolution structure of the E1-P state of the transport cycle, which precedes the transition to the E2 state, assumed to be the ratelimiting step. It clearly shows a single K+ ion in the selectivity filter of the channel and in the canonical ion binding site in the pump, resolving how ions bind to these key regions of the transporter. It also resolves the details of water molecules filling the tunnel that connects the subunits, suggesting that K+ ions move through the tunnel transiently without occupying welldefined binding sites. The authors further propose how the ions are released into the cytoplasm in the E2 state. The authors support the structural findings through mutagenesis and measurements of ATPase activity and ion transport by surface-supported membrane (SSM) electrophysiology. 

      Weaknesses: 

      While the results are overall compelling, several aspects of the work raised questions. First, the authors determined the structure of the pump in nanodiscs under turnover conditions and observed several structural classes, including E1-P, which is detailed in the paper. Two other structural classes were identified, including one corresponding to E2. It is unclear why they are not described in the paper. Notably, the paper considers in some detail what might occur during the E1-P to E2 state transition, but does not describe the 3.1 Å resolution map for the E2 state that has already been obtained. Does the map support the proposed structural changes? 

      As was seen in previous work by Silberberg et at. (2022), imaging KdpFABC under turnover conditions can produce multiple enzymatic states. We focus on the E1~P state and associated biophysical analyses to provide a clear and concise story that is focused on the conduction pathway for K<sup>+</sup> ions. We continue to work with the cryo-EM data as well as other supporting methodologies and datasets with the goal of producing an additional manuscript that will describe other conformations. The class of particles producing the 3.1 Å structure shown in Fig. 1 – figure suppl. 2 is heterogeneous and thus requires further classification to elucidate conformational changes, as is apparent from the downstream processing of the E1 classes also shown in that figure. We cannot therefore derive any conclusions about the configuration of side chains at the CBS based on this structure. Nevertheless, two previous structures of the E2.Pi state - 7BGY and 7BH2 which were stabilized MgF<sub>4</sub> and BeF<sub>x</sub>, respectively – show the structural change that is described in the paragraph discussing D583A. Given the consistency and relatively high resolution (2.9 and 3.0 Å, respectively) of these two independent structures, we believe that they provide strong support for our proposal for Lys586 acting as a built-in counter ion.

      The paper relies on the quantitative activity comparisons between mutants measured using SSM electrophysiology. Such comparisons are notoriously tricky due to variability between SSM chips and reconstitution efficiencies. The authors should include raw traces for all experiments in the supplementary materials, explain how the replicates were performed, and describe the reproducibility of the results. Related to this point above, size exclusion chromatography profiles and reconstitution efficiencies for mutants should be shown to facilitate comparison between measured activities. For example, could it be that the inactive V496R mutant is misfolded and unstable? 

      Similarly, are the reduced activities of V496W and V496H (and many other mutants) due to changes in the tunnel or poor biochemical properties of these variants? Without these data, the validity of the ion transport measurements is difficult to assess. 

      To address this concern, we have generated a series of supplementary figures for Figs. 2, 4, 5, and 6, which show all of the raw traces underlying our SSME data (Figure 2 - figure supplements 2-4, Figure 4 - figure supplement 1,Figure 5 - figure supplement 3, Figure 6 - figure supplement 2). We have also included further detail about the experimental protocols, including number and type of replicates, in an expanded "Activity Assays" section of Methods.

      In addition, we have included SEC profiles for each of the V496 mutants, which show that they are all well behaved in detergent solution prior to reconstitution (Fig. 4 - figure supplement 1). We are not able to directly document reconstitution efficiencies as it is not practical to separate proteoliposomes from unincorporated protein prior to preparing the sensors used for SSME. Binding currents are seen for several of the inactive mutants (e.g., Q116R in Rb and NH<sub>4</sub> in Fig. 2 - figure supplement 3 and V496R in Fig. 4 - figure supplement 1), which demonstrate that protein is indeed present in the corresponding proteoliposomes even though no sustained transport current is observed.

      The authors propose that the tunnel connecting the subunits is filled with water and lacks potassium ions. This is an important mechanistic point that has been debated in the field. It would be interesting to calculate the volume of the tunnel and estimate the number of ions that might be expected in it, given their concentration in bulk. It may also be helpful to provide additional discussion on whether some of the observed densities correspond to bound ions with low occupancy.  

      As suggested, we calculated the internal volume of the tunnel within KdpA (from the S4 K<sup>+</sup> site to the KdpA/KdpB subunit interface) based on the profile derived from Caver. Based on this volume (4.9 x 10<sup>-25</sup> L), a single K<sup>+</sup> ion within this cavity would correspond to 3.4 M, which is near saturation for a solution of KCl. We added this information together with an acknowledgment of low-occupancy K<sup>+</sup> to the fourth paragraph of the Discussion:

      " Fourth, based on the volume of the cavity in KdpA, a single K<sup>+</sup> ion would correspond to a concentration of 3.4 M, suggesting that multiple ions would exceed the solubility limit especially in the absence of counterions. Finally, map densities within the tunnel were either of comparable strength or weaker than surrounding side chain atoms, unlike at S3 and canonical binding sites. Although it is possible that weaker density could represent low occupancy K<sup>+</sup> ions, we favor a mechanism whereby individual K<sup>+</sup> ions occupy the tunnel transiently as they transit between the selectivity filter and the canonical binding site."

      In order to make this analysis, we developed a python script to calculate the volume of the tunnel as defined by the Caver software (this software is available via github.com/dls4n/tunnel). In turn, this enabled us to distinguish water molecules that were actually in the tunnel rather than bound more deeply within the structure of KdpA. As a result, we updated the water distribution plot in Fig. 4b. Notably, the 17 water molecules within this cavity would correspond to 57.8 M, which is reasonably near the expected 55 M for an aqueous solution.

      Reviewer #3 (Public review): 

      Summary: 

      By expressing protein in a strain that is unable to phosphorylate KdpFABC, the authors achieve structures of the active wild-type protein, capturing a new intermediate state, in which the terminal phosphoryl group of ATP has been transferred to a nearby Asp, and ADP remains covalently bound. The manuscript examines the coupling of potassium transport and ATP hydrolysis by a comprehensive set of mutants. The most interesting proposal revolves around the proposed binding site for K+ as it exits the channel near T75. Nearby mutations to charged residues cause interesting phenotypes, such as constitutive uncoupled ATPase activity, leading to a model in which lysine residues can occupy/compete with K+ for binding sites along the transport pathway. 

      Strengths:  

      Although this structure is not so different from previous structures, its high resolution (2.1 Å) is impressive and allows the resolution of many new densities in the potassium transport pathway. The authors are judicious about assigning these as potassium ions or water molecules, and explain their structural interpretations clearly. In addition to the nice structural work, the mechanistic work is thorough. A series of thoughtful experiments involving ATP hydrolysis/transport coupling under various pH and potassium concentrations bolsters the structural interpretations and lends convincing support to the mechanistic proposal. 

      Weaknesses: 

      The structures are supported by solid membrane electrophysiology. These data exhibit some weaknesses, including a lack of information to assess the rigor and reproducibility (i.e., the number of replicates, the number of sensors used, controls to assess proteoliposome reconstitution efficiency, and the stability of proteoliposome absorption to the sensor). 

      To address this concern, we have generated a series of supplementary figures for Figs. 2, 4, 5, and 6, which show all of the raw traces underlying our SSME data (Figure 2 - figure supplements 2-4, Figure 4 - figure supplement 1,Figure 5 - figure supplement 3, Figure 6 - figure supplement 2). We have also included further detail about the experimental protocols, including number and type of replicates, in the "Activity Assays" section of Methods.

      Reviewing Editor Comments

      After discussing the evaluations, the Reviewers and Reviewing Editor have identified the following essential revisions that would need to be addressed to improve the eLife assessment:

      (1) Work from others in the field should be adequately described and acknowledged: 

      (a) Page 2: " A series of X-ray and cryo-EM structures of KdpFABC from E. coli have led to proposals of a novel transport mechanism befitting the unprecedented partnership of these two superfamilies within a single protein complex." 

      The authors must give credit where credit is due (namely, the Haenelt/Paulino groups having discovered the transport pathway). Why don't they cite Stock et al., where this pathway was described first? The Stokes group proposed an entirely different pathway initially. 

      Explicit reference to this work has been added to as follows:

      “A series of X-ray and cryo-EM structures of KdpFABC from E. coli (Huang et al., 2017; Silberberg et al., 2022, 2021; Stock et al., 2018; Sweet et al., 2021) indicate a novel transport mechanism befitting the unprecedented partnership of these two superfamilies within a single protein complex. As first proposed by Stock et al. (Stock et al., 2018), there is now a consensus that K<sup>+</sup> enters the complex from the extracellular side of the membrane through the selectivity filter of KdpA, but is blocked from crossing the membrane.”

      (b) Page 4 " As a result, many previous structures (Huang et al., 2017; Silberberg et al., 2021; Stock et al., 2018; Sweet et al., 2021) feature the S162A mutation to avoid inhibition rather than the fully WT protein used for the current work." 

      This is not correct. At least the work by Huang et al 2017 and Stock et al 2021 was done without the mutation. This is why the structures also captured the off-cycle state when no E2 inhibitor was used. But in Silberberg et al 2022 the mutant was used, but this is not mentioned 

      The Q116R mutant was used by Huang et al., but indeed not used for the Stock et al paper. We have replaced the sentence in the manuscript with the following:

      “Use of the KdpD knockout strain allowed us to produce WT and mutant protein free from Ser162 phosphorylation.”

      (c) Page 4: " In the paper, we report on the most highly populated state (44% of particles)". Exactly the same was also seen in detergent solution, which should be mentioned. 

      Reference to the Silberberg 2022 paper, where E1~P was the most highly populated state, has been added. The percentage of particles was removed as we are still processing data from the other states, which will we hope will be described in a future manuscript.

      (d) Page 7 "Asp583 and Lys586 are two conserved residues on M5 that have previously been shown......indicating that this particular mutation interfered with energy coupling."  The lack of discussion of the Haenelt/Paulino 2021 paper, where they have analyzed the coupling in detail and described a proximal binding site where K+ is coordinated by D583 and the neighbouring Phe is very concerning. 

      To correct this oversight, we made the following changes to the text: 

      On pg. 7 in the Results section, we refer to the 2005 paper from Bramkamp & Altendorf:

      “Consistent with earlier work on this mutant (Bramkamp and Altendorf, 2005), the D583A mutant displayed substantial ATPase activity (30% of WT) but no transport, indicating that this particular mutation interfered with energy coupling.”

      At the end of pg. 10 in the Discussion, we revised the paragraph discussing D583 and Lys586 to explicitly refer to the mechanism of transport described in the 2021 paper from Silberberg et al, including proximal and distal binding sites as well as uncoupling due to the D583A mutation.

      “Similar to the Glu370/Arg493 charge pair in KdpA, Asp583 and Lys586 are the only charged residues in the membrane core of KdpB. Although they are not seen to interact directly in our structure, they coordinate accessory waters associated with the canonical binding site. Previous molecular dynamics simulations (Silberberg et al., 2021) indicate that Asp583 couples with Phe232 to form a “proximal binding site” for K<sup>+</sup> ions. Based on these simulations, these authors proposed a mechanism whereby neutralization of this site either by ion binding or by D583A substitution served to stimulate ATPase activity. Indeed, earlier work on D583A (Bramkamp and Altendorf, 2005) as well as current data demonstrate uncoupling, in which K<sup>+</sup> independent ATPase activity was observed even though transport was abolished. A plausible explanation for this stimulation is seen in the behavior of Lys586 in previous structures of the E2·Pi state (7BGY and 7BH2) (Sweet et al., 2021). In these structures, M5 undergoes a conformational change that pushes the side chain of Lys586 into the CBS. As a consequence of the D583A mutation, this Lys could be freed to act as a built-in counter ion as in related P-type ATPases ZntA (Wang et al., 2014) and AHA2 (Pedersen et al., 2007). In regard to the proximal binding site and the partnering “distal binding site” on the KdpA-side of the subunit interface, our structure does not show densities at either site and thus does not provide any support for the related mechanism. In any case, in the WT complex it seems likely that Asp583 exerts allosteric control over Lys586 and ensures that its movement into the binding site is coordinated with the transition from E1~P to E2·Pi, thus leading to displacement of K<sup>+</sup> from the CBS and release to the cytoplasm. “

      (e) Page 8 " The intersubunit tunnel is arguably one of the most intriguing elements of the KdpFABC complex. Although it has been postulated to conduct K+, experimental evidence has been lacking. " 

      Incorrect, see Silberberg 2021. 

      On this point, we beg to differ. Although this 2021 paper shows densities in experimental cryo-EM maps and effects of mutations to residues at the KdpA and KdpB interface, the intra-tunnel transport mechanism is based on computational analysis (MD simulations) and not experimental evidence. We softened the statement to read as follows:

      “Although it has been postulated to conduct K<sup>+</sup>, direct experimental evidence has been hard to come by.”

      (f) In this context, also f232 is not mentioned anywhere in the text, although depicted in almost all figures. 

      Phe232 is shown as a point of reference for the KdpA/KdpB subunit interface. We added a reference to Phe232 in the Results section labeled “Intersubunit tunnel” as well as the paragraph in the Discussion addressed in point d) above.

      " These densities, which we have modeled as water, are most prevalent near the vestibule, which is the wider part of the tunnel, but then disappear completely at the subunit interface near Phe232, which is the narrowest part of the tunnel and also distinctly hydrophobic (Fig. 4)."

      " Previous molecular dynamics simulations (Silberberg et al., 2021) indicate that Asp583 couples with Phe232 to form a “proximal binding site” for K<sup>+</sup> ions."

      (g) Page 2 "Later, it was recognized that KdpA belongs to the Superfamily of K+ Transporters (SKT superfamily), which also includes bona fide K+ channels such as KcsA, TrkH and KtrB (Durell et al., 2000). " 

      KcsA is not a member of the SKT superfamily. 

      Thanks. This is correct, although the SKT superfamily is believed to have evolved from KcsA. KcsA has been removed from the sentence and a reference added to a review of the SKT superfamily:

      “which also includes bona fide K<sup>+</sup> channels such as TrkH and KtrB (Diskowski et al., 2015; Durell et al., 2000).”

      (2) Two other structural classes were identified, including one corresponding to E2. It is unclear why they are not described in the paper. Notably, the paper considers in some detail what might occur during the E1-P to E2 state transition, but does not describe the 3.1 Å resolution map for the E2 state that has already been obtained. Does the map support the proposed structural changes? 

      As was seen in previous work by Silberberg et at. (2022), imaging KdpFABC under turnover conditions can produce multiple enzymatic states. We focus on the E1~P state and associated biophysical analyses to provide a clear and concise story. We continue to work with the cryo-EM data as well as other supporting methodologies and datasets with the goal of producing an additional manuscript that will describe other conformations. The class of particles producing the 3.1 Å structure shown in Fig. 1 – figure suppl. 2 is heterogeneous and thus requires further classification to elucidate conformational changes, as is apparent from the downstream processing of the E1 classes also shown in that figure. We cannot therefore derive any conclusions about the configuration of side chains at the CBS based on this structure. Nevertheless, two previous structures of the E2.Pi state - 7BGY and 7BH2 which were stabilized MgF<sub>4</sub> and BeF<sub>x</sub>, respectively – show the structural change that is described in the paragraph discussing D583A. Given the consistency and relatively high resolution (2.9 and 3.0 Å, respectively) of these two independent structures, we believe that they provide strong support for our proposal for Lys586 acting as a built-in counter ion.

      (3) The paper relies on the quantitative activity comparisons between mutants measured using SSM electrophysiology. Such comparisons are notoriously tricky due to variability between SSM chips and reconstitution efficiencies. The authors should include raw traces for all experiments in the supplementary materials, explain how the replicates were performed, and describe the reproducibility of the results. 

      To address this concern, we have generated supplementary figures for Figs. 2, 4, 5, and 6, which show all of the raw traces underlying our SSME data (Figure 2 - figure supplements 2-4, Figure 4 - figure supplement 1,Figure 5 - figure supplement 3, Figure 6 - figure supplement 2). We have also added a detailed description of replicates, sensor stability and the experimental protocols in the "Activity Assays" section of Methods. In addition, we have highlighted observations of pre-steady state binding currents that were seen for some mutants (e.g., Q116R assayed with Rb<sup>+</sup>, NH<sub>4</sub><sup>+</sup> and Na<sup>+</sup>), in which an initial, transient current response was observed without an ensuing transport current. The depiction of this raw data has allowed us to explain our use of the current response at 1.25 s, after decay of this binding current, as a measure of transport rate. This approach is consistent with recommendations by the manufacturer, as documented in their 2023 publication (Bazzone et al. https://doi.org/10.3389/fphys.2023.1058583).

      (4) Related to this point above, size exclusion chromatography profiles and reconstitution efficiencies for mutants should be shown to facilitate comparison between measured activities. For example, could it be that the inactive V496R mutant is misfolded and unstable? Similarly, are the reduced activities of V496W and V496H (and many other mutants) due to changes in the tunnel or poor biochemical properties of these variants? Without these data, the validity of the ion transport measurements is difficult to assess. 

      We have included SEC profiles for each of the V496 mutants, which show that they are all well behaved in detergent solution prior to reconstitution (Fig. 4 - figure supplement 1). We are not able to directly document reconstitution efficiencies as it is not practical to separate proteoliposomes from unincorporated protein prior to preparing the sensors used for SSME. Binding currents are seen for several of the inactive mutants (e.g., Q116R in Rb and NH<sub>4</sub> in Fig. 2 - figure supplement 3 and V496R in Fig. 4 - figure supplement 1), which demonstrate that protein is indeed present in the corresponding proteoliposomes even though no sustained transport current is observed.

      (5) What are the different lines in Figure 1 - Supplement 1, panel G? 

      This panel depicted a series of SSME traces as an example of the raw data, but has been removed from the revised version given the inclusion of all the raw traces. These new figures include a legend explaining the conditions for each trace.

      (6) How was the 44 % population of the single-occupancy E1 state estimated (it does not correspond to the number of particles in Figure 1 - Supplement 2. 

      The calculation of 44% for the E1~P state was premature, given that we are still analyzing the data from the turnover conditions. The revised manuscript simply states that E1~P represented the largest population of particles, which is consistent with this state preceding the rate limiting step of the PostAlbers cycle. Reference is made to the Silberberg 2022 paper, which made a similar observation in a detergent-solubilized sample.

      (7) The text states that Km for Q116E is "<10 uM". However, the fitted value is 90 µM in Figure 2e. 

      This was a typographical error. The text now states that Km for Q116E is <100 M.

      (8) The Km values for Rb, NH4, and Na in Figures 2g and h, and Na in Figure 2i do not make sense. They should be removed. 

      The values for Km were determined by fitting the Michaelis-Menton equation to the data as detailed in the Methods section. Although the curves visually appear rather flat relative to other ions, the fitting generated respectable confidence limits and are therefore defensible in a statistical context. Furthermore, the curves that are shown are based on those values of Km and it would be inappropriate not to cite them.

      (9) Figure 3 would benefit from a slice through the protein to orient the viewer. 

      Thanks for the suggestion. We have added panels to Figs. 3, 5 and 6 in an effort to orient the reader to the site that is depicted.

      (10) The differences between R493E, Q, and M do not appear to be significant. 

      The y-axis is logarithmic which makes a visual comparison difficult. To alleviate this, P values were calculated based on one-way ANOVA analysis are results are indicated in Fig. 3c and 3d. They show that all of the Arg493 mutations have Km significantly higher than WT. Differences between R493E orR493Q and R493Q orR493M are not significant at the p<0.01 level, while the difference between R493E and R493M is highly significant (p<0.001).  The associated text on pg. 6 has been slightly modified as follows:

      “Changes to Arg493 generally increase Km (lower apparent affinity) without affecting Vmax, with Met substitution having greater effect than charge reversal (R493E).”

      (11) Page 5, paragraph 2. Q116R and G232D don't seem like the world's most intuitive mutations. It appears there is a historical reason for looking at these. Could the rationale be explained in the text? (Why R and D specifically?) 

      These mutations have historical significance, having been generated by random mutagenesis during early characterization of the Kdp system by Epstein and colleagues. A sentence containing relevant references has been added to this paragraph to provide this context:

      “Specifically, Q116R and G232D substitutions were initially discovered by random mutagenesis during early characterization of the Kdp system (Buurman et al., 1995; Epstein et al., 1978) and have featured in many follow-up studies (Dorus et al., 2001; Schrader et al., 2000; Silberberg et al., 2021; Sweet et al., 2020; van der Laan et al., 2002).”

      Below are the recommendations from each of the reviewers, some of which were not included as essential revisions, but that can also be helpful to further strengthen the manuscript. 

      Reviewer #1 (Recommendations for the authors): 

      It is essential that the authors correct their selective, incomplete, and in places inappropriate references to work from others in the field. 

      Specific points: 

      (1) Page 2: " A series of X-ray and cryo-EM structures of KdpFABC from E. coli have led to proposals of a novel transport mechanism befitting the unprecedented partnership of these two superfamilies within a single protein complex." 

      The authors must give credit where credit is due (namely, the Haenelt/Paulino groups having discovered the transport pathway). Why don't they cite Stock et al., where this pathway was described first? The Stokes group proposed an entirely different pathway initially. 

      (2) Page 4 " As a result, many previous structures (Huang et al., 2017; Silberberg et al., 2021; Stock et al., 2018; Sweet et al., 2021) feature the S162A mutation to avoid inhibition rather than the fully WT protein used for the current work." 

      This is not correct. At least the work by Huang et al 2017 and Stock et al 2021 was done without the mutation. This is why the structures also captured the off-cycle state when no E2 inhibitor was used. But in Silberberg et al 2022 the mutant was used, but this is not mentioned 

      (3) Page 4: " In the paper, we report on the most highly populated state (44% of particles)". Exactly the same was also seen in detergent solution, which should be mentioned. 

      (4) Page 7 "Asp583 and Lys586 are two conserved residues on M5 that have previously been shown......indicating that this particular mutation interfered with energy coupling."  The lack of discussion of the Haenelt/Paulino 2021 paper, where they have analyzed the coupling in detail and described a proximal binding site where K+ is coordinated by D583 and the neighbouring Phe is very concerning. 

      (5) Page 8 " The intersubunit tunnel is arguably one of the most intriguing elements of the KdpFABC complex. Although it has been postulated to conduct K+, experimental evidence has been lacking. " 

      Incorrect, see Silberberg 2021. 

      (6) In this context, also f232 is not mentioned anywhere in the text, although depicted in almost all figures. 

      References have been added to address all of these points. See item 1) under Reviewing Editor’s Comments above.

      Other points: 

      (7) Page 2 "Later, it was recognized that KdpA belongs to the Superfamily of K+ Transporters (SKT superfamily), which also includes bona fide K+ channels such as KcsA, TrkH and KtrB (Durell et al., 2000). " 

      KcsA is not a member of the SKT superfamily. 

      KcsA has been removed from the sentence and a reference added to a review of the SKT family:

      “which also includes bona fide K<sup>+</sup> channels such as TrkH and KtrB (Diskowski et al., 2015; Durell et al., 2000).”

      (8) Page 9 " Our demonstration of coupled transport of NH4+ and Rb+ G232D not only confirms that the selectivity filter governs ion selection, but that the pump subunit, KdpB, is relatively promiscuous."  Check grammar. 

      This sentence has been updated as follows:

      “Our observation that G232D is capable of coupled transport for NH<sub>4</sub><sup>+</sup and Rb<sup>+</sup> confirms not only that the selectivity filter governs ion selection, but that the pump subunit, KdpB, is relatively promiscuous.

      Reviewer #2 (Recommendations for the authors): 

      (1) From an editorial point of view, I suggest a few changes to enhance readability and clarity for non-specialists. A description of the overall transport cycle at the start of the paper (perhaps as a supplementary figure) could help put the work into perspective for general readers who may not be familiar with P-type ATPase mechanisms. It is unclear what "single" and "double" occupancy refer to in the structural classes description. Why is only one structural class described in detail? I would suggest moving the discussion of what is going on with the Nterminus of KdpB to the Results section, where it is described, and shortening the corresponding paragraph in the Discussion. I would furthermore suggest adding a figure that illustrates the proposed regulatory role of the terminus and how phosphorylation might affect it. Otherwise, this section of the results reads very hollow. 

      A diagram showing the Post-Albers cycle is shown as part of Fig. 1 and is described at the end of the second paragraph. This sentence only mentioned KdpB, which may have caused confusion. We therefore changed the sentence to read as follows:

      “Like other P-type ATPases, KdpFABC employs the Post-Albers reaction cycle (Fig. 1) involving two main conformations (E1 and E2) and their phosphorylated states (E1~P and E2-P) to drive transport (Albers, 1967; Post et al., 1969).”

      Single and double occupancy was meant to refer to the number of KdpFABC complexes residing in a nanodisc. This can be seen in the class averages in Fig. 1 - figure supplement 2. The legends to Fig. 1 figure supplements 1 and 2 have been revised to explain this observation more explicitly:

      "Slight asymmetry of the main peak is consistent with a subpopulation of nanodiscs containing two KdpFABC complexes (Fig. 1 - figure supplement 2)."

      and

      "A subset of these particles were further classified to generate four main classes representing nanodiscs with a single copy of KdpFABC in either E1 or E2 conformations, nanodiscs with two copies of KdpFABC which were mainly E1 conformation, and junk."

      As stated above, the class of particles producing the 3.1 Å structure shown in Fig. 1 – figure suppl. 2 is heterogeneous and requires further classification to elucidate conformational changes, as is apparent from the downstream processing of the E1 classes also shown in that figure. We continue to analyze the cryo-EM data and aim to produce a second manuscript that will include descriptions of other conformations together with the additional biophysical analysis related to their function.

      With regard to the N-terminus, we have gone on to generate a truncation of residues 2-9 in KdpB. After expression and purification, this construct remained coupled with ATPase and transport activities similar to WT, which makes proposals of a regulatory effect less compelling. Because of the novelty of observing the N-terminus and the possibility that it plays a subtle role in the kinetics of the cycle not revealed under the current assay conditions, we have retained a brief discussion of this structural observation, but moved it into the Results section as suggested.

      "Given the regulatory roles played by N- and C-termini of a variety of other P-type ATPases (Bitter et al., 2022; Cali et al., 2017; Lev et al., 2023; Timcenko et al., 2019; Zhao et al., 2021), we generated a construct in which residues 2-9 of the N-terminus of KdpB were truncated. However, ATPase and transport activities remained coupled at levels similar to WT, indicating that any functional role of the N-terminus is relatively subtle and not manifested under current assay conditions."

      (2) The wording "exceedingly strong densities" seems ambiguous. 

      We have changed this to “strong” in the Abstract and "exceptionally strong" in the Discussion. The precise values for these densities are shown in density histograms in Fig. 2 – figure supplement 1 and Fig. 5 – figure supplement 2. In the text, the densities are described as follows:

      Results sections describing the selectivity filter:

      "In fact, this S3 site contains the strongest densities in the entire map, measuring 7.9x higher than the threshold used for Fig. 2a (Fig. 2 – figure suppl. 1a)."

      Results section describing the CBS:

      "Given that this is the strongest density in KdpB, measuring 5.6x higher than the map densities shown in Fig. 5 (Fig. 5 – figure suppl 2b), we have modeled it as K<sup>+</sup>."

      (3) What are the different lines in Figure 1 - Supplement 1, panel G? 

      This panel depicted a series of SSME traces as an example of the raw data, but has been removed from the revised version given the inclusion of all the raw traces. These new figures include a legend explaining the conditions for each trace.

      (4) How was the 44 % population of the single-occupancy E1 state estimated (it does not correspond to the number of particles in Figure 1 - Supplement 2. 

      The calculation of 44% for the E1~P state was premature, given that we are still analyzing the data from the turnover conditions. We will consider citing an updated value in a future publication once this analysis is complete. The revised manuscript simply states that E1~P represented the largest population of particles, which is consistent with this state preceding the rate limiting step of the Post-Albers cycle. Reference was made to the Silberberg 2022 paper, where a similar observation was made.

      (5) Panel 1d is called out of order after panel 1e. Please label Ser 162 in the panel. 

      The order of these panels have been switched and Ser162 has been labelled as suggested.

      (6) Several panels in Figure 1- Supplement 1 are neither referenced nor described. 

      This figure supplement is referred to multiple times in the Results and the Methods sections of the text as well as in the figure legends. Although each panel is not individually referenced, all of this information is relevant at different points in the manuscript and is explained in the legend.

      (7) Is the coordinating geometry for the S3 site consistent with what was previously observed for KcsA and relatives? 

      The general arrangement of carbonyl atoms in the S3 site is the same in KcsA and KdpA, described by the MacKinnon group as a square antiprism. However, KcsA has strict four-fold symmetry and KdpA does not. As a result, there are small discrepancies between the coordinating geometries in the two structures. This point was made graphically in our original report on the X-ray structure of KdpFABC (Huang et al. 2007, Extended Data Fig. 3), though the positions of the carbonyls are more accurately determined in the current structure due to increased resolution. We added a sentence to the Selectivity Filter section of the Results stating the following:

      "This coordination geometry is also consistent with that seen in the K<sup>+</sup> channel KcsA, though the strict four-fold symmetry of that homo-tetramer produces a more regular structure, as indicated by the smaller variance in liganding distance (2.77 Å with s.d. 0.075 Å in 1K4C) and as depicted by Huang et al. in Extended Data Fig. 3 (Huang et al., 2017)."

      (8) Label G232D in Figure 2a. 

      G232 is out of the plane shown in Fig. 2a. However, we have added a label for Cys344 to help identify the selectivity filter strands that are shown. Note, however, that G232 is visible and labeled in Fig. 2 - figure suppl. 1. This has now been noted in the legend for Fig. 2.

      (9) The text states that Km for Q116E is "<10 uM". However, the fitted value is 90 uµ in Figure 2e. 

      This was a typographical error. The text now states that Km for Q116E is <100 M.

      (10) The Km values for Rb, NH4, and Na in Figures 2g and h, and Na in Figure 2i do not make sense. They should be removed. 

      The values for Km were determined by fitting the Michaelis-Menton equation to the data as detailed in the Methods section. Although the curves visually appear rather flat relative to other ions, the fitting generated respectable confidence limits and are therefore defensible in a statistical context. Furthermore, the curves that are shown are based on those values of Km and it would be inappropriate not to cite them.

      (11) Figure 3 would benefit from a slice through the protein to orient the viewer. 

      Thank you for the suggestion. We have added panels to Figs. 3, 5 and 6 in an effort to orient the reader to the site that is depicted.

      (12) The differences between R493E, Q, and M do not appear to be significant. 

      The y-axis is logarithmic which makes a visual comparison difficult. To alleviate this, P values were calculated based on one-way ANOVA analysis are results are indicated in Fig. 3c and 3d. They show that all of the Arg493 mutations have Km significantly higher than WT. Differences between R493E orR493Q and R493Q orR493M are not significant at the p<0.01 level, while the difference between R493E and R493M is highly significant (p<0.001).  The associated text on pg. 6 has been slightly modified as follows:

      “Changes to Arg493 generally increase Km (lower apparent affinity) without affecting Vmax, with Met substitution having greater effect than charge reversal (R493E).”

      Reviewer #3 (Recommendations for the authors): 

      Overall, the text was very clear, experiments were rationalized well, and conclusions were justified. A few small comments: 

      (1) Page 5, paragraph 2. Q116R and G232D don't seem like the world's most intuitive mutations. It appears there is a historical reason for looking at these. Could the rationale be explained in the text? (Why R and D specifically?) 

      These mutations are of historical importance, having been generated by random mutagenesis during early characterization of the Kdp system. A sentence containing relevant references has been added to this paragraph to provide this information as context:

      “Specifically, Q116R and G232D substitutions were initially discovered by random mutagenesis during early characterization of the Kdp system (Buurman et al., 1995; Epstein et al., 1978) and have featured in many follow-up studies (Dorus et al., 2001; Schrader et al., 2000; Silberberg et al., 2021; Sweet et al., 2020; van der Laan et al., 2002).”

      (2) Typo: page 14, "diluted" 

      This typo has been corrected.

      (3) The Methods section for SSM electrophysiology could use some additional description of how the data/statistics were collected. How many replicates? Were all replicates from a single sensor/ were multiple sensors examined? Were controls done to test whether the same number of liposomes remain absorbed by the sensor over the length of the experiment? 

      We have extended our description of experimental protocols in the "Activity Assays" section of Methods. This includes the number and type of replicates as well as a discussion of binding currents that were seen for some mutants. Furthermore, a new series of supplementary figures for Figs. 2, 4, 5, and 6 show all of the raw traces for the SSME measurements (Figure 2 - figure supplements 2-4, Figure 4 - figure supplement 1, Figure 5 - figure supplement 3, Figure 6 - figure supplement 2).

      We have included SEC profiles for each of the V496 mutants, which show that they are all well behaved in detergent solution prior to reconstitution (Fig. 4 - figure supplement 1). We are not able to directly document reconstitution efficiencies as it is not practical to separate proteoliposomes from unincorporated protein prior to preparing the sensors used for SSME. Binding currents are seen for several of the inactive mutants (e.g., Q116R in Rb and NH<sub>4</sub> in Fig. 2 - figure supplement 3 and V496R in Fig. 4 - figure supplement 1), which demonstrate that protein is indeed present in the corresponding proteoliposomes even though no sustained transport current is observed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #2 (Public review):

      (1)  The sharpening model of expectation can predict surround suppression. The authors could further clarify how the cancellation model predicts a monotonic profile of expectation (Figure 1C) with the highest response at the expected orientation, while the cancellation model suggests a suppression of neurons tuned toward the expected stimulus.

      We thank the reviewer for the comment. We would like to emphasize that as the expected signal is suppressed, the relative weight or salience of unexpected inputs increases. We have clarified this interpretation in the manuscript as follows:

      “Here, given these two mechanisms making opposite predictions about how expectation changes the neural responses of unexpected stimuli, thereby displaying different profiles of expectation, we speculated that if expectation operates by the sharpening model with suppressing unexpected information, we should observe an inhibitory zone surrounding the focus of expectation, and its profile then should display as a center-surround inhibition (Fig. 1c, left). If, however, expectation operates as suggested by the cancelation model with highlighting unexpected information, the inhibitory zone surrounding the focus of expectation should be eliminated, and the profile should instead display a monotonic gradient (Fig. 1c, right).”

      (2) I'm a bit concerned about whether the profile solely arises from modulation of expectation. The two auditory cues are each associated with a fixed orientation, which may be confounded by other cognitive processes like visual working memory or attention (which I think the authors also discussed). Although the authors tried to use SFD task to render orientation task-irrelevant, luminance edges (i.e., orientation) and spatial frequency in gratings are highly intertwined and orientation of the gratings may help recall the first grating's SF (fixed at 0.9 c/{degree sign}), especially given the first and second grating's orientations are not very different (4.8{degree sign}).

      We agree that dissociating expectation from attention and other top-down processes remains a key challenge in visual expectation research (see Summerfield & Egner, 2009; Summerfield & de Lange, 2014; de Lange et al., 2018). As is generally acknowledged, expectation reflects the probability of a sensory event, while selective attention relates to its behavioral relevance. To minimize attentional influences, our task design ensured that grating orientation was not taskrelevant: on each trial, participants discriminated either orientation or spatial frequency difference, such that orientation itself did not require attentional allocation, a point already discussed in the manuscript.

      Regarding visual working memory, we argue that even if participants recalled the first grating’s spatial frequency in the SFD task, they were not required to retain its precise spatial frequency (or orientation), as their task was simply to judge whether the second grating appeared denser or sparser. In other words, orientation (or spatial frequency) itself was not task-relevant. Moreover, although not included in the manuscript, we conducted a post-experiment debriefing in which participants were asked whether they noticed any association between the auditory tone and the grating orientation. None of the participants reported this relationship correctly, suggesting that the tone-orientation mapping remained implicit and was unlikely to be driven by strategic attention or memory.

      However, we acknowledge that certain confounding processes such as statistical learning or implicit mapping acquisition cannot be fully ruled out given the current paradigm. Future studies using methods with higher temporal resolution (e.g., EEG/MEG) may help to dissociate these mechanisms more precisely.

      (3) For each of the expected orientations (20{degree sign} or 70{degree sign}), the unexpected ones are linearly separable (i.e., all unexpected ones lie on one side of the expected angle). This might further encourage people to shift their attended or expected orientation, according to the optimal tuning hypothesis. Would this provide an alternative explanation to the tuning shift that the authors found?

      We thank the reviewer for pointing out the relevance of the optimal tuning hypothesis. We acknowledge that the optimal tuning theory (Navalpakkam & Itti, 2007) is an important framework, particularly in visual search paradigms, where attentional templates may shift away from non-target features to enhance discriminability.

      In our task, this hypothesis would predict a shift of expectation toward <20° in E20° trials and >70° in E70° trials, given that all unexpected orientations lie on one side of the expected angle. Importantly, the optimal tuning hypothesis predicts such shifts not only in Δ20°, Δ25°, and Δ30° trials but also in the Δ0° trials. In this regard, the observed shift in Δ20° and Δ30° (Experiment 2) and Δ25° (Experiment 3) trials is broadly consistent with the predictions of the optimal tuning account. However, we did not observe a corresponding shift away from nontarget features in the Δ0° condition, suggesting limited behavioral evidence for optimal tuning effects under our current task settings.

      It is important to note that most previous studies supporting optimal tuning (e.g., Navalpakkam & Itti, 2007; Scolari & Serences, 2009; Geng, DiQuattro, & Helm, 2017; Yu & Geng, 2019) have used visual search paradigms that differ from our design in several critical ways, including the number of stimuli presented, their spatial arrangement (eccentricity), task demands, and so on. Therefore, it is difficult to determine whether the optimal tuning hypothesis could serve as an alternative explanation within the context of our current study. We agree that future studies could further examine how such task parameters influence the presence or absence of optimal tuning.

      (4) It is great that the authors conducted computational modeling to elucidate the potential neuronal mechanisms of expectation. But I think the sharpening hypothesis (e.g., reviewed in de Lange, Heilbron & Kok, 2018) focuses on the neural population level, i.e., narrowing of population tuning profile, while the authors conducted the sharpening at the neuronal tuning level. However, the sharpening of population does not necessarily rely on the sharpening of individual neuronal tuning. For example, neuronal gain modulation can also account for such population sharpening. I think similar logic applies to the orientation adjustment experiment. The behavioral level shift does not necessarily suggest a similar shift at the neuronal level. I would recommend that the authors comment on this.

      We thank the reviewer for this to-the-point comment. As de Lange et al. (2018) noted, “there is not always a direct correspondence between neural-level and voxel-level selectivity patterns.” That is, neuronal tuning, population-level tuning, voxel-level selectivity, and behavioral adaptive outcomes may reflect different underlying mechanisms and do not necessarily align in a one-toone fashion. We fully acknowledge that population-level tuning effects may also result from various neuronal mechanisms such as gain modulation (for review, see Salinas & Thier, 2000), shifts in preferred orientation (Ringach, et al., 1997; Jeyabalaratnam et al., 2013), asymmetric broadening of tuning curves (Schumacher et al., 2022), or tuning curve sharpening (Ringach, et al., 1997; Schoups et al., 2001).  

      In our modeling, we implemented sharpening and shifts of neuronal tuning curves as a conceptual model simplification, intended to explore potential mechanisms underlying expectation-related center-surround suppression effects. While sharpening-based accounts (e.g., Kok et al. 2012) have often been emphasized, we stress that other mechanisms, such as gain modulation or tuning shifts, may also contribute. Our goal is not to provide a definitive account, but to highlight such plausible mechanisms and encourage future investigation. We have revised the Discussion to emphasize that multiple mechanisms may underlie the observed effects.

      “We note that our implementation of sharpening and shifts at the neuronal level serves as a conceptual model simplification, as population-level tuning, voxel-level selectivity, and behavioral adaptive outcomes may reflect different underlying neuronal mechanisms and do not necessarily align in a one-to-one fashion. Here, we stress that other potential mechanisms beyond sharpening, such as tuning shifts, may also contribute to visual expectation.” 

      (5) If the orientation adjustment experiment suggests that both sharpening and shifting are present at the same time, have the authors tried combining both in their computational model?

      We agree with the reviewer that it is necessary to consider the combined model. Accordingly, we implemented a computational model incorporating sharpening of the expected orientation channel together with shifting of the unexpected orientation channels. This model

      successfully captured the sharpening of the expected-orientation channel and the shift of the unexpectedorientation channels (Supplementary Fig. 3). For the expected orientation (Δ0°) , results showed that the amplitude change was significantly higher than zero on both OD (t(23) = 2.582, p = 0.017, Cohen’s d = 0.527) and SFD (t(23) = 2.078, p = 0.049, Cohen’s d = 0.424) tasks (Supplementary Fig. 3e, vertical stripes); the width change was significantly lower than zero on both OD (t(23) = -2.438, p = 0.023, Cohen’s d = 0.498) and SFD (t(23) = -2.578, p = 0.017, Cohen’s d = 0.526) tasks (Supplementary Fig. 3e, diagonal stripes). For unexpected orientations (Δ10°-Δ40°), however, the amplitude and width changes were not significant with zero on either OD (amplitude change: t(23) = 0.443, p = 0.662, Cohen’s d = 0.091; width change: t(23) = -1.819, p = 0.082, Cohen’s d = 0.371) or SFD (amplitude change: t(23) = 1.130, p = 0.270, Cohen’s d = 0.231; width change: t(23) = -1.710, p = 0.101, Cohen’s d = 0.349) tasks (Supplementary Fig. 3f). In the meantime, the location shift was significantly different than zero for unexpected orientations (Δ10°-Δ40°, OD task: t(23) = 3.611, p = 0.001, Cohen’s d = 0.737; SFD task: t(23) = 2.418, p = 0.024, Cohen’s d = 0.493 (Supplementary Fig. 3g). These results provided further evidence that tuning sharpening and tuning shift jointly contribute to center– surround inhibition in expectation.  

      Reviewer#1 (Recommendation for the Author):

      (1) A direct comparison between tasks (baseline vs. expectation conditions) would have strengthened the findings. Specifically, contrasting performance in the orientation discrimination task with the spatial frequency discrimination task could have provided clearer evidence that participants actually used the auditory cues to attend to the expected orientation. This comparison would be particularly important for validating cue manipulation in the orientation discrimination task.

      We agree that a direct comparison between the orientation discrimination (OD) and spatial frequency discrimination (SFD) tasks could further clarify how expectation (auditory cues) differentially modulates orientation relevance. However, the primary goal of the current study was to examine expectation effects within each task separately and to demonstrate that such effects are independent of attentional modulation driven by the task-relevance of orientation.

      In addition, the OD and SFD tasks differ not only in the relevant task features (orientation vs. spatial frequency discrimination), but also in stimulus properties and difficulty, for example, the arbitrary use of 20–70° as the orientation range and ~0.9 cycles/° as the spatial frequency setting, a direct comparison could introduce confounding factors unrelated to expectation.

      Importantly, Previous studies (e.g., Kok et al., 2012, 2017; Aitken et al., 2020) and our current results show that participants performed significantly better when the auditory cue matched the expected orientation, supporting the validity of our expectation manipulation.

      (2) An interesting consideration is why the center-surround inhibition profile of expectation was independent of the task-relevance of orientation. Previous studies (e.g., Kok et al., 2012) have found that orientation discrimination patterns differ depending on whether orientation is taskrelevant or irrelevant. This could be useful to discuss the possible discrepancies.

      We thank the reviewer for this inspiring comment. Kok et al. (2012) showed that both orientation and contrast tasks elicited similar fMRI decoding results, regardless of task relevance, suggesting neural mechanisms of expectation operate independently of whether orientation is task relevant. Behaviorally, they reported better performance for expected versus unexpected trials in the orientation task (3.4° vs. 3.8°, t(17) = 2.8, p = 0.013), and a marginal trend (although not significant) in the contrast task (4.3% vs. 5.0%, t(17) = 1.9, p = 0.075). If any differences between the two tasks exist, they may lie in the correlation between behavioral and fMRI effects, a question that goes beyond the scope of the current study. Therefore, it is hard to strongly conclude that orientation discrimination patterns differ depending on whether orientation is taskrelevant or irrelevant in their paper.

      Our study differs from theirs in at least two important ways, which may account for the clearer expectation facilitatory effect we observed in the expectation (Δ0°) condition. First, in our study, the orientation-irrelevant task involved spatial frequency discrimination (SFD) rather than contrast discrimination. Compared to contrast, spatial frequency has been shown to exhibit a clear cueing effect, as reported in Fang & Liu (2019). Second, our design included a baseline condition, which was absent in their study. We computed discrimination sensitivity (DS) to quantify how much the discrimination threshold (DT) changed relative to baseline. By using this baseline-referenced approach, we observed a significant facilitatory expectation effect in the Δ0° condition, an effect that shifted from marginal significance in their orientation-irrelevant task to clear significance in our study.

      (3) The authors might consider briefly explaining how the orientation adjustment paradigm used in this study is particularly effective for examining the potential co-existence of tuning sharpening and tuning shift computations, and how this approach complements traditional orientation discrimination tasks in characterizing expectation-related mechanisms.

      We thank the reviewer for this valuable suggestion. We agree that further clarification is needed to better connect the two experiments. To explain this, we have elaborated further in the manuscript.

      “To further explore the co-existence of both Tuning sharpening and Tuning shift computations in center-surround inhibition profile of expectation, participants were asked to perform a classic orientation adjustment experiment. Unlike profile experiment (discrimination tasks), the adjustment experiment provides a direct, trial-by-trial measure of participants’ perceived orientation, capturing the full distribution of responses. This enables the construction of orientation-specific tuning curves, allowing us to detect both tuning sharpening and tuning shifts, thereby offering a more nuanced understanding of the computational mechanisms underlying expectation.”

      (4) These interesting findings raise important questions about their relationship to existing hybrid models of attentional modulation. Could the authors discuss how their results might align with or extend previous work demonstrating combined feature-similarity gain and surround suppression effects for orientation (e.g., Fang & Liu, 2019)? Could a hybrid model potentially provide a better account of these data than the pure surround suppression model?

      We thank the reviewer for this valuable comment. We agree that hybrid model should be mentioned in the manuscript and we have elaborated further in the Discussion.

      “For example, within the orientation space, the inhibitory zone was about 20°, 45°, and 54° for expectation evident here, feature-based attention[21], and visual perceptual learning[35], respectively; within the feature-based attention, it was about 30° and 45° in color [77] and motion direction [53] spaces, respectively These variations hint at the exciting possibility that the width of the inhibitory surround may flexibly adapt to stimulus context and task demands, ultimately facilitating our perception and behavior in a changing environment. This principle is consistent with the hybrid model of feature-based attention [53,54,75], where attention is deployed adaptively to prioritize task-relevant information through feature-similarity gain which filters out the most distinctive distractors, and surround suppression which inhibits similar and confusable ones, thereby jointly shaping the attentional tuning profile.”

      (5) On page 19, there appears to be a missing symbol in the description of the Tuning Sharpening model. The text states: 'the tuning width of each channel's tuning function is parameterized by ??', where the question marks seem to indicate a missing parameter symbol.

      We appreciate the reviewer’s careful attention. Yes, the "ơ" is missing, which was likely caused by a formatting issue. We have corrected it.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):

      Summary:

      This work investigated how the sense of control influences perceptions of stress. In a novel "Wheel Stopping" task, the authors used task variations in difficulty and controllability to measure and manipulate perceived control in two large cohorts of online participants. The authors first show that their behavioral task has good internal consistency and external validity, showing that perceived control during the task was linked to relevant measures of anxiety, depression, and locus of control. Most importantly, manipulating controllability in the task led to reduced subjective stress, showing a direct impact of control on stress perception. However, this work has minor limitations due to the design of the stressor manipulations/measurements and the necessary logistics associated with online versus in-person stress studies.

      Nevertheless, this research adds to our understanding of when and how control can influence the effects of stress and is particularly relevant to mental health interventions.

      We thank the reviewer for their clear and accurate summary of the findings. 

      Strengths:

      The primary strength of this research is the development of a unique and clever task design that can reliably and validly elicit variations in beliefs about control. Impressively, higher subjective control in the task was associated with decreased psychopathology measures such an anxiety and depression in a non-clinical sample of participants. In addition, the authors found that lower control and higher difficulty in the task led to higher perceived stress, suggesting that the task can reliably manipulate perceptions of stress. Prior tasks have not included both controllability and difficulty in this manner and have not directly tested the direct influence of these factors on incidental stress, making this work both novel and important for the field.

      We thank the reviewer for their positive comments.

      Weaknesses:

      One minor weakness of this research is the validity of the online stress measurements and manipulations. In this study, the authors measure subjective stress via self-report both during the task and also after either a Trier Social Stress Test (high-stress condition) or a memory test (low-stress condition). One concern is that these stress manipulations were really "threats" of stress, where participants never had to complete the stress tasks (i.e., recording a speech for judgment). While this is not unusual for an in-lab study and can reliably elicit substantial stress/anxiety, in an online study, there is a possibility for communication between participants (via online forums dedicated to such communication), which could weaken the stress effects. That said, the authors did find sensible increases and decreases of perceived stress between relevant time points, but future work could improve upon this design by including more complete stress manipulations and measuring implicit physiological signs of stress.

      We thank the reviewer for urging us to expand on this point. The reviewer is right that stress was merely anticipatory and is in that sense different to the canonical TSST. However, there are ample demonstrations that such anticipatory stress inductions are effective at reliably eliciting physiological and psychological stress responses (e.g. Nasso et al., 2019; Schlatter et al., 2021; Steinbeis et al., 2015). Further, there is evidence that online versions of the TSST are also effective (DuPont et al., 2022; Meier et al., 2022), including evidence that the speech preparation phase conducted online was related to increases in heart rate and blood pressure (DuPont et al., 2022). Importantly, and as the reviewer notes in relation to our study specifically, the anticipatory TSST had a significant impact on subjective stress in the expected direction demonstrating that it was effective at eliciting subjective stress. We have elaborated further on this in our manuscript (pages 8 and 9) as follows: 

      “Prior research has found TSST anticipation to elicit both psychological and physiological stress responses [37-39], suggesting that the task anticipation would be a valid stress induction despite participants not performing the speech task. Moreover, prior research has validated the use of remote TSST in online settings [40, 41], including evidence that the speech preparation phase (online) was related to increased heart rate and blood pressure compared to controls [40].”

      Reviewer #2 (Public review):

      Summary:

      The authors have developed a behavioral paradigm to experimentally manipulate the sense of control experienced by the participants by changing the level of difficulty of a wheel-stopping task. In the first study, this manipulation is tested by administering the task in a factorial design with two levels of controllability and two levels of stressor intensity to a large number of participants online while simultaneously recording subjective ratings on perceived control, anxiety, and stress. In the second study, the authors used the wheel-stopping task to induce a high sense of controllability and test whether this manipulation buffers the response to a subsequent stress induction when compared to a neutral task, like looking at pleasant videos.

      We thank the reviewer for their accurate summary.

      Strengths:

      (1) The authors validate a method to manipulate stress.

      (2) The authors use an experimental manipulation to induce an enhanced sense of controllability to test its impact on the response to stress induction.

      (3) The studies involved big sample sizes.

      We thank the reviewer for noting these positive aspects of our study. 

      Weaknesses:

      (1) The study was not preregistered.

      This is correct.

      (2) The control manipulation is conflated with task difficulty, and, therefore the reward rate. Although the authors acknowledge this limitation at the end of the discussion, it is a very important limitation, and its implications are not properly discussed. The discussion states that this is a common limitation with previous studies of control but omits that many studies have controlled for it using yoking.

      We agree that these are very important issues to consider in the interpretation of our findings. It is important to note, that while our task design does not separate these constructs, we are able to do so in our statistical analyses. For example, our measure of perceived difficulty was included in analyses assessing the fluctuations in stress and control in which subjective control still had a unique effect on the experience of stress over and above perceived difficulty, suggesting that subjective control explains variance in stress beyond what is accounted for by perceived difficulty. Similarly, we have also included additional analyses in which we include the win rate (i.e. percentage of trials won) as a covariate when assessing the relationship between subjective control, perceived difficulty and subjective stress, in which subjective control and perceived difficulty still uniquely predict subjective stress when controlling for win rate. This suggests that there is unique variance in subjective control, separate from perceived task difficulty and win rate that is relevant to stress. We have included these analyses (page 16 of manuscript) as follows:

      “To further isolate the relationship between subjective control and stress separate from perceived task difficulty or objective task performance, we also included the overall win rate (percentage of trials won during the WS task) in the models. In Study 1, lower feelings of control were related to higher levels of subjective stress (β= -0.12, p<.001) even when controlling for both  win rate (β= -0.06, p=.220) and perceived task difficulty (β= 0.37, p<.001, Table S10). This also replicated in Study 2, where lower subjective control was associated with higher feelings of stress (β= -0.32, p<.001) when controlling for perceived task difficulty (β= 0.31, p<.001) and win rate (β= -0.11, p=.428, Table S11). This suggests that there is unique variance in subjective feelings of control, separate from task performance, relevant to subjective stress.”

      As well as expanding on this in the Discussion (pages 27 and 28) as follows:

      “While our task design does not separate control from obtained reward, we are able to do so in the statistical analyses. Like with perceived difficulty, we statistically accounted for reward rate and showed that the relationship between subjective control and stress was not accounted for by reward rate, for example. Similarly, participants received feedback after every trial, and thus feedback valence may contribute to stress perception. However, given that overall win rate (which captures the feedback received during the task) did not predict stress over and above perceived difficulty or subjective control, it suggests that feedback is unlikely to relate to stress over and above difficulty. Future work will need to disentangle this further to rule out such potential confounds.”

      Further, in terms of the wider literature on these issues, we have added more to this point in our discussion, especially in relation to previous literature that also varies control by reward rate (e.g. Dorfman & Gershman, 2019, who use a reward rate of 80% in high control conditions and 50% in low control conditions). This can be found in the manuscript on page 27 as follows: 

      “Previous research typically accounts for different outcomes (e.g. punishment) by yoking controllable and uncontrollable conditions [3] though other work has manipulated the controllability of rewards by changing the reward rate [for example 30] where a decoy stimulus is rewarded 50% of the time in the low control condition but 80% in the high control condition).”

      (3) The methods are not always clear enough, and it is difficult to know whether all the manipulations are done within-subjects or some key manipulations are done between subjects.

      We have added more information in the methods section (page 8) clarifying withinsubject manipulations (WS task parameters) and between-subject manipulations (stressor intensity task, WS task version in Study 1, and WS task/video task in Study 2). Additionally, as recommended by Reviewer 1, we have provided more information in the methods section and Table S3 regarding the details of on-screen written feedback provided to participants after each trial of the WS Task.

      (4) The analysis of internal consistency is based on splitting the data into odd/even sliders. This choice of data parcellation may cause missed drifts in task performance due to learning, practice effects, or tiredness, thus potentially inflating internal consistency.

      We agree that this can indeed be an issue, though drift is likely to be present in any task including even in mood in resting-state (Jangraw et al., 2023). To respond to this specific point, we parcellated the timepoints into a 1<sup>st</sup>/2<sup>nd</sup> half split and report the ICC in the supplementary information. While values are lower, indeed likely due to systematic drifts in task performance as participants learn to perform the task (especially for Study 2 since the order of parameters were designed to get easier throughout the experiment), the ICC values are still high. Control sliders: Study 1 = 0.82, Study 2: = 0.68; Difficulty sliders: Study 1: = 0.84, Study 2 = 0.57; Stress sliders: Study 1 = 0.45, Study 2 = 0.71. As seen, the lowest ICC is for stress sliders in Study 1. This may be because the first 3 sliders (included in the 1<sup>st</sup> half split) were all related to the stress task (initial, post-stress, task, post-debrief) and the final 4 sliders (in the 2<sup>nd</sup> half split) were the three sliders during the WS task and shortly afterwards. 

      (5) Study 2 manipulates the effect of domain (win versus loss WS task), but the interaction of this factor with stressor intensity is not included in the analysis.

      We agree that this would be a valuable analysis to include. We have run additional analyses (section Sensitivity and Exploratory Analyses, pages 24 and 25), testing the interaction of Domain (win or loss) with stressor intensity (and time) when predicting the stress buffering and stress relief effects. This revealed no significant main effects of domain or interactions including domain, suggesting that domain did not impact the stress induction or relief differently depending on whether it was followed by the high or low stressor intensity condition. While the control by time interaction (our main effect of interest) still held for stress induction in this more complex model, the control by time interaction did not hold for the stress relief. However, this more complex model did not provide a better fit for the data, motivating us to continue to draw conclusions from the original model specification with domain as a covariate (rather than an interaction).

      We outline these analyses on page 24 of the manuscript, as follows:

      “Third, we included the interaction of domain with stressor intensity and with time, to test whether the win or loss domain in the WS task significantly impacted stress induction or stress relief differently depending on stressor intensity. There were no significant effects or interactions of domain (Table S14) for stress induction or stress relief, and the main effect of interest (the interaction between time and control) still held for the stress induction (β= 10.20, SE=4.99 p=.041, Table S14), though was no longer significant for the stress relief  (β= 6.72, SE=4.28, p=.117, Table S14). This more complex model did not significantly improve model fit (χ<sup>²</sup>(3)= 1.46, p=.691) compared to our original specification (with domain as a covariate rather than an interaction) and had slightly worse fit (higher AIC and BIC) than the original model (AIC = 5477.2 versus 5472.7, BIC = 5538.5 versus 5520.8).”

      This study will be of interest to psychologists and cognitive scientists interested in understanding how controllability and its subjective perception impact how people respond to stress exposure. Demonstrating that an increased sense of control buffers/protects against subsequent stress is important and may trigger further studies to characterize this phenomenon better. However, beyond the highlighted weaknesses, the current study only studied the effect of stress induction consecutive to the performance of the WS task on the same day and its generalizability is not warranted.

      We thank the reviewer for this assessment and agree that we cannot assume these findings would generalise to more prolonged effects on stress responses.

      Reviewer #3 (Public review):

      Summary:

      This is an interesting investigation of the benefits of perceiving control and its impact on the subjective experience of stress. To assess a subjective sense of control, the authors introduce a novel wheel-stopping (WS) task where control is manipulated via size and speed to induce low and high control conditions. The authors demonstrate that the subjective sense of control is associated with experienced subjective stress and individual differences related to mental health measures. In a second experiment, they further show that an increased sense of control buffers subjective stress induced by a trier social stress manipulation, more so than a more typical stress buffering mechanism of watching neutral/calming videos.

      We agree with this accurate summary of our study. 

      Strengths:

      There are several strengths to the manuscript that can be highlighted. For instance, the paper introduces a new paradigm and a clever manipulation to test an important and significant question. Additionally, it is a well-powered investigation that allows for confidence in replicability and the ability to show both high internal consistency and high external validity with an interesting set of individual difference analyses. Finally, the results are quite interesting and support prior literature while also providing a significant contribution to the field with respect to understanding the benefits of perceiving control.

      We thank the reviewer for this positive assessment. 

      Weaknesses:

      There are also some questions that, if addressed, could help our readership.

      (1) A key manipulation was the high-intensity stressor (Anticipatory TSST signal), which was measured via subjective ratings recorded on a sliding scale at different intervals during testing. Typically, the TSST conducted in the lab is associated with increases in cortisol assessments and physiological responses (e.g., skin conductance and heart rate). The current study is limited to subjective measures of stress, given the online nature of the study. Since TSST online may also yield psychologically different results than in the lab (i.e., presumably in a comfortable environment, not facing a panel of judges), it would be helpful for the authors to briefly discuss how the subjective results compare with other examples from the literature (either online or in the lab). The question is whether the experienced stress was sufficiently stressful given that it was online and measured via subjective reports. The control condition (low intensity via reading recipes) is helpful, but the low-intensity stress does not seem to differ from baseline readings at the beginning of the experiment.

      We agree that it would be helpful to expand on this further. Similar to the comment made by Reviewer 1, we wish to point out that there are ample demonstrations that such anticipatory stress inductions are effective at reliably eliciting physiological and psychological stress responses (e.g. Nasso et al., 2019; Schlatter et al., 2021; Steinbeis et al., 2015). Further, there is evidence that online versions of the TSST are also effective (DuPont et al., 2022; Meier et al., 2022), including evidence that the speech preparation phase conducted online was related to increases in heart rate and blood pressure (DuPont et al., 2022). We have elaborated further on this in our manuscript on pages 8 and 9 as follows:

      “Prior research has found TSST anticipation to elicit both psychological and physiological stress responses [37-39], suggesting that the task anticipation would be a valid stress induction despite participants not performing the speech task. Moreover, prior research has validated the use of remote TSST in online settings [40, 41], including evidence that the speech preparation phase (online) was related to increased heart rate and blood pressure compared to controls [40].”

      (2) The neutral videos represent an important condition to contrast with WS, but it raises two questions. First, the conditions are quite different in terms of experience, and it is interesting to consider what another more active (but not controlled per se) condition would be in comparison to the WS performance. That is, there is no instrumental action during the neutral video viewing (even passive ratings about the video), and the active demands could be an important component of the ability to mitigate stress. Second, the subjective ratings of the stress of the neutral video appear equivalent to the win condition. Would it have been useful to have a high arousal video (akin to the loss condition) to test the idea that experience of control will buffer against stress? That way, the subjective stress experience of stress would start at equivalent points after WS3.

      We agree with the reviewer that this is an important issue to clarify. In our deliberations when designing this study, we considered that that any task with actionoutcome contingencies would have a degree of controllability. To better distinguish experiences of control (WS task) to an experience of no/neutral control (i.e., neither high nor low controllability), we decided to use a task in which no actions were required during the task itself. Importantly, however, there was an active demand and concentration was still required in order to perform the attention checks regarding the content of the videos and ratings of the videos. 

      Thank you for the suggestion of having a high arousal video condition. This would indeed be interesting to test how experiencing ‘neutral’ control and high(er) stress levels preceding the stressor task influences stress buffering and stress relief, and we have included this suggestion for future research in the discussion section (page 28) as below:

      “Another avenue for future research would be to test how control buffers against stress when compared to a neutral control scenario of higher stress levels, akin to the loss domain in the WS Task, given that participants found the video condition generally relaxing. However, given that we found no differences dependent on domain for the stress induction in the WS Task conditions, it is possible that different versions of a neutral control condition would not impact the stress induction.”

      (3) For the stress relief analysis, the authors included time points 2 and 3 (after the stressor and debrief) but not a baseline reading before stress. Given the potential baseline differences across conditions, can this decision be justified in the manuscript?

      We thank the reviewer for raising this. Regarding the stress relief analyses (timepoints 2 and 3) and not including timepoint 1 (after the WS/video task) stress in the model, we have added to the manuscript that there was no significant difference in stress ratings between the high control and neutral control (collapsed across stress and domain) at timepoint 1 (hence why we do not think it’s necessary to include in the stress relief model). Nevertheless, we have now included a sensitivity analysis to test the Timepoint*Control interaction of stress relief when including timepoint 1 stress as a covariate. The timepoint by control interaction still holds, suggesting that the initial stress level prior to the stress induction does not impact our results of interest. The details of this analysis are included in the Sensitivity and Exploratory Analyses section on page 24:

      “Although there were no significant differences between control groups in subjective stress immediately after the WS/video task (t(175.6)=1.17, p=.244), we included participants’ stress level after the WS/video task as a covariate in the stress relief analyses (Table S12). The results revealed a main effect of initial stress (β= 0.643, SE=0.040, p<.001, Table S12) on the stress relief after the stressor debrief. Compared to excluding initial stress as in the original analyses (Table 4), there was now no longer a main effect of domain (β= 0.236, SE=2.60, p=.093, Table S12), but the inference of all other effects remained the same. Importantly, there was still a significant time by control interaction (β= 9.65, SE=3.74, p=.010, Table S12) showing that the decrease in stress after the debrief was greater in the highly controllable WS condition than the neutral control video condition, even when accounting for the initial stress level.”

      (4) Is the increased control experience during the losses condition more valuable in mitigating experienced stress than the win condition?

      We agree that this would be helpful to clarify. To test whether the loss domain was more valuable at mitigating experiences of stress than the win condition, we ran additional analyses with just the high control condition (WS task) to test for a Domain*Time interaction. This revealed no significant Domain*Time interaction, suggesting that the stress buffering or stress relief effect was not dependent on domain in the high control conditions. These analyses are outlined in the Sensitivity and Exploratory Analyses section on page 25:

      “Finally, to test whether the loss domain was more valuable at mitigating experiences of stress than the win condition, we ran additional analyses with just the high control condition (WS task) for the stress induction and stress relief to test for an interaction of domain and time. For the stress induction, there was no significant two-way interaction of domain and time (β= -1.45, SE=4.80, p=.763), nor a significant three-way interaction of domain by time by stressor intensity (β= -3.96, SE=6.74, p=.557, Table S15), suggesting that there were no differences in the stress induction dependent on domain. Similarly for the stress relief, there was no significant two-way interaction of domain and time (β= -5.92, SE=4.42, p=.182), nor a significant three-way interaction of domain by time by stressor intensity interaction (β= 8.86, SE=6.21, p=.154, Table S15), suggesting that there were no differences in the stress relief dependent on the WS Task domain.

      (5) The subjective measure of control ("how in control do you feel right now") tends to follow a successful or failed attempt at the WS task. How much is the experience of control mediated by the degree of experienced success/schedule of reinforcement? Is it an assessment of control or, an evaluation of how well they are doing and/or resolution of uncertainty? An interesting paper by Cockburn et al. 2014 highlights the potential for positive prediction errors to enhance the desire for control.

      We thank the reviewer for this comment. Similar to comments regarding reward rate, our task does not allow us to fully separate control from success/reinforcement because of the manipulation of difficulty. However, we did undertake sensitivity analyses and the inclusion of overall win rate accounted for limited variance when predicting stress over and above subjective control and difficulty (page 16). 

      “To further isolate the relationship between subjective control and stress separate from perceived task difficulty or objective task performance, we also included the overall win rate (percentage of trials won during the WS task) in the models. In Study 1, lower feelings of control were related to higher levels of subjective stress (β= -0.12, p<.001) even when controlling for both  win rate (β= -0.06, p=.220) and perceived task difficulty (β= 0.37, p<.001, Table S10). This also replicated in Study 2, where lower subjective control was associated with higher feelings of stress (β= -0.32, p<.001) when controlling for perceived task difficulty (β= 0.31, p<.001) and win rate (β= -0.11, p=.428, Table S11). This suggests that there is unique variance in subjective feelings of control, separate from task performance, relevant to subjective stress.” 

      (6) While the authors do a very good job in their inclusion and synthesis of the relevant literature, they could also amplify some discussion in specific areas. For example, operationalizing task controllability via task difficulty is an interesting approach. It would be useful to discuss their approach (along with any others in the literature that have used it) and compare it to other typically used paradigms measuring control via presence or absence of choice, as mentioned by the authors briefly in the introduction.

      We are delighted to expand on this particular point and have done so in the Discussion on page 27:

      “Previous research typically accounts for different outcomes (e.g. punishment) by yoking controllable and uncontrollable conditions [3] though other work has manipulated the controllability of rewards by changing the reward rate [for example 30] where a decoy stimulus is rewarded 50% of the time in the low control condition but 80% in the high control condition). While our task design does not separate control from obtained reward, we are able to do so in the statistical analyses.” 

      (7) The paper is well-written. However, it would be useful to expand on Figure 1 to include a) separate figures for study 1 (currently not included) and 2, and b) a timeline that includes the measurements of subjective stress (incorporated in Figure 1). It would also be helpful to include Figure S4 in the manuscript.

      We have expanded Figure 1 to include both Studies 1 and 2 and a timeline of when subjective stress was assessed throughout the experiment as well as adding Figure S4 to the main manuscript (now top panel within Figure 4). 

      Reviewer #1 (Recommendations for the authors):

      (1) Study 2 shows a greater decrease in subjective stress after the high-control task manipulation than after the pleasant video. One possible confound is whether the amount of time to complete the WS task and the video differ. It could be helpful to look at the average completion time for the WS task and compare that to the length of the videos. Alternatively, in future studies, control for this by dynamically adjusting the video play length to each participant based on how long they took to complete the WS task.

      This is an interesting suggestion. As a result, we have included the time taken as a covariate in the stress induction and stress relief analyses to ensure that any differences in time between the WS task and video task were not accounting for any of the stress induction or relief analyses. Controlling for the total time taken did not impact the stress induction or relief results. This is included in the Sensitivity and Exploratory Analyses section on page 24:

      “Our second sensitivity analyses was conducted because the experiment took longer to complete for the video condition (mean = 54.3 minutes, SD = 12.4 minutes) than the WS task condition (mean = 39.7 minutes, SD = 12.8 minutes, t(186.19)=-9.32, p<.001). We therefore included the total time (in ms) as a covariate in the stress induction and stress relief analyses for Study 2. This showed that accounting for total time did not change the results of interest (Table S13), further highlighting that the time by control interactions were robust.”

      (2) Because participants received feedback about their success/failure in the WS task, a confounding factor could be that they received positive feedback on highly controllable trials and negative feedback on low control trials (and/or highly difficult trials). This would suggest that it is not controllability per se that contributes to stress perception but rather feedback valence. The authors show that this is a likely factor in their results in Study 2, which shows significant effects of the loss domain on perceived control and stress. Was a similar analysis done in Study 1? Do participants receive feedback in Study 1? It would be helpful to include this information somewhere in the manuscript. I would be curious to know whether *any* feedback at all influences controllability/stress perceptions.

      We thank the reviewer for this interesting suggestion. It is an interesting question as to whether feedback valence is related to stress in Study 1, and we have added this point to the Discussion on pages 27 and 28. To speak to this point, when we include the overall win rate (which captures the subsequent feedback received) when predicting subjective stress, win rate is not a significant predictor of stress over and above perceived difficulty and subjective control, suggesting that overall feedback valence may not be related to stress in Study 1. We take this as evidence that feedback may not be as important in terms of accounting for the relationship between stress and control. However, we unfortunately do not have any data in which there was no feedback provided to speak to this conclusively. This would be an interesting future study. The excerpt below is added to pages 27 and 28 of the discussion section:

      “Like with perceived difficulty, we statistically accounted for reward rate and showed that the relationship between subjective control and stress was not accounted for by reward rate, for example. Similarly, participants received feedback after every trial, and thus feedback valence may contribute to stress perception. However, given that overall win rate (which captures the feedback received during the task) did not predict stress over and above perceived difficulty or subjective control, it suggests that feedback is unlikely to relate to stress over and above difficulty. Future work will need to disentangle this further to rule out such potential confounds.”

      To respond specifically to the reviewer’s question about the feedback given to participants, written feedback was provided on screen to participants on a trial-bytrial basis also in Study 1 (i.e. for both studies), and we have provided more clarity about this in the manuscript on page 8 as well as providing additional details in Table S3:

      “After each trial, participants were shown written feedback on screen as to whether the segment had successfully stopped on the red zone (or not), and the associated reward (or lack of). See Table S3 for details.”

      (3) I'm not sure how to interpret the fact that in Figure S1, the BICs are all essentially the same. Does this mean that you don't really need all of these varying aspects of the task to achieve the same effects? Could the task be made simpler?

      The similarity of BIC values suggests that a simpler WS task would have produced a worse account of the data approximately in keeping with the extent to which it is a simpler model. Here, the BIC scores for the models are similar, suggesting that adding these parameters adds explanatory power in keeping with what would have been expected from adding a parameter, but not more. We do note that the BIC is a relatively strict and conservative comparison. The fact that the most complex model overall narrowly improves parsimony; combined with the interpretable parameter values and the prior expectations given the task setup led us to focus on this most complex model.  

      (4) A minor point, but the authors refer to their sample as "neurotypical." Were they assessed for prior/current psychopathology/medications? If not, I might use a different term here (perhaps "non-clinical sample"), since some prior work has shown that online samples actually have higher instances of psychopathology compared to community samples.

      We have changed the phrasing of ‘neurotypical’ to a ‘non-clinical sample’ as recommended.

      Reviewer #2 (Recommendations for the authors):

      Figure 4S is very informative and could be presented in the main text.

      We have expanded Figure 1 to include both Studies 1 and 2 and a timeline of when subjective stress was assessed throughout the experiment as well as adding Figure S4 to the main manuscript (top panel of Figure 4). 

      References:

      Dorfman, H. M., & Gershman, S. J. (2019). Controllability governs the balance between Pavlovian and instrumental action selection. Nature Communications, 10(1), 5826. https://doi.org/10.1038/s41467-019-13737-7

      DuPont, C. M., Pressman, S. D., Reed, R. G., Manuck, S. B., Marsland, A. L., & Gianaros, P. J. (2022). An online Trier social stress paradigm to evoke affective and cardiovascular responses. Psychophysiology, 59(10), e14067. https://doi.org/10.1111/psyp.14067

      Jangraw, D. C., Keren, H., Sun, H., Bedder, R. L., Rutledge, R. B., Pereira, F., Thomas, A. G., Pine, D. S., Zheng, C., Nielson, D. M., & Stringaris, A. (2023). A highly replicable decline in mood during rest and simple tasks. Nature Human Behaviour, 7(4), 596–610. https://doi.org/10.1038/s41562-023-015197

      Meier, M., Haub, K., Schramm, M.-L., Hamma, M., Bentele, U. U., Dimitroff, S. J., Gärtner, R., Denk, B. F., Benz, A. B. E., Unternaehrer, E., & Pruessner, J. C. (2022). Validation of an online version of the trier social stress test in adult men and women. Psychoneuroendocrinology, 142, 105818. https://doi.org/10.1016/j.psyneuen.2022.105818

      Nasso, S., Vanderhasselt, M.-A., Demeyer, I., & De Raedt, R. (2019). Autonomic regulation in response to stress: The influence of anticipatory emotion regulation strategies and trait rumination. Emotion, 19(3), 443–454. https://doi.org/10.1037/emo0000448

      Schlatter, S., Schmidt, L., Lilot, M., Guillot, A., & Debarnot, U. (2021). Implementing biofeedback as a proactive coping strategy: Psychological and physiological effects on anticipatory stress. Behaviour Research and Therapy, 140, 103834. https://doi.org/10.1016/j.brat.2021.103834

      Steinbeis, N., Engert, V., Linz, R., & Singer, T. (2015). The effects of stress and affiliation on social decision-making: Investigating the tend-and-befriend pattern. Psychoneuroendocrinology, 62, 138–148. https://doi.org/10.1016/j.psyneuen.2015.08.003

  2. Oct 2025
    1. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      The taxonomic analysis of IRG1 evolution is compelling and fills an important gap in the literature. However, the experimental evidence for IRG1 localization requires greater detail and confirmation. 

      Strengths: 

      The phylogenetic analysis of IRG1 evolution fills an important gap in the literature. The identification of independent acquisition of metazoan and fungal IRG1 from prokaryotic sources is novel, and the observation that human IRG1 lost mitochondrial matrix localization is particularly interesting, with potentially significant implications for the study of itaconate biology. 

      We thank the reviewer for appreciating the novelty of our study in exploring IRG1 evolution.  

      Weaknesses: 

      The protease protection assay was conducted with MTS-IRG1 but not with wild-type IRG1, which should also be tested. Moreover, no complementary methods, such as microscopy, were employed to validate localization. Beyond humans, the structure and localization of mouse IRG1, highly relevant given the widespread use of the mouse as a model for IRG1 functional studies, are not addressed. 

      Regarding submitochondrial localization of IRG1, we want to draw attention to the published data that a protease protection assay for wild-type mammalian IRG1 has been performed by Lian et al. 2023 (Extended Data Fig. 4), which convincingly demonstrated an outer-mitochondrial membrane localization of endogenous mouse IRG1 in mouse DC2.4 cells upon LPS stimulation that induces IRG1 expression. 

      Regarding complementary microscopy evidence, the same paper performed two-color,  DNA-paint super-resolution imaging to demonstrate an enrichment of IRG1 to mitochondria with a lack of co-localization of the inner membrane/matrix marker Cox IV. 

      Given the direct visualization of sub-mitochondrial localization, we consider applying super-resolution microscopy to revisit the sub-mitochondrial localization of di[erent IRG1 constructs in the study.   

      Reference:

      Lian H, Park D, Chen M, Schueder F, Lara-Tejero M, Liu J, Galán JE. Parkinson's disease kinase LRRK2 coordinates a cell-intrinsic itaconate-dependent defence pathway against intracellular Salmonella. Nat Microbiol. 2023 Oct;8(10):1880-1895. doi: 10.1038/s41564-023-01459-y. Epub 2023 Aug 28. PMID: 37640963; PMCID: PMC10962312.

      Finally, if itaconate is indeed synthesized outside the mitochondrial matrix to safeguard metabolic activity, it is not discussed how this reconciles with its reported inhibitory e[ect on SDH. 

      We thank the excellent point raised by the reviewer. Indeed, itaconate has been proposed to inhibit matrix SDH exhibiting anti-inflammation function (Lampropoulou, Cell Metab 2016). While the mitochondrial transport of itaconate has not been fully characterized in vivo or in cells, a specific itaconate transport activity has been shown for the mitochondrial 2-oxoglutarate transporter OGC using in vitro proteoliposome system (Mills et al. Nature 2018). 

      We plan to discuss this important point on mitochondrial itaconate transport in the revision. 

      Reference: 

      Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, Cervantes-Barragan L, Ma X, Huang SC, Griss T, Weinheimer CJ, Khader S, Randolph GJ, Pearce EJ, Jones RG, Diwan A, Diamond MS, Artyomov MN. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016 Jul 12;24(1):158-66. doi: 10.1016/j.cmet.2016.06.004. Epub 2016 Jun 30. PMID: 27374498; PMCID: PMC5108454.  

      Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, Jedrychowski MP, Costa ASH, Higgins M, Hams E, Szpyt J, Runtsch MC, King MS, McGouran JF, Fischer R, Kessler BM, McGettrick AF, Hughes MM, Carroll RG, Booty LM, Knatko EV, Meakin PJ, Ashford MLJ, Modis LK, Brunori G, Sévin DC, Fallon PG, Caldwell ST, Kunji ERS, Chouchani ET, Frezza C, Dinkova-Kostova AT, Hartley RC, Murphy MP, O'Neill LA. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018 Apr 5;556(7699):113117. doi: 10.1038/nature25986. Epub 2018 Mar 28. PMID: 29590092; PMCID: PMC6047741.

      Reviewer #2 (Public review): 

      Summary: 

      The authors are trying to explain how the metabolite itaconate evolved, since although it's involved in host defense, it can also limit mitochondrial function. They are trying to probe the trade-o[ between these two functions. 

      Strengths: 

      The evolutionary aspect is novel; this is the first time to my knowledge that the evolution of IRG1 has been analysed, and there are interesting findings here. The key finding appears to be that subcellular localisation is an important aspect, allowing host defense in some organisms without compromising bioenergetics. This is an interesting finding in the context of immunomebolism, although it needs extra analysis. 

      Weaknesses: 

      The work concerning sub-mitochondrial localisation is confusing and needs better analysis. 

      We thank the reviewer for the constructive feedback. As in our response to reviewer 1, we want to draw attention to the published data in which the outer mitochondrial membrane localization of IRG1 has been demonstrated by protease protection assay and explored using super-resolution imaging by Lian et al. 2023 (Extended Data Fig. 4). Given the direct visualization of sub-mitochondrial localization by super-resolution imaging, we plan to revisit and to apply the method to di[erent IRG1 constructs used in the paper.

      Reviewer #3 (Public review): 

      Summary: 

      IRG1 is highly expressed in activated human and mouse myeloid cells. It encodes the mitochondrial enzyme cis-aconitate decarboxylase 1 (ACOD1) that generates itaconate. Itaconate has anti-microbial activity and acts immunoregulatory by interfering with cellular metabolism, signaling to cytokine production, and multiple other processes. 

      The authors perform a phylogenetic analysis of IRG1 to obtain insight into the evolution of itaconate biosynthesis. Combining BLAST with human IRG1 and a MmgE/Ptrp domain search, they find CAD in all domains of life, but the presence of IRG1 homologs is patchy in eukaryotes, indicating that itaconate biosynthesis is not essential. The phylogenetic analysis showed a more distant relationship of fungal and metazoan CAD/IRG1 to many prokaryotic sequences, suggesting independent acquisition of these metazoan and fungal CAD genes. In metazoans, three subbranches of paleo-IRG1 (in mollusks/early chordates) and two paralogous vertebrate forms (IRG1 and IRG1-like) were identified, with the latter derived from paleo-IRG1, and by genome duplication. While most jawed vertebrates have both IRG1 and IRG1L, metatherian and eutherian mammals have lost IRG1L and contain only IRG1. 

      Interestingly, sequence analysis of both paralogues showed that many IRG1L genes contain an N-terminal mitochondrial targeting sequence (MTS) that is absent from most IRG1 sequences. Limited proteolysis of submitochondrial localization confirmed that zebrafish IRG1L is only sensitive to proteases in the presence of high Triton X-100, indicative of association with mitochondrial matrix. In contrast, a recent paper from the Galan lab (Lian 2003 Nature Microbiology) reported that human IRG1 is not localized to the mitochondrial matrix, although enriched in mitochondria. Here, the authors generated a matrix-targeted human IRG1 by adding the N-terminal MTS and found that it localizes to the matrix based on a limited proteolysis assay. The loss of MTS-containing IRG1L from most mammals appears, therefore, to indicate that itaconate generation is directed to the cytoplasm, potentially reducing inhibition of TCA cycle activity in the mitochondria. 

      Next, the authors confirmed that the recombinant IRG1L protein has CAD activity in vitro. The last part of the manuscript addresses the expression of paleo-IRG1 in oysters and amphioxus, where they found high mRNA levels in oyster hemocytes which was further increased by poly(I:C), which was also the case in amphioxus tissues after feeding of LPS or poly(I:C), indicating a role for paleo-IRG1/itaconate in early metazoan innate immunity. 

      Strengths 

      (1) Phylogenetic perspective largely lacking so far in the IRG1/itaconate field. 

      (2) Manuscript clearly written and understandable across disciplines. 

      (3) Phylogenetic analyses complemented by biochemical and gene expression analyses to link to function. 

      (4) Lack of MTS in IRG1 and change in localization from mitochondria, highly relevant antimicrobial and cellular e[ects of itaconate. 

      We thank the reviewer for the positive comments with the strengths.  

      Weaknesses: 

      (1) Biochemical and functional analysis of di[erent CAD mRNA and proteins lacks depth. 

      We plan to explore two types of experiments: 

      First, we plan to purify di[erent CAD recombinant proteins; and if successful, we will test their in vitro enzymatic activity in synthesize itaconate. The positive data will also answer question (3) below.

      Second, we plan to measure itaconate level in oyster hemocytes after PAMP stimulation, to demonstrate an in vivo itaconate production activity by paleo-IRG1. The data will also address question (4) below. 

      (2) The submitochondrial localization assay lacks a native human IRG1 control. 

      As in our response to reviewer 1, we believe Lian et al. 2023. provided strong evidence supporting an outer mitochondrial membrane localization of wild-type endogenous, mouse IRG1. Given the direct visualization using suer-resolution imaging, we plan to revisit submitochondrial localization of di[erent IRG1 constructs using super-resolution imaging. 

      (3) CAD activity shown for IRG1L but not paleo-IRG1. 

      We plan to purify di[erent CAD recombinant proteins; and if successful, we will test their in vitro enzymatic activity in producing itaconate.

      (4) Itaconate production by early metazoans after PAMP stimulation? 

      We plan to measure itaconate level in oyster hemocytes after PAMP stimulation, to demonstrate an in vivo itaconate production activity by paleo-IRG1.

      (5) No measurement of energy metabolism (trade-o[s?). 

      Because PAMP signaling might trigger other downstream e[ects that also impair mitochondrial function, for instance nitric oxide that inhibits complex IV, we plan to avoid PAMP condition and direct test the e[ect of itaconate production. We plan to compare the impact on mitochondrial bioenergetics, if the same CAD enzymes (thus with the same activity) can be expressed at the same level intra-mitochondrially and extramitochondrially, for instance in the case of MTS-hACOD1 and hACOD1.

    1. Author response:

      We thank the reviewers for their insightful comments on our manuscript. Here we briefly highlight our responses to several issues raised by reviewers, and also provide a summary of planned changes to be made with the next draft.

      Reviewer 1:

      (1) The reviewer questions the rationale for averaging sentence embeddings across different models. However, our method involves computing correlations separately for each model, then averaging the correlations. We also report model correlations for each model separately in Fig S2. We will clarify this in our revised manuscript.

      (2) We agree with the reviewer that including a context-free grammar model as a comparison would be informative. We will incorporate this in the revised manuscript.

      (3) The reviewer raises questions about the low correlation between behavioural and brain similarities. While the behavioural judgements are made by different participants and involve a different task than the neuroimaging results, nonetheless we agree the difference is surprising and warrants more detailed consideration. We will provide additional discussion of the relationship between behavioural judgements and brain data in the revised manuscript.

      (4) The reviewer suggests contrasting our models with a ‘semantic ground truth’, as in our design matrix shown in Fig 1. While our design matrix served as the basis for constructing a set of stimuli with systematic modifications, we respectfully suggest that it should not be regarded as a ‘semantic ground truth’. In particular, sentence pairs within each category will not have the same degrees of semantic similarity since the words and context differ across sentences in a graded manner. Furthermore, while we anticipated ‘different’ sentence pairs would be less similar than ‘swapped’ sentence pairs, and that within each of the six block diagonals the ‘modified’ or ‘substituted’ sentence pairs would be the most similar, we did not have any prediction about the magnitude of these differences. Our goal was to construct a set of sentence pairs which spanned a range of semantic similarities, and allowed for dissociation between lexical similarity and overall similarity in meaning. The design matrix is not intended to represent a ‘ground truth’ that human judgements or brain representations would be expected to conform with.

      (5) In the revised draft we will modify the location of Fig. 5 so that it flows better with the text.

      (6) We agree that the discussion of the differences between brain regions could be expanded. We will include this in the revised version of our manuscript. The reviewer questions our inclusion of the simple-average and group-average RSA analysis as they show similar results. We included both analyses in line with our preregistration, and also because we believe the fact that two distinct approaches to analyzing the data yield similar results strengthens our conclusions.

      (7) We believe that the grid-like pattern in the RSA results is an important unexpected finding that warrants discussion in the main manuscript.

      Reviewer 2:

      (1) The reviewer argues that our stimuli do not fully control for lexical content across conditions, and that a more appropriate paradigm may be to utilise minimal pairs in which only a single variable of interest (such as sentence structure) is modified. We agree that most of our sentence pairs do not constitute minimal pairs, however this was not our objective. Our study design aimed to synthesise traditional minimal pair approaches with more recent research paradigms using naturalistic stimuli. As such, we selected stimuli which are more complex and contain more variable features than traditional minimal pair studies, but which also are tailored to highlight differences which are of particular theoretical interest. Because we are interested in comparing the effects of multiple sentence elements and semantic roles, a systematic pairwise comparison of minimal pairs is not necessarily optimal. Instead, we designed our stimuli to leverage the advantage of fMRI in that we can measure the brain representations corresponding to each sentence, and hence can conduct a full series of pairwise comparisons of sentence representations. Most of these comparisons will not be between minimal pairs, but we selected sentences so as to provide a range of semantic similarities (low to high), while also providing for semantic contrasts of theoretical interest (such as the ‘swapped’ and ‘substituted’ sentence pairs). We do not claim this approach to be universally superior to a minimal pair approach, but we do believe our novel approach provides additional insights and a new perspective on semantic representation relative to minimal pair studies. We will add additional detail in the revised manuscript providing additional explanation for how stimuli were chosen, and contrasting this with minimal pair approaches.

      (2) The reviewer notes that low RSA correlations do not imply that transformers fail to encode syntactic information. We acknowledge this in our discussion (page 10), where we also highlight that our focus is not on whether transformers encode such information, but rather what transformer representations can tell us about how sentence structure is represented in the brain. Our results indicate that transformer embeddings do not have the same geometric properties as brain representations of sentence meaning, at least for certain types of sentences where lexical information is insufficient to determine overall meaning. The reviewer also notes that transformer embeddings are highly anisotropic, however we adjust for this by normalising each feature as discussed on page 14. Finally, the reviewer notes that the transformers we examine differ in architecture and training objectives. This is not critical for our study because we are not seeking to determine which architecture or training objectives are best. Our goal is simply to compare a range of approaches and see which, if any, have similar sentence representations to those formed by the brain. In fact, our results indicate that architecture and training regime make relatively little difference for our stimuli.

      (3) The reviewer argues that RSA correlations do not measure the extent to which a model encodes syntactic information. This is very similar to the previous point. We do not claim that our results show that transformers do not encode syntactic information. Rather, our claim is that sentence embeddings derived from transformers have different geometric properties to brain representations, and that brain representations are better described by models explicitly representing key semantic roles. From this we conclude that, at least for the sentences we present, the brain is highly sensitive to semantic roles in a way that transformer representations are not (at least to the same extent). We also respectfully disagree with the reviewer’s suggestions that sentence length and orthographic or lexical similarities may drive model correlations with brain activity. As we discuss on page 19, we explicitly control for differences in sentence length when computing correlations. Our process for constructing our sentence set also controls for lexical similarity by generating pairs of sentences with all or mostly the same words but different orderings. We did not explicitly address orthographic similarity, but this will be strongly correlated with lexical similarity.

      Reviewer 3:

      (1) The reviewer emphasises the need for nuance in our conclusions, given that some of the transformers achieve higher correlations when assessed over the full set of sentences. We agree with this comment, and will modify the discussion section in the revised manuscript to address this point. Having said that, we would like to note one of the disadvantages of transformers as a model of mind or brain representations is that they are largely a ‘black box’ whose workings are poorly understood. One advantage of hybrid models like our simple semantic role model is that they can be much easier to interpret, thereby enabling them to be used to determine which features are most important for brain representations of sentence meaning, and what mechanisms are used to combine individual words into a full sentence. Given their relative simplicity and interpretability, we believe hybrid models have considerable value as scientific tools, even in cases where they achieve comparable correlations to transformers. We will highlight this issue more clearly in our revised manuscript.

      (2) The reviewer notes that despite our existing controls, residual confounds of sentence length may remain. We agree that this is a potential issue, and will add discussion to the revised manuscript. We also will present further supplementary analyses which we believe indicate that sentence length effects do not drive our main results. At the same time, we believe the fact that our results are robust to simultaneously controlling for sentence length and the ‘minimum length effect’ (Fig. S5) indicates they are not primarily driven by sentence length effects.

      (3) The reviewer notes that the method for computing similarities differs between the vector-based (mean and transformer) models, and the hybrid and syntax-based models, thereby potentially adding an additional confound to our results. We agree that this is a potential limitation, and our correlations should always be understood as applying to a model paired with a similarity metric. However, we believe that this is mostly unavoidable when comparing different formalisms. An alterative approach of first embedding a graph into a vector and then training an encoding model on the graph embeddings has a similar limitation of being dependent not just on the graph representation, but also on the way it was embedded into a vector and the way the encoding model was trained. Arguably this process is more opaque than similarity methods, since it is unclear to what extent the graph embeddings preserve the logic and properties of a graph-based representation. Further, it not clear whether there is any single method which can overcome the difficulty of comparing distinct formalisms for representing semantics. The reviewer also highlights how the correlations measured for the syntax model differ greatly depending on whether the Smatch or WWLK similarity metrics are used. We believe this highlights the need for careful examination of commonly used graph similarity metrics, as has been noted in previous research. We will include additional discussion of this issue in our revised manuscript.

    1. Author response:

      Reviewer #1 (Public Review):

      The authors describe a new computational pipeline designed to identify smFISH probes with improved RNA detection compared to preexisting approaches. smFISH is a powerful and relatively straightforward technique to detect single RNAs in cells at subcellular resolution, which is critical for understanding gene expression regulation at the RNA level. However, existing methods for designing smFISH oligos suffer from several limitations, including off-target binding that produces high background signals, as well as a restricted number of probes that are sufficiently specific to target shorter-than-average mRNAs. To address these challenges, the authors developed TrueProbes, a computational method that aims to minimize off-target-mediated background fluorescence.

      Overall, the study addresses a technically relevant problem. If improved, this would allow researchers to study gene expression regulation more effectively using single-molecule FISH. However, based on the current presentation of data, it is not yet clear that TrueProbes offers significant advantages over preexisting pipelines. In the following section, I describe some concerns, which should be adequately addressed.

      Major Comments:

      (1) The manuscript currently presents only one example in which different pipelines were tested to generate probes (targeting ARF4). While the images suggest that both TrueProbes and Stellaris outperform the other pipelines, the comparison is potentially misleading because the number of probes used differs substantially. I recommend that the authors include at least three independent examples in which an equal number of probes are designed across pipelines, so that signal-to-noise can be assessed in a controlled and comparable way. This would allow the probe number to be held constant while directly evaluating performance.

      This is an important observation. We have already addressed this issue in Figures 3E-G and Supplementary Figure 4E-G, where we plotted the number of OFF-targets for each ON-target probe. If we select longer genes to ensure an equal number of designed probes with strong signals, we will still end up with the same number of ON-target probes. Consequently, Figures 3B-D and 3E-G would show similar trends, albeit with different values on the y-axis. Additionally, we will conduct an analysis using Stellaris at its highest probe design stringency setting to compare the software under its strictest design conditions. Additional experiments are outside the scope of the current manuscript.

      (2) It is also unclear how many biological replicates were performed for the ARF4 experiments. If only a single replicate was included, it is difficult to conclude that TrueProbes consistently outperforms other pipelines in a robust and reproducible manner. I suggest the authors include data from at least three biological replicates with appropriate statistical analysis, and ideally extend this to additional smFISH targets as outlined in Comment 1.

      Three biological replicates were utilized for the ARF4 experiments. As stated in the original submission, the average data from all three replicates is presented in Figure 4, while the data for each individual replicate can be found in Figure S5. Statistical analyses were conducted for both the pooled data in Figure 4 and the individual data in Figure S5. The results of all statistical calculations are detailed in Supplemental Table 1. We will update the text to clearly indicate the number of biological replicates and the outcomes of the statistical analysis.

      (3) No controls are presented to demonstrate that the TrueProbes-designed smFISH spots are specifically detecting ARF4. The current experiment primarily measures signal-to-noise, but it remains possible that some detected spots do not correspond to ARF4 mRNAs. Since one of the major criteria used by TrueProbes is to limit cross-hybridization, the authors should perform ARF4 knockdown experiments and demonstrate that nearly all ARF4 smFISH signal is lost. A similar approach should be applied to the additional examples recommended in Comment 1.

      Thank you for your suggestion. Currently, we lack the expertise in our lab to conduct such experiments, so they are beyond the scope of this manuscript. However, we will create additional supplementary figures to demonstrate that the likelihood of false positives is low, based on the assumption that current publicly available BLAST algorithms, genome annotations, and reference transcription expression data are accurate.

      We will include a comparison in our supplementary materials showing the off-target RNA that can bind the highest number of probes simultaneously for each software. Additionally, we will perform a correlation analysis to illustrate the relationship between spot intensity for different software and the number of probes they design. This will help us estimate how the number of probes bound to RNA correlates with expected spot intensity ranges.

      Using this information, along with autofluorescence background intensity measurements from no-probe controls, we will estimate the minimum number of probes that need to bind to targets to be detected as single spots. If this minimum is higher than the maximum number of simultaneous off-target probe bindings, we anticipate that the detected spot signal will primarily reflect ARF4 rather than other transcripts.

      (4) In the limitations of the study, the authors note that "RNA secondary and tertiary structures are not included, which may lead to inaccuracies if binding sites are structurally occluded." However, I am not convinced that this is a true limitation, since formamide in the smFISH protocol should denature secondary structures and allow oligo access to the RNA. I recommend that the authors comment on this point and clarify whether secondary structure poses a practical limitation in smFISH probe design.

      Thank you for pointing this out. We will revise the manuscript to clarify: "We did not include RNA secondary and tertiary structures in the model because the use of formamide in RNA-FISH experiments denatures these structures, allowing oligonucleotides to access the RNA."

      (5) The authors also correctly acknowledge in their limitations that "RNA-protein interactions, which can modulate accessibility of the transcript, are not modeled." I suggest referencing relevant studies on this issue, particularly Buxbaum et al. (2014, Science), which would provide important context.

      Thank you for highlighting the literature that supports this limitation. We will include Buxbaum et al. (2014, Science) and additional studies that discuss how RNA-protein interactions can affect RNA-FISH experiments.

      Reviewer #2 (Public review):

      Summary:

      Hughes et al present a new single-molecule RNA fluorescence in situ hybridization (smFISH) probe design software, termed "TrueProbes" in this manuscript. They claim that all existing smFISH (and variants) probe design software packages have limitations that ultimately impact experimental performance. The author's claim to address the majority of these limitations in TrueProbes by introducing multiple computational steps to ensure high-quality probe design. The manuscript's goal is clear, and the authors provide some evidence by designing and targeting one gene. Overall, the manuscript lacks rigorous evidence to support the claims, does not demonstrate its suitability for a variety of smFISH-type experiments, and some of the provided quantification data are unclear. While TrueProbes clearly has potential, more data is required, or the authors should tone down the claims.

      We appreciate the reviewer’s thoughtful feedback. We will revise the text to ensure that all claims are backed by computational or experimental evidence. For claims that do not have supporting results, we will relocate them to the discussion section as potential future extensions. Since our probe design is open access, both we and the community can further develop our codes as needed.

      Strengths:

      (1) The problem is well-articulated in the abstract and the introduction.

      (2) Figures 3 and 4 follow a consistent color scheme where each probe design method has its own color, which helps the reader visually compare methods.

      (3) The authors compared multiple probe design software packages both computationally and experimentally.

      (4) TrueProbes does produce visually and quantitatively better results when compared to 2 of the 4 existing smFISH probe design packages (Paintshop and MERFISH panel designer).

      (5) The authors introduce a comprehensive steady-state thermodynamic model to help optimally guide probe design.

      We like to thank the reviewer for pointing out the strength of the manuscript.

      Weaknesses:

      (1) The abstract describes the problem well and introduces the solution (the TrueProbes software), but fails to provide specific ways in which the TrueProbes software performs better. The authors state that "...[TrueProbes] consistently outperformed alternatives across multiple computational metrics and experimental validation assays", but specific, quantitative evidence of improved performance would strengthen the statement.

      Thank you for acknowledging the clarity of the abstract and introduction. We will revise the abstract to provide more specific details on how TrueProbes outperforms other software. Additionally, we will include specific computational and experimental metrics that demonstrate TrueProbes' improved performance compared to other software.

      (2) The text claims that TrueProbes outperforms all other probe design software, but Figure 3 indicates that TrueProbes has neither the greatest number of on-target binding nor the lowest number of off-target binding. The data in Figure 3 does not support the claims made in the text. Specifically, the authors claim that "RNA FISH Experimental Results Demonstrate that Off Target and Binding Affinity Inclusive Probe Design Improve RNA FISH Signal Discrimination" (lines 217-218). However, despite their claim that Stellaris and Oligostan-HT produce more off-target probes when evaluated with the TrueProbes framework, the experiment results are nearly identical. The authors should consider modifying their claims or performing new experiments that more clearly demonstrate their claims.

      In Figure 3, we aim to convey two main points. 

      The first point is to compare the number of ON-target probes designed by each software using their most stringent design criteria (Figure 3A). Currently, we are using a medium strict design criterion for Stellaris (level 3). As shown in the new supplementary figure XX, when we apply the most stringent design criteria for Stellaris (level 5), the number of ON-target probes decreases to XX probes. This clearly indicates that, based on theoretical calculations, TrueProbes can design more probes than any of its competitors.

      The second point is to compare the number of OFF-targets produced by each probe design. To illustrate this, we used two different metrics. In Figures 3B-D, we compare the total number of probes bound to OFF-target RNA. However, since each software generates a different number of ON-target probes, the number of OFF-targets may vary simply due to the differences in ON-target probe counts. Therefore, we introduced a second metric to compare OFF-targets. In Figures 3E-G, we present the number of OFF-targets normalized by the number of ON-targets. Using this metric, TrueProbes shows the lowest number of OFF-targets. We will updat the manuscript to clarify this point.

      Regarding the experiments and their comparison to theoretical calculations: The theoretical calculations consider only the reference DNA and RNA genomes along with the oligonucleotide sequences for the probes. We then use a thermodynamic model to identify ON- and OFF-targets. Thus, these theoretical calculations represent an upper bound on the maximum possible number of ON-targets and the minimum number of OFF-targets. All other design software evaluated in this manuscript relies on the same or less reference data and makes certain assumptions. None of these methods quantitatively compare their computational designs with experimental results; they simply design probes based on unverified assumptions, conduct experiments, and present spot data to conclude that their probe designs are effective.

      We will update the manuscript to clarify the goals of the theoretical model and its relationship to the experiments. Future work will be necessary to enhance our theoretical model to fully account for additional aspects of RNA-FISH experiments (e.g., formaldehyde crosslinking, hybridization conditions, washing steps) to better predict the experimental data shown in Figure 4. We will also adjuste our claims to accurately reflect the current capabilities of our theoretical framework and its relation to experimental outcomes.

      (3) The bar graphs in Figure 3 do not seem to agree with the probability graphs in Figure 4. For example, Figure 3 indicates that Stellaris probes have higher off-target binding than TrueProbes; however, in Figure 4, their probability graphs lie almost on top of each other.

      The predictions in Figure 3 regarding the number of probe off-target binding events, based on reference gene expression data, do not necessarily encompass all the information required to predict RNA-FISH signal intensity. Therefore, these predictions should not be expected to translate directly into the experimental results shown in Figure 4, particularly concerning the background signal.

      While our software aims to minimize off-target probe binding, this does not automatically lead to a reduction in off-target background signal. Numerous other factors influence the spot background and overall signal-to-noise ratio (SNR) performance, beyond just probe-target binding interactions. Although we strive to minimize off-target background through probe binding, this approach is not designed to directly predict the SNR. Extending the computational analysis of probe binding dynamics to RNA-FISH signal intensity dynamics is beyond the scope of this study.

      We have revised our text to clearly separate computational results from experimental results into two distinct sections. We will use different terminology to describe the outcomes of computational performance versus experimental performance, reducing potential confusion between these two aspects. Additionally, we will clarify our conceptual overview in Figure 1 regarding traditional probe design limitations related to sensitivity and specificity. We will specify how the signal from the number of probes bound to ON-target RNA, relative to those bound to OFF-targets and cellular autofluorescence, translates—either linearly or non-linearly—into the signal-to-noise ratio.

      (4) The authors performed validation for only one gene (ARF4), because "...it had the highest gene expression (in TPM units) and the fewest isoforms among all candidate genes for the Jurkat cell line" (lines 176-177). While the results do look good, this is a minimal use case and does not really showcase the power of their method. One experiment that could be helpful would be two-color (or more) smFISH in tissue, where the chances for off-target binding contributing to higher errors are much greater than in an adherent cell line.

      Thank you for highlighting these valuable experiments. Currently, our lab lacks the expertise to generate tissue samples beyond culturing cells. Additionally, implementing a two-color probe design in tissues containing different cell types with unknown expression levels presents further challenges. Due to these limitations, designing and conducting two-color experiments in tissue samples is beyond the scope of the current manuscript, but we plan to pursue this in the future.

      (5) A common strategy for both smFISH and highly multiplexed methods is to use secondary DNA oligos with dye molecules instead of direct conjugation. Given that this is a primary design goal of PaintSHOP and the Zhuang lab's MERFISH probe design code, it would be helpful to demonstrate that TrueProbes can design a two-layer probe strategy for high-quality RNA-FISH labeling.

      Thank you for bringing this to our attention. TrueProbes is currently designed and tested specifically for primary smRNA-FISH probes. Our focus is on demonstrating a new approach to designing these probes without the added complexities of secondary probes and multiplexing. Future work will expand on this foundation to incorporate secondary probe detection and transcript multiplexing.

      (6) The authors claim, "For every probe set, TrueProbes can simulate expected smRNA FISH outcomes including optimal probe, RNA, and salt concentrations and optionally account for probe secondary structure, hybridization temperature, multiple targets, fluorophore choice, DNA, nascent RNA, and photon count statistics (Figures S2A, S2B). The model can be used to generate predictions for temperature and cell line sensitivity, multi-target discrimination, multiple fluorophore colocalization; when provided transcript expression levels and probe/background intensity, it can start to generate predictions for spot intensity, background, signal to noise ratio, and false negative rates (Figure S2C)." (lines 156-163). Figure S2 is a flow chart and does not provide evidence for any of these items. The authors should provide evidence for these claims, either as a figure or an example script in their software repository. If that is not possible, then it should be removed.

      The supplemental information of the article will be updated to include figures that illustrate predictions for each capability currently offered by TrueProbes, along with the scripts used to generate these predictions. Any capabilities that do not have corresponding scripts will be removed from this section and instead referred to as potential improvements or future additions to the TrueProbes framework in the discussion section.

      (7) All thermodynamic equations are performed at steady state. The authors do not justify this assumption, and there is no discussion of the potential impacts of either low molecule numbers or violations of the well-mixed assumption. Can the authors please include a discussion on the potential impacts non non-steady state dynamics?

      Thermodynamic equations are calculated at steady state because RNA-FISH hybridization reactions typically last from eight to twenty hours. This duration allows probes adequate time to localize to their targets and reach binding equilibrium, based on current estimates of DNA oligonucleotide association and dissociation rate constants. We will address the potential violation of the well-mixed assumption in the assumptions and limitations section, specifically discussing how RNA localization can affect the spatial distribution of both on-target and off-target probes within cells, which may disrupt the well-mixed condition.

      Low molecule numbers are not a significant concern, as probe DNA oligonucleotide concentrations in RNA-FISH protocols are much higher than the number of transcripts present in cells, by several orders of magnitude.

      The assumptions and limitations section will be revised to clearly state: “Probe hybridization reactions were computed at steady state because most RNA-FISH protocols utilize probe hybridization incubation steps lasting over eight hours, which should provide sufficient time to reach equilibrium based on current estimates of forward and reverse reaction rate constants. Predictions from the equilibrium model may be less accurate for RNA-FISH experiments with shorter hybridization times, where non-steady state dynamics can result in different transient outcomes depending on the duration of hybridization.”

      Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a new platform termed "TrueProbes" for designing mRNA FISH probes. In comparison to existing design strategies, the authors incorporate a comprehensive thermodynamic and kinetic model to account for probe states that may contribute to nonspecific background. The authors validate their design pipeline using Jurkat cells and provide evidence of improved probe performance.

      Strengths:

      A notable strength of TrueProbes is the consideration of genome-wide binding affinities, which aims to minimize off-target signals. The work will be of interest to researchers employing mRNA FISH in certain human cell lines.

      Weaknesses:

      However, in my view, the experimental validation is not sufficient to justify the broad claims of the platform. Given the number of assumptions in the model, additional experimental comparisons across probe design methods, ideally targeting transcripts with different expression levels, would be necessary to establish the general superiority of this approach.

      We will revise our text to make our claims more specific and clearer, avoiding overgeneralizations and ensuring that all claims are adequately supported by the data we present.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The manuscript reports a series of experiments designed to test whether optogenetic activation of infralimbic (IL) neurons facilitates extinction retrieval and whether this depends on animals' prior experience. In Experiment 1, rats underwent fear conditioning followed by either one or two extinction sessions, with IL stimulation given during the second extinction; stimulation facilitated extinction retrieval only in rats with prior extinction experience. Experiments 2 and 3 examined whether backward conditioning (CS presented after the US) could establish inhibitory properties that allowed IL stimulation to enhance extinction, and whether this effect was specific to the same stimulus or generalized to different stimuli. Experiments 5 - 7 extended this approach to appetitive learning: rats received backward or forward appetitive conditioning followed by extinction, and then fear conditioning, to determine whether IL stimulation could enhance extinction in contexts beyond aversive learning and across conditioning sequences. Across studies, the key claim is that IL activation facilitates extinction retrieval only when animals possess a prior inhibitory memory, and that this effect generalizes across aversive and appetitive paradigms.

      Strengths:

      (1) The design attempts to dissect the role of IL activity as a function of prior learning, which is conceptually valuable.

      We thank the Reviewer for their positive assessment.

      (2) The experimental design of probing different inhibitory learning approaches to probe how IL activation facilitates extinction learning was creative and innovative.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) Non-specific manipulation.

      ChR2 was expressed in IL without distinction between glutamatergic and GABAergic populations. Without knowing the relative contribution of these cell types or the percentage of neurons affected, the circuit-level interpretation of the results is unclear.

      ChR2 was intentionally expressed in the infralimbic cortex (IL) without distinction between local neuronal populations for two reasons. First, this manuscript aimed to uncover some of the features characterizing the encoding of inhibitory memories in the IL, and this encoding likely engages interactions among various neuronal populations within the IL. Second, the hypotheses tested in the manuscript derived from findings that indiscriminately stimulated the IL using the GABA<sub>A</sub> receptor antagonist picrotoxin, which is best mimicked by the approach taken. We agree that it is also important to determine the respective contributions of distinct IL neuronal populations to inhibitory encoding; however, the global approach implemented in the present experiments represents a necessary initial step. This rationale will be incorporated into the revised manuscript, which will also make reference to the need to identify the relative contributions of the various neuronal populations within the IL. 

      (2) Extinction retrieval test conflates processes

      The retrieval test included 8 tones. Averaging across this many tone presentations conflate extinction retrieval/expression (early tones) with further extinction learning (later tones). A more appropriate analysis would focus on the first 2-4 tones to capture retrieval only. As currently presented, the data do not isolate extinction retrieval.

      It is unclear when retrieval of what has been learned across extinction ceases and additional extinction learning occurs. In fact, it is only the first stimulus presentation that unequivocally permits a distinction between retrieval and additional extinction learning, as the conditions for this additional learning have not been fulfilled at that presentation. However, confining evidence for retrieval to the first stimulus presentation introduces concerns that other factors could influence performance. For instance, processing of the stimulus present at the start of the session may differ from that present at the end of the previous session, thereby affecting what is retrieved. Such differences between the stimuli present at the start and end of an extinction session have been long recognized as a potential explanation for spontaneous recovery (Estes, 1955). More importantly, whether the test data presented confound retrieval and additional extinction learning or not, the interpretation remains the same with respect to the effects of a prior history of inhibitory learning on enabling the facilitative effects of IL stimulation. Finally, it is unclear how these facilitative effects could occur in the absence of the subjects retrieving the extinction memory formed under the stimulation. Nevertheless, the revised manuscript will provide the trial-by-trial performance during the post-extinction retrieval tests and discuss this issue.

      (3) Under-sampling and poor group matching.

      Sample sizes appear small, which may explain why groups are not well matched in several figures (e.g., 2b, 3b, 6b, 6c) and why there are several instances of unexpected interactions (protocol, virus, and period). This baseline mismatch raises concerns about the reliability of group differences.

      Efforts were made to match group performance upon completion of each training stage and before IL stimulation. Unfortunately, these efforts were not completely successful due to exclusions following post-mortem analyses. However, we acknowledge that the unexpected interactions deserve further discussion, and this will be incorporated into the revised manuscript (see also comment from Reviewer 2). Although we cannot exclude that sample sizes may have contributed to some of these interactions, we remain confident about the reliability of the main findings reported, especially given their replication across the various protocols. Overall, the manuscript provides evidence that IL stimulation does not facilitate brief extinction in the absence of prior inhibitory experience in five different experiments, replicating previous findings (Lingawi et al., 2018; Lingawi et al., 2017). It also replicates these previous findings by showing that prior experience with either fear or appetitive extinction enables IL stimulation to facilitate subsequent fear extinction. Furthermore, the facilitative effects of such stimulation following fear or appetitive backward conditioning are replicated in the present manuscript.  

      (4) Incomplete presentation of conditioning data.

      Figure 3 only shows a single conditioning session despite five days of training. Without the full dataset, it is difficult to evaluate learning dynamics or whether groups were equivalent before testing.

      We apologize, as we incorrectly labeled the X axis for the backward conditioning data set in Figures 3B, 4B, 4D and 5B. It should have indicated “Days” instead of “Trials”. This error will be corrected in the revised manuscript.

      (5) Interpretation stronger than evidence.

      The authors conclude that IL activation facilitates extinction retrieval only when an inhibitory memory has been formed. However, given the caveats above, the data are insufficient to support such a strong mechanistic claim. The results could reflect non-specific facilitation or disruption of behavior by broad prefrontal activation. Moreover, there is compelling evidence that optogenetic activation of IL during fear extinction does facilitate subsequent extinction retrieval without prior extinction training (Do-Monte et al 2015, Chen et al 2021), which the authors do not directly test in this study.

      As noted above, the revised manuscript will show that the interpretations of the main findings stand whether ore the test data confounds retrieval with additional extinction learning. The revised manuscript will also clarify the plotting of the data for the backward conditioning stages. We do agree that further discussion of the unexpected interactions is necessary, and this will also be incorporated into the revised manuscript. However, the various replications of the core findings provide strong evidence for their reliability and the interpretations advanced in the original manuscript. The proposal that the results reflect non-specific facilitation or disruption of behavior seems highly unlikely. Indeed, the present experiments and previous findings (Lingawi et al., 2018; Lingawi et al., 2017) provide multiple demonstrations that IL stimulation fails to produce any facilitation in the absence of prior inhibitory experience with the target stimulus. Although these demonstrations appear inconsistent with previous studies (Do-Monte et al., 2015; Chen et al., 2021), this inconsistency is likely explained by the fact that these studies manipulated activity in specific IL neuronal populations. Previous work has already revealed differences between manipulations targeting discrete IL neuronal populations as opposed to general IL activity (Kim et al., 2016). Importantly, as previously noted, the present manuscript aimed to generally explore inhibitory encoding in the IL that, as we will acknowledge, is likely to engage several neuronal populations within the IL. Adequate statements on these matters will be included in the revised manuscript.

      Impact:

      The role of IL in extinction retrieval remains a central question in the fear learning literature. However, because the test used conflates extinction retrieval with new learning and the manipulations lack cell-type specificity, the evidence presented here does not convincingly support the main claims. The study highlights the need for more precise manipulations and more rigorous behavioral testing to resolve this issue.

      As noted in our responses, the interpretations of the data presented remain identical whether the test data conflate extinction retrieval with additional extinction learning or not. Although we agree that it is important to establish the role of specific IL neuronal populations in extinction learning, this was beyond the scope of the manuscript and the findings reported remain valuable to our understanding of inhibitory encoding within the IL.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors examine the mechanisms by which stimulation of the infralimbic cortex (IL) facilitates the retention and retrieval of inhibitory memories. Previous work has shown that optogenetic stimulation of the IL suppresses freezing during extinction but does not improve extinction recall when extinction memory is probed one day later. When stimulation occurs during a second extinction session (following a prior stimulation-free extinction session), freezing is suppressed during the second extinction as well as during the tone test the following day. The current study was designed to further explore the facilitatory role of the IL in inhibitory learning and memory recall. The authors conducted a series of experiments to determine whether recruitment of IL extends to other forms of inhibitory learning (e.g., backward conditioning) and to inhibitory learning involving appetitive conditioning. Further, they assessed whether their effects could be explained by stimulus familiarity. The results of their experiments show that backward conditioning, another form of inhibitory learning, also enabled IL stimulation to enhance fear extinction. This phenomenon was not specific to aversive learning, as backward appetitive conditioning similarly allowed IL stimulation to facilitate extinction of aversive memories. Finally, the authors ruled out the possibility that IL facilitated extinction merely because of prior experience with the stimulus (e.g., reducing the novelty of the stimulus). These findings significantly advance our understanding of the contribution of IL to inhibitory learning. Namely, they show that the IL is recruited during various forms of inhibitory learning, and its involvement is independent of the motivational value associated with the unconditioned stimulus.

      Strengths:

      (1) Transparency about the inclusion of both sexes and the representation of data from both sexes in figures.

      We thank the Reviewer for their positive assessment.

      (2) Very clear representation of groups and experimental design for each figure.

      We thank the Reviewer for their positive assessment.

      (3) The authors were very rigorous in determining the neurobehavioral basis for the effects of IL stimulation on extinction. They considered multiple interpretations and designed experiments to address these possible accounts of their data.

      We thank the Reviewer for their positive assessment.

      (4) The rationale for and the design of the experiments in this manuscript are clearly based on a wealth of knowledge about learning theory. The authors leveraged this expertise to narrow down how the IL encodes and retrieves inhibitory memories.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) In Experiment 1, although not statistically significant, it does appear as though the stimulation groups (OFF and ON) differ during Extinction 1. It seems like this may be due to a difference between these groups after the first forward conditioning. Could the authors have prevented this potential group difference in Extinction 1 by re-balancing group assignment after the first forward conditioning session to minimize the differences in fear acquisition (the authors do report a marginally significant effect between the groups that would undergo one vs. two extinction sessions in their freezing during the first conditioning session)?

      As noted (see response to Reviewer 1), efforts were made daily to match group performance across the training stages, but these efforts were ultimately hampered by the necessary exclusions following post-mortem analyses. This will be made explicit in the revised manuscript. Regarding freezing during Extinction 1, as noted by the Reviewer, the difference, which was not statistically significant, was absent across trials during the subsequent forward fear conditioning stage. Likewise, the protocol difference observed during the initial forward fear conditioning was absent in subsequent stages. We are therefore confident that these initial differences (significant or not) did not impact the main findings at test. Importantly, these findings replicate previous work using identical protocols in which no differences were present during the training stages. These considerations will be addressed in the revised manuscript.

      (2) Across all experiments (except for Experiment 1), the authors state that freezing during the initial conditioning increased across "days". The figures that correspond to this text, however, show that freezing changes across trials. In the methods, the authors report that backward conditioning occurred over 5 days. It would be helpful to understand how these data were analyzed and collated to create the final figures. Was the freezing averaged across the five days for each trial for analyses and figures?

      We apologize, as noted above, we incorrectly labeled the X axis for the backward conditioning data sets in Figures 3B, 4B, 4D and 5B. It should have indicated “Days” instead of “Trials”. The data shown in these Figures use the average of all trials on a given day. This will be clarified in the methods section of the revised manuscript. The labeling errors on the Figures will be corrected.

      (3) In Experiment 3, the authors report a significant Protocol X Virus interaction. It would be useful if the authors could conduct post-hoc analyses to determine the source of this interaction. Inspection of Figure 4B suggests that freezing during the two different variants of backward conditioning differs between the virus groups. Did the authors expect to see a difference in backward conditioning depending on the stimulus used in the conditioning procedure (light vs. tone)? The authors don't really address this confounding interaction, but I do think a discussion is warranted.

      We agree with the Reviewer that further discussion of the Protocol x Virus interaction that emerged during the backward conditioning and forward conditioning stages of Experiment 3 is warranted. This will be provided in the revised manuscript. Briefly, during both stages, follow-up analyses did not reveal any differences (main effects or interactions) between the two groups trained with the light stimulus (Diff-EYFP and Diff-ChR2). By contrast, the ChR2 group trained with the tone (Back-ChR2) froze more overall than the EYFP group (Back-EYFP), but there were no other significant differences between the two groups. Based on these analyses, the Protocol x Virus interaction appears to be driven by greater freezing in the ChR2 group trained with the tone rather than a difference in the backward conditioning performance based on stimulus identity. Consistent with this, the statistical analyses did not reveal a main effect of Protocol during either the backward conditioning stage or the stimulus trials during the forward conditioning stage. Nevertheless, during this latter stage, a main effect of Protocol emerged during baseline performance, but once again, this seems to be driven by the Back-ChR2 group. Critically, it is unclear how greater stimulus freezing in the Back-ChR2 group during forward conditioning would lead to lower freezing during the post-extinction retrieval test.  

      (4) In this same experiment, the authors state that freezing decreased during extinction; however, freezing in the Diff-EYFP group at the start of extinction (first bin of trials) doesn't look appreciably different than their freezing at the end of the session. Did this group actually extinguish their fear? Freezing on the tone test day also does not look too different from freezing during the last block of extinction trials.

      We confirm that overall, there was a significant decline in freezing across the extinction session shown in Figure 4B. The Reviewer is correct to point out that this decline was modest (if not negligible) in the Diff-EYFP group, which was receiving its first inhibitory training with the target tone stimulus. It is worth noting that across all experiments, most groups that did not receive infralimbic stimulation displayed a modest decline in freezing during the extinction session since it was relatively brief, involving only 6 or 8 tone alone presentations. This was intentional, as we aimed for the brief extinction session to generate minimal inhibitory learning and thereby to detect any facilitatory effect of infralimbic stimulation. This issue will be clarified and explained in the revised version of the manuscript.

      (5) The Discussion explored the outcomes of the experiments in detail, but it would be useful for the authors to discuss the implications of their findings for our understanding of circuits in which the IL is embedded that are involved in inhibitory learning and memory. It would also be useful for the authors to acknowledge in the Discussion that although they did not have the statistical power to detect sex differences, future work is needed to explore whether IL functions similarly in both sexes.

      In line with the Reviewer’s suggestion (see also Reviewer 3), the revised manuscript will include a discussion of the broader implications of the findings regarding inhibitory brain circuitry and will acknowledge the need to further explore sex differences and IL functions.

      Reviewer #3 (Public review):

      Summary:

      This is a really nice manuscript with different lines of evidence to show that the IL encodes inhibitory memories that can then be manipulated by optogenetic stimulation of these neurons during extinction. The behavioral designs are excellent, with converging evidence using extinction/re-extinction, backwards/forwards aversive conditioning, and backwards appetitive/forwards aversive conditioning. Additional factors, such as nonassociative effects of the CS or US, are also considered, and the authors evaluate the inhibitory properties of the CS with tests of conditioned inhibition.

      Strengths:

      The experimental designs are very rigorous with an unusual level of behavioral sophistication.

      We thank the Reviewer for their positive assessment.

      Weaknesses:

      (1) More justification for parametric choices (number of days of backwards vs forwards conditioning) could be provided.

      All experimental parameters were based on previously published experiments showing the capacity of the backward conditioning protocols to generate inhibitory learning and the forward conditioning protocols to produce excitatory learning. Although this was mentioned in the methods section, we acknowledge that further explanation is required to justify the need for multiple days of backward training. This will be provided in the revised manuscript.

      (2) The current discussion could be condensed and could focus on broader implications for the literature.

      The revised manuscript will make an effort to condense the discussion and focus on broader implications for the literature.

      References

      Chen, Y.-H., Wu, J.-L., Hu, N.-Y., Zhuang, J.-P., Li, W.-P., Zhang, S.-R., Li, X.-W., Yang, J.-M., & Gao, T.-M. (2021). Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest, 131(14), e145692. https://doi.org/10.1172/JCI145692

      Do-Monte, F. H., Manzano-Nieves, G., Quiñones-Laracuente, K., Ramos-Medina, L., & Quirk, G. J. (2015). Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci, 35(8), 3607-3615. https://doi.org/10.1523/JNEUROSCI.3137-14.2015

      Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychol Rev, 62(3), 145-154. https://doi.org/10.1037/h0048509

      Kim, H.-S., Cho, H.-Y., Augustine, G. J., & Han, J.-H. (2016). Selective Control of Fear Expression by Optogenetic Manipulation of Infralimbic Cortex after Extinction. Neuropsychopharmacology, 41(5), 1261-1273. https://doi.org/10.1038/npp.2015.276

      Lingawi, N. W., Holmes, N. M., Westbrook, R. F., & Laurent, V. (2018). The infralimbic cortex encodes inhibition irrespective of motivational significance. Neurobiol Learn Mem, 150, 64-74. https://doi.org/10.1016/j.nlm.2018.03.001

      Lingawi, N. W., Westbrook, R. F., & Laurent, V. (2017). Extinction and Latent Inhibition Involve a Similar Form of Inhibitory Learning that is Stored in and Retrieved from the Infralimbic Cortex. Cereb Cortex, 27(12), 5547-5556. https://doi.org/10.1093/cercor/bhw322

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ana Lapao et al. investigated the roles of Rab27 effector SYTL5 in cellular membrane trafficking pathways. The authors found that SYTL5 localizes to mitochondria in a Rab27A-dependent manner. They demonstrated that SYTL5-Rab27A positive vesicles containing mitochondrial material are formed under hypoxic conditions, thus they speculate that SYTL5 and Rab27A play roles in mitophagy. They also found that both SYTL5 and Rab27A are important for normal mitochondrial respiration. Cells lacking SYTL5 undergo a shift from mitochondrial oxygen consumption to glycolysis which is a common process known as the Warburg effect in cancer cells. Based on the cancer patient database, the author noticed that low SYTL5 expression is related to reduced survival for adrenocortical carcinoma patients, indicating SYTL5 could be a negative regulator of the Warburg effect and potentially tumorigenesis.

      Strengths:

      The authors take advantage of multiple techniques and novel methods to perform the experiments.

      (1) Live-cell imaging revealed that stably inducible expression of SYTL5 co-localized with filamentous structures positive for mitochondria. This result was further confirmed by using correlative light and EM (CLEM) analysis and western blotting from purified mitochondrial fraction.

      (2) In order to investigate whether SYTL5 and Rab27A are required for mitophagy in hypoxic conditions, two established mitophagy reporter U2OS cell lines were used to analyze the autophagic flux.

      Weaknesses:

      This study revealed a potential function of SYTL5 in mitophagy and mitochondrial metabolism. However, the mechanistic evidence that establishes the relationship between SYTL5/Rab27A and mitophagy is insufficient. The involvement of SYTL5 in ACC needs more investigation. Furthermore, images and results supporting the major conclusions need to be improved.

      We thank the reviewer for their constructive comments. We agree that a complete understanding of the mechanism by which SYTL5 and Rab27A are recruited to the mitochondria and subsequently involved in mitophagy requires further investigation. Here, we have shown that SYTL5 recruitment to the mitochondria requires both its lipid-binding C2 domains and the Rab27A-binding SHD domain (Figure 1G-H). This implies a coincidence detection mechanism for mitochondrial localisation of SYTL5.  Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). We also identified proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      However, less details regarding the mitochondrial localisation of Rab27A are understood. To investigate this, we have now performed a mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 below,). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only, were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits are located in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we choose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 complex[1]. As already mentioned in the discussion (p. 12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, in this paper we will not follow up further on the mechanism of mitochondrial recruitment of Rab27A. 

      Author response table 1.

      Rab27A interactome. Proteins co-immunoprecipitated with mScarlet-Rab27A vs mScarlet expressing control. The data show average of three replicates. 

      To investigate the role of SYTL5 in the context of ACC, we acquired the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. The cells were cultured as recommended from ATCC using DMEM/F-12 supplemented with NuSerum and ITS +premix. It is important to note that the H295R cells were adapted to grow as an adherent monolayer from the H295 cell line which grows in suspension. However, there can still be many viable H295R cells in the media. 

      We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells. For these assays, it is essential that the cells be seeded in a monolayer at 70-90% confluency with no cell clusters[4]. Poor adhesion of the cells can cause inaccurate measurements by the analyser. Unfortunately, the results between the five replicates we carried out were highly inconsistent, the same knockdown produced trends in opposite directions in different replicates. This is likely due to problems with seeding the cells. Despite our best efforts to optimise seeding number, and pre-coating the plate with poly-D-lysine[5] we observed poor attachment of cells and inability to form a monolayer. 

      To study the localisation of SYTL5 and Rab27A in an ACC model, we transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG. Again, this proved unsuccessful after numerous attempts at optimising transduction. 

      These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7]. In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      The reviewer also writes “Furthermore, images and results supporting the major conclusions need to be improved.”. We have tried several times, without success, to generate U2OS cells with CRISPR/Cas9-mediated C-terminal tagging of endogenous SYTL5 with mNeonGreen, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5-Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      Reviewer #2 (Public review): 

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models that allow the function to be dissected, and the rigorous approach and testing of mitochondrial activity.

      Weaknesses:

      There may be unknown redundancies in both pathways in which Rab27 and SYTL5 are working which could confound the interpretation of the results.

      Suggestions for revision:

      Given that Rab27A and SYTL5 are members of protein families it would be important to exclude any possible functional redundancies coming from Rab27B expression or one of the other SYTL family members. For Rab27 this would be straightforward to test in the assays shown in Figure 4 and Supplementary Figure 5. For SYTL5 it might be sufficient to include some discussion about this possibility.

      We thank the reviewer for pointing out the potential redundancy issue for Rab27A and SYTL5. There are multiple studies demonstrating the redundancy between Rab27A and Rab27B. For example, in a study of the disease Griscelli syndrome, caused by Rab27A loss of function, expression of either Rab27A or Rab27B rescues the healthy phenotype indicating redundancy[8]. This redundancy however applies to certain function and cell types. In fact, in a study regarding hair growth, knockdown of Rab27B had the opposite effect to knockdown of Rab27A[9].

      In this paper, we conducted all assays in U2OS cells, in which the expression of Rab27B is very low. Human Protein Atlas reports expression of 0.5nTPM for Rab27B, compared to 18.4nTPM for Rab27A. We also observed this low level of expression of Rab27B compared to Rab27A by qPCR in U2OS cells. Therefore, there would be very little endogenous Rab27B expression in cells depleted of Rab27A (with siRNA or KO). In line with this, Rab27B peptides were not detected in our SYTL5 interactome MS data (Table 1 in paper). Moreover, as Rab27A depletion inhibits mitochondrial recruitment of SYTL5 and mitophagy, it is not likely that Rab27B provides a functional redundancy. It is possible that Rab27B overexpression could rescue mitochondrial localisation of SYTL5 in Rab27A KO cells, but this was not tested as we do not have any evidence for a role of Rab27B in these cells. Taken together, we believe our data imply that Rab27B is very unlikely to provide any functional redundancy to Rab27A in our experiments. 

      For the SYTL family, all five members are Rab27 effectors, binding to Rab27 through their SHD domain. Together with Rab27, all SYTL’s have been implicated in exocytosis in different cell types. For example, SYTL1 in exocytosis of azurophilic granules from neutrophils[10], SYTL2 in secretion of glucagon granules from pancreatic α cells[11], SYTL3 in secretion of lytic granules from cytotoxic T lymphocytes[12], SYTL4 in exocytosis of dense hormone containing granules from endocrine cells[13] and SYTL5 in secretion of the RANKL cytokine from osteoblasts[14]. This indicates a potential for redundancy through their binding to Rab27 and function in vesicle secretion/trafficking. However, one study found that different Rab27 effectors have distinct functions at different stages of exocytosis[15].

      Very little known about redundancy or hierarchy between these proteins. Differences in function may be due to the variation in gene expression profile across tissues for the different SYTL’s (see Author response image 1 below). SYTL5 is enriched in the brain unlike the others, suggesting possible tissue specific functions. There are also differences in the binding affinities and calcium sensitivities of the C2iA and C2B domains between the SYTL proteins[16].

      Author response image 1.

      GTEx Multi Gene Query for SYTL1-5

      All five SYTL’s are expressed in the U2OS cell line with nTPMs according to Human Protein Atlas of SYTL1: 7.5, SYTL2: 13.4, SYTL3:14.2, SYTL4: 8.7, SYTL5: 4.8. In line with this, in the Rab27A interactome, when comparing cells overexpressing mScarlet-Rab27A with control cells, we detected all five SYTL’s as specific Rab27A-interacting proteins (see Author response table 1 above). Whereas, in the SYTL5 interactome we did not detect any other SYTL protein (table 1 in paper), confirming that they do not form a complex with SYTL5. 

      We have included the following text in the discussion (p. 12): “SYTL5 and Rab27A are both members of protein families, suggesting possible functional redundancies from Rab27B or one of the other SYTL isoforms. While Rab27B has a very low expression in U2OS cells, all five SYTL’s are expressed. However, when knocking out or knocking down SYTL5 and Rab27A we observe significant effects that we presume would be negated if their isoforms were providing functional redundancies. Moreover, we did not detect any other SYTL protein or Rab27B in the SYTL5 interactome, confirming that they do not form a complex with SYTL5.”

      Suggestions for Discussion: 

      Both Rab27A and STYL5 localize to other membranes, including the endolysosomal compartments. How do the authors envisage the mechanism or cellular modifications that allow these proteins, either individually or in complex to function also to regulate mitochondrial funcYon? It would be interesYng to have some views.

      We agree that it would be interesting to better understand the mechanism involved in modulation of the localisation and function of SYTL5 and Rab27A at different cellular compartments, including the mitochondria. Here, we have shown that SYTL5 recruitment to the mitochondria involves coincidence detection, as both its lipid-binding C2 domains and the Rab27A-binding SHD domain are required (Figure 1G-H). Both these domains also seem required for localisation of SYTL5 to vesicles, and we can only speculate that binding to different lipids (Figure 1F) may regulate SYTL5 localisation. Additionally, we find that mitochondrial recruitment of SYTL5 is dependent on the GTPase activity and mitochondrial localisation of Rab27A (Figure 2D-E). However, this seems also the case for vesicular recruitment of SYTL5, although a few SYTL5-Rab27A (T23N) positive vesicles were seen (Figure 2E). 

      To characterise the mechanisms involved in mitochondrial localisation of Rab27A, we have performed mass spectrometry analysis to identify the interactome of Rab27A (see Author response table 1 above). U2OS cells with stable expression of mScarlet-Rab27A or mScarlet only were subjected to immunoprecipitation, followed by MS analysis.  Of the 32 significant Rab27A-interacting hits (compared to control), two of the hits localise in the inner mitochondrial membrane (IMM); ATP synthase F(1) complex subunit alpha (P25705), and mitochondrial very long-chain specific acyl-CoA dehydrogenase (VLCAD)(P49748). However, as these IMM proteins are not likely involved in mitochondrial recruitment of Rab27A, observed under basal conditions, we chose not to include these data in the manuscript. 

      It is known that other RAB proteins are recruited to the mitochondria by regulation of their GTPase activity. During parkin-mediated mitophagy, RABGEF1 (a guanine nucleotide exchange factor) is recruited through its ubiquitin-binding domain and directs mitochondrial localisation of RAB5, which subsequently leads to recruitment of RAB7 by the MON1/CCZ1 GEF complex[1]. As already mentioned in the discussion (p.12), ubiquitination of the Rab27A GTPase activating protein alpha (TBC1D10A) is reduced in the brain of Parkin KO mouse compared to controls[35], suggesting a possible connection of Rab27A with regulatory mechanisms that are linked with mitochondrial damage and dysfunction. While this an interesting avenue to explore, it is beyond the scope of this paper. 

      Our data suggest that SYTL5 functions as a negative regulator of the Warburg effect, the switch from OXPHOS to glycolysis. While both SYTL5 and Rab27A seem required for mitophagy of selective mitochondrial components, and their depletion leading to reduced mitochondrial respiration and ATP production, only depletion of SYTL5 caused a switch to glycolysis. The mechanisms involved are unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      We have addressed this comment in the discussion on p.12 

      Reviewer #3 (Public review):

      Summary:

      In the manuscript by Lapao et al., the authors uncover a role for the Rab27A effector protein SYTL5 in regulating mitochondrial function and turnover. The authors find that SYTL5 localizes to mitochondria in a Rab27A-dependent way and that loss of SYTL5 (or Rab27A) impairs lysosomal turnover of an inner mitochondrial membrane mitophagy reporter but not a matrix-based one. As the authors see no co-localization of GFP/mScarlet tagged versions of SYTL5 or Rab27A with LC3 or p62, they propose that lysosomal turnover is independent of the conventional autophagy machinery. Finally, the authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      Strengths:

      There are clearly interesting and new findings here that will be relevant to those following mitochondrial function, the endocytic pathway, and cancer metabolism.

      Weaknesses:

      The data feel somewhat preliminary in that the conclusions rely on exogenously expressed proteins and reporters, which do not always align.

      As the authors note there are no commercially available antibodies that recognize endogenous SYTL5, hence they have had to stably express GFP-tagged versions. However, it appears that the level of expression dictates co-localization from the examples the authors give (though it is hard to tell as there is a lack of any kind of quantitation for all the fluorescent figures). Therefore, the authors may wish to generate an antibody themselves or tag the endogenous protein using CRISPR.

      We agree that the level of SYTL5 expression is likely to affect its localisation. As suggested by the reviewer, we have tried hard, without success, to generated U2OS cells with CRISPR knock-in of a mNeonGreen tag at the C-terminus of endogenous SYTL5, using an approach that has been successfully implemented in the lab for other genes. This is likely due to a lack of suitable sgRNAs targeting the C-terminal region of SYTL5, which have a low predicted efficiency score and a large number of predicted off-target sites in the human genome including several other gene exons and introns (see Author response image 2). 

      Author response image 2.

      Overview of sgRNAs targeting the C-terminal region of SYTL5 

      Although the SYTL5 expression level might affect its cellular localization, we also found the mitochondrial localisation of SYTL5-EGFP to be strongly increased in cells co-expressing mScarletRab27A, supporting our findings of Rab27A-mediated mitochondrial recruitment of SYTL5. We have also included new data (Supplementary Figure 4B) showing that some of the hypoxia-induced SYTL5Rab27A-positive vesicles stain positive for the autophagy markers p62 and LC3B when inhibiting lysosomal degradation, further strengthening our data that SYTL5 and Rab27A function as positive regulators of mitophagy.  

      In relation to quantitation, the authors found that SYTL5 localizes to multiple compartments or potentially a few compartments that are positive for multiple markers. Some quantitation here would be very useful as it might inform on function. 

      We find that SYTL5-EGFP localizes to mitochondria, lysosomes and the plasma membrane in U2OS cells with stable expression of SYTL5-EGFP and in SYTL5/Rab27A double knock-out cells rescued with SYTL5EGFP and mScralet-Rab27A. We also see colocalization of SYTL5-EGFP with endogenous p62, LC3 and LAMP1 upon induction of mitophagy. However, as these cell lines comprise a heterogenous pool with high variability we do not believe that quantification of the overexpressing cell lines would provide beneficial information in this scenario. As described above, we have tried several times to generate SYTL5 knock-in cells without success.  

      The authors find that upon hypoxia/hypoxia-like conditions that punctate structures of SYTL5 and Rab27A form that are positive for Mitotracker, and that a very specific mitophagy assay based on pSu9-Halo system is impaired by siRNA of SYTL5/Rab27A, but another, distinct mitophagy assay (Matrix EGFP-mCherry) shows no change. I think this work would strongly benefit from some measurements with endogenous mitochondrial proteins, both via immunofluorescence and western blot-based flux assays. 

      In addition to the western blotting for different endogenous ETC proteins showing significantly increased levels of MTCO1 in cells depleted of SYTL5 and/or Rab27A (Figure 5E-F), we have now blotted for the endogenous mitochondrial proteins, COXIV and BNIP3L, in DFP and DMOG conditions upon knockdown of SYTL5 and/or Rab27A (Figure 5G and Supplementary Figure 5A). Although there was a trend towards increased levels, we did not see any significant changes in total COXIV or BNIP3L levels when SYTL5, Rab27A or both are knocked down compared to siControl. Blotting for endogenous mitochondrial proteins is however not the optimum readout for mitophagy. A change in mitochondrial protein level does not necessarily result from mitophagy, as other factors such as mitochondrial biogenesis and changes in translation can also have an effect. Mitophagy is a dynamic process, which is why we utilise assays such as the HaloTag and mCherry-EGFP double tag as these indicate flux in the pathway. Additionally, as mitochondrial proteins have different half-lives, with many long-lived mitochondrial proteins[17], differences in turnover rates of endogenous proteins make the results more difficult to interpret. 

      A really interesting aspect is the apparent independence of this mitophagy pathway on the conventional autophagy machinery. However, this is only based on a lack of co-localization between p62or LC3 with LAMP1 and GFP/mScarlet tagged SYTL5/Rab27A. However, I would not expect them to greatly colocalize in lysosomes as both the p62 and LC3 will become rapidly degraded, while the eGFP and mScarlet tags are relatively resistant to lysosomal hydrolysis. -/+ a lysosome inhibitor might help here and ideally, the functional mitophagy assays should be repeated in autophagy KOs. 

      We thank the reviewer for this suggestion. We have now repeated the colocalisation studies in cells treated with DFP with the addition of bafilomycin A1 (BafA1) to inhibit the lysosomal V-ATPase. Indeed, we find that a few of the SYTL5/Rab27A/MitoTracker positive structures also stain positive for p62 and LC3 (Supplementary Figure 4B). As expected, the occurrence of these structures was rare, as BafA1 was only added for the last 4 hrs of the 24 hr DFP treatment. However, we cannot exclude the possibility that there are two different populations of these vesicles.

      The link to tumorigenesis and cancer survival is very interesYng but it is not clear if this is due to the mitochondrially-related aspects of SYTL5 and Rab27A. For example, increased ECAR is seen in the SYTL5 KO cells but not in the Rab27A KO cells (Fig.5D), implying that mitochondrial localization of SYTL5 is not required for the ECAR effect. More work to strengthen the link between the two sections in the paper would help with future direcYons and impact with respect to future cancer treatment avenues to explore. 

      We agree that the role of SYTL5 in ACC requires future investigation. While we observe reduced OXPHOS levels in both SYTL5 and Rab27A KO cells (Figure 5B), glycolysis was only increased in SYTL5 KO cells (Figure 5D). We believe this indicates that Rab27A is being negatively regulated by SYTL5, as ECAR was unchanged in both the Rab27A KO and Rab27A/SYTL5 dKO cells. This suggests that Rab27A is required for the increase in ECAR when SYTL5 is depleted, therefore SYTL5 negatively regulates Rab27A. The mechanism involved is unclear, but we found several proteins linked to the cellular response to oxidative stress, reactive oxygen species metabolic process, regulation of mitochondrion organisation and protein insertion into mitochondrial membrane to be enriched in the SYTL5 interactome (Figure 3A and C).

      To investigate the link to cancer further, we tested the effect of knockdown of SYTL5 and/or Rab27A on the levels of mitochondrial ROS. ROS levels were measured by flow cytometry using the MitoSOX Red dye, together with the MitoTracker Green dye to normalise ROS levels to the total mitochondria. Cells were treated with the antioxidant N-acetylcysteine (NAC)[18] as a negative control and menadione as a positive control, as menadione induces ROS production via redox cycling[19]. We must consider that there is also a lot of autofluorescence from cells that makes it impossible to get a level of ‘zero ROS’ in this experiment. We did not see a change in ROS with knockdown of SYTL5 and/or Rab27A compared to the NAC treated or siControl samples (see Author response image 3 below). The menadione samples confirm the success of the experiment as ROS accumulated in these cells. Thus, based on this, we do not believe that low SYTL5 expression would affect ROS levels in ACC tumours.

      Author response image 3.

      Mitochondrial ROS production normalised to total mitochondria

      As discussed in our response to Reviewer #1, we tried hard to characterise the role of SYTL5 in the context of ACC using the NCI-H295R cell line isolated from the adrenal gland of an adrenal cancer patient. We attempted to conduct OCR and ECAR measurements using the Seahorse XF upon knockdown of SYTL5 and/or Rab27A in H295R cells without success, due to poor attachment of the cells and inability to form a monolayer. We also transduced the H295R cells with lentiviral particles to overexpress pLVX-SV40-mScarlet-I-Rab27A and pLVX-CMV-SYTL5-EGFP-3xFLAG to study the localisation of SYTL5 and Rab27A in an ACC model. Again, this proved unsuccessful after numerous attempts at optimising the transduction. These issues limited our investigation into the role of SYTL5 in ACC to the cortisol assay (Supplementary Figure 6). For this the H295R cells were an appropriate model as they are able to produce an array of adrenal cortex steroids[6] including cortisol[7] In this assay, measurements are taken from cell culture supernatants, so the confluency of the cells does not prevent consistent results as the cortisol concentration was normalised to total protein per sample. With this assay we were able to rule out a role for SYTL5 and Rab27A in the secretion of cortisol.  

      Another consideration when investigating the involvement of SYTL5 in ACC, is that in general ACC cells should have a low expression of SYTL5 as is seen from the patient expression data (Figure 6B).

      Further studies into the link between SYTL5/Rab27A and cancer are beyond the scope of this paper as we are limited to the tools and expertise available in the lab.

      References

      (1) Yamano, K. et al. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7 (2018). https://doi.org:10.7554/eLife.31326

      (2) Carré, M. et al. Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel. The Journal of biological chemistry 277, 33664-33669 (2002). https://doi.org:10.1074/jbc.M203834200

      (3) Hoogerheide, D. P. et al. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proceedings of the National Academy of Sciences 114, E3622-E3631 (2017). https://doi.org:10.1073/pnas.1619806114

      (4) Plitzko, B. & Loesgen, S. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Bio Protoc 8, e2850 (2018). https://doi.org:10.21769/BioProtoc2850

      (5) Yavin, E. & Yavin, Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surface. The Journal of cell biology 62, 540-546 (1974). https://doi.org:10.1083/jcb.62.2.540

      (6) Wang, T. & Rainey, W. E. Human adrenocortical carcinoma cell lines. Mol Cell Endocrinol 351, 5865 (2012). https://doi.org:10.1016/j.mce.2011.08.041

      (7) Rainey, W. E. et al. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids. J Clin Endocrinol Metab 77, 731-737 (1993). https://doi.org:10.1210/jcem.77.3.8396576

      (8) Barral, D. C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247-257 (2002). https://doi.org:10.1172/jci15058

      (9) Ku, K. E., Choi, N. & Sung, J. H. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int. J. Mol. Sci. 21 (2020). https://doi.org:10.3390/ijms21165672

      (10) Johnson, J. L., Monfregola, J., Napolitano, G., Kiosses, W. B. & Catz, S. D. Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase–activating protein Gem-interacting protein. Mol. Biol. Cell 23, 1902-1916 (2012). https://doi.org:10.1091/mbc.e11-12-1001

      (11) Yu, M. et al. Exophilin4/Slp2-a targets glucagon granules to the plasma membrane through unique Ca2+-inhibitory phospholipid-binding activity of the C2A domain. Mol. Biol. Cell 18, 688696 (2007). https://doi.org:10.1091/mbc.e06-10-0914

      (12) Kurowska, M. et al. Terminal transport of lyXc granules to the immune synapse is mediated by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879-3889 (2012). https://doi.org:10.1182/blood-2011-09-382556

      (13) Zhao, S., Torii, S., Yokota-Hashimoto, H., Takeuchi, T. & Izumi, T. Involvement of Rab27b in the regulated secretion of pituitary hormones. Endocrinology 143, 1817-1824 (2002). https://doi.org:10.1210/endo.143.5.8823

      (14) Kariya, Y. et al. Rab27a and Rab27b are involved in stimulation-dependent RANKL release from secretory lysosomes in osteoblastic cells. J Bone Miner Res 26, 689-703 (2011). https://doi.org:10.1002/jbmr.268

      (15) Zhao, K. et al. Functional hierarchy among different Rab27 effectors involved in secretory granule exocytosis. Elife 12 (2023). https://doi.org:10.7554/eLife.82821

      (16) Izumi, T. Physiological roles of Rab27 effectors in regulated exocytosis. Endocr J 54, 649-657 (2007). https://doi.org:10.1507/endocrj.kr-78

      (17) Bomba-Warczak, E. & Savas, J. N. Long-lived mitochondrial proteins and why they exist. Trends in cell biology 32, 646-654 (2022). https://doi.org:10.1016/j.tcb.2022.02.001

      (18) Curtin, J. F., Donovan, M. & Cotter, T. G. Regulation and measurement of oxidative stress in apoptosis. Journal of Immunological Methods 265, 49-72 (2002). https://doi.org:https://doi.org/10.1016/S0022-1759(02)00070-4

      (19) Criddle, D. N. et al. Menadione-induced Reative Oxygen Species Generation via Redox Cycling Promotes Apoptosis of Murine Pancreatic Acinar Cells. Journal of Biological Chemistry 281, 40485-40492 (2006). https://doi.org:https://doi.org/10.1074/jbc.M607704200

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The innate immune system serves as the first line of defense against invading pathogens. Four major immune-specific modules - the Toll pathway, the Imd pathway, melanization, and phagocytosis- play critical roles in orchestrating the immune response. Traditionally, most studies have focused on the function of individual modules in isolation. However, in recent years, it has become increasingly evident that effective immune defense requires intricate interactions among these pathways. 

      Despite this growing recognition, the precise roles, timing, and interconnections of these immune modules remain poorly understood. Moreover, addressing these questions represents a major scientific undertaking. 

      Strengths: 

      In this manuscript, Ryckebusch et al. systematically evaluate both the individual and combined contributions of these four immune modules to host defense against a range of pathogens. Their findings significantly enhance our understanding of the layered architecture of innate immunity. 

      We thank the reviewer for their kind assessment.

      Weaknesses: 

      While I have no critical concerns regarding the study, I do have several suggestions to offer that may help further strengthen the manuscript. These include: 

      (1) Have the authors validated the efficiency of the mutants used in this study? It would be helpful to include supporting data or references confirming that the mutations effectively disrupted the intended immune pathways. 

      We have done so in Figure 1.

      (2) Given the extensive use of double, triple, and quadruple mutants, a more detailed description of the mutant construction process is warranted. 

      We now provide a supplement (File S1) that details the successive genetic crosses and recombinations that were required to generate these compound fly stocks carrying multiple mutations. We also provide some information regarding rapid screening of stocks for phenotypes. Of note some of these fly stocks have been deposited at VDRC as they will be useful to fly community to assess immune modules in a controlled background, and complete stock information will be tied to these stocks there.

      Reviewer #2 (Public review): 

      Summary: 

      In this work, the authors take a holistic view of Drosophila immunity by selecting four major components of fly immunity often studied separately (Toll signaling, Imd signaling, phagocytosis, and melanization), and studying their combinatory effects on the efficiency of the immune response. They achieve this by using fly lines mutant for one of these components, or modules, as well as for a combination of them, and testing the survival of these flies upon infection with a plethora of pathogens (bacterial, viral, and fungal). 

      Strengths: 

      It is clear that this manuscript has required a large amount of hands-on work, considering the number of pathogens, mutations, and timepoints tested. In my opinion, this work is a very welcome addition to the literature on fly immune responses, which obviously do not occur in one type of response at a time, but in parallel, subsequently, and/or are interconnected. I find that the major strength of this work is the overall concept, which is made possible by the mutations designed to target the specific immune function of each module (at least seemingly) without major effects on other functions. I believe that the combinatory mutants will be of use for the fly community and enable further studies of the interplay of these components of immune response in various settings. 

      To control for the effects arising from the genetic variation other than the intended mutations, the mutants have been backcrossed into a widely used, isogenized Drosophila strain called w1118. Therefore, the differences accounted for by the genotype are controlled. 

      I also appreciate that the authors have investigated the two possible ways of dealing with an infection: tolerance and resistance, and how the modules play into those. 

      We thank the reviewer for their kind assessment. 

      Weaknesses: 

      While controlling for the background effects is vital, the w1118 background is problematic (an issue not limited to this manuscript) because of the wide effects of the white mutation on several phenotypes (also other than eye color/eyesight). It is a possibility that the mutation influences the functionality of the immune response components, for example, via effects of the faulty tryptophan handling on the metabolism of the animal. 

      I acknowledge that it is not reasonable to ask for data in different backgrounds better representing a "wild type" fly (however, that is defined is another question), but I think this matter should be brought up and discussed. 

      We agree with the reviewer and have included caveats on the different genetic effects brought about the combinatory mutant approach including differences in white gene status, insertion of GFP or DsRed markers, and nature of genetic mutations (Line 142-on).

      “Of note, the strains used in this study differ in their presence/absence of the white<sup>+</sup> gene, present in the PPO1<sup>∆</sup>, NimC1<sup>1</sup> and eater<sup>1</sup> mutations.  In addition to its well established function in eye pigmentation, the white gene can also impact host neurology and intestinal stem cell proliferation (Ferreiro et al., 2017; Sasaki et al., 2021). We did not observe any obvious correlations between white<sup>+</sup> gene status and susceptibilities in this study. Moreover,  in a previous study looking at the cumulative effects of AMP mutations on lifespan, white gene status and fluorescent markers did not readily explain differences in longevity (Hanson and Lemaitre, 2023). We therefore believe that the extreme immune susceptibility we have created through deficiencies for pathways regulating hundreds of genes, or major immune modules, overwhelms the potential effects of white<sup>+</sup> and other transgenic markers. For additional information on which stocks bear which markers, see discussion in Supplementary file 1.”

      Of interest, we were highly conscious of this concern in working with combinatory AMP mutants which differed in white, GFP, and DsRed copies. However, even over the many weeks of snowballing effects on microbiota community composition and structure, we found no trends tied strictly to white+ or to other genetic insertions on lifespan (Hanson and Lemaitre, 2023; DMM).

      The whole study has been conducted on male flies. Immune responses show quite extensive sex-specific variation across a variety of species studied, also in the fly. But the reasons for this variation are not fully understood. Therefore, I suggest that the authors conduct a subset of experiments on female flies to see if the findings apply to both sexes, especially the infection-specificity of the module combinations.  

      We thank the reviewer for this suggestion. We have performed the requested experiments, and include female survival trends in Figure 4supp1. We have added the following text to the main manuscript (Line 554):

      “All survival experiments to this point were done with males. We therefore assessed key survival trends for these infections in females to learn whether the dynamics we observed were consistent across sexes (Figure 4supp1). For all three pathogens (Pr rettgeri, Sa aureus, C. albicans) the rank order of susceptibility was broadly similar between males and females, with higher rates of mortality in females overall. Thus, we found no marked sex-bygenotype interaction. Interestingly, the greater susceptibility of females in our hands is true even for ∆ITPM flies, although there are only a few surviving flies on which we can base these conclusions. However, these data may suggest the sexual dimorphism in defense against infection that we see against these pathogens is due to factors independent of the immune modules we disrupted.”

      It is worth noting that male-female sex dichotomies in infection are inconsistent across the literature, with strong lab-specific effects (Belmonte et al., 2020 and personal observation). In our lab setting, we consistently see female mortality higher than males when compared, independent of pathogen and mutant background. We have not seen notable interaction terms of sex and genotype for most immune deficient mutants. It is quite interesting to have done these experiments with ITPM, however, which reveals that there is at least a trend suggesting this dichotomy is independent of the four immune modules we deleted. Still, our infection conditions kill most males, and so it would be good to replicate this sex-specific ∆ITPM result in a dedicated study with doses chosen to improve the resolution of male-female differences. For now, we prefer to use conservative language and avoid overinterpreting this trend, but do feel it merits mentioning.  

      Recommendations for the authors:

      Comment on statistical requests

      Both reviewers requested further clarity on the statistical analyses supplemental to Figure 3. We haved address these comments as follows.

      First, we now provide an additional supplementary .zip file containing summary statistics for all survival data in Figure 3 (Supplementary File 3). We have additionally added this text to line 226 to make this data treatment more clear:

      …” we chose to focus on major differences apparent in summary statistics,Highlighting”…

      And we highlight that all survival data are also provided as Kaplan-Meier survival curves in the main or supplementary figures in Line 233:

      “Kaplan-Meier survival curves for all experiments are provided in the main text or supplementary information”.

      Second, as outlined in the main text, we were unable to sample across all pathogenby-genotype interactions systematically, and this unfortunately obfuscates robust statistical modelling. We addressed the challenge of finding meaningful statistical differences by focusing on trends only if they were i) consistent across experimental replicates, ii) of a consistent logic across comparable genotypes, ensuring random inter-experimental noise was not unduly shaping interpretations, and iii) of a mean lifespan difference ≥1.0 days compared to wild-type, and compared to relevant unchallenged or clean-injury controls. This last choice was especially important because not all experimental replicates included all genotypes due to challenges of animal husbandry and coordination among multiple researchers over five years of data collection. As a result, our initial analyses using a cox mixed-effects model found it to be rather useless, being insensitive to important experiment batch effects visible to the eye because statistically-affected genotypes were not present in all experiments.

      We therefore ensured that behaviour relative to controls within* experiments was consistent, rather than the comparison of genotypes to controls across the sum of experiments with a post-hoc treatment attempting to apportion variance to experiment batch (but unable to do so for some genotypes and some batches). Due to differeces in baseline health and the dynamics explained by studies like Duneau et al. (2017; eLife, there is an expected unequal variance of genotype*pathogen interactions across experiment batches. Unfortunately, this unequal variance, coupled with incomplete sampling across experiment batches, means “highly significant” differences can emerge that don’t hold up to scrutiny of comparisons to controls taken only from within an experiment batch. Thus, we chose to forego a cox mixed effect model approach entirely. Instead, our highly conservative approach, focusing on only very large effects with a mean lifespan difference ≥1.0 days, mitigates these issues. We have taken great care to ensure that any results we highlight stand up to inter-experiment batch effects. We would further draw the reviewers’ attention to our response to Reviewer 2 relating to Figure 3, which emphasizes the level of conservativism that we are applying.

      At the end of the Discussion, we have added the following sentence to emphasize these limitations:

      “…a combinatorial mutation approach to deciphering immune function can be extended even to the broad level of whole immune modules. Of note, we were unable to systematically sample all genotype-bypathogen interactions equally. We have therefore been highly conservative in our reporting of major effects. There are likely many important interactions” not discussed in our study. Future investigations may highlight important biology that is apparent in our data, but which we may not have mentioned here. To this end, we have deposited our isogenic immunity fly stocks in the Vienna Drosophila Resource Centre to facilitate their use. Beyond immunity, our tools can also be of use to study various questions at the cutting edge of aging, memory, neurodegeneration, cancer, and more, where immune genes are repeatedly implicated. We hope that this set of lines will be useful to the community to better characterize the Drosophila host defense.”

      We recognise this response may not fully satisfy the reviewers’ requests. While use of summary statistics is simple, our rules for highlighting interactions of importance are defined, readily understood and interpreted, and draw attention to key trends in that are backed by a solid understanding of the data and its limitations. We have taken this approach out of a responsibility to avoid making spurious assertions that stem from underpowered statistical models rather than from the biology itself.

      Reviewer #1 (Recommendations for the authors): 

      (1) Lines 1092-1093 - Please double-check the labeling of the panels in Figure 2. It appears that panels A and C correspond to single-module mutants, whereas panels B and D refer to compound-module mutants. 

      We have modified Figure 2 and Figure 2supp1 labelling. We also realise there was an error in the column titling that contributed to the confusion. We hope the new layout is clear, and thank the reviewers for noting this issue.

      (2) Lines 347-377 - Figure 2D is not cited in the text. 

      We now cite Fig2D in Line 356.

      (3) P values should be indicated in Figure 2 and Figure 3 for all relevant comparisons. Additionally, "ns" (not significant) should be added in Figure 5A-B. 

      We make the effort to show key uninfected survival trends in Figure 2, and list the total flies (n_flies) in Fig3 to provide the reader with the underlying confidence in the trends observed. We focus on differences of mean lifespan of at least 1 day, and which are consistent in direction across combinatory mutations.  We have avoided the multiple comparisons of cox proportional hazard survival analyses throughout this study because they are overly sensitive for our purposes, as we have previously when systematically comparing many genotypes to each other (see Hanson and Lemaitre, 2023; DMM).

      (4) Minor points: Hml-Gal4, UAS-GFP should be italic; Line 192-- "uL" and "uM"; Line 596: P>.05.

      We have made these changes. We’re unsure what the comment regarding P>.05 referred to, but have removed spaces and made it non-italics. 

      Reviewer #2 (Recommendations for the authors): 

      Statistical analyses and their outcomes are clearly indicated only for the data in Figure 1 and Figure 5 and in the supplement for Figure 1, while they are not reported/not easily accessible for other data. For the main figures, statistics should be indicated in the figure for an easier assessment of the data. In case of multiple comparisons potentially crowding the plots too much, statistics may be in a supplementary file/table. 

      See response above.

      In case of the hemocytes, besides phagocytosis, I would think that ROS generation via the DUOX/NOX system is also an integral part of the immune response against pathogens, and that has not been included here. That might be an interesting addition for future experiments. As the NimC1, eater double mutant flies are said to have fewer hemocytes, it is possible that this function of the hemocytes is affected as well. This could be commented on in the text. 

      The reviewer raises a good point. The role of DUOX and NOX in ROS responses is not assessed in our study. To our knowledge, DUOX and NOX participate primarily in the wound repair response, or in epithelial renewal at damage sites or in the gut. In our study on systemic immunity, we did not assess the role of clotting, the precise function of ROS, and we have missed other host defense or stress response mechanisms as well (e.g. constitutively-expressed AMP-like genes, TEPs, JAK-STAT) that likely play a role in the systemic immune defense. Considering the lethality caused by Nox and Duox mutation, there would be inherent genetic difficulties to recombine these as multiple mutations. Unfortunately, this makes it  difficult to include these processes in our analysis in a systematic manner.  We are already happy to have generated fly lines lacking four immune modules simultaneously, even if they are not fully immune deficient. We have mentioned this point in the discussion (Line 613-on).

      Of note, the NimC1, eater double mutants actually have decreased hemocyte counts at the adult stage (Melcarne et al,. 2019). Thus NimC1, eater double mutants are not impaired only in phagocytosis, but the overall cellular response. We make a point to outline this in Line 225-257, and 607.

      I think it could be mentioned that the melanization response at larval stage (against parasitoids) functions differently from the melanization described here (requiring hemocyte differentiation and PPO3).

      A good point. We have added this mention in Line 97:

      “In addition, a third PPO gene (PPO3) is specifically expressed by lamellocytes, specialized hemocytes that differentiate in larvae responding to and enveloping invading parasites (Dudzic et al., 2015)”.

      Overall, the clarity of the figures and figure legends could be worked on to make them a bit easier to follow. Below are some of my suggestions: 

      (1) In Figure 2, adding headings to parts C & D (similarly to A & B) would make it easier to follow what is happening in the figure at a glance. Also, it is rather difficult to visually follow which strain is which in the plots. I'd suggest adding the key/legend for single mutants below 2A & B, and the key for the double mutants below C & D. If a mutant is present in A & B and in C & D, it could be included in both keys. I also think that it would be intuitive to present the single mutants by dashed lines and double mutants by continuous lines (or vice versa), so that one would easily distinguish between them. Of note, the figure legend says that A & B are single mutants, but for example in B there are also some double mutants (?). 

      We have modified Figure 2 and Figure 2supp1 labelling. We also realise there was an error in the column titling that contributed to the confusion. We hope the new layout is clear, and thank the reviewers for noting this issue.

      (2) In Figure 3, it looks like ΔMel is almost identical to controls in the clean injury survival, but in Figure 2C, it is clearly doing worse. I might be missing something here, but would like the authors to clarify the matter. Also, the meaning of the numbers in the heat map could be explained in the figure legend and/or added to the figure (color key). 

      The reviewer is correct. We thank the reviewer for this astute observation. Inadvertently, we used an old version of the Figure 2 preparation where only a subset of experiments was entered in the Prism data file rather than the total data used to inform Figure 3. This issue affected all genotypes.

      We have reviewed the data in Figure 2, Figure 2supp1, and Figure 3, and updated these figures accordingly to ensure they represent the full survival data. We have also incorporated new experiments into the sum data related to male-female differences and to fill gaps in the data from the 1<sup>st</sup> submission. We will also note due to the nature of 1<sup>st</sup> decimal rounding that the difference between WT and ΔMel appears slightly underrepresented: the true difference (over the 7-day lifespan) is 0.37. We’ve provided a version of this figure rounded to 2 decimal places below, but prefer the simpler 1 decimal place in the main text for readability. The updated Figure 2 shows the full data in Figure 3 accurately.

      We will also take this opportunity to highlight how conservative our ≥1.0 days difference approach is. Breaking down survival curve patterns in Figure 2 relative to mean differences in Figure 3, for clean injury, approximately ~75% of ΔMel flies survive to day 7 with mortality mostly taking place between days 3-7. The result is a mean lifespan of 6.37 days. On a survival curve, this difference appears quite strong, but in our mean lifespan table the difference is rather muted (WT vs. ΔMel difference = 0.37 days). Thus, differences of ≥1.0 days reflect very strong trends in survival data that are near-guaranteed to be independent of experimental noise. While we note issues that prevented us from a fully systematic sampling for all experiments, we are confident that the ≥1.0 day differences we highlight, using the rules explained in the main text, are robust. While this approach could be seen as overly conservative, it is our preference in this initial study, containing combinations of 25 treatments and 14 genotypes, to be highly conservative. Future studies may investigate other strong differences we have not highlighted, and the data we provide here can help generate expectations and guide those studies.

      Author response image 1.

      Figure 3 with 2 decimals places of rounding for mean lifespans. The 7-day clean injury mean lifespan of WT is 6.74 days, and of ΔMel is 6.37 days. Due to rounding, in the 1 decimal Figure 3 this difference appears as if it is only 0.3 days, but it closer to 0.4 days. Regardless, this level of difference, which appears rather clearly in a survival curve, is well below the level of difference we have chosen to highlight in our study.

      (1) Figure 4: I find it very tedious to compare CFUs among different mutants from the plots. As the idea is to compare bacterial loads among the mutants at different timepoints, it would be easier to compare them if the data were shown within a timepoint (CFUs of each mutant at 2h, at 6h, and so on). This is also how the results are written in the text (within a time point). Would it also be clearer if the CFU plots were named, for example: " A', B', and C'"? 

      We appreciate this note. We feel both representations have merits and pitfalls, but prefer our original design showing the progression of bacterial growth within genotype first. However, we have added dotted lines representing the wild-type bacterial loads at 2hpi, 12hpi, and 24hpi to assist the reader in making acrossgenotype comparisons at key time points. Like this, the reader can see if the error bars (StDev) overlap the mean of the wild-type, and so make more intuitive judgements about whether these differences are meaningful.

      (2) Figure 2D is not referred to in the text. 

      We now cite Fig2D in Line 356.

    1. Author response:

      The issue of a control without blue light illumination was raised. Clearly without the light we will not obtain any signal in the fluorescence microscopy experiments, which would not be very informative. Instead, we changed the level of blue light illumination in the fluorescence microscopy experiments (figure 4A) and the response of the bacteria scales with dosage. It is very hard to find an alternative explanation, beyond that the blue light is stressing the bacteria and modulating their membrane potentials.

      One of the referees refuses to see wavefronts in our microscopy data. We struggle to understand whether it is an issue with definitions (Waigh has published a tutorial on the subject in Chapter 5 of his book ‘The physics of bacteria: from cells to biofilms’, T.A.Waigh, CUP, 2024 – figure 5.1 shows a sketch) or something subtler on diffusion in excitable systems. We stand by our claim that we observe wavefronts, similar to those observed by Prindle et al<sup>1</sup> and Blee et al<sup>2</sup> for B. subtilis biofilms.

      The referee is questioning our use of ThT to probe the membrane potential. We believe the Pilizota and Strahl groups are treating the E. coli as unexcitable cells, leading to their problems. Instead, we believe E. coli cells are excitable (containing the voltage-gated ion channel Kch) and we now clearly state this in the manuscript. Furthermore, we include a section here discussing some of the issues with ThT.


      Use of ThT as a voltage sensor in cells

      ThT is now used reasonably widely in the microbiology community as a voltage sensor in both bacterial [Prindle et al]1 and fungal cells [Pena et al]12. ThT is a small cationic fluorophore that loads into the cells in proportion to their membrane potential, thus allowing the membrane potential to be measured from fluorescence microscopy measurements.

      Previously ThT was widely used to quantify the growth of amyloids in molecular biology experiments (standardized protocols exist and dedicated software has been created)13 and there is a long history of its use14. ThT fluorescence is bright, stable and slow to photobleach.

      Author response image 1 shows a schematic diagram of the ThT loading in E. coli in our experiments in response to illumination with blue light. Similar results were previously presented by Mancini et al15, but regimes 2 and 3 were mistakenly labelled as artefacts.

      Author response image 1.

      Schematic diagram of ThT loading during an experiment with E. coli cells under blue light illumination i.e. ThT fluorescence as a function of time. Three empirical regimes for the fluorescence are shown (1, 2 and 3).

      The classic study of Prindle et al on bacterial biofilm electrophysiology established the use of ThT in B. subtilis biofilms by showing similar results occurred with DiSc3 which is widely used as a Nernstian voltage sensor in cellular biology1 e.g. with mitochondrial membrane potentials in eukaryotic organisms where there is a large literature. We repeated such a comparative calibration of ThT with DiSc3 in a previous publication with both B. subtilis and P. aeruginosa cells2. ThT thus functioned well in our previous publications with Gram positive and Gram negative cells.

      However, to our knowledge, there are now two groups questioning the use of ThT and DiSc3 as voltage sensors with E. coli cells15-16. The first by the Pilizota group claims ThT only works as a voltage sensor in regime 1 of Author response image 1 using a method based on the rate of rotation of flagellar motors. Another slightly contradictory study by the Strahl group claims DiSc316 only acts as a voltage sensor with the addition of an ionophore for potassium which allows free movement of potassium through the E. coli membranes.

      Our resolution to this contradiction is that ThT does indeed work reasonably well with E. coli. The Pilizota group’s model for rotating flagellar motors assumes the membrane voltage is not varying due to excitability of the membrane voltage (otherwise a non-linear Hodgkin Huxley type model would be needed to quantify their results) i.e. E. coli cells are unexcitable. We show clearly in our study that ThT loading in E. coli is a function of irradiation with blue light and is a stress response of the excitable cells. This is in contradiction to the Pilizota group’s model. The Pilizota group’s model also requires the awkward fiction of why cells decide to unload and then reload ThT in regimes 2 and 3 of Author response image 1 due to variable membrane partitioning of the ThT. Our simple explanation is that it is just due to the membrane voltage changing and no membrane permeability switch needs to be invoked. The Strahl group’s16 results with DiSc3 are also explained by a neglect of the excitable nature of E. coli cells that are reacting to blue light irradiation. Adding ionophores to the E. coli membranes makes the cells unexcitable, reduces their response to blue light and thus leads to simple loading of DiSc3 (the physiological control of K+ in the cells by voltage-gated ion channels has been short circuited by the addition of the ionophore).

      Further evidence of our model that ThT functions as a voltage sensor with E. coli include:

      1) The 3 regimes in Author response image 1 from ThT correlate well with measurements of extracellular potassium ion concentration using TMRM i.e. all 3 regimes in Author response image 1 are visible with this separate dye (figure 1d).

      2) We are able to switch regime 3 in Author response image 1, off and then on again by using knock downs of the potassium ion channel Kch in the membranes of the E. coli and then reinserting the gene back into the knock downs. This cannot be explained by the Pilizota model.

      We conclude that ThT works reasonably well as a sensor of membrane voltage in E. coli and the previous contradictory studies15-16 are because they neglect the excitable nature of the membrane voltage of E. coli cells in response to the light used to make the ThT fluoresce.

      Three further criticisms of the Mancini et al method15 for calibrating membrane voltages include:

      1) E. coli cells have clutches that are not included in their models. Otherwise the rotation of the flagella would be entirely enslaved to the membrane voltage allowing the bacteria no freedom to modulate their speed of motility.

      2) Ripping off the flagella may perturb the integrity of the cell membrane and lead to different loading of the ThT in the E. coli cells.

      3) Most seriously, the method ignores the activity of many other ion channels (beyond H+) on the membrane voltage that are known to exist with E. coli cells e.g. Kch for K+ ions. The Pilizota groups uses a simple Nernstian battery model developed for mitochondria in the 1960s. It is not adequate to explain our results.

      An additional criticism of the Winkel et al study17 from the Strahl group is that it indiscriminately switches between discussion of mitochondria and bacteria e.g. on page 8 ‘As a consequence the membrane potential is dominated by H+’. Mitochondria are slightly alkaline intracellular organelles with external ion concentrations in the cytoplasm that are carefully controlled by the eukaryotic cells. E. coli are not i.e. they have neutral internal pHs, with widely varying extracellular ionic concentrations and have reinforced outer membranes to resist osmotic shocks (in contrast mitochondria can easily swell in response to moderate changes in osmotic pressure).

      A quick calculation of the equilibrium membrane voltage of E. coli can be easily done using the Nernst equation dependent on the extracellular ion concentrations defined by the growth media (the intracellular ion concentrations in E. coli are 0.2 M K+ and 10-7 M H+ i.e. there is a factor of a million fewer H+ ions). Thus in contradiction to the claims of the groups of Pilizota15 and Strahl17, H+ is a minority determinant to the membrane voltage of E. coli. The main determinant is K+. For a textbook version of this point the authors can refer to Chapter 4 of D. White, et al’s ‘The physiology and biochemistry of prokaryotes’, OUP, 2012, 4th edition.

      Even in mitochondria the assumption that H+ dominates the membrane potential and the cells are unexcitable can be questioned e.g. people have observed pulsatile depolarization phenomena with mitochondria18-19. A large number of K+ channels are now known to occur in mitochondrial membranes (not to mention Ca2+ channels; mitochondria have extensive stores of Ca2+) and they are implicated in mitochondrial membrane potentials. In this respect the seminal Nobel prize winning research of Peter Mitchell (1961) on mitochondria needs to be amended20. Furthermore, the mitochondrial work is clearly inapplicable to bacteria (the proton motive force, PMF, will instead subtly depend on non-linear Hodgkin-Huxley equations for the excitable membrane potential, similar to those presented in the current article). A much more sophisticated framework has been developed to describe electrophysiology by the mathematical biology community to describe the activity of electrically excitable cells (e.g. with neurons, sensory cells and cardiac cells), beyond Mitchell’s use of the simple stationary equilibrium thermodynamics to define the Proton Motive Force via the electrochemical potential of a proton (the use of the word ‘force’ is unfortunate, since it is a potential). The tools developed in the field of mathematical electrophysiology8 should be more extensively applied to bacteria, fungi, mitochondria and chloroplasts if real progress is to be made.


      Related to the previous point, we now cite articles from the Pilizota and Strahl groups in the main text (one from each group). Unfortunately, the space constraints of eLife mean we cannot make a more detailed discussion in the main article.

      In terms of modelling the ion channels, the Hodgkin-Huxley type model proposes that the Kch ion channel can be modelled as a typical voltage-gated potassium ion channel i.e. with a 𝑛<sup>4</sup> term in its conductivity. The literature agrees that Kch is a voltage-gated potassium ion channel based on its primary sequence<sup>3</sup>. The protein has the typical 6 transmembrane helix motif for a voltage-gated ion channel. The agent-based model assumes little about the structure of ion channels in E. coli, other than they release potassium in response to a threshold potassium concentration in their environment. The agent based model is thus robust to the exact molecular details chosen and predicts the anomalous transport of the potassium wavefronts reasonably well (the modelling was extended in a recent Physical Review E article(<sup>4</sup>). Such a description of reaction-anomalous diffusion phenomena has not to our knowledge been previously achieved in the literature<sup>5</sup> and in general could be used to describe other signaling molecules.

      1. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Sudel, G. M., Ion channels enable electrical communication in bacterial communities. Nature 2015, 527, 59.

      2. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17, 036001.

      3. Milkman, R., An E. col_i homologue of eukaryotic potassium channel proteins. _PNAS 1994, 91, 3510-3514.

      4. Martorelli, V.; Akabuogu, E. U.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Electrical signaling in three-dimensional bacterial biofilms using an agent-based fire-diffuse-fire model. Physical Review E 2024, 109, 054402.

      5. Waigh, T. A.; Korabel, N., Heterogeneous anomalous transport in cellular and molecular biology. Reports on Progress in Physics 2023, 86, 126601.

      6. Hodgkin, A. L.; Huxley, A. F., A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 1952, 117, 500.

      7. Dawson, S. P.; Keizer, J.; Pearson, J. E., Fire-diffuse-fire model of dynamics of intracellular calcium waves. PNAS 1999, 96, 606.

      8. Keener, J.; Sneyd, J., Mathematical Physiology. Springer: 2009.

      9. Coombes, S., The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bulletin of Mathematical Biology 2001, 63, 1.

      10. Blee, J. A.; Roberts, I. S.; Waigh, T. A., Spatial propagation of electrical signals in circular biofilms. Physical Review E 2019, 100, 052401.

      11. Gorochowski, T. E.; Matyjaszkiewicz, A.; Todd, T.; Oak, N.; Kowalska, K., BSim: an agent-based tool for modelling bacterial populations in systems and synthetic biology. PloS One 2012, 7, 1.

      12. Pena, A.; Sanchez, N. S.; Padilla-Garfias, F.; Ramiro-Cortes, Y.; Araiza-Villaneuva, M.; Calahorra, M., The use of thioflavin T for the estimation and measurement of the plasma membrane electric potential difference in different yeast strains. Journal of Fungi 2023, 9 (9), 948.

      13. Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z., Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science 2017, 4, 160696.

      14. Meisl, G.; Kirkegaard, J. B.; Arosio, P.; Michaels, T. C. T.; Vendruscolo, M.; Dobson, C. M.; Linse, S.; Knowles, T. P. J., Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols 2016, 11 (2), 252-272.

      15. Mancini, L.; Tian, T.; Guillaume, T.; Pu, Y.; Li, Y.; Lo, C. J.; Bai, F.; Pilizota, T., A general workflow for characterization of Nernstian dyes and their effects on bacterial physiology. Biophysical Journal 2020, 118 (1), 4-14.

      16. Buttress, J. A.; Halte, M.; Winkel, J. D. t.; Erhardt, M.; Popp, P. F.; Strahl, H., A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes. Microbiology 2022, 168, 001227.

      17. Derk te Winkel, J.; Gray, D. A.; Seistrup, K. H.; Hamoen, L. W.; Strahl, H., Analysis of antimicrobial-triggered membrane depolarization using voltage sensitive dyes. Frontiers in Cell and Developmental Biology 2016, 4, 29.

      18. Schawarzlander, M.; Logan, D. C.; Johnston, I. G.; Jones, N. S.; Meyer, A. J.; Fricker, M. D.; Sweetlove, L. J., Pulsing of membrane potential in individual mitochondria. The Plant Cell 2012, 24, 1188-1201.

      19. Huser, J.; Blatter, L. A., Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochemistry Journal 1999, 343, 311-317.

      20. Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191 (4784), 144-148.

      21. Baba, T.; Ara, M.; Hasegawa, Y.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K. A.; Tomita, M.; Wanner, B. L.; Mori, H., Construction of Escherichia Coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology 2006, 2, 1.

      22. Schinedlin, J.; al, e., Fiji: an open-source platform for biological-image analysis. Nature Methods 2012, 9, 676.

      23. Hartmann, R.; al, e., Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology 2021, 6 (2), 151.


      The following is the authors’ response to the original reviews.

      Critical synopsis of the articles cited by referee 2:

      (1) ‘Generalized workflow for characterization of Nernstian dyes and their effects on bacterial physiology’, L.Mancini et al, Biophysical Journal, 2020, 118, 1, 4-14.

      This is the central article used by referee 2 to argue that there are issues with the calibration of ThT for the measurement of membrane potentials. The authors use a simple Nernstian battery (SNB) model and unfortunately it is wrong when voltage-gated ion channels occur. Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model. Instead a Hodgkin Huxley model is needed, as shown in our eLife manuscript and multiple other studies (see above). Arrhenius kinetics are assumed in the SNB model for pumping with no real evidence and the generalized workflow involves ripping the flagella off the bacteria! The authors construct an elaborate ‘work flow’ to insure their ThT results can be interpreted using their erroneous SNB model over a limited range of parameters.

      (2) ‘Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load’, C.J.Lo, et al, Biophysical Journal, 2007, 93, 1, 294.

      An odd de novo chimeric species is developed using an E. coli  chassis which uses Na+ instead of H+ for the motility of its flagellar motor. It is not clear the relevance to wild type E. coli, due to the massive physiological perturbations involved. A SNB model is using to fit the data over a very limited parameter range with all the concomitant errors.

      (3) Single-cell bacterial electrophysiology reveals mechanisms of stress-induced damage’, E.Krasnopeeva, et al, Biophysical Journal, 2019, 116, 2390.

      The abstract says ‘PMF defines the physiological state of the cell’. This statement is hyperbolic. An extremely wide range of molecules contribute to the physiological state of a cell. PMF does not even define the electrophysiology of the cell e.g. via the membrane potential. There are 0.2 M of K+ compared with 0.0000001 M of H+ in E. coli, so K+ is arguably a million times more important for the membrane potential than H+ and thus the electrophysiology!

      Equation (1) in the manuscript assumes no other ions are exchanged during the experiments other than H+. This is a very bad approximation when voltage-gated potassium ion channels move the majority ion (K+) around!

      In our model Figure 4A is better explained by depolarisation due to K+ channels closing than direct irreversible photodamage. Why does the THT fluorescence increase again for the second hyperpolarization event if the THT is supposed to be damaged? It does not make sense.

      (4) ‘The proton motive force determines E. coli robustness to extracellular pH’, G.Terradot et al, 2024, preprint.

      This article expounds the SNB model once more. It still ignores the voltage-gated ion channels. Furthermore, it ignores the effect of the dominant ion in E. coli, K+. The manuscript is incorrect as a result and I would not recommend publication.

      In general, an important problem is being researched i.e. how the membrane potential of E. coli is related to motility, but there are serious flaws in the SNB approach and the experimental methodology appears tenuous.

      Answers to specific questions raised by the referees

      Reviewer #1 (Public Review):

      Summary:

      Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      Strengths:

      - The authors report original data.

      - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.

      - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.

      - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.

      - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.

      We thank the referee for their positive evaluations and agree with these statements.

      Weaknesses:

      - Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.

      The electrical responses occur almost instantaneously when the stimulation with blue light begins i.e. it is too fast to be a build of pH. We are not sure what the referee means by Redox potential since it is an attribute of all chemicals that are able to donate/receive electrons. The electrical response to stress appears to be caused by ROS, since when ROS scavengers are added the electrical response is removed i.e. pH plays a very small minority role if any.

      - Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.

      >>We were enthusiastic at the start of the project to use the PROPs system in E. coli as presented by J.M.Krajl et al, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, Science, 2011, 333, 6040, 345. However, the people we contacted in the microbiology community said that it had some technical issues and there have been no subsequent studies using PROPs in bacteria after the initial promising study. The fluorescent protein system recently presented in PNAS seems more promising, ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 120, 3, e2208348120.

      - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.

      We have presented a more detailed account of the electrical wavefront modelling work and it is currently under review in a physical journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.

      Our recent electrical impedance spectroscopy publication provides further evidence that Kch is associated with large changes in conductivity as expected for a voltage-gated ion channel (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      - The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.

      That Kch has a photoprotective role is our current working hypothesis. The hypothesis fits with the data, but we are not saying we have proven it beyond all possible doubt.

      - The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).

      Our model is agnostic with respect to the mechanosensitivity of the ion channels, although we deduce that mechanosensitive ion channels contribute to ion channel Q.

      - Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.

      This is always an issue with electrophysiological modelling (compared with most heart and brain modelling studies we are very conservative in the choice of parameters for the bacteria). In terms of predicting the different phenomena observed, we believe the model is very successful.

      Reviewer #2 (Public Review):

      Summary of what the authors were trying to achieve:

      The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.

      We believe the Pilizota work is scientifically flawed.

      Major strengths and weaknesses of the methods and results:

      The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.

      The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.

      We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.

      I now go over each results section in the manuscript.

      Result section 1: Blue light triggers electrical spiking in single E. coli cells

      I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).

      The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.

      Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com]), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com]).

      We think the proton effect is a million times weaker than that due to potasium i.e. 0.2 M K+ versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.

      If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430 [ncbi.nlm.nih.gov]/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.

      The vast majority of cells continue to be viable. We do not think membrane damage is dominating.

      The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086 [pubmed.ncbi.nlm.nih.gov]/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2 [biorxiv.org]). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21 [journals.asm.org]), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] is membrane potential related, but not in a way that is characteristic of Nernstian dye.

      Our understanding of the literature is CCCP poisons the whole metabolism of the bacterial cells. The ATP driven K+ channels will stop functioning and this is the dominant contributor to membrane potential.

      Result section 2: Membrane potential dynamics depend on the intercellular distance

      In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signalling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com]) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.

      Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee’s comments thus seem tenable.

      Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms

      In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2 [sciencedirect.com], the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191 [pubmed.ncbi.nlm.nih.gov]/), so such cytoplasmic staining seems possible.

      >>It is very easy to see if the illumination is flat (Köhler illumination) by comparing the intensity of background pixels on the detector. It was flat in our case. Protons have little to do with our work for reasons highlighted before. Differential membrane permittivity is a speculative phenomenon not well supported by any evidence and with no clear molecular mechanism.

      Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.

      The referee now contradicts themselves and wants a scale bar to be more visible. We have changed the scale bar.

      Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli

      First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.

      In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x [onlinelibrary.wiley.com]). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.

      The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibriate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.

      The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.

      We have good evidence form electrical impedance spectroscopy experiments that Kch increases the conductivity of biofilms  (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli

      In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com] especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.

      The simple Nernstian battery model proposed by Pilizota et al is erroneous in our opinion for reasons outlined above. We believe it will prove to be a dead end for bacterial electrophysiology studies.

      Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics

      This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.

      This is an erroneous niche opinion. Protons have little say in the membrane potential since there are so few of them. The membrane potential is mostly determined by K+.

      I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gK*n^4 for potassium, gNa*m^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).

      In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.

      Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144 [journals.plos.org])

      The reference is to a slightly more modern version of a simple Nernstian battery model. The model will not oscillate and thus will not help modelling membrane potentials in bacteria. We are unsure where the equilibrium requirement comes from (inadequate modelling of the dynamics?)

      Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.

      The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.

      The evidence for permeability changes in the membranes seems to be tenuous.

      A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113 [pnas.org]). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.

      We have reworded the discussion of Mscs since the literature appears to be ambiguous. We will try to run some electrical impedance spectroscopy experiments on the Msc mutants in the future to attempt to remove the ambiguity.

      Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.

      I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.

      Ok, but we disagree on the use of ThT.

      Aims achieved/results support their conclusions:

      The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      I do not think this publication should be published in its current format. It should be revised in light of the previous literature as discussed in detail above. I believe presenting it in it's current form on eLife pages would create unnecessary confusion.

      We believe many of the Pilizota group articles are scientifically flawed and are causing the confusion in the literature.

      Any other comments:

      I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 [journals.asm.org] found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.

      >>ThT was used successfully in previous studies of normal B. subtilis cells (by our own group and A.Prindle, ‘Spatial propagation of electrical signal in circular biofilms’, J.A.Blee et al, Physical Review E, 2019, 100, 052401, J.A.Blee et al, ‘Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light’, Physical Biology, 2020, 17, 2, 036001, A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 59-63). The connection to low metabolism pore research seems speculative.

      Reviewer #3 (Public Review):

      It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.

      In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.

      (1) An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.

      ThT is a very bright fluorophore (much brighter than a GFP). It is clear from the images of non-stained samples that autofluorescence provides a negligible contribution to the fluorescence intensity in an image.

      (2) The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).

      Photobleaching was negligible over the course of the experiments. We employed techniques such as reducing sample exposure time and using the appropriate light intensity to minimize photobleaching.

      (3) It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.

      Unfortunately the fluorescent baseline is too weak to measure cleanly in this experiment. It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal (measurements in the eLife article and new potentiometry measurements).

      (4) The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.

      We think the PMF plays a minority role in determining the membrane potential in E. coli. For reasons outlined before (H+ is a minority ion in E. coli compared with K+).

      (5) Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.

      >>Both strains of bacterial has similar growth curve and also engaged in membrane potential dynamics for the duration of the experiment. We were interested in bacterial cells that observed membrane potential dynamics in the presence of the stress. Bacterial cells need to be alive to engage in membrane potential  dynamics (hyperpolarize) under stress conditions. Cells that engaged in membrane potential dynamics and later stained red were only counted after the entire duration. We believe that the wildtype handles the light stress better than the ∆kch mutant as measured with the PI.

      (6) Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.

      Kirchhoff & Cypionka 2017 J Microbial Methods, using fluorescence microscopy, suggested that changes in membrane potential dynamics can introduce experimental bias when propidium iodide is used to confirm the viability of tge bacterial strains, B subtilis (DSM-10) and Dinoroseobacter shibae, that are starved of oxygen (via N2 gassing) for 2 hours. They attempted to support their findings by using CCCP in stopping the membrane potential dynamics (but never showed any pictoral or plotted data for this confirmatory experiment). In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia. We believe that the accumulation of PI in ∆kch mutant is not due to high membrane potential dynamics but is attributed to the PI, unbiasedly showing damaged/dead cells. We think that propidium iodide is good for this experiment. Propidium iodide is a dye that is extensively used in life sciences. PI has also been used in the study of bacterial electrophysiology (https://pubmed.ncbi.nlm.nih.gov/32343961/, ) and no membrane potential related bias was reported.

      Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.

      Comparison of small changes in the absolute intensities is problematic in such fluorescence experiments. We mean the shape of the traces is similar and they can be modelled using a HH model with similar parameters.

      The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.

      In our experiment, TMRM was used to confirm the dynamics observed using ThT. However, ThT appear to be more photostable than TMRM (especially towars the 2nd peak). The most interesting observation is that with both dyes, all phases of the membrane potential dynamics were conspicuous (the first peak, the quiescent period and the second peak). The time periods for these three episodes were also similar.

      A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.

      The key point is the comparison of standard errors on the standard deviation.

      In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.

      The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.

      We appreciate the reviewer for this important observation. We have made changes to the figures to address this confusion. The cell cover has no influence on the observed membrane potential dynamics. The entire biofilm was exposed to the same blue light at each time. Therefore all parts of the biofilm received equal amounts of the blue light intensity. The membrane potential dynamics was not influenced by cell density (see Fig 2C). 

      The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).

      A visual inspection of Video S6B shows a fast rise, a decrease in fluorescence and a second rise (supplementary figure 4B). The data for the fluorescence was carefully obtained using the imaris software. We created a curved geometry on each slice of the confocal stack. We analyzed the surfaces of this curved plane along the z-axis. This was carried out in imaris.

      3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.

      The analysis is considered in more detail in a more expansive modelling article, currently under peer review in a physics journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:

      (1) In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.

      We have worded this differently to properly convey our results.

      (2) In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.

      The calcium transients observed were not due to noise or artefacts.

      (3) The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.

      The confusion stated here has now been addressed. Also it should be noted that while Fig 2.1 was obtained with LED light source, Fig S4A was obtained using a laser light source. While obtaining the confocal images (for Fig S4A ), the light intensity was controlled to further minimize photobleaching. Most importantly, there is an evidence of slow rise to the 2nd peak in Fig S4B. The first peak, quiescence and slow rise to second peak are evident.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Scientific recommendations:

      - Although Fig 4A clearly shows that light stimulation has an influence on the dynamics of cell membrane potential in the biofilm, it is important to rule out the contribution of variations in environmental parameters. I understand that for technical reasons, the flow of fresh medium must be stopped during image acquisition. Therefore, I suggest performing control experiments, where the flow is stopped before image acquisition (15min, 30min, 45min, and 1h before). If there is no significant contribution from environmental variations (pH, RedOx), the dynamics of the electrical response should be superimposed whatever the delay between stopping the flow stop and switching on the light.

      In this current research study, we were focused on studying how E. coli cells and biofilms react to blue light stress via their membrane potential dynamics. This involved growing the cells and biofilms, stopping the media flow and obtaining data immediately. We believe that stopping the flow not only helped us to manage data acquisition, it also helped us reduce the effect of environmental factors. In our future study we will expand the work to include how the membrane potential dynamics evolve in the presence of changing environmental factors for example such induced by stopping the flow at varied times.

      - Since TMRM signal exhibits a linear increase after the first response peak (Supplementary Figure 1D), I recommend mitigating the statement at line 78.

      - To improve the spatial analysis of the electrical response, I suggest plotting kymographs of the intensity profiles across the biofilm. I have plotted this kymograph for Video S3 and it appears that there is no electrical propagation for the second peak. In addition, the authors should provide technical details of how R^2(t) is measured in the first regime (Figure 7E).

      See the dedicated simulation article for more details. https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Line 152: To assess the variability of the latency, the authors should consider measuring the variance divided by the mean instead of SD, which may depend on the average value.

      We are happy with our current use of standard error on the standard deviation. It shows what we claim to be true.

      - Line 154-155: To truly determine whether the amplitude of the "action potential" is independent of biofilm size, the authors should not normalise the signals.

      Good point. We qualitatively compared both normalized and unnormalized data. Recent electrical impedance spectroscopy measurements (unpublished) indicate that the electrical activity is an extensive quantity i.e. it scales with the size of the biofilms.

      - To precise the role of K+ in the habituation response, I suggest using valinomycin at sub-inhibitory concentrations (10µM). Besides, the high concentration of CCCP used in this study completely inhibits cell activity. Not surprisingly, no electrical response to light stimulation was observed in the presence of CCCP. Finally, the Kch complementation experiment exhibits a "drop after the first peak" on a single point. It would be more convincing to increase the temporal resolution (1min->10s) to show that there is indeed a first and a second peak.

      An interesting experiment for the future.

      - Line 237-238: There are only two points suggesting that the dynamics of hyperpolarization are faster at higher irradiance(Fig 4A). The authors should consider adding a third intermediate point at 17µW/mm^2 to confirm the statement made in this sentence.

      Multiple repeats were performed. We are confident of the robustness of our data.

      - Line 249 + Fig 4E: It seems that the data reported on Fig 4E are extracted from Fig 4D. If this is indeed the case, the data should be normalised by the total population size to compare survival probabilities under the two conditions. It would also be great to measure these probabilities (for WT and ∆kch) in the presence of ROS scavengers.

      - To distinguish between model fitting and model predictions, the authors should clearly state which parameters are taken from the literature and which parameters are adjusted to fit the experimental data.

      - Supplementary Figure 4A: why can't we see any wavefront in this series of images?

      For the experimental data, the wavefront was analyzed by employing the imaris software. We systematically created a ROI with a curved geometry within the confocal stack (the biofilm). The fluorescence of ThT was traced along the surface of the curved geometry was analyzed along the z-axis.

      - Fig 7B: Could the authors explain why the plateau is higher in the simulations than in the biofilm experiments? Could they add noise on the firing activities?

      See the dedicated Martorelli modelling article. In general we would need to approach stochastic Hodgkin-Huxley modelling and the fluorescence data (and electrical impedance spectroscopy data) presented does not have extensive noise (due to collective averaging over many bacteria cells).

      - Supplementary Figure 4B: Why can't we see the second peak in confocal images?

      The second peak is present although not as robust as in Fig 2B. The confocal images were obtained with a laser source. Therefore we tried to create a balance between applying sufficient light stress on the bacterial cells and mitigating photobleaching.

      Editing recommendations:

      The editing recommendations below has been applied where appropriate

      - Many important technical details are missing (e.g. R^2, curvature, and 445nm irradiance measurements). Error bars are missing from most graphs. The captions should clearly indicate if these are single-cell or biofilm experiments, strain name, illumination conditions, number of experiments, SD, or SE. Please indicate on all panels of all figures in the main text and in the supplements, which are the conditions: single cell vs. biofilm, strains, medium, centrifugal vs centripetal etc..., where relevant. Please also draw error bars everywhere.

      We have now made appropriate changes. We specifically use cells when we were dealing with single cells and biofilms when we worked on biofilms. We decided to describe the strain name either on the panel or the image description.

      - Line 47-51: The way the paragraph is written suggests that no coordinated electrical oscillations have been observed in Gram-negative biofilms. However, Hennes et al (referenced as 57 in this manuscript) have shown that a wave of hyperpolarized cells propagates in Neisseria gonorrhoea colony, which is a Gram-negative bacterium.

      We are now aware of this work. It was not published when we first submitted our work and the authors claim the waves of activity are due to ROS diffusion NOT propagating waves of ions (coordinated electrical wavefronts).

      - Line 59: "stressor" -> "stress" or "perturbation".

      The correction has been made.

      - Line 153: Please indicate in the Material&Methods how the size of the biofilm is measured.

      The biofilm size was obtained using BiofilmQ and the step by step guide for using BiofilmQ were stated..

      - Figure 2A: Please provide associated brightfield images to locate bacteria.

      - Line 186: Please remove "wavefront" from the caption. Fig2B only shows the average signal as a function of time.

      This correction has been implemented.

      - Fig 3B,C: Please indicate single cell and biofilm on the panels and also WT and ∆kch.

      - Line 289: I suggest adding "in single cell experiments" to the title of this section.

      - Fig 5A: blue light is always present at regular time intervals during regime I and II. The presence of blue light only in regime I could be misleading.

      - Fig 5C: The curve in Fig 5D seems to correspond to the biofilm case. The curve given by the model, should be compared with the average curve presented in Fig 1D.

      - Fig 6A, B, and C: These figures could be moved to supplements.

      - Line 392: Replace "turgidity" with "turgor pressure".

      - Fig 7C,E: Please use a log-log scale to represent these data and indicate the line of slope 1.

      - Fig 7E: The x-axis has been cropped.

      - Please provide a supplementary movie for the data presented in Fig 7E.

      - Line 455: E. Coli biofilms do not express ThT.

      - Line 466: "\gamma is the anomalous exponent". Please remove anomalous (\gamma can equal 1 at this stage).

      - Line 475: Please replace "section" with "projection".

      - Line 476: Please replace "spatiotemporal" with "temporal". There is no spatial dependency in either figure.

      - Line 500: Please define Eikonal approximation.

      - Fig 8 could be moved to supplements.

      - Line 553: "predicted" -> "predict".

      - Line 593: Could the authors explain why their model offers much better quantitative agreement?

      - Line 669: What does "universal" mean in that context?

      - Line 671: A volume can be pipetted but not a concentration.

      - Line 676: Are triplicates technical or biological replicates?

      - Sup Fig1: Please use minutes instead of seconds in panel A.

      - Model for membrane dynamics: "The fraction of time the Q+ channel is open" -> "The dynamics of Q+ channel activity can be written". Ditto for K+ channel...

      - Model for membrane dynamics: "the term ... is a threshold-linear". This function is not linear at all. Why is it called linear? Also, please describe what \sigma is.

      - ABFDF model: "releasing a given concentration" -> "releasing a local concentration" or "a given number" but it's not \sigma anymore. Besides, this \sigma is unlikely related to the previous \sigma used in the model of membrane potential dynamics in single cells. Please consider renaming one or the other. Also, ions are referred to as C+ in the text and C in equation 8. Am I missing something?

      Reviewer #2 (Recommendations For The Authors):

      I have included all my comments as one review. I have done so, despite the fact that some minor comments could have gone into this section, because I decided to review each Result section. I thus felt that not writing it as one review might be harder to follow. I have however highlighted which comments are minor suggestions or where I felt corrections.

      However, while I am happy with all my comments being public, given their nature I think they should be shown to authors first. Perhaps the authors want to go over them and think about it before deciding if they are happy for their manuscript to be published along with these comments, or not. I will highlight this in an email to the editor. I question whether in this case, given that I am raising major issues, publishing both the manuscript and the comments is the way to go as I think it might just generate confusion among the audience.

      Reviewer #3 (Recommendations For The Authors):

      I was unable to find any legends for any of the supplemental videos in my review materials, and I could not open supplemental video 5.

      I made some comments in the public review about the analysis and interpretation of the time-to-fire data. One of the other challenges in this data set is that the time resolution is limited- it seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      In the public review, I mentioned the possible impact of high membrane potential on PI permeability. To address this, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      In the public review, I mentioned the possible combined toxicity of ThT and blue light. Live/dead experiments after blue light exposure with and without ThT could be used to test for such effects, and/or the growth curve experiment in Figure 1F could be repeated with blue light exposure at a comparable irradiance used in the experiment.

      Throughout the paper and figure legends, it would help to have more methodological details in the main text, especially those that are critical for the interpretation of the experiment. The experimental details in the methods section are nicely described, but the data analysis section should be expanded significantly.

      At the end of the results section, the authors suggest a critical biofilm size of only 4 µm for wavefront propagation (not much larger than a single cell!). The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger. Are there data for cell clusters above and below this size that could support this claim more directly?

      The authors mention image registration as part of their analysis pipeline, but the 3D data sets in Video S6B and Fig. S4A do not appear to be registered- were these registered prior to the velocity analysis reported in Fig. 8?

      One of the most challenging claims to demonstrate in this paper is that these membrane potential wavefronts are involved in coordinating a large, biofilm-scale response to blue light. One possible way to test this might be to repeat the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the Kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions.

      Line 140: How is "mature biofilm" defined? Also on this same line, what does "spontaneous" mean here?

      Line 151: "much smaller": Given that the reported time for 3D biofilms is 2.73 {plus minus} 0.85 min and in microclusters is 3.27 {plus minus} 1.77 min, this seems overly strong.

      Line 155: How is "biofilm density" characterized? Additionally, the data in Figure 2C are presented in distance units (µm), but the text refers to "areal coverage"- please define the meaning of these distance units in the legend and/or here in the text (is this the average radius?).

      Lines 161-162: These claims seem strong given the data presented before, and the logic is not very explicit. For example, in the second sentence, the idea that this signaling is used to "coordinate long-range responses to light stress" does not seem strongly evidenced at this point in the paper. What is meant by a long-range response to light stress- are there processes to respond to light that occur at long-length scales (rather than on the single-cell scale)? If so, is there evidence that these membrane potential changes could induce these responses? Please clarify the logic behind these conclusions.

      Lines 235-236: In the lower irradiance conditions, the responses are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. Could a more prominent second peak be observed in these cases if the measurement time was extended?

      Line 242-243: The overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises some minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also reflect the first peak- is this surprising given that the Kch channel has no effect on this peak?

      Line 255-256: Again, this seems like a very strong claim. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential, but does not obviously indicate that these membrane potential fluctuations mitigate ROS levels or help the cells respond to ROS stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no-light control I mention in the public review.

      Lines 313-315: "The model predicts... the external light stress". Please clarify this section. Where this prediction arises from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      Line 322: I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later in lines 327-8 the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      Line 365-366: This section title seems confusing- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants- is this expected? This seems to imply that these ion channels also have a blue light independent effect.

      Lines 368, 371: Should be VGCCs rather than VGGCs.

      Line 477: I believe the figure reference here should be to Figure 7B, not 6B.

      Line 567-568: "The initial spike is key to registering the presence of the light stress." What is the evidence for this claim?

      Line 592-594: "We have presented much better quantitative agreement..." This is a strong claim; it is not immediately evident to me that the agreement between model and prediction is "much better" in this work than in the cited work. The model in Figure 4 of reference 57 seems to capture the key features of their data. Clarification is needed about this claim.

      Line 613: "...strains did not have any additional mutations." This seems to imply that whole genome sequencing was performed- is this the case?

      Line 627: I believe this should refer to Figure S2A-B rather than S1.

      Line 719: What percentage of cells did not hyperpolarize in these experiments?

      Lines 751-754: As I mentioned above, significant detail is missing here about how these measurements were made. How is "radius" defined in 3D biofilms like the one shown in Video S6B, which looks very flat? What is meant by the distance from the substrate to the core, since usually in this biofilm geometry, the core is directly on the substrate? Most importantly, this only describes the process of sectioning the data- how were these sections used to compute the velocity of ThT signal propagation?

      I also have some comments specifically on the figure presentation:

      Normalization from 0 to 1 has been done in some of the ThT traces in the paper, but not all. The claims in the paper would be easiest to evaluate if the non-normalized data were shown- this is important for the interpretation of some of the claims.

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Throughout the paper, I am a bit confused by the time axis; the data consistently starts at 1 minute. This is not intuitive to me, because it seems that the blue light being applied to the cells is also the excitation laser for ThT- in that case, shouldn't the first imaging frame be at time 0 (when the blue light is first applied)? Or is there an additional exposure of blue light 1 minute before imaging starts? This is consequential because it impacts the measured time to the first spike. (Additionally, all of the video time stamps start at 0).

      Please increase the size of the scale bars and bar labels throughout, especially in Figure 2A and S4A.

      In Figure 1B and D, it would help to decrease the opacity on the individual traces so that more of them can be discerned. It would also improve clarity to have data from the different experiments shown with different colored lines, so that variability between experiments can be clearly visualized.

      Results in Figure 1E would be easier to interpret if the frequency were normalized to total N. It is hard to tell from this graph whether the edges and bin widths are the same between the data sets, but if not, they should be. Also, it would help to reduce the opacity of the sparse cell data set so that the full microcluster data set can be seen as well.

      Biofilm images are shown in Figures 2A, S3A, and Video S3- these are all of the same biofilm. Why not take the opportunity to show different experimental replicates in these different figures? The same goes for Figure S4A and Video S6B, which again are of the same biofilm.

      Figure 2C would be much easier to read if the curves were colored in order of their size; the same is true for Figure 4A and irradiance.

      The complementation data in Figure S3D should be moved to the main text figure 3 alongside the data about the corresponding knockout to make it easier to compare the curves.

      Fig.ure S3E: Is the Y-axis in this graph mislabeled? It is labeled as ThT fluorescence, but it seems that it is reporting fluorescence from the calcium indicator?

      Video S6B is very confusing - why does the video play first forwards and then backwards? Unless I am looking very carefully at the time stamps it is easy to misinterpret this as a rise in the intensity at the end of the experiment. Without a video legend, it's hard to understand this, but I think it would be much more straightforward to interpret if it only played forward. (Also, why is this video labeled 6B when there is no video 6A?)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The authors sought to test whether anterior insular cortex neurons increase or decrease firing during fear behavior and freezing, bi-directionally control fear via separate, anatomically defined outputs. Using a fairly simple behavior where mice were exposed to tone-shock pairings, they found roughly equal populations that do indeed either increase or decrease firing during freezing. Next, they sought to test whether these distinct populations may also have distinct outputs. Using retrograde tracers they found that the anterior insular cortex contains non-overlapping neurons which project to the mediodorsal thalamus or amygdala. Mediodorsal thalamus-projecting neurons tended to cluster in deep cortical layers while amygdala-projecting neurons were primarily in more superficial layers. Stimulation of insula-thalamus projection decreased freezing behavior, and stimulation of insula-amygdala projections increased fear behavior. Given that the neurons that increased firing were located in deep layers, that thalamus projections occurred in deep layers, and that stimulation of insula-thalamus neurons decreased freezing, the authors concluded that the increased firing neurons may be thalamus projections. Similarly, given that decreased-firing neurons tended to occur in more superficial layers, that insula-amygdala projections were primarily superficial, and that insula-amygdala stimulation increased freezing behavior, authors concluded that the decreased firing cells may be amygdala projections. The study has several strengths though also some caveats.

      Strengths:

      The potential link between physiological activity, anatomy, and behavior is well laid out and is an interesting question. The activity contrast between the units that increase/decrease firing during freezing is clear.

      It is nice to see the recording of extracellular spiking activity, which provides a clear measure of neural output, whereas similar studies often use bulk calcium imaging, a signal that rarely matches real neural activity even when anatomy suggests it might (see London et al 2018 J Neuro - there are increased/decreased spiking striatal populations, but both D1 and D2 striatal neurons increase bulk calcium).

      Weaknesses:

      The link between spiking, anatomy, and behavior requires assumptions/inferences: the anatomically/genetically defined neurons which had distinct outputs and opposite behavioral effects can only be assumed the increased/decreased spiking neurons, based on the rough area of the cortical layer they were recorded.

      Yes, we are aware that we could not provide a direct link between spiking, anatomy and behavior. We have specifically noted this in the discussion section and added a possible experiment that could be carried out to provide a more direct link in a future study.

      [Lines 371-375] We would like to provide a more direct evidence between the neuronal response types and projection patterns in future studies by electrophysiologically identifying freezing-excited and freezing-inhibited aIC neurons and testing whether those neurons activates to optogenetic activation of amygdala or medial thalamus projecting aIC neurons.

      The behavior would require more control to fully support claims about the associative nature of the fear response (see Trott et al 2022 eLife) - freezing, in this case, could just as well be nonassociative. In a similar vein, fixed intertrial intervals, though common practice in the fear literature, pose a problem for neurophysiological studies. The first is that animals learn the timing of events, and the second is that neural activity is dynamic and changes over time. Thus it is very difficult to determine whether changes in neural activity are due to learning about the tone-shock contingency, timing of the task, simply occur because of time and independently of external events, or some combination of the above.

      Trott et al. (2022) stated that "...freezing was the purest reflection of associative learning." The nonassociative processes mentioned in the study were related to running and darting behaviors, which the authors argue are suppressed by associative learning. Moreover, considerable evidence from immediate postshock freezing and immediate postshock context shift studies all indicate that the freezing response is an associative (and not nonassociative) response (Fanselow, 1980 and 1986; and Landeira-Fernandez et al., 2006). Thus, our animals' freezing response to the tone CS presentation in a novel context, following three tone CS-footshock US pairings, most likely reflects associative learning. 

      Concerning the issue of fixed inter-trial intervals (ITIs), which are standard in fear conditioning studies, particularly those with few CS-US paired trials, we acknowledge the challenge in interpreting the neural correlates of behavior. However, the ITIs in our extinction study was variable and we still found neural activities that had significant correlation with freezing. The results of our extinction study, carried out with variable it is, suggest that the aIC neural activity changes measured in this study is likely due to freezing behavior associated with fear learning, not due to learning the contingencies of fixed ITIs.

      Reviewer #2 (Public Review):

      In this study, the authors aim to understand how neurons in the anterior insular cortex (insula) modulate fear behaviors. They report that the activity of a subpopulation of insula neurons is positively correlated with freezing behaviors, while the activity of another subpopulation of neurons is negatively correlated to the same freezing episodes. They then used optogenetics and showed that activation of anterior insula excitatory neurons during tones predicting a footshock increases the amount of freezing outside the tone presentation, while optogenetic inhibition had no effect. Finally, they found that two neuronal projections of the anterior insula, one to the amygdala and another to the medial thalamus, are increasing and decreasing freezing behaviors respectively. While the study contains interesting and timely findings for our understanding of the mechanisms underlying fear, some points remain to be addressed.

      We are thankful for the detailed and constructive comments by the reviewer and addressed the points. Specifically, we included possible limitations of using only male mice in the study, included two more studies about the insula as references, specified the L-ratio and isolated distance used in our study, added the ratio of putative-excitatory and putative-inhibitory neurons obtained from our study, changed the terms used to describe neuronal activity changes (freezing-excited and freezing-inhibited cells), added new analysis (Figure 2H), rearranged Figure 2 for clarity, added new histology images, and added atlas maps with viral expressions (three figure supplements).

      Reviewer #1 (Recommendations For The Authors):

      - I would suggest keeping the same y-axis for all figures that display the same data type - Figure 5D, for example.

      Thank you for the detailed suggestion. We corrected the y-axis that display the same data type to be the same for all figures.

      - In the methods, it says 30s bins were used for neural analysis (line 435). I cannot imagine doing this, and looking at the other figures, it does not look like this is the case so could you please clarify what bins, averages, etc were used for neural and behavioral analysis?

      Bin size for neural analysis varied; 30s, 5s, 1s bins were used depending on the analysis. We corrected this and specified what time bin was used for which figure in the methods.

      Bin size for neural and freezing behavior was 30s and we also added this to the methods.

      - I would not make any claims about the fear response here being associative/conditional. This would require a control group that received an equal number of tone and shock exposures, whether explicitly unpaired or random.

      The unpaired fear conditioning paradigm, unpaired tone and shock, suggested by the reviewer is well characterized not to induce fear behavior by CS (Moita et al., 2003 and Kochli et al., 2015). In addition, considerable evidence from immediate post-shock freezing and immediate post-shock context shift studies all indicate that the freezing response is an associative (and not nonassociative) response (Fanselow, 1980 and 1986; and Landeira-Fernandez et al., 2006). Thus, our animals' freezing response to the tone CS presentation in a novel context, following three tone CS-footshock US pairings, most likely reflects associative learning.

      - I appreciate the discussion about requiring some inference to conclude that anatomically defined neurons are the physiologically defined ones. This is a caveat that is fully disclosed, however, I might suggest adding to the discussion that future experiments could address this by tagging insula-thalamus or insula-amygdala neurons with antidromic (opto or even plain old electric!) stimulation. These experiments are tricky to perform, of course, but this would be required to fully close all the links between behavior, physiology, and anatomy.

      As suggested, we have included that, in a future study, we would like to elucidate a more direct link between physiology, anatomy and behaviors by optogenetically tagging the insula-thalamus/insula-amygdala neurons and identifying whether it may be a positive or a negative cell (now named the freezing-excited and freezing-inhibited cells, respectively) in the discussion.

      [Lines 371-375] We would like to provide a more direct evidence between the neuronal response types and projection patterns in future studies by electrophysiologically identifying freezing-excited and freezing-inhibited aIC neurons and testing whether those neurons activates to optogenetic activation of amygdala or medial thalamus projecting aIC neurons.

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) As all experiments have been performed only in male mice, the authors need to clearly state this limit in the introduction, abstract, and title of the manuscript.

      With increasing number of readers becoming interested in the biological sex used in preclinical studies, we also feel that it should be mentioned in the beginning of the manuscript. As suggested, we explicitly wrote that we only used male mice in the title, abstract, and introduction. In addition, we discussed possible limitations of only using male mice in the discussion section as follows:

      [Lines 381-386] Another factor to consider is that we have only used male mice in this study. Although many studies report that there is no biological sex difference in cued fear conditioning (42), the main experimental paradigm used in this study, it does not mean that the underlying brain circuit mechanism would also be similar. The bidirectional fear modulation by aIC→medial thalamus or the aIC→amygdala projections may be different in female mice, as some studies report reduced cued fear extinction in females (42).

      (2) The authors are missing important publications reporting findings on the insular cortex in fear and anxiety. For example, the authors should cite studies showing that anterior insula VIP+ interneurons inhibition reduces fear memory retrieval (Ramos-Prats et al., 2022) and that posterior insula neurons are a state-dependent regulator of fear (Klein et al., 2021). Also, regarding the anterior insula to basolateral amygdala projection (aIC-BLA), the author should include recent work showing that this population encodes both negative valence and anxiogenic spaces (Nicolas et al., 2023). 

      We appreciate the detailed suggestions and we added appropriate publications in the discussion section. The anterior insula VIP+ interneuron study (Ramos-Prats et al., 2022) is interesting, but based on the evidence provided in the paper, we felt that the role of aIC VIP+ interneuron in fear conditioning is low. VIP+ interneurons in the aIC seem to be important in coding sensory stimuli, however, it’s relevance to conditioned stimuli seems to be low; overall VIP intracellular calcium activity to CS was low and did not differ between acquisition and retrieval. Also, inhibition of VIP did not influence fear acquisition. VIP inhibition during fear acquisition did reduce fear retrieval (CS only, no light stimulation), but this does not necessarily mean that VIP activity will be involved in fear memory storage or retrieval, especially because intracellular calcium activity of VIP+ neurons was low during fear conditioning and retrieval.

      Studies by Klein et al. (2021) and Nicolas et al. (2023) are integrated in the discussion section as follows.

      [Lines 297-301] Group activity of neurons in the pIC measured with fiberphotometry, interestingly, exhibited fear state dependent activity changes—decreased activity with high fear behavior and increased activity with lower fear behavior (29)—suggesting that group activity of the pIC may be involves in maintain appropriate level of fear behavior.

      [Lines 316-319] Another distinction between the aIC and pIC may be related with anxiety, as a recent study showed that group activity of aIC neurons, but not that of the pIC, increased when mice explored anxiogenic space (open arms in an elevated plus maze, center of an open field box) (32).

      (3) The authors should specify how many neurons they excluded after controlling the L-ratio and isolation distance. It is also important to specify the percentage of putative excitatory and inhibitory interneurons recorded among the 11 mice based on their classification (the number of putative inhibitory interneurons in Figure 1D seems too low to be accurate).

      We use manual cluster cutting and only cut clusters that are visually well isolated. So we hardly have any neurons that are excluded after controlling for L-ratio and isolation distance. The criterion we used was L-ratio<0.3 and isolation distance>15, and we specified this in the methods as follows.

      [Lines 454-458] We only used well-isolated units (L-ratio<0.3, isolation distance>15) that were confirmed to be recorded in the aIC (conditioned group: n = 116 neurons, 11 mice; control group: n = 14 neurons, 3 mice) for the analysis (46). The mean of units used in our analysis are as follows: L-ratio = 0.09 ± 0.012, isolation distance = 44.97 ± 5.26 (expressed as mean ± standard deviation).

      As suggested, we also specified the percentage of putative excitatory and inhibitory interneurons recorded from our study in the results and methods section. The relative percentage of putative excitatory and inhibitory interneurons were similar for both the conditioned and the control groups (conditioned putative-excitatory: 93.1%, putative-inhibitory: 6.9%; control putative-excitatory: 92.9%, putative-inhibitory: 7.1%). Although the number of putative-interneurons isolated from our recordings is low that is what we obtained. Putative inhibitory neurons, probably because of their relatively smaller size, has a tendency to be underrepresented than the putative excitatory cells.

      [Lines 83-87] Of the recorded neurons, we analyzed the activity of 108 putative pyramidal neurons (93% of total isolated neurons) from 11 mice, which were distinguished from putative interneurons (n = 8 cells, 7% of total isolated neurons) based on the characteristics of their recorded action potentials (Figure 1D; see methods for details).

      [Lines 464-467] The percentage of putative excitatory neurons and putative inhibitory interneurons obtained from both groups were similar (conditioned putative-excitatory: 93.1%, putative-inhibitory: 6.9%; control putative-excitatory: 92.9%, putative-inhibitory: 7.1%).

      (4) While the use of correlation of single-unit firing frequency with freezing is interesting, classically, studies analyze the firing in comparison to the auditory cues. If the authors want to keep the correlation analysis with freezing, rather than correlations to the cues, they should rename the cells as "freezing excited" and "freezing inhibited" cells instead of positive and negative cells.

      As suggested, we used the terms “freezing-excited” and “freezing-inhibited” cells instead of positive and negative cells.

      (5) To improve clarity, Figure 2 should be reorganized to start with the representative examples before including the average of population data. Thus Panel D should be the first one. The authors should also consider including the trace of the firing rate of these representative units over time, on top of the freezing trace, as well as Pearson's r and p values for both of them. Then, the next panels should be ordered as follows: F, G, H, C, A, B, I, and finally E.

      We have rearranged Figure 2 based on the suggestions.

      (6) It is unclear why the freezing response in Figure 2 is different in current panels F, G, and H. Please clarify this point.

      It was because the freezing behaviors of slightly different population of animals were averaged. Some animals did not have positive/negative (or both) cells and only the behavior of animals with the specified cell-type were used for calculating the mean freezing response. With rearrangement of Figure 2, now we do not have plots with juxtaposed mean neuronal response-types and behavior.

      (7) Even though the peak of tone-induced firing rate change between negative and positive cells is 10s later for positive cells, the conclusion that this 'difference suggests differential circuits may regulate the activities of different neuron types in response to fear' is overstating the observation. This statement should be rephrased. Indeed, it could be the same circuits that are regulated by different inputs (glutamatergic, GABA, or neuromodulatory inputs).

      We agree and delete the statement from the manuscript.

      (8) The authors mention they did not find tone onset nor tone offset-induced responses of anterior insula neurons. It would be helpful to represent this finding in a Figure, especially, which were the criteria for a cell to be tone onset or tone offset responding.

      We added how tone-onset and tone-offset were analyzed in the methods section and added a plot of the analysis in Figure 2H.

      (9) Based on the spread of the viral expression shown in Figure 3B, it appears that the authors are activating/inhibiting insula neurons in the GI layer, whereas single-unit recordings report the electrodes were located in DI, AID, and AIV layers. The authors should provide histology maps of the viral spread for ChR2, NpHR3, and eYFP expression.

      Thank you for the excellent suggestion. Now the histological sample in Figure 3B is a sample with expression in the GI/DI/AID layers and it also has an image taken at higher resolution (x40) to show that viral vectors are expressed inside neurons. We also added histological maps with overlay of viral expression patterns of the ChR2, eYFP, and NpHR3 groups in Figure 3—figure supplement 1.

      (10) In Figure 5B, the distribution of terminals expressing ChR2 appears much denser in CM than in MD. This should be quantified across mice and if consistent with the representative image, the authors should refer to aIC-CM rather than aIC-MD terminals.

      Overall, we referred to the connection as aIC-medial thalamus, which collectively includes both the CM and the MD. Microscopes we have cannot determine whether terminals end at the CM or MD, but the aIC projections seems to pass through the CM to reach the MD. The Allen Brain Institute’s Mouse brain connectivity map (https://connectivity.brain-map.org/projection/experiment/272737914) of a B6 mouse, the mouse strain we used in our study, with tracers injected in similar location as our study also supports our speculation and shows that aIC neuronal projections terminate more in the MD than in the CM. In addition, the power of light delivered for optogenetic manipulation is greatly reduced over distance, and therefore, the MD projecting terminals which is closer to the optic fiber will be more likely to be activated than the CM projecting terminals. However, since we could not determine whether the aIC terminate at the CM or the MD, we collectively referred to the connection as the aIC-medial thalamus throughout the manuscript.

      Author response image 1.

      (11) Histological verifications for each in vivo electrophysiology, optogenetic, and tracing experiments need to include a representative image of the implantation/injection site, as well as a 40x zoom-in image focusing on the cell bodies or terminals right below the optic fiber (for optogenetic experiments). Moreover, an atlas map including all injection locations with the spread of the virus and fiber placement should be added in the Supplement Figures for each experiment (see Figure S1 Klein et al., 2021). Similarly, the authors need to add a representation of the spread of the retrograde tracers for each mouse used for this tracing experiment.

      As suggested, we added a histology sample showing electrode recording location for in-vivo electrophysiology in Figure 1 and added atlas maps for the optogenetic and tracing experiments in supplementary figures. We also provide a 40x zoom-in image of the expression pattern for the optogenetic experiments (Figure 3B).

      (12) To target anterior insula neurons, authors mention coordinates that do not reach the insula on the Paxinos atlas (AP: +1.2 mm, ML: -3.4 mm, DV: -1.8 mm). If the DV was taken from the brain surface, this has to be specified, and if the other coordinates are from Bregma, this also needs to be specified. Finally, the authors cite a review from Maren & Fanselow (1996), for the anterior insula coordinates, but it remains unclear why.

      AP and ML coordinates are measurement made in reference to the bregma. DV was calculated from the brain surface. We specified these in the Methods. We did not cite a review from Maren & Fenselow for the aIC coordinates.

      Minor comments:

      (1) A schematic of the microdrive and tetrodes, including the distance of each tetrode would also be helpful.

      We used a handcrafted Microdrives with four tetrodes. Since they were handcrafted, the relative orientation of the tetrodes varies and tetrode recording locations has to be verified histologically. We, however, made sure that the distance between tetrodes to be more than 200 μm apart so that distinct single-units will be obtained from different tetrodes. We added this to the methods as follows.

      [Lines 430-431] The distance between the tetrodes were greater than 200 μm to ensure that distinct single-units will be obtained from different tetrodes.

      (2) Figure 2E: representation of the baseline firing (3-min period before the tone presentation) is missing.

      Figure 2E is the 3 min period before tone presentation

      (3) Figure 2: Averages Pearson's correlation r and p values should be stated on panels F, G, and H (positive cell r = 0.81, P < 0.05; negative cell r = -0.68, P < 0.05).

      They were all originally stated in the figures. But with reorganization of Figure 2, we now have a plot of the Pearson’s Correlation with r and p values in Figure 2F.

      (4) Figure 2I: Representation of the absolute value of the normalized firing is highly confusing. Indeed, as the 'negative cells' are inhibited to freezing, firing should be represented as normalized, and negative for the inhibited cells.

      To avoid confusion, we did not take an absolute value of the “negative cells”, which are now called the “freezing-inhibited cells”.

      (5) Figure 4E (retrograde tracing): representation of individual values is missing.

      Figure 4E now has individual values.

      References:

      London, T. D., Licholai, J. A., Szczot, I., Ali, M. A., LeBlanc, K. H., Fobbs, W. C., & Kravitz, A. V. (2018). Coordinated ramping of dorsal striatal pathways preceding food approach and consumption. Journal of Neuroscience, 38(14), 3547-3558.

      Trott, J. M., Hoffman, A. N., Zhuravka, I., & Fanselow, M. S. (2022). Conditional and unconditional components of aversively motivated freezing, flight and darting in mice. Elife, 11, e75663.

      Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing. The Pavlovian journal of biological science: Official Journal of the Pavlovian, 15(4), 177-182.

      Fanselow, M. S. (1986). Associative vs topographical accounts of the immediate shock-freezing deficit in rats: implications for the response selection rules governing species-specific defensive reactions. Learning and Motivation, 17(1), 16-39.

      Landeira-Fernandez, J., DeCola, J. P., Kim, J. J., & Fanselow, M. S. (2006). Immediate shock deficit in fear conditioning: effects of shock manipulations. Behavioral neuroscience, 120(4), 873.

      Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E., & Blair, H. T. (2003). Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, 37(3), 485-497.

      Kochli, D. E., Thompson, E. C., Fricke, E. A., Postle, A. F., & Quinn, J. J. (2015). The amygdala is critical for trace, delay, and contextual fear conditioning. Learning & memory, 22(2), 92-100.

      Ramos-Prats, A., Paradiso, E., Castaldi, F., Sadeghi, M., Mir, M. Y., Hörtnagl, H., ... & Ferraguti, F. (2022). VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell Reports, 39(9).

      Klein, A. S., Dolensek, N., Weiand, C., & Gogolla, N. (2021). Fear balance is maintained by bodily feedback to the insular cortex in mice. Science, 374(6570), 1010-1015.

      Nicolas, C., Ju, A., Wu, Y., Eldirdiri, H., Delcasso, S., Couderc, Y., ... & Beyeler, A. (2023). Linking emotional valence and anxiety in a mouse insula-amygdala circuit. Nature Communications, 14(1), 5073.

      Maren, S., & Fanselow, M. S. (1996). The amygdala and fear conditioning : Has the nut been cracked? Neuron, 16(2), 237‑240. https://doi.org/10.1016/s0896-6273(00)80041-0

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The primary weakness of the paper concerns its conclusion of having generated "homogenous mature microglia", partly based on the RNAseq analysis. However, the comparison of gene profiles was carried out only between "hiPSC-derived mature microglia" and the proliferating myeloid progenitors. While the transcriptome profiles revealed a trend of enrichment of microglia-like gene expression in "hiPSC-derived mature microglia" compared to proliferating myeloid progenitors, this is not sufficient to claim they are "mature microglia". It is important that one carries out a comparative analysis of the RNAseq data with those of primary human microglia, which may be done by leveraging the public database. To convincingly claim these cells are mature microglia, questions need to be addressed including how similar the molecular signatures of these cells are compared with the fully differentiated primary microglia cell or if they remain progenitor-like or take on mosaic properties, and how they distinguish from macrophages.

      We greatly appreciate the insightful comments and suggestions from the reviewers, which were instrumental in enhancing our data analysis and organization. In response to the feedback, we have updated the terminology from “mature microglia” to simply “microglia” while clarifying in our text that these are fully differentiated microglia under single-type cell culture conditions.

      Guided by the reviewer's advice, we incorporated RNA-seq data from human brain microglia studies conducted by Dr. Poon and Dr. Blurton-Jones' Lab (Abud et al., Neuron, 2017) and Dr. Huitinga's Lab (van der Poel et al., Nat Commun, 2019). We then conducted a comparative analysis of the gene expression profiles between our fully differentiated hiPSC-derived microglia and those from fetal/adult brain microglia (see Fig.2. Suppl. B, C and D; Suppl. table 1 and table 2). The correlation analysis revealed that our hiPSC-derived microglia closely resemble fetal and adult brain microglia, distinguishing them significantly from monocytes and inflammatory monocytes.

      (2) While the authors attempted to demonstrate the functional property of "hiPSC-derived mature microglia" in culture, they used LPS challenge, which is an inappropriate assay. This is because human microglia respond poorly to LPS alone but need to be activated by a combination of LPS with other factors, such as IFNγ. Their data that "hiPSC-derived mature microglia" showed robust responses to LPS indeed implicates that these cells do not behave like mature human microglia.

      We appreciate the feedback received. In response, we cultured hiPSC-derived microglia cells and subjected them to treatments with IFNγ, LPS, and a combination of both IFNγ+LPS, as illustrated in Figure 3 suppl. Our findings revealed that the IFNγ+LPS combination notably enhanced the expression of IL1a, IL1b, TNFa, CCL8, and CXCL10, whereas IL6 and CCL2 levels remained unchanged. Treatment with IFNγ alone significantly elevated the expression of TNFa, CCL8, CXCL10, and CCL2. These outcomes align with the findings reported by Rustenhoven et al. (Sci Rep, 2016), suggesting that the functionality of our hiPSC-derived microglia cells closely mirrors that of primary human adult microglia cells.

      (3) The resolution of Figs. 4 - 6 is so low that even some of the text and labels are hardly readable. Based on the morphology shown in Fig. 4 and the statement in line 147, these hiPSC-derived "cells altered their morphology to a rounded shape within an hour of incubation and rapidly internalized the fluorescent-labeled particles". This is a peculiar response. Usually, microglia do not respond to fluorescent-labeled zymosan by turning into a rounded shaped within an hour when they internalize them. Such a behavior usually implicates weak phagocytotic capacity.

      Thank you for your insightful comments. During submission, the main text's PDF version was converted online, resulting in low-quality output. We have since updated this with a high-resolution version. The observed alterations in cell morphology following zymosan phagocytosis may be attributed to the high zymosan concentration used (2mg/ml). We conducted an assessment to understand the impact of zymosan concentration on the morphology of hiPSC-derived microglial cells, as shown in Figure 4 suppl B. Our findings indicate that microglia cells adopt an amoeboid, rounded shape at zymosan concentrations exceeding 20ug/ml. To clarify this point, we have amended the text to read: "The cells altered their morphology and rapidly internalized the fluorescent-labeled particles."

      (4) Data presented in Fig. 5 are not very convincing to support that transplanted cells were immunopositive for "human CD11b (Fig.5C), as well as microglia signature markers P2ry12 and TMEM119 (Fig.5D)" (line 167). The resolution and magnification of Fig. 5D is too low to tell the colocalization of tdT and human microglial marker immunolabeling. In the flat-mount images (C, I), hCD11b immunolabeling is not visible in the GCL or barely visible in the IPL. This should be discussed.

      We are grateful for the reviewer's comments. As previously mentioned, the low quality of the images was due to the online conversion of the PDF version. We have now submitted both high-quality PDF and Word versions for the reviewer's assessment. In these high-quality versions, the colocalization of tdT with human P2ry12 and TMEM119 is distinctly visible. Additionally, we have updated the hTMEM119 staining images in Figure 5D. The results from hCD11b staining align with those observed in mouse CD11b staining, notably showing more effective staining in the outer plexiform layer (OPL) microglia cells. The reason for this—whether it pertains to a staining issue, a variance in CD11b expression among microglia cells in the OPL and ganglion layer (GL), or differences in the samples due to varying conditions—is not yet clear and warrants further investigation.

      (5) Microglia respond to injury by becoming active and lose their expression of the resting state microglial marker, such as P2ry12, which is used in Fig. 6 for detection of migrated microglia. To confirm that these cells indeed respond to injury like native microglia, one should check for activated microglial markers and induction of pro-inflammatory cytokines in the sodium iodate-injury model.

      The reviewer's insights are spot-on. We utilized preserved retinas to extract mRNA, which was then reverse-transcribed to cDNA for conducting qRT-PCR using human-specific primers, as detailed in the updated Table 5. The findings revealed that following retinal pigment epithelium (RPE) injury for 3 days, the transplanted hiPSC-derived microglial cells exhibited an increase in the production of inflammatory cytokines and upregulated genes related to phagocytosis, migration, and adhesion. Conversely, there was a decrease in the expression of microglia-specific signature genes and neurotrophic factors, as demonstrated in Figure 7 suppl.

      Reviewer #1 (Recommendations For The Authors):

      Line 52: "Microglia cell repopulation research suggests that: 1) if no injury or infection occurs, retinal microglia cells can sustain their homeostasis indefinitely" - this statement is too strong or delivers a confusing message; it needs clarification or to be backed up by evidence. Recent single cell RNA sequencing analyses suggest that even under a normal condition, residential microglia do not present as a single homeostatic cell cluster, rather a subpopulation of activated inflammatory microglia are constantly detectable in the normal retina. This is likely because normal retinal neurons can be stressed due to various reasons, such as the temporal accumulation of misfolded proteins, exposed to strong light, or ageing, etc.

      We appreciate the comments. We changed the sentence to read, "Microglia cell repopulation research suggests that: 1) retinal resident microglia cells can sustain their population with the local dividing and migration if any perturbations do not exceed the threshold of the recovery speed by local neighbor microglia cells."

      Line 83: "we applied an appropriate protocol for culturing human iPSC-derived microglia cells" - it would be more appropriate if the word "appropriate" can be replaced by either "unique" or a phrase like "we adopted a (previously published) protocol...".

      Thanks! We changed it to “We modified a previously published protocol to culture human iPSC-derived microglia cells.".

      Fig. 1F,G: A method of flow cytometry will provide more comprehensive cell quantification for percentages of positively labeled cells than cell counts under high magnification confocal images.

      Thanks for the comments! We agreed with the reviewer. Given the experimental resources available, the quantifications of confocal images did provide a reasonable assessment. We will perform flow cytometry analysis in future experiments.

      Reviewer #2 (Public review):

      Weaknesses:

      Gene expression analysis of mature microglia cells should be better interpreted and it would be beneficial to compare the iPSC-derived microglia gene set to a human microglial cell line (for example, HMC3) instead of myeloid progenitor cells.<br /> The way that the manuscript has been written, unfortunately, is not optimal. I recommend that the entire manuscript be edited and proofread in English. The text contains spelling and grammar mistakes, and the manuscript is inconsistent in several parts. The manuscript should also be revised for a scientific paper format.

      We appreciate the reviewer's comments and have taken them into consideration along with similar inquiries from Reviewer 1. Following the suggestions, we conducted a comparison of gene expression profiles between our hiPSC-derived microglia and those from fetal/adult brain microglia, as depicted in the updated Fig.2. Suppl. B, C and D; as well as in the Suppl. table 1 and table 2. The correlation analysis demonstrated that the hiPSC-derived microglia cells closely resemble fetal and adult brain microglia, significantly differing from monocytes and inflammatory monocytes. Additionally, we have revised the manuscript to adhere more closely to the conventional scientific format.

      Reviewer #2 (Recommendations For The Authors):

      Specific suggestions for improvement:

      - Regarding the characterization of human iPSC-derived microglia, P2RY12 is a general hematopoietic cell marker. One cannot judge the maturity of microglia only by P2RY12 expression (for example, line 261). The expression of more specific markers such as TMEM119 and PROS1 should be studied and discussed.

      We are thankful for the reviewer's valuable feedback. In response:

      We have removed the term "mature" and clarified that the hiPSC-derived microglia we studied are fully differentiated within single-type cell culture conditions.

      We performed a comparative analysis of the gene expression profiles between our hiPSC-derived microglia and microglia from human brains, as illustrated in the updated Fig.2. Suppl. B, C and D. The results affirm that hiPSC-derived microglia closely resemble human fetal and adult microglia.

      We noted that the expression of TMEM119 in hiPSC-derived microglia under in vitro single-type cell culture conditions is notably low, as shown in the below A. This suggests that the stimulatory factors in our single-type cell culture might not sufficiently induce TMEM119 expression in microglia. The necessity for a retinal environment or interaction with neuronal and/or other glial cells for TMEM119 expression mirrors the behavior of infiltrating peripheral monocytes in pathological conditions, which initially lack TMEM119 but later differentiate into microglial-like macrophages that express TMEM119, as reported by Ma et al. in Sci Rep (2017).

      Additionally, our findings suggest that PROS1 is not uniquely characteristic of microglia but is expressed across a variety of cell types. Within our specific culture conditions, we noted a higher expression of PROS1 in microglial progenitor cells, as shown in Author response image 1B and C.

      Author response image 1.

      - In Figure 2, Part E, the names of the genes or pathways in the figure are not clear, and are these genes the set that are the most differentially expressed between iPSCs-derived microglia and MPC? The analysis needs more explanation.

      We regret any confusion caused by our previous explanation. To clarify, we compiled a list of microglia-enriched genes from the research conducted by Barres BA Lab (Bennett et al., Proc Natl Acad Sci U S A, 2016) and from our own RNA sequencing data of mouse retinal microglia, identifying a total of 130 genes predominantly expressed in microglia (Suppl. Table 3). We then applied this gene list to analyze our hiPSC-derived microglia RNA sequencing data, resulting in the identification of 71 microglia-specific genes. These 71 genes were subjected to Ingenuity Pathway Analysis (IPA) to visualize the signaling pathways involved. The details of these microglia genes can be found in the updated suppl. table 3.

      - Lines 124 to 128 mention that high expression of Stat3, IL1b, and IL6 and their central role in pathway analysis emphasize the efficiency of the maturation protocol. Regarding the fact that Stat3, IL1b, and IL6 are contributors to proinflammatory pathways, it is not convincing that the high expression of these genes in iPSC-derived microglia demonstrates the efficiency of the maturation protocol, given that microglia are not stimulated.

      Thanks for the comments! We added the sentences about the comparison results between hiPSC-derived microglia and human brain microglia. We have also replaced the “mature” with “functional.” The sentence reads, “Thus, our method of obtaining differentiated microglia is a reliable method to generate a large number of homogenous functional microglia cells.”

      - Statistical analysis is missing for some graphs, for example, figures 1-3 and 5.

      We appreciate the comments. We have added the statistical results in the revised version.

      - The legend for Figure 3 needs to be rewritten. The graphs or applied assays should be explained in the legend, not the interpretation of the data.

      The legend was rewritten.

      - There is no Figure 3 in the supplement figures file.

      We added Figure 3. Suppl.

      - hTMEM119 staining in Figure 5, Part D, is mostly background. Please provide another image.

      The images were unclear after on-line converting due to the low number of pixels. We replaced them with new hTMEM119 staining images in Figure 5D.

      - In line 176, figure 5I has been forgotten to be mentioned.

      Thank you very much! We added 5I.

      - Lines 241 to 244 state that more than 50% of the AMD-associated genes are highly expressed in retinal microglia according to Fig. discussion suppl A & B. It is not clear that the gene set that was used for analysis is from a healthy retinal microglia or AMD-related ones. Please explain precisely.

      Thank you for your feedback. The gene list we referenced originates from a Genome-Wide Association Study (GWAS) that compared patients with Age-related Macular Degeneration (AMD) to healthy cohorts. We did not directly utilize this list in our experiments but referred to it to underscore the importance of microglia cells in the context of AMD.

      Some of the English proofreading and manuscript format comments:

      Line 805: Iba1 is written in lowercase. Is it human IBA1? It is not consistent with the way it is written in the text (in line 117, for example).

      Thank you for pointing out the error. We reformed all Iba1 as “Iba1”. The Iba1 we used here are all from Wako (#019–19741), which labels both mouse and human microglial cells.

      Line 814: microglia-enriched gene expression instead of microglia-enrich gene expression

      Thank you! We changed it.

      Line 345: Starting a sentence with lower case letter.

      Thank you! We changed it.

      Line 342: Myeloid lineage instead of myeloid cell linage.

      Thank you! We changed it.

      Line 815: What does FPKM stand for? The abbreviations should be explained.

      The FPKM is the abbreviation of Fragments Per Kilobase of transcript per Million mapped reads. We added it in the text.

      Line 309: The manuscript has occasionally referred to PLX-5622 without a minus. Please follow a uniform format.

      We changed all “PLX5622” to “PLX-5622”.

      Lines 327-331: should be rewritten.

      The mentioned paragraph was rewritten.

      Lines 335-340: should be rewritten.

      The mentioned sentence was rewritten.

      Line 135: qRT-PCR instead of QPCR," as it is also mentioned in the methods and material. The correction also applies to all the QPCRs in the text.

      We changed “QPCR” with “qRT-PCR”

      Figure 3: Graph B should be right side of graph A

      Images description: It is better to have the images description in the left side of the image, for example, figure 5 part B, GL, IPL and OPL

      Thanks for the suggestion. We changed the image organization as per the reviewer’s advice.

      Lines 258 to 260 in the discussion have also been repeated with the same words in the introduction.

      The mentioned paragraph was rewritten.

      Lines 327-331 should be rewritten.

      The mentioned paragraph was rewritten.

      Lines 335-340 should be rewritten.

      The mentioned paragraph was rewritten.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Qin et al. set out to investigate the role of mechanosensory feedback during swallowing and identify neural circuits that generate ingestion rhythms. They use Drosophila melanogaster swallowing as a model system, focusing their study on the neural mechanisms that control cibarium filling and emptying in vivo. They find that pump frequency is decreased in mutants of three mechanotransduction genes (nompC, piezo, and Tmc), and conclude that mechanosensation mainly contributes to the emptying phase of swallowing. Furthermore, they find that double mutants of nompC and Tmc have more pronounced cibarium pumping defects than either single mutants or Tmc/piezo double mutants. They discover that the expression patterns of nompC and Tmc overlap in two classes of neurons, md-C and md-L neurons. The dendrites of md-C neurons warp the cibarium and project their axons to the subesophageal zone of the brain. Silencing neurons that express both nompC and Tmc leads to severe ingestion defects, with decreased cibarium emptying. Optogenetic activation of the same population of neurons inhibited filling of the cibarium and accelerated cibarium emptying. In the brain, the axons of nompC∩Tmc cell types respond during ingestion of sugar but do not respond when the entire fly head is passively exposed to sucrose. Finally, the authors show that nompC∩Tmc cell types arborize close to the dendrites of motor neurons that are required for swallowing, and that swallowing motor neurons respond to the activation of the entire Tmc-GAL4 pattern.

      Strengths:

      • The authors rigorously quantify ingestion behavior to convincingly demonstrate the importance of mechanosensory genes in the control of swallowing rhythms and cibarium filling and emptying

      • The authors demonstrate that a small population of neurons that express both nompC and Tmc oppositely regulate cibarium emptying and filling when inhibited or activated, respectively

      • They provide evidence that the action of multiple mechanotransduction genes may converge in common cell types

      Thank you for your insightful and detailed assessment of our work. Your constructive feedback will help to improve our manuscript.

      Weaknesses:

      • A major weakness of the paper is that the authors use reagents that are expressed in both md-C and md-L but describe the results as though only md-C is manipulated-Severing the labellum will not prevent optogenetic activation of md-L from triggering neural responses downstream of md-L. Optogenetic activation is strong enough to trigger action potentials in the remaining axons. Therefore, Qin et al. do not present convincing evidence that the defects they see in pumping can be specifically attributed to md-C.

      Thank you for your comments. This is important point that we did not adequately address in the original preprint. We have obtained imaging and behavioral results that strongly suggest md-C, rather than md-L, are essential for swallowing behavior.

      36 hours after the ablation of the labellum, the signals of md-L were hardly observable when GFP expression was driven by the intersection between Tmc-GAL4 & nompC-QF (see F Figure 3—figure supplement 1A). This observation indicates that the axons of md-L likely degenerated after 36 hours, and were unlikely to influence swallowing. Moreover, the projecting pattern of Tmc-GAL4 & nompC-QF>>GFP exhibited no significant changes in the brain post labellum ablation.

      Furthermore, even after labellum ablation for 36 hours, flies exhibited responses to light stimulation (see Figure 3—figure supplement 1B-C, Video 5) when ReaChR was expressed in md-C. We thus reasoned that md-C but not md-L, plays a crucial role in the swallowing process.

      • GRASP is known to be non-specific and prone to false positives when neurons are in close proximity but not synaptically connected. A positive GRASP signal supports but does not confirm direct synaptic connectivity between md-C/md-L axons and MN11/MN12.

      In this study, we employed the nSyb-GRASP, wherein the GRASP is expressed at the presynaptic terminals by fusion with the synaptic marker nSyb. This method demonstrates an enhanced specificity compared to the original GRASP approach.

      Additionally, we utilized +/ UAS-nSyb-spGFP1-10, lexAop-CD4-spGFP11 ; + / MN-LexA fruit flies as a negative control to mitigate potential false signals originating from the tool itself (Author response image 1, scale bar = 50μm). Beside the genotype Tmc-Gal4, Tub(FRT. Gal80) / UAS-nSyb-spGFP1-10, lexAop-CD4-spGFP11 ; nompC-QF, QUAS-FLP / MN-LexA fruit flies discussed in this manuscript, we also incorporated genotype Tmc-Gal4, Tub(FRT. Gal80) / lexAop-nSyb-spGFP1-10, UAS-CD4-spGFP11 ; nompC-QF, QUAS-FLP / MN-LexA fruit flies as a reverse control (Author response image 2). Unexpectedly, similar positive signals were observed, indicating that, positive signals may emerge due to close proximity between neurons even with nSyb-GRASP.

      Author response image 1.

      It should be noted that the existence of synaptic projections from motor neurons (MN) to md-C cannot be definitively confirmed at this juncture. At present, we can only posit the potential for synaptic connections between md-C and motor neurons. A more conclusive conclusion may be attainable with the utilization of comprehensive whole-brain connectome data in future studies.

      Author response image 2.

      • As seen in Figure 2—figure supplement 1, the expression pattern of Tmc-GAL4 is broader than md-C alone. Therefore, the functional connectivity the authors observe between Tmc expressing neurons and MN11 and 12 cannot be traced to md-C alone

      It is true that the expression pattern of Tmc-GAL4 is broader than that of md-C alone. Our experiments, including those flies expressing TNT in Tmc+ neurons, demonstrated difficulties in emptying (Figure 2A, 2D). Notably, we encountered challenges in finding fly stocks bearing UAS>FRT-STOP-P2X2. Consequently, we opted to utilize Tmc-GAL4 to drive UAS-P2X2 instead. We believe that the results further support our hypothesis on the role of md-C in the observed behavioral change in emptying.

      Overall, this work convincingly shows that swallowing and swallowing rhythms are dependent on several mechanosensory genes. Qin et al. also characterize a candidate neuron, md-C, that is likely to provide mechanosensory feedback to pumping motor neurons, but the results they present here are not sufficient to assign this function to md-C alone. This work will have a positive impact on the field by demonstrating the importance of mechanosensory feedback to swallowing rhythms and providing a potential entry point for future investigation of the identity and mechanisms of swallowing central pattern generators.

      Reviewer #2 (Public Review):

      In this manuscript, the authors describe the role of cibarial mechanosensory neurons in fly ingestion. They demonstrate that pumping of the cibarium is subtly disrupted in mutants for piezo, TMC, and nomp-C. Evidence is presented that these three genes are co-expressed in a set of cibarial mechanosensory neurons named md-C. Silencing of md-C neurons results in disrupted cibarial emptying, while activation promotes faster pumping and/or difficulty filling. GRASP and chemogenetic activation of the md-C neurons is used to argue that they may be directly connected to motor neurons that control cibarial emptying.

      The manuscript makes several convincing and useful contributions. First, identifying the md-C neurons and demonstrating their essential role for cibarium emptying provides reagents for further studying this circuit and also demonstrates the important of mechanosensation in driving pumping rhythms in the pharynx. Second, the suggestion that these mechanosensory neurons are directly connected to motor neurons controlling pumping stands in contrast to other sensory circuits identified in fly feeding and is an interesting idea that can be more rigorously tested in the future.

      At the same time, there are several shortcomings that limit the scope of the paper and the confidence in some claims. These include:

      a) the MN-LexA lines used for GRASP experiments are not characterized in any other way to demonstrate specificity. These were generated for this study using Phack methods, and their expression should be shown to be specific for MN11 and MN12 in order to interpret the GRASP experiments.

      Thanks for the suggestion. We have checked the expression pattern of MN-LexA, which is similar to MN-GAL4 used in previous work (Manzo et al., PNAS., 2012, PMID:22474379) . Here is the expression pattern:

      Author response image 3.

      b) There is also insufficient detail for the P2X2 experiment to evaluate its results. Is this an in vivo or ex vivo prep? Is ATP added to the brain, or ingested? If it is ingested, how is ATP coming into contact with md-C neuron if it is not a chemosensory neuron and therefore not exposed to the contents of the cibarium?

      The P2X2 experimental preparation was done ex vivo. We immersed the fly in the imaging buffer, as described in the Methods section under Functional Imaging. Following dissection and identification of the subesophageal zone (SEZ) area under fluorescent microscopy, we introduced ATP slowly into the buffer, positioned at a distance from the brain

      c) In Figure 3C, the authors claim that ablating the labellum will remove the optogenetic stimulation of the md-L neuron (mechanosensory neuron of the labellum), but this manipulation would presumably leave an intact md-L axon that would still be capable of being optogenetically activated by Chrimson.

      Please refer to the corresponding answers for reviewer 1 and Figure 3—figure supplement 1.

      d) Average GCaMP traces are not shown for md-C during ingestion, and therefore it is impossible to gauge the dynamics of md-C neuron activation during swallowing. Seeing activation with a similar frequency to pumping would support the suggested role for these neurons, although GCaMP6s may be too slow for these purposes.

      Profiling the dynamics of md-C neuron activation during swallowing is crucial for unraveling the operational model of md-C and validating our proposed hypothesis. Unfortunately, our assay faces challenges in detecting probable 6Hz fluorescent changes with GCaMP6s.

      In general, we observed an increase of fluorescent signals during swallowing, but movement of alive flies during swallowing influenced the imaging recording, so we could not depict a decent tracing for calcium imaging for md-C neurons. To enhance the robustness of our findings, patching the md-C neurons would be a more convincing approach. As illustrated in Figure 2, the somata of md-C neurons are situated in the cibarium rather than the brain. patching of the md-C neuron somata in flies during ingestion is difficult.

      e) The negative result in Figure 4K that is meant to rule out taste stimulation of md-C is not useful without a positive control for pharyngeal taste neuron activation in this same preparation.

      We followed methods used in the previous work (Chen et al., Cell Rep., 2019, PMID:31644916), which we believe could confirm that md-C do not respond to sugars.

      In addition to the experimental limitations described above, the manuscript could be organized in a way that is easier to read (for example, not jumping back and forth in figure order).

      Thanks for your suggestion and the manuscript has been reorganized.

      Reviewer #3 (Public Review):

      Swallowing is an essential daily activity for survival, and pharyngo-laryngeal sensory function is critical for safe swallowing. In Drosophila, it has been reported that the mechanical property of food (e.g. Viscosity) can modulate swallowing. However, how mechanical expansion of the pharynx or fluid content sense and control swallowing was elusive. Qin et al. showed that a group of pharyngeal mechanosensory neurons, as well as mechanosensory channels (nompC, Tmc, and Piezo), respond to these mechanical forces for regulation of swallowing in Drosophila melanogaster.

      Strengths:

      There are many reports on the effect of chemical properties of foods on feeding in fruit flies, but only limited studies reported how physical properties of food affect feeding especially pharyngeal mechanosensory neurons. First, they found that mechanosensory mutants, including nompC, Tmc, and Piezo, showed impaired swallowing, mainly the emptying process. Next, they identified cibarium multidendritic mechanosensory neurons (md-C) are responsible for controlling swallowing by regulating motor neuron (MN) 12 and 11, which control filling and emptying, respectively.

      Weaknesses:

      While the involvement of md-C and mechanosensory channels in controlling swallowing is convincing, it is not yet clear which stimuli activate md-C. Can it be an expansion of cibarium or food viscosity, or both? In addition, if rhythmic and coordinated contraction of muscles 11 and 12 is essential for swallowing, how can simultaneous activation of MN 11 and 12 by md-C achieve this? Finally, previous reports showed that food viscosity mainly affects the filling rather than the emptying process, which seems different from their finding.

      We have confirmed that swallowing sucrose water solution activated md-C neurons, while sucrose water solution alone could not (Figure 4J-K). We hypothesized that the viscosity of the food might influence this expansion process.

      While we were unable to delineate the activation dynamics of md-C neurons, our proposal posits that these neurons could be activated in a single pump cycle, sequentially stimulating MN12 and MN11. Another possibility is that the activation of md-C neurons acts as a switch, altering the oscillation pattern of the swallowing central pattern generator (CPG) from a resting state to a working state.

      In the experiments with w1118 flies fed with MC (methylcellulose) water, we observed that viscosity predominantly affects the filling process rather than the emptying process, consistent with previous findings. This raises an intriguing question. Our investigation into the mutation of mechanosensitive ion channels revealed a significant impact on the emptying process. We believe this is due to the loss of mechanosensation affecting the vibration of swallowing circuits, thereby influencing both the emptying and filling processes. In contrast, viscosity appears to make it more challenging for the fly to fill the cibarium with food, primarily attributable to the inherent properties of the food itself.

      Reviewer #4 (Public Review):

      A combination of optogenetic behavioral experiments and functional imaging are employed to identify the role of mechanosensory neurons in food swallowing in adult Drosophila. While some of the findings are intriguing and the overall goal of mapping a sensory to motor circuit for this rhythmic movement are admirable, the data presented could be improved.

      The circuit proposed (and supported by GRASP contact data) shows these multi-dendritic neurons connecting to pharyngeal motor neurons. This is pretty direct - there is no evidence that they affect the hypothetical central pattern generator - just the execution of its rhythm. The optogenetic activation and inhibition experiments are constitutive, not patterned light, and they seem to disrupt the timing of pumping, not impose a new one. A slight slowing of the rhythm is not consistent with the proposed function.

      Motor neurons implicated in patterned motions can be considered effectors of Central Pattern Generators (CPGs)(Marder et al., Curr Biol., 2001, PMID: 11728329; Hurkey et al., Nature., 2023, PMID:37225999). Given our observation of the connection between md-C neurons and motor neurons, it is reasonable to speculate that md-C neurons influence CPGs. Compared to the patterned light (0.1s light on and 0.1s light off) used in our optogenetic experiments, we noted no significant changes in their responses to continuous light stimulation. We think that optogenetic methods may lead to overstimulation of md-C neurons, failing to accurately mimic the expansion of the cibarium during feeding.

      Dysfunction in mechanosensitive ion channels or mechanosensory neurons not only disrupts the timing of pumping but also results in decreased intake efficiency (Figure 1E). The water-swallowing rhythm is generally stable in flies, and swallowing is a vital process that may involve redundant ion channels to ensure its stability.

      The mechanosensory channel mutants nompC, piezo, and TMC have a range of defects. The role of these channels in swallowing may not be sufficiently specific to support the interpretation presented. Their other defects are not described here and their overall locomotor function is not measured. If the flies have trouble consuming sufficient food throughout their development, how healthy are they at the time of assay? The level of starvation or water deprivation can affect different properties of feeding - meal size and frequency. There is no description of how starvation state was standardized or measured in these experiments.

      Defects in mechanosensory channel mutants nompC, piezo, and TMC, have been extensively investigated (Hehlert et al., Trends Neurosci., 2021, PMID:332570000). Mutations in these channels exhibit multifaceted effects, as illustrated in our RNAi experiments (see Figure 2E). Deprivation of water and food was performed in empty fly vials. It's important to note that the duration of starvation determines the fly's willingness to feed but not the pump frequency (Manzo et al., PNAS., 2012, PMID:22474379).

      In most cases, female flies were deprived water and food in empty vials for 24 hours because after that most flies would be willing to drink water. The deprivation time is 12 hours for flies with nompC and Tmc mutated or flies with Kir2.1 expressed in md-C neurons, as some of these flies cannot survive 24h deprivation.

      The brain is likely to move considerably during swallow, so the GCaMP signal change may be a motion artifact. Sometimes this can be calculated by comparing GCaMP signal to that of a co-expressed fluorescent protein, but there is no mention that this is done here. Therefore, the GCaMP data cannot be interpreted.

      We did not co-express a fluorescent protein with GCaMP for md-C. The head of the fly was mounted onto a glass slide, and we did not observe significant signal changes before feeding.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      .>Abstract: I disagree that swallow is the first step of ingestion. The first paragraph also mentions the final checkpoint before food ingestion. Perhaps sufficient to say that swallow is a critical step of ingestion.

      Indeed, it is not rigorous enough to say “first step”. This has been replaced by “early step”.

      Introduction:

      Line 59: "Silence" should be "Silencing"

      This has been replaced.

      Results:

      Lines 91-92: I am not clear about what this means. 20% of nompC and 20% of wild-type flies exhibit incomplete filling? So nompC is not different from wild-type?

      Sorry for the mistake. Viscous foods led to incomplete emptying (not incomplete filling), as displayed in Video 4. The swallowing behavior differs between nompC mutants and wild-type flies, as illustrated in Figure 1C, Figure 1—figure supplement 1A-C and video 1&5.

      When fed with 1% MC water solution (Figure 1—figure supplement 1E-H). We found that when fed with 1% MC watere solution, Tmc or piezo mutants displayed incomplete emptying, which could constitute a long time proportion of swallowing behavior; while only 20% of nompC flies and 20% of wild-type flies sporadically exhibit incomplete emptying, which is significantly different. Though the percent of flies displaying incomplete pump is similar between nompC mutant and wild-type files, you can find it quite different in video 1 and 5.

      Line 94: Should read: “while for foods with certain viscosity, the pump of Tmc or piezo mutants might"

      What evidence is there for weakened muscle motion? The phenotypes of all three mutants is quite similar, so concluding that they have roles in initiation versus swallowing strength is not well supported -this would be better moved to the discussion since it is speculative.

      Muscles are responsible for pumping the bolus from the mouth to the crop. In the case of Tmc or piezo mutants, as evidenced by incomplete filling for viscous foods (see Video 4), we speculate that the loss of sensory stimuli leads to inadequate muscle contraction. The phenotypes observed in Tmc and piezo mutants are similar yet distinct from those of the wild-type or nompC mutant, as shown in Video 1 and 4. The phrase "due to weakened muscle motion" has been removed for clarity.

      Line 146: If md-L neurons are also labeled by this intersection, then you are not able to know whether the axons seen in the brain are from md-L or md-C neurons. Line 148: cutting the labellum is not sufficient to ablate md-L neurons. The projections will still enter the brain and can be activated with optogenetics, even after severing the processes that reside in the labellum.

      Please refer to the responses for reviewer #1 (Public Review):” A major weakness of the paper…” and Figure 4.

      Line 162: If the fly head alone is in saline, do you know that the sucrose enters the esophagus? The more relevant question here is whether the md-C neurons respond to mechanical force. If you could artificially inflate the cibarium with air and see the md-C neurons respond that would be a more convincing result. So far you only know that these are activated during ingestion, but have not shown that they are activated specifically by filling or emptying. In addition, you are not only imaging md-C (md-L is also labeled). This caveat should be mentioned.

      We followed the methods outlined in the previous work (Chen et al., Cell Rep., 2019, PMID:31644916), which suggested that md-C neurons do not respond to sugars. While we aimed to mechanically stimulate md-C neurons, detecting signal changes during different steps of swallowing is challenging. This aspect could be further investigated in subsequent research with the application of adequate patch recording or two-photon microscopy (TPM).

      Figure 3: It is not clear what the pie charts in Figure 3 A refer to. What are the three different rows, and what does blue versus red indicate?

      Figure 3A illustrates three distinct states driven by CsChrimson light stimulation of md-C neurons, with the proportions of flies exhibiting each state. During light activation, flies may display difficulty in filling, incomplete filling, or a normal range of pumping. The blue and red bars represent the proportions of flies showing the corresponding state, as indicated by the black line.

      Figure 4: Where are the example traces for J? The comparison in K should be average dF/F before ingestion compared with average dF/F during ingestion. Comparing the in vitro response to sucrose to the in vivo response during ingestion is not a useful comparison.

      Please refer to the answers for reviewer #2 question d).

      Reviewer #2 (Recommendations For The Authors):

      Suggested experiments that would address some of my concerns listed in the public review include:

      a) high resolution SEZ images of MN-LexA lines crossed to LexAop-GFP to demonstrate their specificity

      b) more detail on the P2X2 experiment. It is hard to make suggestions beyond that without first seeing the details.

      c) presenting average GCaMP traces for all calcium imaging results

      d) to rule out taste stimulation of md-C (Figure 4K) I would suggest performing more extensive calcium imaging experiments with different stimuli. For example, sugar, water, and increasing concentrations of a neutral osmolyte (e.g. PEG) to suppress the water response. I think that this is more feasible than trying to get an in vitro taste prep to be convincing.

      Please refer to the responses for public review of reviewer #2.

      Reviewer #3 (Recommendations For The Authors):

      Below I list my suggestions as well as criticisms.

      (1) It would be excellent if the authors could demonstrate whether varying levels of food viscosity affect md-C activation.

      That is a good point, and could be studied in future work.

      (2) It is not clear whether an intersectional approach using TMC-GAL4 and nompC-QF abolishes labelling of the labellar multidendritic neurons. If this is the case, please show labellar multidendritic neurons in TMC-GAL4 only flies and flies using the intersectional approach. Along with this question, I am concerned that labellum-removed flies could be used for feeding assay.

      Intersectional labelling using TMC-GAL4 and nompC-QF could not abolish labelling of the labellar multidendritic neurons (Author response image 4). Labellum-removed flies could be used for feeding assay (Figure 3—figure supplement 1B-C, video 5), but once LSO or cibarium of fly was damaged, swallowing behavior would be affected. Removing labellum should be very careful.

      Author response image 4.

      (3) Please provide the detailed methods for GRASP and include proper control.

      Please refer to the responses for public review of reviewer #1.

      (4) The authors hypothesized that md-C sequentially activates MN11 and 12. Is the time gap between applying ATP on md-C and activation of MN11 or MN12 different? Please refer to the responses for public review of reviewer #3. The time gap between applying ATP on md-C and activation of MN11 or MN12 didn’t show significant differences, and we think the reason is that the ex vivo conditions could not completely mimic in vivo process.

      I found the manuscript includes many errors, which need to be corrected.

      (1) The reference formatting needs to be rechecked, for example, lines 37, 42, and 43.

      (2) Line 44-46: There is some misunderstanding. The role of pharyngeal mechanosensory neurons is not known compared with chemosensory neurons.

      (3) Line 49: Please specify which type of quality of food. Chemical or physical?

      (4) Line 80 and Figure 1B-D Authors need to put filling and emptying time data in the main figure rather than in the supplementary figure. Otherwise, please cite the relevant figures in the text(S1A-C).

      (5) Line 84-85; Is "the mutant animals" indicating only nompC? Please specify it.

      (6) Figure 1a: It is hard to determine the difference between the series of images. And also label filling and emptying under the time.

      (7) S1E-H: It is unclear what "Time proportion of incomplete pump" means. Please define it.

      (8) Please reorganize the figures to follow the order of the text, for example, figures 2 and 4

      (9) Figure 4A. There is mislabelling in Figure 4A. It is supposed to be phalloidin not nc82.

      (10) Figure 4K: It does not match the figure legend and main text.

      (11) Figure 4D and G: Please indicate ATP application time point.

      Thanks for your correction and all the points mentioned were revised.

      Reviewer #4 (Recommendations For The Authors):

      The figures need improvement. 1A has tiny circles showing pharynx and any differences are unclear.

      The expression pattern of some of these drivers (Supplement) seems quite broad. The tmc nompC intersection image in Figure 1F is nice but the cibarium images are hard to interpret: does this one show muscle expression? What are "brain" motor neurons? Where are the labellar multi-dendritic neurons?

      Tmc nompC intersection image show no expression in muscles. Somata of motor neurons 12 or 11 situated at SEZ area of brain, while somata of md-C neurons are in the cibarium. Image of md-L neurons was posted in response for reviewer #3 (Recommendations For The Authors):

      Why do the assays alternate between swallowing food and swallowing water?

      Thank for your suggestion, figure 1A has been zoomed-in. The Tmc nompC intersection image in Figure 2F displayed the position of md-C neurons in a ventral perspective, and muscles were not labelled. We stained muscles in cibarium by phalloidin and the image is illustrated in Figure 4A, while we didn’t find overlap between md-C neurons and muscles. Image of md-L neurons were posted as Author response image 4.

      In the majority of our experiments, we employed water to test swallowing behavior, while we used methylcellulose water solution to test swallowing behavior of mechanoreceptor mutants, and sucrose solution for flies with md-C neurons expressing GCaMP since they hardly drank water when their head capsules were open.

      How starved or water-deprived were the flies?

      One day prior to the behavioral assays, flies were transferred to empty vials (without water or food) for 24 hours for water deprivation. Flies who could not survive 24h deprivation would be deprived for 12h.

      How exactly was the pumping frequency (shown in Fig 1B) measured? There is no description in the methods at all. If the pump frequency is scored by changes in blue food intensity (arbitrary units?), this seems very subjective and maybe image angle dependent. What was camera frame rate? Can it capture this pumping speed adequately? Given the wealth of more quantitative methods for measuring food intake (eg. CAFE, flyPAD), it seems that better data could be obtained.

      How was the total volume of the cibarium measured? What do the pie charts in Figure 3A represent?

      The pump frequency was computed as the number of pumps divided by the time scale, following the methodology outlined in Manzo et al., 2012. Swallowing curves were plotted using the inverse of the blue food intensity in the cibarium. In this representation, ascending lines signify filling, while descending lines indicate emptying (see Figure 2D, 3B). We maintain objectivity in our approach since, during the recording of swallowing behavior, the fly was fixed, and we exclusively used data for analysis when the Region of Interest (ROI) was in the cibarium. This ensures that the intensity values accurately reflect the filling and emptying processes. Furthermore, we conducted manual frame-by-frame checks of pump frequency, and the results align with those generated by the time series analyzer V3 of ImageJ.

      For the assessment of total volume of ingestion, we referred the methods of CAFE, utilizing a measurable glass capillary. We then calculated the ingestion rate (nL/s) by dividing the total volume of ingestion by the feeding time.

      The changes seem small, in spite of the claim of statistical significance.

      The observed stability in pump frequency within a given genotype underscores the significance of even seemingly small changes, which is statistically significant. We speculate that the stability in swallowing frequency suggests the existence of a redundant mechanism to ensure the robustness of the process. Disruption of one channel might potentially be partially compensated for by others, highlighting the vital nature of the swallowing mechanism.

      How is this change in pump frequency consistent with defects in one aspect of the cycle - either ingestion (activation) or expulsion (inhibition)?

      Please refer to Figure 2, 3. Both filling and emptying process were affects, while inhibition mainly influences emptying time (Figure 1—figure supplement 1).

      for the authors:

      Line 48: extensively

      Line 62 - undiscovered.

      Line 107, 463: multi

      Line 124: What is "dysphagia?" This is an unusual word and should be defined.

      Line 446: severe

      Line 466: in the cibarium or not?

      Thanks for your correction and all the places mentioned were revised.

    1. Author Response

      Reviewer #1 (Public Review):

      The manuscript, "A versatile high-throughput assay based on 3D ring-shaped cardiac tissues generated from human induced pluripotent stem cell-derived cardiomyocytes" developed a unique culture platform with PEG hydrogel that facilitates the in-situ measurement of contractile dynamics of the engineered cardiac rings. The authors optimized the tissue seeding conditions, demonstrated tissue morphology with expressions of cardiac and fibroblast markers, mathematically modeled the equation to derive contractile forces and other parameters based on imaging analysis, and ended by testing several compounds with known cardiac responses.

      To strengthen the paper, the following comments should be considered:

      1) This paper provided an intriguing platform that creates miniature cardiac rings with merely thousands of CMs per tissue in a 96-well plate format. The shape of the ring and the squeezing motion can recapitulate the contraction of the cardiac chamber to a certain degree. However, Thavandiran et al (PNAS 2013) created a larger version of the cardiac ring and found the electrical propagation revealed spontaneous infinite loop-like cycles of activation propagation traversing the ring. This model was used to mimic a reentrant wave during arrhythmia. Therefore, it presents great concerns if a large number of cardiac tissues experience arrhythmia by geometry-induced re-entry current and cannot be used as a healthy tissue model. It would be interesting to see the impulse propagation/calcium transient on these miniature cardiac rings and evaluate the % of arrhythmia occurrence.

      The size is a key factor impacting the electrical propagation within the generated tissues. Our ring-shaped cardiac tissues have a diameter of 360µm, which is largely smaller than other tissues proposed so far, including in Thavandiran et al (PNAS 2013) where circular tissues had a reported size > 1mm. As shown in Figure 4E (and highlighted below in Author response image 1), tissues under basal conditions display regular beating rates without spontaneous arrhythmias. Videos also show that the tissue contraction is homogeneous around the pillar, suggesting that the smaller size favors the electrical propagation and limits the occurrence of spontaneous reentrant waves. Optical mapping measurements will be performed in the future to assess the occurrence of reentrant waves.

      **Author response image 1. **

      Poincaré plot showing the plots between successive RR intervals (Data from Figure 4E in basal conditions). Linear regression with 95% confidence interval indicates identity.

      2) The platform can produce 21 cardiac rings per well in 96-well plates. The throughput has been the highest among competing platforms. The resulting tissues have good sarcomere striation due to the strain from the pillars. Now the emerging questions are culture longevity and reproducibility among tissues. According to Figure 1E, there was uneven ring formation around the pillar, which leads to the tissue thinning and breaking off. There is only 50% survival after 20 days of culture in the optimized seeding group. Is there any way to improve it? The tissues had two compartments, cardiac and fibroblast-rich regions, where fibroblasts are responsible for maintaining the attachment to the glass slides. Do the cardiac rings detach from the glass slides and roll up? The SD of the force measurement is a quarter of the value, which is not ideal with such a high replicate number. As the platform utilizes imaging analysis to derive contractile dynamics, calibration should be done based on the angle and the distance of the camera lens to the individual tissues to reduce the error. On the other hand, how reproducible of the pillars? It is highly recommended to mechanically evaluate the consistency of the hydrogel-based pillars across different wells and within the wells to understand the variance. Figure 2B reports the early results obtained as the system was tested and developed. Since then, we have tested different iPSC lines and confirm that the overall yield is higher (up to 20 tissues at D14 for some cell lines), however dependent of cell lines.

      The tissues do not detach from the glass slides. It is very rare to see tissues roll up on the central pillar. As shown in Figure 1B, the pillars have a specific shape to avoid tissues to roll up as they develop and contract.

      3) Does the platform allow the observation of non-synchronized beating when testing with compounds? This can be extremely important as the intended applications of this platform are drug testing and cardiac disease modeling. The author should elaborate on the method in the manuscript and explain the obtained results in detail. The arrhythmogenic effect of a drug can be derived from the regularity of the beat-to-beat time. Indeed, we show that dofetilide increases the variability in the beat-to-beat time by plotting for each beat, the beat-to-beat time with the next beat as a function of the beat-to-beat time with the previous beat.

      4) The results of drug testing are interesting. Isoproterenol is typically causing positive chronotropic and positive inotropic responses, where inotropic responses are difficult to obtain due to low tissue maturity. It is inconsistent with other reported results that cardiac rings do not exhibit increased beating frequency, but slightly increased forces only. Zhao et al were using electrical pacing at a defined rate during force measurement, whereas the ring constructs are not.

      We agree. The difference in the response to isoproterenol with previous papers may be explained by different incubation timing with the drug. In our case, the tissues were incubated for 5 minutes at 37•C before being recorded.

      Overall, the manuscript is well written and the designed platform presented the unique advantages of high throughput cardiac tissue culture. Besides the contractile dynamics and IHC images, the paper lacks other cardiac functional evaluations, such as calcium handling, impulse propagation, and/or electrophysiology. The culture reproducibility (high SD) and longevity (<20 days) still remain unsolved.

      Since the submission, we have managed to keep some tissues and analyze them up to 32 days. At that time point the tissues are still beating. Nevertheless, a specific study concerning tissue longevity has not been carried out as the tissues were usually fixed after 14 days to be stained and analyze their structure.

      Reviewer #2 (Public Review):

      The authors should be commended for developing a high throughput platform for the formation and study of human cardiac tissues, and for discussing its potential, advantages and limitations. The study is addressing some of the key needs in the use of engineered cardiac tissues for pharmacological studies: ease of use, reproducible preparation of tissues, and high throughput.

      There are also some areas where the manuscript should be improved. The design of the platform and the experimental design should be described in more detail.

      It would be of interest to comprehensively document the progression of tissue formation. To this end, it would be helpful to show the changes in tissue structure through a series of images that would correspond to the progression of contractile properties shown in Figure 3.

      Our results indicate that the fibroblasts/cardiomyocytes segregation likely happens as soon as the tissue is formed, as the fibroblasts are critical for tissue generation. The change with time in the shape of the contractile ring is reported in Figure 1E, with a series of images which correspond to the timepoints of Figure 3.

      The very interesting tissue morphology (separation into the two regions) that was observed in this study is inviting more discussion.

      Finally, the reader would benefit from more specific comparisons of the contractile function of cardiac tissues measured in this study with data reported for other cardiac tissue models.

    1. Author Response:

      Assessment note: “Whereas the results and interpretations are generally solid, the mechanistic aspect of the work and conclusions put forth rely heavily on in vitro studies performed in cultured L6 myocytes, which are highly glycolytic and generally not viewed as a good model for studying muscle metabolism and insulin action.”

      While we acknowledge that in vitro models may not fully recapitulate the complexity of in vivo systems, we believe that our use of L6 myotubes is appropriate for studying the mechanisms underlying muscle metabolism and insulin action. As mentioned below (reviewer 2, point 1), L6 myotubes possess many important characteristics relevant to our research, including high insulin sensitivity and a similar mitochondrial respiration sensitivity to primary muscle fibres. Furthermore, several studies have demonstrated the utility of L6 myotubes as a model for studying insulin sensitivity and metabolism, including our own previous work (PMID: 19805130, 31693893, 19915010).

      In addition, we have provided evidence of the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies at protein levels and the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. These findings support the relevance of our in vitro results to in vivo muscle metabolism.

      Finally, we will supplement our findings by demonstrating a comparable relationship between ceramide and Coenzyme Q in mice exposed to a high-fat diet, to be shown in Supplementary Figure 4 H-I. Further animal experiments will be performed to validate our cell-line based conclusions. We hope that these additional results address the concerns raised by the reviewer and further support the relevance of our in vitro findings to in vivo muscle metabolism and insulin action.

      Points from reviewer 1:

      1. Although the authors' results suggest that higher mitochondrial ceramide levels suppress cellular insulin sensitivity, they rely solely on a partial inhibition (i.e., 30%) of insulin-stimulated GLUT4-HA translocation in L6 myocytes. It would be critical to examine how much the increased mitochondrial ceramide would inhibit insulin-induced glucose uptake in myocytes using radiolabel deoxy-glucose.

      Response: The primary impact of insulin is to facilitate the translocation of glucose transporter type 4 (GLUT4) to the cell surface, which effectively enhances the maximum rate of glucose uptake into cells. Therefore, assessing the quantity of GLUT4 present at the cell surface in non-permeabilized cells is widely regarded as the most reliable measure of insulin sensitivity (PMID: 36283703, 35594055, 34285405). Additionally, plasma membrane GLUT4 and glucose uptake are highly correlated. Whilst we have routinely measured glucose uptake with radiolabelled glucose in the past, we do not believe that evaluating glucose uptake provides a better assessment of insulin sensitivity than GLUT4.

      We will clarify the use of GLUT4 translocation in the Results section:

      “...For this reason, several in vitro models have been employed involving incubation of insulin sensitive cell types with lipids such as palmitate to mimic lipotoxicity in vivo. In this study we will use cell surface GLUT4-HA abundance as the main readout of insulin response...”

      1. Another important question to be addressed is whether glycogen synthesis is affected in myocytes under these experimental conditions. Results demonstrating reductions in insulin-stimulated glucose transport and glycogen synthesis in myocytes with dysfunctional mitochondria due to ceramide accumulation would further support the authors' claim.

      Response: We have carried out supplementary experiments to investigate glycogen synthesis in our insulin-resistant models. Our approach involved L6-myotubes overexpressing the mitochondrial-targeted construct ASAH1 (as described in Fig. 3). We then challenged them with palmitate and measured glycogen synthesis using 14C radiolabeled glucose. Our observations indicated that palmitate suppressed insulin-induced glycogen synthesis, which was effectively prevented by the overexpression of ASAH1 (N = 5, * p<0.05). These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism.

      These data will be added to Supplementary Figure 4K and the results modified as follows:

      “Notably, mtASAH1 overexpression protected cells from palmitate-induced insulin resistance without affecting basal insulin sensitivity (Fig. 3E). Similar results were observed using insulin-induced glycogen synthesis as an ortholog technique for Glut4 translocation. These results provide additional evidence highlighting the role of dysfunctional mitochondria in muscle cell glucose metabolism (Sup. Fig. 5K). Importantly, mtASAH1 overexpression did not rescue insulin sensitivity in cells depleted…”

      We will add to the method section:

      “L6 myotubes overexpressing ASAH were grown and differentiated in 12-well plates, as described in the Cell lines section, and stimulated for 16 h with palmitate-BSA or EtOH-BSA, as detailed in the Induction of insulin resistance section.

      On day seven of differentiation, myotubes were serum starved in plain DMEM for 3 and a half hours. After incubation for 1 hour at 37C with 2 µCi/ml D-[U-14C]-glucose in the presence or absence of 100 nM insulin, glycogen synthesis assay was performed, as previously described (Zarini S. et al., J Lipid Res, 63(10): 100270, 2022).”

      1. In addition, it would be critical to assess whether the increased mitochondrial ceramide and consequent lowering of energy levels affect all exocytic pathways in L6 myoblasts or just the GLUT4 trafficking. Is the secretory pathway also disrupted under these conditions?

      Response: As the secretory pathway primarily involves the synthesis and transportation of soluble proteins that are secreted into the extracellular space, and given that the majority of cellular transmembrane proteins (excluding those of the mitochondria) use this pathway to arrive at their ultimate destination, we believe that the question posed by the reviewer is highly challenging and beyond the scope of our research. We will add this to the discussion:

      “...the abundance of mPTP associated proteins suggesting a role of this pore in ceramide induced insulin resistance (Sup. Fig. 6E). In addition, it is yet to be determined whether the trafficking defect is specific to Glut4 or if it affects the exocytic-secretory pathway more broadly…”

      Points from reviewer 2:

      1. The mechanistic aspect of the work and conclusions put forth rely heavily on studies performed in cultured myocytes, which are highly glycolytic and generally viewed as a poor model for studying muscle metabolism and insulin action. Nonetheless, the findings provide a strong rationale for moving this line of investigation into mouse gain/loss of function models.

      Response: The relative contribution of the anaerobic (glycolysis) and aerobic (mitochondria) contribution to the muscle metabolism can change in L6 depending on differentiation stage. For instance, Serrage et al (PMID30701682) demonstrated that L6-myotubes have a higher mitochondrial abundance and aerobic metabolism than L6-myoblasts. Others have used elegant transcriptomic analysis and metabolic characterisation comparing different skeletal muscle models for studying insulin sensitivity. For instance, Abdelmoez et al in 2020 (PMID31825657) reported that L6 myotubes exhibit greater insulin-stimulated glucose uptake and oxidative capacity compared with C2C12 and Human Mesenchymal Stem Cells (HMSC). Overall, L6 cells exhibit higher metabolic rates and primarily rely on aerobic metabolism, while C2C12 and HSMC cells rely on anaerobic glycolysis. It is worth noting that L6 myotubes are the cell line most closely related to adult human muscle when compared with other muscle cell lines (PMID31825657). Our presented results in Figure 6 H and I provide evidence for the similarities between L6 cells overexpressing SMPD5 and human muscle biopsies. Additionally, in Figure 3J-K, we demonstrate the reproducibility of the negative correlation between ceramide and Coenzyme Q observed in L6 cells in vivo, specifically in the skeletal muscle of mice in chow diet. Furthermore, we have supplemented these findings by demonstrating a comparable relationship in mice exposed to a high-fat diet, as shown in Supplementary Figure 4 H-I (refer to point 4). We will clarify these points in the Discussion:

      “In this study, we mainly utilised L6-myotubes, which share many important characteristics with primary muscle fibres relevant to our research. Both types of cells exhibit high sensitivity to insulin and respond similarly to maximal doses of insulin, with Glut4 translocation stimulated between 2 to 4 times over basal levels in response to 100 nM insulin (as shown in Fig. 1-4 and (46,47)). Additionally, mitochondrial respiration in L6-myotubes have a similar sensitivity to mitochondrial poisons, as observed in primary muscle fibres (as shown in Fig. 5 (48)). Finally, inhibiting ceramide production increases CoQ levels in both L6-myotubes and adult muscle tissue (as shown in Fig. 2-3). Therefore, L6-myotubes possess the necessary metabolic features to investigate the role of mitochondria in insulin resistance, and this relationship is likely applicable to primary muscle fibres”.

      We will also add additional data - in point 2 - from differentiated human myocytes that are consistent with our observations from the L6 models. Additional experiments are in progress to further extend these findings.

      1. One caveat of the approach taken is that exposure of cells to palmitate alone is not reflective of in vivo physiology. It would be interesting to know if similar effects on CoQ are observed when cells are exposed to a more physiological mixture of fatty acids that includes a high ratio of palmitate, but better mimics in vivo nutrition.

      Response: Palmitate is widely recognized as a trigger for insulin resistance and ceramide accumulation, which mimics the insulin resistance induced by a diet in rodents and humans. Previous studies have compared the effects of a lipid mixture versus palmitate on inducing insulin resistance in skeletal muscle, and have found that the strong disruption in insulin sensitivity caused by palmitate exposure was lessened with physiologic mixtures of fatty acids, even with a high proportion of saturated fatty acids. This was associated, in part, to the selective partitioning of fatty acids into neutral lipids (such as TAG) when muscle cells are exposed to physiologic lipid mixtures (Newsom et al PMID25793412). Hence, we think that using palmitate is a better strategy to study lipid-induced insulin resistance in vitro. We will add to results:

      “In vitro, palmitate conjugated with BSA is the preferred strategy for inducing insulin resistance, as lipid mixtures tend to partition into triacylglycerides (33)”.

      We are also performing additional in vivo experiments to add to the physiological relevance of the findings.

      1. While the utility of targeting SMPD5 to the mitochondria is appreciated, the results in Figure 5 suggest that this manoeuvre caused a rather severe form of mitochondrial dysfunction. This could be more representative of toxicity rather than pathophysiology. It would be helpful to know if these same effects are observed with other manipulations that lower CoQ to a similar degree. If not, the discrepancies should be discussed.

      Response: We conducted a staining procedure using the mitochondrial marker mitoDsRED to observe the effect of SMPD5 overexpression on cell toxicity. The resulting images, displayed in the figure below (Author response image 1), demonstrate that the overexpression of SMPD5 did not result in any significant changes in cell morphology or impact the differentiation potential of our myoblasts into myotubes.

      Author response image 1.

      In addition, we evaluated cell viability in HeLa cells following exposure to SACLAC (2 uM) to induce CoQ depletion (left panel). Specifically, we measured cell death by monitoring the uptake of Propidium iodide (PI) as shown in the right panel. Our results demonstrated that Saclac-induced CoQ depletion did not lead to cell death at the doses used for CoQ depletion (Author response image 2).

      Author response image 2.

      Therefore, we deemed it improbable that the observed effect is caused by cellular toxicity, but rather represents a pathological condition induced by elevated levels of ceramides. We will add to discussion:

      “...downregulation of the respirasome induced by ceramides may lead to CoQ depletion. Despite the significant impact of ceramide on mitochondrial respiration, we did not observe any indications of cell damage in any of the treatments, suggesting that our models are not explained by toxic/cell death events.”

      1. The conclusions could be strengthened by more extensive studies in mice to assess the interplay between mitochondrial ceramides, CoQ depletion and ETC/mitochondrial dysfunction in the context of a standard diet versus HF diet-induced insulin resistance. Does P053 affect mitochondrial ceramide, ETC protein abundance, mitochondrial function, and muscle insulin sensitivity in the predicted directions?

      Response: We would like to note that the metabolic characterization and assessment of ETC/mitochondrial function in these mice (both fed a high-fat (HF) and chow diet, with or without P053) were previously published (Turner N, PMID30131496). In addition to this, we have conducted targeted metabolomic and lipidomic analyses to investigate the impact of P053 on ceramide and CoQ levels in HF-fed mice. As illustrated in the figures below (Author response image 3), the administration of P053 led to a reduction in ceramide levels (left panel) and an increase in CoQ levels (right panel) in HF-fed mice, which is consistent with our in vitro findings.

      Author response image 3.

      We will add to results:

      “…similar effect was observed in mice exposed to a high fat diet for 5 wks (Supp. Fig. 4H-I further phenotypic and metabolic characterization of these animals can be found in (41))”

      We will further perform more in-vivo studies to corroborate these findings.

    1. Author Response

      Reviewer #1 (Public Review):

      We thank the Reviewer for their comments.

      Reviewer #2 (Public Review):

      1) In Figure 4, the authors injected a retrograde tracer in the NA and an anterograde tracer in DCN to find potential "nodes" of overlap. From this experiment, the authors identify the VTA and regions of the thalamus as potential areas of tracer overlap, but it is unclear how many other brain regions were examined. Did the authors jump straight to likely locations of overlap based on previous findings, or were large swaths of the brain examined systematically? If other brain regions were examined, which regions and how was this done? A table listing which brain regions were examined and the presence/intensity of ctb-Alexa568 and GFP fluorescence would be helpful.

      We thank the Reviewer for their comments. Exhaustive characterizations of inputs into nucleus accumbens (NAc) as well as of direct outputs of the deep cerebellar nuclei (DCN) have appeared elsewhere (e.g, Ma et al., 2020 doi: 10.3389/fnsys.2020.00015; Novello et al., 2022 doi: 10.1007/s12311-022-01499-w). Our anatomical investigations with retrograde and anterograde tracers were focused on putative intermediary nodal regions with robust inputs from the DCN, clear outputs to NAc, and limbic functionality. Only a handful of brain regions fulfill these criteria, and from those, we chose to target the VTA and intralaminar thalamus based on the observation that cerebellar activation induces dopamine release in the NAc medial shell and core (Holloway et al., 2019 doi: 10.1007/s12311-019-01074-w; Low et al., 2021 10.1038/s41586-021-04143-5) and on our previous work on DCN projections to the midline thalamus (Jung et al., 2022 doi: 10.3389/fnsys.2022.879634).

      2) In Figure 5, the authors inject AAV1-Cre in DCN and AAV-FLEX-tdTomato in VTA or thalamus. This is an interesting experiment, but controls are missing. An important control is to inject AAV-FLEX-tdTomato in the VTA or thalamus in the absence of AAV1-Cre injection in DCN. Cre-independent expression of tdTomato should be assessed in the VTA/thalamus and the NA.

      We thank the reviewer for bringing up this important control. We routinely perform this control experiment to test for any “leakiness” of floxed vectors prior to use but we did not include it in the paper. In response to the Reviewer’s comment, we show results from this control below. Briefly, we performed a large injection (300 nl) of AAV-FLEX-tdTomato in the thalamus area together with AAV-EGFP (to visualize the injection). No Cre-expressing virus was injected anywhere in the brain. PFA-fixed brain slices were obtained at 3 weeks post-injection and imaged for EGFP and tdTomato. Author Response Figure 1 shows images of the injected thalamus area. No tdTomato expression (Fig. 1C, red) was observed despite abundant EGFP expression (Fig. 1B, green), which confirms that in the absence of Cre the floxed construct does not “leak”.

      Author response image 1.

      (related to Fig. 5 of manuscript). Control experiment for “leakiness” of floxed tdTomato. A, Epifluorescence image of thalamus region in brain slice with EGFP (green) and tdTomato (red) channels merged. Gain settings in the red channel were increased intentionally, to ensure detection of any “leaky” cells. B, Cellular EGFP expression marks successful viral injection. C, No cellular expression of tdTomato without Cre. Note diffuse red signal from background fluorescence.

      Reviewer #3 (Public Review):

      1) The novelty of this paper lies in the mapping of projections from the interposed and the lateral nuclei of the cerebellum, as the authors themselves mention. However, in some of the experiments the medial nucleus is also clearly injected (Fig. 4B and 6B). In those experiments, it is impossible to distinguish which nucleus these projections come from, and they could be the ones from the medial nucleus that were previously described (see above).

      We thank the Reviewer for their comments. As stated in the Results and in the legend of Fig. 4, in addition to experiments with injections in all DCN (Fig. 4B-D), we also performed experiments with injections in only the lateral nucleus (Fig. 4E and F). The results of these experiments support the existence of lateral DCN projections that overlap with NAc-projecting neurons in VTA and thalamus. This finding is further corroborated by our transsynaptic experiments with lateral DCN-only injections (Fig. 5E,F). Regarding the optophysiological experiments, as mentioned in the Results, all DCN were injected (Fig. 6B) in order to maximize ChR2 expression and the chances of successful stimulation of projections.

      2) A strength of the paper is the use of both electrical and optogenetic stimulation. However, the responses to the two in the NAc are very different - electrical stimulation results in both excitation and inhibition, whereas opto stimulation mostly results in only excitation.

      We thank the Reviewer for this comment. At least two different explanations could account for the observed differences in the prevalence of inhibitory responses elicited by optogenetic vs electrical stimulation: i) inhibitory response prevalence is sensitive to stimulation intensity (Table 1 and Fig. 2B). Because of inherent differences between optogenetic and electrical stimulation, it is not possible to directly compare intensities between the two modalities in order to determine at which intensities, if at all, the prevalence of responses should match. The observation that, at least in the VTA, the prevalence of inhibitory responses elicited by 1 mW light intensity (the lowest intensity that we tested) was comparable to the prevalence of inhibitory responses elicited by 100 µA electrical stimulation is in line with this explanation; ii) DCN electrical stimulation is not node-specific. To our knowledge, there is currently no evidence to support mesoscale topographic organization in lateral and interposed DCN that is node-specific. Consequently, electrical stimulation of DCN could, in principle, result in NAc responses through various polysynaptic pathways and/or nodes. This possibility would still exist even if electrical stimulation had limited spread of a few hundred microns (as in our experiments) and is at least partly supported by the observed long latencies of electrically-evoked inhibitory responses (NAcCore: 268 ± 25 ms (10th percentile: 42 ms), NAcMed: 259 ± 14 ms (10th percentile: 60 ms). Our recognition of this intrinsic limitation of DCN electrical stimulation was the impetus behind the node-specific optogenetic experiments.

      3) The stimulation frequency at which the electrical stimulation in Fig 1 is done to identify responses in the NAc is 200 Hz for 25 ms. Is this physiological? In addition, responses in the NAc are measured for 500 ms after, which is a very long response time.

      Regarding stimulation frequency, DCN neurons readily reach firing rates between 100-200 Hz in vivo and ex vivo (e.g., Beekhof et al., 2021 doi.org/10.3390/cells10102686; Sarnaik & Raman, 2018 doi:10.7554/eLife.29546; Canto et al., 2016 doi:10.1371/journal.pone.0165887). Regarding the duration of the response window, at the outset of our experiments we were agnostic to the type of responses that our stimulation protocols would evoke in NAc. We therefore established a response time window that would allow us to capture both fast neurotransmitter-mediated responses as well as neuromodulatory (e.g., dopaminergic) responses, which are known to occur at hundred-millisecond latencies or longer (Wang et al., 2017 doi.org/10.1016/j.celrep.2017.02.062; Chuhma et al., 2014 doi:10.1016/j.neuron.2013.12.027; Gonon, 1997). A posteriori analysis indicated that even if we reduced the response time window by 50%, the ratio of DCN-evoked excitatory vs inhibitory responses in NAc would not change substantially (E/I500: 4.3 vs E/I250: 5).

      4) Previous studies have described how different cell types within the DCN have different downstream projections (Fujita et al. 2020). However, the experiments here bundle together all this known heterogeneity.

      We agree with the Reviewer that dissecting the contributions of specific DCN cell types to NAc circuits is an important next step, which we are excited to undertake in future studies. Here we have broken new ground by identifying for the first time nodes and functional properties of DCN-NAc connectivity. Performing these studies with DCN cell type-specificity was not justified or feasible, given that the molecular identity of participating DCN neurons is currently unknown.

      5) Previous studies have also highlighted the importance of different cell types within the NAc and how input streams are differentially targeted to them. Here, that heterogeneity is also obscured.

      Along the same lines as #4, we agree with the Reviewer about the importance of examining the cellular identity of NAc neurons that participate in DCN-NAc circuitry. We are excited to undertake these examinations using ex vivo approaches, which are well suited to dissect cellular and molecular mechanisms.

      6) In Fig. 4C, E and F, the experiments on overlap between anterograde and retrograde tracers are not particularly convincing - it's hard to see the overlap.

      We thank the reviewer for this comment and have included revised figure panels 4C5, E3, Author response image 1 and Figure 2 below. Single optical sections with altered color scheme and orthogonal confocal views are presented in order to show the overlap between DCN projections and NAc-projecting nodal neurons more clearly. The findings of these imaging experiments are corroborated by the results of our transsynaptic labeling approach (Fig. 5), which we have validated elsewhere (Jung et al., 2022 doi:10.3389/fnsys.2022.879634; and Author response image 1).

      Author response image 2.

      (related to Fig. 4 of manuscript). Co-localization of NAc-projecting neurons with DCN axonal projections in VTA and thalamus. A-D, Single optical sections and orthogonal views are shown. Green: EGFP-expressing DCN axons; white: ctb- Alexa 568; red: anti-TH (A-B; VTA) or NeuN (C-D; thalamus). White arrows in orthogonal views point to regions of overlap.

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      [...] The experiments are well-designed and carefully conducted. The conclusions of this work are in general well supported by the data. There are a couple of points that need to be addressed or tested.

      1) It is unclear how LC phasic stimulation used in this study gates cortical plasticity without altering cellular responses (at least at the calcium imaging level). As the authors mentioned that Polack et al 2013 showed a significant effect of NE blockers in membrane potential and firing rate in V1 layer2/3 neurons during locomotion, it would be useful to test the effect of LC silencing (coupled to mismatch training) on both cellular response and cortical plasticity or applying NE antagonists in V1 in addition to LC optical stimulation. The latter experiment will also address which neuromodulator mediates plasticity, given that LC could co-release other modulators such as dopamine (Takeuchi et al. 2016 and Kempadoo et al. 2016). LC silencing experiment would establish a causal effect more convincingly than the activation experiment.

      Regarding the question of how phasic stimulation could alter plasticity without affecting the response sizes or activity in general, we believe there are possibilities supported by previous literature. It has been shown that catecholamines can gate plasticity by acting on eligibility traces at synapses (He et al., 2015; Hong et al., 2022). In addition, all catecholamine receptors are metabotropic and influence intracellular signaling cascades, e.g., via adenylyl cyclase and phospholipases. Catecholamines can gate LTP and LTD via these signaling pathways in vitro (Seol et al., 2007). Both of these influences on plasticity at the molecular level do not necessitate or predict an effect on calcium activity levels. We have now expanded on this in the discussion of the revised manuscript.

      While a loss of function experiment could add additional corroborating evidence that LC output is required for the plasticity seen, we did not perform loss-of-function experiments for three reasons:

      1. The effects of artificial activity changes around physiological set point are likely not linear for increases and decreases. The problem with a loss of function experiment here is that neuromodulators like noradrenaline affect general aspects of neuronal function. This is apparent in Polack et al., 2013: during the pharmacological blocking experiment, the membrane hyperpolarizes, membrane variance becomes very low, and the cells are effectively silenced (Figure 7 of (Polack et al., 2013)), demonstrating an immediate impact on neuronal function when noradrenaline receptor activation is presumably taken below physiological/waking levels. In light of this, if we reduce LC output/noradrenergic receptor activation and find that plasticity is prevented, this could be the result of a direct influence on the plasticity process, or, the result of a disruption of another aspect of neuronal function, like synaptic transmission or spiking. We would therefore challenge the reviewer’s statement that a loss-of-function experiment would establish a causal effect more convincingly than the gain- of-function experiment that we performed.

      2. The loss-of-function experiment is technically more difficult both in implementation and interpretation. Control mice show no sign of plasticity in locomotion modulation index (LMI) on the 10-minute timescale (Figure 4J), thus we would not expect to see any effect when blocking plasticity in this experiment. We would need to use dark-rearing and coupled-training of mice in the VR across development to elicit the relevant plasticity ((Attinger et al., 2017); manuscript Figure 5). We would then need to silence LC activity across days of VR experience to prevent the expected physiological levels of plasticity. Applying NE antagonists in V1 over the entire period of development seems very difficult. This would leave optogenetically silencing axons locally, which in addition to the problems of doing this acutely (Mahn et al., 2016; Raimondo et al., 2012), has not been demonstrated to work chronically over the duration of weeks. Thus, a negative result in this experiment will be difficult to interpret, and likely uninformative: We will not be able to distinguish whether the experimental approach did not work, or whether local LC silencing does nothing to plasticity.

      Note that pharmacologically blocking noradrenaline receptors during LC stimulation in the plasticity experiment is also particularly challenging: they would need to be blocked throughout the entire 15 minute duration of the experiment with no changes in concentration of antagonist between the ‘before’ and ‘after’ phases, since the block itself is likely to affect the response size, as seen in Polack et al., 2013, creating a confound for plasticity-related changes in response size. Thus, we make no claim about which particular neuromodulator released by the LC is causing the plasticity.

      1. There are several loss-of-function experiments reported in the literature using different developmental plasticity paradigms alongside pharmacological or genetic knockout approaches. These experiments show that chronic suppression of noradrenergic receptor activity prevents ocular dominance plasticity and auditory plasticity (Kasamatsu and Pettigrew, 1976; Shepard et al., 2015). Almost absent from the literature, however, are convincing gain-of-function plasticity experiments.

      Overall, we feel that loss-of-function experiments may be a possible direction for future work but, given the technical difficulty and – in our opinion – limited benefit that these experiments, would provide in light of the evidence already provided for the claims we make, we have chosen not to perform these experiments at this time. Note that we already discuss some of the problems with loss-of-function experiments in the discussion.

      2) The cortical responses to NE often exhibit an inverted U-curve, with higher or lower doses of NE showing more inhibitory effects. It is unclear how responses induced by optical LC stimulation compare or interact with the physiological activation of the LC during the mismatch. Since the authors only used one frequency stimulation pattern, some discussion or additional tests with a frequency range would be helpful.

      This is correct, we do not know how the artificial activation of LC axons relates to physiological activation, e.g. under mismatch. The stimulation strength is intrinsically consistent in our study in the sense that the stimulation level to test for changes in neuronal activity is similar to that used to probe for plasticity effects. We suspect that the artificial activation results in much stronger LC activity than seen during mismatch responses, given that no sign of the plasticity in LMI seen in high ChrimsonR occurs in low ChrimsonR or control mice (Figure 4J). Note, that our conclusions do not rely on the assumption that the stimulation is matched to physiological levels of activation during the visuomotor mismatches that we assayed. The hypothesis that we put forward is that increasing levels of activation of the LC (reflecting increasing rates or amplitude of prediction errors across the brain) will result in increased levels of plasticity. We know that LC axons can reach levels of activity far higher than that seen during visuomotor mismatches, for instance during air puff responses, which constitute a form of positive prediction error (unexpected tactile input) (Figures 2C and S1C). The visuomotor mismatches used in this study were only used to demonstrate that LC activity is consistent with prediction error signaling. We have now expanded on these points in the discussion as suggested.

      Reviewer #1 (Recommendations For The Authors):

      1) In Figure 3E, there is a rebound response of ChrimsonR at the offset of the mismatch. Is that common? If so, what does it mean? If not, maybe replace it with a more common example trace.

      This trace in fact represents the population average, so this offset response (or ‘rebound’) reflects a significant component of the population response to visual flow onset (i.e., mismatch offset), only under conditions of LC stimulation. See our response to reviewer 2 concerning this element of the response.

      2) It would be helpful to have some discussions on how a mismatch signal reaches and activates LC from cortical neurons.

      We have now added a short segment on this to the discussion.

      Reviewer #2 (Public Review):

      [...] The study provides very compelling data on a timely and fascinating topic in neuroscience. The authors carefully designed experiments and corresponding controls to exclude any confounding factors in the interpretation of neuronal activity in LC axons and cortical neurons. The quality of the data and the rigor of the analysis are important strengths of the study. I believe this study will have an important contribution to the field of system neuroscience by shedding new light on the role of a key neuromodulator. The results provide strong support for the claims of the study. However, I also believe that some results could have been strengthened by providing additional analyses and experimental controls. These points are discussed below.

      Calcium signals in LC axons tend to respond with pupil dilation, air puffs, and locomotion as the authors reported. A more quantitative analysis such as a GLM model could help understand the relative contribution (and temporal relationship) of these variables in explaining calcium signals. This could also help compare signals obtained in the sensory and motor cortical domains. Indeed, the comparison in Figure 2 seems a bit incomplete since only "posterior versus anterior" comparisons have been performed and not within-group comparisons. I believe it is hard to properly assess differences or similarities between calcium signal amplitude measured in different mice and cranial windows as they are subject to important variability (caused by different levels of viral expression for instance). The authors should at the very least provide a full statistical comparison between/within groups through a GLM model that would provide a more systematic quantification.

      To provide a more detailed comparison of responses, we have expanded on the analysis in Figure 2 to include comparative heatmaps from anterior and posterior imaging sites, as well as statistical comparisons of the response curves as a function of time. This shows how similar the responses are in the two regions.

      Beyond this, we are not sure how a regression analysis (GLM or otherwise) would help support the main point we aim to make here. The responses in anterior and posterior regions are similar, which supports a broadcast model of LC function in the cortex, rather than specialized routing of prediction error signals to cortical areas. Linear contributions of the signals are apparent from the stimulus triggered responses, and while non-linear interactions between the different variables are certainly an interesting question, they go beyond the point we aim to make and would also not be captured by a regression analysis. In addition, we have refined our language replacing descriptors of ‘the same’ or ‘indistinguishable’ between the two regions with ‘similar’, to highlight that while we find no evidence of a difference, our analysis does not cover all possible differences that might appear when looking at non-linear interactions.

      Previous studies using stimulations of the locus coeruleus or local iontophoresis of norepinephrine in sensory cortices have shown robust responses modulations (see McBurney-Lin et al., 2019, https://doi.org/10.1016/j.neubiorev.2019.06.009 for a review). The weak modulations observed in this study seem at odds with these reports. Given that the density of ChrimsonR-expressing axons varies across mice and that there are no direct measurements of their activation (besides pupil dilation), it is difficult to appreciate how they impact the local network. How does the density of ChrimsonR-expressing axons compare to the actual density of LC axons in V1? The authors could further discuss this point.

      In terms of estimating the percentage of cortical axons labelled based on our axon density measurements: we refer to cortical LC axonal immunostaining in the literature to make this comparison.

      In motor cortex, an average axon density of 0.07 µm/µm2 has been reported (Yin et al., 2021), and 0.09 µm/µm2 in prefrontal cortex (Sakakibara et al., 2021). Density of LC axons varies by cortical area, with higher density in motor cortex and medial areas than sensory areas (Agster et al., 2013): V1 axon density is roughly 70% of that in cingulate cortex (adjacent to motor and prefrontal cortices) (Nomura et al., 2014). So, we approximate a maximum average axon density in V1 of approximately 0.056 µm/µm2.

      Because these published measurements were made from images taken of tissue volumes with larger z-depth (~ 10 µm) than our reported measurements (~ 1 µm), they appear much larger than the ranges reported in our manuscript (0.002 to 0.007 µm/µm2). We repeated the measurements in our data using images of volumes with 10 µm z-depth, and find that the percentage axons labelled in our study in high ChrimsonR-expressing mice ranges between 0.012 to 0.039 µm/µm2. This corresponds to between 20% to 70% of the density we would expect based on previous work. Note that this is a potentially significant underestimate, and therefore should be used as a lower bound: analyses in the literature use images from immunostaining, where the signal to background ratio is very high. In contrast, we did not transcardially perfuse our mice leading to significant background (especially in the pia/L1, where axon density is high - (Agster et al., 2013; Nomura et al., 2014)), and the intensity of the tdTomato is not especially high. We therefore are likely missing some narrow, dim, and superficial fibers in our analysis.

      We also can quantify how our variance in axonal labelling affects our results: For the dataset in Figure 3, there doesn’t appear to be any correlation between the level of expression and the effect of stimulating the axons on the mismatch or visual flow responses for each animal (Author response image 1), while there is a significant correlation between the level of expression and the pupil dilation, consistent with the dataset shown in Figure 4. Thus, even in the most highly expressing mice, there is no clear effect on average response size at the level of the population. We have added these correlations to the revised manuscript as a new Figure S3.

      **Author response image 1. **

      Correlations between axon density and average effect of laser stimulation on stimulus responses and pupil dilation (data from manuscript Figure 3). Grey points show control mice, blue points show low ChrimsonR-expressing mice, and purple points show high ChrimsonR- expressing mice.

      To our knowledge, there has not yet been any similar experiment reported utilizing local LC axonal optogenetic stimulation while recording cortical responses, so when comparing our results to those in the literature, there are several important methodological differences to keep in mind. The vast majority of the work demonstrating an effect of LC output/noradrenaline on responses in the cortex has been done using unit recordings, and while results are mixed, these have most often demonstrated a suppressive effect on spontaneous and/or evoked activity in the cortex (McBurney-Lin et al., 2019). In contrast to these studies, we do not see a major effect of LC stimulation either on baseline or evoked calcium activity (Figure 3), and, if anything, we see a minor potentiation of transient visual flow onset responses (see also Author response image 2). There could be several reasons why our stimulation does not have the same effect as these older studies:

      1. Recording location: Unit recordings are often very biased toward highly active neurons (Margrie et al., 2002) and deeper layers of the cortex, while we are imaging from layer 2/3 – a layer notorious for sparse activity. In one of the few papers to record from superficial layers, it was been demonstrated that deeper layers in V1 are affected differently by LC stimulation methods compared to more superficial ones (Sato et al., 1989), with suppression more common in superficial layers. Thus, some differences between our results and those in the majority of the literature could simply be due to recording depth and the sampling bias of unit recordings.

      2. Stimulation method: Most previous studies have manipulated LC output/noradrenaline levels by either iontophoretically applying noradrenergic receptor agonists, or by electrically stimulating the LC. Arguably, even though our optogenetic stimulation is still artificial, it represents a more physiologically relevant activation compared to iontophoresis, since the LC releases a number of neuromodulators including dopamine, and these will be released in a more physiological manner in the spatial domain and in terms of neuromodulator concentration. Electrical stimulation of the LC as used by previous studies differs from our optogenetic method in that LC axons will be stimulated across much wider regions of the brain (affecting both the cortex and many of its inputs), and it is not clear whether the cause of cortical response changes is in cortex or subcortical. In addition, electrical LC stimulation is not cell type specific.

      3. Temporal features of stimulation: Few previous studies had the same level of temporal control over manipulating LC output that we had using optogenetics. Given that electrical stimulation generates electrical artifacts, coincident stimulation during the stimulus was not used in previous studies. Instead, the LC is often repeatedly or tonically stimulated, sometimes for many seconds, prior to the stimulus being presented. Iontophoresis also does not have the same temporal specificity and will lead to tonically raised receptor activity over a time course determined by washout times.

      4. State specificity: Most previous studies have been performed under anesthesia – which is known to impact noradrenaline levels and LC activity (Müller et al., 2011). Thus, the acute effects of LC stimulation are likely not comparable between anesthesia and in the awake animal.

      Due to these differences, it is hard to infer why our results differ compared to other papers. The study with the most similar methodology to ours is (Vazey et al., 2018), which used optogenetic stimulation directly into the mouse LC while recording spiking in deep layers of the somatosensory cortex with extracellular electrodes. Like us, they found that phasic optogenetic stimulation alone did not alter baseline spiking activity (Figure 2F of Vazey et al., 2018), and they found that in layers 5 and 6, short latency transient responses to foot touch were potentiated and recruited by simultaneous LC stimulation. While this finding appears more overt than the small modulations we see, it is qualitatively not so dissimilar from our finding that transient responses appear to be slightly potentiated when visual flow begins (Author response image 2). Differences in the degree of the effect may be due to differences in the layers recorded, the proportion of the LC recruited, or the fact anesthesia was used in Vazey et al., 2018.

      Note that we only used one set of stimulation parameters for optogenetic stimulation, and it is always possible that using different parameters would result in different effects. We have now added a discussion on the topic to the revised manuscript.

      In the analysis performed in Figure 3, it seems that red light stimulations used to drive ChrimsonR also have an indirect impact on V1 neurons through the retina. Indeed, figure 3D shows a similar response profile for ChrimsonR and control with calcium signals increasing at laser onset (ON response) and offset (OFF response). With that in mind, it is hard to interpret the results shown in Figure 3E-F without seeing the average calcium time course for Control mice. Are the responses following visual flow caused by LC activation or additional visual inputs? The authors should provide additional information to clarify this result.

      This is a good point. When we plot the average difference between the stimulus response alone and the optogenetic stimulation + stimulus response, we do indeed find that there is a transient increase in response at the visual flow onset (and the offset of mismatch, which is where visual flow resumes), and this is only seen in ChrimsonR-expressing mice (Author response image 2). We therefore believe that these enhanced transients at visual flow onset could be due to the effect of ChrimsonR stimulation, and indeed previous studies have shown that LC stimulation can reduce the onset latency and latency jitter of afferent-evoked activity (Devilbiss and Waterhouse, 2004; Lecas, 2004), an effect which could mediate the differences we see. We have added this analysis to the revised manuscript in Figure 3 and added discussion accordingly.

      **Author response image 2. **

      Difference in responses to visual stimuli caused by optogenetic stimulation, calculated by subtracting the average response when no laser was presented from the average response when the laser was presented concurrent with the visual stimulus. Pink traces show the response difference for ChrimsonR-expressing mice, and grey shows the same for control mice. Black blocks below indicate consecutive timepoints after stimulation showing a significant difference between ChrimsonR and control as determined by hierarchical bootstrapping (p<0.05).

      Some aspects of the described plasticity process remained unanswered. It is not clear over which time scale the locomotion modulation index changes and how many optogenetic stimulations are necessary or sufficient to saturate this index. Some of these questions could be addressed with the dataset of Figure 3 by measuring this index over different epochs of the imaging session (from early to late) to estimate the dynamics of the ongoing plasticity process (in comparison to control mice). Also, is there any behavioural consequence of plasticity/update of functional representation in V1? If plasticity gated by repeated LC activations reproduced visuomotor responses observed in mice that were exposed to visual stimulation only in the virtual environment, then I would expect to see a change in the locomotion behaviour (such as a change in speed distribution) as a result of the repeated LC stimulation. This would provide more compelling evidence for changes in internal models for visuomotor coupling in relation to its behavioural relevance. An experiment that could confirm the existence of the LC-gated learning process would be to change the gain of the visuomotor coupling and see if mice adapt faster with LC optogenetic activation compared to control mice with no ChrimsonR expression. Authors should discuss how they imagine the behavioural manifestation of this artificially-induced learning process in V1.

      Regarding the question of plasticity time course: Unfortunately, owing to the paradigm used in Figure 3, the time course of the plasticity will not be quantifiable from this experiment. This is because in the first 10 minutes, the mouse is in closed loop visuomotor VR experience, undergoing optogenetic stimulation (this is the time period in which we record mismatches). We then shift to the open loop session to quantify the effect of optogenetic stimulation on visual flow responses. Since the plasticity is presumably happening during the closed loop phase, and we have no read-out of the plasticity during this phase (we do not have uncoupled visual flow onsets to quantify LMI in closed loop), it is not possible to track the plasticity over time.

      Regarding the behavioral relevance of the plasticity: The type of plasticity we describe here is consistent with predictive, visuomotor plasticity in the form of a learned suppression of responses to self-generated visual feedback during movement. Intuitive purposes of this type of plasticity would be 1) to enable better detection of external moving objects by suppressing the predictable (and therefore redundant) self-generated visual motion and 2) to better detect changes in the geometry of the world (near objects have a larger visuomotor gain that far objects). In our paradigm, we have no intuitive read-out of the mouse’s perception of these things, and it is not clear to us that they would be reflected in locomotion speed, which does not differ between groups (manuscript Figure S5). Instead, we would need to turn to other paradigms for a clear behavioral read-out of predictive forms of sensorimotor learning: for instance, sensorimotor learning paradigms in the VR (such as those used in (Heindorf et al., 2018; Leinweber et al., 2017)), or novel paradigms that reinforce the mouse for detecting changes in the gain of the VR, or moving objects in the VR, using LC stimulation during the learning phase to assess if this improves acquisition. This is certainly a direction for future work. In the case of a positive effect, however, the link between the precise form of plasticity we quantify in this manuscript and the effect on the behavior would remain indirect, so we see this as beyond the scope of the manuscript. We have added a discussion on this topic to the revised manuscript.

      Finally, control mice used as a comparison to mice expressing ChrimsonR in Figure 3 were not injected with a control viral vector expressing a fluorescent protein alone. Although it is unlikely that the procedure of injection could cause the results observed, it would have been a better control for the interpretation of the results.

      We agree that this indeed would have been a better control. However, we believe that this is fortunately not a major problem for the interpretation of our results for two reasons:

      1. The control and ChrimsonR expressing mice do not show major differences in the effect of optogenetic LC stimulation at the level of the calcium responses for all results in Figure 3, with the exception of the locomotion modulation indices (Figure 3I). Therefore, in terms of response size, there is no major effect compared to control animals that could be caused by the injection procedure, apart from marginally increased transient responses to visual flow onset – and, as the reviewer notes, it is difficult to see how the injection procedure would cause this effect.

      2. The effect on locomotion modulation index (Figure 3I) was replicated with another set of mice in Figure 4C, for which we did have a form of injected control (‘Low ChrimsonR’), which did not show the same plasticity in locomotion modulation index (Figure 4E). We therefore know that at least the injection itself is not resulting in the plasticity effect seen.

      Reviewer #2 (Recommendations For The Authors):

      In experiments where axonal imaging was performed on LC axons, the authors should indicate the number of mice used in addition to the number of Field of View (FoV). Indeed, samples (FoVs) are not guaranteed to be independent as LC axons can span large cortical areas and the same axon can end up in different FoVs. Please provide statistics across mice/cranial windows to confirm the robustness of the results.

      All information requested regarding animal numbers in axonal imaging are provided in the statistical Table S1, as well as in the text and figures (e.g., Figure 2A). Samples will be independent in time (as different FoVs were imaged on different days), but it is indeed possible that axon segments from different FoVs within an animal come from the same axon.

      Averaging across animals greatly reduces statistical power. We have therefore implemented hierarchical bootstrapping instead: bootstrapping first occurs at the level of animal and then at the level of FoV. All p-values that were reported as significant in manuscript remained significant with this test, with no major reduction in significance level, with the exception of Figure S2B, where statistical significance was lost (p = 0.04 with Rank sum, p = 0.07 with hierarchical Bootstrapping). We therefore conclude that sampling from the same animals across days is not responsible for the significance of results reported.

      References

      Agster, K.L., Mejias-Aponte, C.A., Clark, B.D., Waterhouse, B.D., 2013. Evidence for a regional specificityi n the density and distribution of noradrenergic varicosities in rat cortex. Journal of Comparative Neurology 521, 2195–2207. https://doi.org/10.1002/cne.23270

      Attinger, A., Wang, B., Keller, G.B., 2017. Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex. Cell 169, 1291-1302.e14. https://doi.org/10.1016/j.cell.2017.05.023

      Devilbiss, D.M., Waterhouse, B.D., 2004. The Effects of Tonic Locus Ceruleus Output on Sensory-Evoked Responses of Ventral Posterior Medial Thalamic and Barrel Field Cortical Neurons in the Awake Rat. J. Neurosci. 24, 10773–10785. https://doi.org/10.1523/JNEUROSCI.1573-04.2004

      He, K., Huertas, M., Hong, S.Z., Tie, X., Hell, J.W., Shouval, H., Kirkwood, A., 2015. Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron 88, 528–538. https://doi.org/10.1016/j.neuron.2015.09.037

      Heindorf, M., Arber, S., Keller, G.B., 2018. Mouse Motor Cortex Coordinates the Behavioral Response to Unpredicted Sensory Feedback. Neuron 0. https://doi.org/10.1016/j.neuron.2018.07.046

      Hong, S.Z., Mesik, L., Grossman, C.D., Cohen, J.Y., Lee, B., Severin, D., Lee, H.-K., Hell, J.W., Kirkwood, A., 2022. Norepinephrine potentiates and serotonin depresses visual cortical responses by transforming eligibility traces. Nat Commun 13, 3202. https://doi.org/10.1038/s41467-022-30827-1

      Kasamatsu, T., Pettigrew, J.D., 1976. Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. Science 194, 206–209. https://doi.org/10.1126/science.959850

      Lecas, J.-C., 2004. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration. European Journal of Neuroscience 19, 2519–2530. https://doi.org/10.1111/j.0953-816X.2004.03341.x

      Leinweber, M., Ward, D.R., Sobczak, J.M., Attinger, A., Keller, G.B., 2017. A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions. Neuron 95, 1420-1432.e5. https://doi.org/10.1016/j.neuron.2017.08.036

      Mahn, M., Prigge, M., Ron, S., Levy, R., Yizhar, O., 2016. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat Neurosci 19, 554–556. https://doi.org/10.1038/nn.4266

      Margrie, T.W., Brecht, M., Sakmann, B., 2002. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch. 444, 491–498. https://doi.org/10.1007/s00424-002-0831-z

      McBurney-Lin, J., Lu, J., Zuo, Y., Yang, H., 2019. Locus coeruleus-norepinephrine modulation of sensory processing and perception: A focused review. Neurosci Biobehav Rev 105, 190–199. https://doi.org/10.1016/j.neubiorev.2019.06.009

      Müller, C.P., Pum, M.E., Amato, D., Schüttler, J., Huston, J.P., De Souza Silva, M.A., 2011. The in vivo neurochemistry of the brain during general anesthesia. Journal of Neurochemistry 119, 419–446. https://doi.org/10.1111/j.1471-4159.2011.07445.x

      Nomura, S., Bouhadana, M., Morel, C., Faure, P., Cauli, B., Lambolez, B., Hepp, R., 2014. Noradrenalin and dopamine receptors both control cAMP-PKA signaling throughout the cerebral cortex. Front Cell Neurosci 8. https://doi.org/10.3389/fncel.2014.00247

      Polack, P.-O., Friedman, J., Golshani, P., 2013. Cellular mechanisms of brain-state-dependent gain modulation in visual cortex. Nat Neurosci 16, 1331–1339. https://doi.org/10.1038/nn.3464

      Raimondo, J.V., Kay, L., Ellender, T.J., Akerman, C.J., 2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat Neurosci 15, 1102–1104. https://doi.org/10.1038/nn.3143

      Sakakibara, Y., Hirota, Y., Ibaraki, K., Takei, K., Chikamatsu, S., Tsubokawa, Y., Saito, T., Saido, T.C., Sekiya, M., Iijima, K.M., n.d. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 82, 1513–1530. https://doi.org/10.3233/JAD-210385

      Sato, H., Fox, K., Daw, N.W., 1989. Effect of electrical stimulation of locus coeruleus on the activity of neurons in the cat visual cortex. Journal of Neurophysiology. https://doi.org/10.1152/jn.1989.62.4.946

      Seol, G.H., Ziburkus, J., Huang, S., Song, L., Kim, I.T., Takamiya, K., Huganir, R.L., Lee, H.-K., Kirkwood, A., 2007. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 55, 919–929. https://doi.org/10.1016/j.neuron.2007.08.013

      Shepard, K.N., Liles, L.C., Weinshenker, D., Liu, R.C., 2015. Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. J Neurosci 35, 2432–2437.https://doi.org/10.1523/JNEUROSCI.0532-14.2015

      Vazey, E.M., Moorman, D.E., Aston-Jones, G., 2018. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proceedings of the National Academy of Sciences 115, E9439– E9448. https://doi.org/10.1073/pnas.1803716115

      Yin, X., Jones, N., Yang, J., Asraoui, N., Mathieu, M.-E., Cai, L., Chen, S.X., 2021. Delayed motor learning in a 16p11.2 deletion mouse model of autism is rescued by locus coeruleus activation. Nat Neurosci 24, 646–657. https://doi.org/10.1038/s41593-021-00815-7

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Hearing and balance rely on specialized ribbon synapses that transmit sensory stimuli between hair cells and afferent neurons. Synaptic adhesion molecules that form and regulate transsynaptic interactions between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) are crucial for maintaining auditory synaptic integrity and, consequently, for auditory signaling. Synaptic adhesion molecules such as neurexin-3 and neuroligin-1 and -3 have recently been shown to play vital roles in establishing and maintaining these synaptic connections ( doi: 10.1242/dev.202723 and DOI: 10.1016/j.isci.2022.104803). However, the full set of molecules required for synapse assembly remains unclear.

      Karagulan et al. highlight the critical role of the synaptic adhesion molecule RTN4RL2 in the development and function of auditory afferent synapses between IHCs and SGNs, particularly regarding how RTN4RL2 may influence synaptic integrity and receptor localization. Their study shows that deletion of RTN4RL2 in mice leads to enlarged presynaptic ribbons and smaller postsynaptic densities (PSDs) in SGNs, indicating that RTN4RL2 is vital for synaptic structure. Additionally, the presence of "orphan" PSDs-those not directly associated with IHCs-in RTN4RL2 knockout mice suggests a developmental defect in which some SGN neurites fail to form appropriate synaptic contacts, highlighting potential issues in synaptic pruning or guidance. The study also observed a depolarized shift in the activation of CaV1.3 calcium channels in IHCs, indicating altered presynaptic functionality that may lead to impaired neurotransmitter release. Furthermore, postsynaptic SGNs exhibited a deficiency in GluA2/3 AMPA receptor subunits, despite normal Gria2 mRNA levels, pointing to a disruption in receptor localization that could compromise synaptic transmission. Auditory brainstem responses showed increased sound thresholds in RTN4RL2 knockout mice, indicating impaired hearing related to these synaptic dysfunctions.

      The findings reported here significantly enhance our understanding of synaptic organization in the auditory system, particularly concerning the molecular mechanisms underlying IHC-SGN connectivity. The implications are far-reaching, as they not only inform auditory neuroscience but also provide insights into potential therapeutic targets for hearing loss related to synaptic dysfunction.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      Kargulyan et al. investigate the function of the transsynaptic adhesion molecule RTN4RL2 in the formation and function of ribbon synapses between type I spiral ganglion neurons (SGNs) and inner hair cells. For this purpose, they study constitutive RTN4RL2 knock-out mice. Using immunohistochemistry, they reveal defects in the recruitment of protein to ribbon synapses in the knockouts. Serial block phase EM reveals defects in SGN projections in mutants. Electrophysiological recordings suggest a small but statistically significant depolarized shift in the activation of Cav1.3 Ca<sup>2+</sup> channels. Auditory thresholds are also elevated in the mutant mice. The authors conclude that RTN4RL2 contributes to the formation and function of auditory afferent synapses to regulate auditory function.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      Strengths:

      The authors have excellent tools to analyze ribbon synapses.

      Weaknesses:

      However, there are several concerns that substantially reduce my enthusiasm for the study.

      (1) The analysis of the expression pattern of RTN4RL2 in Figure 1 is incomplete. The authors should show a developmental time course of expression up into maturity to correlate gene expression with major developmental milestones such as axon outgrowth, innervation, and refinement. This would allow the development of models supporting roles in axon outgrowth versus innervation or both.

      We agree that it would be valuable to show the developmental time course of RTN4RL2 expression. In response to the reviewer’s comment, we are providing RNAscope data from developmental ages E11.5, E12.5 and E16 in Figure 1. RTN4RL2 shows expression at E11.5/E12.5 both in the spiral ganglion and hair cell region, with first onset in the hair cells. We conclude that RTN4RL2 is expressed highest during fiber growth at embryonic stages and is downregulated during postnatal development maintaining low levels of expression during adulthood.

      (2) It would be important to improve the RNAscope data. Controls should be provided for Figure 1B to show that no signal is observed in hair cells from knockouts. The authors apparently already have the sections because they analyzed gene expression in SGNs of the knock-outs (Figure 1C).

      In Figure 1C gene expression in SGNs was assessed at p40, while the expression in hair cells is provided for p1 animals. Unfortunately, we do not have KO controls for p1 animals. However, as indicated in our manuscript, previously published RNA expression datasets do find RTN4RL2 expression in hair cells. Therefore, we think it is unlikely that our results are unspecific.

      (3) It is unclear from the immunolocalization data in Figure 1D if all type I SGNs express RTN4RL2. Quantification would be important to properly document the presence of RTN4RL2 in all or a subset of type I SGNs. If only a subset of SGNs express RTN4RL2, it could significantly affect the interpretation of the data. For example, SGNs selectively projecting to the pillar or modiolar side of hair cells could be affected. These synapses significantly differ in their properties.

      According to already published single cell RNAseq dataset from Shrestha et al., 2018, RTN4RL2 expression does not seem to show a clear type I SGN subtype specificity (Author response image 1). In response to the reviewer’s comment, we have further performed anti-Parvalbumin (PV) and anti-calretinin (CR) immunostainings in mid-modiolar cryosections of RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> cochleae. Parvalbumin was chosen to label all SGNs and CALB2 was chosen primarily as a type Ia SGN marker (Sun et al., 2018). We present the data from all analyzed samples below (figure 2 of this rebuttal letter). Cell segmentation masks of PV positive cells were obtained using Cellpose 2.0 and the average CR intensity was calculated in those masks. While the distributions of CR intensity and the ratio of CR and PV intensities are slightly shifted in RTN4RL2<sup>-/-</sup> cochleae, we take the data to suggest that the composition of the spiral ganglion by molecular type I SGN subtypes is largely unchanged in RTN4RL2<sup>-/-</sup> mice.

      Author response image 1.

      Author response image 1 cites single cell RNAseq data of Brikha R Shrestha, Chester Chia, Lorna Wu, Sharon G Kujawa, M Charles Liberman, Lisa V Goodrich. Sensory neuron diversity in the inner ear is shaped by activity. Cell. 2018 Aug 23; 174(5):1229-1246.e17. doi: 10.1016/j.cell/2018.07.007

      Author response image 2.

      Calretinin intensity distribution in spiral ganglion of RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> mice. (A) Mid-modiolar cochlear cryosections from RTN4RL2<sup>+/+</sup> (top) and RTN4RL2<sup>-/-</sup> (bottom) mice immunolabeled against Parvalbumin (PV) and Calretinin (CR). Scale bar = 20 mm. (B) Distribution of CR intensity in PV positive cells (N = 3 for each genotype). (C) Distribution of the ratio of CR and PV intensities (N = 3 for each genotype).

      (4) It is important to show proper controls for the RTN4RL2 immunolocalization data to show that no staining is observed in knockouts.

      Unfortunately, our recent attempts to perform RTN4RL2 immunostainings on cryosections failed and therefore, we decided to remove the RTNr4RL2 immunostainings from Figure 1. We have adjusted the results section accordingly.

      (5) The authors state in the discussion that no staining for RTN4RL2 was observed at synaptic sites. This is surprising. Did the authors stain multiple ages? Was there perhaps transient expression during development? Or in axons indicative of a role in outgrowth, not synapse formation?

      We thank the reviewer for the comment. We have now tried RTN4RL2 immunostainings on cryosections at several developmental stages, but unfortunately this time did not succeed to obtain reproducible and reliable results. Therefore, we decided to also remove the previous immunostainings from Figure 1. We have adjusted the results section as well as removed our statement of not detecting RTN4RL2 near the synaptic regions from the discussion.

      (6) In Figure 2 it seems that images in mutants are brighter compared to wildtypes. Are exposure times equivalent? Is this a consistent result?

      Yes, the samples were prepared in parallel, imaged and analyzed in the same manner.

      No, we did not observe consistent differences in brightness and also did not find it in the exemplary images of figure 2.

      (7) The number of synaptic ribbons for wildtype in Figure 2 is at 10/IHCs, and in Figure 2 Supplementary Figure 2 at 20/IHCs (20 is more like what is normally reported in the literature). The value for mutant similarly drastically varies between the two figures. This is a significant concern, especially because most differences that are reported in synaptic parameters between wild-type and mutants are far below a 2-fold difference.

      The key message is that there is no difference in the numbers of ribbons and synapses between the genotypes for the cochlear apex (~10 ribbons/IHCs, Figure 2 and Figure 2-figure supplement 2) and the mid- and base of the cochlea (more ribbons/IHCs, Figure 2-figure supplement 2). Figure 2-figure supplement 3 (now Figure 3) shows that there is a massive reduction of postsynaptic GluA2, while both Figure 2 and Figure 2-figure supplement 2 indicate that the number synapses is normal. These are two different data sets and while we closely collaborated and also shared the Moser lab protocols and analysis routines, we agree that there is a difference in the absolute synapse count, which most likely was an observer difference and different choice of tonotopic positions of analysis. In Figure 2 only the apical hair cells have been analyzed. The Moser lab, since establishing the immunofluorescence-based quantification of synapse number (Khimich et al., 2005) reported tonotopic differences in synapse counts (focus of Meyer et al., 2009 and reported by others: e.g. Kujawa and Liberman, 2009): apical and basal IHCs lower synapse numbers than mid-cochlear IHCs.

      (8) The authors report differences in ribbon volume between wild-type and mutant. Was there a difference between the modiolar/pillar region of hair cells? It is known that synaptic size varies across the modiolar-pillar axis. Maybe smaller synapses are preferentially lost?

      We thank the reviewer for the comment. Unfortunately, our already acquired datasets from 3-week-old mice did not allow us to check whether the previously described modiolar-pillar gradient of the ribbon size was collapsed in RTN4RL2<sup>-/-</sup> mice due to the not so well-preserved morphology of the inner hair cells in our preparations. However, since the number of the ribbons is not changed in the RTN4RL2 KO mice, we do not think that the increase in the ribbon size is due to the loss of small ribbons. In response to the reviewers comment we have analyzed the modiolar-pillar gradient of the ribbon size in IHCs of middle turn of the cochlea form a newly acquired dataset of 14-week-old mice. We took the fluorescence intensity of Ctbp2 positive puncta as a proxy for the ribbon size. In these older mice we found a preserved modiolar-pillar gradient of the ribbon size (larger ribbons at the modiolar side). We summarized the results in the below Author response image 3.

      Author response image 3.

      The modiolar-pillar gradient of ribbon size is preserved in RTN4RL2<sup>-/-</sup> IHCs. (A) Maximum intensity projections of approximately 2 IHCs stained against Vglut3 and Ctbp2 from 14-week-old RTN4RL2<sup>+/+</sup> (left) and RTN4RL2<sup>-/-</sup> (right) mice. Scale bar = 5 mm. (B) Synaptic ribbons on the modiolar side show higher fluorescence intensity than the ones on the pillar side of mid-cochlear IHCs in both RTN4RL2<sup>+/+</sup> (left, N=2) RTN4RL2<sup>-/-</sup> (right, N=2) mice. (C) Average fluorescence intensity of modiolar ribbons per IHC is higher than the average fluorescence intensity of pillar ribbons (paired t-test, p < 0.001).

      (9) The authors show in Figure 2 - Supplement 3 that GluA2/3 staining is absent in the mutants. Are GluA4 receptors upregulated? Otherwise, synaptic transmission should be abolished, which would be a dramatic phenotype. Antibodies are available to analyze GluA4 expression, the experiment is thus feasible. Did the authors carry out recordings from SGNs?

      In response to the reviewer’s comment, we have performed GluA4 stainings in RTN4LR2<sup>-/-</sup> mice and did not detect any GluA4 positive signal in the mutants (new Figure 3-figure supplement 1). Unfortunately, our animal breeding license was expired at the time we received the reviews and that is why our results are from 14-week-old animals. To verify that the absence of GluA4 signal is not due to potential PSD loss in 14-week-old RTN4RL2<sup>-/-</sup>, we have additionally performed anti-Ctbp2, anti-Homer1 and anti-Vglut3 stainings in 14-week-old animals. Despite the reduced number, we still observed juxtaposing pre- and postsynaptic puncta. We assume that the reviewer asks for patch-clamp recordings from SGNs, which are, as we are confident the reviewer is aware of, technically very challenging and beyond the scope of the present study but an important objective for future studies.  In response to the reviewers comment we have added a statement to the discussion pointing to these patch-clamp recordings from SGNs as important objective for future studies.

      (10) The authors use SBEM to analyze SGN projections and synapses. The data suggest that a significant number of SGNs are not connected to IHCs. A reconstruction in Figure 3 shows hair cells and axons. It is not clear how the outline of hair cells was derived, but this should be indicated. Also, is this a defect in the formation of synapses and subsequent retraction of SGN projections? Or could RTN4RL2 mutants have a defect in axonal outgrowth and guidance that secondarily affects synapses? To address this question, it would be useful to sparsely label SGNs in mutants, for example with AAV vectors expression GFP, and to trace the axons during development. This would allow us to distinguish between models of RTN4RL2 function. As it stands, it is not clear that RTN4RL2 acts directly at synapses.

      We agree with the reviewer on the value of a developmental study of afferent connectivity but consider this beyond the scope of the present study. In response to the reviewer's comment, we have replaced the IHC outlines with volume-reconstructed IHCs in Figure 3B (now Figure 4B). Moreover, as shown in Figure 3F (now Figure 4F), most if not all type-I SGNs (both with and without ribbon) were unbranched in the mutants just like in wildtype (also shown for a larger sample in Hua et al., 2021), arguing against morphological abnormality during development.

      (11) The authors observe a tiny shift in the operation range of Ca<sup>2+</sup> channels that has no effect on synaptic vesicle exocytosis. It seems very unlikely that this difference can explain the auditory phenotype of the mutant mice.

      We assume that the statement refers to the normal exocytosis of mutant IHCs at the potential of maximal Ca<sup>2+</sup> influx (Figure 3G and H, now Figure 4G and H). We would like to note that this experiment was performed to probe for a deficit of synapse function beyond that of the Ca<sup>2+</sup> channel activation, but did not address the impact of the altered voltage—dependence of Ca<sup>2+</sup> channel activation. In response to the reviewer’s comment, we have now added further discussion to more clearly communicate that for the range of receptor potentials achieved near sound threshold we expect impaired IHC exocytosis as the Ca<sup>2+</sup> channels require slightly more depolarization for activation in the mutant IHCs.

      (12) ABR recordings were conducted in whole-body knockouts. Effects on auditory thresholds could be a secondary consequence of perturbation along the auditory pathway. Conditional knockouts or precisely designed rescue experiments would go a long way to support the authors' hypothesis. I realize that this is a big ask and floxed mice might not be available to conduct the study.

      Thanks for this helpful comment and, indeed, unfortunately, we do not have conditional KO mice at our disposal. We totally agree that this will be important also for clarifying the role of IHC vs. SGN expression of RTN4RL2. In response to the reviewer’s comment, we now discussed the shortcoming of using constitutive RTN4RL2<sup>-/-</sup> mice and added this important experiment on IHC and SGN specific deletion of RTN4RL2 as an objective of future studies.

      Reviewer #3 (Public review):

      In this study, the authors used RNAscope and immunostaining to confirm the expression of RTN4RL2 RNA and protein in hair cells and spiral ganglia. Through RTN4RL2 gene knockout mice, they demonstrated that the absence of RTN4RL2 leads to an increase in the size of presynaptic ribbons and a depolarized shift in the activation of calcium channels in inner hair cells. Additionally, they observed a reduction in GluA2/3 AMPA receptors in postsynaptic neurons and identified additional "orphan PSDs" not paired with presynaptic ribbons. These synaptic alterations ultimately resulted in an increased hearing threshold in mice, confirming that the RTN4RL2 gene is essential for normal hearing. These data are intriguing as they suggest that RTN4RL2 contributes to the proper formation and function of auditory afferent synapses and is critical for normal hearing. However, a thorough understanding of the known or postulated roles of RTN4Rl2 is lacking.

      We would like to thank the reviewer for appreciating the work and the advice that helped us to further improve the manuscript. We have carefully addressed all concerns, please see our point-per-point response below and the revised manuscript.

      While the conclusions of this paper are generally well supported by the data, several aspects of the data analysis warrant further clarification and expansion.

      (1) A quantitative assessment is necessary in Figure 1 when discussing RNA and protein expression. It would be beneficial to show that expression levels are quantitatively reduced in KO mice compared to wild-type mice. This suggestion also applies to Figure 2-supplement 3.D, which examines expression levels.

      The processing of our control and KO samples for RNAscope was not strictly done in parallel and therefore we would like to refrain from quantitative comparison.

      (2) In Figure 2, the authors present a morphological analysis of synapses and discuss the presence of "orphan PSDs." I agree that Homer1 not juxtaposed with Ctbp2 is increased in KO mice compared to the control group. However, in quantifying this, they opted to measure the number of Homer1 juxtaposed with Ctbp2 rather than directly quantifying the number of Homer1 not juxtaposed with Ctbp2. Quantifying the number of Homer1 not juxtaposed with Ctbp2 would more clearly represent "orphan PSDs" and provide stronger support for the discussion surrounding their presence.

      We appreciate the reviewer’s comment. We did not perform this analysis primarily because “orphan” Homer1 puncta, as seen in our immunostainings, are distributed away from hair cells in diverse morphologies and sizes. This makes distinguishing them from unspecific immunofluorescent spots—also present in wild-type samples—challenging. In response to the reviewer’s request, we analyzed the number of “orphan” Homer1 puncta in our previously acquired RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> samples. Using the surface algorithm in Imaris software, we applied identical parameters across all samples to create surfaces for Homer1-positive puncta (total Homer1 puncta). We quantified “orphan” Homer1 puncta as the difference between total and ribbon-juxtaposing Homer1 puncta and normalized this number to the IHC count. Our results showed 4.3 vs. 26.8 “orphan” Homer1 puncta per IHC in RTN4RL2<sup>+/+</sup> and RTN4RL2<sup>-/-</sup> samples, respectively. We note that variations in acquired volumes between samples may introduce confounding effects.

      (3) In Figure 2, Supplementary 3, the authors discuss GluA2/3 puncta reduction and note that Gria2 RNA expression remains unchanged. However, there is an issue with the lack of quantification for Gria2 RNA expression. Additionally, it is noted that RNA expression was measured at P4. While the timing for GluA2/3 puncta assessment is not specified, if it was assessed at 3 weeks old as in Figure 2's synaptic puncta analysis, it would be inappropriate to link Gria2 RNA expression with GluA2/3 protein expression at P4. If RNA and protein expression were assessed at P4, please indicate this timing for clarity.

      GluA2/3 immunostainings were performed in 1 to 1.5-month-old animals. We apologize for not indicating this before and have now included it in Figure 3 legend. The processing of our control and KO samples for RNAscope was not strictly done in parallel and therefore we would like to refrain from quantitative comparison.

      (4) In Figure 3, the authors indicate that RTN4RL2 deficiency reduces the number of type 1 SGNs connected to ribbons. Given that the number of ribbons remains unchanged (Figure 2), it is important to clearly explain the implications of this finding. It is already known that each type I SGN forms a single synaptic contact with a single IHC. The fact that the number of ribbons remains constant while additional "orphan PSDs" are present suggests that the overall number of SGNs might need to increase to account for these findings. An explanation addressing this would be helpful.

      In Figure 3 (now Figure 4), we found additional type-1 SGNs that are unconnected to IHC, in good agreement with “orphan PSDs” observed under the light microscope. Indeed, we also confirmed monosynaptic, unbranched fiber morphology (Figure 3F, now Figure 4F). Together, these results imply about a 20% increase in the overall number of SGNs, which however we did not observe in SGN soma counting.

      (5) In Figure 4F and 5Cii, could you clarify how voltage sensitivity (k) was calculated? Additionally, please provide an explanation for the values presented in millivolts (mV).

      Voltage sensitivity (k) was calculated as the slope of the Boltzmann fit to the fractional activation curves: , Where G is conductance, G<sub>max</sub> is the maximum conductance, V<sub>m</sub> is the membrane potential, V<sub>half</sub> is the voltage corresponding to the half maximal activation of Ca<sup>2+</sup> channels and k (slope of the curve) is the voltage sensitivity of Ca<sup>2+</sup> channel activation. We have now added this to our Materials and Methods section.

      (6) In Figure 6, the author measured the threshold of ABR at 2-4 months old. Since previous figures confirming synaptic morphology and function were all conducted on 3-week-old mice, it would be better to measure ABR at 3 weeks of age if possible.

      ABR measurements for comparisons in a cohort of age-matched mice require fully developed individuals. 3 weeks is the minimum age that is regarded for a mature ear. However, variation in developmental differences among one litter is very frequent that affects normal hearing thresholds. From our own experience we do not regard the ear fully functional before 6 weeks of age. Then hearing thresholds are lowest indicating full functionality. Since the C57BL/6 background strain has a genetic defect in the Cadherin 23-coding gene (Cdh23) at the ahl locus of mouse chromosome 10 these mice exhibit early onset and progression of age-related hearing loss starting at 5–8 months (Hunter & Willott, 1987). Therefore, we chose a “safe” time window for stable and unaffected ABR recordings of 2-4 months to provide most representative data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Please include information on the validation of all the antibodies used in this study, or reference the relevant work where the antibodies were previously validated.

      In response to the reviewer’s comment, we have now included a table listing all primary antibodies used in this study. Where possible, we provide references for knockout (KO) validation. Otherwise, we refer to the manufacturer’s information, as provided in the respective datasheets.

      (2) Figure 2 illustrates the pre- and postsynaptic changes observed in RTN4RL2 knockout (KO) mice. Please specify the age of the mice and the cochlear region depicted and analyzed in Figure 2.

      We thank the reviewer for the comment. The IHCs of apical cochlear region were analyzed in mice at 3 weeks of age. We have now added this to the figure legend.

      (3) The discovery of orphan SGN neurites in RTN4RL2 KO mice is particularly intriguing. I wonder whether the additional Homer1-positive puncta illustrated in Figure 2 are present in these orphan SGN neurites, which would suggest that they may be functional. Conducting immunohistochemistry (IHC) labeling for type I SGN neurites using an anti-Tuj1 antibody, along with Homer1, would help localize the additional Homer1 puncta shown in Figure 2. Additionally, the "extra" Homer1 puncta appears less striking in the data presented in Figure 2-Supplement 2. Quantifying the number of Homer1 puncta in wild-type versus KO mice across different cochlear regions will help visualize the Figure 2-Supplement 2 data and relate the presence of extra neurites to the increased auditory brainstem response (ABR) thresholds observed at all frequencies.

      We thank the reviewer for the comment and we agree that localizing orphan PSDs on the SGN neurites would be very useful. Unfortunately, the animal breeding license in the Göttingen lab had expired. At the time we received the reviews we only had access to 14-week-old animals and could not perform the stainings in animals which would have comparable age range to the rest of the study (3-4 weeks). The phenotype of extra Homer1 puncta was not as drastic in 14-week-old animals as it was in previously stained 3-week-old animals. Nevertheless, we still tried NF200, Homer1 and Vglut3 immunostainings in 14-week-old animals. We present representative single imaging planes of NF200, Homer1 and Vglut3 stainings in Author response image 4. Additionally, we provide exemplary images from 7-week-old RTN4RL2<sup>-/-</sup>, where it looks like that the orphan Homer1 puncta are found on calretinin positive neurites.

      Author response image 4.

      Attempts to localize “orphan” Homer1 patches on type I SGN neurites. (A) Single exemplary imaging planes of apical IHC region from RTN4RL2<sup>+/+</sup> (left) and RTN4RL2<sup>-/-</sup> (right) mice immunolabeled against NF200, Vglut3 and Homer1. White arrows show putative “orphan” Homer1 puncta on NF200 positive neurites. Scale bar = 5 mm. (B) Maximum intensity projections of representative confocal stacks of IHCs from RTN4RL2<sup>-/-</sup> mice immunolabeled against Calretinin and Homer1. Scale bars = 5 mm. White arrows show possible “orphan” Homer1 puncta on Calretinin positive boutons.

      (4) The authors noted a reduction in the number of GluA2/3-positive puncta in RTN4RL2 KOs, as shown in Figure 2-Supplement 3. However, in the Results section (page 5, line 124), it is unclear whether the authors refer to a reduction in fluorescence intensity or the number of puncta. Please clarify this.

      We thank the reviewer for the comment. We refer to the number and have now added this to the manuscript.

      (5) I find it particularly interesting that, despite the presence of smaller but synaptically engaged Homer1-positive SGN neurites, these appear to lack or present a reduction in the number of GluA2/3 puncta, and that GluA2/3 puncta are observed in non-ribbon juxtaposed neurites. Therefore, I suggest including GluA2/3 (Fig2 supplement 3) data in the main figure. It would be valuable to determine whether the orphan neurites express both Homer1 and GluA2/3, which could indicate that the defect is not solely due to reduced GluA2/3 expression at the formed synapses, but also to the presence of additional orphan synapses. I would also mention in the discussion how the phenotype of the RTN4L2 KO compares to the GluA2/3 KO and if the lack of GluA2/3 at the AZ could explain the increase in ABR threshold. Quantification of GluA2/3 puncta at the apical, middle, and basal region would also help understand the auditory phenotype of the KO mice.

      We have changed Figure2-figure supplement 3 to become a main figure (Figure 3) based on the recommendation of the reviewer. We agree, that it would be valuable to perform immunohistochemistry combining anti-GluA2/3 and anti-Homer1 and anti-Ctbp2 antibodies to see if the “orphan” Homer1 patches house GluA2/3 not juxtaposing synaptic ribbons. Unfortunately, as mentioned above, due to the expiration of our animal breeding and experimentation licenses we did not manage to do those experiments. We have however performed stainings with anti-GluA4 antibodies and could not detect GluA4 signal in RTN4RL2<sup>-/-</sup> mice (Figure 3-figure supplement 1). This potentially could explain the more drastic ABR threshold elevation in RTN4RL2<sup>-/-</sup> mice compared to e.g. GluA3 KO mice. We have now made this clearer in our discussion.

      (6) I suggest considering the use of color-blind friendly palettes for figures and graphs in this manuscript to enhance clarity and ensure that the findings are accessible to a wider audience and improve the overall effectiveness of the presentation. Please use color-blind-friendly schemes in Figure 1 and Figure 2 Supplement 3.

      Done.

      (7) Could you please explain what "XX {plus minus} Y, SD = W" means in the figure legends?

      Mean ± SEM (standard error of the mean), SD (standard deviation) are indicated in the legends. In response to the reviewer comment we have now added an explanation in the Materials and Methods –> Data analysis and statistics section.

      (8) Please include information about the ear tested (left or right or both).

      Both ears were tested. Since there was no significant difference between right and left ear we did not further consider this factor. We will add this fact more precisely in the Material and methods section.

      Reviewer #3 (Recommendations for the authors):

      (1) Line 90: Why not show this control, it is a nice control.

      Unfortunately, our recent attempts to perform RTN4RL2 immunostaining on cryosections were unsuccessful. Therefore, we decided to remove RTN4RL2 immunostaining from Figure 1 and have adjusted the results section accordingly.

      (2) Line 94: Please provide a reference for these interactions.

      Done.

    1. Author Response:

      Points from reviewer 1 (Public Review):

      In this manuscript, Yong and colleagues link perturbations in lysosomal lipid metabolism with the generation of protein aggregates resulting from proteosome inhibition.

      We apologize for any confusion in the explanation of the results. We found that both proteasome inhibition and, independently, perturbations to lysosomal lipid metabolism lead to accumulation of protein aggregates in the lysosome. There was no evidence of proteasome inhibition in the context of lysosomal lipid perturbations (Figure 4J).

      Despite using various tools of lysosomal function, acidity, permeability, etc, the authors couldn't identify the link between lysosomal lipid metabolism and protein aggregate formation.

      Indeed, despite testing numerous mechanistic hypotheses, we have yet to explain how perturbation of lysosomal lipid metabolism causes protein aggregates. However, we have demonstrated that lipids are both necessary (via epistasis and serum delipidation) and sufficient (media supplementation) to drive these phenotypes.

      Although this work is interesting and thought-provoking, their approach to identify novel pathways involved in proteostasis is limited and this weakens the contribution of the paper in its current form.

      We are glad the reviewer found the work to be thought-provoking. As a fundamental cellular process critical for longevity, we agree that the connections made here between lipids, lysosomes and protein aggregates are interesting and broaden the impact of cellular health on proteostasis. Though we have falsified multiple hypotheses for how perturbation of lysosomal lipid metabolism could influence protein aggregation, we agree that a major weakness of the current work is our limited mechanistic understanding of this process. We hope that by engaging the thoughtful and creative eLife readership, novel mechanistic hypotheses will emerge.

      Points from reviewer 2 (Public Review):

      This might be too much of an ask, but they should go further in excluding one very attractive alternative model: effects on proteasome activity. This explanation should be addressed definitively because the transcription factor that regulates proteasome subunit gene expression (Nrf1/NFE2L1) is processed in the ER and is therefore well placed to be influenced by membrane conditions, and because it is shown here that proteasome inhibition increase ProteoStat puncta.

      We appreciate the constructive suggestion to examine loss of proteasome expression as a relevant mechanism linking cellular dyslipidemia with proteostasis impairment. We analyzed the genome-wide perturb-seq data from Replogle et al. [1], which was performed in K562 cells cultured under similar conditions to our screen. As expected, perturbation of Nrf1/NFE2L1 reduced expression of proteasome subunits, whereas perturbation of proteasome subunits that increased proteostat staining (e.g. PSMD2, PSMD13) homeostatically increased expression of multiple proteasome subunits. In contrast, other top hits, including those related to lipid-related perturbations (e.g. MYLIP, PSAP) did not reduce the expression of genes encoding the proteasome (Author response image 1).

      Author response image 1.

      The relative expression of genes encoding proteasomal subunits for representative genes was re-plotted from genome-wide perturb-seq data in K562 cells [1]. Shown are hit genes that increase Proteostat staining along with non-targeting controls and the positive control gene NFE2L1. Proteasome expression was induced by proteasome impairment (PSMD2 and PSMD13) and repressed by NFE2L1 knockdown. Other hit genes related to lipid metabolism and lysosome function did not consistently impact the expression of proteasome subunits.

      The authors address proteasome activity only by using a dye that is not referenced. Here a much more solid answer is needed.

      We thank Reviewer #2 for bringing to our attention the missing reference for the proteasome activity probe we used (Me4BodipyFL-Ahx3Leu3VS). Both this probe [2] and its close derivative [3], BodipyFL-Ahx3Leu3VS, were fully characterized previously. We’ll include these references in the revision. In our hands, this probe behaved as expected under MG132 and Bortezomib treatment when quantified by flow cytometry (Fig. 4I), and by in-blot fluorescence scan (data will be included as supplementary in the revision). We further observed that HMGCR KD increased proteasome activity, consistent with what’s suggested by current literature. This validated our use of this probe and strongly suggested that proteasome activity was not perturbed by impaired lipid homeostasis.

      In general, most conclusions in the paper rely essentially solely on ProteoStat assays. The entire study would be greatly strengthened if the authors incorporated biochemical or other modalities to substantiate their results.

      We agree that orthogonal characterization of proteostasis impairment would be valuable. We chose the ProteoStat stain as a reporter of proteostasis because it is capable of integrating the aggregation states of multiple endogenously expressed proteins, and in the absence of exogenous stressors such as the overexpression of aggregation-prone proteins. With aging, a context where ProteoStat staining increases, hundreds of proteins exhibit reduced solubility [4], thus motivating the focus on endogenously expressed proteins. Despite the biochemical limitations, we think our work is differentiated from published screens focused on specific metastable proteins by our focus on regulators of endogenous proteostasis.

      The presentation would be improved greatly if the authors provided diagrams illustrating the pathways implicated in their results, as well as their models.

      We thank Reviewer #2 for the helpful suggestion. We have provided the suggested diagrams below (Author response image 2).

      Author response image 2.

      Mechanistic models linking screen hits to accrual of lysosomal protein aggregates, related to Figure 4. Perturbations that increased cholesterol and sphingolipid levels were evaluated for effects on lysosomal pH, lysosomal proteolytic capacity, lysosomal membrane permeability, lipid peroxidation and proteasome activity. None of these mechanisms appear to play a causal role in protein aggregation in response to elevated lipids.

      Author Response References

      1. Replogle, J. M. et al. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559-2575.e28 (2022).

      2. Berkers, C. R. et al. Probing the Specificity and Activity Profiles of the Proteasome Inhibitors Bortezomib and Delanzomib. Mol Pharmaceut 9, 1126–1135 (2012).

      3. Berkers, C. R. et al. Profiling Proteasome Activity in Tissue with Fluorescent Probes. Mol. Pharmaceutics 4, 739–748 (2007).

      4. David, D. C. et al. Widespread Protein Aggregation as an Inherent Part of Aging in C. elegans. Plos Biol 8, e1000450 (2010).

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      The manuscript discusses the role of phosphorylated ubiquitin (pUb) by PINK1 kinase in neurodegenerative diseases. It reveals that elevated levels of pUb are observed in aged human brains and those affected by Parkinson's disease (PD), as well as in Alzheimer's disease (AD), aging, and ischemic injury. The study shows that increased pUb impairs proteasomal degradation, leading to protein aggregation and neurodegeneration. The authors also demonstrate that PINK1 knockout can mitigate protein aggregation in aging and ischemic mouse brains, as well as in cells treated with a proteasome inhibitor. While this study provided some interesting data, several important points should be addressed before being further considered.

      Strengths:

      (1) Reveals a novel pathological mechanism of neurodegeneration mediated by pUb, providing a new perspective on understanding neurodegenerative diseases.

      (2) The study covers not only a single disease model but also various neurodegenerative diseases such as Alzheimer's disease, aging, and ischemic injury, enhancing the breadth and applicability of the research findings.

      Weaknesses:

      (1) PINK1 has been reported as a kinase capable of phosphorylating Ubiquitin, hence the expected outcome of increased p-Ub levels upon PINK1 overexpression. Figures 5E-F do not demonstrate a significant increase in Ub levels upon overexpression of PINK1 alone, whereas the evident increase in Ub expression upon overexpression of S65A is apparent. Therefore, the notion that increased Ub phosphorylation leads to protein aggregation in mouse hippocampal neurons is not yet convincingly supported.

      Indeed, overexpression of sPINK1 alone resulted in minimal changes in Ub levels in the soluble fraction (Figure 5E), which is expected given that the soluble Ub pool remains relatively stable and buffered. However, sPINK1* overexpression led to a marked increase in Ub levels in the insoluble fraction, indicative of increased protein aggregation (Figure 5F). The molecular weight distribution of Ub in the insoluble fraction was predominantly below 70 kDa, suggesting that phosphorylation inhibits Ub chain elongation.

      To further validate this mechanism, we utilized the Ub/S65A mutant to antagonize Ub phosphorylation and observed a significant reduction in the intensity of aggregated bands at low molecular weights, indicating restored proteasomal activity. The observed increase in Ub levels in the soluble fraction upon Ub/S65A overexpression is likely due to enhanced ubiquitination driven by elevated Ub-S65A, and notably, Ub/S65A was also detectable using an antibody against wild-type Ub.

      Consistent with these findings, overexpression of Ub/S65E resulted in a further increase in Ub levels in the insoluble fraction, with intensified low molecular weight bands. The effect was even more pronounced than that observed with sPINK1 transfection, likely resulting from the complete phosphorylation mimicry achieved by Ub/S65E, compared to the relatively low levels of phosphorylation by PINK1.

      These findings collectively support the conclusion that sPINK1 promotes protein aggregation via Ub phosphorylation. We have updated the Results and Discussion sections to more clearly present the data and explain the various controls.

      (2) The specificity of PINK1 and p-Ub antibodies requires further validation, as a series of literature indicate that the expression of the PINK1 protein is relatively low and difficult to detect under physiological conditions.

      We acknowledge the challenges in achieving high specificity with commercially available and customgenerated antibodies targeting PINK1 and pUb, particularly given their low endogenous expression under physiological conditions. However, in our study, we observed robust immunofluorescent staining for PINK1 (Figures 1A, 1C, and 1G) and pUb (Figures 1B, 1D, and 1G) in human brain samples from Alzheimer's disease (AD) patients, as well as in mouse models of AD and cerebral ischemia. The clear visualization can be partly attributed to the pathological upregulation of PINK1 and pUb under disease conditions. Importantly, the images from pink1<sup>-/-</sup> mice exhibit much weaker staining.

      Additionally, we detected a significant elevation in the pUb levels in aged mouse brains compared to younger ones (Figures 1E and 1F). In contrast, pink1<sup>-/-</sup> mice showed no change in pUb levels with aging, despite some background signals, demonstrating that pUb accumulation during aging is PINK1dependent. Collectively, these results support the specificity of the antibodies used in detecting pathophysiological changes in PINK1 and pUb levels.

      For cultured cells, pink1<sup>-/-</sup> cells served as a negative control for both PINK1 (Figures 2B and 2C) and pUb (Figures 2D and 2E). While the pUb Western blot exhibited some nonspecific background, pUb levels in pink1<sup>-/-</sup> cells remained unchanged across all MG132 treatment conditions (Figures 2D and 2E), further attesting the usability of the antibodies in conjunction with appropriated controls.

      We have updated the manuscript with higher-resolution images; individual image files have been uploaded separately.

      (3) In Figure 6, relying solely on Western blot staining and Golgi staining under high magnification is insufficient to prove the impact of PINK1 overexpression on neuronal integrity and cognitive function. The authors should supplement their findings with immunostaining results for MAP2 or NeuN to demonstrate whether neuronal cells are affected.

      We included NeuN immunofluorescent staining at 10, 30, and 70 days post transfection in Figure 5— figure supplement 2. The results clearly demonstrate a significant loss of NeuN-positive cells in the hippocampus following Ub/S65E overexpression, while no apparent reduction was observed with sPINK1 transfection alone. 

      We have also quantified MAP2 protein levels via Western blotting and examined morphology of neuronal dendrite and synaptic structure using Golgi staining. These analyses revealed a significant reduction in MAP2 levels and synaptic damage upon sPINK1 or Ub/S65E overexpression (Figures 6F and 6H), consistent with the proteomics analysis (Figure 5—figure supplementary 5). Notably, these detrimental effects could be rescued by co-expression of Ub/S65A, reinforcing the role of pUb in mediating these structural changes.

      Together, our findings from NeuN immunostaining, MAP2 protein analysis, proteomics analysis, and Golgi staining provide strong evidence for the impact of PINK1 overexpression and pUb elevation on neuronal integrity and synaptic structure.

      (4) The authors should provide more detailed figure captions to facilitate the understanding of the results depicted in the figures.

      Figure captions have been updated with more details incorporated in the revised manuscript.

      (5) While the study proposes that pUb promotes neurodegeneration by affecting proteasomal function, the specific molecular mechanisms and signaling pathways remain to be elucidated.

      The molecular mechanisms and signaling pathways through which pUb promotes neurodegeneration are likely multifaceted and interconnected. Our findings suggest that mitochondrial dysfunction plays a central role following sPINK1* overexpression. This is supported by (1) an observed increase in full-length PINK1, indicative of impaired mitochondrial quality control, and (2) proteomic data showing enhanced mitophagy at 30 days post-transfection, followed by substantial mitochondrial injuries at 70 days post-transfection (Figure 5—figure supplement 5 and Supplementary Data). The progressive mitochondrial damage caused by protein aggregates would exacerbate neuronal injury and degeneration.

      Additionally, reduced proteasomal activity may lead to the accumulation of inhibitory proteins that are normally degraded by the ubiquitin-proteasome system. Our proteomics analysis identified a >50fold increase in CamK2n1 (UniProt ID: Q6QWF9), an endogenous inhibitor of CaMKII activation, following sPINK1* overexpression. The accumulation of CamK2n1 suppresses CaMKII activation, thereby inhibiting the CREB signaling pathway (Figure 7), which is essential for synaptic plasticity and neuronal survival. This disruption can further contribute to neurodegenerative processes.

      Thus, our findings underscore the complexity of pUb-mediated neurodegeneration and call for further investigation into downstream consequences.

      Reviewer #1 (Recommendations for the authors):

      Suggestions for improved or additional experiments, data or analyses.

      We have performed additional experiments to investigate how the impairment of ubiquitinproteasomal activity contributes to neurodegeneration. Specifically, we investigated CamK2n1, an endogenous inhibitor of CaMKII, which is normally degraded by the proteasome to allow CaMKII activation. Our proteomics analysis revealed a significant (>50-fold) elevation of CamKI2n1 following sPINK1 overexpression (Figure 5—figure supplement 5 and Supplementary Data).

      To validate this mechanism, we conducted immunofluorescence and Western blot analyses, demonstrating reduced levels of phosphorylated CaMKII (pCaMKII) and phosphorylated CREB (pCREB), as well as reduced levels of downstream proteins such as BDNF and ERK. These results have been incorporated into the revised manuscript (Figure 7).

      As the proteasome is crucial in maintaining proteostasis, its dysregulation would trigger neurodegeneration through multiple pathways, contributing to a broad cascade of pathological events.

      Reviewer #2 (Public review):

      Summary:

      The manuscript makes the claim that pUb is elevated in a number of degenerative conditions including Alzheimer's Disease and cerebral ischemia. Some of this is based on antibody staining which is poorly controlled and difficult to accept at this point. They confirm previous results that a cytosolic form of PINK1 accumulates following proteasome inhibition and that this can be active. Accumulation of pUb is proposed to interfere with proteostasis through inhibition of the proteasome. Much of the data relies on over-expression and there is little support for this reflecting physiological mechanisms.

      Weaknesses:

      The manuscript is poorly written. I appreciate this may be difficult in a non-native tongue, but felt that many of the problems are organizational. Less data of higher quality, better controls and incision would be preferable. Overall the referencing of past work is lamentable. Methods are also very poor and difficult to follow.

      Until technical issues are addressed I think this would represent an unreliable contribution to the field.

      (1) Antibody specificity and detection under pathological conditions

      We recognize the limitations of commercially available antibodies for detecting PINK1 and pUb. Nevertheless, our findings reveal a significant elevation in PINK1 and pUb levels under pathological conditions, such as Alzheimer's disease (AD) and ischemia. Additionally, we observed an increase in pUb level during brain aging, further demonstrating its relevance and a potentially causative role for this special pathological condition. Similarly, elevated pUb levels were observed for cultured cells following pharmacological treatment or oxygen-glucose deprivation (OGD).

      In contrast, in pink1<sup>-/-</sup> mice and HEK293 cells used as negative controls, PINK1 and pUb levels remained consistently low. Therefore, the observed elevation of PINK1 and pUb are associated with special pathological conditions, rather than an antibody-detection anomaly.

      (2) Overexpression as a model for pathological conditions

      To investigate whether the inhibitory effects of sPINK1 on the ubiquitin-proteasome system (UPS) depend on its kinase activity, we employed a kinase-dead version of sPINK1* as a negative control. Given that PINK1 targets multiple substrates, we also investigated whether its effects on UPS inhibition were specifically mediated by ubiquitin phosphorylation. To this end, we used Ub/S65A (a phospho-null mutant) to block Ub phosphorylation by sPINK1, and Ub/S65E (a phospho-mimetic mutant) to mimic phosphorylated Ub. These well-defined controls ensured the robustness of our conclusions.

      Although overexpression does not perfectly replicate physiological conditions, it provides a valuable model for studying pathological scenarios such as neurodegeneration and brain aging, where pUb levels are elevated. For example, we observed a 30.4% increase in pUb levels in aged mouse brains compared to young brains (Figure 1F). Similarly, in our sPINK1 overexpression model, pUb levels increased by 43.8% and 59.9% at 30- and 70-days post-transfection, respectively, compared to controls (Figures 5A and 5C). Notably, co-expression of sPINK1* with Ub/S65A almost entirely prevented sPINK1* accumulation (Figure 5B), indicating that an active UPS can efficiently degrade this otherwise stable variant of sPINK1.

      Together, our findings demonstrate that sPINK1 accumulation inhibits UPS activity, an effect that can be reversed by the phospho-null Ub mutant. The overexpression model mimics pathological conditions and provides valuable insights into pUb-mediated proteasomal dysfunction.

      (3) Organization of the manuscript

      Following your suggestion, we have restructured the manuscript to present the key findings in a more logical and cohesive sequence:

      (a) Evidence for elevated PINK1 and pUb levels across a broad spectrum of pathological and neurodegenerative conditions;

      (b) The effects of pUb elevation in cultured cells, focusing on the proteasome;

      (c) Mechanistic insights into how pUb elevation inhibits proteasomal activity;

      (d) The absence of PINK1 and pUb alleviates protein aggregation;

      (e) Evidence for the causative relationship between elevated pUb levels and proteasomal inhibition;

      (f) Demonstration that pUb elevation directly contributes to neuronal degeneration;

      (g) Give an additional evidence to explain the mechanism of neuronal degeneration post sPINK1* over-expression. The downstream effects of elevated CamK2n1, an inhibitor of CaMKII, resulting from proteasomal inhibition.

      This reorganization should ensure a clear and progressive narrative, and enhance the overall coherence and impact of the revised manuscript.

      (4) Revisions to writing, referencing, and methodology

      We have made a great effort to enhance the clarity and flow of the manuscript, including the addition of references to appropriately acknowledge prior work. We have also expanded the Methods section with additional details to improve readability and ensure reproducibility. We believe these revisions effectively address the concerns raised and strengthen the overall quality of the manuscript.

      Reviewer #2 (Recommendations for the authors):

      Figure 1: PINK1 is a poorly expressed protein and difficult to detect by Western blot let alone by immunofluorescence. I have direct experience of the antibody used in this study and do not consider it reliable. There are much cleaner reagents out there, although they still have many challenges. The minimal requirement here is for the PINK1 antibody staining to be compared in wild-type and knockout mice. One would also expect to see a mitochondrial staining which would require higher magnification to be definitive, but it does not look like it to me. This is a key foundational figure and is unreliable. The pUb antibody also has a high background, see for example figure 2E.

      Under physiological conditions, PINK1 and pUb levels are indeed low, making their detection challenging. However, under pathological conditions, their expression is significantly elevated, correlating with disease severity. Given the limitations of available reagents, using appropriate controls is a standard approach in biological research.

      Nevertheless, we observed robust immunofluorescent staining for PINK1 (Figures 1A, 1C, and 1G) and pUb (Figures 1B, 1D, and 1G) in human brain samples from Alzheimer’s disease (AD) patients and mouse models of AD and cerebral ischemia. Compared to healthy controls, the significant elevation of PINK1 and pUb under these pathological conditions accounts for their clear visualization. To validate antibody specificity, we have included images from pink1<sup>-/-</sup> mice as negative controls (Figure 1C and 1D, third panel).

      Furthermore, we analyzed pUb levels in both young and aged mice, using pink1<sup>-/-</sup> mice as controls.

      Our results revealed a significant increase in pUb levels in aged wild-type mice (Figures 1E and 1F), In contrast, pink1<sup>-/-</sup> mice exhibited relatively low pUb levels, with no notable change between young and aged groups. These findings reinforce the conclusion that pUb accumulation during aging is dependent on PINK1.Furthermore, we analyzed pUb levels in both young and aged mice, using pink1<sup>-/-</sup> mice as controls.

      For HEK293 cells, pink1<sup>-/-</sup> cells were used as a negative control for assessing PINK1 (Figures 2B and 2C) and pUb levels (Figures 2D and 2E). While the pUb Western blot did show some nonspecific background, as you have noted, pUb levels significantly increased following MG132 treatment of the wildtype cells. In contrast, no such increase was observed in pink1<sup>-/-</sup> cells (Figure 2D and 2E). These results further validate the reliability of our findings.

      Regarding mitochondrial staining, we recognize that PINK1 localization can vary depending on the pathological context. For example, in Alzheimer’s disease, PINK1 exhibits relatively high nuclear staining, while in cerebral ischemia and brain aging, it is predominantly cytoplasmic and punctate. In contrast, in young, healthy mouse brains, PINK1 is more uniformly distributed. The observed elevation in pUb levels could arise from mitochondrial PINK1 or soluble sPINK1 in the cytoplasm, and it remains unclear whether nuclear PINK1 contributes to pUb accumulation. Investigating the role of PINK1 in different forms and subcellular localizations will be an important avenue for future research.

      To enhance clarity, we have updated our images and replaced them with higher-resolution versions in the revised manuscript.

      Please also confirm that the GAPDH loading controls represent the same gels, to my eye they do not match.

      We have reviewed all the bands, and confirmed that the GAPDH loading controls correspond to the same gels. For different gels, we use separate GAPDH loading controls. There are two experimental scenarios to consider:

      (1) When there is a large difference in molecular weight between target proteins, we cut the gel into sections and incubate each section with different antibodies separately.

      (2) When the molecular weight difference is small and cutting is not feasible, we first probe the membrane with one antibody, strip it, and then re-incubate the membrane with a second antibody.

      These approaches ensure accurate and reliable detection of target proteins with various molecular weights relative to GAPDH.

      1H. Ponceau.

      We have corrected the spelling.

      Figure 2 many elements are confirmation of work already reported and this must be made clearer in the text. 

      Indeed, the elevation of sPINK1 and pUb upon proteasomal inhibition has been previously reported, and these studies have been acknowledged (Gao, et al, 2016; Dantuma, et al, 2000). In the present study, we expand on these findings by conducting a detailed analysis of the time- and concentrationdependent effects of MG132 on sPINK1 and pUb levels, establishing a causative relationship between pUb accumulation and proteasomal inhibition. Furthermore, we demonstrate that sPINK1 overexpression and MG132-induced proteasomal inhibition exhibit no additive effect, indicating that both converge on the same pathway, resulting in the impairment of proteasomal activity.

      It has been established that ubiquitin phosphorylation inhibits Ub chain elongation (Wauer, et al, 2015). However, our study provides novel insights by identifying an additional mechanism: phosphorylated Ub also interferes with the noncovalent interactions between Ub chain and Ub receptors in the proteasome, which further contributes to the impairment of UPS function.

      The PINK1 kinase-dead mutant construction (Figure 2F) and the use of Ub-GFP as a proteasomal substrate were based on established methodologies, which have been appropriately cited in the manuscript (Beilina, etal 2005 for KD sPINK1; Yamano, et al for endogenous PINK1; Samant, et al, 2018 and Dantuma, et al, 2000 for Ub-GFP probe). Similarly, our use of puromycin and BALA treatments follows previously reported protocols (Gao, et al, 2016), which allowed us to dissect the relative contributions of sPINK1* overexpression to proteasomal vs. autophagic dysfunction.

      As you have noted, our study has built upon prior findings while introducing new mechanistic insights into sPINK1 and pUb-mediated proteasomal dysfunction.

      2C 24h MG132 not recommended, most cells are dead by then.

      We used MG132 treatment for 24 hours to evaluate the time-course effects of proteasomal inhibition on PINK1 and pUb levels in HEK293 cells (Figures 2C and 2E). We did observe some decrease in both PINK1 and pUb levels at 24 hours compared to 12 hours, which may result from some extend of cell death at the longer treatment duration.

      In SH-SY5Y cells, we collected cells at 24 hours after MG132 administration (Figure 5—figure supplementary 1). Though protein aggregation was evident in these cells, we did not observe pronounced cell death under these conditions, justifying our treatment.

      Our findings are consistent with previous studies demonstrating that MG132 at 5 µM for 24 hours effectively induces proteasomal inhibition without substantial cytotoxicity. For example, studies using human esophageal squamous cancer cells have reported that this treatment condition inhibits cell proliferation while maintaining cell viability, with cell viability >70% after 24-hour treatment with 5 µM MG132 (Int J Mol Med 33: 1083-1088, 2014). 

      MG132 has been commonly used at concentrations ranging from 5 to 50 µM for durations of 1 to 24 hours, as stated at the vendor’s website (https://www.cellsignal.com/products/activatorsinhibitors/mg-132/2194).

      2I what is BALA do they mean bafilomycin. This is a v-ATPase inhibitor, not just an autophagy inhibitor.

      We appreciate the reviewer’s comment regarding the use of BALA in Figure 2I. To clarify, BALA refers to bafilomycin A1, a well-established v-ATPase inhibitor that blocks lysosomal acidification. While bafilomycin A1 is commonly used as an autophagy inhibitor, its primary mechanism involves inhibiting lysosomal function, which is critical for autophagosome-lysosome fusion and subsequent degradation of autophagic cargo.

      In our study, we used bafilomycin A1 in conjunction with puromycin to dissect the relative contributions of sPINK1 overexpression on proteasomal and autophagic activities. Puromycin induces protein misfolding and aggregation, causing stress on both degradation pathways. By inhibiting lysosomal function with bafilomycin A1 and blocking the protein degradation load at various stages, we can tell the relative contributions of autophagy and UPS pathways.

      We acknowledge that bafilomycin A1’s effects extend beyond autophagy, as it also inhibits v-ATPase activity. However, its inhibition of lysosomal degradation is integral to distinguishing autophagy’s contribution under the experimental conditions, and BALA treatment has been used in extensively in previous studies (Mauvezin and Neufeld, 2015). 

      We have further clarified this treatment in the revised manuscript.

      Figure 3. Legend or text needs to be more explicit about how chains have been produced. From what I can gather from methods only a single E2 has been trialed. Authors should use at least one of the criteria used by Wauer et al. (2014) to confirm the stoichiometry of phosphorylation. The concept that pUb can interfere with E2 discharging is not new, but not universal across E2s.

      We have cited in the manuscript that PINK1-mediated ubiquitin phosphorylation can interfere with ubiquitin chain elongation for certain E2 enzymes (Wauer et al., 2015). 

      To clarify, the focus of our current work is on how elevation of Ub phosphorylation impacts UPS activity, rather than exploring the broader effects of Ub phosphorylation on Ub chain elongation. For this reason, we have used the standard E2 that is well-established for generating K48-linked polyUb chain (Pickart CM, 2005). Moreover, our findings go further and by demonstrate that phosphorylated K48-linked polyubiquitin exhibits weaker non-covalent interactions with proteasomal ubiquitin receptors. This dual effect—on both covalent chain elongation and non-covalent interactions— contributes to the observed reduction in ubiquitin-proteasome activity, a novel aspect of our study.

      To address the reviewer’s concerns, we have added details in the Methods section and figure legends regarding the generation of ubiquitin chains. Specifically, we used ubiquitin-activating enzyme E1 (UniProt ID: P22314) and ubiquitin-conjugating enzyme E2-25K (UniProt ID: P61086) to generate K48-linked ubiquitin chains. 

      Our ESI-MS analysis showed that only 1–2 phosphoryl groups were incorporated into the K48-linked tetra-ubiquitin chains (Figure 3—figure supplement 2). This is consistent with our in vivo findings, where pUb levels increased by 30.4% in aged mouse brains compared to young brains (Figure 1F). Notably, even sub-stoichiometric phosphorylation onto the K48-linked ubiquitin chain significantly weakens the non-covalent interactions with the proteasome (Figures 3E and 3H).

      Figure 4. I could find no definition of the insoluble fraction, nor details on how it is prepared.

      The insoluble fraction primarily contains proteins that are aggregated or associated with hydrophobic interactions and cannot be solubilized by RIPA buffer. We have provided more details in the Methods of the revised manuscript about how the insoluble fraction was prepared. Our approach was based on established protocols for fractionating soluble and insoluble proteins from brain tissues (Wirths, 2017). Here is an outline of the procedure, which enables the separation and subsequent analysis of distinct protein populations:

      • Lysis and preparation of soluble fraction: Cells and brain tissues were lysed using RIPA buffer (Beyotime Biotechnology, cat# P0013B) containing protease (P1005) and phosphatase inhibitors (P1081) on ice for 30 minutes, with gentle vortexing every 10 minutes. Brain samples were homogenized using a precooled TissuePrep instrument (TP-24, Gering Instrument Company). Lysates were centrifuged at 12,000 rpm for 30 minutes at 4°C. The supernatant was collected as the soluble protein fraction.

      • Preparation of insoluble fraction: The pellet was resuspended in 20 µl of SDS buffer (2% SDS, 50 mM Tris-HCl, pH 7.5) and subjected to ultrasonic pyrolysis at 4°C for 8 cycles (10 seconds ultrasound, 30 seconds interval). The samples were then centrifuged at 12,000 rpm for 30 minutes at 4°C. The supernatant obtained after this step was designated as the insoluble protein fraction.

      • Protein quantification: Protein concentrations for both soluble and insoluble fractions were determined using the BCA Protein Assay Kit (Beyotime Biotechnology, cat# P0009).

      Figure 5. What is the transfection efficiency? How many folds is sPINK1 over-expressed? Typically, a neuron will have only a few hundred copies of PINK1 at the basal state. How much mutant ubiquitin is expressed relative to wild type, seeing the free ubiquitin signals on the gels might be helpful here, but they seem to have been cut off. 

      We appreciate the reviewer's insightful comments regarding transfection efficiency, the extent of sPINK1 overexpression, and the expression levels of mutant ubiquitin relative to wild-type ubiquitin. Below, we provide detailed responses to each point:

      Transfection Efficiency: Our immunofluorescent staining for NeuN, a neuronal marker, demonstrated that over 90% of NeuN-positive cells were co-localized with GFP (Figure 5—figure supplement 2), indicating a high transfection efficiency in our neuronal cultures.

      Extent of sPINK1 Overexpression: Quantifying the exact fold increase of sPINK1 upon overexpression is inherently difficult due to its low basal expression under physiological conditions, making the relative increase difficult to measure (small denominator effect). However, our Western blot analysis shows that ischemic events can cause a substantial elevation of PINK1 levels, including both full-length and cleaved forms (Figure 1H). This suggests that our overexpression model recapitulates the pathological increase in PINK1, making it a relevant system for studying disease mechanisms.

      From Figure 5B, it is evident that sPINK1 levels differ significantly between neurons overexpressing sPINK1 alone and those co-expressing sPINK1 + Ub/S65A (70 days post-transfection). Overexpression of sPINK1 alone results in multiple PINK1 bands, consistent with sPINK1, endogenous PINK1 (induced by mitochondrial damage), and ubiquitinated sPINK1. In comparison, co-expressing Ub/S65A leads to faint PINK1 bands, suggesting that in the presence of a functionally restored proteasome, overexpressed sPINK1 is rapidly degraded. Therefore, actual accumulation of sPINK1 depends on proteasomal activity, and the “over-expressed” PINK1 level can be comparable to levels observed under native, pathological conditions.

      Expression Levels of Mutant Ubiquitin Relative to Wild-Type: Assessing the expression levels of mutant versus wild-type ubiquitin is indeed valuable. In Figure 5E, we observed a 38.9% increase in high-molecular-weight ubiquitin conjugates in the soluble fraction when comparing the sPINK1+Ub/S65A group to the control. This increase suggests that mutant ubiquitin is actively incorporated into polyubiquitin chains.

      Regarding free monomeric ubiquitin, its low abundance and rapid incorporation into polyubiquitin chains make it difficult to visualize in Western blots. Additionally, its low molecular weight and lower antibody binding valency further reduce its visibility.

      General: a number of effects are shown following over-expression but no case is made that these levels of pUb are ever attained physiologically. I am very unconvinced by these findings and think the manuscript needs to be improved at multiple levels before being added to the record.

      We understand the reviewer’s concerns regarding the relevance of pUb levels observed in our overexpression model. To clarify, our study is not focused on physiological levels of pUb, but rather on pathologically elevated levels, which have been documented in various neurodegenerative conditions. While overexpression is not a perfect replication of pathological states, it provides a valuable tool to investigate mechanisms that become relevant under disease conditions. Moreover, we have taken steps to ensure the validity of our findings and to address potential limitations associated with overexpression models:

      Pathological Relevance: Besides several reported literatures, we observed significant increases in PINK1 and pUb levels in human brain samples from Alzheimer's disease (AD) patients, as well as in mouse models of AD, cerebral ischemia (including mouse middle cerebral artery occlusion ischemic model and oxygen glucose deprivation cell model), and aging (e.g., Figures 1E, 1F, and 1H). All these data show that pUb levels are elevated under pathological conditions. Our overexpression model mimics these pathological scenarios by recreating the high levels of pUb, which lead to the impairment of proteasomal activity and subsequent disruption of proteostasis.

      Use of Robust Controls: To ensure the reliability of our results and interpretations, we employed multiple controls for our experiments. We have used pink1<sup>-/-</sup> mice and cells to confirm that pUb accumulation is PINK1-dependent (Figures 1C and 2C). We have also included kinase-dead sPINK1 mutant and Ub/S65A phospho-null mutants to negate/counteract the specific roles of PINK1 activity and pUb in proteasomal dysfunction. On the other hand, we have used Ub/S65E for phosphomimetic mutant, corresponding to a 100% Ub phosphorylation.

      Importantly, we have compared sPINK1 overexpression with both baseline and disease-mimicking conditions, thus to ensure that the observed effects are consistent with pathological changes. Furthermore, our findings are supported by complementary evidences from human brain samples, model animals, cell cultures, and molecular assays. Integrating the different controls and various approaches, we have provided mechanistic insights into how elevated pUb levels causes proteasomal impairment and contributes to neurodegeneration.

      Our findings elucidate how elevated pUb level contributes to the disruption of proteostasis in neurodegenerative conditions. While overexpression may have limitations, it remains a powerful tool for dissecting pathological mechanisms and testing hypotheses. Our results align with and expand upon previous studies suggesting pUb as a biomarker of neurodegeneration (Hou, et al, 2018; Fiesel, et al, 2015), and provide mechanistic insights into how elevated pUb and sPINK1 drive a viscous feedforward cycle, ultimately leading to proteasomal dysfunction and neurodegeneration. 

      We hope these clarifications highlight the relevance and rigor of our study, and welcome additional suggestions to improve the manuscript.

      Reviewer #3 (Public review):

      Summary:

      This study aims to explore the role of phosphorylated ubiquitin (pUb) in proteostasis and its impact on neurodegeneration. By employing a combination of molecular, cellular, and in vivo approaches, the authors demonstrate that elevated pUb levels contribute to both protective and neurotoxic effects, depending on the context. The research integrates proteasomal inhibition, mitochondrial dysfunction, and protein aggregation, providing new insights into the pathology of neurodegenerative diseases.

      Strengths:

      - The integration of proteomics, molecular biology, and animal models provides comprehensive insights.

      - The use of phospho-null and phospho-mimetic ubiquitin mutants elegantly demonstrates the dual effects of pUb.

      - Data on behavioral changes and cognitive impairments establish a clear link between cellular mechanisms and functional outcomes.

      Weaknesses:

      - While the study discusses the reciprocal relationship between proteasomal inhibition and pUb elevation, causality remains partially inferred.

      It has been well-established that protein aggregates, particularly neurodegenerative fibrils, can impair proteasomal activity (McDade, et al., 2024; Kinger, et al., 2024; Tseng, et al., 2008). Other contributing factors, including ATP depletion, reduced proteasome component expression, and covalent modifications of proteasomal subunits, can also lead to declined proteasomal function. Additionally, mitochondrial injury serves as an important source of elevated PINK1 and pUb levels. Recent studies have demonstrated that efficient mitophagy is essential to prevent pUb accumulation, whereas partial mitophagy failure results in elevated PINK1 levels (Chin, et al, 2023; Pollock, et al. 2024).

      While pathological conditions can impair proteasomal function and slow sPINK1 degradation, leading to its accumulation, our results demonstrate that overexpression of sPINK1 or PINK1 can initiate this cycle as well. Once this cycle is initiated, it becomes self-perpetuating, as sPINK1 and pUb accumulation progressively impair proteasomal function, leading to more protein aggregates and mitochondrial damages.

      Importantly, we show that co-expression of Ub/S65A effectively rescues cells from this cycle, which further illustrates the pivotal role of pUb in driving proteasomal inhibition and the causality between pUb elevation and proteasomal inhibition. At the animal level, pink1 knockout prevents protein aggregation under aging and cerebral ischemia conditions (Figures 1E and 1G). 

      Together, by controlling at protein, cell, and animal levels, our findings support this self-reinforcing and self-amplifying cycle of pUb elevation, proteasomal inhibition, protein aggregation, mitochondrial damage, and ultimately, neurodegeneration.

      - The role of alternative pathways, such as autophagy, in compensating for proteasomal dysfunction is underexplored.

      Indeed, previous studies have shown that elevated sPINK1 can enhance autophagy (Gao, et al., 2016,), potentially compensating for impaired UPS function. One mechanism involves PINK1mediated phosphorylation of p62, which enhances autophagic activity.

      In our study, we observed increased autophagic activity upon sPINK1 overexpression, as shown in Figure 2I (middle panel, without BALA). This increase in autophagy may facilitate the degradation of ubiquitinated proteins induced by puromycin, partially mitigating proteasomal dysfunction. This compensation might also explain why protein aggregation, though statistically significant, increased only slightly at 70 days post-sPINK1 transfection (Figure 5F). Additionally, we detected a mild but statistically insignificant increase in LC3II levels in the hippocampus of mouse brains at 70 days postsPINK1 transfection (Figure 5—figure supplement 6), further supporting the notion of autophagy activation.

      However, while autophagy may provide some compensation, its effect is likely limited. The UPS and autophagy serve distinct roles in protein degradation:

      • Autophagy is a bulk degradation pathway, primarily targeting damaged organelles, intracellular pathogens, and protein aggregates, often in a non-selective manner.

      • The UPS, in contrast, is highly selective, degrading short-lived regulatory proteins, misfolded proteins, and proteins tagged for degradation via ubiquitination.

      Thus, while sPINK1 overexpression enhances autophagy-mediated degradation, it simultaneously impairs UPS-mediated degradation. This suggests that autophagy partially compensates for proteasomal dysfunction but is insufficient to counterbalance the UPS's selective degradation function. We have incorporated additional discussion in the revised manuscript.

      - The immunofluorescence images in Figure 1A-D lack clarity and transparency. It is not clear whether the images represent human brain tissue, mouse brain tissue, or cultured cells. Additionally, the DAPI staining is not well-defined, making it difficult to discern cell nuclei or staging. To address these issues, lower-magnification images that clearly show the brain region should be provided, along with improved DAPI staining for better visualization. Furthermore, the Results section and Figure legends should explicitly indicate which brain region is being presented. These concerns raise questions about the reliability of the reported pUb levels in AD, which is a critical aspect of the study's findings.

      We have taken steps to address the concerns regarding clarity and transparency in Figure 1A-D. We have already addressed the source of tissues at the left of each images. For example, we have written “human brain with AD” at the left side of Figure 1A, and “mouse brains with AD” at the left side of Figure 1C.

      Briefly, the human brain samples in Figure 1 originate from the cingulate gyrus of Alzheimer’s disease (AD) patients. Our analysis revealed that PINK1 is primarily localized within cell bodies, whereas pUb is more abundant around Aβ plaques, likely in nerve terminals. For the mouse brain samples, we have now explicitly indicated in the figure legends and Results section that the images represent the neocortex of APP/PS1 mice, a mouse model relevant to AD pathology, as well as the corresponding regions in wild-type and pink1<sup>-/-</sup> mice. We have ensured that the brain regions and sources are clearly stated throughout the manuscript.

      Regarding image clarity, we have uploaded higher-resolution versions of the images in the revised manuscript to improve visualization of key features, including DAPI staining. We believe these revisions enhance the reliability and interpretability of our findings, particularly in relation to the reported pUb levels in AD. 

      - Figure 4B should also indicate which brain region is being presented.

      The images were taken for layer III-IV in the neocortex of mouse brains. We have included this information in the figure legend of the revised manuscript.

      Reviewer #3 (Recommendations for the authors):

      - Expand on the potential compensatory role of autophagy in response to proteasomal dysfunction.

      Upon proteasomal inhibition, cells may activate autophagy as an alternative pathway of degradation to help clear damaged or misfolded proteins. Autophagy is a bulk degradation process that targets long-lived proteins, damaged organelles, and aggregated proteins for lysosomal degradation. While this pathway can provide some compensation, it is distinct from the ubiquitin-proteasome system (UPS), which specializes in the selective degradation of short-lived regulatory proteins and misfolded proteins.

      In our study, we observed increased autophagic activity following sPINK1 overexpression (Figure 2J, middle panel, without BALA) and a slight, though statistically insignificant, increase in LC3II levels in the hippocampus of mouse brains at 70 days post-sPINK1 transfection (Figure 5—figure supplement 6). These findings suggest that autophagy is indeed upregulated as a compensatory response to proteasomal dysfunction, potentially facilitating the degradation of aggregated ubiquitinated proteins. Additionally, gene set enrichment analysis (GSEA) revealed similar enrichment of autophagy pathways at 30 and 70 days post-sPINK1 overexpression (Figure 5—figure supplement 5).

      However, the compensatory capacity of autophagy is likely limited. While autophagy can reduce protein aggregation, it is an inherently non-selective process and cannot fully replace the targeted functions of the UPS. Moreover, as we illustrate in Figure 7 of the revised manuscript, UPS is essential for degrading specific regulatory and inhibitory proteins and plays a critical role in cellular proteostasis, particularly in signaling regulation, cell cycle control, and stress responses.

      Together, while autophagy activation provides some degree of compensation, it cannot fully restore cellular proteostasis. The interplay between these two degradation pathways is an important area for future investigation. For the present study, our focus is on how pUb elevations impact proteasomal activity and elicits downstream effects.

      We have incorporated these additional discussions on this topic in the revised manuscript.

      - Simplify the discussion of complex mechanisms to improve accessibility for readers.

      We have revised the Discussion to present the mechanisms in a more coherent and accessible manner, ensuring clarity for a broader readership. These revisions should make the discussion more intuitive while preserving the depth of our findings.

      - Statistical analyses could benefit from clarifying how technical replicates and biological replicates were accounted for across experiments.

      We have clarified our statistical analysis in the Methods section and figure legends, explicitly detailing how many biological replicates were accounted for across experiments. These revisions should enhance transparency and clarity, ensuring that our findings are robust and reproducible.

      - The image in Figure 3D is too small to distinguish any signals. A larger and clearer image should be presented.

      We have expanded the images in Figure 3D. Additionally, we have replaced figures with version of better resolutions throughout the manuscript.

      - NeuN expression in Figure 4B differs between wildtype and pink-/- mice. Additional validation is needed to determine whether pink-/- enhances NeuN expression.

      The difference in NeuN immunofluorescence intensity between wild-type and pink1<sup>-/-</sup> mice in Figure 4B may simply result from variations in image acquisition rather than an actual difference in NeuN expression.

      Our single nuclei RNA-seq analyses of wild-type and pink1<sup>-/-</sup> mice at 3 and 18 months of age reveal no significant differences in NeuN expression at the transcript level (data provided below). This confirms that the observed variation in fluorescence intensity is unlikely to reflect an authentic upregulation of NeuN expression. Thus, factors like the concentration of antibody, image exposure and processing may contribute to differences in staining intensity.

      Author response image 1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors have examined gene expression between life cycle stages in a range of brown macroalgae to examine whether there are conserved aspects of biological features. 

      Strengths: 

      The manuscript incorporates large gene expression datasets from 10 different species and therefore enables a comprehensive assessment of the degree of conservation of different aspects of gene expression and underlying biology. 

      The findings represent an important step forward in our understanding of the core aspects of cell biology that differ between life cycle phases and provide a substantial resource for further detailed studies in this area. Convincing evidence is provided for the conservation of lifecycle-specific gene expression between species, particularly in core housekeeping gene modules. 

      Weaknesses: 

      I found a few weaknesses in the methodology and experimental design. I think the manuscript could have been clearer when linking the findings to the biology of the brown algae. 

      Reviewer #2 (Public review): 

      Summary: 

      The manuscript by Ratchinski et al presents a comprehensive analysis of developmental and life history gene expression patterns in brown algal species. The manuscript shows that the degree of generation bias or generation-specific gene expression correlates with the degree of dimorphism. It also reports conservation of life cycle features within generations and marked changes in gene expression patterns in Ectocarpus in the transition between gamete and early sporophyte. The manuscript also reports considerable conservation of gene expression modules between two representative species, particularly in genes associated with conserved functional characteristics. 

      Strengths: 

      The manuscript represents a considerable "tour de force" dataset and analytical effort. While the data presented is largely descriptive, it is likely to provide a very useful resource for studies of brown algal development and for comparative studies with other developmental and life cycle systems. 

      Weaknesses: 

      Notwithstanding the well-known issues associated with inferring function from transcriptomics-only studies, no major weaknesses were identified by this reviewer. 

      Reviewing Editor Comments:

      The overall assessment of the reviewers does not contain major aspects of concern. We nevertheless recommend that the authors carefully consider the constructive comments, as this will further improve their manuscript. 

      Reviewer #1 (Recommendations for the authors): 

      (1) Line 32: The abstract states 'considerable conservation of co-expressed gene modules', but the degree of conservation between Ectocarpus and D. dichotoma appeared limited to specific subsets of genes with highly conserved housekeeping functions, e.g., translation. I think the wording of the abstract should be rephrased to better reflect this. 

      We agree that genes with housekeeping functions figure strongly in the gene modules that showed strong conservation between Ectocarpus species 7 and D. dichotoma (and we actually highlight this point in the manuscript) but we do not believe that this invalidates the conservation. In the analysis shown in Figure 6A, for example, high scores were obtained for both connectivity and density for about a third of the gene modules and these modules cover broad range of cellular functions. This is a significant result given the large phylogenetic distance and we feel that "considerable conservation" is appropriate as a description of the level of correlation. 

      (2) Introduction - The Introduction needs a better explanation of the biology of the life cycle phases. Some of this information is present in the 1st paragraph of Materials and Methods, although it would be preferable to include this information within the main text, ideally within the Introduction before the Results are described. For example, when are flagella present? The presence of flagella could be indicated in Figure 3. The ecology of the life cycle is also not described. Are life cycles present in the same ecological niche? Do they co-exist or occupy distinct environments? It would be useful to understand how the observed genotypes could relate to this wider aspect of the brown algal biology. 

      We have added a sentence to explain that zoids (gametes and spores) are the only flagellated stages of the life cycle (line 678). In addition, in the legend for Figure 3, we have indicated which of the life cycle stages analysed in panel 3A consisted entirely or partially of flagellated cells. We have also added information about phenology to the Introduction. 

      (3) Line 127. 'The proportion of generation specific genes was positively correlated with the level of dimorphism'. The level of dimorphism between species was not clear to me. This needs to be clearly displayed in Figure 1B. 

      We had attempted to illustrate the level of dimorphism, using the size of each generation as a measurable proxy, in Figure S1 but we agree that the information was not very clearly presented. To improve clarity, we now provide independent size scales for each generation of the life cycle in this figure and state in the legend that "Size bars indicate the approximate sizes of each generation of each life cycle, providing an indication of the degree of dimorphism between the two generations.". In the text, Figure S1 is cited earlier in the paragraph but we now repeat the citation of the figure at the end of the sentence "The proportion of generation-specific genes (...) was positively correlated with the level of dimorphism" so that the reader can specifically consult the supplementary figure for this phenotypic parameter. 

      (4) Line 267. Are there known differences in cell wall composition between life cycle phases or within each generation as individual life cycle phases mature (e.g., differences between unicellular and multicellular stages)? 

      Detailed comparative analyses of cell wall composition at different stages of the life cycle have not been carried out for brown algae. However, Congo red stains Ectocarpus gametophytes but not sporophytes (Coelho et al., 2011), indicating a difference in cell wall composition between the two generations. Zoids (spores and gametes) do not have a cell wall and calcofluor white staining of meio-spores has indicated that a cell wall only starts to be deposited 24-48 hours post-release (Arun et al., 2013).

      (5) Line 388. The authors should comment on the accuracy of OrthoFinder for different gene types across this degree of divergence (250 MYA). The best conservation was found in genes with housekeeping characteristics (line 401). It may be that these gene modules show the highest degree of conservation in expression patterns, but I also wonder whether they pattern may also emerge because finding true orthologues is easier for highly conserved gene families. 

      We do not believe that this is the case because, as mentioned above, the "housekeeping" modules cover quite a broad range of cellular functions. Note also that the modules were given functional labels based on their being clearly enriched in genes corresponding to a particular class of function but not all the genes in a module have a predicted function that corresponds to the functional classification. 

      However, we have carried out an analysis to look for evidence of the bias proposed by the reviewer. For this, we used BLASTp identity scores as an approximate proxy for pairwise identity between Ectocarpus species 7 and D. dichotoma one-to-one orthologues in each module and plotted the mean identity score for each module against the Fischer test p-value of the contingency table in Figure 6C (Author response image 1).

      Author response image 1.

      Plot of estimations of the mean percent shared identity between the orthologues within each module (based on mean BLASTp identity scores) against log10(pvalue) values obtained with the Fisher's exact test applied in Figure 6C to determine whether pairs of modules shared a greater number of one-to-one orthologues than expected from a random distribution. Error bars indicate the standard deviation. 

      This analysis did not detect any correlation between the degree of sequence conservation of orthologues in a module and the degree of conservation of the module between Ectocarpus species 7 and D. dichotoma.

      Minor comments 

      (1) Line 650 loose should be lose.

      The error has been corrected.

      (2) Line 695 filtered through a 1 μm filter to remove multicellular gametophyte fractions. Is this correct? It seems too small to allow gametes to pass through. 

      Yes, the text is correct, a 1 μm filter was used. The gametes do pass through this filter, presumably because they do not have a rigid cell wall, allowing them to squeeze through the filter when a light pressure is applied. 

      (3) Line 709 - DDT should be DTT 

      The error has been corrected.

      Reviewer #2 (Recommendations for the authors): 

      (1) It is not clear why the chosen species for analysis do not include fucoid algae, which display a high degree of dimorphism between generations and which are relatively well studied with respect to gene expression patterns during early development. Indeed, it was recently shown that gene expression patterns in developing embryos of Fucus spp. obey the "hourglass" pattern whereby gene expression shows a minima of transcription age index (i.e., higher expression of evolutionarily older genes) associated with differentiation at the phylotypic stage. I am somewhat surprised that the manuscript does not consider this feature in the analysis or discussion. 

      Brown algae of the order Fucales have diploid life cycles and therefore do not alternate between a sporophyte and gametophyte generation. It is for this reason that we thought that it was more interesting to compare Ectocarpus species 7 with D. dichotoma, which has a haploid-diploid life cycle.

      (2) In Discussion, the comparison of maternal to zygote transition in animals and land plants, which show a high degree of dimorphism, with Ectocarpus would be strengthened by data/discussion from other brown algae that show a high degree of dimorphism. 

      Animals have diploid life cycles and dimorphism in that lineage generally refers to sexual rather than generational dimorphism. Land plants do have highly dimorphic haploiddiploid life cycles but it is unclear how this characteristic relates to events that occur during the maternal to zygote transition. In Ectocarpus, the transition from gamete to the first stages of sporophyte development involved more marked changes in gene expression than we observed when comparing the mature sporophyte and gametophyte generations (Figure 3C). At present, there is no evidence that events during these two transitions are correlated. The relationship between changes in gene expression during very early sporophyte development and during alternation of life cycle generations could be investigated further using a highly dimorphic kelp model system such as Saccharina latissima but we are not aware of any studies that have specifically addressed this point. 

      (3) Since marked changes were observed during the transition from gamete to early sporophyte in Ectocarpus, it would be interesting to know how gene expression patterns change during the transition from gamete to partheno-sporophyte. Would the same patterns of downregulation and upregulation be expected? 

      The sporophyte individuals derived from gamete parthenogenesis (parthenosporophytes) are indistinguishable morphologically and functionally from diploid sporophytes derived from gamete fusions (see line 76). They also express generation marker genes in a comparable manner (Peters et al., 2008). Based on these observations, we have treated partheno-sporophytes and diploid sporophytes as equivalent in our experiments. For clarity, we have now distinguished partheno-sporophyte from diploid sporophyte samples in Table S1. 

      (4) The authors show a correlation between the degree of dimorphism and generation-biased or generation-specific expression. How was the degree of dimorphism quantified? 

      The degree of dimorphism is illustrated in Figure S1 using the relative size of the two generations as a proxy. Size estimations are approximate because the size of an individual of a particular species is quite variable but the ten species nonetheless represent a very clear gradient of dimorphism due to the extreme differences in size between generations of species at each end of the scale, with the sporophyte generation being several orders of magnitude larger than the gametophyte generation or visa versa. 

      References

      Arun A, Peters NT, Scornet D, Peters AF, Cock JM, Coelho SM. 2013. Non-cell autonomous regulation of life cycle transitions in the model brown alga Ectocarpus. New Phytol 197:503– 510. doi:10.1111/nph.12007

      Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM. 2011. OUROBOROS is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. Proc Natl Acad Sci USA 108:11518–11523. doi:10.1073/pnas.1102274108

      Peters AF, Scornet D, Ratin M, Charrier B, Monnier A, Merrien Y, Corre E, Coelho SM, Cock JM. 2008. Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. Development 135:1503–1512.doi:10.1242/dev.016303

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This manuscript presents a study on expectation manipulation to induce placebo and nocebo effects in healthy participants. The study follows standard placebo experiment conventions with the use of TENS stimulation as the placebo manipulation. The authors were able to achieve their aims. A key finding is that placebo and nocebo effects were predicted by recent experience, which is a novel contribution to the literature. The findings provide insights into the differences between placebo and nocebo effects and the potential moderators of these effects.

      Specifically, the study aimed to:

      (1) assess the magnitude of placebo and nocebo effects immediately after induction through verbal instructions and conditioning

      (2) examine the persistence of these effects one week later, and

      (3) identify predictors of sustained placebo and nocebo responses over time.

      Strengths:

      An innovation was to use sham TENS stimulation as the expectation manipulation. This expectation manipulation was reinforced not only by the change in pain stimulus intensity, but also by delivery of non-painful electrical stimulation, labelled as TENS stimulation.

      Questionnaire-based treatment expectation ratings were collected before conditioning and after conditioning, and after the test session, which provided an explicit measure of participants' expectations about the manipulation.

      The finding that placebo and nocebo effects are influenced by recent experience provides a novel insight into a potential moderator of individual placebo effects.

      We thank the reviewer for their thorough evaluation of our manuscript and for highlighting the novelty and originality of our study.

      Weaknesses:

      There are a limited number of trials per test condition (10), which means that the trajectory of responses to the manipulation may not be adequately explored.

      We appreciate the reviewer’s comment regarding the number of trials in the test phase. The trial number was chosen to ensure comparability with previous studies addressing similar research questions with similar designs (e.g. Colloca et al., 2010). Our primary objective was to directly compare placebo and nocebo effects within a within-subject design and to examine their persistence one week after the first test session. While we did not specifically aim to investigate the trajectory of responses within a single testing session, we fully agree that a comprehensive analysis of the trajectories of expectation effects on pain would be a valuable extension of our work. We have now acknowledged this limitation and future direction in the revised manuscript.

      The paragraph reads as follows: “It is important to note that our study was designed in alignment with previous studies addressing similar questions (e.g., Colloca et al., 2010). Our primary aim was to directly compare placebo and nocebo effects in a within-subject design and assess their persistence of these effects one week following the first test session. One limitation of our approach is the relatively short duration of each session, which may have limited our ability to examine the trajectory of responses within a single session. Future studies could address this limitation by increasing the number of trials for a more comprehensive analysis.”

      On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60, and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. There is a potential risk of revealing the manipulation to participants during the re-familiarization process, as they were not previously briefed to expect the painful stimulus intensity to vary without the application of sham TENS stimulation.

      We thank the reviewer for the opportunity to clarify this point. Participants were informed at the beginning of the experiment that we would use different stimulation intensities to re-familiarize them with the stimuli before the second test session. We are therefore confident that participants perceived this step as part of a recalibration rather than associating it with the experimental manipulation. We have added this information to the revised version of the manuscript.

      The paragraph now reads as follows: “On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation. Note that participants were informed that these pre-test stimuli were part of the recalibration and refamiliarization procedure conducted prior to the second test session.”

      The differences between the nocebo and control conditions in pain ratings during conditioning could be explained by the differing physiological effects of the different stimulus intensities, so it is difficult to make any claims about expectation effects here.

      We appreciate the reviewer’s comment and agree that, despite the careful calibration of the three pain stimuli, we cannot entirely rule out the possibility that temporal dynamics during the conditioning session were influenced by differential physiological effects of the varying stimulus intensities (e.g., intensity-dependent habituation or sensitization). We have addressed this in the revision of the manuscript, but we would like to emphasize that the stronger nocebo effects during the test phase are statistically controlled for any differences in the conditioning session.

      The paragraph now reads: “This asymmetry is noteworthy in and of itself because it occurred despite the equidistant stimulus calibration relative to the control condition prior to conditioning. It may be the result of different physiological effects of the stimuli over time or amplified learning in the nocebo condition, consistent with its heightened biological relevance, but it could also be a stronger effect of the verbal instructions in this condition.”

      A randomisation error meant that 25 participants received an unbalanced number of 448 trials per condition (i.e., 10 x VAS 40, 14 x VAS 60, 12 x VAS 80).

      We agree that this is indeed unfortunate. However, we would like to point out that all analyses reported in the manuscript have been controlled for the VAS ratings in the conditioning session, i.e., potential effects of the conditioned placebo and nocebo stimuli. Moreover, we have now conducted additional analyses, presented here in our response to the reviewers, to demonstrate that this imbalance did not systematically bias the results. Importantly, the key findings observed during the test phase remain robust despite this issue.

      Specifically, when excluding these 25 participants from the analyses, the reported stronger nocebo compared to placebo effects in the test session on day 1 remain unchanged. Likewise, the comparison of placebo and nocebo effects between days 1 and 8 shows the same pattern when excluding the participants in question. The only exception is the interaction between effect (placebo vs nocebo) x session (day 1 vs day 8), which changed from a borderline significant result (p = .049) to insignificant (p = .24). However, post hoc tests continued to show the same pattern as originally reported: a significant reduction in the nocebo effect from day 1 to day 8 and no significant change in the placebo effect.

      Reviewer #2 (Public review):

      Summary:

      Kunkel et al aim to answer a fundamental question: Do placebo and nocebo effects differ in magnitude or longevity? To address this question, they used a powerful within-participants design, with a very large sample size (n=104), in which they compared placebo and nocebo effects - within the same individuals - across verbal expectations, conditioning, testing phase, and a 1-week follow-up. With elegant analyses, they establish that different mechanisms underlie the learning of placebo vs nocebo effects, with the latter being acquired faster and extinguished slower. This is an important finding for both the basic understanding of learning mechanisms in humans and for potential clinical applications to improve human health.

      Strengths:

      Beyond the above - the paper is well-written and very clear. It lays out nicely the need for the current investigation and what implications it holds. The design is elegant, and the analyses are rich, thoughtful, and interesting. The sample size is large which is highly appreciated, considering the longitudinal, in-lab study design. The question is super important and well-investigated, and the entire manuscript is very thoughtful with analyses closely examining the underlying mechanisms of placebo versus nocebo effects.

      We thank the reviewer for their positive evaluation of our manuscript and for acknowledging the methodological rigor and the significant implications for clinical applications and the broader research field.

      Weaknesses:

      There were two highly addressable weaknesses in my opinion:

      (1) I could not find the preregistration - this is crucial to verify what analyses the authors have committed to prior to writing the manuscript. Please provide a link leading directly to the preregistration - searching for the specified number in the suggested website yielded no results.

      We thank the reviewer for pointing this out. We included a link to the preregistration in the revised manuscript. This study was pre-registered with the German Clinical Trial Register (registration number: DRKS00029228; https://drks.de/search/de/trial/DRKS00029228).

      (2) There is a recurring issue which is easy to address: because the Methods are located after the Results, many of the constructs used, analyses conducted, and even the main placebo and nocebo inductions are unclear, making it hard to appreciate the results in full. I recommend finding a way to detail at the beginning of the results section how placebo and nocebo effects have been induced. While my background means I am familiar with these methods, other readers will lack that knowledge. Even a short paragraph or a figure (like Figure 4) could help clarify the results substantially. For example, a significant portion of the results is devoted to the conditioning part of the experiment, while it is unknown which part was involved (e.g., were temperatures lowered/increased in all trials or only in the beginning).

      We thank the reviewer for their helpful comment and agree that the Results section requires additional information that would typically be provided by the Methods section if it directly followed the Introduction. In response, we have moved the former Figure 4 from the Methods section to the beginning of the Results section as a new Figure 1, to improve clarity. Further, we have revised the Methods section to explicitly state that all trials during the conditioning phase were manipulated in the same way.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Given that the authors are claiming (correctly) that there is only limited work comparing placebo/nocebo effects, there are some papers missing from their citations:

      Nocebo responses are stronger than placebo responses after subliminal pain conditioning - - Jensen, K., Kirsch, I., Odmalm, S., Kaptchuk, T. J. & Ingvar, M. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc. Natl. Acad. Sci. USA 112, 7863-7 (2015)

      We thank the reviewer and have now included this relevant publication into the introduction of the revised manuscript.

      Hird, E.J., Charalambous, C., El-Deredy, W. et al. Boundary effects of expectation in human pain perception. Sci Rep 9, 9443 (2019). https://doi.org/10.1038/s41598-019-45811-x

      We thank the reviewer for suggesting this relevant publication. We have now included it into the discussion of the revised manuscript by adding the following paragraph:

      “Recent work using a predictive coding framework further suggests that nocebo effects may be less susceptible to prediction error than placebo effects (Hird et al., 2019), which could contribute to their greater persistence and strength in our study.”

      (2) The trial-by-trial pain ratings could have been usefully modelled with a computational model, such as a Bayesian model (this is especially pertinent given the reference to Bayesian processing in the discussion). A multilevel model could also be used to increase the power of the analysis. This is a tentative suggestion, as I appreciate it would require a significant investment of time and work - alternatively, the authors could acknowledge it in the Discussion as a useful future avenue for investigation, if this is preferred.

      We thank the reviewer for this thoughtful suggestion. While we agree that computational modelling approaches could provide valuable insights into individual learning, our study was not designed with this in mind and the relatively small number of trials per condition and the absence of trial-by-trial expectancy ratings limit the applicability of such models. We have therefore chosen not to pursue such analysis but highlight it in the discussion as a promising direction for future research.

      “Notably, the most recent experience was the most predictive in all three analyses; for instance, the placebo effect on day 8 was predicted by the placebo effect on day 1, not by the initial conditioning. This finding supports the Bayesian inference framework, where recent experiences are weighted more heavily in the process of model updating because they are more likely to reflect the current state of the environment, providing the most relevant and immediate information needed to guide future actions and predictions24. Interestingly, while a change in pain predicted subsequent nocebo effects, it seemed less influential than for placebo effects. This aligns with findings that longer conditioning enhanced placebo effects, while it did not affect nocebo responses10 and the conclusion that nocebo instruction may be sufficient to trigger nocebo responses. Using Bayesian modeling, future studies could identify individual differences in the development of placebo and nocebo effects by integrating prior experiences and sensory inputs, providing a probabilistic framework for understanding the underlying mechanisms.”

      (3) The paper is missing any justification of sample size, i.e. power analysis - please include this.

      We apologize for the missing information on our a priori power analysis. As there is a lack of prior studies investigating within-subjects comparisons of placebo and nocebo effects that could inform precise effect size estimates for our research question, we based our calculation on the ability detect small effects. Specifically, the study was powered to detect effect sizes in the range of d = 0.2 - 0.25 with α = .05 and power = .9, yielding a required sample size of N = 83-129. We have now added this information to the methods section of the revised manuscript.

      (4) "On day 8, one stimulus per stimulation intensity (i.e., VAS 40, 60 and 80) was applied before the start of the test session to re-familiarise participants with the thermal stimulation."

      What were the instructions about this? Was it before the electrode was applied? This runs the risk of unblinding participants, as they only expect to feel changes in stimulus intensity due to the TENS stimulation.

      We thank the reviewer for pointing out the potential risk of unblinding participants due to the re-familiarization process prior to the second test session. We would like to clarify that we followed specific procedures to prevent participants from associating this process with the experimental manipulation. The re-familiarisation with the thermal stimuli was conducted after the electrode had been applied and re-tested to ensure that both stimulus modalities were re-introduced in a consistent and neutral context. Participants were explicitly informed that both procedures were standard checks prior to the actual test session (“We will check both once again before we begin the actual measurement.”). For the thermal stimuli, we informed participants that they would experience three different intensities to allow the skin to acclimate (e.g., “...we will test the heat stimuli in 3 trials with different temperatures, allowing your skin to acclimate to the stimuli. …”), without implying any connection to the experimental conditions.

      Importantly, this re-familiarization procedure mirrored what participants had already experienced during the initial calibration session on day 1. We therefore assume that participants interpreted as a routine technical step rather than part of the experimental manipulation. We have now clarified this procedure in the methods section of the revised manuscript.

      (5) "For a comparison of pain intensity ratings between time-points, an ANOVA with the within-subject factors Condition (placebo, nocebo, control) and Session (day 1, day 8) was carried out. For the comparison of placebo and nocebo effects between the two test days, an ANOVA with the with-subject factors Effect (placebo effect, nocebo effect) and Session (day 1, day 8) was used."

      It seems that one ANOVA is looking at raw pain scores and one is looking at difference scores, but this is a bit confusing - please rephrase/clarify this, and explain why it is useful to include both.

      We thank the reviewer for highlighting this point. Our primary analyses focus on placebo and nocebo effects, which we define as the difference in pain intensity ratings between the control and the placebo condition (placebo effect) and the nocebo and the control condition (nocebo effect), respectively.

      To examine whether condition effects were present at each time-point, we first conducted two separate repeated measures ANOVAs - one for day 1 and one for day 8 - with the within-subject factor CONDITION (placebo, nocebo, control).

      To compare the magnitude and persistence of placebo and nocebo effects over time, we then calculated the above-mentioned difference scores and submitted these to a second ANOVA with within-subject factors EFFECT (placebo vs. nocebo effect) and SESSION (day 1 vs. day 8). We have now clarified this approach on page 19 of the revised manuscript. To avoid confusion, the Condition x Session ANOVA has been removed from the manuscript.

      (6) Please can the authors provide a figure illustrating trial-by-trial ratings during test trials as well as during conditioning trials?

      In response to the reviewer’s point, we now provide the trial-by-trial ratings of the test phases on days 1 and 8 as an additional figure in the Supplement (Figure S1) and would like to clarify that trial-by-trial pain intensity ratings of the conditioning phase are displayed in Figure 2C of the manuscript,

      (7) "Separate multiple linear regression analyses were performed to examine the influence of expectations (GEEE ratings) and experienced effects (VAS ratings) on subsequent placebo and nocebo effects. For day 1, the placebo effect was entered as the dependent variable and the following variables as potential predictors: (i) expected improvement with placebo before conditioning, (ii) placebo effect during conditioning and (iii) the expected improvement with placebo before the test session at day 1"

      The term "placebo effect during conditioning" is a bit confusing - I believe this is just the effect of varying stimulus intensities - please could the authors be more explicit on the terminology they use to describe this? NB changes in pain rating during the conditioning trials do not count as a placebo/nocebo effect, as most of the change in rating will reflect differences in stimulation intensity.

      We agree with the reviewer that the cited paragraph refers to the actual application of lower or higher pain stimuli during the conditioning session, rather than genuinely induced placebo or nocebo effect. We thank the reviewer for this helpful observation and have revised the terminology, accordingly, now referring to these as “pain relief during conditioning” and “pain worsening during conditioning”.

      (8) Supplementary materials: "The three temperature levels were perceived as significantly different (VAS ratings; placebo condition: M= 32.90, SD= 16.17; nocebo condition: M= 56.62, SD= 17.09; control condition: M= 80.84, SD= 12.18"

      This suggests that the VAS rating for the control condition was higher than for the nocebo condition. Please could the authors clarify/correct this?

      We thank the reviewer for spotting this error. The values for the control and the nocebo condition had accidentally been swapped. This has now been corrected in the manuscript: control condition: M= 56.62, SD= 17.09; nocebo condition: M= 80.84, SD= 12.18.

      (9) "To predict placebo responses a week later (VAScontrol - VASplacebo at day 8), the same independent variables were entered as for day 1 but with the following additional variables (i) the placebo effect at day 1 and (ii) the expected improvement with placebo before the test session at day 8."

      Here it would be much clearer to say 'pain ratings during test trials at day 1".

      We agree with the reviewer and have revised the manuscript as suggested.

      (10) For completeness, please present the pain intensity ratings during conditioning as well as calibration/test trials in the figure.

      Please see our answer to comment (6).

      (11) In Figure 1a, it looks like some participants had rated the control condition as zero by day 8. If so, it's inappropriate to include these participants in the analysis if they are not responding to the stimulus. Were these the participants who were excluded due to pain insensitivity?

      On day 8, the lowest pain intensity ratings observed were VAS 3 in the placebo condition and VAS 2 in the control condition, both from the same participant. All other participants reported minimum values of VAS 11 or higher (all on a scale from 0-100). Thus, no participant provided a pain rating of VAS 0, and all ratings indicated some level of pain perception in response to the stimulus. We did not define an exclusion criterion based on day 8 pain ratings in our preregistration, and we did not observe any technical issues with the stimulation procedure. To avoid post-hoc exclusions and maintain consistency with our preregistered analysis plan, we therefore decided to include all participants in the analysis.

      (12) "Comparison of day 1 and day 8. A direct comparison of placebo and nocebo effects on day 1 and day 8 pain intensity ratings showed a main effect of Effect with a stronger nocebo effect (F(1,97)= 53.93, 131 p< .001, η2= .36) but no main effect of Day (F(1,97)= 2.94, p= .089, η2 = .029). The significant Effect x Session interaction indicated that the placebo effect and the nocebo effect developed differently over time (F(1,97)= 3.98, p= .049, η2 = .039)"

      This is confusing as it talks about a main effect of "day" and then interaction with "session" - are they two different models? The authors need to clarify.

      We thank the reviewer for pointing this out. In our analysis, “Session” is the correct term for the experimental factor, which has two factor levels, “day 1” and “day 8”. This has now been corrected in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) More information on how "size of the effect" in Figures 1b and 2b was calculated is needed; this can be in the legend. If these are differences between control and each condition, then they were reversed for one condition (nocebo?), which is ok - but this should be clearly explained.

      We agree with the reviewer and have now revised the figure legends to improve clarity. The legends now read:

      1b: “Figure 1. Pain intensity ratings and placebo and nocebo effects during calibration and test sessions. (A) Mean pain intensity ratings in the placebo, nocebo and control condition during calibration, and during the test sessions at day 1 and day 8. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) on day 1 and day 8. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. *: p < .001, : p < .01, n.s.: non-significant.”

      2b: “Figure 2. Mean and trial-by-trial pain intensity ratings, placebo and nocebo effects during conditioning. (A) Mean pain intensity ratings of the placebo, nocebo and control condition during conditioning. (B) Placebo effect (control condition - placebo condition, i.e., positive value of difference) and nocebo effect (nocebo condition - control condition, i.e., positive value of difference) during conditioning. (C) Trial-by-trial pain intensity ratings (with confidence intervals) during conditioning. Error bars indicate the standard error of the mean, circles indicate mean ratings of individual participants. ***: p < .001.”

      (2) In the methods, I was missing a clear understanding of how many trials there were in the conditioning phase, and then how many in the other testing phases. Also, how long did the experiment last in total?

      We apologize that the exact number of trials in the testing phases was not clear in the original manuscript. We now indicate on page 18 of the revised manuscript that we used 10 trials per condition in the test sessions. We have also added information on the duration of each test day (i.e., three hours on day 1 and one hour on day 8) on page 15.

      (3) In expectancy ratings, line 186 - are improvement and worsening expectations different from expected pain relief? It is implied that these are two different constructs - it would be helpful to clarify that.

      We agree that this is indeed confusing and would like to clarify that both refer to the same construct. We used the Generic rating scale for previous treatment experiences, treatment expectations, and treatment effects (GEEE questionnaire, Rief et al. 2021) that discriminates between expected symptom improvement, expected symptom worsening, and expected side effects due to a treatment. We now use the terms “expected pain relief” and “expected pain worsening” throughout the whole manuscript.

      (4) In the last section of the Results, somatosensory amplification comes out of nowhere - and could be better introduced (see point 2 above).

      We agree with the reviewer that introducing the concept of somatosensory amplification and its potential link to placebo/nocebo effects only in the Methods is unhelpful, given that this section appears at the end of the manuscript. We therefore now introduce the relevant publication (Doering et al., 2015) before reporting our findings on this concept.

      (5) In line 169, if the authors want to specify what portion of the variance was explained by expectancy, they could conduct a hierarchical regression, where they first look at R2 without the expectancy entered, and only then enter it to obtain the R2 change.

      We fully agree that hierarchical regression can be a useful approach for isolating the contribution of variables. However, in our case, expectancy was assessed at different time points (e.g., before conditioning and before the test session on day 1), and there was no principled rationale for determining the order in which these different expectancy-related variables should be entered into a hierarchical model.

      That said, in response to the reviewer’s suggestion, we have now conducted hierarchical regression analyses in which all expectancy-related variables were entered together as a single block (see below). These analyses largely confirmed the findings reported so far and are provided here in the response to the reviewers below. Given the exploratory nature of this grouping and the lack of an a priori hierarchy, we feel that the standard multiple regression models remain the most appropriate for addressing our research question because it allows us to evaluate the total contribution of expectancy-related predictors while also examining the individual contribution of each variable within the block. We would therefore prefer to retain these as the primary analyses in the manuscript.

      Results of the hierarchical regression analyses:

      Day 1 - Placebo response: In step 1, we entered the difference in pain intensity ratings between the control and the placebo condition during conditioning as a predictor. In step 2, we added the two variables reflecting expectations (i.e., expected improvement with placebo (i) before conditioning and (ii) before the test session on day 1). This allowed us to assess whether expectation-related variables explained additional variance beyond the effect of conditioning.

      The overall regression model at step 1 was significant, F(1, 102) = 13.42, p < .001, explaining 11.6% of the variance in the dependent variable (R<sup>2</sup> = .116). Adding the expectancy-related predictors in step 2 did not lead to a significant increase in explained variance, ΔR<sup>2</sup> = .007, F(2, 100) = 0.384, p = .682. Thus, the conditioning response significantly predicted placebo-related pain reduction on day 1, but additional information on expectations did not account for further variance.

      Day 1 - Nocebo response: The equivalent analysis was run for the nocebo response on day 1. In step 1, the pain intensity difference between the nocebo and the control condition was entered as a predictor before adding the two expectancy ratings (i.e., expected worsening with nocebo (i) before conditioning and (ii) before the test session on day 1).

      In step 1, the regression model was not statistically significant, F(1, 102) = 2.63, p = .108, and explained only 2.5% of the variance in nocebo response (R<sup>2</sup> = .025). Adding the expectation-related predictors in Step 2 slightly increased the explained variance by ΔR<sup>2</sup> = .027, but this change was also non-significant, F(2, 100) = 1.41, p = .250. The overall variance explained by the full model remained low (R<sup>2</sup> = .052). These results suggest that neither conditioning nor expectation-related variables reliably predicted nocebo-related pain increases on day 1.

      Day 8 - Placebo response: For the prediction of the placebo effect on day 8, the following variables reflecting perceived effects were entered as predictors in step 1: the difference in pain intensity ratings between the control and the placebo condition (i) during conditioning and (ii) on day 1. In step 2, the variables reflecting expectations were added: the expected improvement with placebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8.

      In step 1, the model was statistically significant, F(3, 95) = 14.86, p < .001, explaining 23.8% of the variance in the placebo response (R<sup>2</sup> = .238, Adjusted R<sup>2</sup> = .222). In step 2, the addition of the expectation-related predictors resulted in a non-significant improvement in model fit, ΔR<sup>2</sup> = .051, F(3, 92) = 2.21, p = .092. The overall variance explained by the full model increased modestly to 29.0%.

      Day 8 - Nocebo response: For the equivalent analyses of nocebo responses on day 8, the following variables were included in step 1: the difference in pain intensity ratings between the nocebo and the control condition (i) during conditioning and (ii) on day 1. In step 2, we entered the variables reflecting nocebo expectations including expected worsening with nocebo (i) before conditioning, (ii) before the test session on day 1 and (iii) before the test session on day 8. In step 1, the model significantly predicted the day 8 nocebo response, F(3, 95) = 6.04, p = .003, accounting for 11.3% of the variance (R<sup>2</sup> = .113, Adjusted R<sup>2</sup> = .094). However, the addition of expectation-related predictors in Step 2 resulted in only a negligible and non-significant improvement, ΔR<sup>2</sup> = .006, F(3, 92) = 0.215, p = .886. The full model explained just 11.9% of the variance (R<sup>2</sup> = .119).

      Typos:

      (6) Abstract - 104 heathy xxx (word missing).

      (7) Line 61 - reduce or decrease - I think you meant increase.

      Thank you, we have now corrected both sentences.

      References

      Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. How the number of learning trials affects placebo and nocebo responses. Pain. 2010

      Doering BK, Nestoriuc Y, Barsky AJ, Glaesmer H, Brähler E, Rief W. Is somatosensory amplification a risk factor for an increased report of side effects? Reference data from the German general population. J Psychosom Res. 2015

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      In the manuscript the authors describe a new pipeline to measure changes in vasculature diameter upon optogenetic stimulation of neurons. The work is useful to better understand the hemodynamic response on a network /graph level.

      Strengths:

      The manuscript provides a pipeline that allows to detect changes in the vessel diameter as well as simultaneously allows to locate the neurons driven by stimulation.

      The resulting data could provide interesting insights into the graph level mechanisms of regulating activity dependent blood flow.

      Weaknesses:

      (1) The manuscript contains (new) wrong statements and (still) wrong mathematical formulas.

      The symbols in these formulas have been updated to disambiguate them, and the accompanying statements have been adjusted for clarity.

      (2) The manuscript does not compare results to existing pipelines for vasculature segmentation (opensource or commercial). Comparing performance of the pipeline to a random forest classifier (illastik) on images that are not preprocessed (i.e. corrected for background etc.) seems not a particularly useful comparison.

      We’ve now included comparisons to Imaris (a commercial) for segmentation and VesselVio (open-source) for graph extraction software.

      For the ilastik comparison, the images were preprocessed prior to ilastik segmentation, specifically by doing intensity normalization.

      Example segmentations utilizing Imaris have now been included. Imaris leaves gaps and discontinuities in the segmentation masks, as shown in Supplementary Figure 10. The Imaris segmentation masks also tend to be more circular in cross-section despite irregularities on the surface of the vessels observable in the raw data and identified in manual segmentation. This approach also requires days to months to generate per image stack.

      A comparison to VesselVio has now also been generated, and results are visualized in Supplementary Figure 11. VesselVio generates individual graphs for each time point, resulting in potential discrepancies in the structure of the graphs from different time points. Furthermore, Vesselvio uses distance transformation to estimate the vascular radius, which renders the vessel radius estimates highly susceptible to variation in the user selected methodology used to obtain segmentation results; while our approach uses intensity gradient-based boundary detection from centerlines in the image instead mitigating this bias. We have added the following paragraph to the Discussion section on the comparisons with the two methods:

      “Comparison with commercial and open-source vascular analysis pipelines

      To compare our results with those achievable on these data with other pipelines for segmentation and graph network extraction, we compared segmentation results qualitatively with Imaris version 9.2.1 (Bitplane) and vascular graph extraction with VesselVio [1]. For the Imaris comparison, three small volumes were annotated by hand to label vessels. Example slices of the segmentation results are shown in Supplementary Figure 10. Imaris tended to either over- or under-segment vessels, disregard fine details of the vascular boundaries, and produce jagged edges in the vascular segmentation masks. In addition to these issues with segmentation mask quality, manual segmentation of a single volume took days for a rater to annotate. To compare to VesselVio, binary segmentation masks (one before and one after photostimulation) generated with our deep learning models were loaded into VesselVio for graph extraction, as VesselVio does not have its own method for generating segmentation masks. This also facilitates a direct comparison of the benefits of our graph extraction pipeline to VesselVio. Visualizations of the two graphs are shown in Supplementary Figure 11. Vesselvio produced many hairs at both time points, and the total number of segments varied considerably between the two sequential stacks: while the baseline scan resulted in 546 vessel segments, the second scan had 642 vessel segments. These discrepancies are difficult to resolve in post-processing and preclude a direct comparison of individual vessel segments across time. As the segmentation masks we used in graph extraction derive from the union of multiple time points, we could better trace the vasculature and identify more connections in our extracted graph. Furthermore, VesselVio relies on the distance transform of the user supplied segmentation mask to estimate vascular radii; consequently, these estimates are highly susceptible to variations in the input segmentation masks.We repeatedly saw slight variations between boundary placements of all of the models we utilized (ilastik, UNet, and UNETR) and those produced by raters. Our pipeline mitigates this segmentation method bias by using intensity gradient-based boundary detection from centerlines in the image (as opposed to using the distance transform of the segmentation mask, as in VesselVio).”

      (3) The manuscript does not clearly visualize performance of the segmentation pipeline (e.g. via 2d sections, highlighting also errors etc.). Thus, it is unclear how good the pipeline is, under what conditions it fails or what kind of errors to expect.

      On reviewer’s comment, 2D slices have been added in the Supplementary Figure 4.

      (4) The pipeline is not fully open-source due to use of matlab. Also, the pipeline code was not made available during review contrary to the authors claims (the provided link did not lead to a repository). Thus, the utility of the pipeline was difficult to judge.

      All code has been uploaded to Github and is available at the following location: https://github.com/AICONSlab/novas3d

      The Matlab code for skeletonization is better at preserving centerline integrity during the pruning of hairs from centerlines than the currently available open-source methods.

      - Generalizability: The authors addressed the point of generalizability by applying the pipeline to other data sets. This demonstrates that their pipeline can be applied to other data sets and makes it more useful.  However, from the visualizations it's unclear to see the performance of the pipeline, where the pipelines fails etc. The 3d visualizations are not particularly helpful in this respect . In addition, the dice measure seems quite low, indicating roughly 20-40% of voxels do not overlap between inferred and ground truth. I did not notice this high discrepancy earlier. A thorough discussion of the errors appearing in the segmentation pipeline would be necessary in my view to better assess the quality of the pipeline.

      2D slices from the additional datasets have been added in the Supplementary Figure 13 to aid in visualizing the models’ ability to generalize to other datasets.

      The dice range we report on (0.7-0.8) is good when compared to those (0.56-86) of 3D segmentations of large datasets in microscopy [2], [3], [4], [5], [6]. Furthermore, we had two additional raters segment three images from the original training set. We found that the raters had a mean inter class correlation  of 0.73 [7]. Our model outperformed this Dice score on unseen data: Dice scores from our generalizability tests on C57 mice and Fischer rats on par or higher than this baseline.

      Reviewer #2 (Public review):

      The authors have addressed most of my concerns sufficiently. There are still a few serious concerns I have. Primarily, the temporal resolution of the technique still makes me dubious about nearly all of the biological results. It is good that the authors have added some vessel diameter time courses generated by their model. But I still maintain that data sampling every 42 seconds - or even 21 seconds - is problematic. First, the evidence for long vascular responses is lacking. The authors cite several papers:

      Alarcon-Martinez et al. 2020 show and explicitly state that their responses (stimulus-evoked) returned to baseline within 30 seconds. The responses to ischemia are long lasting but this is irrelevant to the current study using activated local neurons to drive vessel signals.

      Mester et al. 2019 show responses that all seem to return to baseline by around 50 seconds post-stimulus.

      In Mester et al. 2019, diffuse stimulations with blue light showed a return to baseline around 50 seconds post-stimulus (cf. Figure 1E,2C,2D). However, focal stimulations where the stimulation light is raster scanned over a small region focused in the field of view show longer-lasting responses (cf. Figure 4) that have not returned to baseline by 70 seconds post-stimulus [8]. Alarcon-Martinez et al. do report that their responses return baseline within 30 seconds; however, their physiological stimulation may lead to different neuronal and vessel response kinetics than those elicited by the optogenetic stimulations as in current work.

      O'Herron et al. 2022 and Hartmann et al. 2021 use opsins expressed in vessel walls (not neurons as in the current study) and directly constrict vessels with light. So this is unrelated to neuronal activity-induced vascular signals in the current study.

      We agree that optogenetic activation of vessel-associated cells is distinct from optogenetic activation of neurons, but we do expect the effects of such perturbations on the vasculature to have some commonalities.

      There are other papers including Vazquez et al 2014 (PMID: 23761666) and Uhlirova et al 2016 (PMID: 27244241) and many others showing optogenetically-evoked neural activity drives vascular responses that return back to baseline within 30 seconds. The stimulation time and the cell types labeled may be different across these studies which can make a difference. But vascular responses lasting 300 seconds or more after a stimulus of a few seconds are just not common in the literature and so are very suspect - likely at least in part due to the limitations of the algorithm.

      The photostimulation in Vazquez et al. 2014 used diffuse photostimulation with a fiberoptic probe similar to Mester et al. 2019 as opposed to raster scanning focal stimulation we used in this study and in the study by Mester et al. 2019  where we observed the focal photostimulation to elicited longer than a minute vascular responses. Uhlirova et al. 2016 used photostimulation powers between 0.7 and 2.8 mW, likely lower than our 4.3 mW/mm<sup>2</sup> photostimulation. Further, even with focal photostimulation, we do see light intensity dependence of the duration of the vascular responses. Indeed, in Supplementary Figure 2, 1.1 mW/mm<sup>2</sup> photostimulation leads to briefer dilations/constrictions than does 4.3 mW/mm<sup>2</sup>; the 1.1 mW/mm<sup>2</sup> responses are in line, duration wise, with those in Uhlirova et al. 2016.

      Critically, as per Supplementary Figure 2, the analysis of the experimental recordings acquired at 3-second temporal resolution did likewise show responses in many vessels lasting for tens of seconds and even hundreds of seconds in some vessels.

      Another major issue is that the time courses provided show that the same vessel constricts at certain points and dilates later. So where in the time course the data is sampled will have a major effect on the direction and amplitude of the vascular response. In fact, I could not find how the "response" window is calculated. Is it from the first volume collected after the stimulation - or an average of some number of volumes? But clearly down-sampling the provided data to 42 or even 21 second sampling will lead to problems. If the major benefit to the field is the full volume over large regions that the model can capture and describe, there needs to be a better way to capture the vessel diameter in a meaningful way.

      In the main experiment (i.e. excluding the additional experiments presented in the Supplementary Figure 2 that were collected over a limited FOV at 3s per stack), we have collected one stack every 42 seconds. The first slice of the volume starts following the photostimulation, and the last slice finishes at 42 seconds. Each slice takes ~0.44 seconds to acquire. The data analysis pipeline (as demonstrated by the Supplementary Figure 2) is not in any way limited to data acquired at this temporal resolution and - provided reasonable signal-to-noise ratio (cf. Figure 5) - is applicable, as is, to data acquired at much higher sampling rates.

      It still seems possible that if responses are bi-phasic, then depth dependencies of constrictors vs dilators may just be due to where in the response the data are being captured - maybe the constriction phase is captured in deeper planes of the volume and the dilation phase more superficially. This may also explain why nearly a third of vessels are not consistent across trials - if the direction the volume was acquired is different across trials, different phases of the response might be captured.

      Alternatively, like neuronal responses to physiological stimuli, the vascular responses elicited by increases in neuronal activity may themselves be variable in both space and time.

      I still have concerns about other aspects of the responses but these are less strong. Particularly, these bi-phasic responses are not something typically seen and I still maintain that constrictions are not common. The authors are right that some papers do show constriction. Leaving out the direct optogenetic constriction of vessels (O'Herron 2022 & Hartmann 2021), the Alarcon-Martinez et al. 2020 paper and others such as Gonzales et al 2020 (PMID: 33051294) show different capillary branches dilating and constricting. However, these are typically found either with spontaneous fluctuations or due to highly localized application of vasoactive compounds. I am not familiar with data showing activation of a large region of tissue - as in the current study - coupled with vessel constrictions in the same region. But as the authors point out, typically only a few vessels at a time are monitored so it is possible - even if this reviewer thinks it unlikely - that this effect is real and just hasn't been seen.

      Uhlirova et al. 2016 (PMID: 27244241) observed biphasic responses in the same vessel with optogenetic stimulation in anesthetized and unanesthetized animals (cf Fig 1b and Fig 2, and section “OG stimulation of INs reproduces the biphasic arteriolar response”). Devor et al. (2007) and Lindvere et al. (2013) also reported on constrictions and dilations being elicited by sensory stimuli.

      I also have concerns about the spatial resolution of the data. It looks like the data in Figure 7 and Supplementary Figure 7 have a resolution of about 1 micron/pixel. It isn't stated so I may be wrong. But detecting changes of less than 1 micron, especially given the noise of an in vivo prep (brain movement and so on), might just be noise in the model. This could also explain constrictions as just spurious outputs in the model's diameter estimation. The high variability in adjacent vessel segments seen in Figure 6C could also be explained the same way, since these also seem biologically and even physically unlikely.

      Thank you for your comment. To address this important issue, we performed an additional validation experiment where we placed a special order of fluorescent beads with a known diameter of 7.32 ± 0.27um, imaged them following our imaging protocol, and subsequently used our pipeline to estimate their diameter. Our analysis converged on the manufacturer-specified diameters, estimating the diameter to be 7.34 ± 0.32. The manuscript has been updated to detail this experiment, as below:

      Methods section insert

      “Second, our boundary detection algorithm was used to estimate the diameters of fluorescent beads of a known radius imaged under similar acquisition parameters. Polystyrene microspheres labelled with Flash Red (Bangs Laboratories, inc, CAT# FSFR007) with a nominal diameter of 7.32um and a specified range of 7.32 ± 0.27um as determined by the manufacturer using a Coulter counter were imaged on the same multiphoton fluorescence microscope set-up used in the experiment (identical light path, resonant scanner, objective, detector, excitation wavelength and nominal lateral and axial resolutions, with 5x averaging). The images of the beads had a higher SNR than our images of the vasculature, so Gaussian noise was added to the images to degrade the SNR to the same level of that of the blood vessels. The images of the beads were segmented with a threshold, centroids calculated for individual spheres, and planes with a random normal vector extracted from each bead and used to estimate the diameter of the beads. The same smoothing and PSF deconvolution steps were applied in this task. We then reported the mean and standard deviation of the distribution of the diameter estimates. A variety of planes were used to estimate the diameters.”

      Results Section Insert

      “Our boundary detection algorithm successfully estimated the radius of precisely specified fluorescent beads. The bead images had a signal-to-noise ratio of 6.79 ± 0.16 (about 35% higher than our in vivo images): to match their SNR to that of in vivo vessel data, following deconvolution, we added Gaussian noise with a standard deviation of 85 SU to the images, bringing the SNR down to 5.05 ± 0.15. The data processing pipeline was kept unaltered except for the bead segmentation, performed via image thresholding instead of our deep learning model (trained on vessel data). The bead boundary was computed following the same algorithm used on vessel data: i.e., by the average of the minimum intensity gradients computed along 36 radial spokes emanating from the centreline vertex in the orthogonal plane. To demonstrate an averaging-induced decrease in the uncertainty of the bead radius estimates on a scale that is finer than the nominal resolution of the imaging configuration, we tested four averaging levels in 289 beads. Three of these averaging levels were lower than that used on the vessels, and one matched that used on the vessels (36 spokes per orthogonal plane and a minimum of 10 orthogonal planes per vessel). As the amount of averaging increased, the uncertainty on the diameter of the beads decreased, and our estimate of the bead's diameter converged upon the manufacturer's Coulter counter-based specifications (7.32 ± 0.27um), as tabulated below in Table 1.”

      Bibliography

      (1) J. R. Bumgarner and R. J. Nelson, “Open-source analysis and visualization of segmented vasculature datasets with VesselVio,” Cell Rep. Methods, vol. 2, no. 4, Apr. 2022, doi: 10.1016/j.crmeth.2022.100189.

      (2) G. Tetteh et al., “DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes,” Front. Neurosci., vol. 14, Dec. 2020, doi: 10.3389/fnins.2020.592352.

      (3) N. Holroyd, Z. Li, C. Walsh, E. Brown, R. Shipley, and S. Walker-Samuel, “tUbe net: a generalisable deep learning tool for 3D vessel segmentation,” Jul. 24, 2023, bioRxiv. doi: 10.1101/2023.07.24.550334.

      (4) W. Tahir et al., “Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by Generalizable Deep Learning,” BME Front., vol. 2020, p. 8620932, Dec. 2020, doi: 10.34133/2020/8620932.

      (5) R. Damseh, P. Delafontaine-Martel, P. Pouliot, F. Cheriet, and F. Lesage, “Laplacian Flow Dynamics on Geometric Graphs for Anatomical Modeling of Cerebrovascular Networks,” ArXiv191210003 Cs Eess Q-Bio, Dec. 2019, Accessed: Dec. 09, 2020. (Online). Available: http://arxiv.org/abs/1912.10003

      (6) T. Jerman, F. Pernuš, B. Likar, and Ž. Špiclin, “Enhancement of Vascular Structures in 3D and 2D Angiographic Images,” IEEE Trans. Med. Imaging, vol. 35, no. 9, pp. 2107–2118, Sep. 2016, doi: 10.1109/TMI.2016.2550102.

      (7) T. B. Smith and N. Smith, “Agreement and reliability statistics for shapes,” PLOS ONE, vol. 13, no. 8, p. e0202087, Aug. 2018, doi: 10.1371/journal.pone.0202087.

      (8) J. R. Mester et al., “In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2,” NeuroImage, vol. 192, pp. 135–144, May 2019, doi: 10.1016/j.neuroimage.2019.01.036.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Reviewer):

      It is not clear from the analysis presented in the paper how persistent those environmentally induced changes, do they remain with the bats till the end of their lives.

      Currently, the long-term effects of enrichment on the bats remain uncertain. Preliminary results suggest that these differences may persist throughout the bats’ lifetimes; however, further data analysis is ongoing to determine the extent of these effects. We also addressed now at the manuscript discussion

      Reviewer #2 (Public Reviewer):

      (1) Assessing personality metrics and the indoor paradigm: While I applaud this effort and think the metrics used are justified, I see a few issues in the results as they are currently presented:

      (a) [Major] I am somewhat concerned that here, the foraging box paradigm is being used for two somewhat conflicting purposes: (1) assessing innate personality and (2) measuring changes in personality as a result of experience. If the indoor foraging task is indeed meant to measure and reflect both at the same time, then perhaps this can be made more explicit throughout the manuscript. In this circumstance, I think the authors could place more emphasis on the fact that the task, at later trials/measurements, begins to take on the character of a "composite" measure of personality and experience.

      Personality traits should generally be stable over time, but personality can also somewhat change with experience. We used the foraging box to assess individual personality, but we also examined the assumption that what we are measuring is a proxy of personality and hence is stable over time. We now clarify this in the manuscript. 

      (b) [Major] Although you only refer to results obtained in trials 1 and 2 when trying to estimate "innate personality" effects, I am a little worried that the paradigm used to measure personality, i.e. the stable components of behavior, is itself affected by other factors such as age (in the case of activity, Fig. 1C3, S1C1-2), the environment (see data re trial 3), and experience outdoors (see data re trials 4/5).

      We found that boldness was the most consistent trait, showing persistence between trials 1 to 5, i.e., 144 days apart on average. We thus also used Boldness as the primary parameter for assessing the effects of personality on the outdoors behavior. While we evaluated other traits for completeness, boldness was the only one that consistently met the criteria for personality, which is why we focused on it in our analyses. The other traits which were not stable over time could be used to assess the effects of experience on behavior

      Ideally, a study that aims to disentangle the role of predisposition from early-life experience would have a metric for predisposition that is relatively unchanging for individuals, which can stand as a baseline against a separate metric that reflects behavioral differences accumulated as a result of experience.

      I would find it more convincing that the foraging box paradigm can be used to measure personality if it could be shown that young bats' behavior was consistent across retests in the box paradigm prior to any environmental exposure across many baseline trials (i.e. more than 2), and that these "initial settings" were constant for individuals. I think it would be important to show that personality is consistent across baseline trials 1 and 2. This could be done, for example, by reproducing the plots in Fig. 1C1-3 while plotting trial 1 against trial 2. (I would note here that if a significant, positive correlation were to be found (as I would expect) between the measures across trial 1 and 2, it is likely that we would see the "habituation effect" the authors refer to expressed as a steep positive slope on the correlation line (indicating that bold individuals on trial 1 are much bolder on trial 2).)

      We agree and thus used boldness which was found to be stable over five trials (three of which were without external experience). We note that if Boldness as we measured it increased over time, the differences between individuals remained similar and this is what is expected from personality traits measured in the same paradigm several times (after the animal acquires experience).  

      (c) Related to the previous point, it was not clear to me why the data from trial 2 (the second baseline trial) was not presented in the main body of the paper, and only data from trial 1 was used as a baseline.

      We added a main figure, showing the correlation between the two baseline trials

      In the supplementary figure and table, you show that the bats tended to exhibit more boldness and exploratory behavior, but fewer actions, in trial 2 as compared with trial 1. You explain that this may be due to habituation to the experimental setup, however, the precise motivation for excluding data from trial 2 from the primary analyses is not stated. I would strongly encourage the authors to include a comparison of the data between the baseline trials in their primary analysis (see above), combine the information from these trials to form a composite baseline against which further analyses are performed, or further justify the exclusion of data as a baseline.

      We had no intention of excluding data from baseline 2. As we have shown several times before (e.g., Harten, 2021) bats’ boldness as we measure it in the box experiment increases over sessions performed nearby in time. This means that trial 2’s boldness was higher than that of trial 1 and trial 3 which made the data less suitable for a Linear model. Moreover, our measurement of boldness is capped (with a maximum of 1) again making it less suitable for a Linear model. However, following the reviewer’s question we now ran all analyses with trial 2’s data included and not only that the results remained the same, some of the models fit better (based on the AIC criterion). We added this information to the revised manuscript.  

      (2) Comparison of indoor behavioral measures and outdoor behavioral measures Regarding the final point in the results, correlation between indoor personality on Trial 4 and outdoor foraging behavior: It is not entirely clear to me what is being tested (neither the details of the tests nor the data or a figure are plotted). Given some of the strong trends in the data - namely, (1) how strongly early environment seems to affect outdoor behavior, (2) how strongly outdoor experience affects boldness, measured on indoor behavior (Fig. 1D) - I am not convinced that there is no relationship, as is stated here, between indoor and outdoor behavior. If this conclusion is made purely on the basis of a p-value, I would suggest revisiting this analysis.

      We agree that the relationship between indoor personality measures and outdoor foraging behavior is of great interest and had expected to find some correspondence between the two. To test this, we conducted multiple GLM analyses using the different indoor behavioral traits as predictors of outdoor behaviors. These analyses did not reveal any significant correlations. We also performed a separate analysis using PC1 (derived from the indoor behavioral variables) as a predictor, and again found no significant associations with outdoor behavior.

      We were indeed surprised by this outcome. It is possible that the behavioral traits we assessed indoors (boldness, exploration, and activity) do not fully capture the dimensions of behavior that are most relevant to foraging in the wild. For example, traits such as neophobia or decisionmaking under risk, which we did not assess directly, may have had stronger predictive value for outdoor behavior. We now highlight this point more clearly in the Discussion and acknowledge the possibility that alternative or additional personality traits might have revealed meaningful relationships.

      (3) Use of statistics/points regarding the generalized linear models While I think the implementation of the GLMM models is correct, I am not certain that the interpretation of the GLMM results is entirely correct for cases where multivariate regression has been performed (Tables 4s and S1, and possibly Table 3). (You do not present the exact equation they used for each model (this would be a helpful addition to the methods), therefore it is somewhat difficult to evaluate if the following critique properly applies, however...)

      The "estimate" for a fixed effect in a regression table gives the difference in the outcome variable for a 1 unit increase in the predictor variable (in the case of numeric predictors) or for each successive "level" or treatment (in the case of categorical variables), compared to the baseline, the intercept, which reflects the value of the outcome variable given by the combination of the first value/level of all predictors. Therefore, for example, in Table 4a - Time spend outside: the estimate for Bat sex: male indicates (I believe) the difference in time spent outside for an enriched male vs. an enriched female, not, as the authors seem to aim to explain, the effect of sex overall. Note that the interpretation of the first entry, Environmental condition: impoverished, is correct. I refer the authors to the section "Multiple treatments and interactions" on p. 11 of this guide to evaluating contrasts in G/LMMS: https://bbolker.github.io/mixedmodelsmisc/notes/contrasts.pdf

      We are not certain we fully understand the comment; however, if our understanding is correct, we respectfully disagree. A GLM analysis without interaction terms—as conducted in our study—functions as a multiple linear regression, wherein each factor's estimate reflects its individual effect on the dependent variable. For example in the case of sex, it examines he effect of sex on the tie spent out independently of enrichment. An interaction term would be needed to test sex*enrichment. We have added the models’ formula, and we hope this clarifies our approach

      Reviewer #1 (Recommendations for the authors):

      I would recommend the following:

      (1) As video tracking and behavioral analysis softwares are wide spread, it would be great to see this applied to the bat behavior indoor to answer questions like how does the bat velocity or heading or acceleration correlate with the behavioral measures boldness , activity or exploration? In the same gist, can one infer boldness, activity or exploration from measured bat velocity or other parameters? I think this will further make the indoor behavior more quantitative.

      In a tent of the size used in our study, bats’ flight behavior tends to be highly stereotypical: they typically perch on the wall, take off, circle the tent—sometimes multiple times—and then either land or not, and enter or not. Flight velocity is largely determined by individual maneuverability and the physical constraints of the space; thus, precise tracking is unlikely to provide further insight into boldness. In contrast, decision-making behaviors—such as whether to land or enter—more accurately reflect personality traits, as we have shown previously (Harten et al., 2018). Moreover, accurate 3D tracking in such an environment is possible but definitely not easy due to the many blind-spots resulting from the cameras being inside the 3D volume.  Nonetheless, we quantified flight activity and assessed its correlation with the other behavioral axes. As it was highly correlated with general activity, we did not include it as an independent parameter in the main analysis. However, in response to the reviewer’s suggestion, we now present this analysis in the Supplementary Materials.

      (2) It is not clear whether the bats come from the same genetic background. they might be but it is not mentioned in the methods under the experimental subjects.

      We have shown in the past that there is no familial relations in a randomly caught sample of bats in the colony where we usually work (Harten et al., 2018). The bats were caught in three, not related wild colonies. The text referring to the table was clarified in the revised manuscript

      (3) It will be great to include the author's thoughts about mechanisms underlying those environmentally induced changes in behavior in the discussion section along with how this will affect the bats' social foraging abilities. Another question that comes to mind is whether growing up with a large number of bats constitute an enriched environment in itself.

      We agree that this could count as an enrichment, and we thus ensured similar group sizes in both groups for this reason. We clarify this in the revised manuscript. 

      We have elaborated on the underlying mechanisms in the discussion, focusing on how they contribute to behavioral changes.

      Reviewer #2 (Recommendations for the authors):

      (1) Outdoor foraging behavior

      If I understand correctly, the data you display in Fig. 3A is only from the 2nd to 3rd weeks of exploration, i.e. just before the first post-exploration trial.

      What does the data look like for the second outdoor exploration data, i.e. before the final trial?

      Is there a specific reason why these measures were only computed on the GPS data from the 3rd week outside? If so, can this sampling of the data be motivated or briefly addressed (in the methods and wherever else necessary)?

      In order to allow a comparison between individuals, we had to restrict ourself to a period we had data from many individuals (some dissapeared later on).

      Following the reviewer suggestion – we added a supplemenry figure including days 21-26

      I would find it important and of great interest to see movement maps for more animals, as these give very rich information that is not entirely captured by the three proxies of outdoor activity.

      Are these four exemplary animals sampled from both seasons?

      Did you check to see if there were any overall differences in outdoor foraging behavior as a function of the season in which the bats were captured?

      Yes, the samples represent individuals from both tested years. This was clarified, and additional examples were included in a supplementary figure.

      Variable of time spent outdoors: You mention that you did not include the nights that the bat spent in the colony in these calculations. Did you also look to see if 'the number of nights when the bats left the colony' predicted the bat's earlier enrichment treatment? This could also be interesting to consider.

      In response to the reviewer’s comment, we conducted an additional analysis to test whether the proportion of nights each bat spent foraging outside the roost was predicted by its earlier environmental condition (enriched vs. impoverished). We also examined whether sex or age influenced this variable. This analysis showed no significant effect of environmental condition, sex, or age on the proportion of nights spent foraging outside the roost

      [Following on point 3 in public review...]

      When wishing to discuss the effect/significance of predictors overall, it is common to present the modelling results as an analysis of variance table. See, for example, the two-way anova section (p. 182) in the book Practical Regression and ANOVA using R: https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf

      I think the output of passing the model object to an "anova" yields the table that you may be looking for, where the variance accounted for by a predictor is given overall, and not just relative to the first level of all predictors. Naturally, this information can be used in combination with the information provided by the raw model output presented in the paper.

      I assume you have done this analysis in R, but am not sure, as the statistical software used is not mentioned. There are several packages in R that allow users to quickly plot the graphical interaction of the parameters they use in models, which aids in interpreting results. It would be good to check results of model fitting in this manner.

      Relatedly, I was unable to locate the data and code for this paper using the DOI provided. Neither searching the internet using the doi nor entering the doi on the Mendeley Data website returned the right results. I tried searching Mendeley Data using the senior author's last name, but the most recent entry does not appear to be from this paper. https://data.mendeley.com/datasets/fr48bmnhxj/1

      We thank the reviewer for the helpful comment. The analysis was indeed conducted in MATLAB, and this has now been clarified in the manuscript. We have also revised the result tables to improve clarity and included the exact formulas used for each model. Regarding the data availability, the reviewer is correct — the dataset had not yet been published at the time of submission. It is now available at the provided DOI link.

      ### Suggestions and questions for the present paper, grouped thematically:

      [Major] Expansion and development of results: I thought there were many interesting and suggestive points in this data that could be expanded upon. I mention some of these here. While the authors of course do not need to implement all of these suggestions, I think the paper would benefit from a more substantial presentation of this rich data set:

      (a) Individual differences as such are not emphasized in the paper so much, as the analyses, particularly those expressed as boxplots, are grouped. The scatter plots in Figure 1 give the richest insight into how individual behavior changes throughout the course of the experiment. I would advocate for the authors to show additional comparisons using such scatter plots (perhaps in the supplementary, if needed).

      We thank the reviewer and added scatter plots to figure 2

      (b) In the second paragraph of the results, the authors introduce the concept of a pareto front and that of personality archetypes (lines 101-107). I found this very interesting, but these concepts were never reiterated upon later in the results or in the discussion. In fact, at many points, I found myself curious as to how the three indoor measures of personality might be combined to form a composite measure of personality (and likewise for outdoor measures). Have you tried to combine measures into a composite and tried to measure whether this composite metric provides any additional insight into these phenomena? For example, what if you mapped the starting position of each bat as a point in a three-dimensional space, given by the three personality measures, and then evaluated their trajectory through this space with measurements taken at later trials. Could innate personality be interpreted as the starting vector in this space (measured across the two baseline trials)? 

      Following the reviewer’s (justified) curiosity we ran a PCA analysis on the behavioral data from trials 1 and 5 and found that there is a significant correlation between the individual scores on PC1. This can be thought of as a measurement that takes both boldness and exploration into account (the weight of activity was very low). We added this information to the revised manuscript and also use this new behavioral parameter as a predisposition in the models (instead of exploration and activity). 

      Could environmental exposure be quantified as a warping of the trajectory through this space? Finally, could outdoor experience also be incorporated to evaluate how an individual arrives at its final measurement of personality combined with experience (trial 5)?

      The paper currently tries to explain outdoors behavior given personality and not vice versa. While this is a very interesting suggestion, we feel that adding this analysis would make the premise of the paper less clear and since the paper is already somewhat complex, we prefer to leave this analysis for a future study. 

      Examining the 3D trajectories of the individuals through the personality space did not reveal any immediate clear pattern (triangles mark the first trial and colours depict the environmental treatment) – 

      Author response image 1.

      Related to this point: I think the strongest part of the paper is the result showing that bats exposed to enriched environments explore farther, more often, and over larger distances than bats that were raised in an impoverished environment.

      We completely agree and tried to further emphasize this  

      (c) While these results of the outdoor GPS tracking are very clear, I wish that more information were extracted from the tracking data, which is incredibly rich and certainly can be used to derive many interest parameters beyond those that the authors have shown here. Examples might include: distance travelled (as opposed to estimated km2 or farthest point), a metric of navigational ability (how much "dead reckoning" the animal engages in). I even wonder if the areas or landmarks visited by the enriched bats might be found to be more complex, challenging, or richer by some measure.

      This study was a first step, aiming to establish a connection between early exposure and outdoors foraging

      We agree that there are many more analyses that can be done and indeed that ones related to navigation capabilities are missing. We are still collecting data on these bats and hope to present a more advanced analysis with a time span of years. 

      (d) Related to the above point: I find it very interesting that in 3 of the 4 bats for which you show exemplary movement data (Fig. 3, panels B and C), they appear to travel to the farthest distances and cover the most ground early on, and become more "conservative" in their flight paths on later evenings. This point is not explored in the discussion, nor related to earlier measurements.

      During the first months of exploration, bats will occasionally perform long exploratory flights in between bouts of shorter flights where they return to nearby familiar trees. This behavior can be seen in more detail in Harten et al Science 2020. We are currently quantifying this more carefully for another study. 

      (e) Finally, my points about the possible strength of a composite measure of the three personality metrics is related to my concern about one of the conclusions, which is that innate personality does not have an effect on outdoor foraging behavior. I think the manner in which this was tested statistically is likely to bias the results against finding such a result given that personality metrics are used to predict outdoor behaviors in an individual manner (6 models in total, each examining a single comparison of predisposition to outdoor behavior), while both indoor personality metrics (Fig 1B) and outdoor behaviors appear to be correlated with each other (Table 5).

      Are there other analyses you have performed that are not presented in the paper and that have led you to conclude that there is no relationship here?

      We agree with the reviewer, that our findings do not exclude an effect of innate personality on foraging but only suggest no such affect for the parameter we measured. That said, we did expect to find an effect of boldness because this parameter has been shown to differentiate much between groups (Harten et al., 2018), and to correlate with other parameters of behavior. We were therefore surprised to find no significant effects, as we had anticipated observing some differences.

      Following the reviewer’s previous comment we now also tested another predisposition parameter – the PC1 score and also found that it did not explain foraging. 

      (f) Personality measured before and after early environmental exposure (related to point (a) above): I find it interesting that the positive correlation in boldness between baseline and post-enrichment or baseline and post-release suggests that the individuals that were the most bold remained bold (and likewise for less adventurous individuals). The correlation for activity, too, still suggests that more active individuals early in life are likely to remain very active after enrichment, even accounting for the fact that activity is confounded with age.

      Perhaps you could place some emphasis on the fact that the initial variation between individuals also appears to be relatively stable over repeated trials. You might also consider measuring this directly (population variance over successive trials; relationship of population variance on indoor measures vs. outdoor measures...)

      Yes – this is a main point of interest. We further emphasize that in the revised manuscript 

      (g) Effect of indoor behavior following early experience on outdoor behavior: You evaluate the effect of predisposition (measured on baseline trial 1) and environmental condition on measures of outdoor activity (Table 4). I wonder if you also tried using indoor behavioral measures measured on the post-enrichment trial 3 to predict outdoor foraging behavior.

      Assuming that these measures are in fact reflecting a combination of predisposition and accumulated experience, then measurements at this closer time point may tell you how the combination of innate traits and early acquired experience affect behavior in the wild.

      We appreciate the reviewer’s insightful suggestion to test whether indoor behavior from post-enrichment Trial 3, reflecting both innate traits and experience, predicts outdoor foraging behavior. We conducted this analysis, but found that the boldness in Trial 3 did not significantly predict any of the outdoor activity measures.

      (2) [Minor] Age/development: While the authors discuss the effect of their manipulations on behavioral measures, they do not much discuss the effect of age.

      I think it would be important to include at some point a mention of the developmental stages of Rousettus, giving labels to certain age ranges, e.g. pup, juvenile, adult, and to provide more context about the stages at which bats were tested in the discussion. Presently, age is only really mentioned as an explanation for declining activity levels, but I wonder if it might also have an influence on boldness.

      It would also be very elegant for figures where age is given in days, to additional label then with these stages.

      All bats were juveniles during the trials (approximately 4 to 8 months old), so they could not be divided into distinct age groups. To assess the effect of age, it was included as a predictor (in days) in the GLM analysis.

      (3) [Major] Effect of early experience and outdoor experience on the indoor task: In the paragraph on lines 278-285, you argue that the effect of seeing earlyenriched bats exhibit more boldness in trial 5 was likely due to post-sampling bias...

      I tend to disagree with this conclusion. I actually find this result both interesting and intuitive - that bats that were exposed to an enriched environment and have had experience in the wild, show much bolder activity on a familiar indoor foraging test (i.e. outside experience has made the animals bolder than before) (Fig 1, lines 159-161, Fig. S1). I did not notice this possibility mentioned in the discussion of the results.

      I also do not fully understand this argument. Could you please explain further?

      We accept the reviewer's comment and updated the manuscript (lines 336346) explaining the two hypotheses more clearly and arguing that it is difficult to tell them apart with the current data.

      [Minor] You also say that "this difference... can be seen in Figure 2 when examining only the bats that had remained until the last trial (Figure 2A2)." Do you mean supplementary Figure S1 A2? In fact, I am entirely unclear on what data is plotted in the supplementary Figure S1 and what differentiates the two columns of figures and the two models presented in the supplementary table. Did you plot data similar to that in Figure 2, with only bats that were present for all trials, but not show this data?

      There was a mistake: what was previously referred to as 2A2 is actually S2 A2.

      On the right side—only among the individuals with GPS data—the change is already evident at Baseline 2, where only the bolder individuals remain. If you have suggestions for a better analysis approach, we would be happy to hear them.

      ### Minor points

      General points regarding figures:

      For Figures 2 and 3A1-3 (as well as Fig. S1): Authors must show the raw data points over the box plots. It is very difficult to interpret the data and conclusions without being able to see the true distribution.

      Done

      For all figures showing grouped individual data, please annotate all panels or sets of boxplots with the number of bats whose data entered into each, as it is a little difficult to keep track of the changing sample sizes across experimental stages.

      To enhance transparency, we have added individual data points to all boxplots, allowing visual estimation of sample sizes across experimental stages. While numerical annotations are not included on the figures, the exact number of bats contributing to each group is provided in the Methods section (Table 8), ensuring this information is readily accessible to readers.In response to the reviewer’s request, we have updated all relevant figures to display individual data points within each boxplot. This addition makes it easier to track changes in sample size across different experimental stages.

      Unless I've missed the reason behind differences in axis labelling across the figures, it seems that trials are not always referred to consistently. E.g. Fig. 1 labels say "Trial 1 (baseline)" and fig. 2 labels say "Baseline 1 0 days." I'm not entirely sure if these correspond to exactly the same data. If so, perhaps the labels can be made uniform. I think the descriptive ones (Baseline 1, Postenrichment...) may be more helpful to the reader than providing the trial number (Trial 1, etc....).

      Done

      Figure 1:

      Very good Fig. 1A and 1B.

      For panels C1-3 & D, I think it would make it easier for the reader if the personality measure labels were placed at the top of each panel, e.g. "Boldness (entrance proportion)". The double axis labels are not only harder to read, they are also redundant, as the personality measure label repeats on both axes.

      Done

      Panel C1: For the first panel in this sequence, I think it would be elegant to include an annotation in the figure that indicates what the datapoints lying on either side of the dashed line means, i.e. "bolder after enrichment treatment" in the upper left corner, and "bolder before enrichment treatment" in the bottom right corner.

      Panel C2: It appears as though many of the data points in this panel overlap, and it appears to me that the blue data points in particular are overlaid by the orange ones. I am guessing this happens because proportion values based on entrances to only 6 boxes end up giving a more "discrete" looking distribution. I wonder if you can find a way to allow all the data to be visible by, e.g., jittering the data slightly; if there is rounding being done to the proportions, perhaps don't round them so that minute differences will allow them to escape the overlap; or possibly split the panel by enrichment treatment.

      Caption for C1-3: it may be helpful to mention the correlation line color scheme: "enriched (blue lines), the impoverished (orange lines)". The caption also says positive correlations were found for "both environments together," but this correlation line is not shown. Perhaps mention "(not shown)" or show line. Please rephrase the sentence "Dashed line represents the Y=X line." for more transparency and clarity. I understand you mean an "equality" or "unity" line, but perhaps you can explicitly state the information that this line provides, something like e.g. "Dashed line indicates equal values measured on both trials."

      We added the line for a reference, the caption was corrected

      Figure 3:

      Panels B1-C2: I would suggest giving these panels supertitles that indicate that B panels are enriched, C panels are impoverished, and that each panel is data from a different individual.

      The legend was corrected to be more clear about the figure

      General points regarding tables:

      Please revisit tables for formatting and typos, particularly in Table 4. Please also revise table captions for clarity. E.g. "first exploration as predisposition" to "Exploration (Baseline 1)" or similar

      Done

      Supplementary Tables and Figure: these are missing captions and explanations.

      The missing parts were adddad and corrected

      Points of clarification/style:

      It would seem to me more logical to present the results shown in Table 3 before those in Table 2, given that the primary in-lab manipulation is discussed with relation to Table 3, and the analysis in Table 2 is discussed rather as a limitation (though I believe this result can be expanded upon further, see above).

      For the activity metric, I would suggest showing this data as actions/hour instead of actions/minute. I think it is much more intuitive to consider, for example, that a bat makes 2 actions every hour, than that it makes 0.002 actions per minute.

      Done

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Gu et al. employed novel viral strategies, combined with in vivo two-photon imaging, to map the tone response properties of two groups of cortical neurons in A1. The thalamocortical recipient (TR neurons) and the corticothalamic (CT neurons). They observed a clear tonotopic gradient among TR neurons but not in CT neurons. Moreover, CT neurons exhibited high heterogeneity of their frequency tuning and broader bandwidth, suggesting increased synaptic integration in these neurons. By parsing out different projecting-specific neurons within A1, this study provides insight into how neurons with different connectivity can exhibit different frequency response-related topographic organization.

      Strengths:

      This study reveals the importance of studying neurons with projection specificity rather than layer specificity since neurons within the same layer have very diverse molecular, morphological, physiological, and connectional features. By utilizing a newly developed rabies virus CSN-N2c GCaMP-expressing vector, the authors can label and image specifically the neurons (CT neurons) in A1 that project to the MGB. To compare, they used an anterograde trans-synaptic tracing strategy to label and image neurons in A1 that receive input from MGB (TR neurons).

      Weaknesses:

      Perhaps as cited in the introduction, it is well known that tonotopic gradient is well preserved across all layers within A1, but I feel if the authors want to highlight the specificity of their virus tracing strategy and the populations that they imaged in L2/3 (TR neurons) and L6 (CT neurons), they should perform control groups where they image general excitatory neurons in the two depths and compare to TR and CT neurons, respectively. This will show that it's not their imaging/analysis or behavioral paradigms that are different from other labs. 

      We thank the reviewer for these constructive suggestions. As recommended, we have performed control experiments that imaged the general excitatory neurons in superficial layers (shown below), and the results showed a clear tonotopic gradient, which was consistent with previous findings (Bandyopadhyay et al., 2010; Romero et al., 2020; Rothschild et al., 2010; Tischbirek et al., 2019), thereby validating the reliability of our imaging/analysis approach. The results are presented in a new supplemental figure (Figure 2- figure supplementary 3).

      Related publications:

      (1) Gu M, Li X, Liang S, Zhu J, Sun P, He Y, Yu H, Li R, Zhou Z, Lyu J, Li SC, Budinger E, Zhou Y, Jia H, Zhang J, Chen X. 2023. Rabies virus-based labeling of layer 6 corticothalamic neurons for two-photon imaging in vivo. iScience 26: 106625. DIO: https://doi.org/10.1016/j.isci.2023.106625, PMID: 37250327

      (2) Bandyopadhyay S, Shamma SA, Kanold PO. 2010. Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13: 361-8. DIO: https://doi.org/10.1038/nn.2490, PMID: 20118924

      (3) Romero S, Hight AE, Clayton KK, Resnik J, Williamson RS, Hancock KE, Polley DB. 2020. Cellular and Widefield Imaging of Sound Frequency Organization in Primary and Higher Order Fields of the Mouse Auditory Cortex. Cerebral Cortex 30: 1603-1622. DIO: https://doi.org/10.1093/cercor/bhz190, PMID: 31667491

      (4) Rothschild G, Nelken I, Mizrahi A. 2010. Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13: 353-60. DIO: https://doi.org/10.1038/nn.2484, PMID: 20118927

      (5) Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A. 2019. In Vivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Rep 27: 1319-1326 e5. DIO: https://doi.org/10.1016/j.celrep.2019.04.007, PMID: 31042460

      Figures 1D and G, the y-axis is Distance from pia (%). I'm not exactly sure what this means. How does % translate to real cortical thickness?

      We thank the reviewer for this question. The distance of labeled cells from pia was normalized to the entire distance from pia to L6/WM border for each mouse, according to the previous study (Chang and Kawai, 2018). For all mice tested, the entire distance from pia to L6/WM border was 826.5 ± 23.4 mm (in the range of 752.9 to 886.1).

      Related publications:

      Chang M, Kawai HD. 2018. A characterization of laminar architecture in mouse primary auditory cortex. Brain Structure and Function 223: 4187-4209. DIO: https://doi.org/10.1007/s00429-018-1744-8, PMID: 30187193

      For Figure 2G and H, is each circle a neuron or an animal? Why are they staggered on top of each other on the x-axis? If the x-axis is the distance from caudal to rostral, each neuron should have a different distance? Also, it seems like it's because Figure 2H has more circles, which is why it has more variation, thus not significant (for example, at 600 or 900um, 2G seems to have fewer circles than 2H). 

      We sincerely appreciate the reviewer’s careful attention to the details of our figures. Each circle in the Figure 2G and H represents an individual imaging focal plane from different animals, and the median BF of some focal planes may be similar, leading to partial overlap. In the regions where overlap occurs, the brightness of the circle will be additive.

      Since fewer CT neurons, compared to TR neurons, responded to pure tones within each focal plane, as shown in Figure 2- figure supplementary 2, a larger number of focal planes were imaged to ensure a consistent and robust analysis of the pure tone response characteristics. The higher variance and lack of correlation in CT neurons is a key biological finding, not an artifact of sample size. The data clearly show a wide spread of median BFs at any given location for CT neurons, a feature absent in the TR population.

      Similarly, in Figures 2J and L, why are the circles staggered on the y-axis now? And is each circle now a neuron or a trial? It seems they have many more circles than Figure 2G and 2H. Also, I don't think doing a correlation is the proper stats for this type of plot (this point applies to Figures 3H and 3J).

      We regret any confusion have caused. In fact, Figure 2 illustrates the tonotopic gradient of CT and TR neurons at different scales. Specifically, Figures 2E-H present the imaging from the focal plane perspective (23 focal planes in Figures 2G, 40 focal planes in Figures 2H), whereas Figures 2I-L provide a more detailed view at the single-cell level (481 neurons in Figures 2J, 491 neurons in Figures 2L). So, Figures 2J and L do indeed have more circles than Figures 2G and H. The analysis at these varying scales consistently reveals the presence of a tonotopic gradient in TR neurons, whereas such a gradient is absent in CT neurons.

      We used Pearson correlation as a standard and direct method to quantify the linear relationship between a neuron's anatomical position and its frequency preference, which is widely used in the field to provide a quantitative measure (R-value) and a significance level (p-value) for the strength of a tonotopic gradient. The same statistical logic applies to testing for spatial gradients in local heterogeneity in Figure 3. We are confident that this is an appropriate and informative statistical approach for these data.

      What does the inter-quartile range of BF (IQRBF, in octaves) imply? What's the interpretation of this analysis? I am confused as to why TR neurons show high IQR in HF areas compared to LF areas, which means homogeneity among TR neurons (lines 213 - 216). On the same note, how is this different from the BF variability?  Isn't higher IQR equal to higher variability?

      We thank the reviewer for raising this important point. IQRBF, is a measure of local tuning heterogeneity. It quantifies the diversity of BFs among neighboring neurons. A small IQRBF means neighbors are similarly tuned (an orderly, homogeneous map), while a large IQRBF means neighbors have very different BFs (a disordered, heterogeneous map). (Winkowski and Kanold, 2013; Zeng et al., 2019).

      From the BF position reconstruction of all TR neurons (Figures 2I), most TR neurons respond to high-frequency sounds in the high-frequency (HF) region, but some neurons respond to low frequencies such as 2 kHz, which contributes to high IQR in HF areas. This does not contradict our main conclusion, that the TR neurons is significantly more homogeneous than the CT neurons. BF variability represents the stability of a neuron's BF over time, while IQR represents the variability of BF among different neurons within a certain range. (Chambers et al., 2023).

      Related publications:

      (1) Chambers AR, Aschauer DF, Eppler JB, Kaschube M, Rumpel S. 2023. A stable sensory map emerges from a dynamic equilibrium of neurons with unstable tuning properties. Cerebral Cortex 33: 5597-5612. DIO: https://doi.org/10.1093/cercor/bhac445, PMID: 36418925

      (2) Winkowski DE, Kanold PO. 2013. Laminar transformation of frequency organization in auditory cortex. Journal of Neuroscience 33: 1498-508. DIO: https://doi.org/10.1523/JNEUROSCI.3101-12.2013, PMID: 23345224

      (3) Zeng HH, Huang JF, Chen M, Wen YQ, Shen ZM, Poo MM. 2019. Local homogeneity of tonotopic organization in the primary auditory cortex of marmosets. Proceedings of the National Academy of Sciences of the United States of America 116: 3239-3244. DIO: https://doi.org/10.1073/pnas.1816653116, PMID: 30718428

      Figure 4A-B, there are no clear criteria on how the authors categorize V, I, and O shapes. The descriptions in the Methods (lines 721 - 725) are also very vague.

      We apologize for the initial vagueness and have replaced the descriptions in the Methods section. “V-shaped”: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. “I-shaped”: Neurons whose FRAs show constant frequency selectivity with increasing intensity. “O-shaped”: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      To provide better visual intuition, we show multiple representative examples of each FRA type for both TR and CT neurons below. We are confident that these provide the necessary clarity and reproducibility for our analysis of receptive field properties.

      Author response image 1.

      Different FRA types within the dataset of TR and CT neurons. Each row shows 6 representative FRAs from a specific type. Types are V-shaped (‘V'), I-shaped (‘I’), and O-shaped (‘O’). The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities.

      Reviewer #2 (Public Review):

      Summary:

      Gu and Liang et. al investigated how auditory information is mapped and transformed as it enters and exits an auditory cortex. They use anterograde transsynaptic tracers to label and perform calcium imaging of thalamorecipient neurons in A1 and retrograde tracers to label and perform calcium imaging of corticothalamic output neurons. They demonstrate a degradation of tonotopic organization from the input to output neurons.

      Strengths:

      The experiments appear well executed, well described, and analyzed.

      Weaknesses:

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether or not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording (1) CT neurons in upper layers, (2) TR in deeper layers, (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      We appreciate these constructive suggestions. To address this, we performed new experiments and analyses.

      Comparison of TR neurons across superficial layers: we analyzed our existing TR neuron dataset to see if response properties varied by depth within the superficial layers. We found no significant differences in the fraction of tuned neurons, field IQR, or maximum bandwidth (BWmax) between TR neurons in L2/3 and L4. This suggests a degree of functional homogeneity within the thalamorecipient population across these layers. The results are presented in new supplemental figures (Figure 2- figure supplementary 4).

      Necessary control experiments.

      (1) CT neurons in upper layers. CT neurons are thalamic projection neurons that only exist in the deeper cortex, so CT neurons do not exist in upper layers (Antunes and Malmierca, 2021).

      (2) TR neurons in deeper layers. As we mentioned in the manuscript, due to high-titer AAV1-Cre virus labeling controversy (anterograde and retrograde labelling both exist), it is challenging to identify TR neurons in deeper layers.

      (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      To directly test if projection identity confers distinct functional properties within the same cortical layers, we performed the crucial control of comparing TR neurons to their neighboring non-TR neurons. We injected AAV1-Cre in MGB and a Cre-dependent mCherry into A1 to label TR neurons red. We then co-injected AAV-CaMKII-GCaMP6s to label the general excitatory population green.  In merged images, this allowed us to functionally image and directly compare TR neurons (yellow) and adjacent non-TR neurons (green). We separately recorded the responses of these neurons to pure tones using two-photon imaging. The results show that TR neurons are significantly more likely to be tuned to pure tones than their neighboring non-TR excitatory neurons. This finding provides direct evidence that a neuron's long-range connectivity, and not just its laminar location, is a key determinant of its response properties. The results are presented in new supplemental figures (Figure 2- figure supplementary 5).

      Related publications:

      Antunes FM, Malmierca MS. 2021. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 15: 721186. DIO: https://doi.org/10.3389/fncir.2021.721186, PMID: 34489648

      (2) What percent of the neurons at the depths are CT neurons? Similar questions for TR neurons?

      We thank the reviewer for the comments. We performed histological analysis on brain slices from our experimental animals to quantify the density of these projection-specific populations. Our analysis reveals that CT neurons constitute approximately 25.47%\22.99%–36.50% of all neurons in Layer 6 of A1. In the superficial layers(L2/3 and L4), TR neurons comprise approximately 10.66%\10.53%–11.37% of the total neuronal population.

      Author response image 2.

      The fraction of CT and TR neurons. (A) Boxplots showing the fraction of CT neurons. N = 11 slices from 4 mice. (B) Boxplots showing the fraction of TR neurons. N = 11 slices from 4 mice.

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      The terms "V-shaped," "I-shaped," and "O-shaped" are an established nomenclature in the auditory neuroscience literature for describing frequency response areas (FRAs), and we use them for consistency with prior work. V-shaped: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. I-shaped: Neurons whose FRAs show constant frequency selectivity with increasing intensity. O-shaped: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      (Rothschild et al., 2010). We have included a more detailed description in the Methods.

      The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities. So, the heat map represents the FRA of neurons in A1, reflecting the responses for different frequencies and intensities of sound stimuli. In the revised manuscript, we have provided clarifications in the figure legend.

      (4) Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, and V1.

      We thank the reviewers for their valuable comments. We have made a concerted effort to ensure that claims about cortical circuit organization are supported by findings specifically from the auditory cortex wherever possible, strengthening the focus and specificity of our discussion.

      Reviewer #3 (Public Review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high-frequency regions of the primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in the cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, the tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and the best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and reported that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      We sincerely thank the reviewer for the thoughtful evaluation of our manuscript and for your positive assessment of our work.

      (1)  Concern regarding Best Frequency (BF) vs. Characteristic Frequency (CF)

      Our use of BF, defined as the frequency eliciting the highest response averaged across all sound levels, is a standard and practical approach in 2-photon Ca²⁺ imaging studies. (Issa et al., 2014; Rothschild et al., 2010; Schmitt et al., 2023; Tischbirek et al., 2019). This method is well-suited for functionally characterizing large numbers of neurons simultaneously, where determining a precise firing threshold for each individual cell can be challenging.

      (2) Concern regarding background noise of the 2-photon setup

      We have expanded the Methods section ("Auditory stimulation") to include a detailed description of the sound-attenuation strategies used during the experiments. The use of a custom-built, double-walled sound-proof enclosure lined with wedge-shaped acoustic foam was implemented to significantly reduce external noise interference. These strategies ensured that auditory stimuli were delivered under highly controlled, low-noise conditions, thereby enhancing the reliability and accuracy of the neural response measurements obtained throughout the study.

      (3) Concern regarding the relationship between dF/F and spikes

      While Ca²⁺ signals are an indirect and filtered representation of spiking activity, they are a powerful tool for assessing the functional properties of genetically-defined cell populations. As you note, the properties and limitations of Ca²⁺ imaging apply equally to both the TR and CT neuron groups we recorded. Therefore, the profound difference we observed—a clear tonotopic gradient in one population and a lack thereof in the other—is a robust biological finding and not a methodological artifact.

      Related publications:

      (1) Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT. 2014. Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83: 944-59. DIO: https://doi.org/10.1016/j.neuron.2014.07.009, PMID: 25088366

      (2) Rothschild G, Nelken I, Mizrahi A. 2010. Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13: 353-60. DIO: https://doi.org/10.1038/nn.2484, PMID: 20118927

      (3) Schmitt TTX, Andrea KMA, Wadle SL, Hirtz JJ. 2023. Distinct topographic organization and network activity patterns of corticocollicular neurons within layer 5 auditory cortex. Front Neural Circuits 17: 1210057. DIO: https://doi.org/10.3389/fncir.2023.1210057, PMID: 37521334

      (4) Tischbirek CH, Noda T, Tohmi M, Birkner A, Nelken I, Konnerth A. 2019. In Vivo Functional Mapping of a Cortical Column at Single-Neuron Resolution. Cell Rep 27: 1319-1326 e5. DIO: https://doi.org/10.1016/j.celrep.2019.04.007, PMID: 31042460

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      As shown in the Figure 2- figure supplementary 2, a much higher fraction of TR neurons was "tuned" to pure tones (46% of 1041 neurons) compared to CT neurons (only 18% of 2721 neurons). To obtain a statistically robust and comparable number of tuned neurons for our core analysis (481 tuned TR neurons vs. 491 tuned CT neurons), it was necessary to sample a larger total population of CT neurons, which required imaging from more animals.

      (3) The authors' definitions of neuronal response type in the methods need more quantitative detail. The authors state: "Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels.". The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      We appreciate the reviewer's suggestions. We have added more detailed description in the Methods.

      Tuned neurons: A responsive neuron was further classified as "Tuned" if its responses showed significant frequency selectivity. We determined this using a one-way ANOVA on the neuron's response amplitudes across all tested frequencies (at the sound level that elicited the maximal response). If the ANOVA yielded a p-value < 0.05, the neuron was considered "Tuned”. Irregular neurons: Responsive neurons that did not meet the statistical criterion for being "Tuned" (i.e., ANOVA p-value ≥ 0.05) were classified as "Irregular”. This provides a clear, mutually exclusive category for sound-responsive but broadly-tuned or non-selective cells. Silent neurons: Neurons that were not responsive were classified as "Silent". This quantitatively defines them as cells that showed no significant stimulus-evoked activity during the entire recording session. Best frequency (BF): It is the frequency that elicited the maximal mean response, averaged across all sound levels.

      To provide greater clarity, we showed examples in the following figures.

      Author response image 3.

      Reviewer #1 (Recommendations For The Authors):

      (1) A1 and AuC were used exchangeably in the text.

      Thank you for pointing out this issue. Our terminological strategy was to remain faithful to the original terms used in the literature we cite, where "AuC" is often used more broadly. In the revised manuscript, we have performed a careful edit to ensure that we use the specific term "A1" (primary auditory cortex) when describing our own results and recording locations, which were functionally and anatomically confirmed.

      (2) Grammar mistakes throughout.

      We are grateful for the reviewer’s suggested improvement to our wording. The entire manuscript has undergone a thorough professional copyediting process to correct all grammatical errors and improve overall readability.

      (3) The discussion should talk more about how/why L6 CT neurons don't possess the tonotopic organization and what are the implications. Currently, it only says 'indicative of an increase in synaptic integration during cortical processing'...

      Thanks for this suggestion. We have substantially revised and expanded the Discussion section to explore the potential mechanisms and functional implications of the lack of tonotopy in L6 CT neurons.

      Broad pooling of inputs: We propose that the lack of tonotopy is an active computation, not a passive degradation. CT neurons likely pool inputs from a wide range of upstream neurons with diverse frequency preferences. This broad synaptic integration, reflected in their wider tuning bandwidth, would actively erase the fine-grained frequency map in favor of creating a different kind of representation.

      A shift from topography to abstract representation: This transformation away from a classic sensory map may be critical for the function of corticothalamic feedback. Instead of relaying "what" frequency was heard, the descending signal from CT neurons may convey more abstract, higher-order information, such as the behavioral relevance of a sound, predictions about upcoming sounds, or motor-related efference copy signals that are not inherently frequency-specific.’

      Modulatory role of the descending pathway: The descending A1-to-MGB pathway is often considered to be modulatory, shaping thalamic responses rather than driving them directly. A modulatory signal designed to globally adjust thalamic gain or selectivity may not require, and may even be hindered by, a fine-grained topographical organization.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given that the CT and TR neurons were imaged at different depths, the question as to whether or not these differences could otherwise be explained by layer-specific differences is still not 100% resolved. Control measurements would be needed either by recording (1) CT neurons in upper layers (2) TR in deeper layers (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      We appreciate these constructive suggestions. To address this, we performed new experiments and analyses.

      Comparison of TR neurons across superficial layers: we analyzed our existing TR neuron dataset to see if response properties varied by depth within the superficial layers. We found no significant differences in the fraction of tuned neurons, field IQR, or maximum bandwidth (BWmax) between TR neurons in L2/3 and L4. This suggests a degree of functional homogeneity within the thalamorecipient population across these layers.

      Necessary control experiments.

      (1) CT neurons in upper layers. CT neurons are thalamic projection neurons that only exist in the deeper cortex, so CT neurons do not exist in upper layers (Antunes and Malmierca, 2021).

      (2) TR neurons in deeper layers. As we mentioned in the manuscript, due to high-titer AAV1-Cre virus labeling controversy (anterograde and retrograde labelling both exist), it is challenging to identify TR neurons in deeper layers.

      (3) non-CT in deeper layers and/or (4) non-TR in upper layers.

      To directly test if projection identity confers distinct functional properties within the same cortical layers, we performed the crucial control of comparing TR neurons to their neighboring non-TR neurons. We injected AAV1-Cre in MGB and a Cre-dependent mCherry into A1 to label TR neurons red. We then co-injected AAV-CaMKII-GCaMP6s to label the general excitatory population green.  In merged images, this allowed us to functionally image and directly compare TR neurons (yellow) and adjacent non-TR neurons (green). We separately recorded the responses of these neurons to pure tones using two-photon imaging. The results show that TR neurons are significantly more likely to be tuned to pure tones than their neighboring non-TR excitatory neurons. This finding provides direct evidence that a neuron's long-range connectivity, and not just its laminar location, is a key determinant of its response properties.

      Related publications:

      Antunes FM, Malmierca MS. 2021. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 15: 721186. DIO: https://doi.org/10.3389/fncir.2021.721186, PMID: 34489648

      (3) V-shaped, I-shaped, or O-shaped is not an intuitively understood nomenclature, consider changing. Further, the x/y axis for Figure 4a is not labeled, so it's not clear what the heat maps are supposed to represent.

      The terms "V-shaped," "I-shaped," and "O-shaped" are an established nomenclature in the auditory neuroscience literature for describing frequency response areas (FRAs), and we use them for consistency with prior work. V-shaped: Neurons whose FRAs show decreasing frequency selectivity with increasing intensity. I-shaped: Neurons whose FRAs show constant frequency selectivity with increasing intensity. O-shaped: Neurons responsive to a small range of intensities and frequencies, with the peak response not occurring at the highest intensity level.

      (Rothschild et al., 2010). We have included a more detailed description in the Methods.

      The X-axis represents 11 pure tone frequencies, and the Y-axis represents 6 sound intensities. So, the heat map represents the FRA of neurons in A1, reflecting the responses for different frequencies and intensities of sound stimuli. In the revised manuscript, we have provided clarifications in the figure legend.

      (4) Many references about projection neurons and cortical circuits are based on studies from visual or somatosensory cortex. Auditory cortex organization is not necessarily the same as other sensory areas. Auditory cortex references should be used specifically, and not sources reporting on S1, V1.

      We thank the reviewers for their valuable comments. We have made a concerted effort to ensure that claims about cortical circuit organization are supported by findings specifically from the auditory cortex wherever possible, strengthening the focus and specificity of our discussion.

      Reviewer #3 (Recommendations For The Authors):

      I suggest showing some more examples of how different neurons and receptive field properties were quantified and statistically analyzed. Especially in Figure 4, but really throughout.

      We thank the reviewer for this valuable suggestion. To provide greater clarity, we have added more examples in the following figure.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this study, Ledamoisel et al. examined the evolution of visual and chemical signals in closely related Morpho butterfly species to understand their role in species coexistence. Using an integrative, state-of-the-art approach combining spectrophotometry, visual modeling, and behavioral mate choice experiments, they quantified differences in wing iridescence and assessed its influence on mate preference in allopatry and sympatry. They also performed chemical analyses to determine whether sympatric species exhibit divergent chemical cues that may facilitate species recognition and mate discrimination. The authors found iridescent coloration to be similar in sympatric Morpho species. Furthermore, male mate choice experiments revealed that in sympatry, males fail to discriminate conspecific females based on coloration, reinforcing the idea that visual signal convergence is primarily driven by predation pressure. In contrast, the divergence of chemical signals among sympatric species suggests their potential role in facilitating species recognition and mate discrimination. The authors conclude that interactions between ecological pressures and signal evolution may shape species coexistence.

      Strengths:

      The study is well-designed and integrates multiple methodological approaches to provide a thorough assessment of signal evolution in the studied species. I appreciate the authors' careful consideration of multiple selective pressures and their combined influence on signal divergence and convergence. Additionally, the inclusion of both visual and chemical signals adds an interesting and valuable dimension to the study, enhancing its importance. Beyond butterflies, this research broadens our understanding of multimodal communication and signal evolution in the context of species coexistence.

      Weaknesses:

      (1) The broader significance of the findings needs to be better articulated. While the authors emphasize that comparing adaptive traits in sympatry and allopatry provides insights into selective processes shaping reproductive isolation and coexistence, it is unclear what key conceptual or theoretical questions are being addressed. Are these patterns expected under certain evolutionary scenarios? Have they been empirically demonstrated in other systems? The authors should explicitly state the overarching research question, incorporate some predictions, and better contextualize their findings within the existing literature. If the results challenge or support previous work, that should be highlighted to strengthen the study's importance in a broader context.

      We thank the reviewer for their valuable feedback. We understand that the framing of the results and the discussion may fail to convey the broader significance of our findings. In the first version of the manuscript, we framed our manuscript around the processes shaping reproductive isolation and co-existence in sympatry, but now realize that this question was too broad in regards to our results. We thus strictly focused on outlining the importance of ecological interactions in the evolution of traits in sympatric species. In the revised version of the manuscript, we rewrote the first paragraph of the introduction to introduce context regarding the effect of ecological interactions on trait evolution (lines 43-60). We then explicitly introduce the theoretical question investigated in our paper (i.e. “we investigate how ecological interactions in sympatry can constrain natural and sexual selection shaping trait evolution”, lines 62-63) and our predictions regarding the evolution of traits in sympatry vs. allopatry (lines 74-80). We also added predictions regarding our experiments on Morpho at the end of the introduction (lines 146-157). As a result, the discussion is now better aligned with the introduction, by discussing the putative effect of predation and mate choice on the evolution of wing iridescence in Morpho.

      (2) The motivation for studying visual signals and mate choice in allopatric populations (i.e., at the intraspecific level) is not well articulated, leaving their role in the broader narrative unclear. In particular, the rationale behind experiments 1, 2, and 3 is not well defined, as the authors have not made a strong case for the need for these intraspecific comparisons in the introduction. This issue is further compounded by the authors' primary focus on signal evolution in sympatry throughout both the results and the discussion. For instance, the divergence of iridescence in allopatry is a potentially interesting result. But the authors have not discussed its implications.

      We now clearly state in the introduction our motivation for studying visual signals and mate choice in allopatric populations (lines 74-80, lines 146-157). We argued that intraspecific comparisons help identify whether visual cues can be used in mate recognition between phylogenetically close subspecies, between whom visual resemblance is supposed to be higher than between closely-related species (tetrad experiment, and experiment 1). As M. h. bristowi and M. h. theodorus have different wing pattern, we also used this comparison to identify the traits involved in male mate preference within a species, testing the importance of iridescent color (experiment 2) or iridescent patterning (experiment 3). The results of those experiments can then be used to assess whether these traits are used in species recognition between sympatric species. See also our answers to recommendations 11 and 15 from reviewer #1.

      Overall, given that the primary conclusions are based on results and analyses in sympatry, the role of allopatric populations in shaping these conclusions needs to be better integrated and justified. Without a stronger link between the comparative framework and the study's key takeaways, the use of allopatric populations feels somewhat peripheral rather than central to the study's aim. Since the primary conclusions remain valid even without the allopatric comparisons, their inclusion requires a clearer rationale.

      To make a stronger case for the use of the allopatric population in our manuscript, we strengthened the justification behind the study of intraspecific allopatric populations vs. interspecific sympatric populations, as the iridescence measurements and the mate choice experiments in allopatric populations can serve as a baseline in studying how species interactions can shape the evolution of traits and mate recognition when compared to sympatric populations. Following your major comment #1, we rewrote the introduction to include a justification to the need for studying allopatric vs. sympatric populations (lines 74-80), and also further highlighted the need to study iridescence in sympatric species to fully understand the trait evolution of sympatric species in the discussion (339-343).

      (3) While the authors demonstrate that iridescence is indistinguishable to predators in sympatry, they overstate the role of predation in driving convergence. The present study does not experimentally demonstrate that iridescence in this species has a confusion effect or contributes to evasive mimicry. Alternatively, convergence could result from other selective forces, such as signal efficacy due to environmental conditions, rather than being solely driven by predation.

      We acknowledge that our study does not directly demonstrate that iridescence contributes to evasive mimicry. We did tone down the interpretation of the results in the discussion and state that predation is not the only selective pressure that could have promoted a convergent evolution of iridescence in sympatric species, as iridescence is a trait that could be involved in thermoregulation (lines 346-353) and camouflage (lines 363-369) for example. We made sure to mention that convergence in iridescent signals in sympatry is only an indirect support to the evasive mimicry hypothesis, and that further research is still needed, including direct predation experiments, to show that this convergence is indeed triggered by predation (lines 391-396).  

      Reviewer #2 (Public review):

      This study presents an investigation of the visual and chemical properties and mating behaviour in Morpho butterflies, aimed at addressing the nature of divergence between closely related species in sympatry. The study species consists of three subspecies of Morpho helenor (bristowi, theodorus, and helenor), and the conspecific Morpho achilles achilles. The authors postulate that whereas the iridescent blue signals of all (sub)species should function as a predator reduction signal (similar to aposematism) and therefore exhibit convergence, the same signals should indicate divergence if used as a mating signal, particularly in sympatric populations. They also assess chemical profiles among the species to assess the potential utility of scent in mediating species/sex discrimination.

      The authors first used reflectance spectrometry to calculate hue, brightness, and chroma, plus two measures of "iridescence" (perhaps better phrased as angular dependence) in each (sub)species. This indicated the ubiquitous presence of sexual dimorphism in brightness (males brighter), which also appears to be the case for iridescence (Figure 3A-B). Analysis of these data also indicated that whereas there is evidence for divergence among subspecies in allopatry, the same evidence is lacking for species in sympatry (P = 0.084). This was supported further by visual modelling, which showed that both conspecifics and birds should be (theoretically) capable of perceiving the colour difference among allopatric populations of M. helenor, whereas the same is not true for the sympatric species.

      The authors then conducted mate choice trials, first using live individuals and second using female dummies. The live experiments indicated the presence of assortative mating among the two subspecies of M. helenor (bristowi and theodorus). The dummy presentations indicated (a) bristowi males prefer conspecific wings, whereas theodorus have no preference, (b) bristowi males prefer the con(sub)specific colour pattern, (c) theodorus prefer the con(sub)specific iridescence when the pattern is manipulated to be similar among female dummies. A fourth experiment, using sympatric M. achilles and M. helenor, indicated no preference for conspecific female dummies. Finally, chemical analysis indicated substantial differences between these two species in putative pheromone compounds, and especially so in the males.

      The authors conclude that the similarity of iridescence among species in sympatry is suggestive of convergence upon a common anti-predation signal. Despite some behavioural evidence in favourof colour (iridescence)-based mate discrimination, chemical differences between Achilles and Helenor are posed as more likely to function for species isolation than visual differences.

      Overall, I enjoyed reading this manuscript, which presents a valiant attempt at studying visual, chemical and behavioural divergence in this iconic group of butterflies.

      Major comments

      My only major comment concerns the authors' favoured explanation for aposematism (or evasive mimicry) for convergence among species, which is based upon the you-can't-catch-me hypothesis first presented by Young 1971. Although there is supporting work showing that iridescent-like stimuli are more difficult to precisely localize by a range of viewers, most of the evidence as applied to the Morpho system is circumstantial, and I'm not certain that there is widespread acceptance of this hypothesis. Given that the present study deals with closely-related  (sub)species, one alternative explanation - a "null" hypothesis of sorts - is for a lack of divergence (from a common starting point) as opposed to evolutionary convergence per se. in other words, two subspecies are likely to retain ancestral character states unless there is selection that causes them to diverge. I feel that the manuscript would benefit from a discussion of this alternative, if not others. Signalling to predators could very well be involved in constraining the extent of convergence, but this seems a little premature to state as an up-front conclusion of this work. There is also the result of a *dorsal* wing manipulation by Vieira-Silva et al. 2024 which seems difficult to reconcile in light of this explanation. Whereas this paper is cited by the authors, a more nuanced discussion of their experimental results would seem appropriate here.

      We thank the reviewer for their constructive comments on our manuscript. We appreciate the reviewer’s concern regarding the way iridescence convergence between sympatric species is discussed in our manuscript, which align with similar concerns raised by Reviewer 1. Indeed, the you-can't-catch-me hypothesis has not been yet empirically tested in Morpho, this is currently a working hypothesis only supported by indirect lines of evidence.

      Among the 30 known Morpho species, iridescence is most likely the ancestral character, notably because iridescence is a trait shared by a majority of Morpho (we now mention this in the introduction lines 108-110). In this paper, we thus did not aim to identify the evolutionary forces involved in the appearance of iridescence in this group, but rather wanted to understand to what extent ecological interactions can impact the diversification (or not) of this trait. As such, the dorsal manipulations performed in Vieira-Silva et al 2024 showing that iridescence in Morpho may have a similar effect than crypsis does not impact our working hypothesis. Instead, we use VieraSilva et al 2024 to discuss the potential anti-predator effect of iridescence, that could potentially promote convergent evolution of iridescent patterns.

      In the main text, we now clearly mention our null hypothesis: under a scenario of neutral evolution of iridescence, we would expect that the divergence in wing coloration between two M. helenor subspecies would be lower than between two different Morpho species (M. helenor and M. achilles) and showed that our results sharply differ from this null expectation.

      We then improved the discussion by adding alternative hypotheses potentially explaining the convergent iridescent signal detected in sympatric species: we discussed the expected effect under neutral evolution (lines 339-343), but also added alternative hypotheses regarding the diversification of iridescence due to camouflage (lines 363-369), predator evasion (lines 373-377) and thermoregulation (lines 346-353).

      Reviewer #3 (Public review):

      The authors investigated differences in iridescence wing colouration of allopatric (geographically separated) and sympatric (coexisting) Morpho butterfly (sub)species. Their aim was to assess if iridescence wing colouration of Morpho (sub)species converged or diverged depending on coexistence and if iridescence wing colouration was involved in mating behaviour and reproductive isolation. The authors hypothesize that iridescence wing colouration of different (sub)species should converge in sympatry and diverge in allopatry. In sympatry, iridescence wing colouration can act as an effective antipredator defence with shared benefits if multiple (sub)species share the same colouration. However, shared wing colouration can have potential costs in terms of reproductive interference since wing colouration is often involved in mate recognition. If the benefits of a shared antipredator defence outweigh the costs of reproductive interference, iridescence wing colouration will show convergence and alternative mate recognition strategies might evolve, such as chemical mate recognition. In allopatry, iridescence wing colouration is expected to diverge due to adaptation to different local conditions and no alternative mate recognition is expected.

      Strengths:

      (1) Using allopatric and sympatric (sub)species that are closely related is a powerful way to test evolutionary hypotheses

      (2) By clearly defining iridescence and measuring colour spectra from a variety of angles, applying different methods, a very comprehensive dataset of iridescence wing colouration is achieved.

      (3) By experimentally manipulating wing coloration patterns, the authors show visual mate recognition for M. h. bristowi and could, in theory, separate different visual aspects of colouration (patterns VS iridescence strength).

      (4) Measurements of chemical profiles to investigate alternative mate recognition strategies in case of convergence of visual signals.

      Weaknesses:

      In my opinion, studies should be judged on the methods and data included, and not on additional measurements that could have been taken or additional treatments/species that should be included, since in most ecological and evolutionary studies, more measurements or treatments/species can always be included. However, studies do need to ensure appropriate replication and appropriate measurements to test their hypothesis AND support their conclusions. The current study failed to ensure appropriate replication, and in various cases, the results do not support the conclusions.

      First, when using allopatric and sympatric (sub)species pairs to test evolutionary hypotheses, replication is important. Ideally, multiple allopatric and sympatric (sub)species pairs are compared to avoid outlier (sub)species or pairs that lead to biased conclusions. Unfortunately, the current study compares 1 allopatric and 1 sympatric (sub)species pair, hence having poor (no) replication on the level of allopatric and sympatric (sub)species pairs,

      We would like to thank the reviewer for their constructive feedback. We agree that replication is important to test evolutionary hypotheses and that our study lacks replication for allopatric and sympatric Morpho populations. Ideally, one would require several allopatric and sympatric replicates to conclude on the effect of species interaction in trait evolution. Our study is a preliminary attempt at answering this question, covering a few Morpho populations but proposing a broad assessment of iridescence and mate preference for those populations. We clearly mentioned in the discussion that investigating multiple populations is needed to test whether the trend we observed in this paper can be generalized (line 388-392).

      Second, chemical profiles were only measured for sympatric species and not for allopatric (sub)species, which limits the interpretation of this data. The allopatric (sub)species could have been measured as non-coexistence "control". If coexistence and convergence in wing colouration drives the evolution of alternative mate recognition signals, such alternative signals should not evolve/diverge for allopatric (sub)species where wing colouration is still a reliable mate recognition cue. More importantly, no details are provided on the quantification of butterfly chemical profiles, which is essential to understand such data. It is unclear how the chemical profiles were quantified and what data (concentrations, ratios, proportions) were used to perform NDMS and generate Figure 5 and the associated statistical tests.

      We recognize that having the chemical profiles of the genitalia of the Morpho from the allopatric populations would have made a stronger case in favor of reinforcement acting on the divergence of the chemical compounds found on the genitalia of the sympatric Morpho species. Due to limited access to the biological material needed at the time of the chromatography, we could not test for lower divergence in the chemical profiles of allopatric Morpho butterflies. We made sure to mention this limitation in the discussion (lines 457-461). 

      We already stated in the methods that we compiled the area under the peak of each components found in the chromatograms of our samples and that we performed all the statistical analyses on this dataset. To make it clearer, we mention in the new version of the manuscript that the area under the peak of each component allows to measure the concentration of the components (in the methods lines 720, 723, 733). We also added some precisions in the legend of Figure 5.

      Third, throughout the discussion, the authors mention that their results support natural selection by predators on iridescent wing colouration, without measuring natural selection by predators or any other measure related to predation. It is unclear by what predators any of the butterfly species are predated on at this point

      We made sure to mention in the introduction (line 132-136) and in the discussion (line 373-377) that previous predation experiments performed on Morpho and other butterflies showed evidence that birds are likely predators for these species. These observations lead us to test for the putative effect of predation on the evolution of their color pattern, without directly testing predatory rates. We made sure this information is transparent in the revised manuscript, and now precise that assessing wing convergence is only an indirect way of testing the escape mimicry hypothesis (line 393-396).

      To continue on the interpretation of the data related to selection on specific traits by specific selection agents: This study did not measure any form of selection or any selection agent. Hence, it is not known if iridescent wing colouration is actually under selection by predators and/or mates, if maybe other selection agents are involved or if these traits converge due to genetic correlations with other traits under selection. For example, Iridescent colouration in ground beetles has functions as antipredator defence but also thermo- and water regulation. None of these issues are recognized or discussed.

      The lack of discussion of alternative selective pressures involved in the evolution of iridescence was pointed out by all reviewers. We thus modified the text to account for this comment, and no longer limit our discussion to the putative effects of predation. We now specifically discuss alternative hypotheses, including crypsis (362-369) and thermoregulation (line 346-353).

      Finally, some of the results are weakly supported by statistics or questionable methodology.

      Most notably, the perception of the iridescence coloration of allopatric subspecies by bird visual systems. Although for females, means and errors (not indicated what exactly, SD, SE or CI) are clearly above the 1 JND line, for males, means are only slightly above this line and errors or CIs clearly overlap with the 1 JND line. Since there is no additional statistical support, higher means but overlap of SD, SE or CI with the baseline provides weak statistical support for differences.

      We thank the reviewer for bringing interpretation issues concerning the chromatic distances of allopatric Morpho species measured with a bird vision model. We made sure to be nuanced in the description of this graph in the results section (line 208-212). Note that this addition does not change our main conclusion stating that Morpho and predator visual models better discriminate iridescence differences between allopatric subspecies than between sympatric species.

      We now also clearly mention in the figure’s legend that the error bars represent the confidence intervals obtained after performing a bootstrap analysis, in addition to the mention of the nature of the error bars already mentioned in the methods (line 580).

      Regarding the assortative mating experiment, the results are clearly driven by M. bristowi. For M. theodorus, females mate equally often with conspecifics (6 times) as with M. bristowi (5 times). For males, the ratio is slightly better (6 vs 3), but with such low numbers, I doubt this is statistically testable. Overall low mating for M. bristowi could indicate suboptimal experimental conditions, and hence results should be interpreted with care.

      We recognize that the tetrad experiment results are mainly driven by M. bristowi’s behavior as already mentioned in the results (line 231-232) but we now also mention it in the discussion (lines 401-402). This experiment would have benefited from more replicates, but the limited access to live males and virgin females for both subspecies was a limiting factor. Fisher’s exact test used to assess assortative mating is specifically appropriate to small sample sizes. We recognize that the sampling size is not ideal, however it is still statistically testable.

      Regarding the wing manipulation experiment, M. theodorus does not show a preference when dummies with non-modified wings are presented and prefers non-modified dummies over modified dummies. This is acknowledged by the authors but not further discussed. Certainly, some control treatment for wing modification could have been added.

      The use of controls to consider the effect of wing modification and odor by the permanent marker were already mentioned in the methods (lines 636-639). Following your recommendation and comments from the other reviewers, we now mention the use of this control in the results (lines 278283). We also address a potential issue that would have resulted in the rejection of these modified dummies by live males: we cannot be sure whether butterflies perceive these modifications as equivalent to natural coloration (lines 281-282). An additional control could have been used, adding black ink on the black dorsal parts of the pattern to assess its potential visual effect. The constraints on sampling unfortunately did not allow to add another treatment.

      Overall, the fact that certain measurements only provide evidence for 1 of the 2 (sub)species (assortative mating, wing manipulation) or one sex of one of the species (bird visual systems) means overall interpretation and overgeneralization of the results to both allopatric or sympatric species should be done with care, and such nuances should ideally be discussed.

      The aim of the authors, "to investigate the antagonistic effects of selective pressures generated by mate recognition and shared predation" has not been achieved, and the conclusions regarding this aim are not supported by the results. Nevertheless, the iridescence colour measurements are solid, and some of the behavioural experiments and chemical profile measurements seem to yield interesting results. The study would benefit from less overinterpretation of the results in the framework of predation and more careful consideration of methodological difficulties, statistical insecurities, and nuances in the results.

      Overall, we would like to thank all reviewers for their thorough assessment of our work. We understand that the imbalance between mate choice data, visual model data and chemical data only gives us a partial assessment of species recognition in Morpho butterflies, thus requiring more precision in the interpretation and the discussion of our results. We made sure to add balanced interpretations in our discussion, by mentioning the lack of replicates for allopatric and sympatric populations (lines 391-392), and the lack of chemical characterization of allopatric species (lines 458361, see previous comments) and by being more transparent on methodological limitations that we failed to convey in the first version of our manuscript. We brought nuance to our discussion and also discussed alternative hypotheses to predation to explain the convergence of iridescence found in sympatry.

      Reviewing Editor Comments:

      While all reviewers acknowledge the value of your data, they converge in their recommendations to tone down the evolutionary interpretations. Ideally, to test your main hypothesis, you would need several species pairs, or if only one, as in your case, replicated sympatric and allopatric sites for both species. Furthermore, your more specific hypotheses about convergence (vs. nondivergence), response to predators (vs. other environmental variables), and avoiding interspecific mating in sympatry (vs. not avoiding it in allopatry) would require appropriate alternative treatments/controls. We therefore recommend that you focus on those statements that you can support with your experiments and data, and introduce these statements in the introduction with reference to the appropriate literature.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 25: This stated aim seems a bit off. The authors did not sensu stricto quantify 'how shared adaptive traits may shape genetic divergence' in this study. I suggest rewriting or deleting this whole sentence altogether. The study's aim is already clear in lines 29-34.

      We deleted the mention of the characterization of genetic divergence, since this study did not focus on any genetic analysis.

      (2) Line 34: The authors here state that they compared allopatric vs sympatric populations. This is strictly not true for M. Achilles. Further, the results after this sentence focus solely ondivergence/convergence in sympatry, nothing at the intraspecific level and implications of the findings

      We now mention that we tested allopatric vs. sympatric species of M. helenor only (lines 28-29). We also mention that the behavioral experiments were based on intraspecific comparisons, and discuss the implications of this result in the discussion.

      (3) Line 35: 'convergence driven by predation': this is a strong statement and cannot be directly inferred from the present set of experiments. Consider toning it down.

      We added nuance to this statement by rephrasing it “suggesting that predation may favors local resemblance” (lines 32-33)

      (4) Line 36: Replace 'behavioral results' with 'behavioral experiments' or something similar.

      Corrected

      (5) Line 45-49: These opening statements need some citations.

      We provided references for the first few lines, by citing terHorst et al 2018 (line 44) underlining the importance of species interactions in trait evolution, and Blomberg et al 2003 (line 45) showing that closely-related species tend to resemble each other by quantifying the phylogenetic signal of various traits.

      (6) Line 83, 165: 'visual effect', not sure what the authors are referring to. Please rewrite.

      We defined “visual effect” as the way wing color patterns could be perceived by predators or mates. We removed mentions of “visual effect” and directly used its definition instead.

      (7) Line 105 onwards: This section of the introduction could benefit from more concise writing. The authors might consider reducing the number of specific examples and instead offering broader general statements, supported by citations from multiple studies.

      We reduced the number of examples given in this paragraph and used general statements supported by multiple citations as examples. (lines 102-119).

      (8) Line 108-110: This sentence seems to be redundant with the previous one.

      We merged this sentence with the previous one to improve clarity. (lines 103-105)

      (9) Line 140: 'with chemical defenses': include citations here.

      We added citations of Joron et al 1999 and Merrill et al 2014, which document the evolution of convergent wing patterns (mimicry) in butterfly species with chemical-defenses.

      (10) Line 149: This is a bit of a stretch. Note that genetic divergence could be influenced by many other things, not only the processes that the authors examined.

      We agree with the reviewer that the study of the convergent vs. divergent evolution of visual cues is not enough to fully understand the mechanisms allowing genetic divergence between species. Because this paper does not focus on characterizing genetic divergence, we removed it from the manuscript to avoid oversimplification.

      (11) Line 151: Again. Here, the author's primary focus seems to be at an interspecific level. One is left to wonder about the need for comparisons at the intraspecific level in M.helenor and the implications. Please clarify

      In the end of the introduction (lines 146-157), we specifically highlighted the importance of intraspecific comparisons. While studying the effect of sympatry on the evolution of the iridescent color pattern, we use this intraspecific comparison as a baseline to account for convergence or divergence of iridescence in a sympatric interspecific pair of Morpho, because under neutral evolution two subspecies are expected to be more similar than two different species (this assumption has been clarified line 147-148). We also used intraspecific mate choice to test for the use of visual cues in mate recognition (experiment 1) and to test what type of signal could be perceived by Morphos (the iridescent coloration or the iridescent pattern, experiment 2 and 3). These results help contextualize the interspecific mate choice, focused on determining whether visual cues could also be used in species recognition. Since we show that iridescent coloration is important in mate recognition at the intraspecific scale, it helps understand why species recognition is low at the interspecific scale because of wing color convergence between M. helenor and M. achilles.

      (12) Line 154: 'signals on mate preferences'.

      Corrected.

      (13) Line 189: 'At the intraspecific level', maybe in the brackets include 'allopatric populations' just so the results are in a similar format as in the color contrast section below.

      We added details to make clearer that the intraspecific level is studied between allopatric Morpho populations (line 189).

      (14) Line 189-192: Please rearrange the figure (current B as A and vice versa) or present the results in order as in the figure (interspecific first and then intraspecific level).

      We rearranged Figure 3 so that the intraspecific comparison (allopatric population) appears as A and the interspecific level (sympatric population) appears as B, to follow the order of presentation in the main text.

      (15) Line 232: The motivation behind experiments 1, 2, and 3 is unclear. The authors have not made a strong point in the introduction about the need for these comparisons at an intraspecific level. Given that the authors are focused on divergence/convergence at an interspecific level, this set of experiments seems to be irrelevant to the present study. The implications of these findings are also not discussed.

      We added motivation to the use of experiment 1, 2, and 3 in the introduction (lines 151-154) by stating that those experiments were used to assess whether blue color could indeed be used as a mating cue in Morpho helenor (experiment 1) and to try to understand what part of the visual signal is important in mate choice in Morpho helenor: the wing pattern (experiment 2) or the iridescent coloration (experiment 3). Although motivation for these experiments was not detailed in our manuscript, we already discussed the implications of the results of experiments 1, 2 and 3 in the discussion by stating that visual cues can take many forms and that considering both color AND pattern is important in understanding visual cues (lines 408-416). We carefully reworked this new version to make it more straightforward.

      (16) Line 260: Insert 'wild-type' before model to ensure similar wording as in the previous section.

      Corrected.

      (17) Line 286: Insert 'sympatric' after mimetic.

      Corrected.

      (18) Line 307: Include a reference to the figures or table where these results are presented.

      We now mention in the main text that the different proportions of beta-ocimene found between males M. helenor and M. achilles are shown in Table S2.

      (19) Line 343: These inferences are speculative. Add a line here, something like 'although this warrants further research in this species'.

      We detailed what additional experiments are needed lines 388-396.

      (20) Line 357: The authors have not discussed their results on iridescence divergence in allopatric populations (line 190) and its implications.

      We now made clear in the beginning of the discussion that the divergence of iridescence in allopatric populations is used as a baseline to test for convergent iridescence between species (lines 339-343).

      (21) Line 361 onwards: This first paragraph is a bit confusing, as the results mainly focus on allopatry, while the title refers to sympatry.

      To avoid confusion between the title and the content of the discussion, we divided the last part of the discussion into two different parts. As the first paragraph mainly focus on allopatry, we isolated it and titled it “Iridescent color patterns can be used as mate recognition cues in M. helenor” (line 498). The next paragraph of the discussion, focusing on the sympatric Morpho populations, has been titled “Evolution of visual and olfactory cues in mimetic sister-species living in sympatry” (line 418).

      (21)  Line 383: visual cues 'as' poor species.

      Corrected.

      (23) Line 405: Why females here and not males? This is again confusing since the authors tested for male mate choice in the main experiments. Some background information on sex-specific mate choice in the methods might help.

      In this specific sentence, we talk about performing mate choice experiments to test for the discrimination of olfactory cues by females (and not males) because we found a high divergence in the chemical compounds found on male genitalia. Although female chemical compounds could also be used as a cue by males in mate recognition, olfactive mate choice is often driven by female choice in butterflies. We recognize that this perspective does not line up with the mate choice presented in our results section which focused on male mate choice based on visual cues, because of ecological reasons (Morpho males tend to be attracted to bright blue colorations but not females) and technical reasons (in cages, females tend to hide away from the males or male dummies, and this behavior is not compatible with experiments involving flying around false males). In the discussion, we made sure to precise that the perspective we cite here is about testing the implications of divergence in male olfactory cues (line 454). We also added motivation to why we chose to investigate male (and not female) mate choice based on visual cues in the methods (lines 613-618) and in the results (219-223).

      (24) Line 417: This inference is speculative. Consider toning it down.

      We rewrote the sentence: “We find evidence of converging iridescent patterns in sympatry suggesting that predation could play a major role in the evolution of iridescence. Further work is nevertheless needed to directly test this hypothesis and establish the important of evasive mimicry in Morpho” (lines 465-468).

      (25) Line 429: 'Convergent trait evolution leads to mutualistic interactions enhancing coexistence'. Careful here. It is not very evident how convergent trait evolution (iridescence) is mutualistic in this case, as there is no experimental evidence for evasive mimicry yet. Consider rewording or toning this sentence down.

      We agree with the reviewer and removed this statement, only keeping the end of the sentence: “Altogether, this study addresses how convergence in one trait as a result of biotic interactions may alter selection on traits in other sensory modalities, resulting in a complex mosaic of biodiversity. (lines 479-481).

      (26) Line 442: Since the samples come from a breeding farm, I have a few questions. How are the authors sure about the location where the specimens were collected? How long have they been kept in captivity? Have they been subjected to any artificial selection? More details are needed here.

      Since M. helenor bristowi and M. helenor theodorus are only found in the wild in West and East Ecuador respectively, those M. helenor subspecies can only be collected in those two allopatric populations. Their phenotype is directly linked to their geographic repartition, this is how we made sure about their collect location. M. h. theodorus we used in this study were caught in East Ecuador in Tena, and M. h. bristowi were caught in West Ecuador in Pedro Vincente Madonado. We received pupae from the breeding farm, meaning that the Morpho used for the experiments were raised in captivity since their date of emergence. Upon emergence, they were transferred into cages for 4 to 5 days to wait for sexual maturity before performing the tetrad and mate choice experiments. This information was added to the method (lines 490-496).

      (27) Line 476: Include some citations supporting this statement.

      We now cite Bennett and Théry (2007), reviewing avian color vision, and Briscoe (2008), characterizing the sensitivity of the photoreceptors found in the eyes of butterflies. Both citations show that the 300-700nm range is seen by avian and butterfly visual systems.

      (28) Line 480 onwards: Please clarify if the analysis used only one value (mean?) per species, sex, angle of measurement, and locality or included data from multiple individuals.

      The analyses of both colorimetric variables and global iridescence were performed using iridescence data from multiple individuals (10 males and 10 females from M. h. bristowi, M. h. theodorus, M. h. helenor and M. a. achilles), for which we measured iridescence at 21 angles of illumination. Sampling size are mentioned lines 507, 515, 540-542.

      (29) Line 510: Is there a specific reason that authors did not investigate achromatic contrasts? Provide some justification here. Or include the results of achromatic contrasts in the supplement.

      We added the achromatic results in the supplement and in the results (lines 200-204). For both the avian visual model and the Morpho visual model, the confidence intervals always overlapped with the JND threshold, showing that neither birds nor butterflies could theoretically discriminate the wing reflectance brightness in allopatric and sympatric populations.

      (30) Line 552 onwards: I may have missed it. It is not entirely clear why the authors focused on male mate choice rather than female preference for visual cues. The authors should explicitly justify this choice and cite previous studies demonstrating that male mate choice, rather than female preference, is important in this species. This should be stated in the results section as well.

      We added a paragraph in the method (lines 613-618) to describe the ecological and technical reasons leading to testing only male mate choice using visual cues (also see our response to recommendation #23).

      (31) Line 537 onwards: What was the criterion used to score that mating had occurred? Why first mating and not how long they were mating? Please add these details.

      We stopped the experiment as soon as a male/female pair was formed by joining their genitalia (we added this information in the method lines 599-600). Since the tetrad experiment involves the interaction of two males and two females from different subspecies, we considered that mate choice happened before the formation of any couple, and is not necessarily dependent on how long they mate by observing their mating behavior. For instance, we witnessed avoidance behaviors from females that systematically hide their genitalia and refused to join their abdomen to some males, while being very ‘open’ to others (but did not quantify it).  

      (32) Line 571: The authors used a black permanent marker to modify wing patterns but did not validate whether butterflies perceive these modifications as equivalent to natural coloration. It is possible that the alterations introduced unintended visual cues and may explain why most males rejected the dummies (line 267). The authors should acknowledge this limitation here.

      We now acknowledge this limitation in the method (lines 638-639) and in the results section (lines 278-283).

      (33) Line 591: Insert 'above' after protocol.

      Corrected.

      (34) Line 605: If the authors included random effects in their model, then it should be generalized linear mixed model (GLMM) and not GLM as they wrote.

      We indeed included a random effect in our model accounting for male ID and trial number, we thus replaced “GLM” by “GLMM” in the manuscript.

      (35) Line 615: This set of analyses does not seem to account for pseudo-replication, as the data were recorded from the same male more than once (Line 583). Please clarify and redo the analysis with the GLMM framework

      We run new analyses using the GLMM framework: we used a binomial GLMM to test whether individuals preferentially interacted with dummy 1 vs. dummy 2 while accounting for pseudoreplication. The previously detected tendencies hold true with these new analyses, except for the visual mate discrimination of M. achilles: we now find statistical evidence that M. achilles tend to approach more their conspecifics during the mate choice experiment, although the signal is weak (line 297-307). Indeed, while we previously concluded that both species in sympatry (M. helenor and M. achilles) could not discriminate their conspecific mates, we now emphasize that M. achilles is somewhat sensitive to some visual signals. However, its estimated probability of approaching a conspecific is only 0.54, which is low compared to the estimated probability of approaching (0.61) or touching (0.84) a con-subspecific for M. bristowi. We thus concluded that even though some visual cues could be relevant for mate recognition, they are less reliable for male choice in sympatric populations were color patterns are more convergent, compared to allopatric populations. We thus updated Figure 4 and Figure S8 and S9, which are now picturing the probability of approaching or touching a conspecific or con-subspecific with the updated pvalues retrieved from the GLMM analyses. We also updated the results (line 297-307) and the discussion (lines 430-438) to bring nuance to our previous results.  

      (36) Line 963: Figure 3D. Is there a particular reason for comparing allopatric populations only within Ecuador rather than between Ecuador and French Guiana for M. helenor? Please clarify.

      We aimed at comparing the putative discrimination of blue coloration using visual models vs. what the butterflies actually discriminate using mate choice experiments. Since we only performed mate choice experiments involving M. h. bristowi x M. h. theodorus (allopatric populations within Ecuador) and M. h. helenor x M. a. achilles (sympatric population from Ecuador), we only looked at those comparisons using visual models. We added this precision lines (559-560).

      (37) Line 980: Are these predicted probabilities or just mean proportions as written in line 614? Then the label should be changed to 'Proportion of approaches' or something similar.

      Following our answer to recommendation #35, the points now represent the probability of touching a conspecific in the graph for each male, for every trial of every male tested. We corrected the legend of the figure. 

      Reviewer #2 (Recommendations for the authors):

      (1) Line 25: "...therefore facilitating co-existence in sympathy".

      Corrected.

      (2) Line 28: "contrasting" instead of contrasted.

      Corrected.

      (3) Line 33: begin a new sentence at the colon.

      Corrected.

      (4) Line 49: the phrase "habitat filtering" is unclear and should perhaps be defined or qualified.

      We replaced “habitat filtering” by its definition and cited Keddy (1992), describing the community assembly rules and defining habitat filtering (line 46)

      (5) Line 52: remove "even".

      Corrected.

      (6) Line 53: divergent suites may also result because traits are often constrained by genetic architecture (multivariate genetic covariances). This is discussed at length and specifically in relation to ornamental coloration by Kemp et al. 2023

      We rewrote the introduction and focused on only reviewing the ecological interactions promoting trait divergence in sympatric species, and did not mention genetics in this paper.

      (7) Line 87: (and throughout) refer to "colouration" or "colour pattern" rather than "colourations".

      Corrected.

      (8) Line 151: Remove "To do so,".

      Corrected.

      (9) Line 191: I would like to see the degrees of freedom for this test.

      We added the F-statistic=2.09 and the degrees of freedom df=1 of this test, and for all the following tests.

      (10) Line 201: (and throughout) replace "on" with "of".

      Corrected.

      (11) Line 205: modelling the visual properties of the wings allows one to infer what is theoretically visible/distinguishable. The modelling is useful but not necessarily definitive of vision/behaviour per se under different conditions in the wild. I therefore think it is appropriate to phrase the wording around the modelling approach more carefully. Perhaps refer to "theoretical" or "inferred" discriminability, or state (e.g.) that species should/should not be capable of perceiving differences based on the modelling data. You do this well in your wording of lines 207-209. This need not apply in the discussion because you're then dealing with the combination of modelling results and behaviour (mating trials).

      We agree with the reviewer that visual modelling only allows to infer what is theoretically discriminated by the butterflies, and that the wording of our sentence is confusing. We therefore modified the sentence to account for those precisions: “Morpho butterflies and predators can theoretically visually perceive the difference in the blue coloration between different subspecies of M. helenor…… using both bird and Morpho visual models” (line 206-209).

      (12) Line 222: Either the chi-square test or Fisher's exact test should be sufficient (why report both?)

      Chi-square test relies on large-sample assumptions (expected counts>5) whereas Fischer’s exact test does not and is valid even with small or unbalanced sample sizes. Since the M. bristowi female/M. h. theodorus male paring only occurred 3 times, we do not meet the primary assumptions to apply a Chi-square test, although it is significant. We used a Fischer’s test to confirm the results. Using both and finding that both tests are significant shows that the results are robust, although they may appear redundant. To simplify, we remove the results of the Chisquare test and only keep the Fisher’s test in the methodology and the results.

      (13) Line 224 (and throughout): Degrees of freedom should be provided for statistical tests.

      We reported the statistic value and the degrees of freedom for all mentions of the statistical tests in the main text, except for the Fischer test which does not rely on an asymptotic distribution like the Chi-squared distribution as it is an exact test.

      (14) Lines 266-267: This sentence has interest, but it is rather vague at present. Wouldn't your controls account for the effect of manipulation? This could be explained further.

      During our mate choice experiments, all Morpho female dummies used for the experiments were painted with black markers, either on their dorsal blue band to modify their blue iridescent phenotype, or on their ventral side, thus controlling for the effect of manipulation. However, we cannot rule out that the modification of the dorsal blue iridescence could have had a “repulsive” effect for males for several reasons. For example, depending on the visual discrimination of darker colors by Morphos, the painted black band could have a slightly different color compared to the dark “brown” usually surrounding their blue iridescent patterns. We now explain this in the results (lines 278-283) and in the methodology (lines 638-639)  

      (15) Line 316: I'm not certain that the similarity is best described as "striking", given a P-value of 0.084 for this contrast

      We agree with the reviewer and removed this adjective for this line.

      (16) Lines 387-390: This sentence is puzzling because, theoretically speaking, we should expect selection on visual preference to be heightened (not relaxed) in sympatry if colouration isincluded among the traits used in mate selection. I'm not certain I have understood the meaning here.

      We would like to thank the reviewer for pointing out this typo. If shared predatory pressures favors convergent evolution of color pattern, then the visual signals become less reliable for species recognition. As a result, sexual selection on visual preference is heightened and becomes stronger, favoring the evolution of alternative cues used to discriminate conspecific mates. We changed the sentence and now write “the convergent evolution of iridescent wing patterns… may have negatively impact visual discrimination and favored the evolution of divergent olfactory cues” (lines 457-458).

      (17) Line 529: Mating experiments. Given that these are quite large butterflies, I wondered whether a 3x3x2m cage would be sufficient in size to allow the expression of male courtship. A brief description of the courtship behaviour in these species or Morphos generally would be a useful addition to the paper.

      A cage this size was enough for the males to express a flight behavior similar to what can be seen in nature, while also being able to see the females (live females or dummies). We tried to perform mate experiments in a larger cage (7m x 5m x 3m) but the trials were not conclusive because male did not find the dummies depending on where they were flying in the cage. A 3mx3mx2m cage is a good compromise maximizing interactions while still allowing enough space to fly. We now describe Morpho male behavior and female behavior in the methods (lines 613-618).

      (18) Line 546: Why are both tests needed (chi-square AND Fisher's exact)?

      Similarly to our answer on recommendations #12, were used both tests to show robustness in the statistical results. We only kept the Fisher’s test results to simplify the results.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Reviews):

      Weaknesses: 

      Overall I find the data presented compelling, but I feel that the number of observations is quite low (typically n=3-7 neurons, typically one per animal). While I understand that only a few slices can be obtained for the IPN from each animal, the strength of the novel findings would be more convincing with more frequent observations (larger n, more than one per animal). The findings here suggest that the authors have identified a novel mechanism for the normal function of neurotransmission in the IPN, so it would be expected to be observable in almost any animal. Thus,  it is not clear to me why the authors investigated so few neurons per slice and chose to combine different treatments into one group (e.g. Figure 2f), even if the treatments have the same expected effect.  

      This is a well taken suggestion. However, we must  point out that we do perform statistical analyses on the original datasets and we believe that our conclusions are justified as acknowledged by the Reviewer. As the Reviewer is aware,  the IPN is a small nucleus and with the slicing protocol used, we typically attain 1-2 slices per mouse that are suitable for recordings. Since most of the experiments in the manuscript deals with some form of pharmacological interrogation, we were reticent to use slices that are not naïve and therefore in general did not perform more than 1 cell recording per slice. Having said this, to comply with the Reviewer’s suggestion we have now performed additional experiments to increase the n number for certain experiments. We have amended all figures and legends to incorporate the additional data. We must point out that during the replotting of the data in the summary Figure 8i (previously Figure 7i) we noticed an error with the data representation of the TAC IPL data and have now corrected this oversight  

      Figure 2b,c. 

      500nM DAMGO effect on TAC IPL AMPAR EPSC – n increased from 5 to 9

      Figure 3g. 

      500nM DAMGO effect on CHAT IPR AMPAR EPSC – n increased from 8 to 16 Effect of CTAP on DAMGO on CHAT IPR AMPAR EPSC – n increased from 4 to 7

      Figure 3i. 

      500nm DAMGO or Met-enk effect in “silent” CHAT IPR AMPAR EPSC – n increased    from 7 to 9

      Figure 4e. 

      500nM DAMGO effect on ES coupling – Note: in the original version the n number was 5 and not 7 as written in the figure legend. We have now increased the n from 5 – 9.

      Figure 5e,f. 

      500nM DAMGO effect on TAC IPR AMPAR EPSC – n increased from 5 to 9

      Figure 7f.

      Effect of DHE on EPSC amplitude after application of DNQX/APV/4-AP or DTX-α – n increased from 7-9.

      Figure 7g.

      Emergence of nAChR EPSC after DTX – n increased from 4 to 7

      Figure 7i. 

      Effect of ambenonium on nAChR amplitude and charge – n increased from 4 to 7

      Supplementary Figure 3c and h

      Effect of DAMGO after DNQX – n increased from 4 to 7

      Effect of DNQX after DAMGO mediated potentiation – n increased from 3 to 5.

      Throughout the study (Figs. 3i, 7f and 8h in the revised manuscript)  we do indeed pool datasets that were amassed from different conditions since we were not directly investigating the possibility of any deviation in the extent of response between said treatments. For example, and as pointed out by the Reviewer, in Fig. 2F (now Fig. 3i) the use of DAMGO and met-ENK were merely employed to ascertain whether light-evoked synaptic transmission (ChATCre:ai32 mice) in cells that had no measurable EPSC could be pharmacologically “unsilenced” by mOR activation. Thus, the means by which mOR receptor was activated was not relevant to this specific question. Note: 2 more recordings are now added to this dataset (Fig. 3i) that were taken from ChATChR2/SSTCre:ai9 mice in response to the comment by this Reviewer below (“Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons?”).  Similarly, in the revised Fig.7f we pooled data investigating the pharmacological block of the EPSC that emerged following application of either DNQX/APV/4-AP or DNQX/APV/DTX. Low concentrations 4-AP or DTX were interchangeably employed to reveal the DNQX-insensitive EPSC that we go on to show is indeed the nAChR response. Finally, in Fig. 8h, we pooled data demonstrating a  lack of effect of DAMGO in potentiating  both the glutamatergic and cholinergic arms of synaptic transmission in the OPRM1 KO mice. Again, here we were only interested in determining whether removal of mOR expression prevented potentiation of transmission mediated by mHB ChAT neurons irrespective of neurotransmitter modality.  Thus, overall we were careful to only pool data in those instances where it  would not change the interpretation and hence conclusions reached. 

      There are also significant sex differences in nAChR expression in the IPN that might not be functionally apparent using the low n presented here. It would be helpful to know which of the recorded neurons came from each sex, rather than presenting only the pooled data.  

      As the reviewer correctly states there are veins of literature concerning a divergence, based on sex, of not only nicotinic receptor expression but also behaviors associated with nicotine addiction. However, we have reanalyzed our datasets focusing on the extent of the mOR potentiation of glutamatergic and cholinergic transmission mediated by mHB ChAT neurons in IPR  between male and female mice. Please refer to the Author response image 1 below. Although there is a possible trend towards a higher potentiation of nAChR in female mice, this was not found to be of statistical significance (see Author response image 1 below). We therefore chose not to split our data in the manuscript based on gender.

      Author response image 1.

      Comparison of the mOR (500nM DAMGO) mediated potentiation on evoked (a) AMPAR and (b) nAChR  EPSCs in IPR between male and female mice.  

      There are also some particularly novel observations that are presented but not followed up on, and this creates a somewhat disjointed story. For example, in Figure 2, the authors identify neurons in which no response is elicited by light stimulation of ChAT-neurons, but the application of DAMGO (mOR agonist) un-silences these neurons. Are there baseline differences in the electrophysiological or morphological properties of these "silent" neurons compared to the responsive neurons?  

      Unfortunately, we did not routinely measure intrinsic properties of the recorded postsynaptic neurons nor systematically recovered biocytin fills to assess morphology. Therefore, it remains unclear whether the  neurons in which there were none or minimal AMPAR-mediated EPSCs are distinct to the ones displaying measurable responses. The IPR is resident to GABAergic SST neurons that comprise the most numerous neuron type in this IPN subdivision. Although heavily outnumbered by the SST neurons there are additionally VGluT3+ glutamatergic neurons in IPN. The Reviewer is likely referring to a recent study investigating synaptic transmission specifically onto  SST+ and VGluT3+ neurons in IPN demonstrating that mHB cholinergic mediated glutamatergic input is “weaker” onto the glutamatergic neurons. Furthermore, in some instances synaptic transmission onto this latter population can be “unsilenced” by GABAB receptor activation in a similar manner to that seen with mOR activation in this manuscript when IPR neurons are blindly targeted(Stinson & Ninan, 2025).  Using a similar strategy as in this recent study(Stinson & Ninan, 2025), we now include experiments in which the ChATChR2 mouse was crossed with  a SSTCre:Ai14. This allowed for recording of postsynaptic EPSCs in directly identified SST IPR neurons. We demonstrate that DAMGO can indeed increase glutamatergic EPSCs and in 2 of the cells where light activation demonstrated no appreciable AMPAR EPSC upon maximal LED light activation, DAMGO clearly “unsilenced” transmission.  Thus, our additional analyses directly demonstrate that our original observations concerning mOR modulation extend to the mHb cholinergic AMPAR mediated input onto IPR SST neurons. This additional data is in the revised manuscript (Figure 3D-F, I). Future experimentation will be required to determine if the propensity of encountering a  “silent” input that can be converted to robust synaptic transmission by mOR differs between these two cell types. Furthermore, it will be of interest to investigate if any differences exist in the magnitude of the cholinergic input or the mOR mediated potentiation of co-transmission between postsynaptic SST GABA and glutamatergic neuronal subtypes. 

      Reviewer #2 (Public review)

      Weaknesses: 

      The genetic strategy used to target the mHb-IPN pathway (constitutive expression in all ChAT+ and Tac1+ neurons) is not specific to this projection.  

      This is an important point made. We are acutely aware that the source of the synaptic input in IPN mediated by conditional expression of ChR2 employing  using transgenic cre driver lines does not confer specificity to mHB. This is particularly relevant considering one of the novel observations here relates to  a previously unidentified functional input from TAC1 neurons to the IPR. At this juncture we would like to point the Reviewer to the publicly available Connectivity Atlas provided by the Allen Brain Institute (https://connectivity.brain-map.org/). With reference to mHB TAC1 neuronal output, targeted viral injection into the habenula of Tac1Cre mice allows conditional expression of EGFP to SP neurons as evidenced by the predominant expression of reported fluorescence in dorsal mHB (see Author response image 2 a,b below). Tracing the axonal projections to the IPN clearly demonstrates dense fibers in IPL as expected but also arborization in  IPR (Author response image 2 a,c) . This pattern is reminiscent of that seen in the transgenic Tac1Cre:ai9 or ai32 mice used in the current study (Figs. 1c, 2a, 5c). Closer inspection of the fibers in the IPR reveals putative synaptic bouton like structures as we have shown in Fig. 5a,b (Author response image 2 d below).

      Author response image 2.

      Sterotaxic viral injection into mHB pf Tac1Cre mice taken from Allen Brain connectivity atlas (Link to Connectivity Atlas for mHb SP neuronal projection pattern)

      These anatomical data suggest that part of the synaptic input to the IPR originates from mHB TAC1 neurons although we cannot fully discount additional synaptic input from other brain areas that may impinge on the IPR. Indeed, as the Reviewer points out, it is evident that other regions including the nucleus incertus send outputs to the IPN(Bueno et al., 2019; Liang et al., 2024; Lima et al., 2017). However, it is unclear if neuronal inputs from these alternate sources {Liang, 2024 #123;Lima, 2017 #33}{Bueno, 2019 #178} are glutamatergic in nature AND mediated by a TAC1/OPRM1-expressing neuronal population. Nevertheless, we have now modified text in the discussion to highlight the limitations of using a transgenic strategy (pg 12, para 1).

      In addition, a braking mechanism involving Kv1.2 has not been identified.

      It is unclear to what the Reviewer is referring to here. Although most of our experiments pertaining to the brake on cholinergic  transmission by potassium channels use low concentrations of 4-AP (50100M) which have been used to block Shaker Kv1 channels there although at these concentrations there are additional action at other K+-channels such as Kv3, for instance. However, we essentially demonstrate that a selective Kv1.1 and Kv1.2 antagonist dendrotoxin replicates the 4-AP effects. We have now also included RNAseq data demonstrating the relative expression levels of Kv1 channel mRNA in mHb ChAT neurons (KCNA1 through KCNA6; Figure 6b). The complete absence of KCNA1 yet a high expression level of KCNA2 transcripts highly suggests a central role of Kv1.2 in unmasking nAChR mediated synaptic transmission. 

      Reviewer #3 (Public review)

      Weaknesses:  

      The significance of the ratio of AMPA versus nACh EPSCs shown in Figure 6 is unclear since nAChR EPSCs measured in the K+ channel blockers are compared to AMPA EPSCs in control (presumably 4-AP would also increase AMPA EPSCs). 

      We understand the Reviewer’s concern regarding the calculation of nicotinic/AMPA ratios since they are measured under differing conditions i.e. absence and presence of 4-AP, respectively. As the reviewer correctly points point 4-AP likely increases the amplitude of the AMPA receptor mediated EPSC. However, our intention of calculating this ratio was not to ascertain a measure of relative strengths of fast glutamatergic vs cholinergic transmission onto a given postsynaptic IPN neuron per se. Rather, we used the ratio as a means to normalize the size of the nicotinic receptor EPSC to the strength of the light stimulation (using the AMPA EPSC as the normalizing factor) in each individual recording. This permits a more meaningful comparison across cells/slices/mice . We apologize for the confusion and have amended the text in the results section to reflect this (pg 9; para2).

      The mechanistic underpinnings of the most now  results are not pursued. For example, the experiments do not provide new insight into the differential effects of evoked and spontaneous glutamate/Ach release by Gi/o coupled mORs, nor the differential threshold for glutamate versus Ach release. 

      Our major goal of the current manuscript was to provide a much-needed roadmap outlining the effects of opioids in the habenulo-interpeduncular axis. Of course, a full understanding of the mechanisms underlying such complex opioid actions at the molecular level will be of great value. We feel that this is beyond the scope of this already quite result dense manuscript but will be essential if directed manipulation of the circuit is to be leveraged to alter maladaptive behaviors associated with addiction/emotion during adolescence and in adult. 

      The authors note that blocking Kv1 channels typically enhances transmitter release by slowing action potential repolarization. The idea that Kv1 channels serve as a brake for Ach release in this system would be strengthened by showing that these channels are the target of neuromodulators or that they contribute to activity-dependent regulation that allows the brake to be released. 

      The exact mechanistic underpinnings that can potentially titer Kv1.2 availability and hence nAChR transmission would be essential to shed light on potential in vivo conditions under which this arm of neurotransmission can be modulated. However, we feel that detailed mechanistic interrogation constitutes significant work but one that future studies should aim to achieve. Thus, it presently remains unclear under what physiological or pathological scenarios result in attenuation of Kv1.2 to subsequently promote nAChR mediated transmission but as mentioned in the existing discussion future work to decipher such mechanisms would be of great value.

      Reviewer #1 (Recommendations for the authors): 

      Overall I find this to be a very interesting and exciting paper, presenting novel findings that provide clarity for a problem that has persisted in the IPN field: that of the conundrum that light-evoked cholinergic signaling was challenging to observe despite the abundance of nAChRs in the IPN. 

      Major concerns: 

      (1) The n is quite low in most cases, and in many instances, data from one figure are replotted in another figure. Given that the findings presented here are expected in the normal condition, it should not be difficult to increase the n. A more robust number of observations would strengthen the novel findings presented here. 

      Please refer to the response to the public review above.

      (2) In general, I find the organization of the figures somewhat disjointed. Sometimes it feels as if parts of the information presented in the results are split between figures, where it would make more sense to be together in a figure. For example, all the histology for each of the lines is in Figure 1, but only ephys data for one line is included there. It would be more logical to include the histology and ephys data for each line in its own figure. It would also be helpful to show the overlap of mOR expression with Tac1-Cre and ChAT-Cre terminals in the IPN. Likewise, the summarized Tac1Cre:Ai32 IPR data is in Figure 4, but the individual data is in Figure 5. 

      We introduce both ChAT and TAC1 cre lines in Figure 1 as an overview particularly for those readers who are not entirely familiar with the distinct afferent systems operating with the habenulointerpeduncular pathway.  However, in compliance with the Reviewer’s suggestion we have now restructured the Figures. In the revised manuscript, the functional data pertaining to the various transmission modalities mediated by the distinct afferent systems impinging on the subdivision of the IPN tested are now split into their own dedicated figure as follows:

      Figure 2. 

      mOR effect on TAC1neuronal glutamatergic output in IPL.

      Figure 3. 

      mOR effect on CHAT neuronal glutamatergic output in IPR.

      Figure 5. 

      mOR effect on TAC1neuronal glutamatergic output in IPR.

      Figure 8.

      mOR effect on CHAT neuronal cholinergic output in IPC.

      Supp. Fig. 1 mOR effect on CHAT neuronal glutamatergic output in IPC.

      We thank the Reviewer for their suggestions regarding the style of the manuscript. The restructuring has now resulted in a much better flow of the presented data.

      (3) The discussion is largely satisfactory. However, a little more discussion of the integrative function of the IPN is warranted given the opposing effects of MOR activation in the Tac vs ChAT terminals, particularly in the context of both opioids and natural rewards. 

      We thank the reviewer for this comment. However, we feel the discussion is rather lengthy as is and therefore we refrained from including additional text.  

      Minor concerns: 

      (1)  The methods are missing key details. For example, the stock numbers of each of the strains of mice appear to have been left out. This is of particular importance for this paper as there are key differences between the ChAT-Cre lines that are available that would affect observed electrophysiological properties. As the authors indicate, the ChAT-ChR2 mice overexpress VAChT, while the ChAT-IRES-Cre mice do not have this problem. However, as presented it is unclear which mice are being used. 

      We apologize for the omission - the catalog numbers of the mice employed have now been included in the methods section.

      We have now clearly included in each figure panel (single trace examples and pooled data) from which mice the data are taken from – in some instances the pooled data are from the two CHAT mouse strains employed. Despite the tendency of the ChATChR2 mice to demonstrate more pronounced nAChR mediated transmission (Fig. 7h),  we justify pooling the data since we see no statistical significance in the effect of mOR activation on either potentiating AMPA or nAChR EPSCs (Please refer to response to Reviewer 2, Minor Concern point 2)

      (2) Likewise, antibody dilutions used for staining are presented as both dilution and concentration, which is not typical. 

      We thank the reviewer for pointing out this inconsistency. We have amended the text in the methods to include only the working dilution for all antibodies employed in the study.

      (3) There are minor typos throughout the manuscript. 

      All typos have been corrected.

      Reviewer #2 (Recommendations for the authors): 

      The authors provide a thorough investigation into the subregion, and cell-type effect of mu opioid receptor (MOR) signaling on neurotransmission in the medial habenula to interpeduncular nucleus circuit (mHb-IPN). This circuit largely comprises two distinct populations of neurons: mHb substance P (Tac1+) and cholinergic (ChAT+) neurons. Corroborating prior work, the authors report that Tac1+ neurons preferentially innervate the lateral IPN (IPL) and rostral IPN (IPR), while ChAT+ neurons preferentially innervate the central IPN (IPC) and IPR. The densest expression of MOR is observed in the IPL and MOR agonists produce a canonical presynaptic depression of glutamatergic neurotransmission in this region. Interestingly, MOR signaling in the ChAT+ mHb projection to the IPR potentiates light-evoked glutamate and acetylcholine-mediated currents (EPSC), and this effect is mediated by a MOR-induced inhibition of Kv2.1 channels. 

      Major concerns: 

      (1) The method used for expressing channelrhodopsin (ChR2) into cholinergic and neurokinin neurons in the mHb (Ai32 mice crossed with Cre-driver lines) has limitations because all Tac1+/ChAT+ inputs to the IPN express ChR2 in this mouse. Importantly, the IPN receives inputs from multiple brain regions besides the IPN-containing neurons capable of releasing these neurotransmitters (PMID: 39270652). Thus, it would be important to isolate the contributions of the mHb-IPN pathway using virally expressed ChR2 in the mHb of Cre driver mice. 

      Please refer to the response to the public review above. 

      (2) Figure 4: The authors conclude that the sEPSC recorded from IPR originate from Tac1+ mHbIPR projections. However, this cannot be stated conclusively without additional experimentation. For instance, an optogenetic asynchronous release experiment. For these experiments it would also be important to express ChR2 virus in the mHb in Tac1- and ChAT-Cre mice since glutamate originating from other brain regions could contribute to a change in asynchronous EPSCs induced by DAMGO. 

      This is a well taken point. The incongruent effect of DAMGO on evoked CHAT neuronal EPSC amplitude and sEPSC frequency prompted us  to consider the the possibility of differing effect of DAMGO on a  secondary input. We agree that we do not show directly if the sEPSCs originate from a TAC1 neuronal population. Therefore, we have tempered our wording with regards the origin of the sEPSCs and  have also restructured the Figure in question moving the sEPSC data into supplemental data (Supplemental Fig. 2) 

      (3) Figure 5D: lt would be useful to provide a quantitative measure in a few mice of mOR fluorescence across development (e.g. integrated density of fluorescence in IPR). 

      We have now included mOR expression density across development  (Fig. 6). Interestingly, the adult expression levels of mOR in the IPR are essentially reached at a very early developmental age (P10) yet we see stark differences in the role of mOR activation in modulating glutamatergic transmission mediated by mHB cholinergic neurons. Note: since we processed adult tissue (i.e. >p40) for these developmental analyses we utilized these slices to also include an analysis of the relative mOR expression density specifically in adults between the subdivisions of IPN in Fig. 1.

      (4) Figure 6B: It would be useful to quantify the expression of Kcna2 in ChAT and Tac1 neurons (e.g. using FISH). 

      We thank the Reviewer for this suggestion. We have now included mRNA expression levels available from publicly available 10X RNA sequencing dataset provided by the Allen Brain Institute (Figure 7b).  

      (5) It would be informative to examine what the effects of MOR activation are on mHb projections to the (central) . 

      In response to this suggestion, we now have included  additional data in the manuscript in putative IPC cells that clearly demonstrate a similar DAMGO elicited potentiation of AMPAR EPSC to that  seen in IPR. These data are now included in the revised manuscript  (Supplemental Fig. 1; Fig. 8i). 

      (6) What is the proposed link between MOR activation and the inhibition of Kv1.2 (e.g. beta-Arrestin signaling, G beta-gamma interaction with Kv1.2, PKA inhibition?) 

      We apologize for any confusion. We do not directly test whether the potentiation of EPSCs upon mOR activation occurs via inhibition of Kv1.2.Although we have not directly tested this possibility we find it an unlikely underlying cellular mechanism, especially for the potentiation of the cholinergic arm of neurotransmission since in the presence of DNQX/APV, the activation of mOR does not result in any emergence of any nAChR EPSC (see Supplementary Fig. 3a-c)

      Minor concerns: 

      (1) Methods: Jackson lab ID# for used mouse strains is missing. 

      We apologize for this omission and have now included the mouse strain catalog numbers.

      (2) The authors use data from both ChAT-Cre x Ai32 and ChAT-ChR2 mice. It would be helpful to show some comparisons between the lines to justify merging data sets for some of the analyses as there appear to be differences between the lines (e.g. Figure 6G). 

      This is a well taken point. We have now provided a figure for the Reviewer (see below) that illustrates the lack of  significant difference between the mOR mediated potentiation of both mHB CHAT neuronal AMPAR and nAChR transmission between the two mouse lines employed despite a divergence in the extent of glutamatergic vs cholinergic transmission shown in Fig. 7g (previously Figure 6g). We have chosen not to include this data in the revised manuscript.

      Author response image 3.

      Comparison of the mOR (500nM DAMGO) mediated potentiation on evoked AMPAR (a) and nAChR (b)EPSCs in IPR between ChATCre:Ai32  and ChATChR2 mice.

      (3)  Line 154: How was it determined that the EPSC is glutamatergic? 

      We apologize for any confusion. In the revised manuscript we now clearly point to the relevant figures (see Supplementary Figs. 2a and 3) in the Results section (pg. 4, para 2; pg 7, para 1; pg 8, para2) where we determine that both the sEPSCs and ChAT mediated light evoked EPSCs recorded under baseline conditions are totally blocked by DNQX and hence are exclusively AMPAR events 

      (4) It would be helpful to discuss the differences between GABA-B mediated potentiation of mHbIPN signaling and the current data in more detail. 

      We are unclear as to what differences the Reviewer is referring to. At least from the perspective of ChAT neuronal mediated synaptic transmission, other groups (and in the current study; Fig. 7h) have clearly shown that GABA<sub>B</sub> activation markedly potentiates synaptic transmission like mOR activation. Nevertheless, based on our novel findings it would be of interest to determine whether the influence of GABA<sub>B</sub> is inhibitory onto the TAC mediated input in IPR and whether there is a developmental regulation of this effect as we demonstrate upon mOR activation. These additional comparisons between the effect of the two Gi-linked receptors may shed light onto the similarity, or lack thereof, regarding the underlying cellular mechanisms. We now have included a few sentences in the discussion to highlight this (pg 11, para 1).

      Reviewer #3 (Recommendations for the authors): 

      The abstract was confusing at first read due to the complex language, particularly the sentence starting with... Further, specific potassium channels... 

      The authors might want to consider simplifying the description of the experiments and the results to clarify the content of the manuscript for readers who many only read the abstract. 

      We have altered the wording of the abstract and hope it is now more reader friendly.

      The opposite effect of mOR activation on spontaneous EPSCs versus electrical or ChR2-evoked EPSCs is very interesting and raises the issue of which measure is most physiologically relevant. For example, it is unclear whether sEPSCs arise primarily from cholinergic neurons (that are spontaneously active in the slice, Figure 3), and if so, does mOR activation suppress or enhance cholinergic neuron excitability and/or recruitment by ChR2? While a full analysis of this question is beyond the scope of this manuscript, the assumption that glutamate release assayed by electrical/ChR2 evoked transmission is the most physiologically relevant might merit some discussion since sEPSCs presumably also reflect action-potential dependent glutamate release. One wonders whether mORs hyperpolarize cholinergic neurons to reduce spontaneous spiking yet enhance fiber recruitment by ChR2 or an electrical stimulus (i.e. by removing Na channel inactivation). The authors have clearly stated that they do not know where the mORs are located, and that the effects arising from disinhibition are likely complex. But they also might discuss whether glutamate release following synchronous activation of a fiber pathway by ChR2 or electrode is more or less physiologically relevant than glutamate release assayed during spontaneous activity. It seems likely that an equivalent experiment to Figure 3D, E using spontaneous spiking of IPR neurons would show that spiking is reduced by mOR activation. 

      We thank the Reviewer for this comment. As pointed it would be of interest to dissect the “network” effect of mOR activation but as the Reviewer acknowledges this is beyond the scope of the current manuscript. The Reviewer is correct in postulating that mOR activation results in hyperpolarization of mHB ChAT neurons.  A recent study(Singhal et al 2025) demonstrate that a subpopulation of ChAT neurons undergoes a reduction in firing frequency following DAMGO application. This is corroborated by our own observations although we chose not to include this data in our current manuscript (but see below).

      Additionally, the Reviewer questions whether ChR2/electrical stimulation is physiological. This is a well taken point and of course the simultaneous activation of potentially all possible axonal release sites is not the mode under which the circuit operates. Nevertheless, our data clearly demonstrates the ability of mORs to modulate release under these circumstances that must reflect an impact on spontaneous action potential driven evoked release.  Although the suggested experiment  could shed light on the synaptic outcomes of mOR receptor activation on ES coupling of downstream IPN neurons. Interpretation of the outcome would be confounded by the fact that postsynaptic IPN neurons also express mORs . Thus,  we would not be able to isolate the effects of presynaptic changes in modulating ES coupling from any direct postsynaptic effect on the recorded cell when in current clamp. 

      Together these additional sites of action of mOR (i.e. mHB ChAT somatodendritic and postsynaptic IPN neuron) only serve to further highlight the complex nature of the actions of opioids on the habenulo-interpeduncular axis warranting  future work to fully understand the physiological and pathological effects on the habenulo-interpeduncular axis as a whole.

      The idea that Kv2.1 channels serve as a brake raises the question of whether they contribute to activity-dependent action potential broadening to facilitate Ach release during trains of stimuli. 

      This is an interesting suggestion and one that we had considered ourselves. Indeed, as the Reviewer is likely aware and as mentioned in the manuscript, previous studies have shown nAChR signaling can be revealed under conditions of multiple stimulations given at relatively high frequencies.  We therefore attempted to perform high frequency stimulation (20 stimulations at 25Hz and 50Hz) in the presence of ionotropic glutamatergic receptor antagonists DNQX and APV. We have now included this data in the revised manuscript (Supplementary Fig 3b). As shown, this failed to engage nAChR mediated synaptic transmission in our hands. Interestingly there is evidence from reduced expression systems demonstrating that Kv1.2 channels undergo use-dependent potentiation(Baronas et al., 2015) in contrast to that seen with other K+-channels. Whether this is the case for the axonal Kv1.2 channels on mHB axonal terminals in situ is not known but this may explain the inability to reveal nAChR EPSCs upon delivery of such stimulation paradigms.  

      References 

      Baronas, V. A., McGuinness, B. R., Brigidi, G. S., Gomm Kolisko, R. N., Vilin, Y. Y., Kim, R. Y., … Kurata, H. T. (2015). Use-dependent activation of neuronal Kv1.2 channel complexes. J Neurosci, 35(8), 3515-3524. doi:10.1523/JNEUROSCI.4518-13.2015

      Bueno, D., Lima, L. B., Souza, R., Goncalves, L., Leite, F., Souza, S., … Metzger, M. (2019). Connections of the laterodorsal tegmental nucleus with the habenular-interpeduncular-raphe system. J Comp Neurol, 527(18), 3046-3072. doi:10.1002/cne.24729

      Liang, J., Zhou, Y., Feng, Q., Zhou, Y., Jiang, T., Ren, M., … Luo, M. (2024). A brainstem circuit amplifies aversion. Neuron. doi:10.1016/j.neuron.2024.08.010

      Lima, L. B., Bueno, D., Leite, F., Souza, S., Goncalves, L., Furigo, I. C., … Metzger, M. (2017). Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J Comp Neurol, 525(10), 2411-2442. doi:10.1002/cne.24217

      Singhal, S. M., Szlaga, A., Chen, Y. C., Conrad, W. S., & Hnasko, T. S. (2025). Mu-opioid receptor activation potentiates excitatory transmission at the habenulo-peduncular synapse. Cell Rep, 44(7), 115874. doi:10.1016/j.celrep.2025.115874

      Stinson, H.E., & Ninan, I. (2025). GABA(B) receptor-mediated potentiation of ventral medial habenula glutamatergic transmission in GABAergic and glutamatergic interpeduncular nucleus neurons. bioRxiv doi.10.1101/2025.01.03.631193

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This valuable study investigates the role of HIF1a signalling in epicardial activation and neonatal heart regeneration in mice. Through a combination of genetic and pharmacological approaches, the authors show that stabilization of HIF1a enhances epicardial activation and extends the regenerative capacity of the heart beyond the typical neonatal window following myocardial infarction (MI). However, several aspects of the study remain incomplete and would benefit from further clarification and additional experimental support to solidify the conclusions.

      We reveal herein prolonged epicardial activation following myocardial infarction (MI) beyond post-natal days 1-7 (P1-P7) by genetic or pharmacological stabilisation of HIF-signalling. This extends the so-called “regenerative window” during an adult-like response to injury, leading to enhanced survived myocardium and functional improvement of the heart, even against a backdrop of persistent, albeit reduced, fibrosis. The epicardium is known to enhance cardiomyocyte proliferation and myocardial growth during heart development via trophic growth factor (for example, IGF-1, FGF, VEGF, TGFβ and BMP) signalling (reviewed in PMID:29592950) and epicardium-derived cell-conditioned medium reduces infarct size and improves heart function (PMID: 21505261). Further experiments, outside of the scope of the current study, are required to determine whether activated neonatal epicardium elicits similar paracrine support to sustain the myocardium and heart function after injury beyond P7 into adulthood.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches to the role of hypoxia signaling in enhancing the regenerative potential of the epicardium.

      Weaknesses:

      The major weakness is the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in epicardial cells. Additionally, novel experimental approaches should be performed to allow for the translation of these findings to the clinical arena.

      We respectfully disagree that we have not convincingly demonstrated a role for HIF-signalling in promoting epicardial EMT. We adopt epicardial explant assays utilising a well characterised ex vivo protocol previously described for studying EMT in embryonic, neonatal and adult epicardium (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142). These assays demonstrate in WT1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> explants enhanced cobblestone to spindle-like change in cell morphology, increased cell migration, appearance of stress fibres and an up-regulation of the mesenchymal marker alpha-smooth muscle actin (αSMA); all parameters associated with EMT. In addition, our in vivo analyses of Wt1<sup>CreERT2</sup>;Phd2<sup>fl/fl</sup> hearts, in response to neonatal injury, reveal elevated numbers of WT1+ epicardial cells within the sub-epicardial region and underlying myocardium as is associated with active EMT and subsequent migration from the epicardium.

      Reviewer #2 (Public review):

      Summary:

      In this study, Gamen et al. investigated the roles of hypoxia and HIF1a signaling in regulating epicardial function during cardiac development and neonatal heart regeneration. They found that WT1<sup>+</sup> epicardial cells become hypoxic and begin expressing HIF1a from mid-gestation onward. During development, epicardial HIF1a signaling regulates WT1 expression and promotes coronary vasculature formation. In the postnatal heart, genetic and pharmacological upregulation of HIF1a sustained epicardial activation and improved regenerative outcomes.

      Strengths:

      HIF1a signaling was manipulated in an epicardium-specific manner using appropriate genetic tools.

      Weaknesses:

      There appears to be a discrepancy between some of the conclusions and the provided histological data. Additionally, the study does not offer mechanistic insight into the functional recovery observed.

      We respectfully disagree with the comment that our histological data does not support our conclusions and expand on this in the response to specific reviewer comments. We agree that further mechanistic experiments outside of the scope of the current study are required to identify precisely how activated neonatal epicardium results in increased healthy myocardium after injury beyond post-natal day 7 (P7).

      Reviewer #3 (Public review):

      Summary:

      The authors' research here was to understand the role of hypoxia and hypoxia-induced transcription factor Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart, and this persisted into neonatal stages until postnatal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart, and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction, and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infarction. This study outlines the potential to extend the regenerative time window in neonatal mammalian hearts.

      We thank the reviewer for this positive endorsement and recognition of the importance of mechanistic insight into how to extend the window of neonatal heart regeneration.

      Weaknesses:

      While the observations of improved cardiac function are clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      We report an increase in healthy myocardium arising from prolonged activation of the epicardium during the neonatal window and following injury at post-natal day 7 (P7). We speculate this recapitulates the role of the epicardium during heart development which is known to be a source of trophic growth factors that can enhance myocardial growth. Further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      We believe the decreased fibrosis is a natural consequence of the increase in survived myocardium arising from the activated epicardium. There is strong precedent here following injury at post-natal day 1 (P1) in which fibrosis is evident early-on but is resolved over time with growth of the myocardium in the regenerating heart (PMID: 23248315).

      Recommendations for the authors:

      Reviewing Editor Comments:

      (1) Address issues related to image quality, colocalization, sample labeling, appropriate controls, and quantification - particularly in Figures 1, 2, 6, and Supplementary Figure 9. Increase sample size as noted by reviewers.

      The issues of co-localisation and sample labelling have been addressed under response to reviewers. We are unable to increase sample numbers but have clarified the number of regions per section and numbers of sections per heart analysed where appropriate.

      (2) Clarify the effects of epicardial HIF1a activation on neovascularization.

      We have removed reference in the abstract to an effect on neovascularisation.

      (3) Extend assessments of epicardial hypoxia and HIF1a expression to earlier embryonic stages, when epicardial EMT is more active.

      Our earliest timepoint of E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445). In the same study, E11.5 lineage tracing of epicardial cells is restricted to outer layer of the heart; thus, our timepoints are representative in capturing both the onset and progression of in vivo EMT.

      (4) Strengthen EMT assays and mechanistic modeling. Provide evidence from physiologically relevant models, as current 2D culture assays do not adequately support conclusions about EMT. Include additional EMT markers and quantification where appropriate.

      We respectfully disagree that epicardial explants are not a valid assay for assessing EMT. As noted under responses to reviewers, such primary explants have been widely described elsewhere (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142) and enable documentation of multiple parameters that are associated with active EMT, including an assessment of the extent of cell migration, cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We support our findings in explants by revealing reduced WT1+ epicardium-derived cells (EPDCs) in the sub-epicardial region and underlying myocardium of WT1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> embryonic hearts (data in Figure 2) indicative of impaired epicardial EMT and migration of EPDCs and in vivo following neonatal MI with pharmacological inhibition of PHD2, where we observe the reciprocal phenotype of increased numbers of epicardium-derived cells emerging from the outer epicardial layer (data in Figure 6).

      (5) Strengthen mechanistic insights into the role of epicardial cells in the functional recovery observed in MI hearts.

      We agree that further experiments are required, out-of-scope of this study, to define a mechanistic link between HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Reviewer #1 (Recommendations for the authors):

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts. The study is potentially interesting, but it presents several major caveats.

      (1) One of the critical points reported in the early stages of this study is the early co-localization of Wt1, the hypoxic report (HP1), and HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) during embryonic development. Figure 1 is meant to report such findings. However, unfortunately, I hardly see any co-localization at all in the Wt1+ epicardial cells for HP1, with some colocalization is seen for HIF1 and 2 alpha, although none of these data are quantified. Thus, it is hard to believe such co-localization.

      We respectfully disagree with this comment. We highlight cells in Figure 1 that are co-stained for WT1+ and HP1. In addition, we identify HIF1-α and HIF2- α positive cells which either reside within the epicardium, as the outer cell layer, or within the underlying sub-epicardial region, respectfully.

      (2) The authors claimed that they have analyzed the expression of the hypoxic report, as well as Wt1 and the HIF signaling pathways master regulators (i.e., HIF1a and HIF1b) in the AV groove, as compared to the apex, in embryonic heart ranging from E12.5 to E18.5 (Figure 1). Unfortunately, all images provided that are tagged as AV groove are rather misleading. They do not represent the AV groove but part of the right ventricular free wall. If the authors want to refer to the AV groove, AV cushions should be visible underneath.

      We have removed specific reference to the AV groove and refer to the highlighted regions as the “Base” of the heart.

      (3) The authors analyzed the hypoxic condition of the developing heart from E12.5 to E18.5. However, it remains unclear why the authors only explored the hypoxic conditions from E12.5 onwards, since epicardial EMT mainly occurs earlier than this time point, i.e., E10.5 onwards. Therefore, it would be needed to explore it already at this earlier time point.

      We respectfully disagree with the reviewer and refer to the comment above regarding the fact that E12.5 marks the onset of epicardial EMT and E13.5 is the stage with the most significant mobilisation of epicardium-derived cells (EPDCs) into the sub-epicardial region and underlying myocardium (PMID: 32359445).

      (4) The authors reported a conditional mouse model of HIF1alpha deletion by using the Wt1CreERT2 driver. Curiously, Wt1 is dependent on hypoxia signaling (i.e., HIF1a). Therefore, it is unclear whether there is a negative feedback loop between the deletion of Hif1alpha and the activation of the Cre driver might have functional consequences. Convincing evidence should be provided that such crosstalk does not interfere with Hif1alpha inactivation, and therefore, appropriate controls should be run in parallel.

      We discount a negative feedback loop in this instance based on the fact we have utilised heterozygous mice for the WT1<sup>CreERT2/+</sup> line and observe a consistent and reproducible phenotype for the developing hearts on a Wt1<sup>CreERT2/+</sup>;Hif1a<sup>fl/fl</sup> background and following injury in Wt1<sup>CreERT2/+</sup>;Phd2<sup>fl/fl</sup> mice. Collectively this indicates that the WT1-CreERT2 driver is active in the context of diminishing HIF-1α and Phd2, respectively. In addition, have carried out parallel experiments using epicardial explants derived from R26R-CreERT2;Phd2<sup>fl/fl</sup> (Figure 3) to circumvent any potential confounding issues; the results of which are consistent with increased epicardial EMT in support of our overall hypothesis.

      (5) On Figure 2a-f the authors reported that epicardial cells are diminished in Wt1CreERT2Hif1alpha mice as compared to controls. I am very sorry, but I do not see any difference. Furthermore, it is unclear to me how the authors quantified such differences, i.e., what marker signal did they use and how it was performed (Figure 2c and d)?

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining in Figure 2, which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (comparing magenta cells in panels a) versus b). Quantification was carried out for numbers of WT1+ cells residing within the PDPN-positive epicardium (and underlying PDPN-negative myocardium) across multiple images from multiple sections and multiple hearts.

      (6) On Figure 2g, the authors reported differences in total vessel length. Are they referring to impaired microvasculature development? Or is this analysis also including major coronary vessels? What about the major coronary vessels and trees, is there any affection?

      This analysis refers to the microvasculature and not the major coronary arteries or coronary trees.

      (7) The authors reported that there might be some differences in EMT markers, but unfortunately, all of them are analyzed on 2D cultures, where no substrate for EMT is present, i.e., an underlying ECM bed. Thus, the authors cannot claim that EMT is altered. Additional experiments using either collagen substrate and/or Matrigel are required to fully demonstrate that EMT is impaired. Furthermore, quantitative analyses of such differences should be provided.

      The 2D cultures are epicardial explants from mutant versus wild type hearts and represent a widely adopted previously published ex-vivo assay for investigating epicardial EMT across embryonic to adult stages (PMID: 27023710, PMID: 12297106; PMID: 17108969, PMID: 19235142); including an assessment of the extent of migration and cobblestone (epithelial) to spindle-like (mesenchymal) cell morphologies, stress fibre formation and expression of alpha-smooth muscle actin as a mesenchymal marker. We do not understand the comment regarding an “underlying ECM bed” as the cells exhibit EMT routinely on tissue culture plastic and will deposit their own ECM during the culture time course and in response to EMT/cell migration. In terms of quantification this was carried out for scratch assay experiments, as a proxy for EMT and emergent mesenchymal cell migration, as presented in Figure 3i, j with significant enhanced scratch closure and cell migration following Molidustat treatment.

      (8) The description of data provided on Supplementary Figure 5 is spurious and should be removed. A note in the discussion might be sufficient.

      We respectfully disagree. The ChIP-seq data, in what is now Figure 2- figure supplement 3, highlights a HIF-1 α binding site within the Wt1 locus suggesting putative upstream regulation of WT1 by HIF-1α. Thus this provides a potential explanation as to how HIF-1α may activate the epicardium through up-regulation of Wt1/WT1.

      (9) On Figure 3, the authors further illustrate the change of EMT markers using ex vivo cardiac explants. They reported increased expression of Snai2 that, although statistically significant, is most likely of no biological relevance (increase of only 20% at transcript level). What about Snai1, Prrx1, and other EMT promoters? Are they also induced? As previously stated, these 2D cultures do not provide supporting evidence that EMT is occurring, thus 3D gel assays should be performed in which Z-axis analyses will provide evidence on the different migratory behaviour of those cells.

      We respectfully suggest that a 20% change in snai2 expression is biologically meaningful with respect to EMT. This in-turn is supported by associated cell migration, reduced ZO-1 expression, increased stress fibres and increased alpha-SMA as a mesenchymal marker; all properties associated with active EMT. Other suggested markers have not been validated as formally required for EMT, for example Snai1 (PMID: 23097346). The migratory capacity of targeted versus epicardial cells was assessed by combined explant and scratch assay experiments.

      (10) The description of single-cell analyses is very incomplete. Which mice were used for these analyses, wildtype control, or hypoxic mice? Please provide a clearer description of the samples used. Additionally, the entire rationale of these analyses is dubious. Doing single-cell analyses to analyze a couple or three markers in a very small cell population is rather ridiculous. qPCR might be far more appropriate and convincing, or a bulk RNAseq analysis of isolated epicardial cells.

      The single-cell analyses represent an unbiased assessment of different pathways in epicardial cells (identified bioinformatically) between intact P1 and P7 stages in wild type (control) hearts, with a focus on hypoxia-related gene expression and HIF-dependent pathways. It was not designed to analyse a small number of genes, rather global differences in the hypoxic states between P1 and P7 hearts. Selected genes (Vegfa, Pdk3, Egln 1 (Phd2)) were analysed to highlight the key differences in hypoxic signalling across the regenerative window. The fact the hearts were uninjured/intact is clarified in the text and legends for Figure 4 and now Figure 4-figure supplement 1.

      (11) The analyses provided in Figure 5 are very interesting and their findings are very relevant. However, I would think that the complementary experimental approach should also be done, i.e, MI followed by activation with tamoxifen, since that situation would be more realistic in the clinical setting.

      Tamoxifen causes respiratory failure in neonates with MI, so the two cannot be combined at the same time or soon after surgery. Moreover, tamoxifen takes significant time to take effect on targeted gene down-regulation which may negate sufficient activation of the epicardium following injury.

      The experiments in Figure 5 were designed to demonstrate that prolonged heart regeneration could be elicited in a cell-specific (epicardial-specific) manner via a genetic approach. The pharmacological experiments in Figure 6 are complementary in this regard by demonstrating equivalent effects with drug (Molidustat) delivery to reduce PHD2 and stabilise HIF post-MI.

      (12) In Figure 6, expression of Wt1 is highly prominent in P7 controls, mainly restricted to the epicardial lining while in the experimental setting, such Wt1 expression is broadly distributed on the subepicardial space, nicely demonstrating epicardial activation. However, it is very surprising to see such Wt1 expression in controls, something that is not expected, as compared to the data reported in Figure 4g. Could the authors please reconcile these findings?

      Figure 6 represents the injury setting and Figure 4g the intact setting (as clarified above, in the text and revised figure legends). Hence in the latter WT1 expression is significantly reduced in the P7 heart, as anticipated. With injury at P7 we anticipate activation of WT1 in control hearts, albeit restricted to the epicardial layer (as occurs in adult hearts, PMID: 21505261). In contrast, following Molidustat-treatment of P7 hearts post-MI we observe extensive epicardial expansion into the sub-epicardial region and EPDC migration into the underlying myocardium (Figure 6b).

      Reviewer #2 (Recommendations for the authors):

      The role of hypoxia and HIF1a signaling in epicardial activation is an important topic, and the genetic approaches employed in this study are appropriate. However, several aspects of the study remain unclear and would benefit from further clarification or explanation by the authors:

      (1) The authors detected hypoxic regions using an anti-pimonidazole fluorescence-conjugated monoclonal antibody (HP1). The data would become more compelling if negative and positive controls were provided.

      We believe the HP1 staining is compelling in the images shown and is consistent with hypoxic regions of the developing heart. We reveal HP1 staining at cellular resolution with neighbouring cells positive and negative for the HP1 signal in the apex of the heart and within the epicardium and sub-epicardial regions at E12.5 (Figure 1a) and diminished/altered hypoxic/HP1 regional signal through subsequent developmental stages at E14.5-18.5 (Figure 1a-d).

      (2) Many HIF1a-positive cells in the AV groove region do not appear to overlap with HP1 staining (Figure 1a). Providing a low-magnification image of HIF1α expression would be helpful to better assess the extent of overlap with HP1 staining

      HIF-1 is highly unstable and hence detection of HIF-1+ cells will likely only sample of cells compared to HP1 which is a surrogate for broader regions of hypoxia.

      (3) Although the authors conclude that epicardial HIF1a deletion results in a significant reduction of WT1⁺ cells in both the epicardium and myocardium (Figure 2a-d), the provided images are not sufficiently clear to fully support this interpretation. Providing additional evidence to support this conclusion would be helpful.

      We respectfully disagree with the reviewer and draw attention to the single channel panels of WT1+ staining which show clear differences between numbers of epicardial cells in the mutant mice compared to controls (Figure 2a versus 2b; magenta WT1+ staining).

      (4) Similar to the point raised above, the authors' conclusion regarding the increased expression of WT1 following Molidustat treatment does not appear to be fully supported by the provided images (Figure 6b-f). Immunofluorescence staining for WT1 does not clearly demonstrate epicardial expression in the remote zone of either the control or Molidustat-treated hearts. In addition, while an increase of WT1<sup>+</sup> cells is observed in the infarct zone of the Molidustat-treated heart, it is somewhat unexpected that such expansion is not evident in the corresponding region of the control heart, given that epicardial cells typically expand near the infarct area. Clarification on these points would be helpful.

      Figure 6b reveals WT1 expression in controls (upper panel set) that is reactivated proximal to the infarct region, given WT1 is not expressed in adult epicardium but restricted to the epicardial layer (as occurs in injured adult mouse hearts PMID: 21505261). This contrasts with what is observed in the Molidustat-treated P7 hearts post-MI, where we observe epicardial expansion and migration of WT1+ cells into the underlying myocardium (Figure 6b, lower panel set, infarct zone).

      (5) The authors conclude that WT1<sup>+</sup> cells in the myocardial tissue exhibit endothelial identity based on the colocalization of WT1 and EMCN signals (Supplementary Figure 9c). However, this interpretation is difficult to assess, as WT1 is a nuclear marker and EMCN is a membrane protein, which makes precise colocalization challenging to confirm with confidence. Additional supporting evidence may be necessary to substantiate this conclusion.

      WT1 is known to be up regulated in endothelial cells in response to injury as shown previously in several studies (for example, PMID: 25681586). Here we show clear co-localisation of nuclear WT1 and cytoplasmic Endomucin (EMCN) in what is now Figure 6- figure supplement 1c and would encourage the reviewer and readers to magnify the image by zooming-in on the relevant co-stained panel.

      (6) The authors conclude that activation of epicardial HIF1a signaling has no effect on neovascularization in postnatal MI hearts (Figure 5c). However, the abstract states: "Finally, a combination of genetic and pharmacological stabilisation of HIF ... increased vascularisation, augmented infarct resolution and preserved function beyond the 7-day regenerative window" (Lines 38-41). Clarification regarding this apparent discrepancy would be appreciated.

      The abstract has been altered to remove the statement of increased vascularisation.

      (7) The study appears somewhat incomplete, as it lacks mechanistic insight into the functional recovery observed following epicardial Phd2 deletion and Molidustat treatment in postnatal MI hearts. Although the authors suggest a potential paracrine role of the epicardium in protecting cardiomyocytes from apoptosis, this hypothesis has not been experimentally addressed. Incorporating such analysis would help to reinforce the study's conclusions.

      Further experiments are required, which are out-of-scope of this study, to define a mechanistic link between the genetic or pharmacological stabilisation of HIF-signalling, epicardial activation and myocardial survival in the setting of prolonged neonatal heart regeneration.

      Other points:

      (1) Providing single-channel images for Figures 1a-d and 6g would be helpful for clarity and interpretation.

      We believe the combined channel views of co-staining for two markers on a background of DAPI staining to pin-point cell nuclei, are informative and support our conclusions.

      (2) Have the authors considered using AngioTool to quantify the number of vessels in Figure 5b-c?

      AngioToolTM was used to quantify the vessels, as we have used previously (PMID: 33462113) and this is now added to the methods and legend of Figure 2.

      Reviewer #3 (Recommendations for the authors):

      There are several areas where the manuscript can be improved, such that its conclusions can be solidified.

      (1) The authors highlight a point where blocking Phd2 can enhance survival of cardiac tissue, but did not report on survival markers. They surmised that apoptosis could be decreased in Phd2 mutant or Molidustat treatment but did not show this. The authors should determine if apoptosis is decreased in the myocardium and epicardium.

      We show evidence of increased levels of healthy myocardium in the genetic and pharmacological models of stabilised HIF-signalling. We exclude increased cardiac hypertrophy or increased cardiomyocyte proliferation as causative, so suggest as a reasonable alternative enhanced survival, albeit this need not necessarily be via an apoptotic pathway given the incidence of necrotic cell death during MI. We are unable to generate new surgeries and mutant/treated heart samples to analyse for apoptotic markers at this stage.

      (2) There appears to be no difference in cardiomyocyte proliferation in Molidustat-treated animals, but the experiment was only performed on 2 to 3 animals. This is too small a sample size to conclude from these results. The authors should increase the sample size to make this assertion.

      We respectfully disagree that we are unable to conclude no effect on cardiomyocyte proliferation. We analysed multiple heart regions per section, for EdU+/cTnT+ colocalised signals across several sections per heart, set against a consistency of effect on other parameters in hearts treated with Molidustat. We are unable to generate more P7 heart surgeries +/- Molidustat and +/- EdU at this stage.

      (3) It is curious as to how, after myocardial infarction, the fibrotic scar tissue is decreased in the Phd2 deletion but not as profound in Molidustat-treated mice at d21. Can the authors speculate why the difference exists and how this decrease arises? For example, are there decreased pro-inflammatory signals in Phd2 deleted mice? Is there decreased collagen deposition and ECM gene expression? Do macrophage recruitment into the infarct zone differ between mutant/treated vs WT?

      The representative images in Figure 6k reveal a trend towards reduced fibrosis with Molidistat treatment (Figure 6l), but across all hearts analysed this was not as significant as observed in the epicardial-specific deletion injured hearts (Figure 5g, h). This may be due to the relatively short half-life of Molidustat (approximately 4-10 hours, PMID: 32248614), the dosing regimen for the drug and/or the fact that it was not specifically delivered/targeted to the epicardium.

      (4) The magnified images in Figure 1 do not match the boxes in the whole heart images. It is unclear what the white boxes signify.

      The white boxes have been removed from Figure 1. The magnified image panels are from serial heart sections and this is now clarified in the Figure 1 legend.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Review

      GENERAL QUESTIONS:

      (1) For many enveloped viruses, the attachment factors - paradoxically - are also surface glycoproteins, often complexed with a distinct fusion protein. The authors note here that the glycoportiens do not inhibit the initial binding, but only limit the stability of the adhesive interface needed for subsequent membrane fusion and viral uptake. How these antagonistic tendencies might play out should be discussed.

      When the surface density of receptor molecules for a virus with glycans increases, the density of free glycans not bound to the virus increases along with the amount of virus adsorbed. However, if the total amount of glycans is considered to be a function of the receptor density, the reaction may become more complicated. This complication may also be affected by the prolonged infection. If the receptor density on the cell surface is high, the infection inhibitory effect of glycans may not be obtained in a system in which a high concentration of virus is supplied from the outside world for a long time. This is because once viruses have entered the cell, they accumulate inside the cell, and viral infection is affected by the total accumulated amount, which is the integration of the number of viruses that have entered over time. This distinction indicates that the virus entry reaction and the total amount of infection in the cell must be considered separately. This is an important point, but it was not clearly mentioned in the original manuscript.

      Our experiments were conducted under conditions that clearly allowed us to detect the virusinhibiting function of glycans without being affected by the above points. In order to clarify these points, we will revise this article as follows, referring to an experiment that is somewhat related to this discussion (the Adenovirus infection experiment into HEK293T cells shown in Figure S1F)..

      (Page-3, Introduction)

      While there are known examples of glycans that function as viral receptors (Thompson et al., 2019), these results demonstrate that a variety of glycoproteins negatively regulate viral infection in a wide range of systems. All of these results suggest that bulky membrane glycoproteins nonspecifically inhibit viral infection.

      (Page 20, Discussion)

      When the virus receptor is a glycoprotein or glycan itself, the inhibition of virus infection by glycans becomes more complex because the total amount of glycans is also a function of the receptor density. It is also important to note that the total amount of infection into a cell is the time integral of virus entry. Even if the probability of virus entry is significantly reduced by glycans, the cumulative number of virus entries may increase if high concentrations of virus continue to be supplied from outside the cell for a long period of time. In the case of Adenovirus, which continues to amplify in HEK293T cells after infection, we showed that MUC1 on the cell surface has an inhibitory effect on long-term cumulative infection (Supplementary Figure 1F). However, such an accumulation effect may be caseby-case depending on the virus cell system, and may be more pronounced when the cell surface density of virus receptor molecules is high. As a result, if the virus receptor molecule is a glycan or glycoprotein and infection continues for a long period of time, the infection inhibition effect may not be observed despite an apparent increase in the total amount of glycans in the cell. In any case, our results clarified the factor of virus entry inhibition dependent on the total amount of glycans because appropriate conditions were set.

      (2) Unlike polymers tethered to solid surface undergoing mushroom-to-brush transition in densitydependent manner, the glycoproteins at the cell surface are of course mobile (presumably in a density-dependent manner). They can thus redistribute in spatial patterns, which serve to minimize the free energy. I suggest the authors explicitly address how these considerations influence the in vitro reconstitution assays seeking to assess the glycosylation-dependent protein packing.

      We performed additional experiments using lipid bilayers that had lost fluidity, and found that there is no significant difference in protein binding between fluid and nonfluid bilayers. The redistribution of molecules due to molecular fluidity may play some roles but not in our experimental systems. It suggests that glycoproteins can generate intermolecular repulsion even in fluid conditions such as cell membranes, just as they do on the solid phase. This experiment was also very useful because it allowed us to compare our results in the fluid bilayer with solid-state measurements of saturation molecular density and the brush transition. This comparison gave us confidence that in the reconstituted membrane system, even at saturation density, the membrane proteins are not as stretched as they are in the condensed brush state. We have therefore added a new paragraph and a new figure (Supplementary Fig. 5B) to discuss this issue, as follows:

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub> is expected to be small relative to the overall free energy of the system.

      (3) The discussion of the role of excluded volume in steric repulsion between glycoprotein needs clarification. As presented, it's unclear what the role of "excluded volume" effects is in driving steric repulsion? Do the authors imply depletion forces? Or the volume unavailable due to stochastic configurations of gaussian chains? How does the formalism apply to branched membrane glycoproteins is not immediately obvious.

      Regarding the excluded volume due to steric repulsion between glycoproteins, we considered the volume that cannot be used by glycans as Gaussian chains branching from the main chain. We would like to expand on this point by adding several papers that make similar arguments. I'm glad you brought this up because we hadn't considered depletion forces - the excluded volume between glycoproteins should generate a depletion force, but in this case we believe this force will not have a significant effect on viruses that are larger than the glycoproteins. We also attempted to clarify the discussion in this section by focusing on intermolecular repulsion, and restructured paragraphs, which are also related to General Question 2 and Specific Question 2. The relevant part has been revised as follows. (page 15~page16):

      To compare the packing of proteins with different molecular weights and R<sub>F</sub>, These were smaller than the coverage of molecules at hexagonal close packing that is ~90.7%. In contrast, the coverage of b-CD43 and b-MUC1 at saturated binding was estimated to be greater than 100% under this normalization standard, indicating that the mean projected sizes of these molecules in surface direction were smaller than those expected from their R<sub>F</sub> Thus, it is clear that glycosylation reduces the saturation density of membrane proteins, regardless of molecular size.

      Highly glycosylated proteins resisted densification, indicating that some intermolecular repulsion is occurring. In the framework of polymer brush theory, the intermolecular repulsion of densely packed highly glycosylated proteins is due to an increase in either f<sub>el</sub>, f<sub>int</sub> (d<R<sub>F</sub>), or both (Hansen et al., 2003; Wu et al., 2002). The term of intermolecular interaction, f<sub>int</sub>, is regulated by intermolecular steric repulsion, which occurs when neighboring molecules cannot approach the excluded volume created by the stochastic configuration of the polymer chain (Attili et al., 2012; Faivre et al., 2018; Kreussling and Ullman, 1954; Kuo et al., 2018; Paturej et al., 2016). The magnitude of this steric repulsion depends largely on R<sub>F</sub> in dilute solutions, but the molecular structure may also affect it when molecules are densified on a surface. In other words, the glycans protruding between molecules can cause steric inhibition between neighboring proteins (Figure 5D). Such intermolecular repulsion due to branched side chains occurs only when the molecules are in close proximity and sterically interact on a twodimensional surface, but not in dilute solution, and does not occur in unbranched polymers such as underglycosylated proteins (Figure 5D). Based on the above, we propose the following model for membrane proteins: Only when the membrane proteins are glycosylated does strong steric repulsion occur between neighboring molecules during the densification process, suppressing densification.

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub>, is expected to be small relative to the overall free energy of the system.

      Note that this does not mean that glycoproteins cannot form condensed brush structures: in fact, highly glycosylated molecules (e.g., MUC1) can form brush structures in cells when such proteins are expressed at very high densities. (Shurer et al., 2019). In these cells, ………. Such membrane deformation results in the increase of total surface area to reduce the density of glycoproteins, indicating that there is strong intermolecular repulsion between glycoproteins. In any case, the free energy of the system is determined by the balance between protein binding and insertion into the membrane, protein deformation, and repulsive forces between proteins, which determine the density of proteins depending on the configuration of the system. Thus, although strong intermolecular repulsions were prominently observed in our simplified system, this may not be the case in other systems. ……

      (4) The authors showed that glycoprotein expression inversely correlated with viral infection and link viral entry inhibition to steric hindrance caused by the glycoprotein. Alternative explanations would be that the glycoprotein expression (a) reroutes endocytosed viral particles or (b) lowers cellular endocytic rates and via either mechanism reduce viral infection. The authors should provide evidence that these alternatives are not occurring in their system. They could for example experimentally test whether non-specific endocytosis is still operational at similar levels, measured with fluid-phase markers such as 10kDa dextrans.

      The results of the experiment suggested by the reviewer are shown in the new Supplementary Figure 3B. (This results in generation of a new Supplementary Figure 3, and previous Supplementary Figures 4-5 are now renumbered as Supplementary Figures 5-6). Endocytosis of 10KDa dextran was attenuated by the expression of several large-sized molecules, but was not affected by the expression of many other glycoproteins that have the ability to inhibit infection. These results were clearly different from the results in which virus infection was inhibited more by the amount of glycan than by molecular weight. Therefore, it was found that many glycoproteins inhibit virus infection through processes other than endocytosis. Based on the above, we have added the following to the manuscript: (p9 New paragraph:)

      We also investigated the effect of membrane glycoproteins on membrane trafficking, another process involved in viral infection. Expression of MUC1 with higher number of tandem repeats reduced the dextran transport in the fluid phase, while expression of multiple membrane glycoproteins that have infection inhibitory effects, including truncated MUC1 molecules, showed no effect on fluid phase endocytosis, indicating a molecular weight-dependent effect (Supplementary Figure 3B). The molecular weight-dependent inhibition of endocytosis may be due to factors such as steric inhibition of the approach of dextran molecules or a reduction in the transportable volume within the endosome. In any case, it is clear that many low molecular weight glycoproteins inhibit infection by disturbing processes other than endocytosis. Based on the above, we focus on the effect of glycoproteins on the formation of the interface between the virus and the cell membrane.

      (5) The authors approach their system with the goal of generalizing the cell membrane (the cumulative effect of all cell membrane molecules on viral entry), but what about the inverse? How does the nature of the molecule seeking entry affect the interface? For example, a lipid nanoparticle vs a virus with a short virus-cell distance vs a virus with a large virus-cell distance?

      Thank you for your interesting comment. If the molecular size of the ligand is large, it should affect virus adsorption and molecular exclusion from the interface. In lipid nanoparticle applications, controlling this parameter may contribute to efficiency. In addition, a related discussion is the influence of virus shell molecules that are not bound to the receptor. I will revise the text based on the above.

      Discussion (as a new paragraph after the paragraph added in Q1):

      In this study, we attempted to generalize the surface structure on the cell side, but the surface structure on the virus side may also have an effect. The efficiency of virus adsorption and the efficiency of cell membrane protein exclusion from the interface will change depending on the molecular length of the receptor-ligand, although receptor priming also has an effect. In addition, free ligands of the viral envelope or other coexisting glycoproteins may also have an effect as they are also required for exclusion from the virus-cell interface. In fact, there are reports that expression of CD43 and PSGL-1 on the virus surface reduces virus infection efficiency (Murakami et al., 2020). Such interface structure may be one of the factors that determine the infection efficiency that differs depending on the virus strain. More generally, modification of the surface structure may be effective for designing materials such as lipid nanoparticles that construct the interface with cell.

      SPECIFIC QUESTIONS:

      (1) The proposed mechanism indicates that glycosylation status does not produce an effect in the "trapping" of virus, but in later stages of the formation of the virus/membrane interface due to the high energetic costs of displacing highly glycosylated molecules at the vicinity of the virus/membrane interface. It is suggested to present a correlation between the levels of glycans in the Calu-3 cell monolayers and the number of viral particles bound to cell surface at different pulse times. Results may be quantified following the same method as shown in Figure 2 for the correlation between glycosylation levels and viral infection (in this case the resulting output could be number of viral particles bound as a function of glycan content).

      The results of this experiment are now shown as Supplementary Figure 2F and 2G. We compared the amount of virus bound after incubation for 10 minutes or for 3 hours as in the infection experiment, but no negative correlation was found between the total amount of glycans on the surface of the Calu3 monolayer and the amount of virus bound. Interestingly, there was a sight positive correlation was detected, which may be due to concentrated virus receptor expressions in glycan-enriched cells. This result shows that glycoproteins do not strongly inhibit virus binding. We will amend the text as follows (see also Q6).

      (Page 10)

      Glycans could be one of the biochemical substances ……We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). Similarly, on the two-dimensional culture surface of Calu-3 cells, no negative correlation was observed between the number of viruses bound and the total amount of glycans on the cell surface (Supplementary Figure 2F-G). The slight positive correlation between bound virus and glycans may be due to higher expression levels of viral receptors in glycan-rich cells. ….

      (2) The use of the purified glycosylated and non-glycosylated ectodomains of MUC1 and CD-43 to establish a relationship between glycosylation and protein density into lipid bilayers on silica beads is an elegant approach. An assessment of the impact of glycosylation in the structural conformation of both proteins, for instance determining the Flory radius of the glycosylated and non-glycosylated ectodomains by the FRET-FLIM approach used in Figure 4 would serve to further support the hypothesis of the article.

      Unfortunately, the proposed experiment did not provide a strong enough FRET signal for analysis. This was due in part to the difficulty in constructing a bead-coated bilayer incorporating PlasMem Bright Red, which established a good FRET pair in cell experiments. We also tried other fluorescent molecules, but were unable to obtain a strong and stable FRET signal. Another reason may be that the curvature of the beads is larger than that of the cells, making it difficult to obtain a sufficient cumulative FRET effect from multiple membrane dyes. We plan to improve the experimental system in the future.

      On the other hand, we also found that in this system, the signal changes were very subtle, making it difficult to detect molecular conformational changes using FRET. After reconsidering general questions (2) and (3), we speculated that the molecular density in the experiment, even at saturation binding, was below or at most equivalent to the brush transition point. In other words, proteins on the bead-coated bilayer may not be significantly extended in the vertical direction. Therefore, the conformational changes of these proteins may not be large enough to be detected by the FRET assay. We updated Figure 3C and Figure 5D (model description) to better reflect the above discussion and introduced the following discussion in the manuscript.

      (page11)

      We introduced the framework of conventional polymer brush theory to study the structure of viruscell interfaces containing proteins……. Numerous experimental measurements of the formation of polymer brushes have also been reported (Overney et al., 1996; Wu et al., 2002; Zhao and Brittain, 2000). In these measurements, the transition to a brush typically occurs at a density higher than that required to pack a surface with hemispherical polymers of diameter R<sub>F</sub>. This is the point at which the energy loss due to repulsive forces between adjacent molecules (f<sub>int</sub>) exceeds the energy required to stretch the polymer perpendicularly into a brush (f<sub>el</sub>).

      (page16)

      The molecular structural state of these proteins needs to be further discussed to estimate the contribution of f<sub>el</sub>, which represents resistance to molecular elongation. Our results suggest that these densely packed nonglycosylated molecules are no longer in a free mushroom state. However, their saturation density was several times lower than previously reported brush transition densities, such as 65000 µm<sup>-2</sup> for 17 kDa polyacrylamide (R<sub>F</sub> ~ 15 nm) on a solid surface (Wu et al., 2002). To compare our data on fluid bilayers with previously reported data on solid surfaces, we performed additional experiments with lipid bilayers that lost fluidity. No significant changes in protein binding between fluid and nonfluid bilayers were observed for both b-MUC1 and g-MUC1 molecules (Supplementary Figure 5B). This result suggests that membrane fluidity does not affect the average intermolecular distance or other relevant parameters that control molecular binding in the reconstituted system. Based on these, we speculate that the saturated protein density observed in our experiments is lower than or at most comparable to the actual brush transition density. Thus, although these crowded proteins may be restricted from free random motion, they are not significantly extended as in the condensed brush state, in which the contribution of resistance to molecular extension f<sub>el</sub> is expected to be small relative to the overall free energy of the system.

      Note that this does not mean that glycoproteins cannot form condensed brush structures: in fact, highly glycosylated molecules (e.g., MUC1) can form brush structures in cells when such proteins are expressed at very high densities. (Shurer et al., 2019). In these cells, ………. Such membrane deformation results in the increase of total surface area to reduce the density of glycoproteins, indicating that there is strong intermolecular repulsion between glycoproteins. In any case, the free energy of the system is determined by the balance between protein binding and insertion into the membrane, protein deformation, and repulsive forces between proteins, which determine the density of proteins depending on the configuration of the system. Thus, although strong intermolecular repulsions were prominently observed in our simplified system, this may not be the case in other systems. ……

      (3) The MUC1 glycoprotein is reported to have a dramatic effect in reducing viral infection shown in Fig 1F. On the contrary, in a different experiment shown in Fig2D and Fig2H MUC1 has almost no effect in reducing viral infection. It is not clear how these two findings can be compatible.

      The immunostaining results show that the density of MUC1 molecules is very low in the experimental system in Figure 2 (Figure 2C), which is supported by the SC-RNASeq data (as shown in Supplementary Figure 2A, MUC1 is not listed as a top molecule). In other words, the MUC1 expression level in this experiment is too low to affect virus infection inhibition. On the other hand, the Pearson correlation function represents the strength of the linear relationship between two variables, so it is not the most appropriate indicator for seeing the correlation with the MUC1 expression level, which has little change (Figure 2D, 2F). In fact, even TOS analysis, which can see the correlation by focusing on the cells with the highest expression level, cannot detect the correlation (Figure 2H).Therefore, the MUC1 data in Figure 2DFH will be annotated and corrected in the figure legend.

      Figure2 Legend:

      MUC1 has a small mean expression level and variance, and is more affected by measurement noise than other molecules when calculating the Pearson correlation function (Figure 2C-2F). In addition, the number of cells in which expression can be detected is small, so no significant correlation was detected by TOS analysis (Figure 2H).

      (4) Why is there a shift in the use of the glycan marker? How does this affect the conclusions? For the infection correlation relating protein expression with glycan content the PNA-lectin was used together with flow cytometry. For imaging the infection and correlating with glycan content the SSA-lectin is used.

      For each cell line, we selected the lectin that could be measured over the widest dynamic range. This lectin is thought to recognize the predominant glycan species in the cell line (Fig. S1C, Fig. 2D). In our model, we believe that viral infection inhibition is not specific to the type of sugar, but is highly dependent on the total amount of glycans. If this hypothesis is correct, the reason we used different lectins in each experiment is simply to select the lectin that recognizes the most predominant glycan species that is most convenient for predicting the total amount of glycans in cells. This hypothesis is consistent with our observations, where the total amount of glycans estimated by different lectins could explain the infection inhibition in a similar way in the experiments in Figures 1 and 2, and the TOS analysis in Figure 2 showed that minor glycans also have an infection inhibitory effect. On the other hand, it is of course possible to predict the total amount of glycans more accurately by obtaining as much information on glycans as possible (related to Q5). Based on the above discussion, the manuscript will be revised as follows.

      Page5

      Using HEK293T cell lines exogenously expressing genes of these proteins tagged with fluorescent markers, their glycosylation was measured by binding of a lectin from Arachis hypogaea (PNA), and the number of these proteins in the cells was measured simultaneously. PNA was used for the measurement because it has a wider dynamic range than other lectins (Supplementary Figure 1C). This suggests that GalNAc recognized by PNA is predominantly present on glycans of HEK293T cells, especially on the termini of glycans that are amenable to lectin binding, compared to other saccharides.. …

      page9  

      Our findings suggest that membrane glycoproteins nonspecifically inhibit viral infection, and we hypothesize that their inhibitory function is also nonspecific depending on the type of glycan. Our hypothesis is consistent with the observations in the TOS analysis. Although minor saccharide species in the system (such as GlcNAc and GalNAc recognized by DSA, WGA, or PNA) showed anticolocalization with infection, their scores were much lower than those of major saccharide species. This suggests that all major and minor saccharide species have an infection inhibitory effect, but cells enriched with minor type glycans are only partially present in the system, and the contribution of these cells to virus inhibition is also partial. It is also consistent with the observation that the amount of GalNAc recognized by PNA determines the virus infection inhibition in HEK 293T cells (Figure 1). Therefore, we believe that our assay using a single type of predominantly expressed lectin is still useful for estimating the total glycan content. Nevertheless, the virus infection rate may show a better correlation with a more accurately estimated total glycan in each cell. For example, the use of multiple lectins with appropriate calibration to integrate multiple signals to simultaneously detect a wider range of saccharide species would allow for more accurate estimation. It should be noted that the amount of bound lectin does not necessarily measure the overall glycan composition but likely reflects the sugar population at the free end of the glycan chain to which the lectin binds most.

      (5) The authors in several instances comment on the relevance and importance of the total glycan content. Nevertheless, these conclusions are often drawn when using only one glycan-binding lectin. In fact, the anti-correlation with viral infection is distinct for the various lectins (Fig 2D and Fig 2H). Would it make more sense to use a combination of lectins to get a full glycan spectrum?

      As stated in the answer to Q4, we believe that we were able to detect the infection-suppressing effect of the total glycan amount by using the measurement value of the major component glycan as an approximation. However, as you pointed out, if we could accurately measure the minor glycan components and add up their values, we believe that we could measure the total glycan amount more accurately. In order to measure multiple glycans simultaneously and with high accuracy, some kind of biochemical calibration may be necessary to compare the measurements of lectin-glycan pairs with different binding constants. We believe that these are very useful techniques, and would like to consider them as a future challenge. The corrections listed in Q4 are shown below.

      (Page 9)

      Nevertheless, the virus infection rate may show a better correlation with a more accurately estimated total glycan in each cell. For example, the use of multiple lectins with appropriate calibration to integrate multiple signals to simultaneously detect a wider range of glycans would allow for more accurate estimation. …….

      (6) Fig 3A shows virus binding to HEK cells upon MUC1 expression. Please provide the surface expression of the MUC1 so that the data can be compared to Fig 1F. Nevertheless, it is not clear why the authors used MUC expression as a parameter to assess virus binding. Alternatively, more conclusive data supporting the hypothesis would be the absence of a correlation between total glycan content and virus binding capacity.

      The relationship between the expression level of MUC1 in each cell and the amount of virus binding is shown in Supplementary Figure 3A. There is no correlation between the two. In HEK293T cells, many glycans are modified with MUC1, so MUC1 was used as the indicator for analysis (Supplementary Figure 1C). As you pointed out, it is better to use the amount of glycan as an indicator, so we analyzed the relationship between the amount of bound virus and the amount of glycan on the surface on the Calu-3 monolayer (Supplementary Figure 2F, 2G, introduced in the answer to Specific (Q1)). In any case, no correlation was found between virus binding and surface glycans. I will correct the manuscript as follows.

      (page 9)

      Glycans could be one of the biochemical substances that link the intracellular molecular composition and macroscopic steric forces at the cell surface. To clarify this connection, we further investigated the mechanism by which membrane glycoproteins inhibit viral infection. First, we measured viral binding to cells to determine which step of infection is inhibited. We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). Similarly, on the two-dimensional culture surface of Calu-3 cells, no correlation was observed between the number of viruses bound and the total amount of glycans on the cell surface (Supplementary Figure 2F-G). These results indicate that glycoproteins do not inhibit virus binding to cells, but rather inhibit the steps required for subsequent virus internalization.

      (7) While the use of the Flory model could provide a simplification for a (disordered) flexible structure such as MUC1, where the number of amino acids equals N in the Flory model, this generalisation will not hold for all the proteins. Because folding will dramatically change the effective polypeptide chain-length and reduce available positioning of the amino acids, something the authors clearly measured (Fig 4G), this generalisation is not correct. In fact, the generalisation does not seem to be required because the authors provide an estimation for the effective Flory radius using their FRET approach

      Current theories generalizing the Flory model to proteins are incomplete, and it is certainly not possible to accurately estimate the size of individual molecules undergoing different folding. However, we found such a generalized model to be useful in understanding the overall properties of membrane proteins. In our experiments, we were indeed able to obtain the R<sub>F</sub>s of some individual molecules by FRET measurements. However, this modeling made it possible to estimate the distribution range of the RFs, including for larger proteins that cannot be measured by FRET. For example, from our results, we can estimate that the upper limit of the RFs of the longest membrane proteins is about 10.5 nm, assuming that the proteins follow the Flory model in all respects except for the shortening of the effective length due to folding. These analyses are useful for physical modeling of nonspecific phenomena, as in our case.

      In order to discuss the balance between such theoretical validity and the convenience of practical handling, we revise the manuscript as follows.

      (page 13) 

      This shift in ν indicates that glycosylation increases the size of the protein at equilibrium, but the change in R<sub>F</sub> is slight, e.g., a 1.3-fold increase for one of the longest ectodomains with N = 4000 when these values of ν are applied. This calculation also gives a rough estimate of the upper limit of the R<sub>F</sub> of the extracellular domains of all membrane proteins in the human genome (approximately 10.5 nm). Physically, this change in ν by glycosylation may be caused by the increased intramolecular exclusion induced sterically between glycan chains. This estimated ν are much smaller than that of 0.6 for polymers in good solvents, possibly due to protein folding or anchoring effects on the membrane. In fact, the ν of an intrinsically disordered protein in solution has been reported to be close to 0.6 (Riback et al., 2019; Tesei et al., 2024). Overall, these analyses using the Flory model provide information on the size distribution of membrane proteins and the influence of glycans, although the model cannot predict the exact size of each protein due to its specific folding.

      MINOR COMMENTS/EDITS:

      (1) In Figures 2A and 2C, as well as Supplemental Figure 2C, the fluorescent images indicate that GFP expression differs among the various groups. Ideally, these should be at the same GFP expression level, as the glycan and antibody staining occurred post-viral infection. For instance, ACE2 is a well-known positive control and should enhance SARS-CoV-2 infection. Yet, based on the findings presented in Supplemental Figure 2C, ACE2 appears to correlate with the lowest infection rate. The relationship between the infection rate and key glycoproteins needs clearer quantification.

      We measured the virus inhibition effect specific to each molecule using a cell line expressing low levels of viral receptors and glycoproteins (Fig. 1). On the other hand, the system in Fig. 2 contains diverse viral receptors and glycoproteins and has not been genetically manipulated. (We apologize that there was a typo in our description of experiment, which will be corrected, as shown below). The variation in infection rate between samples was caused by multiple factors but was not related to the molecule for which the correlation was measured. The receptor-based normalization used in the experiment in Fig. 1 cannot be applied in this system in Fig.2 due to the complexity of the gene expression profile. Therefore, instead of such parameter-based normalization, we applied Pearson correlation and TOS analysis. In the calculation of Pearson correlation, intensities are normalized. TOS analysis allows the analysis of colocalization between the groups with the highest fluorescence intensity. Therefore, in both cases of variation in overall infection rate and variation in the distribution of infected populations, samples with large variations can be reasonably compared by Pearson correlation and TOS analysis, respectively. We extend the discussion on statistics and revise the manuscript as follows.

      (page 8-9)

      To test this hypothesis, we infected a monolayer of epithelial cells endogenously expressing highly heterogeneous populations of glycoproteins with SARS-CoV-2-PP, and measured viral infection from cell to cell visually by microscope imaging. …

      Pearson correlation is effective for comparing samples with varying scales of data because it normalizes the data values by the mean and variance. However, as observed in our experiments, this may not be the case when the distribution of data within a sample varies between samples. In addition, as has already been reported, the distribution of infected cells often deviates significantly from the normal distribution of data that is the premise of Pearson correlation (Russell et al., 2018) (Figure 2B). To further analyze data in such nonlinear situations, we applied the threshold overlap score (TOS) analysis (Figure 2G-H, Supplementary Figure 2E). This is one statistical method for analyzing nonlinear correlations, and is specialized for colocalization analysis in dual color images (Sheng et al., 2016). TOS analysis involves segmentation of the data based on signal intensity, as in other nonlinear statistics (Reshef et al., 2011). The computed TOS matrix indicates whether the number of objects classified in each region is higher or lower than expected for uniformly distributed data, which reflects co-localization or anti-localization in dual-color imaging data. For example, calculated TOS matrices show strong anti-localization for infection and glycosylation when both signals are high (Figure 2GH). This confirms that high infection is very unlikely to occur in cells that express high levels of glycans. The TOS analysis also yielded better anti-localization scores for some of the individual membrane proteins, especially those that are heterogeneously distributed across cells (Figure 2H). This suggests that TOS analysis can highlight the inhibitory function of molecules that are sparsely expressed among cells, reaffirming that high expression of a single type of glycoprotein can create an infection-protective surface in a single cell and that such infection inhibition is not protein-specific. In contrast, for more uniformly distributed proteins such as the viral receptor ACE2, TOS analysis and Pearson correlation showed similar trends, although the two are mathematically different (Figure 2D, 2H). Because glycoprotein expression levels and virus-derived GFP levels were treated symmetrically in these statistical calculations, the same logic can be applied when considering the heterogeneity of infection levels among cells. Therefore, it is expected that TOS analysis can reasonably compare samples with different virus infection level distributions by focusing on cells with high infection levels in all samples.

      (2) For clarity, the authors should consider separating introductory and interpretive remarks from the presentation of results. These seem to get mixed up. The introduction section could be expanded to include more details about glycoproteins, their relevance to viral infection, and explanations of N- and O-glycosylation.

      Following the suggestion, (1) we added an explanation of the relationship between glycoproteins and viral infection, and N-glycosylation and O-glycosylation to the Introduction section, and (2) moved the introductory parts in the Results section to the Introduction section, as follows.

      (1; page3)

      While there are known examples of glycans that function as viral receptors (Thompson et al., 2019), these results demonstrate that a variety of glycoproteins negatively regulate viral infection in a wide range of systems. These glycoprotein groups have no common amino acid sequences or domains. The glycans modified by these proteins include both the N-type, which binds to asparagine, and the O-type, which binds to serine and threonine. Furthermore, there have been no reports of infection-suppressing effects according to the specific monosaccharide type in the glycan. All of these results suggest that bulky membrane glycoproteins nonspecifically inhibit viral infection.

      (2 : Page 4-5)

      To confirm that glycans are a general chemical factor of steric repulsion, an extensive list of glycoproteins on the cell membrane surface would be useful. The wider the range of proteins to be measured, the better. Therefore, we collect information on glycoproteins on the genome and compile them into a list that is easy to use for various purposes. Then, by analyzing sample molecules selected from this list, it may be possible to infer the effect of the entire glycoprotein population on the steric inhibition of virus infection, despite the complexity and diversity of the Glycome (Dworkin et al., 2022; Huang et al., 2021; Moremen et al., 2012; Rademacher et al., 1988). Elucidation of the mechanism of how glycans regulate steric repulsion will also be useful to quantitatively discuss the relationship between steric repulsion and intracellular molecular composition. For this purpose, we apply the theories of polymer physics and interface chemistry.

      Results

      List of membrane glycoproteins in human genome and their inhibitory effect on virus infection

      To test the hypothesis that glycans contribute to steric repulsion at the cell surface, we first generate a list of glycoproteins in the human genome and then measure the glycan content and inhibitory effect on viral infection of test proteins selected from the list (Figure 1A). To compile the list of glycoproteins, we ….

      (3) In the sentence, "glycoproteins expressed lower than CD44 or other membrane proteins including ERBB2 did not exhibit any such correlation, although ERBB2 expressed ~4 folds higher amount than CD44 and shared ~7% among all membrane proteins," it is unclear which protein has a higher expression level: CD44 or ERBB2? Furthermore, the use of the word "although" needs clarification.

      Corrected as follows:

      (page 8)

      ……showed a weak inverse correlation with viral infection; even such a weak correlation was not observed with other proteins, including ERBB2, which is approximately four-fold more highly expressed than CD44

      (4) In Supplementary Figure 5, please provide an explanation of the data in the figure legend, particularly what the green and red signals represent.

      Corrected as follows:

      STORM images of all analyzed cells, expressing designated proteins. The detected spots of SNAPsurface Alexa 647 bound to each membrane protein are shown in red, and the spots of CF568conjugated anti-mouse IgG secondary antibody that recognizes Spike on SARS-CoV2-PP are shown in green. For cells, a pair of two-color composite images and a CF658-only image are shown. Numbers on axes are coordinates in nanometer.

      (5) It would be good to see a comprehensive demonstration of the exact method for estimation of membrane protein density (in the SI), since this is an integral part of many of the analyses in this paper. The method is detailed in the Methods section in text and is generally acceptable, but this methodology can vary quite widely and would be more convincing with calibration data provided.

      We added flow cytometry and fluorometer data for calibration (Supplementary Figure 1L,M) and introduced a sentence explaining the procedure for obtaining the values used for calibration as follows:

      (page 54)

      …….Liposome standards containing fluorescent molecules (0.01– 0.75 mol% perylene (Sigma), 0.1– 1.25 mol% Bodipy FL (Thermo), and 0.005– 0.1% DiD) as well as DOPC (Avanti polar lipids) were measured in flow cytometry (Supplmentary Figure 1L). Meanwhile, by fluorimeter, fluorescence signals of these liposomes and known concentrations of recombinant mTagBFP2, AcGFP and TagRFP-657 proteins and SNAP-Surface 488 and Alexa 647 dyes (New England Biolabs) were measured in the same excitation and emission ranges as in flow cytometry assays (Supplementary Figure 1M). Ratios between the integral of fluorescent intensities in this range between two dyes of interest are used for converting the signals measured in flow cytometry. Additional information needed for calibration is the size difference between liposomes and cells. The average diameter of liposomes is measured to be 130 nm, and the diameter of HEK 293T cells is estimated to be 13 µm (Furlan et al., 2014; Kaizuka et al., 2021b; Ushiyama et al., 2015). From these data, the signal from cells acquired by flow cytometry can be calibrated to molecular surface density. For example, the Alexa 647 signal acquired by flow cytometry can be converted to the signal of the same concentration of DID dye using fluorometer data, but the density of the dye is unknown at this point. This converted DID signal can then be calibrated to the density on liposomes rather than cells using liposome flow cytometry data. Finally, adjusted for the size difference between liposomes and cells, the surface molecular density on cells is determined. By going through one cycle of these procedures, we could obtain calibration unit, such as 1 flow cytometry signal for a cell in the designated illumination and detection setting = 0.0272 mTagBFP2 µm<sup>-2</sup> on cell surface.

      (Figure legend, Supporting Figure 1: )

      … L. Flow cytometry measurements for liposomes containing serially diluted dye-conjugated lipids and fluorescent membrane incorporating molecules (Bodipy-FL, peryelene, and DID) with indicated mol%. Linear fitting shown was used for calibration.  M. Fluorescence emission spectrum for equimolar molecules (50µM for green and far-red channels, and 100µM for blue channel), excited at 405 nm, 488 nm, and 638 nm, respectively. Membrane dyes were measured as incorporated in liposomes. Purified recombinant mTagBFP2 was used.

      (6) Fig 2A: The figure legend should describe the microscopy method for a quick and easy reference.

      Corrected as follows:

      (Figure legend, Figure 2)

      A. Maximum projection of Z-stack images at 1 µm intervals taken with a confocal microscope. SARSCoV2-pp-infected, air-liquid interface (ALI)-cultured Calu-3 cell monolayers were chemically fixed and imaged by binding of Alexa Fluor 647-labeled Neu5AC-specific lectin from Sambucus sieboldiana (SSA) and GFP expression from the infecting virus.

      (7) Fig 2B: what is the color bar supposed to represent? Is it the pixel density per a particular value? Units and additional description are required. In addition, these are "arbitrary units" of fluorescence, but you should tell us if they've been normalized and, if so, how. They must have been normalized, since the values are between 0 and 1, but then why does the scale bar for SSA only go to 0.5?

      The color bar shows the number of pixels for each dot, resulting in the scale for density scatter plot. The scale on the X-axis was incorrect. All these issues have been fixed in this revision, in the figure and in the legend as follows.

      (Figure legend, Figure 2)

      B. Density scatter plot of normalized fluorescence intensities in all pixels in Figure 2A in both GFP and SSA channels. Color indicates the pixel density.  

      (8) Fig 3D has a typo: this should most likely be "grafted polymer."

      (9) Fig 3E has a suspected typo: in the text, the author uses the word "exclusion" instead of "extrusion." The former makes more sense in this context.

      (10) Fig 5A has a typo: "Suppoorted" instead of Supported Lipid Bilayer.

      (11) Fig 7E-F has a suspected typo: Again, this should most likely be the word "exclusion" instead of "extrusion."

      Thank you so much for pointing out these mistakes, I have corrected them all as suggested.

      (12) Which other molecules are referred to, on page 6 (middle), that do not have an inhibitory effect? Please specify.

      We specified the molecules that have inhibitory effects, and revised as follows: 

      These proteins include those previously reported (MUC1, CD43) as well as those not yet reported (CD44, SDC1, CD164, F174B, CD24, PODXL) (Delaveris et al., 2020; Murakami et al., 2020). In contrast, other molecules (VCAM-1, EPHB1, TMEM123, etc.) showed little inhibitory effect on infection within the density range we used.

      (13) Fig 2 B: the color LUT is not labelled nor explained.

      Corrected as described in (7)

      (14) Please provide the scale bars for figures Fig 2A, C, E and Suppl Fig 2C, D.

      Corrected. 

      (15) Please provide the name for the example of a 200 aa protein that is meant to inhibit viral infection but is not bigger than ACE2. Also providing the densities in Fig 3A would help to correlate the data to Fig 1F.

      Corrected as follows: 

      (page 10)

      We found that a large number of SARS-CoV2-PP can still bind to cells even when cells expressed sufficient amounts of the glycoprotein (mean density ~50 µm<sup>-2</sup>) that could account for the majority of glycans within these cells and inhibit viral infection (Figure 3A). …..

      In our measurements, a protein with extracellular domain of ~200 amino acids (e.g. CD164 (138aa)) at a density of ~100 μm-2 showed significant inhibition in viral infection. This molecule is shorter than the receptor ACE2 (722 aa),

      (16) In the experiments conducted in HeK cells expressing the different glycoproteins studies it is mentioned that results of infection were normalised by the amount ACE2 expression. Is the expression of receptor homogenous in the experiments conducted in Figure 2? Clarify in the methods if the expression of receptor has been quantified and somehow used to correct the intensity values of GFP used to determine infection.

      As also explained for Q1, the system in Fig. 2 contains diverse viral receptors and glycoproteins, and the receptor-based normalization used in the experiment in Fig. 1 cannot be applied. Instead, we applied Pearson correlation and TOS analysis. In the calculation of Pearson correlation, intensities are normalized. TOS analysis allows the analysis of colocalization between the groups with the highest fluorescence intensity. Therefore, in both cases of variation in overall infection rate and variation in the distribution of infected populations, samples with large variations can be reasonably compared by Pearson correlation and TOS analysis, respectively. We extend the discussion on statistics and revise the manuscript as follows.

      (page 8-9)

      Pearson correlation is effective for comparing samples with varying scales of data because it normalizes the data values by the mean and variance. However, as observed in our experiments, this may not be the case when the distribution of data within a sample varies between samples. In addition, as has already been reported, the distribution of infected cells often deviates significantly from the normal distribution of data that is the premise of Pearson correlation (Russell et al., 2018) (Figure 2B). To further analyze data in such nonlinear situations, we applied the threshold overlap score (TOS) analysis (Figure 2G-H, Supplementary Figure 2E). This is one statistical method for analyzing nonlinear correlations, and is specialized for colocalization analysis in dual color images (Sheng et al., 2016). TOS analysis involves segmentation of the data based on signal intensity, as in other nonlinear statistics (Reshef et al., 2011). The computed TOS matrix indicates whether the number of objects classified in each region is higher or lower than expected for uniformly distributed data, which reflects co-localization or anti-localization in dual-color imaging data. For example, calculated TOS matrices show strong anti-localization for infection and glycosylation when both signals are high (Figure 2GH). This confirms that high infection is very unlikely to occur in cells that express high levels of glycans. The TOS analysis also yielded better anti-localization scores for some of the individual membrane proteins, especially those that are heterogeneously distributed across cells (Figure 2H). This suggests that TOS analysis can highlight the inhibitory function of molecules that are sparsely expressed among cells, reaffirming that high expression of a single type of glycoprotein can create an infection-protective surface in a single cell and that such infection inhibition is not protein-specific. In contrast, for more uniformly distributed proteins such as the viral receptor ACE2, TOS analysis and Pearson correlation showed similar trends, although the two are mathematically different (Figure 2D, 2H). Because glycoprotein expression levels and virus-derived GFP levels were treated symmetrically in these statistical calculations, the same logic can be applied when considering the heterogeneity of infection levels among cells. Therefore, it is expected that TOS analysis can reasonably compare samples with different virus infection level distributions by focusing on cells with high infection levels in all samples.

      (17) Can you provide additional details about the method of thresholding to eliminate "background" localisations in STORM?

      Method section was corrected as follows: 

      (page 59)

      …Viral protein spots not close to cell membranes were eliminated by thresholding with nearby spot density for cell protein. Specifically, the entire image was pixelated with a 0.5µm square box and all viral protein signals within the box that had no membrane protein signals were removed. Also, viral protein spots only sparsely located were eliminated by thresholding with nearby spot density for viral protein. This thresholding process removed any detected viral protein spot that did not have more than 100 other viral protein spots within 1µm.

      (18) The article says "It was shown that the number of bound lectins correlated with the amount of glycans, not with number of proteins (Figure 1E)". Figure 1E correlates experimental PNA/mol with predicted glycosylation sites, not with the number of expressed proteins. Correct sentence with the right Figure reference.

      As you pointed out, the meaning of this sentence was not clear. We have amended it as follows to clarify our intention:

      (page 8)

      Since a wide range of glycoproteins inhibit viral infection, it is possible that all types of glycoproteins have an additive effect for this function. ……. In this cell line, this inverse correlation was most pronounced when quantifying N-acetylneuraminic acid (Neu5AC, recognized by lectins SSA and MAL) compared to the various types of glycans, while some other glycans also showed weak correlations (Supplementary Figure 2C). These results showed that the amount of virus infection in cell anticorrelated with the amount of total glycans on the cell surface. As amount of glycans is determined by the total population of glycocalyx, infection inhibitory effect can be additive by glycoprotein populations as we hypothesized.

      If the inhibitory effect is nonspecific and additive, the contribution of each protein is likely to be less significant. To confirm this, we also measured the correlation between the density of each glycoprotein and viral infection. CD44, which was shown to…….. Our results demonstrate that total glycan content is a superior indicator than individual glycoprotein expression for assessing infection inhibition effect generated by cell membrane glycocalyx. These results are consistent with our hypothesis regarding the additive nature of the nonspecific inhibitory effects of each glycoprotein.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Weaknesses: 

      (1) The authors claim that choroidal neovascular tuft phenotypes are similar in TgfbrR1 KO and TgfbrR2 KO mice. However, the phenotypes look more severe in the TgfbrR1 KO rather than TgfbrR2 KO mice. Can the authors show a quantitative comparison of the number of choroidal neovascular tufts per whole eye cross-section in both genotypes? 

      Thank you for asking about this.  Each VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retina exhibits multiple zones of choroidal neovascularization.  The examples in Figures 1 and Figure 1 – Figure supplements 1 and 2 are mostly from retinas with loss of TGFBR1, but we could have chosen similar examples from retinas with loss of TGFBR2.  The quantification in the original version of Figure 1- Figure supplement 1 panel C had a labeling error.  It actually showed the quantification choroidal neovascularization (CNV) in the sum of both VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, not only in VE-cad-CreER;TGFBR1 CKO/- retinas as originally labeled.  The point that it made is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now updated that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  We think it likely that a more extensive sampling would show little or no difference between these two genotypes – but the data is what it is. This is now described in the Results section. 

      We have also added a panel D to Figure 1- Figure supplement 1, which shows a retina flatmount analysis of CNV.  This is done by mounting the retina with the photoreceptor side up so that the outer retina can be optimally imaged. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors claim that there is increased vascular leakage in the TgfbR1 KO mice. However, it does not seem like Sulfo-NHS-biotin is leaking outside the vessels. Therefore, it cannot be increased vascular permeability. Can the authors provide a detailed quantification of the leakage phenotype? 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing. 

      Thank you for raising this point.  For the revised manuscript, we have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociate the tissue and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present after tissue homogenization.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusions as the original analysis: the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      As described in our response to query 2, we have conducted additional experiments to look at vascular leakage in control, VE-cad-CreER;TGFBR1 CKO/-, and NdpKO retinas.  We have also looked at Sulfo-NHS-biotin leakage in the VE-cadCreER;TGFBR1 CKO/- brain, and it is indistinguishable from WT controls.  Since Sulfo-NHS-biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) A previous study (Zarkada et al., 2021, Developmental Cell) showed that EC-deletion of Alk5 affects the D tip cells. The phenotypes of those mice look very similar to those shown for TgfbrR1 KO mice. Are D-tip cells lost in these mutants by snRNAseq? 

      Please note: Alk5 is another name for TGFBR1.  This is noted in the second sentence of paragraph 4 of the Introduction.  The reviewer is correct: there are a lot of similarities because these are exactly the same KO mice.  Also, Zarkada and we used the same VEcadCreER to recombine the CKO allele.  The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published in Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251.  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.  Finally, we have no reason to doubt the results of Zarkada et al.

      Reviewer #2 (Public review): 

      Summary:

      The authors meticulously characterized EC-specific Tgfbr1, Tgfbr2, or double knockout in the retina, demonstrating through convincing immunostaining data that loss of TGF-β signaling disrupts retinal angiogenesis and choroidal neovascularization. Compared to other genetic models (Fzd4 KO, Ndp KO, VEGF KO), the Tgfbr1/2 KO retina exhibits the most severe immune cell infiltration. The authors proposed that TGF-β signaling loss triggers vascular inflammation, attracting immune cells - a phenotype specific to CNS vasculature, as non-CNS organs remain unaffected. 

      Strengths: 

      The immunostaining results presented are clear and robust. The authors performed well-controlled analyses against relevant mouse models. snRNA-seq corroborates immune cell leakage in the retina and vascular inflammation in the brain. 

      Weaknesses: 

      The causal link between TGF-β loss, vascular inflammation, and immune infiltration remains unresolved. The authors' model posits that EC-specific TGF-β loss directly causes inflammation, which recruits immune cells. However, an alternative explanation is plausible: Tgfbr1/2 KO-induced developmental defects (e.g., leaky vessels) permit immune extravasation, subsequently triggering inflammation. The observations that vein-specific upregulation of ICAM1 staining and the lack of immune infiltration phenotypes in the non-CNS tissues support the alternative model. Late-stage induction of Tgfbr1/2 KO (avoiding developmental confounders) could clarify TGF-β's role in retinal angiogenesis versus anti-inflammation. 

      Thank you for raising this point.  Your comment prompted us to look at this question in greater depth with more experiments.  We have expanded Figure 2 to show and quantify a comparison between control (i.e. phenotypically WT), NdpKO, and TGFBR1 endothelial KO and we have expanded the associated part of the Results section (Figure 2C and D).  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in or around the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is minimally or not at all leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      In the revised manuscript, we have expanded the Discussion section to address the two alternative hypotheses raised by the reviewer.  Here are the relevant data in a nutshell: (1) vascular leakage into the parenchyma, as measured with sulfo-NHSbiotin, in TGFBR1 endothelial CKO retinas is far less than in NdpKO retinas, where nearly all ECs convert to a fenestration+ (PLVAP+) phenotype and there is leakage of sulfo-NHS-biotin, (2) ICAM1 in ECs in TGFBR1 endothelial CKO retinas increases several-fold more than in NdpKO or Frizzled4KO retinas, (3) TGFBR1 endothelial CKO retinas have more infiltrating immune cells than NdpKO or Frizzled4KO retinas, and (4) in TGFBR1 endothelial CKO retinas large numbers of immune cells are observed within and adjacent to blood vessels.  We think that the simplest explanation for these data is that loss of TGFbeta signaling in ECs causes an endothelial inflammatory state with enhanced immune cell extravasation.  That said, the case for this model is not water-tight, and there could be less direct mechanisms at play.  In particular, this model does not explain why the inflammatory phenotype is limited to CNS (and especially retinal) vasculature.

      Regarding the last sentence of the reviewer’s comment (“Late stage induction…”), we have tried activating CreER recombination at different ages and we observe a large reduction in the inflammatory phenotype when recombination is initiated after vascular development is complete.   This observation suggests that the vascular developmental/anatomic defect – and perhaps the resulting retinal hypoxia response – is required for the inflammatory phenotype.  In the revised manuscript we have expanded the Results and Discussion sections to describe this observation.

      Reviewer #1 (Recommendations for the authors): 

      Suggestions for experiments: 

      (1) The authors need to show a quantitative comparison of the number of choroidal neovascular tufts per whole eye crosssection in both genotypes (TgfbR1 and TgfbR2 KO mice). 

      Thank you for raising this point.  The quantification in the original version of Figure 1- Figure supplement 1 panel C was mis-labeled.  It quantifies choroidal neovascularization (CNV) in both VE-cad-CreER;TGFBR1 CKO/- and VE-cadCreER;TGFBR2 CKO/- retinas, not VE-cad-CreER;TGFBR1 CKO/- retinas only as originally labeled.  The point it makes is that CNV is seen with loss of TGF-beta signaling but not in control retinas or retinas with loss of Norrin signaling.  We have now corrected that plot by separating the data points for VE-cad-CreER;TGFBR1 CKO/- and VE-cad-CreER;TGFBR2 CKO/- retinas, so that they can be compared to each other.   The result shows ~2.5-fold more CNV in VE-cad-CreER;TGFBR2 CKO/- retinas compared to VE-cad-CreER;TGFBR1 CKO/-.  This is now described in the Results section. 

      (2) In the analysis of Sulfo-NHS-Biotin leakage in the retina to assess blood-retina barrier maturation. The authors should provide a detailed quantification of the leakage phenotype outside the vessels into the CNS parenchyma, both in the retina and brain, in TgfbR1 KO mice. 

      Thank you for raising this point.  There is no detectable Sulfo-NHS-biotin leakage into the brain parenchyma in VE-cadCreER;TGFBR1 CKO/- mice.  We have expanded Figure 2 to show and quantify the data for retinal vascular leakage (Figure 2C and D).  The data show that in VE-cad-CreER;TGFBR1 CKO/- mice there is accumulation of Sulfo-NHS-biotin in the vascular tufts but minimal accumulation elsewhere in the retinal vasculature and minimal leakage of Sulfo-NHS-biotin into the retinal parenchyma.

      (3) The immune cell phenotyping by snRNAseq is premature, as the number of cells is very small. The authors should sort for CD45+ cells and perform single-cell RNA sequencing to ascertain these preliminary data. 

      Thank you for raising this point.  We have performed additional snRNAseq analyses using the same tissue processing protocol as for our original snRNAseq data to increase the numbers of cells.  We have opted to homogenize the tissue and prepare nuclei (our original method) rather than dissociating the cells and FACS sorting for CD45+ cells because the nuclear isolation approach is unbiased – we assume that nuclei from all cell types are present.  By contrast, we cannot be certain that CD45 FACS will capture the full range of immune cells, since some cells may not express CD45, may express CD45 at low level, or may be tightly adherent to other cells, such as vascular endothelial cell.  Additionally, by following the original protocol, we can combine the original snRNAseq dataset of and the new snRNAseq dataset.  In the revised manuscript we present the snRNAseq data from the combination of the original and the more recent snRNAseq datasets (revised Figure 4; N=628 immune cell nuclei).  The new analysis comes to the same conclusion as in the original submission, namely that the immune cell infiltrate in the mutant retinas is composed of a wide variety of immune cells.  The Results section has been expanded to describe this new data and analysis.    

      (4) The analysis of BBB leakage phenotype in TgfbR1 KO mice needs to be more detailed and include tracers as well as serum IgG leakage. 

      Sulfo-NHS biotin leakage in the VE-cad-CreER;TGFBR1 CKO/- brain is minimal, and it is indistinguishable from WT controls.  Since Sulfo-NHS biotin is a low MW tracer (<1,000 kDa), this implies that loss of TGF-beta signaling does not increase non-specific diffusion of either low or high MW molecules.  Therefore, the elevated levels of IgG in the brain parenchyma in young VE-cad-CreER;TGFBR1 CKO/- mice (Figure 8A) likely represents specific transport of IgG across the BBB.  Such transport is known to occur via Fc receptors expressed on vascular endothelial cells, although it is normally greater in the brain-to-blood direction than in the blood-to-brain direction.  For example, see Lafrance-Vanasse et al (2025) Leveraging neonatal Fc receptor (FcRn) to enhance antibody transport across the blood brain barrier.  Nat Commun. 16:4143.  This is now described in greater detail in the Results section.

      (5) The authors should perform a more detailed RNAseq analysis of tip and stack (stalk) cells in TgfbrR1 KO mice to determine whether D tip cells are lost in these mutants by snRNAseq. 

      The proposed snRNAseq analysis would serve as an independent check on the diving (D) tip vs stalk cell analyses published by Zarkada et al, who analyzed the same VE-cad-CreER;TGFBR1 CKO/- mutant mice, although they refer to the TGFBR1 gene by its alternate name ALK5 [Zarkada et al (2021) Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell 56:2237-2251].  We have not gone in this direction because the question of tip vs. stalk cells and of subtypes of tip cells in WT vs. mutant retinas is beyond our focus on choroidal neovascularization and the role of immune cells and vascular inflammation.  The proposed snRNAseq analysis would also require a major effort since tip cells are rare and must be harvested from large numbers of early postnatal retinas followed by FACS enrichment for vascular endothelial cells.

      Suggestions for improving the manuscript:  

      (6) The statement that ECs acquire properties of immune cells (Page 2, Line 90) is incorrect. Endothelial cells may acquire characteristics of antigen presenting cells. 

      Thank you for that correction.  Based on the review from Amersfoort et al (2022) (Amersfoort J, Eelen G, Carmeliet P. (2022) Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol 22:576-588) and the articles cited in it, we have changed the sentence to “Although vascular endothelial cells (ECs) are not generally considered to be part of the immune system, in some locations and under some conditions they acquire properties characteristic of immune cells, including secretion of cytokines, surface display of co-stimulatory or co-inhibitory receptors, and antigen presentation in association with MHC class II proteins (Pober and Sessa, 2014; Amersfoort et al., 2022).”  

      (7) The statement in Page 3, Line 100-101 [In CNS ECs, quiescence is maintained in part by the actions of astrocyte-derived Sonic Hedgehog, with the result that few immune cells other than resident microglia are found within the CNS (Alvarez et al., 2011).] is incomplete. Wnt signaling also suppresses the expression of leukocyte adhesion molecules from endothelial cells and therefore helps with immune cell quiescence. 

      Thank you for raising that point.  We have expanded that sentence to include Wnt signaling in CNS endothelial cells, as described in the following reference: Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, Choi C, Walsh CM, Raine CS, Agalliu I, Agalliu D. (2017) Endothelial Wnt/beta-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci USA 114:E1168-E1177.

      (8) It may be beneficial for the reader to separate the results of the vascular phenotypes related to choroidal neovascularization compared to retinal vascular development. 

      Thank you for this suggestion.  The two topics are partly overlapping: choroidal neovascularization is described in Figure 1, and retinal development is described in Figures 1 and 2.  The challenge is that some of same images illustrate both phenotypes as in Figure 1, so the topics cannot be easily separated.

      (9) In addition to comparing the phenotypes in Tgfb signaling mutant mice with Wnt signaling and VEGF-A signaling mutants, the authors should compare and contrast their data with those found in Alk5 KO mice, as there are a lot of similarities. 

      The reviewer has alerted us to a nomenclature challenge which we will try to resolve in the introduction: Alk5 is just another name for TGFBR1.  The reviewer is correct: there are a lot of similarities between the present study and that of Zarkada et al (2021) because both use the same TGFBR1(=Alk5) CKO mice.

      Reviewer #2 (Recommendations for the authors): 

      Figure 2 

      For 2B, the authors should clarify whether the two regions shown in the Tgfbr1 KO retina (P14) represent central vs. peripheral areas, as phenotype severity varies. 

      For 2C, does the uneven biotin accumulation reflect developmental gradients (e.g., central-peripheral maturation timing)? 

      Thank you for raising these points.  Regarding Figure 2B, these images are all from the mid-peripheral retina, where the phenotype is moderately severe.  This is now noted in the figure legend.

      Regarding Figure 2C, the reviewer is correct that the pattern of Sulfo-NHS-biotin is uneven in VEcadCreER;Tgfbr1CKO/- retinas – it accumulates only in the tufts.  We have expanded Figure 2C to show a comparison between control (i.e.

      phenotypically WT), NdpKO, and TGFBR1 endothelial KO retinas, and we have expanded the associated part of the Results section.  In a nutshell, control retinas show little Sulfo-NHS-biotin accumulation in the vasculature or in the parenchyma; NdpKO retinas show Sulfo-NHS-biotin accumulation in the vasculature and in the parenchyma (i.e., the area between the vessels); and VEcadCreER;Tgfbr1CKO/- retinas show Sulfo-NHS-biotin accumulation in the vascular tufts with minimal accumulation in the non-tuft vasculature and minimal leakage into the parenchyma.   The conclusion is that the bulk of the retinal vasculature in TGFBR1 endothelial KO mice is not leaky – very different from the situation with loss of Norrin/Frizzled4 signaling.

      Figure 6 

      The claim that PECAM1+ rings on veins reflect EC-immune cell binding is uncertain, as PECAM1 is also known to be expressed by immune cells. The complete correlation of PECAM1 and CD45 staining signals suggests that a subset of immune cells upregulates PECAM1. The VEcadCreER;Tgfbr1 flox/-; SUN1:GFP reporter would be helpful to delineate ECimmune cell proximity. Super-resolution imaging with Z-stacks could also resolve spatial relationships (luminal vs. abluminal immune cell adhesion). 

      Thank you for this comment.  The reviewer is correct that, at the resolution of these images, we cannot determine whether the PECAM1 immunostaining signal is derived from ECs, from leukocytes, or from both.  This is now stated in the Results section.  The PECAM1-rich endothelial ring structure associated with leukocyte extravasation has been characterized in various publications, for example in (1) Carman CV, Springer TA. (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377-388 and (2) Mamdouh Z, Mikhailov A, Muller WA. (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206:2795-2808.  The ring structures visualized in Figure 6D by PECAM1 immunostaining conform to the ring structures described in these and other papers.  In showing these structures, our point is simply that they likely represent sites of leukocyte extravasation.  This is now clarified in the text.  We have also added some additional references on leukocyte extravasation and the ring structures.

      Figure 7 

      A time-course analysis of ICAM1 would strengthen the mechanistic model. Does ICAM1 upregulation precede immune infiltration (supporting inflammation as the primary defect)? Given that immune cells appear by P14 (per snRNA-seq), is ICAM1 elevated earlier? 

      This is an interesting idea, but based on what is known about leukocyte adhesion and extravasation we predict that there will not be a clean temporal separation between ICAM1 induction and leukocyte adhesion/infiltration.  That is, if the proinflammatory state causes an increase in the number of leukocytes, then as ICAM1 levels increase, leukocyte adhesion would also increase.  Similarly, if the presence of leukocytes increases the pro-inflammatory state, then as the number of leukocytes increases, the levels of ICAM1 would be predicted to increase.  Thus, we think that a time course analysis is unlikely to provide a definitive conclusion.

      Figure 8-SF1 

      In brain slices, a transient pan-IgG accumulation suggests a self-resolving defect in the BBB. However, this BBB impairment appears to be spatiotemporally distinct from ICAM1 upregulation. ICAM1 staining is restricted to the lesion site, aligning with immune cell-driven inflammation. 

      Thank you for raising these points.  The reviewer is correct that these observations don’t fit together in a clear way.  There does not appear to be a general increase in brain vascular permeability in VE-cad-CreER;TGFBR1 CKO/- mice, as shown by sulfo-NHS-biotin.  However, there is a large and transient increase in IgG in the brain parenchyma, suggestive of a general vascular alteration, and – as the reviewer correctly notes – it is not accompanied by a generalized increase in ICAM1 vascular immunostaining.  At this point, we don’t have any real insight into the mechanistic basis of the transient IgG increase.

      Thank you for handling this manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      Zhang et al. addressed the question of whether advantageous and disadvantageous inequality aversion can be vicariously learned and generalized. Using an adapted version of the ultimatum game (UG), in three phases, participants first gave their own preference (baseline phase), then interacted with a "teacher" to learn their preference (learning phase), and finally were tested again on their own (transfer phase). The key measure is whether participants exhibited similar choice preferences (i.e., rejection rate and fairness rating) influenced by the learning phase, by contrasting their transfer phase and baseline phase. Through a series of statistical modeling and computational modeling, the authors reported that both advantageous and disadvantageous inequality aversion can indeed be learned (Study 1), and even be generalised (Study 2).

      Strengths:

      This study is very interesting, it directly adapted the lab's previous work on the observational learning effect on disadvantageous inequality aversion, to test both advantageous and disadvantageous inequality aversion in the current study. Social transmission of action, emotion, and attitude have started to be looked at recently, hence this research is timely. The use of computational modeling is mostly appropriate and motivated. Study 2, which examined the vicarious inequality aversion in conditions where feedback was never provided, is interesting and important to strengthen the reported effects. Both studies have proper justifications to determine the sample size.

      Weaknesses:

      Despite the strengths, a few conceptual aspects and analytical decisions have to be explained, justified, or clarified.

      INTRODUCTION/CONCEPTUALIZATION

      (1) Two terms seem to be interchangeable, which should not, in this work: vicarious/observational learning vs preference learning. For vicarious learning, individuals observe others' actions (and optionally also the corresponding consequence resulting directly from their own actions), whereas, for preference learning, individuals predict, or act on behalf of, the others' actions, and then receive feedback if that prediction is correct or not. For the current work, it seems that the experiment is more about preference learning and prediction, and less so about vicarious learning. The intro and set are heavily around vicarious learning, and later the use of vicarious learning and preference learning is rather mixed in the text. I think either tone down the focus on vicarious learning, or discuss how they are different. Some of the references here may be helpful: (Charpentier et al., Neuron, 2020; Olsson et al., Nature Reviews Neuroscience, 2020; Zhang & Glascher, Science Advances, 2020)

      We are appreciative of the Reviewer for raising this question and providing the reference. In response to this comment we have elected to avoid, in most cases, use of the term ‘vicarious’ and instead focus the paper on learning of others’ preferences (without specific commitment to various/observational learning per se). These changes are reflected throughout all sections of the revised manuscript, and in the revised title. We believe this simplified terminology has improved the clarity of our contribution.

      EXPERIMENTAL DESIGN

      (2) For each offer type, the experiment "added a uniformly distributed noise in the range of (-10 ,10)". I wonder what this looks like? With only integers such as 25:75, or even with decimal points? More importantly, is it possible to have either 70:30 or 90:10 option, after adding the noise, to have generated an 80:20 split shown to the participants? If so, for the analyses later, when participants saw the 80:20 split, which condition did this trial belong to? 70:30 or 90:10? And is such noise added only to the learning phase, or also to the baseline/transfer phases? This requires some clarification.

      We thank the Reviewer for pointing this out. The uniformly distributed noise was added to all three phases to make the proposers’ behavior more realistic. This added noise was rounded to integer numbers, constrained from -9 to 9, which means in both 70:30 and 90:10 offer types, an 80:20 split could not occur. We have made this feature of our design clear in the Method section Line 524 ~ 528:

      “In all task phases, we added uniformly distributed noise to each trial’s offer (ranging from -9 to 9, inclusive, rounding to the nearest integer) such that the random amount added (or subtracted) from the Proposer’s share was subtracted (or added) to the Receiver’s share. We adopted this manipulation to make the proposers’ behavior appear more realistic. The orders of offers participants experienced were fully randomized within each experiment phase. ”

      (3) For the offer conditions (90:10, 70:30, 50:50, 30:70, 10:90) - are they randomized? If so, how is it done? Is it randomized within each participant, and/or also across participants (such that each participant experienced different trial sequences)? This is important, as the order especially for the learning phase can largely impact the preference learning of the participants.

      We agree with the Reviewer the order in which offers are experienced could be very important. The order of the conditions was randomized independently for each participant (i.e. each participant experienced different trial sequences). We made this point clear in the Methods part. Line 527 ~ 528:

      “The orders of offers participants experienced were fully randomized within each experiment phase.”

      STATISTICAL ANALYSIS & COMPUTATIONAL MODELING

      (4) In Study 1 DI offer types (90:10, 70:30), the rejection rate for DI-AI averse looks consistently higher than that for DI averse (ie, the blue line is above the yellow line). Is this significant? If so, how come? Since this is a between-subject design, I would not anticipate such a result (especially for the baseline). Also, for the LME results (eg, Table S3), only interactions were reported but not the main results.

      We thank the Reviewer for pointing out this feature of the results. Prompted by this comment, we compared the baseline rejection rates between two conditions for these two offer types, finding in Experiment 1 that rejection rates in the DI-AI-averse condition were significantly higher than in the DI-averse condition (DI-AI-averse vs. DI-averse; Offer 90:10, β = 0.13, p < 0.001, Offer 70:30, β = 0.09, p < 0.034). We agree with the Reviewer that there should, in principle, be no difference between the experiences of participants in these two conditions is identical in the Baseline phase. However, we did not observe these difference in baseline preferences in Experiment 2 (DI-AI-averse vs. DI-averse; Offer 90:10, β = 0.07, p < 0.100, Offer 70:30, β = 0.05, p < 0.193). On the basis of the inconsistency of this effect across studies we believe this is a spurious difference in preferences stemming from chance.

      Regarding the LME results, the reason why only interaction terms are reported is due to the specification of the model and the rationale for testing.

      Taking the model reported in Table S3 as an example—a logistic model which examines Baseline phase rejection rates as a function of offer level and condition—the between-subject conditions (DI-averse and DI-AI-averse) are represented by dummy-coded variables. Similarly, offer types were also dummy-coded, such that each of the five columns (90:10, 70:30, 50:50, 30:70, and 10:90) correspond corresponded to a particular offer type. This model specification yields ten interaction terms (i.e., fixed effects) of interest—for example, the “DI-averse × Offer 90:10” indicates baseline rejection rates for 90:10 offers in DI-averse condition. Thus, to compare rejection rates across specific offer types, we estimate and report linear contrasts between these resultant terms. We have clarified the nature of these reported tests in our revised Results—for example, line189-190: “linear contrasts; e.g. 90:10 vs 10:90, all Ps<0.001, see Table S3 for logistic regression coefficients for rejection rates).

      Also in response to this comment that and a recommendation from Reviewer 2 (see below), we have revised our supplementary materials to make each model specification clearer as SI line 25:

      RejectionRate ~ 0 + (Disl + Advl):(Offer10 + Offer30 + Offer50 + Offer70 + Offer90) + (1|Subject)”

      (5) I do not particularly find this analysis appealing: "we examined whether participants' changes in rejection rates between Transfer and Baseline, could be explained by the degree to which they vicariously learned, defined as the change in punishment rates between the first and last 5 trials of the Learning phase." Naturally, the participants' behavior in the first 5 trials in the learning phase will be similar to those in the baseline; and their behavior in the last 5 trials in the learning phase would echo those at the transfer phase. I think it would be stronger to link the preference learning results to the change between the baseline and transfer phase, eg, by looking at the difference between alpha (beta) at the end of the learning phase and the initial alpha (beta).

      Thanks for pointing this out. Also, considering the comments from Reviewer 2 concerning the interpretation of this analysis, we have elected to remove this result from our revision.

      (6) I wonder if data from the baseline and transfer phases can also be modeled, using a simple Fehr-Schimdt model. This way, the change in alpha/beta can also be examined between the baseline and transfer phase.

      We agree with the Reviewer that a simplified F-S model could be used, in principle, to characterize Baseline and Transfer phase behavior, but it is our view that the rejection rates provide readers with the clearest (and simplest) picture of how participants are responding to inequity. Put another way, we believe that the added complexity of using (and explaining) a new model to characterize simple, steady-state choice behavior (within these phases) would not be justified or add appreciable insights about participants’ behavior.

      (7) I quite liked Study 2 which tests the generalization effect, and I expected to see an adapted computational modeling to directly reflect this idea. Indeed, the authors wrote, "[...] given that this model [...] assumes the sort of generalization of preferences between offer types [...]". But where exactly did the preference learning model assume the generalization? In the methods, the modeling seems to be only about Study 1; did the authors advise their model to accommodate Study 2? The authors also ran simulation for the learning phase in Study 2 (Figure 6), and how did the preference update (if at all) for offers (90:10 and 10:90) where feedback was not given? Extending/Unpacking the computational modeling results for Study 2 will be very helpful for the paper.

      We are appreciative of the Reviewer’s positive impression of Experiment 2. Upon reflection, we realize that our original submission was not clear about the modeling done in Experiment 2, and we should clarify here that we did also fit the Preference Inference model to this dataset. As in Experiment 1, this model assumes that the participants have a representation of the teacher’s preference as a Fehr-Schmidt form utility function and infer the Teacher’s Envy and Guilt parameters through learning. The model indicates that, on the basis of experience with the Teacher’s preferences on moderately unfair offers (i.e., offer 70:30 and offer 30:70), participants can successfully infer these guess of these two parameters, and in turn, compute Fehr-Schmidt utility to guide their decisions in the extreme unfair offers (i.e., offer 90:10 and offer 10:90).

      In response to this comment, we have made this clearer in our Results (Line 377-382):

      “Finally, following Experiment 1, we fit a series of computational models of Learning phase choice behavior, comparing the goodness-of-fit of the four best-fitting models from Experiment 1 (see Methods). As before, we found that the Preference Inference model provided the best fit of participants’ Learning Phase behavior (Figure S1a, Table S12). Given that this model is able to infer the Teacher’s underlying inequity-averse preferences (rather than learns offer-specific rejection preferences), it is unsurprising that this model best describes the generalization behavior observed in Experiment 2.”

      and in our revised Methods (Line 551-553)

      “We considered 6 computational models of Learning Phase choice behavior, which we fit to individual participants’ observed sequences of choices, in both Experiments 1 and 2, via Maximum Likelihood Estimation”

      Reviewer #2 (Public review):

      Summary:

      This study investigates whether individuals can learn to adopt egalitarian norms that incur a personal monetary cost, such as rejecting offers that benefit them more than the giver (advantageous inequitable offers). While these behaviors are uncommon, two experiments demonstrate that individuals can learn to reject such offers through vicarious learning - by observing and acting in line with a "teacher" who follows these norms. The authors use computational modelling to argue that learners adopt these norms through a sophisticated process, inferring the latent structure of the teacher's preferences, akin to theory of mind.

      Strengths:

      This paper is well-written and tackles a critical topic relevant to social norms, morality, and justice. The findings, which show that individuals can adopt just and fair norms even at a personal cost, are promising. The study is well-situated in the literature, with clever experimental design and a computational approach that may offer insights into latent cognitive processes. Findings have potential implications for policymakers.

      Weaknesses:

      Note: in the text below, the "teacher" will refer to the agent from which a participant presumably receives feedback during the learning phase.

      (1) Focus on Disadvantageous Inequity (DI): A significant portion of the paper focuses on responses to Disadvantageous Inequitable (DI) offers, which is confusing given the study's primary aim is to examine learning in response to Advantageous Inequitable (AI) offers. The inclusion of DI offers is not well-justified and distracts from the main focus. Furthermore, the experimental design seems, in principle, inadequate to test for the learning effects of DI offers. Because both teaching regimes considered were identical for DI offers the paradigm lacks a control condition to test for learning effects related to these offers. I can't see how an increase in rejection of DI offers (e.g., between baseline and generalization) can be interpreted as speaking to learning. There are various other potential reasons for an increase in rejection of DI offers even if individuals learn nothing from learning (e.g. if envy builds up during the experiment as one encounters more instances of disadvantageous fairness).

      We are appreciative of the Reviewer’s insight here and for the opportunity to clarify our experimental logic. We included DI offers in order to 1) expose participants to the full spectrum of offer types, and avoid focusing participants exclusively upon AI offers, which might result in a demand characteristic and 2) to afford exploration of how learning dynamics might differ in DI context s—which was, to some extent, examined in our previous study (FeldmanHall, Otto, & Phelps, 2018)—versus AI contexts. Furthermore, as this work builds critically on our previous study, we reasoned that replicating these original findings (in the DI context) would be important for demonstrating the generality of the learning effects in the DI context across experimental settings. We now remark on this point in our revised Introduction Line 129 ~132:

      “In addition, to mechanistically probe how punitive preferences are acquired in Adv-I and Dis-I contexts—in turn, assessing the replicability of our earlier study investigating punitive preference acquisition in the Dis context—we also characterize trial-by-trial acquisition of punitive behavior with computational models of choice.”

      (2) Statistical Analysis: The analysis of the learning effects of AI offers is not fully convincing. The authors analyse changes in rejection rates within each learning condition rather than directly comparing the two. Finding a significant effect in one condition but not the other does not demonstrate that the learning regime is driving the effect. A direct comparison between conditions is necessary for establishing that there is a causal role for the learning regime.

      We agree with the Reviewer and upon reflection, believe that direct comparisons between conditions would be helpful to support the claim that the different learning conditions are responsible for the observed learning effects. In brief, these specific tests buttress the idea that exposure to AI-averse preferences result in increases in AI punishment rates in the Transfer phase (over and above the rates observed for participants who were only exposed to DI-averse preferences).

      Accordingly, our revision now reports statistics concerning the differences between conditions for AI offers in Experiment 1 (Line 198~ 207):

      “Importantly, when comparing these changes between the two learning conditions, we observed significant differences in rejection rates for Adv-I offers: compared to exposure to a Teacher who rejected only Dis-I offers, participants exposed to a Teacher who rejected both Dis-I and Adv-I offers were more likely to reject Adv-I offers and rated these offers more unfair. This difference between conditions was evident in both 30:70 offers (Rejection rates: β(SE) = 0.10(0.04), p = 0.013; Fairness ratings: β(SE) = -0.86(0.17), p < 0.001) and 10:90 offers (Rejection rates: β(SE) = 0.15(0.04), p < 0.001, Fairness ratings: β(SE) = -1.04(0.17), p < 0.001). As a control, we also compared rejection rates and fairness rating changes between conditions in Dis-I offers (90:10 and 30:70) and Fair offers (i.e., 50:50) but observed no significant difference (all ps > 0.217), suggesting that observing an Adv-I-averse Teacher’s preferences did not influence participants’ behavior in response to Dis-I offers.”

      Line 222 ~ 230:

      “A mixed-effects logistic regression revealed a significant larger (positive) effect of trial number on rejection rates of Adv-I offers for the Adv-Dis-I-Averse condition compared to the Dis-I-Averse condition. This relative rejection rate increase was evident both in 30:70 offers (Table S7; β(SE) = -0.77(0.24), p < 0.001) and in 10:90 offers (β(SE) = -1.10(0.33), p < 0.001). In contrast, comparing Dis-I and Fairness offers when the Teacher showed the same tendency to reject, we found no significant difference between the two conditions (90:10 splits: β(SE)=-0.48(0.21),p=0.593;70:30 splits: β(SE)=-0.01(0.14),p=0.150; 50:50 splits: β(SE)=-0.00(0.21),p=0.086). In other words, participants by and large appeared to adjust their rejection choices in accordance with the Teacher’s feedback in an incremental fashion.”

      And in Experiment 2 Line 333 ~ 345:

      “Similar to what we observed in Experiment 1 (Figure 4a), Compared to the participants in the Dis-I-Averse Condition, participants in the Adv-I-Averse Condition increased their rates of rejection of extreme Adv-I offerers (i.e., 10:90) in the Transfer Phase, relative to the Baseline phase (β(SE) = -0.12(0.04), p < 0.004; Table S9), suggesting that participants’ learned (and adopted) Adv-I-averse preferences, generalized from one specific offer type (30:70) to an offer types for which they received no Teacher feedback (10:90). Examining extreme Dis-I offers where the Teacher exhibited identical preferences across the two learning conditions, we found no difference in the Changes of Rejection Rates from Baseline to Transfer phase between conditions (β(SE) = -0.05(0.04), p < 0.259). Mirroring the observed rejection rates (Figure 4b), relative to the Dis-I-Averse Condition, participants’ fairness ratings for extreme Adv-I offers increased more from the Baseline to Transfer phase in the Adv-Dis-I-Averse Condition than in the Dis-I-Averse condition (β(SE) = -0.97(0.18), p < 0.001), but, importantly, changes in fairness ratings for extreme Dis-I offers did not differ significantly between learning conditions (β(SE) = -0.06(0.18), p < 0.723)”

      Line 361 ~ 368:

      “Examining the time course of rejection rates in Adv-I-contexts during the Learning phase (Figure 5) revealed that participants learned over time to punish mildly unfair 30:70 offers, and these punishment preferences generalized to more extreme offers (10:90). Specifically, compared to the Dis-I-Averse Condition, in the Adv-Dis-I-Averse condition we observed a significant larger trend of increase in rejections rates for 10:90 (Adv-I) offers (Figure 5, β(SE) = -0.81(0.26), p < 0.002 mixed-effects logistic regression, see Table S10). Again, when comparing the rejection rate increase in the extremely Dis-I offers (90:10), we didn’t find significant difference between conditions (β(SE) = -0.25(0.19), p < 0.707).”

      (3) Correlation Between Learning and Contagion Effects:

      The authors argue that correlations between learning effects (changes in rejection rates during the learning phase) and contagion effects (changes between the generalization and baseline phases) support the idea that individuals who are better aligning their preferences with the teacher also give more consideration to the teacher's preferences later during generalization phase. This interpretation is not convincing. Such correlations could emerge even in the absence of learning, driven by temporal trends like increasing guilt or envy (or even by slow temporal fluctuations in these processes) on behalf of self or others. The reason is that the baseline phase is temporally closer to the beginning of the learning phase whereas the generalization phase is temporally closer to the end of the learning phase. Additionally, the interpretation of these effects seems flawed, as changes in rejection rates do not necessarily indicate closer alignment with the teacher's preferences. For example, if the teacher rejects an offer 75% of the time then a positive 5% learning effect may imply better matching the teacher if it reflects an increase in rejection rate from 65% to 70%, but it implies divergence from the teacher if it reflects an increase from 85% to 90%. For similar reasons, it is not clear that the contagion effects reflect how much a teacher's preferences are taken into account during generalization.

      This comment is very similar to a previous comment made by Reviewer 1, who also called into question the interpretability of these correlations. In response to both of these comments we have elected to remove these analyses from our revision.

      (4) Modeling Efforts: The modelling approach is underdeveloped. The identification of the "best model" lacks transparency, as no model-recovery results are provided, and fits for the losing models are not shown, leaving readers in the dark about where these models fail. Moreover, the reinforcement learning (RL) models used are overly simplistic, treating actions as independent when they are likely inversely related (for example, the feedback that the teacher would have rejected an offer provides feedback that rejection is "correct" but also that acceptance is "an error", and the later is not incorporated into the modelling). It is unclear if and to what extent this limits current RL formulations. There are also potentially important missing details about the models. Can the authors justify/explain the reasoning behind including these variants they consider? What are the initial Q-values? If these are not free parameters what are their values?

      We are appreciative of the Reviewer for identifying these potentially unaddressed questions.

      The RL models we consider in the present study are naïve models which, in our previous study (FeldmanHall, Otto, & Phelps, 2018), we found to capture important aspects of learning. While simplistic, we believed these models serve as a reasonable baseline for evaluating more complex models, such as the Preference Inference model. We have made this point more explicit in our revised Introduction, Line 129 ~ 132:

      “In addition, to mechanistically probe how punitive preferences may be acquired in Adv-I and Dis-I contexts—in turn, assessing the replicability of our earlier study investigating punitive preference acquisition in the Dis-I context—we also characterize trial-by-trial acquisition of punitive behavior with computational models of choice.”

      Again, following from our previous modeling of observational learning (FeldmanHall et al., 2018), we believe that the feedback the Teacher provides here is ideally suited to the RL formalism. In particular, when the teacher indicates that the participant’s choice is what they would have preferred, the model receives a reward of ‘1’ (e.g., the participant rejects and the Teacher indicates they would preferred rejection, resulting in a positive prediction error) otherwise, the model receives a reward of ‘0’ (e.g., the participant accepts and the Teacher indicates they would preferred rejection, resulting in a negative prediction error), indicating that the participant did not choose in accordance with the Teacher’s preferences. Through an error driven learning process, these models provide a naïve way of learning to act in accordance with the Teacher’s preferences.

      Regarding the requested model details: When treating the initial values as free parameters (model 5), we set Q(reject, offertype) as free values in [0,1] and Q(accept,offertype) as 0.5. This setting can capture participants' initial tendency to reject or accept offers from this offer type. When the initial values are fixed, for all offer types we set Q(reject, offertype) = Q(accept,offertype) = 0.5. In practice, when the initial values are fixed, setting them to 0.5 or 0 doesn’t make much difference. We have clarified these points in our revised Methods, Line 275 ~ 576:

      “We kept the initial values fixed in this model, that is Q<sub>0</sub>(reject,offertype) =0.5, (offertype ∈ 90:10, 70:30, 50:50, 30:70, 10:90)”

      And Line 582 ~ 584:

      “Formally, this model treats Q<sub>0</sub>(reject,offertype) =0.5, (offertype ∈ 90:10, 70:30, 50:50, 30:70, 10:90) as free parameters with values between 0 and 1.”

      (5) Conceptual Leap in Modeling Interpretation: The distinction between simple RL models and preference-inference models seems to hinge on the ability to generalize learning from one offer to another. Whereas in the RL models learning occurs independently for each offer (hence to cross-offer generalization), preference inference allows for generalization between different offers. However, the paper does not explore RL models that allow generalization based on the similarity of features of the offers (e.g., payment for the receiver, payment for the offer-giver, who benefits more). Such models are more parsimonious and could explain the results without invoking a theory of mind or any modelling of the teacher. In such model versions, a learner learns a functional form that allows to predict the teacher's feedback based on said offer features (e.g., linear or quadratic form). Because feedback for an offer modulates the parameters of this function (feature weights) generalization occurs without necessarily evoking any sophisticated model of the other person. This leaves open the possibility that RL models could perform just as well or even show superiority over the preference learning model, casting doubt on the authors' conclusions. Of note: even the behaviourists knew that as Little Albert was taught to fear rats, this fear generalized to rabbits. This could occur simply because rabbits are somewhat similar to rats. But this doesn't mean little Alfred had a sophisticated model of animals he used to infer how they behave.

      We are appreciative of the Reviewer for their suggestion of an alternative explanation for the observed generalization effects. Our understanding of the suggestion, put simply, put simply, is that an RL model could capture the observed generalization effects if the model were to learn and update a functional form of the Teacher’s rejection preferences using an RL-like algorithm. This idea is similar, conceptually to our account of preference learning whereby the learner has a representation of the teacher’s preferences. In our experiment the offer is in the range of [0-100], the crux of this idea is why the participants should take the functional form (either v-shaped or quadratic) with the minimum at 50. This is important because, at the beginning of the learning phase, the rejection rates are already v-shaped with 50 as its minimum. The participants do not need to adjust the minimum of this functional form. Thus, if we assume that the participants represent the teacher’s rejection rate as a v-shape function with a minimum at [50,50], then this very likely implies that the participants have a representation that the teacher has a preference for fairness. Above all, we agree that with suitable setup of the functional form, one could implement an RL model to capture the generalization effects, without presupposing an internal “model” of the teacher’s preferences.

      However, there is another way of modeling the generalization effect by truly “model-free” similarity-based Reinforcement learning. In this approach, we do not assume any particular functional form of the teacher’s preferences, but rather, assumes that experience acquired in one offer type can be generalized to offers that are close (i.e., similar) to the original offer. Accordingly, we implement this idea using a simple RL model in which the action values for each offer type is updated by a learning rate that is scaled by the distance between that offer and the experienced offer (i.e., the offer that generated the prediction error). This learning rate is governed by a Gaussian distribution, similar to the case in the Gaussian process regression (cf. Chulz, Speekenbrink, & Krause, 2018). The initial value of the ‘Reject’ action, for each offer , is set to a free parameter between 0 and 1, and the initial value for the 'Accept’ action was set to 0.5. The results show that even though this model exhibits the trend of increasing rejection rates observed in the AI-DI punish condition, the initial preferences (i.e., starting point of learning) diverges markedly from the Learning phase behavior we observed in Experiment 1:

      Author response image 1.

      This demonstrated that the participant at least maintains a representation of the teacher’s preference at the beginning. That is, they have prior knowledge about the shape of this preference. We incorporated this property into the model, that is, we considered a new model that assumes v-shaped starting values for rejection with two parameters, alpha and beta, governing the slope of this v-shaped function (this starting value actually mimics the shape of the preference functions of the Fehr-Schmidt model). We found that this new model (which we term the “Model RL Sim Vstart”) provided a satisfactory qualitative fit of the Transfer phase learning curves in Experiment 1 (see below).

      Author response image 2.

      However, we didn’t adopt this model as the best model for the following reasons. First, this model yielded a larger AIC value (indicating worse quantitative fit) compared to our preference Inference model in both Experiments 1 and 2, likely owing to its increased complexity (5 free parameters versus 4 in the Preference Inference model). Accordingly, we believe that inclusion of this model in our revised submission would be more distracting than helpful on account of the added complexity of explaining and justifying these assumptions, and of course its comparatively poor goodness of fit (relative to the preference inference model).

      (6) Limitations of the Preference-Inference Model: The preference-inference model struggles to capture key aspects of the data, such as the increase in rejection rates for 70:30 DI offers during the learning phase (e.g. Figure 3A, AI+DI blue group). This is puzzling.

      Thinking about this I realized the model makes quite strong unintuitive predictions that are not examined. For example, if a subject begins the learning phase rejecting the 70:30 offer more than 50% of the time (meaning the starting guilt parameter is higher than 1.5), then overleaning the tendency to reject will decrease to below 50% (the guilt parameter will be pulled down below 1.5). This is despite the fact the teacher rejects 75% of the offers. In other words, as learning continues learners will diverge from the teacher. On the other hand, if a participant begins learning to tend to accept this offer (guilt < 1.5) then during learning they can increase their rejection rate but never above 50%. Thus one can never fully converge on the teacher. I think this relates to the model's failure in accounting for the pattern mentioned above. I wonder if individuals actually abide by these strict predictions. In any case, these issues raise questions about the validity of the model as a representation of how individuals learn to align with a teacher's preferences (given that the model doesn't really allow for such an alignment).

      In response to this comment we explain our efforts to build a new model that might be able conceptually resolves the issue identified by the Reviewer.

      The key intuition guiding the Preference inference model is a Bayesian account of learning which we aimed to further simplify. In this setting, a Bayesian learner maintains a representation of the teacher’s inequity aversion parameters and updates it according to the teacher’s (observed) behavior. Intuitively, the posterior distribution shifts to the likelihood of the teacher’s action. On this view, when the teacher rejects, for instance, an AI offer, the learner should assign a higher probability to larger values of the Guilt parameter, and in turn the learner should change their posterior estimate to better capture the teacher’s preferences.

      In the current study, we simplified this idea, implementing this sort of learning using incremental “delta rule” updating (e.g. Equation 8 of the main text). Then the key question is to define the “teaching signal”. Assuming that the teacher rejects an offer 70:30, based on Bayesian reasoning, the teacher’s envy parameter (α) is more likely to exceed 1.5 (computed as 30/(50-30), per equation 7) than to be smaller than 1.5. Thus, 1.5, which is then used in equation 8 to update α, can be thought of as a teaching signal. We simply assumed that if the initial estimate is already greater than 1.5, which means the prior is consistent with the likelihood, no updating would occur. This assumption raises the question of how to set the learning rate range. In principle, an envy parameter that is larger than 1.5 should be the target of learning (i.e., the teaching signal), and thus our model definition allows the learning rate to be greater than 1, incorporating this possibility.

      Our simplified preference inference model has already successfully captured some key aspects of the participants’ learning behavior. However, it may fail in the following case: assume that the participant has an initial estimate of 1.51 for the envy parameter (β). Let’s say this corresponds to a rejection rate of 60%. Thus, no matter how many times the teacher rejects the offer 70:30, the participant’s estimate of the envy parameter remains the same, but observing only one offer acceptance would decrease this estimate, and in turn, would decrease the model’s predicted rejection rate. We believe this is the anomalous behavior—in 70:30 offers—identified by the Reviewer which the model does not appear able to recreate participants’ in these offers.

      This issue actually touches the core of our model specification, that is, the choosing of the teaching signal. As we chose 1.5 as the teaching signal—i.e. lower bound on whenever the teacher rejects or accepts an offer of 70:30, a very small deviation of 1.5 would fail one part of updating. One way to mitigate this problem would be to choose a lower bound for α greater than 1.5, such that when the Teacher rejects a 70:30 offer, we assign a number greater than 1.5 (by ‘hard-coding’ this into the model via modification of equation 7). One sensible candidate value could be the middle point between 1.5 and 10 (the maximum value of α per our model definition). Intuitively, the model of this setting could still pull up the value of α to 1.51 when the teacher rejects 70:30, thus alleviating (but not completely eliminating) the anomaly.

      We fitted this modified Preference Inference model to the data from Experiment 1 (see Author response image 3 below) and found that even though this model has a smaller AIC (and thus better quantitative fit than the original Preference Inference model), it still doesn’t fully capture the participants’ behavior for 70:30 offers.

      Author response image 3.

      Accordingly, rather than revising our model to include an unprincipled ‘kludge’ to account for this minor anomaly in the model behavior, we have opted to report our original model in our revision as we still believe it parsimoniously captures our intuitions about preference learning and provides a better fit to the observed behavior than the other RL models considered in the present study.

      Reviewer #1 (Recommendations for the authors):

      (1) I do not particularly prefer the acronyms AI and DI for disadvantageous inequity and advantageous inequity. Although they have been used in the literature, not every single paper uses them. More importantly, AI these days has such a strong meaning of artificial intelligence, so when I was reading this, I'd need to very actively inhibit this interpretation. I believe for the readability for a wider readership of eLife, I would advise not to use AI/DI here, but rather use the full terms.

      We thank the Reviewer for this suggestion. As the full spelling of the two terms are somewhat lengthy, and appear frequently in the figures, we have elected to change the abbreviations for disadvantageous inequity and advantageous inequity to Dis-I and Adv-I, respectively in the main text and the supplementary information. We still use AI/DI in the response letter to make the terminology consistent.

      (2) Do "punishment rate" and "rejection rate" mean the same? If so, it would be helpful to stick with one single term, eg, rejection rate.

      We thank the Reviewer for this suggestion. As these terms have the same meaning, we have opted to use the term “rejection rate” throughout the main text.

      (3) For the linear mixed effect models, were other random effect structures also considered (eg, random slops of experimental conditions)? It might be worth considering a few model specifications and selecting the best one to explain the data.

      Thanks for this comment. Following established best practices (Barr, Levy, Scheepers, & Tily, 2013) we have elected to use a maximal random effects structure, whereby all possible predictor variables in the fixed effects structure also appear in the random effects structure.

      (4) For equation (4), the softmax temperature is denoted as tau, but later in the text, it is called gamma. Please make it consistent.

      We are appreciative of the Reviewer’s attention to detail. We have corrected this error.

      Reviewer #2 (Recommendations for the authors):

      (1) Several Tables in SI are unclear. I wasn't clear if these report raw probabilities of coefficients of mixed models. For any mixed models, it would help to give the model specification (e.g., Walkins form) and explain how variables were coded.

      We are appreciative of the Reviewer’s attention to detail. We have clarified, in the captions accompanying our supplemental regression tables, that these coefficients represent log-odds. Regretfully we are unaware of the “Walkins form” the Reviewer references (even after extensive searching of the scientific literature). However, in our new revision we do include lme4 model syntax in our supplemental information which we believe will be helpful for readers seeking replicate our model specification.

      (2) In one of the models it was said that the guilt and envy parameters were bounded between 0-1 but this doesn't make sense and I think values outside this range were later reported.

      We are again appreciative of the Reviewer’s attention to detail. This was an error we have corrected— the actual range is [0,10].

      (3) It is unclear if the model parameters are recoverable.

      In response to this comment our revision now reports a basic parameter recovery analysis for the winning Preference Inference model. This is reported in our revised Methods:

      “Finally, to verify if the free parameters of the winning model (Preference Inference) are recoverable, we simulated 200 artificial subjects, based on the Learning Phase of Experiment 1, with free parameters randomly chosen (uniformly) from their defined ranges. We then employed the same model-fitting procedure as described above to estimate these parameter value, observing that parameters. We found that all parameters of the model can be recovered (see Figure S2).”

      And scatter plots depicting these simulated (versus recovered) parameters are given in Figure S2 of our revised Supplementary Information:

      (4) I was confused about what Figure S2 shows. The text says this is about correlating contagious effects for different offers but the captions speak about learning effects. This is an important aspect which is unclear.

      We have removed this figure in response to both Reviewers’ comments about the limited insights that can be drawn on the basis of these correlations.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Turner et al. present an original approach to investigate the role of Type-1 nNOS interneurons in driving neuronal network activity and in controlling vascular network dynamics in awake head-fixed mice. Selective activation or suppression of Type-1 nNOS interneurons has previously been achieved using either chemogenetic, optogenetic, or local pharmacology. Here, the authors took advantage of the fact that Type-1 nNOS interneurons are the only cortical cells that express the tachykinin receptor 1 to ablate them with a local injection of saporin conjugated to substance P (SP-SAP). SP-SAP causes cell death in 90 % of type1 nNOS interneurons without affecting microglia, astrocytes, and neurons. The authors report that the ablation has no major effects on sleep or behavior. Refining the analysis by scoring neural and hemodynamic signals with electrode recordings, calcium signal imaging, and wide-field optical imaging, the authors observe that Type-1 nNOS interneuron ablation does not change the various phases of the sleep/wake cycle. However, it does reduce low-frequency neural activity, irrespective of the classification of arousal state. Analyzing neurovascular coupling using multiple approaches, they report small changes in resting-state neural-hemodynamic correlations across arousal states, primarily mediated by changes in neural activity. Finally, they show that nNOS type 1 interneurons play a role in controlling interhemispheric coherence and vasomotion.

      In conclusion, these results are interesting, use state-of-the-art methods, and are well supported by the data and their analysis. I have only a few comments on the stimulus-evoked haemodynamic responses, and these can be easily addressed.

      We thank the reviewer for their positive comments on our work.

      Reviewer #2 (Public review):

      Summary:

      This important study by Turner et al. examines the functional role of a sparse but unique population of neurons in the cortex that express Nitric oxide synthase (Nos1). To do this, they pharmacologically ablate these neurons in the focal region of whisker-related primary somatosensory (S1) cortex using a saponin-substance P conjugate. Using widefield and 2photon microscopy, as well as field recordings, they examine the impact of this cell-specific lesion on blood flow dynamics and neuronal population activity. Locally within the S1 cortex, they find changes in neural activity paFerns, decreased delta band power, and reduced sensory-evoked changes in blood flow (specifically eliminating the sustained blood flow change amer stimulation). Surprisingly, given the tiny fraction of cortical neurons removed by the lesion, they also find far-reaching effects on neural activity paFerns and blood volume oscillations between the cerebral hemispheres.

      Strengths:

      This was a technically challenging study and the experiments were executed in an expert manner. The manuscript was well wriFen and I appreciated the cartoon summary diagrams included in each figure. The analysis was rigorous and appropriate. Their discovery that Nos1 neurons can have far-reaching effects on blood flow dynamics and neural activity is quite novel and surprising (to me at least) and should seed many follow-up, mechanistic experiments to explain this phenomenon. The conclusions were justified by the convincing data presented.

      Weaknesses:

      I did not find any major flaws in the study. I have noted some potential issues with the authors' characterization of the lesion and its extent. The authors may want to re-analyse some of their data to further strengthen their conclusions. Lastly, some methodological information was missing, which should be addressed.

      We thank the reviewer for their enthusiasm for our work.

      Reviewer #3 (Public review):

      The role of type-I nNOS neurons is not fully understood. The data presented in this paper addresses this gap through optical and electrophysiological recordings in adult mice (awake and asleep).

      This manuscript reports on a study on type-I nNOS neurons in the somatosensory cortex of adult mice, from 3 to 9 months of age. Most data were acquired using a combination of IOS and electrophysiological recordings in awake and asleep mice. Pharmacological ablation of the type-I nNOS populations of cells led to decreased coherence in gamma band coupling between lem and right hemispheres; decreased ultra-low frequency coupling between blood volume in each hemisphere; decreased (superficial) vascular responses to sustained sensory stimulus and abolishment of the post-stimulus CBV undershoot. While the findings shed new light on the role of type-I nNOS neurons, the etiology of the discrepancies between current observations and literature observations is not clear and many potential explanations are put forth in the discussion.

      We thank the reviewer for their comments.

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 3, Type-1 nNOS interneuron ablation has complex effects on neural and vascular responses to brief (.1s) and prolonged (5s) whisker stimulation. During 0.1 s stimulation, ablation of type 1 nNOS cells does not affect the early HbT response but only reduces the undershoot. What is the pan-neuronal calcium response? Is the peak enhanced, as might be expected from the removal of inhibition? The authors need to show the GCaMP7 trace obtained during this short stimulation.

      Unfortunately, we did not perform brief stimulation experiments in GCaMP-expressing mice. As we did not see a clear difference in the amplitude of the stimulus-evoked response with our initial electrophysiology recordings (Fig. 3a), we suspected that an effect might be visible with longer duration stimuli and thus pivoted to a pulsed stimulation over the course of 5 seconds for the remaining cohorts. It would have been beneficial to interweave short-stimulus trials for a direct comparison between the complimentary experiments, but we did not do this.

      During 5s stimulation, both the early and delayed calcium/vascular responses are reduced. Could the authors elaborate on this? Does this mean that increasing the duration of stimulation triggers one or more additional phenomena that are sensitive to the ablation of type 1 nNOS cells and mask what is triggered by the short stimulation? Are astrocytes involved? How do they interpret the early decrease in neuronal calcium?

      As our findings show that ablation reduces the calcium/vascular response more prominently during prolonged stimulation, we do suspect that this is due to additional NO-dependent mechanisms or downstream responses. NO is modulator of neural activity, generally increasing excitability (Kara and Friedlander 1999, Smith and Otis 2003), so any manipulation that changes NO levels will change (likely decrease) the excitability of the network, potentially resulting in a smaller hemodynamic response to sensory stimulation secondary to this decrease. While short stimuli engage rapid neurovascular coupling mechanisms, longer duration (>1s) stimulation could introduce additional regulatory elements, such as astrocytes, that operate on a slower time scale. On the right, we show a comparison of the control groups ploFed together from Fig. 3a and 3b with vertical bars aligned to the peak. During the 5s stimulation, the time-to-peak is roughly 830 milliseconds later than the 0.1s stimulation, meaning it’s plausible that the signals don’t separate until later. Our interpretation is that the NVC mechanisms responsible for brief stimulus-evoked change are either NO-independent or are compensated for in the SSP-SAP group by other means due to the chronic nature of the ablation. 

      We have added the following text to the Discussion (Line 368): “Loss of type-I nNOS neurons drove minimal changes in the vasodilation elicited by brief stimulation, but led to decreased vascular responses to sustained stimulation, suggesting that the early phase of neurovascular coupling is not mediated by these cells, consistent with the multiple known mechanisms for neurovascular coupling (AFwell et al 2010, Drew 2019, Hosford & Gourine 2019) acting through both neurons and astrocytes with multiple timescales (Le Gac et al 2025, Renden et al 2024, Schulz et al 2012, Tran et al 2018).”

      Author response image 1.

      (2) In Figures 4d and e, it is unclear to me why the authors use brief stimulation to analyze the relationship between HbT and neuronal activity (gamma power) and prolonged stimulation for the relationship between HbT and GCaMP7 signal. Could they compare the curves with both types of stimulation?

      As discussed previously, we did not use the same stimulation parameters across cohorts. The mice with implanted electrodes received only brief stimulation, while those undergoing calcium imaging received longer duration stimulus. 

      Reviewer #2 (Recommendations for the authors):

      (1) Results, how far-reaching is the cell-specific ablation? Would it be possible to estimate the volume of the cortex where Nos1 cells are depleted based on histology? Were there signs of neuronal injury more remotely, for example, beading of dendrites?

      We regularly see 1-2 mm in diameter of cell ablation within the somatosensory cortex of each animal, which is consistent with the spread of small molecules. Ribosome inactivating proteins like SAP are smaller than AAVs (~5 nm compared to ~25 nm in diameter) and thus diffuse slightly further. We observed no obvious indication of neuronal injury more remotely or in other brain regions, but we did not image or characterize dendritic beading, as this would require a sparse labeling of neurons to clearly see dendrites (NeuN only stains the cell body). Our histology shows no change in cell numbers. 

      We have added the following text to the Results (Line 124): “Immunofluorescent labeling in mice injected with Blank-SAP showed labeling of nNOS-positive neurons near the injection site. In contrast, mice injected with SP-SAP showed a clear loss in nNOS-labeling, with a typical spread of 1-2 mm from the injection site, though nNOS-positive neurons both subcortically and in the entirety of the contralateral hemisphere remaining intact.”

      (2) For histological analysis of cell counts amer the lesion, more information is needed. How was the region of interest for counting cells determined (eg. 500um radius from needle/pipeFe tract?) and of what volume was analysed?

      The region of interest for both SSP-SAP and Blank SAP injections was a 1 mm diameter circle centered around the injection site and averaged across sections (typically 3-5 when available). In most animals, the SSP-SAP had a lateral spread greater than 500 microns and encompassed the entire depth of cortex (1-1.5 mm in SI, decreasing in the rostral to caudal direction). The counts within the 1 mm diameter ROI were averaged across sections and then converted into the cells per mm area as presented. Note the consistent decrease in type I nNOS cells seen across mice in Fig 1d, Fig S1b.

      We have added the following text in the Materials & Methods (Line 507): “The region of interest for analysis of cell counts was determined based on the injection site for both SP-SAP and Blank SAP injections, with a 1 mm diameter circle centered around the injection site and averaged across 3-5 sections where available. In most animals, the SP-SAP had a lateral spread greater than 500 microns and encompassed the entire depth of cortex (1-1.5 mm in SI).”

      (3) Based on Supplementary Figure 1, it appears that the Saponin conjugate not only depletes Nos neurons but also may affect vascular (endothelial perhaps) Nos expression. Some quantification of this effect and its extent may be insighIul in terms of ascribing the effects of the lesion directly on neurons vs indirectly and perhaps more far-reaching via vascular/endothelial NOS.

      Thank you for this comment. While this is a possibility, while we have found that the high nNOS expression of type-I nnoos neurons makes NADPH diaphorase a good stain for detecting them, it is less useful for cell types that expres NOS at lower levels.  We have found that the absolute intensity of NADPH diaphorase staining is somewhat variable from section to section. Variability in overall NADPH diaphorase intensity is likely due to several factors, such as duration of staining, thickness of the section, and differences in PFA concentration within the tissue and between animals. As NADPH diaphorase staining is highly sensitive to amount PFA exposure, any small differences in processing could affect the intensity, and slight differences in perfusion quality and processing could account. A second, perhaps larger issue could be due to differences in the number of arteries (which will express NOS at much higher levels than veins, and thus will appear darker) in the section. We did not stain for smooth muscle and so cannot differentiate arteries and veins.  Any difference in vessel intensity could be due to random variations in the numbers of arteries/veins in the section. While we believe that this is a potentially interesting question, our histological experiments were not able to address it.

      (4) The assessment for inflammation took place 1 month amer the lesion, but the imaging presumably occurred ~ 2 weeks amer the lesion. Note that it seemed somewhat ambiguous as to when approximately, the imaging, and electrophysiology experiments took place relative to the induction of the lesion. Presumably, some aspects of inflammation and disruption could have been missed, at the time when experiments were conducted, based on this disparity in assessment. The authors may want to raise this as a possible limitation.

      We apologize for our unclear description of the timeline. We began imaging experiments at least 4 weeks amer ablation, the same time frame as when we performed our histological assays. 

      We have added the following text to the Discussion (Line 379): “With imaging beginning four weeks amer ablation, there could be compensatory rewiring of local and/or network activity following type-I nNOS ablation, where other signaling pathways from the neurons to the vasculature become strengthened to compensate for the loss of vasodilatory signaling from the typeI nNOS neurons.”

      (5) Results Figure 2, please define "P or delta P/P". Also, for Figure 2c-f, what do the black vertical ticks represent?

      ∆P/P is the change in the gamma-band power relative to the resting-state baseline, and black tick marks indicate binarized periods of vibrissae motion (‘whisking’). We have clarified this in Figure caption 2 (Line 174).

      (6) Figure 3b-e, is there not an undershoot (eventually) amer 5s of stimulation that could be assessed? 

      Previous work has shown that there is no undershoot in response to whisker stimulations of a few seconds (Drew, Shih, Kelinfeld, PNAS, 2011).  The undershoot for brief stimuli happens within ~2.5 s of the onset/cessation of the brief stimulation, this is clearly lacking in the response to the 5s stim (Fig 3).  The neurovascular coupling mechanisms recruited during the short stimulation are different than those recruited during the long stimulus, making a comparison of the undershoot between the two stimulation durations problematic. 

      For Figures 3e and 6 how was surface arteriole diameter or vessel tone measured? 2P imaging of fluorescent dextran in plasma? Please add the experimental details of 2P imaging to the methods. Including some 2P images in the figures couldn't hurt to help the reader understand how these data were generated.

      We have added details about our 2-photon imaging (FITC-dextran, full-width at half-maximum calculation for vessel diameter) as well as a trace and vessel image to Figure 2.

      We have added the following text to the Materials & Methods (Line 477): “In two-photon experiments, mice were briefly anesthetized and retro-orbitally injected with 100 µL of 5% (weight/volume) fluorescein isothiocyanate–dextran (FITC) (FD150S, Sigma-Aldrich, St. Louis, MO) dissolved in sterile saline.”

      We have added the following text to the Materials & Methods (Line 532): “A rectangular box was drawn around a straight, evenly-illuminated vessel segment and the pixel intensity was averaged along the long axis to calculate the vessel’s diameter from the full-width at half-maximum (https://github.com/DrewLab/Surface-Vessel-FWHM-Diameter; (Drew, Shih et al. 2011)).”

      (7) Did the authors try stimulating other body parts (eg. limb) to estimate how specific the effects were, regionally? This is more of a curiosity question that the authors could comment on, I am not recommending new experiments.

      We did measure changes in [HbT] in the FL/HL representation of SI during locomotion (Line 205), which is known to increase neural activity in the somatosensory cortex (Huo, Smith and Drew, Journal of Neuroscience, 2014; Zhang et al., Nature Communications 2019). We observed a similar but not statistically significant trend of decreased [HbT] in SP-SAP compared to control. This may have been due to the sphere of influence of the ablation being centered on the vibrissae representation and not having fully encompassed the limb representation. We agree with the referee that it would be interesting to characterize these effects on other sensory regions as well as brain regions associated with tasks such as learning and behavior.

      (8) Regarding vasomotion experiments, are there no other components of this waveform that could be quantified beyond just variance? Amplitude, frequency? Maybe these don't add much but would be nice to see actual traces of the diameter fluctuations. Further, where exactly were widefield-based measures of vasomotion derived from? From some seed pixel or ~1mm ROI in the center of the whisker barrel cortex? Please clarify.

      The reviewer’s point is well taken. We have added power spectra of the resting-state data which provides amplitude and frequency information. The integrated area under the curve of the power spectra is equal to the variance. Widefield-based measures of vasomotion were taken from the 1 mm ROI in the center of the whisker barrel cortex.

      We have added the following text to the Materials & Methods (Line 560): “Variance during the resting-state for both ∆[HbT] and diameter signals (Fig. 7) was taken from resting-state events lasting ≥10 seconds in duration. Average ∆[HbT] from within the 1 mm ROI over the vibrissae representation of SI during each arousal state was taken with respect to awake resting baseline events ≥10 seconds in duration.” 

      (9) On page 13, the title seems like a bit strong. The data show a change in variance but that does not necessarily mean a change in absolute amplitude. Also, I did not see any reports of absolute vessel widths between groups from 2P experiments so any difference in the sampling of larger vs smaller arterioles could have affected the variance (ie. % changes could be much larger in smaller arterioles).

      We have updated the title of Figure 7 to specifically state power (which is equivalent to the variance) rather than amplitude (Line 331). We have also added absolute vessel widths to the Results (Line 340): “There was no difference in resting-state (baseline) diameter between the groups, with Blank-SAP having a diameter of 24.4 ± 7.5 μm and SP-SAP having a diameter of 23.0 ± 9.4 μm (Fest, p ti 0.61). “

      (10) Big picture question. How could a manipulation that affects so few cells in 1 hemisphere (below 0.5% of total neurons in a region comprising 1-2% of the volume of one hemisphere) have such profound effects in both hemispheres? The authors suggest that some may have long-range interhemispheric projections, but that is presumably a fraction of the already small fraction of Nos1 neurons. Perhaps these neurons have specializing projections to subcortical brain nuclei (Nucleus Basilis, Raphe, Locus Coerulus, reticular thalamus, etc) that then project widely to exert this outsized effect? Has there not been a detailed anatomical characterization of their efferent projections to cortical and sub-cortical areas? This point could be raised in the discussion.

      We apologize for the lack of clarity of our work in this point.  We would like to clarify that the only analysis showing a change in the unablated hemisphere being coherence/correlation analysis between the two hemispheres.  Other metrics (LFP power and CBV power spectra) do not change in the hemisphere contralateral to the injections site, as we show in data added in two supplementary figures (Fig. S4 and 7). The coherence/correlation is a measure of the correlated dynamics in the two hemispheres. For this metric to change, there only needs to be a change in the dynamics of one hemisphere relative to another.  If some aspects of the synchronization of neural and vascular dynamics across hemispheres are mediated by concurrent activation of type I nNOS neurons in both hemispheres, ablating them in one hemisphere will decrease synchrony. It is possible that type I nNOS neurons make some subcortical projections that were not reported in previous work (Tomioka 2005, Ruff 2024), but if these exist they are likely to be very small in number as they were not noted.  

      We have added the text in the Results (Line 228): “In contrast to the observed reductions in LFP in the ablated hemisphere, we noted no gross changes in the power spectra of neural LFP in the unablated hemisphere (Fig. S7) or power of the cerebral blood volume fluctuations in either hemisphere (Fig. S4).”

      Line 335): “The variance in ∆[HbT] during rest, a measure of vasomotion amplitude, was significantly reduced following type-I nNOS ablation (Fig. 7a), dropping from 40.9 ± 3.4 μM<sup>2</sup> in the Blank-SAP group (N ti 24, 12M/12F) to 23.3 ± 2.3 μM<sup>2</sup> in the SP-SAP group (N ti 24, 11M/13F) (GLME p ti 6.9×10<sup>-5</sup>) with no significant di[erence in the unablated hemisphere (Fig. S7).”

      Reviewer #3 (Recommendations for the authors):

      (1)  The reporting would be greatly strengthened by following ARRIVE guidelines 2.0: https://arriveguidelines.org/: aFrition rates and source of aFrition, justification for the use of 119 (beyond just consistent with previous studies), etc.

      We performed a power analysis prior to our study aiming to detect a physiologically-relevant effect size of (Cohen’s d) ti 1.3, or 1.3 standard deviations from the mean. Alpha and Power were set to the standard 0.05 and 0.80 respectively, requiring around 8 mice per group (SP-SAP, Blank, and for histology, naïve animals) for multiple independent groups (ephys, GCamp, histology). To potentially account for any aFrition due to failures in Type-I nNOS neuron ablation or other problems (such as electrode failure or window issues) we conservatively targeted a dozen mice for each group. Of mice that were imaged (1P/2P), two SP-SAP mice were removed from the dataset (24 SP-SAP remaining) post-histological analysis due to not showing ablation of nNOS neurons, an aFrition rate of approximately 8%.

      We have added the following text to the Materials & Methods (Line 441): “Sample sizes are consistent with previous studies (Echagarruga et al 2020, Turner et al 2023, Turner et al 2020, Zhang et al 2021) and based on a power analysis requiring 8-10 mice per group (Cohen’s d ti 1.3, α ti 0.05, (1 - β) ti 0.800). Experimenters were not blind to experimental conditions or data analysis except for histological experiments. Two SP-SAP mice were removed from the imaging datasets (24 SP-SAP remaining) due to not showing ablation of nNOS neurons during post-histological analysis, an aFrition rate of approximately 8%.”

      (2) Intro, line 38: Description of the importance of neurovascular coupling needs improvement. Coordinated haemodynamic activity is vital for maintaining neuronal health and the energy levels needed.

      We have added a sentence to the introduction (Line 41): “Neurovascular coupling plays a critical role in supporting neuronal function, as tightly coordinated hemodynamic activity is essential for meeting energy metabolism and maintaining brain health (Iadecola et al 2023, Schaeffer & Iadecola 2021).“

      (3) Given the wide range of mice ages, how was the age accounted for/its effects examined?

      Previous work from our lab has shown that there is no change in hemodynamics responses in awake mice over a wide range of ages (2-18 months), so the age range we used (3 and 9 months of age) should not impact this.  

      We have added the following text in the Results (Line 437): “Previous work from our lab has shown that the vasodilation elicited by whisker stimulation is the same in 2–4-month-old mice as in 18-month-old mice (BenneF, Zhang et al. 2024). As the age range used here is spanned by this time interval, we would not expect any age-related differences.”

      (4) How was the susceptibility of low-frequency neuronal coupling signals to noise managed? How were the low-frequency bands results validated?

      We are not sure what the referee is asking here. Our electrophysiology recordings were made differentially using stereotrodes with tips separated by ~100µm, which provides excellent common-mode rejection to noise and a localized LFP signal. Previous publications from our lab (Winder et al., Nature Neuroscience 2017; Turner et al., eLife2020) and others (Tu, Cramer, Zhang, eLife 2024) have repeatedly show that there is a very weak correlation between the power in the low frequency bands and hemodynamic signals, so our results are consistent with this previous work. 

      (5) It would be helpful to demonstrate the selectivity of cell *death* (as opposed to survival) induced by SP-SAP injections via assessments using markers of cell death.

      We agree that this would be helpful complement to our histological studies that show loss of type-I nNOS neurons, but no loss of other cells and minimal inflammation with SP-saporin injections.  However, we did not perform histology looking at cell death, only at surviving cells, given that we see no obvious inflammation or cells loss, which would be triggered by nonspecific cell death.  Previous work has established that saporin is cytotoxic and specific only to cell that internalize the saporin.   Internalization of saporin causes cell death via apoptosis (Bergamaschi, Perfe et al. 1996), and that the substance P receptor is internalized when the receptor is bound (Mantyh, Allen et al. 1995). Treatment of internalized saporin generates cellular debris that is phagocytosed by microglial, consistent with cell death (Seeger, Hartig et al. 1997). While it is possible that treatment of SP-saporin causes type 1 nNOS neurons to stop expressing nitric oxide synthase (which would make them disappear from our IHC staining), we think that this is unlikely given the literature shows internalized saporin is clearly cytotoxic. 

      We have added the following text to the Results (Line 131): “It is unlikely that the disappearance of type-I nNOS neurons is because they stopped expressing nNOS, as internalized saporin is cytotoxic. Exposure to SP-conjugated saporin causes rapid internalization of the SP receptor-ligand complex (Mantyh, Allen et al. 1995), and internalized saporin causes cell death via apoptosis (Bergamaschi, Perfe et al. 1996). In the brain, the resulting cellular debris from saporin administration is then cleared by microglia phagocytosis (Seeger, Hartig et al. 1997).”

      (6) Was the decrease in inter-hemispheric correlation associated with any changes to the corpus callosum?

      We noted no gross changes to the structure of the corpus callosum in any of our histological reconstructions following SSPSAP administration, however, we did not specifically test for this. Again, as we note in our reply in reviewer 2, the decrease in interhemispheric synchronization does not imply that there are changes in the corpus callosum and could be mediated by the changes in neural activity in the hemisphere in which the Type-I nNOS neurons were ablated.

      (7) How were automated cell counts validated?

      Criteria used for automated cell counts were validated with comparisons of manual counting as described in previous literature. We have added additional text describing the process in the Materials & Methods (Line 510): “For total cell counts, a region of interest (ROI) was delineated, and cells were automatically quantified under matched criteria for size, circularity and intensity. Image threshold was adjusted until absolute value percentages were between 1-10% of the histogram density. The function Analyze Par-cles was then used to estimate the number of particles with a size of 100-99999 pixels^2 and a circularity between 0.3 and 1.0 (Dao, Suresh Nair et al. 2020, Smith, Anderson et al. 2020, Sicher, Starnes et al. 2023). Immunoreactivity was quantified as mean fluorescence intensity of the ROI (Pleil, Rinker et al. 2015).”

      (8) Given the weighting of the vascular IOS readout to the superficial tissue, it is important to qualify the extent of the hemodynamic contrast, ie the limitations of this readout.

      We have added the following text to the Discussion (Line 385): “Intrinsic optical signal readout is primarily weighted toward superficial tissue given the absorption and scaFering characteristics of the wavelengths used. While surface vessels are tightly coupled with neural activity, it is still a maFer of debate whether surface or intracortical vessels are a more reliable indicator of ongoing activity (Goense et al 2012; Huber et al 2015; Poplawsky & Kim 2014).” 

      (9) Partial decreases observed through type-I iNOS neuronal ablation suggest other factors also play a role in regulating neural and vascular dynamics: data presented thus do *not* "indicate disruption of these neurons in diseases ranging from neurodegeneration to sleep disturbances," as currently stated. Please revise.

      We agree with the reviewer. We have changed the abstract sentence to read (Line 30): “This demonstrates that a small population of nNOS-positive neurons are indispensable for regulating both neural and vascular dynamics in the whole brain, raising the possibility that loss of these neurons could contribute to the development of neurodegenerative diseases and sleep disturbances.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation". 

      In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity. 

      The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types. 

      Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing diseaseeQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits. 

      We thank the reviewer for their accurate summary of our study and positive review of our findings for immune-related diseases.

      It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al. 

      We thank the reviewer for their positive review of our results and manuscript. As Reviewer #1 noted, whether our and others' observation extends to other diseases or traits is an open question. For instance, Figure 2b in Mostafavi et al., Nat. Genet. (2023) demonstrated that there was a spectrum of depletion of eQTLs and enrichment of GWAS signals in constrained genes across various tissues and traits, respectively. Therefore, gene expression constraint may play a larger or smaller role in different diseases or traits. That immune cell types and cell states are extremely diverse (Schmiedel et al., Cell (2018) and Calderon et al., Nat. Genet. (2019), just to name a few) likely adds to the complexity of gene regulation that contributes to immune-mediated disease.

      Reviewer #2 (Public Review): 

      Summary: 

      eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin. 

      However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study. 

      We thank the reviewer for their accurate summary of our results.

      (1) For reproducibility, details are necessary in the method section.

      Details about adding YRI samples in ATAC-seq: For example, how many samples are there, and what is used among public data? There is LCL-derived iPSC and differentiated iPSC (cardiomyocytes) data, not LCL itself. How does this differ from LCL, and what is the rationale for including this data despite the differences?

      Banovich et al., Genome Research (2018) (PMID: 29208628), who generated data using LCLderived iPSCs and differentiated iPSCs (cardiomyocytes), also generated ATAC-seq data from 20 YRI LCL samples. We analyzed those data to identify open chromatin regions (i.e., ATACseq peaks) in LCLs and merged the regions with open chromatin regions identified with 100 GBR LCL samples from two studies by Kumasaka et al. (Nature Genetics (2016)

      PMID: 26656845 and Nature Genetics (2019) PMID: 30478436). However, we restricted the caQTL analysis to only the 100 GBR samples because of possible ancestry effects and batch effects. We attempted caQTL analysis with the 20 YRI samples as well, but the result was noisy, likely due to smaller sample size and lower read depth of the ATAC-seq data.

      caQTL is described as having better power than eQTL despite having fewer samples. How does the number of ATAC peaks used in caQTL compare to the number of gene expressions used in eQTL?

      The number of ATAC peaks used in caQTL (99,320) is ~6.7 times greater than the number of genes (14,872) used in the eQTL analysis. Therefore, there is a higher chance of detecting a significant caQTL signal and a significant colocalization signal than there is for eQTLs. However, we reasoned that since distal eQTLs are more easily detected as caQTLs and since increasing the sample size of eQTLs through meta-analysis uncovered additional eQTL colocalization at loci with caQTL colocalization only, colocalized caQTLs are likely capturing disease-relevant regulatory effects.

      Details about RNA expression data: In the method section, it states that raw data (ERP001942) was accessed, and in data availability, processed data (E-GEUV-1) was used. These need to be consistent.

      Thank you for pointing this out. We used the processed data from Expression Atlas (https://www.ebi.ac.uk/gxa/experiments/E-GEUV-1/Results), and that's what we meant by "We downloaded RNA expression level data of the LCL samples from the Expression Atlas." We have revised the “RNA expression data preparation” section in our manuscript to make the text clearer.

      How many samples were used (the text states 373, but how was it reduced from the original 465, and the total genotype is said to be 493 samples while ATAC has n=100; what are the 20 others?), and it mentions European samples, but does this exclude YRI?

      We thank the reviewer for pointing out these points of confusion. Our reported count of 493 samples included YRI samples with RNA-seq data or ATAC-seq data that we ultimately did not use for QTL analyses. There were 373 European samples with RNA-seq data that we used for eQTL analysis, and 100 GBR samples (including some that overlap with the 373 European samples) that we used for caQTL analysis. We have revised the text to clarify these points.

      (2) Experimental results determining which TFs might bind to the representative signals of caQTL are required.

      We agree that caQTL colocalization is just the start of elucidating the regulatory mechanism of a GWAS locus. Determining which TFs are bound and which TFs' binding is altered would be necessary to describe the causal regulatory mechanism. For this, we utilized the Cistrome database to search for TFs whose binding overlaps the colocalized caQTL peaks. We present the results of this analysis in Supplementary Table 3 and Supplementary Figure 4, both of which we have added in our revised manuscript. Overall, protein factors associated with active transcription, such as POL2RA, and several immune cell TFs, including RUNX3, SPI1, and RELA, were frequently detected in those peaks. Detecting these factors in most peaks supports the likelihood that the colocalized caQTL peaks are active cis-regulatory elements. These results are consistent with our observation of enriched caQTL-mediated heritability in regions with active histone marks (Figure 1).

      (3) It is stated that caQTL is less tissue-specific compared to eQTL; would caQTL performed with ATAC-seq results from different cell types, yield similar results?

      We thank the reviewer for the question. Calderon et al. (PMID: 31570894) observed that "most effects on allelic imbalance (of ATAC-seq) were shared regardless of lineage or condition". Yet, there were regions where a different cell type or state would show inaccessibility (Figure 4d in Calderon et al.). Thus, we expect that ATAC-seq results from different cell types (e.g., T cells, B cells, monocytes, etc.) would lead to additional caQTLs showing colocalization at cell-typespecific open chromatin. However, if a region is accessible in both cell types, caQTL may be detected in both. Moreover, Alasoo et al., Nature Genetics (2018) (PMID: 29379200) observed that “many disease-risk variants affect chromatin structure in a broad range of cellular states, but their effects on expression are highly context specific.” In both studies, the authors investigated immune cell types, and there could be different observations in non-immune cell types and other diseases and traits.

      Reviewer #1 (Recommendations For The Authors): 

      I think it would strengthen the paper to explore gene-level differences in the discovery of caQTLs and eQTLs. For example, complex disease-relevant genes, on average, have more/longer regulatory domains (as shown by Wang and Goldstein, AJHG 2020; Mostafavi et al., Nat. Genet. 2023). Therefore, it is plausible that for such genes, caQTLs are much more easily discoverable than eQTLs due to (i) a larger mutational target size for caQTLs, and (ii) dispersion of expression heritability across multiple domains, which hampers the discovery of eQTLs but not caQTLs, which are studied independently of other domains in the region. In other words, discovered caQTLs and eQTLs likely vary in terms of their distance to genes (as the authors report), as well as their target genes.

      We thank the reviewer for the suggestion to explore gene-level differences. We expect that the effects of complex disease-relevant genes having more / longer regulatory domains, on average, to explain our observations. We agree on both of your points that there are many more regulatory elements that are captured as accessible regions than expressed genes and that genes often have multiple independent eQTLs leading to dispersion of heritability. The genelevel trend that we described was the distance of the regulatory element from the genes. Additional analyses would be a relevant future direction.

      Also considering gene-level analysis, Mostafavi et al. show that the types of biases they report for eQTLs also apply to other molecular QTLs. It would be valuable to compare GWAS hits with versus without caQTL colocalization. Similarly, it would be insightful to compare GWAS hits with both colocalized caQTLs and eQTLs to GWAS hits with colocalized caQTLs but no eQTLs in any of the cell types. 

      We thank the reviewer for the comment. Investigating for potential biases in the colocalized caQTL would be useful, but we considered it beyond the scope of this work. In terms of biological factors, we demonstrated through mediated heritability analyses that more accessible chromatin (based on ATAC-seq read coverage) and regions with active histone marks were enriched for autoimmune disease associations (Figure 1). Furthermore, as greater distance of the regulatory variant from the transcription start site significantly reduced the cis-heritability, we would expect that distance would play a major role, similar to Mostafavi et al.’s conclusions.

      I don't think the argument for the role of natural selection contributing to the "missing regulation" is presented accurately. Specifically, large eQTLs acting on top trait-relevant genes are under stronger selection and thus, on average, segregate at lower frequencies. This makes them difficult to discover in eQTL assays. However, if not lost, they contribute as much, if not more, to trait heritability than weaker eQTLs at the same gene because their larger effects compensate for their lower frequency. At the most extreme, selection should have a "flattening" effect (e.g., see Simons et al., PLOS Biol 2018; O'Connor et al., AJHG 2019): weak and strong eQTLs at the same gene are expected to contribute equally to heritability. Therefore, the statement "Consequently, only weak eQTL variants, often in regions distal to the gene's promoter, may remain and affect traits" is not correct. If this turns out to be empirically true, other models, such as pleiotropic selection, need to explain it. 

      We thank the reviewer for the correction. We agree with the comment and have revised the sentences in the introduction accordingly.

      It is worth speculating why caQTLs may be more consistent across cell types than cis-eQTLs. Additionally, readers may infer from the paper that the focus should shift from eQTLs to caQTLs, which may not be the authors' intention. Perhaps these approaches are complementary: caQTLs can help with TSS-distal disease variants, while finding the target gene and regulatory context is more straightforward with eQTL colocalization. Addressing these points in the discussion will be helpful.

      We appreciate the reviewer's suggestion to clarify the advantages of incorporating cis-eQTLs and caQTLs. Our argument is exactly as you put it, and we added a paragraph on this in the Discussion.

      I believe the authors could do more to contextualize their findings within the existing literature on the subject, particularly Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; and Mostafavi et al., Nat. Genet. 2023. For instance, Umans et al. suggest that "if most standard eQTLs are generally benign, increasing sample size and adding more tissue types in an effort to identify even more standard eQTLs may not help us to explain many more disease risk mutations". Conversely, Mostafavi et al. argue for a multipronged approach, which appears more aligned with the authors' conclusions.

      We followed the reviewer’s suggestion to place our work in the context of existing literature on this topic. Moreover, we clarified what our recommendations for future data generation are.

      I thought Figures 1C-D were unclear. 

      We added a sentence in the figure legend describing that stronger and more significant enrichment indicate that mediated heritability is concentrated in that subset.

      Reviewer #2 (Recommendations For The Authors): 

      Complete workflow figures for caQTL calling and eQTL calling are required. 

      To improve clarity of the caQTL and eQTL calling workflow, we added Supplementary Figure 1.

    1. Auhtor response:

      Public Reviews:

      Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      We are grateful for this astute remark. A comparison of gfDNA concentration among the diagnostic groups indicates a trend of increasing values as the diagnosis progresses toward malignancy. The observed values for the diagnostic groups are as follows:

      Author response table 1.

      The chart below presents the statistical analyses of the same diagnostic/tumor-stage groups (One-Way ANOVA followed by Tukey’s multiple comparison tests). It shows that gastric fluid gfDNA concentrations gradually increase with malignant progression. We observed that the initial tumor stages (T0 to T2) exhibit intermediate gfDNA levels, which in this group is significantly lower than in advanced disease (p = 0.0036), but not statistically different from non-neoplastic disease (p = 0.74).

      Author response image 1.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      We appreciate the attention to detail regarding the numbers analyzed in the manuscript. Importantly, the results are meaningful because the number of subjects in each group is comparable (T0-T2, N = 65; T3, N = 91; T4, N = 63). The mean gastric fluid gfDNA values (ng/µL) increase with disease stage (T0-T2: 15.12; T3-T4: 30.75), and both are higher than the mean gfDNA values observed in non-neoplastic disease (10.81 ng/µL for N+PD and 10.10 ng/µL for PN). These subject numbers in each diagnostic group accurately reflect real-world data from a tertiary cancer center.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      Histopathological analyses were performed throughout the study not only for the initial diagnosis of tissue biopsies, but also for the classification of Lauren’s subtypes, tumor staging, and the assessment of the presence and extent of immune cell infiltrates. Regarding the time of disease onset, this variable is inherently unknown--by definition--at the time of a diagnostic EGD. While the prognosis definition is indeed straightforward, we believe that a simple, cost-effective, and practical approach is advantageous for patients across diverse clinical settings and is more likely to be effectively integrated into routine EGD practice.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      We wish to reinforce that EGD, along with conventional histopathology, remains the gold standard for gastric cancer evaluation. EGD under sedation is routinely performed for diagnosis, and the collection of gastric fluids for gfDNA evaluation does not affect patient comfort. Thus, while gfDNA analysis was evidently not intended as a diagnostic EGD and biopsy replacement, it may provide added prognostic value to this exam.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      We are grateful for these comments and apologize for the clerical oversight. All figures, tables, titles and figure legends have now been double-checked.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn.

      We assume that the unusual wording remark regarding “overall logicality” pertains to the rationale and/or reasoning of this investigational study. Our working hypothesis was that during neoplastic disease progression, tumor cells continuously proliferate and, depending on various factors, attract immune cell infiltrates. Consequently, both tumor cells and immune cells (as well as tumor-derived DNA) are released into the fluids surrounding the tumor at its various locations, including blood, urine, saliva, gastric fluids, and others. Thus, increases in DNA levels within some of these fluids have been documented and are clinically meaningful. The concurrent observation of elevated gastric fluid gfDNA levels and immune cell infiltration supports the hypothesis that increased gfDNA—which may originate not only from tumor cells but also from immune cells—could be associated with better prognosis, as suggested by this study of a large real-world patient cohort.

      In summary, we thank Reviewer #1 for his time and effort in a constructive critique of our work.

      Reviewer #2 (Public review):

      Summary:

      The authors investigated whether the total DNA concentration in gastric fluid (gfDNA), collected via routine esophagogastroduodenoscopy (EGD), could serve as a diagnostic and prognostic biomarker for gastric cancer. In a large patient cohort (initial n=1,056; analyzed n=941), they found that gfDNA levels were significantly higher in gastric cancer patients compared to non-cancer, gastritis, and precancerous lesion groups. Unexpectedly, higher gfDNA concentrations were also significantly associated with better survival prognosis and positively correlated with immune cell infiltration. The authors proposed that gfDNA may reflect both tumor burden and immune activity, potentially serving as a cost-effective and convenient liquid biopsy tool to assist in gastric cancer diagnosis, staging, and follow-up.

      Strengths:

      This study is supported by a robust sample size (n=941) with clear patient classification, enabling reliable statistical analysis. It employs a simple, low-threshold method for measuring total gfDNA, making it suitable for large-scale clinical use. Clinical confounders, including age, sex, BMI, gastric fluid pH, and PPI use, were systematically controlled. The findings demonstrate both diagnostic and prognostic value of gfDNA, as its concentration can help distinguish gastric cancer patients and correlates with tumor progression and survival. Additionally, preliminary mechanistic data reveal a significant association between elevated gfDNA levels and increased immune cell infiltration in tumors (p=0.001).

      Reviewer #2 has conceptually grasped the overall rationale of the study quite well, and we are grateful for their assessment and comprehensive summary of our findings.

      Weaknesses:

      (1) The study has several notable weaknesses. The association between high gfDNA levels and better survival contradicts conventional expectations and raises concerns about the biological interpretation of the findings.

      We agree that this would be the case if the gfDNA was derived solely from tumor cells. However, the findings presented here suggest that a fraction of this DNA would be indeed derived from infiltrating immune cells. The precise determination of the origin of this increased gfDNA remains to be achieved in future follow-up studies, and these are planned to be evaluated soon, by applying DNA- and RNA-sequencing methodologies and deconvolution analyses.

      (2) The diagnostic performance of gfDNA alone was only moderate, and the study did not explore potential improvements through combination with established biomarkers. Methodological limitations include a lack of control for pre-analytical variables, the absence of longitudinal data, and imbalanced group sizes, which may affect the robustness and generalizability of the results.

      Reviewer #2 is correct that this investigational study was not designed to assess the diagnostic potential of gfDNA. Instead, its primary contribution is to provide useful prognostic information. In this regard, we have not yet explored combining gfDNA with other clinically well-established diagnostic biomarkers. We do acknowledge this current limitation as a logical follow-up that must be investigated in the near future.

      Moreover, we collected a substantial number of pre-analytical variables within the limitations of a study involving over 1,000 subjects. Longitudinal samples and data were not analyzed here, as our aim was to evaluate prognostic value at diagnosis. Although the groups are imbalanced, this accurately reflects the real-world population of a large endoscopy center within a dedicated cancer facility. Subjects were invited to participate and enter the study before sedation for the diagnostic EGD procedure; thus, samples were collected prospectively from all consenting individuals.

      Finally, to maintain a large, unbiased cohort, we did not attempt to balance the groups, allowing analysis of samples and data from all patients with compatible diagnoses (please see Results: Patient groups and diagnoses).

      (3) Additionally, key methodological details were insufficiently reported, and the ROC analysis lacked comprehensive performance metrics, limiting the study's clinical applicability.

      We are grateful for this useful suggestion. In the current version, each ROC curve (Supplementary Figures 1A and 1B) now includes the top 10 gfDNA thresholds, along with their corresponding sensitivity and specificity values (please see Suppl. Table 1). The thresholds are ordered from-best-to-worst based on the classic Youden’s J statistic, as follows:

      Youden Index = specificity + sensitivity – 1 [Youden WJ. Index for rating diagnostic tests. Cancer 3:32-35, 1950. PMID: 15405679]. We have made an effort to provide all the key methodological details requested, but we would be glad to add further information upon specific request.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1.1) The authors argue that low-level features in a feedback format could be decoded only from deep layers of V1 (and not superficial layers) during a perceptual categorization task. However, previous studies (Bergman et al., 2024; Iamshchinina et al., 2021) demonstrated that low-level features in the form of feedback can be decoded from both superficial and deep layers. While this result could be due to perceptual task or highly predictable orientation feature (orientation was kept the same throughout the experimental block), an alternative explanation is a weaker representation of orientation in the feedback (even before splitting by layers there is only a trend towards significance; also granger causality for orientation information in MEG part is lower than that for category in peripheral categorization task), because it is orthogonal to the task demand. It would be helpful if the authors added a statistical comparison of the strength of category and orientation representations in each layer and across the layers.

      We agree that the strength of feedback information is related to task demand. Specifically, we would like to highlight the relationship between task demand and feedback information in the superficial layer. Previous studies have shown that foveal feedback information is observed only when the task requires the identity information of the peripheral objects (Williams et al., 2008; Fan et al., 2016; Yu and Shim, 2016). In this study, we found that the deep layer represented both orientation and categorical feedback information, while the superficial layer only represented categorical information. This suggests that feedback information in the superficial layer may be related to (or enhanced by) the task demands. In other words, if the experimental design required participants to discriminate orientation rather than object identity, we would expect stronger orientation information in foveal V1 and significant decoding performance of orientation feedback information in the superficial layer of foveal V1. This assumption is consistent with the anatomical connections of the superficial layer, which not only receives feedback connections but also sends outputs to higher-level regions for further processing. This is also consistent with Iamshchinina et al.’s observation that, when orientation information had to be mentally rotated and reported (i.e., task-relevant), it was observed in both the superficial and deep layers of V1. Bergmann et al. observed illusory color information in the superficial layer of V1, which may reflect a combination of lateral propagation and feedback mechanisms in the superficial layer that support visual filling-in phenomena. We have revised the discussion in the manuscript: In other words, if the experimental design required participants to discriminate orientation rather than object identity, we would expect stronger orientation information in foveal V1 and significant decoding performance of orientation feedback information in the superficial layer of foveal V1. Recent studies (Iamshchinina et al., 2021; Bergman et al., 2024) have also highlighted the relationship between feedback information and neural representations in V1 superficial layer.

      To further demonstrate the laminar profiles of low- and high-order information, we have re-analyzed the data and added more fine-scale laminar profiles with statistical comparisons in the revised manuscript. The results again showed significant neural decoding performances in the deep layer of both category and orientation information, and only significant decoding performances of category information in the superficial layer.

      (1.2) The authors argue that category feedback is not driven by low-level confounding features embedded in the stimuli. They demonstrate the ability to decode orientations, particularly well represented by V1, in the absence of category discrimination. However, the orientation is not a category-discriminating feature in this task. It could be that the category-discriminating features cannot be as well decoded from V1 activity patterns as orientations. Also, there are a number of these category discriminating features and it is unclear if it is a variation in their representational strength or merely the absence of the task-driven enhancement that preempts category decoding in V1 during the foveal task. In other words, I am not sure whether, if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding.

      The low-order features mentioned in the manuscript refer to visual information encoded intrinsically in V1, independent of task demands. In the foveal experiment, the task is to discriminate the color of fixation, which is unrelated to the category or orientation of the object stimuli. The results showed that only orientation information could be decoded from foveal V1. This indicates that low-order information, such as orientation, is strongly and automatically encoded in V1, even when it is irrelevant to the task. Meanwhile, category information could not be decoded, indicating that category information relies on feedback signals driven by attention or the task to the objects, both of which are absent in the fixation task. Other evidence indicates that category feedback is not driven by low-level features intrinsically encoded in V1. First, the laminar profiles of these two types of feedback information differ considerably (see response to 1.1). Second, only category feedback information was correlated with behavioral performance (MEG experiment). These findings demonstrate that category feedback information is task-driven and differs from the automatically encoded low-order information in foveal V1. The reviewer expressed some uncertainty that, whether “if orientation was a category-specific feature (sharpies are always horizontal and smoothies are vertical), there would still be no category decoding”. Our data showed that orientation could be automatically decoded in V1, regardless of task demand. Thus, if orientation was a category-specific feature in the foveal task (i.e., sharpies are always horizontal and smoothies are always vertical), category decoding would be successful in V1. However, in this scenario, the orientation and other shape features are not independent, thus preventing us to find out whether non-orientation shape features could be decoded in V1.  

      Reviewer #2 (Public review):

      (2.1) While not necessarily a weakness, I do not fully agree with the description of the 2 kinds of feedback information as "low-order" and "high-order". I understand the motivation to do this - orientation is typically considered a low-level visual feature. But when it's the orientation of an entire object, not a single edge, orientation can only be defined after the elements of the object are grouped. Also, the discrimination between spikies and smoothies requires detecting the orientations of particular edges that form the identifying features. To my mind, it would make more sense to refer to discrimination of object orientation as "coarse" feature discrimination, and orientation of object identity as "fine" feature discrimination. Thus, the sentence on line 83, for example, would read "Interestingly, feedback with fine and coarse feature information exhibits different laminar profiles.".

      We agree that the object orientation (invariant to object category or identity) is defined on a larger spatial scale than the local orientation features such as local edges, however, in this sense, the object orientation is a coarse feature. In contrast, the category-defining information is mainly contributed by the local shape information (i.e., little cubes vs. bumps), which is more fine-scale information. One way to look at this difference is that the object orientation information is mainly carried by low-spatial frequency information and will survive low-pass filtering, hence “coarse”; while the object category information would largely be lost if the objects underwent low-pass spatial filtering.

      We believe the labeling words “low-order” and “high-order” are consistent with the typical use of these terms in the literature, referring to features intrinsically encoded in early visual cortex vs. in high level object sensitive cortical regions. The more important aspects of our results are in their differential engagement in feedforward vs. feedback processing, with low-order features automatically represented in the early visual cortex during feedforward processing while high-order features represented due to feedback processing. Results from the foveal fMRI experiment (Exp. 2) strongly support this assumption that, when objects were presented at the fovea and the task was a fixation color task irrelevant to object information, foveal V1 could only represent orientation information, not category information. Notably, there was a dramatic difference in decoding performance in foveal V1 between Exp.1 and Exp.2, which ruled out the argument that both orientation and category information were driven by local edge information represented in V1.

      (2.2) Figure 2 and text on lines 185, and 186: it is difficult to interpret/understand the findings in foveal ROIs for the foveal control task without knowing how big the ROI was. Foveal regions of V1 are grossly expanded by cortical magnification, such that the central half-degree can occupy several centimeters across the cortical surface. Without information on the spatial extent of the foveal ROI compared to the object size, we can't know whether the ROI included voxels whose population receptive fields were expected to include the edges of the objects.

      The ROI of foveal V1 was defined using data from independent localizer runs. In each localizer run, flashing checkerboards of the same size as the objects in the task runs were presented at the fovea or in the periphery. The ROI of foveal V1 was identified as the voxels responsive to the foveal checkerboards. In other words, The ROI of foveal V1 included the voxels whose population receptive fields covered the entire object in the foveal visual field.

      We included a figure in the revised manuscript comparing the activation maps induced by the foveal object stimulus in the task runs with the ROI coverage defined by the localizer runs. 

      (2.3) Line 143 and ROI section of the methods: in order for the reader to understand how robust the responses and analyses are, voxel counts should be provided for the ROIs that were defined, as well as for the number (fraction) of voxels excluded due to either high beta weights or low signal intensity (lines 505-511).

      In the revised manuscript, we have included the number of voxels in each ROI and the criteria for voxel selection:

      For each ROI, the number of voxels depended on the size of the activated region, as estimated from the localizer data. The numbers are as follows: foveal V1, 2185 ± 389; peripheral V1, 1294± 215; LOC, 3451 ± 863; and pIPS, 5154 ± 1517. To avoid the signals of large vessels, a portion of voxels was removed based on the distribution of large vessels: V1 foveal, 22.5% ± 6.6%; V1 peripheral, 6.8% ± 3.9%; LOC, 16.1% ± 8.1% ; and pIPS, 5.1% ± 3.2%. For the decoding analysis, the top 500 responsive voxels in each ROI were selected to balance the voxel numbers across different ROIs for training and testing the decoder.

      (2.4) I wasn't able to find mention of how multiple-comparisons corrections were performed for either the MEG or fMRI data (except for one Holm-Bonferonni correction in Figure S1), so it's unclear whether the reported p-values are corrected.

      For the fMRI results, there is strong evidence showing that feedback information is sent to the foveal V1 during a peripheral object task (Williams et al., 2008; Fan et al., 2016; Yu and Shim, 2016). In addition, anatomical and functional evidence shows that the superficial and deep layers of V1 receive feedback information during visual processing. Therefore, in the current study, we specifically examined two types of feedback information in the superficial and deep layers of foveal V1, and did not apply multiple-comparison correction to the decoding results.

      Regarding the MEG results, since we did not have a strong prior about when feedback information would arrive in the foveal V1, a cluster-based permutation method was used to correct for multiple comparisons in each time course. Specifically, for each time point, the sign of the effect for each participant was randomly flipped 50000 times to obtain the null hypothesis distribution for each time point. Clusters were defined as continuous significant time points in the real and flipped time series, and the effects in each cluster were summed to create a cluster-based effect. The most significant cluster-based effect in each flipped time series was then used to generate the corrected null hypothesis distribution.

      We included these clarifications in Significance testing part of the revised manuscript.

      Reviewer #1 (Recommendations for the authors):

      It would be helpful if the authors could elaborate more on the fMRI decoding results in higher-order visual areas in the Discussion (there are recent studies also investigating higher-order visual areas (Carricarte et al., 2024) and associative areas (Degutis et al., 2024)) and relate it to the MEG information transmission results between the areas overlapping with the regions recorded in the fMRI part of the study.

      We have discussed the fMRI decoding results in the LOC and IPS in the revised manuscript: 

      In the current study, fMRI signals from early visual cortex and two high-level brain regions (LOC and pIPS) were recorded. Neural dynamics of these regions were extracted from MEG signals. Decoding analyses based on fMRI and MEG signals consistently showed that object category information could be decoded from both regions. These findings raise an important question:  Further Granger causality analysis indicates that the feedback information in foveal V1 was mainly driven by signals from the LOC. Layer-specific analysis showed that category information could be decoded in the middle and superficial layers of the LOC. A reasonable interpretation of this result is that feedforward information from the early visual cortex was received by the LOC’s middle layer, then the category information was generated and fed back to foveal V1 through the LOC’s superficial layer. A recent study (Carricarte et al., 2024) found that, in object selective regions in temporal cortex, the deep layer showed the strongest fMRI responses during an imagery task. Together, the results suggest that the deep and superficial layers correspond to different feedback mechanisms. It is worth noting that other cortical regions may also generate feedback signals to the early visual cortex. The current study did not have simultaneously recorded fMRI signals from the prefrontal cortex, but it has been shown that feedback signals can be traced back to the prefrontal cortex during complex cognitive tasks, such as working memory (Finn et al., 2019; Degutis et al., 2024). Further fMRI studies with submillimeter resolution and whole-brain coverage are needed to test other potential feedback pathways during object processing.

      The behavioral performance seems quite low (67%), could authors explain the reasons for it?

      We designed the object stimuli to be difficult to distinguish on purpose. Some of our pilot data showed that the more involved the participants were in the peripheral object task, the easier the foveal feedback information was to decoded. It is reasonable to assume that if the peripheral objects were easily distinguishable, the feedback mechanism may not be fully recruited during object processing. Furthermore, since we were decoding category and orientation information rather than identity information, the difficulty of distinguishing two objects from the same category and with the same orientation would not affect the decoding of category and orientation information in the neural signals.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 52: the meaning of the sentence starting with "However, ..." is not entirely clear. Maybe the word "while" is missing after the first comma?

      (2) Line 224. If I'm understanding the rationale for the MEG analysis correctly, it was not possible to localize foveal regions, but the cross-location decoding analysis was used to approximate the strength and timing of feedback information. If this is the case, "neural representations in the foveal region" were not extracted.

      (3) Figure 4. The key information is too small to see. The lines indicating where decoding performance was significant are quite thin but very important, and the text next to them indicating onset times of significant decoding is in such a small font size I needed to zoom in to 300% to read it (yes, my eyes are getting old and tired). Increasing the font size used to represent key information would be nice.

      (4) Figure 4 caption. Line 270 describes the line color in the plots as yellow, but that color is decidedly orange to my eye.

      (5) Line 340/341: Papers that define and describe feedback-receptive fields seem important to cite here:

      Keller, A. J., Roth, M. M., & Scanziani, M. (2020). Feedback generates a second receptive field in neurons of the visual cortex. Nature, 582(7813), 545-549.

      Kirchberger, L., Mukherjee, S., Self, M. W., & Roelfsema, P. R. (2023). Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. Science advances, 9(3), eadd2498.

      (6) Lines 346-350: this sentence seems to have some missing or misused words, because the syntax isn't intact.

      (7) Line 367: supports should be support.

      We thank the reviewers for the comments and have corrected them in the manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Wang, Junxiu et al. investigated the underlying molecular mechanisms of the insecticidal activity of betulin against the peach aphid, Myzus persicae. There are two important findings described in this manuscript: (a) betulin inhibits the gene expression of GABA receptor in the aphid, and (b) betulin binds to the GABA receptor protein, acting as an inhibitor. The first finding is supported by RNA-Seq and RNAi, and the second one is convinced with MST and electrophysiological assays. Further investigations on the betulin binding site on the receptor protein provided a fundamental discovery that T228 is the key amino acid residue for its affinity, thereby acting as an inhibitor, backed up by site-directed mutagenesis of the heterologously-expressed receptor in E. coli and by CRISPR-genome editing in Drosophila.

      Although the manuscript does have strengths in principle, the weaknesses do exist: the manuscript would benefit from more comprehensive analyses to fully support its key claims in the manuscript. In particular:

      (1) The Western blotting results in Figure 5A & B appear to support the claim that betulin inhibits GABR gene expression (L26), as a decrease in target protein levels is often indicative of suppressed gene expression. The result description for Figure 5A & B is found in L312-L316, within Section 3.6 ("Responses of MpGABR to betulin"), where MST and voltage-clamp assays are also presented. It seems the observed decrease in MpGABR protein content is due to gene downregulation, rather than a direct receptor protein-betulin interaction. However, this interpretation lacks discussion or analysis in either the corresponding results section or the Discussion. In contrast, Figures 5C-F are specifically designed to illustrate protein-betulin interactions. Presenting Figure 5A & B alongside these panels might lead to confusion, as they support distinct claims (gene expression vs. protein binding/inhibition). Therefore, I recommend moving Figure 5A & B either to the end of Figure 3 or to a separate figure altogether to improve clarity and logical flow. A minor point in the Western blotting experiment is that although GAPDH was used as a reference protein, there is no explanation in the corresponding M&M section.

      We thank the reviewer for the concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses.

      (A) According to your suggestion, the original Figure 5A and B have been inserted into Figure 3, following Figure 3D. The original Figure 3E-I has been saved as a new figure, to illustrate the RNAi assay.

      (b) “GAPDH was used as a reference protein” has been supplied in the M&M section, see

      Line 209.

      (2) The description of the electrophysiological recording experiment is unclear regarding the use of GABA. I didn't realize that GABA, the true ligand of the GABA receptor, was used in this inhibition experiment until I reached the Results section (L321), which states, "In the presence of only GABA, a fast inward current was generated." Crucially, no details are provided on the experiment itself, including how GABA was applied (e.g., concentration, duration, whether GABA was treated, followed by betulin, or vice versa). This information is essential for reproducibility. Please ensure these details are thoroughly described in the corresponding M&M section.

      We thank the reviewer for the valuable comments.

      (a) Detailed information on how to apply GABA has been added to the corresponding M&M section (Lines 260-263): After 3 days of incubation, the oocytes were used for electrophysiological recording. GABA was dissolved in 1 × Ringer's solution to prepare 100 µM GABA solution. Subsequently, the 100 µM GABA solutions containing different concentrations of betulin (0, 5, 10, 20, 40, 80, 160, 320 µM) were used to perfuse the oocytes.

      (b) Additionally, we also checked other contents of M&M section to ensure that sufficient detail has been supplied.

      (3) The phylogenetic analysis, particularly concerning Figures 4 and 6B, needs significant attention for clarity and representativeness. First, your claim that MpGABR is only closely related to CAI6365831.1 (L305-L310) is inconsistent with the provided phylogenetic tree, which shows MpGABR as equally close to Metopolophium dirhodum (XP_060864885.1) and Acyrthosiphon pisum (XP_008183008.2). Therefore, singling out only Macrosiphum euphorbiae (CAI6365831.1) is not supported by the data. Second, the representation of various insect orders is insufficient. All 11 sequences in the Hemiptera category (in both Figure 4 and Figure 6B) are exclusively from the Aphididae family. This small subset cannot represent the highly diverse Order Hemiptera. Consequently, statements like "only THR228 was conserved in Hemiptera" (L338), "The results of the sequence alignment revealed that only THR228 was conserved in Hemiptera" (L430), or "THR228... is highly conserved in Hemiptera" (L486) are not adequately supported. Third, similar concerns apply to the Diptera order, which includes 10 Drosophila and 2 mosquito samples (not diverse or representative enough), and likely to other orders as well. Thereby, the Figure 6B alignment should be revised accordingly to reflect a more accurate representation or to clarify the scope of the analysis. Fourth, there's a discrepancy in the phylogenetic method used: the M&M section (L156) states that MEGA7, ClustalW, and the neighbor-joining method were used, while the Figure 4 caption mentions that MEGA X, MUSCLE, and the Maximum likelihood method were employed. This inconsistency needs to be clarified and made consistent throughout the manuscript. Fifth, I have significant concerns about the phylogenetic tree itself (Figure 4). A small glitch was observed at the Danaus plexippus node, which raises suspicion regarding potential manipulation after tree construction. More critically, the tree, especially within Coleoptera, does not appear to be clearly resolved. I am highly concerned about whether all included sequences are true GABR orthologs or if the dataset includes partial or related sequences that could distort the phylogeny. Finally, for Figure 6B, both protein (XP_) and nucleotide (XM_) sequences were mix used. I recommend using the protein sequences instead of nucleotide sequences in this figure panel, as protein sequences are more directly informative.

      We thank the reviewer for the careful reading and valuable comments.

      (a) Firstly, according to your comments, phylogenetic analysis has been re-performed with more represent species from each Order (Fig. 5 and Fig. 7B). The results revealed that only THR228 was conserved across 11 species in the Aphididae family of Hemiptera. Therefore, the expressions like "only THR228 was conserved in Hemiptera" have been revised to “among the four residues, only THR228 was conserved across 11 species in the Aphididae family of Hemiptera” (Line 106, Line 369, Line 477, and Lines 563-564).

      (b) We have modified the description of Fig. 5 (the original Fig. 4): MpGABR  (XP_022173711.1) was found to be genetically closely related to CAI6365831.1 from Macrosiphum euphorbiae, XP 008183008.2 from Acyrthosiphon pisum, and XP 060864885.1 from Metopolophium dirhodum (Fig. 5 and Table S6). See Lines 342-346.

      (c) Phylogenetic analysis was performed using MEGA7 with multiple amino acid sequence alignment (ClustalW) and the neighbor-joining method. We have revised the Fig. 5 (the original Fig. 4) caption to make it accurate and consistent throughout the manuscript.

      (d) We are sorry about the small glitch at the Danaus plexippus node. Actually, after the phylogenetic tree was constructed, it was imported in Adobe Illustration for coloring and classification annotation. There may have been operational errors during the process of resizing the image, resulting in the occurrence of the small glitch. Besides, the unclear clustering of Coleoptera may be due to improper regulation of distance (pixels) of branch from nodes. Again, thanks for your careful reading. We have rebuilt the phylogenetic tree.

      (e) Based on your suggestion, the sequence IDs have been unified as the protein sequence IDs (Fig. 5, Fig. 7B and Table S6)

      (4) The Discussion section requires significant revision to provide a more insightful and interpretative analysis of the results. Currently, much of the section primarily restates findings rather than offering deeper discussion. For instance, L409-L419 restate the results, followed by the short sentence "Collectively, these results suggest that betulin may have insecticidal effects on aphids by inhibiting MpGABR expression". It could be further expanded to make it beneficial to elaborate on proposed mechanisms by which gene expression might be suppressed, including any potential transcription factors involved. In contrast, while L422-L442 also initially summarize results, the subsequent paragraph (L445-L472) effectively discusses the potential mechanisms of inhibitory action and how mortality is triggered, which is a good model for other parts of the section. However, all the discussion ends up with a short statement, "implying that betulin acts as a CA of MpGABR" (L472), which appears to be a leap. The inference that betulin acts as a competitive antagonist (CA) is solely based on the location of its extracellular binding site, which does not exactly overlap with the GABA binding site. It needs stronger justification or actually requires further experimental validation. The authors should consider rephrasing this statement to acknowledge the need for additional studies to definitively confirm this mechanism of action.

      We appreciate the reviewer's careful reading and valuable feedback, which will certainly enhance the quality of our manuscript.

      (a) Possible reasons for the effect of betulin on MpGABR expression have been discussed in our manuscript (Lines 455-466): The regulation of gene expression is sophisticated and delicate (Pope and Medzhitov 2018). The regulatory network controlling GABR expression remains unclear. In adult rats, epileptic seizures has been reported to increase the levels of brain-derived neurotrophic factor (BDNF), which in turn prompted the transcription factors CREB and ICER to reduce the gene expression of the GABR α1 subunit (Lund et al. 2008). In Drosophila, it has been demonstrated that WIDE AWAKE, which regulated the onset of sleep, interacted with the GABR and upregulated its expression level (Liu et al. 2014). In Drosophila brain, circular RNA circ_sxc was found to inhibit the expression of miR-87-3p in the brain through sponge adsorption, thereby regulating the expression of neurotransmitter receptor ligand proteins, including GABR, and ensuring the normal function of synaptic signal transmission in brain neurons (Li et al. 2024). However, it remains unclear how betulin reduces the expression of MpGABR, and further research is needed.

      (b) In the Discussion section, we acknowledged the need for further research to ultimately confirm the mechanism by which betulin competes with GABA for binding to MpGABR (Lines 532-535): Although the mechanism by which betulin competes with GABA for binding to MpGABR requires further experimental validation, our work may have provided a novel target for developing insecticides.

      (c) Besides, we have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (d) Furthermore, the discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-553): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin has specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. In summary, before any field application, further research is needed on the environmental behavior, degradation process, and safety of betulin.

      Reviewer #2 (Public review):

      Summary:

      This important study shows that betulin from wild peach trees disrupts neural signaling in aphids by targeting a conserved site in the insect GABA receptor. The authors present a nicely integrated set of molecular, physiological, and genetic experiments to establish the compound's species-specific mode of action. While the mechanistic evidence is solid, the manuscript would benefit from a broader discussion of evolutionary conservation and

      potential off-target ecological effects.

      Strengths:

      The main strengths of the study lie in its mechanistic clarity and experimental rigor. The identification of a betulin-binding single threonine residue was supported by (1) site-directed mutagenesis and (2) functional assays. These experiments strongly support the specificity of action. Furthermore, the use of comparative analyses between aphids and fruit flies demonstrates an important effort to explore species specificity, and the integration of quantitative data further enhances the robustness of the conclusions.

      Weaknesses:

      There are several important limitations that need to be addressed. The manuscript does not explore whether the observed sensitivity to betulin reflects a broadly conserved feature of GABA receptors across animal lineages or a more lineage-specific adaptation. This evolutionary context is crucial for understanding the broader significance of the findings.

      In addition, while the compound's aphicidal effect is well established, the potential for off-target effects in non-target organisms - especially vertebrates - remains unaddressed, despite prior evidence that betulin interacts with mammalian GABAa receptors. There is little discussion on the ecological or environmental safety of exogenous betulin application, such as persistence, degradation, or exposure risks.

      We sincerely thank the reviewer for the time and effort dedicated to our manuscript's detailed review and assessment. The revision suggestions were constructive, and we have provided a point-by-point response to address them.

      (a) Briefly introduce the evolutionary conservation of GABA receptors has been added in the Introduction (Lines 90-98): Previous study has proposed that vertebrate and human GABR genes maintain a broad and conservative gene clustering pattern, while in invertebrates, this pattern is missing, indicating that these gene clusters formed early in vertebrate evolution and were established after diverging from invertebrates. Notably, invertebrates each possess a unique GABR gene pair, which are homologous with human GABR α and β subunits, suggesting that the existing GABR gene cluster evolved from an ancestral α - β subunit gene pair (Tsang et al. 2006). During the coevolution of plants and insects, the duplications and amino acid substitutions in GABR may be beneficial for the adaptation to insecticides and terpenoid compounds (Guo et al. 2023).

      (b) We have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (c) The discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-553): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin has specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. In summary, before any field application, further research is needed on the environmental behavior, degradation process, and safety of betulin.

      Reviewer #1 (Recommendations for the authors):

      (1) L28 Provide the full name of MST.

      Thanks for your suggestion. The full name of MST, microscale thermophoresis, has been supplied.

      (2) L87 in the Order Hemiptera.

      Thanks for your suggestion. Corrected.

      (3) L99 "Leaf bioassay" would be better to differentiate the greenhouse and field bioassays.

      Thanks for your suggestion. Corrected.

      (4) L104 It should be 7 doses, including the "0 mg/mL" control.

      Thanks for your suggestion. Corrected.

      (5) L104 Since the LC50 of pymetrozine is 1.0612 mg/mL, a wider range of doses should have been tested compared to the dose range of betulin.

      Thanks for your comment.

      (a) Firstly, seven doses (0, 0.0625, 0.125, 0.25, 0.5, 1, and 2 mgmL<sup>-1</sup>) were set to calculate the LC50 of betulin and pymetrozine. Since the LC50 values of betulin and pymetrozine are 0.1641 and 1.0612 mgmL<sup>–1</sup>, respectively, which are within the set range, indicating that the set dose range is reasonable and the LC50 values of betulin and pymetrozine are reliable.

      (b) To compare the control effects of betulin and pymetrozine against M. persicae, LC50 of betulin (0.1641 mgmL<sup>-1</sup>) and pymetrozine (1.0612 mgmL<sup>-1</sup>) were used to treat M. persicae.

      (6) L109 Greenhouse and field bioassays.

      Thanks for your suggestion. Corrected.

      (7) L112 Tween-80 and acetone in L103. Keep the order consistent throughout the manuscript.

      Thanks for your suggestion. Corrected.

      (8) L122 Mortality was recorded at 1, 5, 9, and 14 days after treatment. Revise the other similar mistakes throughout the manuscript (e.g. L250, L254, L255, L256, L259, etc.).

      Thanks for your suggestion. Corrected.

      (9) L126 apterous instead of wingless (keep a consistent expression).

      Thanks for your suggestion. Corrected.

      (10) L138 Primer Premier?

      Thanks for your comment. Corrected.

      (11) L141 Add RPS18 primers in Table S2.

      Thanks for your comment. Corrected.

      (12) L155 MEGA7 vs. MEGAX (as described in the Figure 4 caption).

      Thanks for your comment. Corrected.

      (13) L156 NJ method vs. ML method (as described in the Figure 4 caption).

      Thanks for your comment. Corrected.

      (14) L157 2.7. RNAi assay (Remove "In vitro" and re-number the following M&M sections accordingly).

      Thanks for your comment. Corrected.

      (15) L163 Add dsGFP primers in Table S2.

      Thanks for your comment. Corrected.

      (16) L166 apterous instead of wingless (keep a consistent expression).

      Thanks for your comment. Corrected.

      (17) L172 Add the source of pET-B2M vector.

      pET-B2M vector was obtained from BGI (Shenzhen, China), which has been added in our manuscript (Line 194).

      (18) L195 coding sequence instead of cDNA.

      Thanks for your comment. Corrected.

      (19) L198 the mutations of R224A ...

      Thanks for your comment. Corrected.

      (20) L199 TYR), or T228R ...

      Thanks for your comment. Corrected.

      (21) L211 and 90 ng.

      Thanks for your comment. Corrected.

      (22) L213 genomic DNA instead of gDNA, because gDNA may be confused in the context of sgRNA.

      Thanks for your suggestion. Corrected.

      (23) L253 (Fig. 1A-B).

      Thanks for your comment. Corrected.

      (24) L268 Explain why these 15 DEGs were selected for qRT-PCR.

      Thanks for your comment. These 15 DEGs were randomly selected and act as representative DEGs with different expression levels. The reason for selection of these 15 DEGs were added in the manuscript (Lines 295-296).

      (25) L287 What about GABRB? It has a TM domain.

      GABRB refers to “gamma-aminobutyric acid receptor subunit beta-like” annotated on NCBI. Theoretically, it should contain four transmembrane structural domains, while it has only one, indicating that it is incomplete.

      (26) L297 Add dsGFP as another control group.

      Thanks for your comment. Corrected.

      (27) L299 increased by 30.44% (Remove a comma).

      Thanks for your comment. Corrected.

      (28) L308 XM_022318019.1 (or protein accession number with XP_).

      Thanks for your comment. Corrected.

      (29) L338 that THR228 was conserved only in Hemiptera.

      Thanks for your comment. Since our original intention was to emphasize that THR228 is the only conserved among the four key amino acid residues, after careful consideration, we retained the expression "only THR228".

      (30) L342 or T228R.

      Thanks for your comment. Corrected.

      (31) L382 Is pyrhidone a general name for pymetrozine?

      Thanks for your comment. Corrected.

      (32) L450 Remove "and so on".

      Thanks for your comment. Corrected.

      (33) Figure 1D: Remove "Environment friendly". Replace the plant pot image on the right side with the one sprayed with pymetrozine, like the one in Figure 1F.

      Thanks for your comment. 

      (a) "Environment friendly" in Figure 1D has been removed.

      (b) We have attempted to modify the Figure 1D according to your suggestion. However, the modified Figure 1D is similar to Figure 1F and appears monotonous. Therefore, we have retained the original framework of Figure 1D.

      (34) Figure 2E 111036117 and 111041856 are in different IDs (XM_). I suggest keeping GeneID in Figure 2E and Table S2, as shown in Table S4.

      Thanks for your comment. Corrected.

      (35) Figure 2H: Add unit of the heatmap values. Or just add the title (e.g., expression level) on top of the bar.

      Thanks for your comment. Corrected.

      (36) Figure 3A: Add "aa" next to 700.

      Thanks for your comment. Corrected.

      (37) Figure 3E-G: Revise the tick marks on Y-axis: 0.0, 0.5, 1.0, and 1.5.

      Thanks for your comment. Corrected.

      (38) Figure 5C: Remove "1" and move "WT" up to the position where "1" was.

      Thanks for your comment. Corrected.

      (39) Figure 5D: Revise the tick marks on the Y-axis: 0.0, 0.5, 1.0, and 1.5.

      Thanks for your comment. Corrected.

      (40) Figure 5E: Remove the decimal. (e.g. 5 uM, 10 uM, 20 uM, etc.).

      Thanks for your comment. Corrected.

      (41) Figure 6B: What are the numbers next to the amino acid sequences? Provide the information in the figure caption.

      Thanks for your comment. The numbers next to the amino acid indicates the site of the last residue of the key amino acids, which was supplied in the figure caption.  

      (42) Figure 6D: Revise the tick marks on the Y-axis: 0.0, 0.5, 1.0, and 1.5. The X-axis title should be betulin (see Figure 5D). In the figure caption at the 5th row from the top, R244A should be R224A.

      Thanks for your comment. Corrected.

      (43) Figure 7E: R122T (not R1272T).

      Thanks for your comment. Corrected.

      (44) Supplementary Figure 1: It should be Figure S1. Add dsGFP in the figure caption.

      Thanks for your comment. Corrected.

      (45) Figure S2: What are the two pink bars and the other bars in brown or blue? Add an appropriate explanation in the figure caption.

      Thanks for your comment. Corrected.

      (46) Table S1: r square?

      Thanks for your comment. It is “r square” and corrected.

      (47) Table S2: (a) Add horizontal lines to separate qPCR, RNAi, cloning, and heterologous expression from each other (b) Replace XM_022318017.1 and XM_022318019.1 with their corresponding GeneIDs, as shown in Table S4. (c) AK340444.1 is a sequence from another aphid (Acyrthosiphon pisum)-Revise it. (d) In the cloning primers, place MpGABR first, followed by MpGABRAP and MpGABRB, as shown in the manuscript and Table S5. (e) Also, in the cloning primers, MpGABRB and MpGABRAP use reverse primers without stop codon, while MpGABR uses stop codon (TCA = TGA in reverse)-Revise it accordingly. Otherwise, provide the reason.

      Thanks for your comment. Corrected.

      (48) Table S3: (a) Add "Drosophila melanogaster" and the target sequence ID in the table caption. Is it KF881792.1, as shown in Table S6? (b) Align the sequences to the left side. 

      Thanks for your comment. 

      (a) The GenBank number of target sequence is KF881792.1 (Drosophila melanogaster). We have added this information in the Table S3 note.

      (b) It has been adjusted according to your suggestion.

      (49) Table S5: (a) Replace the accession numbers with GeneID, as shown in Table S4. K340444.1 is a sequence from another aphid (Acyrthosiphon pisum), (b) Coding sequences with stop codon are 2082, 357, and 753, respectively, while the sequences without stop codon are 2079, 354, and 750, respectively. The lengths of the deduced amino acids are 693, 118, and 250. Revise accordingly.

      Thanks for your comment. Corrected.

      (50) Table S6: (a) Use GenBank No for protein sequences. There is no Gene ID in this table. (b) Order (instead of Class). (c) See my comment on the phylogenetic analysis above.

      Thanks for your comment. Corrected.

      (51) Table S7 (a) Add unit under "Binding Energy". (b) There are two ALA226 [Alkyl] with two different distances. (c) PHE227 at the bottom should be THR228?

      Thanks for your comment.

      (a) The unit of "Binding Energy" was kcalmol<sup>–1</sup>, and it was added in the table caption.

      (b) Refer to Figure 6A, there were two Alkyl interaction between ALA226 and betulin. Therefore, there were two ALA226 [Alkyl] with two different distances.

      (c) Similarly, there were two Pi-Alkyl interactions between PHE227 and betulin. Thus, there were two rows of PHE227 in the table.

      (52) Table S9 (a) R117T should be R122T. (b) r square?

      Thanks for your comment. a and b Corrected.

      Reviewer #2 (Recommendations for the authors):

      (1) Introduction

      (a) It lacks a deeper biological and evolutionary framing of the GABA receptor system. As GABA receptors are highly conserved across animal taxa, the observed interaction between betulin and the aphid GABA receptor could have broader implications. This possibility is not addressed in the current version, which limits the reader's appreciation of the relevance of this mode of action.

      (b) Previous reports of betulin activity in mammalian systems are not mentioned in the introduction, even though they are directly relevant to concerns about off-target toxicity. Therefore, the introduction should be revised to (i) briefly introduce the evolutionary conservation of GABA receptors, and (ii) acknowledge that betulin may affect a broader range of organisms, which sets up the need for caution in its application.

      Thanks for your important suggestions.

      (a) Briefly introduce the evolutionary conservation of GABA receptors has been added in the Introduction (Lines 90-98): Previous study has proposed that vertebrate and human GABR genes maintain a broad and conservative gene clustering pattern, while in invertebrates, this pattern is missing, indicating that these gene clusters formed early in vertebrate evolution and were established after diverging from invertebrates. Notably, invertebrates each possess a unique GABR gene pair, which are homologous with human GABR α and β subunits, suggesting that the existing GABR gene cluster evolved from an ancestral α - β subunit gene pair (Tsang et al. 2006). During the coevolution of plants and insects, the duplications and amino acid substitutions in GABR may be beneficial for the adaptation to insecticides and terpenoid compounds (Guo et al. 2023).

      (b) The possible effects of betulin on a broader range of organisms have been acknowledged in the Introduction section (Lines 68-77): An immune stimulant, Ir-Bet, was prepared using iridium complex and betulin, which evoked ferritinophagy-enhanced ferroptosis, thereby activating anti-tumor immunity (Lv 2023). The anti-inflammatory effect of betulin has been reported in macrophages at lymphoma site in mice (Szlasa et al. 2023). Betulin has been found to improve hyperlipidemia and insulin resistance and decrease atherosclerotic plaques by inhibiting the maturation of sterol regulatory element-binding protein (Tang et al. 2011). Besides, betulin and its derivatives have been found to exhibit insecticidal activity against Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024).

      (c) At the end of the introduction, we remind that betulin should be used with caution (Lines 111-112): However, given that betulin may affect a wider range of organisms, it should be used with caution.

      (2) Method

      Number of biological replicates in all assays and justification of thresholds used for significance in RNAi and survival experiments are not addressed in the manuscript.

      Thanks for your careful reading. We have checked Materials and Methods section and added corresponding number of biological replicates in all assays. Besides, the p-values for the corresponding significance analyses of RNAi and survival experiments have been added to our Manuscript.

      (2)  Discussion

      (a) Consistent with the comments on the Introduction, the absence of discussion on (i) the evolutionary conservation of GABA receptor sensitivity to betulin, (ii) potential off-target effects in non-target insects and vertebrates (if so, this cannot be use for "eco-friendly pesticide" as the authors stated in the manuscript), and (iii) ecological risks associated with the exogenous application of betulin limits both the interpretive depth and applied relevance of the study.

      (b) To strengthen the Discussion, the authors should consider addressing: (i) whether the observed sensitivity reflects a conserved pharmacological vulnerability across animal taxa or a lineage-specific adaptation; (ii) the potential ecological risks of deploying betulin as a bioinsecticide, and (iii) the need for future research into the environmental fate, degradation, and safety profile of betulin prior to any field-level application.

      Thank you for your valuable comments.

      (a) We have added the discussion of the sensitivity of GABA receptor to betulin in Discussion section (Lines 491-501): Studies on key amino acids that are crucial for GABR function has primarily focused on transmembrane regions. For instance, based on the mutational research and Drosophila GABR modeling approach, multiple key amino acids were identified as insecticide targets in the transmembrane domain (Nakao and Banba 2021). Guo et al. proposed that amino acid substitutions in the transmembrane domain 2 contribute to terpenoid insensitivity during plant-insect coevolution (Guo et al. 2023). However, these studies have neglected the extracellular domain. Our study signified that betulin targets the THR228 site in the extracellular domain of MpGABR, which is conserved only in the Aphididae family. Therefore, betulin is speculated to be a specific insecticidal substance evolved by plants in response to aphid infestation. Besides, further verification is needed to determine whether betulin is toxic to other insect species.

      (b) The discussion of potential ecological risks of deploying betulin as a bioinsecticide has been elaborated in our manuscript (Lines 538-551): The development of bioinsecticides should not only focus on the toxic effects of active substance on target organisms, but also on their influence on the ecosystem (Haddi et al. 2020). Although our results indicate that betulin had specific toxicity to aphids, previous studies have reported that betulin and its derivatives had effects on Plutella xylostella L. (Huang et al. 2025), Aedes aegypti (de Almeida Teles et al. 2024), and Drosophila melanogaster (Lee and Min 2024). Therefore, further research is needed to determine whether there are other insecticidal mechanisms or off target effects of betulin. Additionally, betulin exhibits a wide range of pharmacological activities (Amiri et al. 2020), which have been used to treat various diseases, such as cancer (Lv 2023), glioblastoma (Li et al. 2022), inflammation (Szlasa et al. 2023) and hyperlipidemia (Tang et al. 2011). Before applying betulin in the field, it is necessary to fully verify and consider whether betulin has any impact on farmers' health. Furthermore, will betulin cause residue or diffusion in the process of field application? Will long-term application promote the evolution of resistance to aphids or other insects? These issues also need further experimental verification. 

      (c) Additionally, at the end of the Discussion, we remind that more research is needed before any field application of betulin (Lines 551-553): In summary, before any field application, further research on the environmental behavior, degradation process, and safety of betulin is needed.

      Reference

      Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori M, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los M, Mokarram P, Madrakian T, Ghavami S. 2020. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnology Advances 38: 107409.

      de Almeida Teles AC, dos Santos BO, Santana EC, Durço AO, Conceição LSR, Roman Campos D, de Holanda Cavalcanti SC, de Souza Araujo AA, dos Santos MRV. 2024.

      Larvicidal activity of terpenes and their derivatives against Aedes aegypti: a systematic review and meta-analysis. Environmental Science and Pollution Research 31: 64703-64718.

      Guo L, Qiao X, Haji D, Zhou T, Liu Z, Whiteman NK, Huang J. 2023. Convergent resistance to GABA receptor neurotoxins through plant–insect coevolution. Nature Ecology & Evolution 7: 1444-1456.

      Haddi K, Turchen LM, Viteri Jumbo LO, Guedes RN, Pereira EJ, Aguiar RW, Oliveira EE. 2020. Rethinking biorational insecticides for pest management: unintended effects and consequences. Pest Management Science 76: 2286-2293.

      Huang X, Hao N, Shu L, Wei Z, Shi J, Tian Y, Chen G, Yang X, Che Z. 2025. Preparation and insecticidal activities of betulin-cinnamic acid-related hybrid compounds and insights into the stress response of Plutella xylostella L. Pest Management Science 81: 4243-4255.

      Lee HY, Min KJ. 2024. Betulinic acid increases the lifespan of Drosophila melanogaster via Sir2 and FoxO activation. Nutrients 16: 441.

      Li Q, Wang L, Tang C, Wang X, Yu Z, Ping X, Ding M, Zheng L. 2024. Adipose tissue exosome circ_sxc mediates the modulatory of adiposomes on brain aging by inhibiting brain dme-miR-87-3p. Molecular Neurobiology 61: 224-238.

      Li Y, Wang Y, Gao L, Tan Y, Cai J, Ye Z, Chen A, Xu Y, Zhao L, Tong S, Sun Q, Liu B, Zhang S, Tian D, Deng G, Zhou J, Chen Q. 2022. Betulinic acid self-assembled nanoparticles for effective treatment of glioblastoma. Journal of Nanobiotechnology 20: 39.

      Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, Bharadwaj R, Zhang J, Bedont J,

      Blackshaw S, Lloyd Thomas E, Montell C, Sehgal A, Koh K, Wu Mark N. 2014. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron 82: 151-166.

      Lund IV, Hu Y, Raol YH, Benham RS, Faris R, Russek SJ, Brooks Kayal AR. 2008. BDNF selectively regulates GABAA receptor transcription by activation of the JAK/STAT pathway. Science Signaling 1: ra9.

      Lv M, Zheng Y, Wu J, Shen Z, Guo B, Hu G, Huang Y, Zhao J, Qian Y, Su Z, Wu C, Xue X, Liu H, Mao Z. 2023. Evoking ferroptosis by synergistic enhancement of a cyclopentadienyl iridium-betulin immune agonist. Angewandte Chemie International Edition 62: e202312897.

      Nakao T, Banba S. 2021. Important amino acids for function of the insect Rdl GABA receptor. Pest Management Science 77: 3753-3762.

      Pope SD, Medzhitov R. 2018. Emerging principles of gene expression programs and their regulation. Molecular Cell 71: 389-397.

      Szlasa W, Ślusarczyk S, Nawrot Hadzik I, Abel R, Zalesińska A, Szewczyk A, Sauer N, Preissner R, Saczko J, Drąg M, Poręba M, Daczewska M, Kulbacka J, Drąg Zalesińska M. 2023. Betulin and its derivatives reduce inflammation and COX-2 cctivity in macrophages. Inflammation 46: 573-583.

      Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL. 2011. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metabolism 13: 44-56.

      Tsang SY, Ng SK, Xu Z, Xue H. 2006. The evolution of GABAA receptor–like genes. Molecular Biology and Evolution 24: 599-610.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors study the steady-state solutions of ODE models for molecular signaling involving ligand binding coupled to multi-site phosphorylation at saturating ligand concentrations. Although the results are in principle general, the work highlights the receptor tyrosine kinases (RTK) as model systems. After presenting previous ODE model solutions, the authors present their own "kinetic sorting" model, which is distinguished by ligand-induced phosphorylationdependent receptor degradation and the property that every phosphorylation state is signaling competent. The authors show that this model recovers the two types of non-monotonicity experimentally reported for RTKs: maximum activity for intermediate ligand affinity and maximum activity for intermediate kinase activity.

      The main contribution of the work is in demonstrating that their model can capture both types of non-monotonicity, whereas previous models could at most capture non-monotonicity of ligand binding.

      Strengths:

      The question of how energy-dissipating, and thus non-equilibrium, molecular systems can achieve steady-state solutions not accessible to equilibrium systems is of fundamental importance in biomolecular information processing and self-organization. Although the authors do not address the energy requirements of their non-equilibrium model, their comparative analysis of different alternative non-equilibrium models provides insight into the design choices necessary to achieve non-monotonic control, a property that is inaccessible at equilibrium.

      The paper is succinctly written and easy to follow, and the authors achieve their aims by providing convincing numerical solutions demonstrating non-monotonicity over the range of parameter values encompassing the biologically relevant regime.

      Weaknesses:

      (1) A key motivating framework for this work is the argument that the ability to tune to recognize intermediate ligand affinities provides a control knob for signal selection that is available to nonequilibrium systems. As such, this seems like a compelling type of ligand selectivity, which is a question of broad interest. However, as the authors note in the results, the previously published "limited signaling model" already achieves such non-monotonicity in ligand binding affinity. The introduction and abstract do not clearly delineate the new contributions of the model.

      We thank the reviewer for this comment. We apologize for any unclear language on our part. The purpose of our work was not to identify the unique reaction scheme to obtain nonmonotonic dependence of network activity on ligand affinity and kinase activity. Rather, we were interested in exploring how such a dependence could arise from the interplay between two ubiquitous network motifs (multisite phosphorylation and active receptor degradation). Notably, as the reviewer later points out, previous models that incorporate only multisite phosphorylation only capture the non-monotonic dependence of network activity on ligand affinity and not kinase/phosphatase activity. We have now clarified this in the abstract (lines 14-16) and the introduction (lines 55-59). 

      The novel benefit of the model introduced by the authors is that it also achieves a nonmonotonic response to kinase activity. Because such non-monotonicity is observed for RTK, this would make the authors' model a better fit for capturing RTK behavior. However, the broad significance of achieving non-monotonicity to kinase activity is not motivated or supported by empirical evidence in the paper. As such, the conceptual significance of the modified model presented by the authors is not clear.

      We thank the reviewer for this comment. We agree that the ability of our model to reproduce non-monotonic dependence on kinase/phosphatase activity was not sufficiently motivated in the original submission. We have now added a brief mention of the biological motivation for nonmonotonic kinase activity in the discussion (lines 229-247) to describe the potential biological significance of this behavior. In particular, non-monotonic kinase/phosphatase dependence may act as a safeguard, filtering out signaling cells with abnormally elevated kinase activity or suppressed phosphatase activity. In the presence of non-monotonic dependence on network activity, downstream signaling would remain contingent on extracellular cues, and cells with extreme kinase/phosphatase imbalances would fail to signal. This could prevent persistent, cueindependent activation, an especially important protective mechanism in pathways regulating metabolically taxing functions such as growth, proliferation, or mounting immune responses. Although direct experimental evidence for the widespread use of this mechanism is currently scarce, our motivation is supported both by the presence of similar regulatory behaviors of phosphatases which arise through distinct mechanisms (such as CD45 in T-cell receptor signaling, (Weiss, 2019)), but highlight the potential biological use of this strategy and by theoretical work on phosphorylation-dephosphorylation cycles, which demonstrates a similar effect in more general settings (Swain, 2013).

      (2) Whereas previous models used in the literature are schematized in Figure 1, the model proposed by the authors is missing (see line 97 of page 3). Without the schematic, the text description of the model is incomplete.

      We thank the reviewer for identifying this oversight, it has been corrected. See Figure 3 in the new text. 

      (3) The authors use the activity of the first phosphorylation site as the default measure of activity. This choice needs to be justified. Why not use the sum of the activities at all sites?

      We thank the reviewer for this comment. We in fact study all sites (Figure 5A in the resubmitted manuscript). Notably, as suggested by the reviewer, the concentration of the first site is indeed represented by the sum of concentrations of all phosphorylated species. The concentration of the 2<sup>nd</sup> site is represented by the sum of concentrations of all species except for the first one and so on (lines 153-155). 

      Reviewer #2 (Public review):

      Summary:

      In classical models of signaling networks, the signaling activity increases monotonically with the ligand affinity. However, certain receptors prefer ligands of intermediate affinity. In the paper, the authors present a new minimal model to derive generic conditions for ligand specificity. In brief, this requires multi-site phosphorylation and that high-anity complexes be more prone to degrade. This particular type of kinetic discrimination allows for overcoming equilibrium constraints.

      Strengths:

      The model is simple, and it adds only a few parameters to classical generic models. Moreover, the authors vary these additional parameters in ranges based on experimental observations. They explain how the introduction of these new parameters is essential to ligand specificity. Their model quantitatively reproduces the ligand specificity of a certain receptor. Finally, they provide a testable prediction.

      Weaknesses:

      The naming of certain variables may be confusing to readers.

      We apologize for the confusion due to unclear presentation. We have clarified our definitions throughout the manuscript. 

      Reviewer #1 (Recommendations for the authors):

      (1) The abstract and introduction present the problem as if this model is solving the fundamental problem of non-monotonic dependence on ligand affinity. However, as the authors noted in their results, this problem has already been solved by a previous phosphorylation model with N-state degradation. What the authors' new model achieves is the additional experimentally observed non-monotonicity of kinase activity dependence. The abstract and introduction should be changed to reflect the actual novel contributions and also to motivate the biological significance of non-montonic kinase activity dependence.

      We thank the reviewer for this comment. We apologize for any unclear language on our part. The purpose of our work was not to identify the unique reaction scheme to obtain nonmonotonic dependence of network activity on ligand affinity and kinase activity. Rather, we were interested in exploring how such a dependence could arise from two ubiquitous network motifs (multisite phosphorylation and active receptor degradation). Notably, as the reviewer later points out, previous models that incorporate only multisite phosphorylation only capture the nonmonotonic dependence of network activity on ligand affinity and not kinase/phosphatase activity. We have now clarified this in the abstract (lines 14-16) and the introduction (lines 55-59). We have also provided biological motivation behind nonmonotonic kinase activity dependance (lines 229-247). 

      (2) It is important to show (in the supplemental materials if needed) that the closest equilibrium analog to the model (for example, reversible rate constants from each of the activated states to an inactive state) does not achieve non-monotonicity with ligand affinity.

      We have added a model in the supplementary materials that represents a detailed balance Markov chain. In the model, we imagine that ligand bound receptors undergo a series of equilibrium transitions, all characterized by the same activation and inactivation rate. We show that at saturating ligand levels, the signaling output only depends on the ratio of the activation to the inactivation rate (i.e., the thermodynamic stability of the active site) (lines 466-488).

      (3) Schematics for earlier models are described in Figure 1. However, no schematic for the actual model proposed by the authors is shown. This should be added as a subpanel to Figure 1.

      We thank the reviewer for identifying our omission of our model schematic. We have included our model schematic as its own figure (Figure 3).

      (4) Minor: Figure 1 is referred to as Figure?? In line 97 of page 3.

      We thank the reviewer for identifying this error, it has been corrected. 

      Reviewer #2 (Recommendations for the authors):

      (1) There is an inconsistency between Figure 2(a) and Equation (1), it suggests that p_N is \omega^N/(\omega+\delta)^N. This makes more sense with the model defined in the supplementary material.

      We thank the reviewer for identifying this error. Equation (1) has been updated to reflect the correct relationship.

      (2) The figure presenting the model of the authors appears to be missing.

      We thank the reviewer for identifying this error, it has been corrected (Figure 3 in the new manuscript). 

      (3) The authors describe phosphorylation as irreversible in the intro, but then consider reversible phosphorylation in their model, which may be confusing to readers.

      We thank the reviewer for identifying this source of possible confusion. We have clarified that dephosphorylation is taken to be a distinct irreversible reaction, see lines 105 - 112.

      (4) The authors reuse similar names, e.g., network activity, kinase activity, signaling activity, activity. This is confusing.

      We apologize for the confusion. We note that, within the context of our model, there are important distinctions between signaling activity (the amount of signaling competent receptors) and kinase activity (value corresponding to the phosphorylation rate). We have attempted to use these different terms correctly and are happy to make clarifying corrections if there are any places where a term is misused.  

      (5) Several parameters are defined only in the captions of the figures, such as \beta and \rho.

      We thank the reviewer for identifying this omission, we have added the definitions of beta and rho to the main text (see line 129). 

      (6) The sentence at line 137 lacks some words: "Below, we kinetic...".

      We thank the reviewer for identifying this error, we have added the missing words (“Below, we show how kinetic…”).

      (7) The sentence at line 183 lacks some words: "When kinase activity...".

      We thank the reviewer for identifying this error. We have now corrected it. 

      (8) Figure 5 is very small.

      We will work with the production team to increase the size of this figure.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      Summary:

      The manuscript by Cupollilo et al describes the development, characterization, and application of a novel activity labeling system; fast labelling of engram neurons (FLEN). Several such systems already exist but this study adds additional capability by leveraging an activity marker that is destabilized (and thus temporally active) as well as being driven by the full-length promoter of cFos. The authors demonstrate the activity-dependent induction and time course of expression, first in cultured neurons and then in vivo in hippocampal CA3 neurons after one trial of contextual fear conditioning. In a series of ex vivo experiments, the authors perform patch clamp analysis of labeled neurons to determine if these putative engram neurons differ from non-labelled neurons using both the FLEN system as well as the previously characterized RAM system. Interestingly the early labelled neurons at 3 h post CFC (FLEN+) demonstrated no differences in excitability whereas the RAMlabelled neurons at 24h after CFC had increased excitability. Examination of synaptic properties demonstrated an increase in sEPCS and mEPSC frequencies as well as those for sIPSCs and mIPSCs which was not due to a change in the mossy fiber input to these neurons.

      Strengths:

      Overall the data is of high quality and the study introduces a new tool while also reassessing some principles of circuit plasticity in the CA3 that have been the focus of prior studies.

      Weaknesses:

      No major weaknesses were noted.

      Reviewer #2 (Public review): 

      Summary: 

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths: 

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses: 

      With regard to the new viral tool, a direct comparison between the new tool FLEN and existing cFos reporters is missing. 

      Reviewer #1 (Recommendations for the authors):

      I have only minor suggestions for the authors to consider. 

      (1) In the in vitro characterization, the percentage of labelled neurons seems very low after a powerful and prolonged activation. It was somewhat surprising and raised the question of how accurately the FLEN construct reflects endogenous cFOS activity. Could the authors speak to this?

      The reviewer is correct that the level of FLEN positive neurons, as compared to mCherry positive neurons, is low as compared to studies using viral infection with RAM vectors in neuronal cultures (Sorensen et al, 2016, Sun et al, 2020), which is around 70-80% following chemical stimulation. The authors do not provide evidence however for a comparison with endogenous c-Fos activity in cell cultures. The reason for a discrepancy in the effect of chemical stimulation of cultured neurons is not clear, but may depend on culture conditions which may vary between labs. 

      FLEN was constructed using a mouse c-Fos promoter (-355 to +109) (Cen et al, 2003). To answer the reviewer’s question we performed an additional experiment in cultured neurons in which we found that 77.1 % of FLEN positive neurons were also c-fos positive neurons (using immunocytochemistry).

      (2) The authors compare the two labelling strategies and interpret their data with the presumption that both label a similar set of active neurons. This is particularly relevant when they suggest there might be a progressive increase in the excitability of active neurons with time. This is certainly a possibility, but the authors should also consider other possibilities that the two markers might label different populations of neurons. For example, if they require different thresholds for activation, it is possible that one is more sensitive to activity than the other. As these are unknown variables the authors should temper the interpretation accordingly.

      Indeed, the reviewer is correct that this limitation should be discussed. We have added this as a point of discussion in the text (line 355-358). In the article describing the RAM strategy (Sorensen et al, 2016) the authors use RAM to label DG neurons activated during an experience in a context A (Figure 4). Exploiting the fact that engram cells are re-activated when the animal is re-exposed to the same environment of training (memory recall), they performed c-Fos staining 90 minutes following either context A or context B re-exposure. The RAM-c-Fos overlap percentage was higher in A-A rather than A-B (A-A was a bit more than 20%). This means that RAM has captured a group of cells during training that, at least in part, were re-activated during recall. This could in part support the assumption that RAM and c-Fos share a certain overlap. Of course, this was done in DG, while we worked in CA3. In addition, both strategies label in their great majority c-Fos+ neurons (see above answer to point #1). This can not completely rule out the possibility that FLEN and RAM label partly distinct population of activated cells. 

      (3) An increase in the frequency of synaptic events is observed in neurons labelled with both markers. The authors propose that this may be due to an increase in synaptic contacts based on prior studies. However, as this is the first functional assessment why not consider changes in release probability as a mechanism for this finding? 

      We have added this as a possibility in the text (line 362-363).

      (4) It would be useful to include plots of the average frequency of m/sEPSCs and m/sIPSCs in Figures 4 and 5. These figures could also be combined into a single figure.

      We agree with the reviewer that figure 4 and 5 could be merged into a single figure. In the revised version, figure 5A becomes panel C in figure 4. Text and figure descriptions were adjusted accordingly.

      Reviewer #2 (Recommendations for the authors): 

      (1) Abstract, line 24: "In contrast, FLEN+ CA3 neurons show an increased number of excitatory inputs." RAM+ neurons also show an increased number of excitatory inputs, so this is not "in contrast". Also, not just excitatory, but also inhibitory synaptic inputs are more numerous in cFos+ neurons. Please improve the summary of your findings.

      “In contrast” referred to the fact that FLEN+ neurons do not show differences in excitability as compared to FLEN- neurons, as mentioned in the previous sentence. We now provide a more explicit sentence to explain this point: “On the other hand, like RAM+ neurons, FLEN+ CA3 neurons show an increased number of excitatory inputs.”

      (2) Novel tool: Destabilized cFos reporters were introduced 23 years ago and are also part of the TetTag mouse. I am not sure that changing the green fluorescent protein to a different version merits a new acronym (FLEN). To convince the readers that this is more than a branding exercise, the authors should compare the properties (brightness, folding time, stability) of FLEN to e.g. the d2EGFP reporter introduced by Bi et al. 2002 (J Biotechnol. 93(3):231) and show significant improvements.

      We thank the reviewer for this comment which compelled us to evaluate the features of other tools used to label neurons activated following contextual fear conditioing. The key properties of FLEN as compared to other tools used to label engrams is that: (i) it is a viral tool, as opposed to transgenic mice, (ii) a c-fos promoter drives the expression of a brightly fluorescent protein allowing their identification ex vivo for functional analysis, (iii) the fluorescent protein is rapidly destabilized, providing the possibility to label neurons only a few hours after their activation by a behavioural task.

      We did not find any viral tools providing the possibility to label c-fos activated neurons for functional assesment. We have not been able to find references for the use of the d2EGFP reporter introduced by Bi et al. 2002 in a behavioural context. One of the major difference and improvement is certainly the brightness of ZsGreen. In cell cultures, ZsGreen1 showed a 8.6-fold increase in fluorescence intensity as compared with EGFP (Bell et al, 2007).

      Amongst tools with comparable properties, eSARE was developed based on a synthetic Arc promoter driving the expression of a destabilized GFP (dEGFP) (Kawashima et al 2013). We initially used ESARE–dGFP but unfortunately, in our experimental conditions we found that the signal to noise ratio was not satisfactory (number of cells label in the home cage vs. following contextual fear conditining).

      We developed a viral tool to avoid the use of transgenic reporter lines which require laborious breeding and is experimentally less flexible. Nevertheless, many transgenic mice based on the expression of fluorescent proteins under the control of IEG promoters have been developed and used. Some of these mice show a time course of expression of the transgene which is comparable to FLEN. For instance, in organotypic slices from Tet-Tag mice, the time course of expression of EGFP slices follows with a small delay endogenous cFOS expression, and starts decaying after 4 hours (Lamothe-Molina et al, 2022). However, the fluorescence was too weak to visualize neurons in the slice (Christine Gee, personal communication), and imaging is perfomed after immunocytochemistry against GFP. 

      Therefore, we feel that the name given to the FLEN strategy is legitimate. The features of the FLEN strategy were summarized in the discussion (Lines 318-322).

      (3) Line 214: "...FLEN+ CA3 PNs do not show differences in [...] patterns of bursting activity as compared to control neurons." It looks quite different to me (Figure 3E). Just because low n precludes meaningful statistical analysis, I would not conclude there is no difference.

      We agree with the reviewer that the data in Figure 3E are not conclusive due to small sample size, which limits the reliability of statistical comparison. Additionally, the classification of bursting neurons is highly dependent on the specific criteria used, which vary considerably across the literature. To avoid overinterpretation or misleading conclusions, we decided to remove the panel E of Figure 3 showing the fraction of bursting neurons. Nevertheless, we draw the attention to the more robust and interpretable results: RAM⁺ neurons exhibit an increase in firing frequency and a distinct action potential discharge pattern, data which we believe are informative of altered excitability.

      (4) Line 304: Remove the time stamp.

      This was done.

      (5) Line 334: "...results may be explained by an overall increased activity of CA1 neurons..." I don't understand - isn't CA1 downstream of CA3? 

      The reviewer is correct that the sentence was misleading. We removed the reference to CA1, as it was more of a general principle about neuronal activity.

      (6) Line 381: "resolutive", better use "sensitive". 

      This was changed.

      (7) Figure S3: Fear-conditioned animals were 3 days off Dox, controls only 2 days. As RAM expression accumulates over time off Dox, this is not a fair comparison.

      We thank the reviewer for pointing out the incorrect reporting of the experimental design in Figure S3 panel A (bottom), which could lead to misinterpretation of results. In fact, the two groups of mice (CFC vs. HC) underwent all experimental steps in parallel. Specifically, both groups were maintained on and off Doxycycline for the same duration and received viral injection on the same day. 48 hours after Dox withdrawal, the CFC group was trained for contextual conditioning, while the HC group remained in the home cage in the holding room. All animals were thus sacrificed 72 hours after Dox removal. We have corrected the figure to accurately reflect this timeline.

      (8) Please provide sequence information for c-cFos-ZsGreen1-DR. Which regulatory elements of the cFos promoter are included, is the 5' NTR included? This information is very important.

      The information is now provided in the Methods section.

      (9) Please provide the temperature during pharmacological treatments (TTX etc.) before fixation.

      The pharmacological treatment was performed in the incubator at 37°C, this is now indicated in the methods.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1(Public Review):

      Major comments:

      (1) Interpretation of key results and relationship between different parts of the manuscript. The manuscript begins with an information-transmission ansatz which is described as ”independent of the computational goal” (e.g. p. 17). While information theory indeed is not concerned with what quantity is being encoded (e.g. whether it is sensory periphery or hippocampus), the goal of the studied system is to *transmit* the largest amount of bits about the input in the presence of noise. In my view, this does not make the proposed framework ”independent of the computational goal”. Furthermore, the derived theory is then applied to a DDC model which proposes a very specific solution to inference problems. The relationship between information transmission and inference is deep and nuanced. Because the writing is very dense, it is quite hard to understand how the information transmission framework developed in the first part applies to the inference problem. How does the neural coding diagram in Figure 3 map onto the inference diagram in Figure 10? How does the problem of information transmission under constraints from the first part of the manuscript become an inference problem with DDCs? I am certain that authors have good answers to these questions - but they should be explained much better.

      We are very thankful to the reviewer for highlighting the potential confusion surrounding these issues, in particular the relationship between the two halves of the paper – which was previously exacerbated by the length of the paper. We have now added further explanations at different points within the manuscript to better disentangle these issues and clarify our key assumptions. We have also significantly cut the length of the paper by moving more technical discussions to the Methods or Appendices. We will summarise these changes here and also clarify the rationale for our approach and point out potential disagreements with the reviewer.

      Key to our approach is that we indeed do not assume the entire goal of the studied neural system (whether part of the sensory system or not) is to transmit the largest amount of information about the stimulus input (in the presence of noise). In fact, general computations, including the inference of latent causes of inputs, often require filtering out or ignoring some information in the sensory input. It is thus not plausible that tuning curves in general (i.e. in an arbitrary part of the nervous system) are optimised solely with regards to the criterion of information transmission. Accordingly we do not assume they are entirely optimised for that purpose. However, we do make a key assumption or hypothesis (which like any hypothesis might turn out to be partly or entirely wrong): that (1) a minimal feature of the tuning curve (its scale or gain) is entirely free to be optimised for the aim of information transmission (or more precisely the goal of combating the detrimental effect of neural noise on coding fidelity), (2) other aspects of the population tuning curve structure (i.e. the shape of individual tuning curves and their arrangement across the population) are determined by (other) computational goals beyond efficient coding. (Conceptually, this is akin to the modularization between indispensible error correction and general computations in a digital computer, and the need for the former to be performed in a manner that is agnostic as to the computations performed.) We have added two paragraphs in the manuscript which present the above rationale and our key hypothesis or assumption. The first of these was added to the (second paragraph of the) Introduction section, and the second is a new paragraph following Eq. 1 (which is about the gain-shape decomposition of the tuning curves, and the optimisation of the former based on efficient coding) of Results.

      Our paper can be divided into two parts. In the first part, we develop a general, computationally agnostic (in the above sense, just as in the digital computer example), efficient coding theory. In the second part, we apply that theory to a specific form of computation, namely the DDC framework for Bayesian inference. The latter theory now determines the tuning curve shapes. When combined with the results of the first part (which dictate the tuning curve scale or gain according to efficient coding theory), this “homeostatic DDC” model makes full predictions for the tuning curves (i.e., both scale and shape) and how they should adapt to stimulus statistics.

      So to summarise, it is not the case that the problem of information transmission (or rather mitigating the effect noise on coding fidelity under metabolic constraints), dealt with in the first part, has become a problem of Bayesian inference. But rather, the dictates of efficient coding for optimal gains for coding fidelity (under constraints) have been applied to and combined with a computational theory of inference.

      We have added new expository text before and after Eq. 17 in Sec. 2.7 (at the beginning of the second part of the paper on homeostatic DDCs) to again make the connection with the first part and the rationale for its combination with the original DDC framework more clear.

      With the changes outlined above, we believe and hope the connection between the two parts (which we agree with the reviewer, was indeed rather obscure previously) has been adequately clarified.

      (2) Clarity of writing for an interdisciplinary audience. I do not believe that in its current form, the manuscript is accessible to a broader, interdisciplinary audience such as eLife readers. The writing is very dense and technical, which I believe unnecessarily obscures the key results of this study.

      We thank the reviewer for this comment. We have taken several steps to improve the accessibility of this work for an interdisciplinary audience. Firstly, several sections containing dense, mathematical writing have now been moved into appendices or the Methods section, out from the main text; in their place we have made efforts to convey the core of the results, and to providing intuitions, without going into unnecessary technical detail. Secondly, we have added additional figures to help illustrate key concepts or assumptions (see Fig. 1B clarifying the conceptual approach to efficient coding and homeostatic adaptation, and Fig. 8A describing the clustered population). Lastly, we have made sure to refer back to the names of symbols more often, so as to make the analysis easier to follow for a reader with an experimental background.

      (3) Positioning within the context of the field and relationship to prior work. While the proposed theory is interesting and timely, the manuscript omits multiple closely related results which in my view should be discussed in relationship to the current work. In particular, a number of recent studies propose normative criteria for gain modulation in populations: • Duong, L., Simoncelli, E., Chklovskii, D. and Lipshutz, D., 2024. Adaptive whitening with fast gain modulation and slow synaptic plasticity. Advances in Neural Information Processing Systems

      Tring, E., Dipoppa, M. and Ringach, D.L., 2023. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nature Communications, 14(1), p.8366.

      Ml ynarski, W. and Tkaˇcik, G., 2022. Efficient coding theory of dynamic attentional modulation. PLoS Biology

      Haimerl, C., Ruff, D.A., Cohen, M.R., Savin, C. and Simoncelli, E.P., 2023. Targeted V1 co-modulation supports task-adaptive sensory decisions. Nature Communications • The Ganguli and Simoncelli framework has been extended to a multivariate case and analyzed for a generalized class of error measures:

      Yerxa, T.E., Kee, E., DeWeese, M.R. and Cooper, E.A., 2020. Efficient sensory coding of multidimensional stimuli. PLoS Computational Biology

      Wang, Z., Stocker, A.A. and Lee, D.D., 2016. Efficient neural codes that minimize LP reconstruction error. Neural Computation, 28(12),

      We thank the reviewer again for bringing these works to our attention. For each, we explain whether we chose to include them in our Discussion section, and why.

      (1) Duong et al. (2024): We decided not to discuss this manuscript, as our assessment is that it is very relevant to our work. That study starts with the assumption that the goal of the sensory system under study is to whiten the signal covariance matrix, which is not the assumption we start with. A mechanistic ingredient (but not the only one) in their approach is gain modulation. However, in their case it is the gains of computationally auxiliary inhibitory neurons that is modulated and not (as in our case) the gain the (excitatory) coding neurons (i.e. those which encode information about the stimulus and whose response covariance is whitened). These key distinction make the connection with our work quite loose and we did not discuss this work.

      (2) Tring et al. (2023): We have added a discussion of the results of this paper and its relationship to the results of our work and that of Benucci et al. This appears in the 7th paragraph of the Discussion. This study is indeed highly relevant to our paper, as it essentially replicates the Benucci et al. experiment, this time in awake mice (rather than anesthetised cats). However, in contrast to the resul‘ts of Benucci et al., Tring et al. do not find firing rate homeostasis in mouse V1. A second, remarkable finding of Tring et al. is that adaptation mainly changes the scale of the population response vector, and only minimally affects its direction. While Tring et al. do not portray it as such, this behaviour amounts to pure stimulus-specific adaptation without the neuron-specific factor found in the Benucci et al. results (see Eq. 24 of our manuscript). As we discuss in our manuscript, when our homeostatic DDC model is based on an ideal-observer generative model, it also displays pure stimulus-specific adaptation with no neuronal factor. Our final model for Benucci’s data did contain a neural factor, because we used a non-ideal observer DDC (in particular, we assumed a smoother prior distribution over orientations compared to the distribution used in the experiment - which has a very sharp peak – as it is more natural given the inductive biases we expect in the brain). The resultant neural factor suppresses the tuning curves tuned to the adaptor stimulus. Interestingly, when gain adaptation is incomplete, and happens to a weaker degree compared to what is necessary for firing rate homeostasis, an additional neural factor emerges that is greater than one for neurons tuned to the adaptor stimulus. These two multiplicative neural factors can approximately cancel each other; such a theory would thus predict both deviation from homeostasis and approximately pure stimulus-specific adaptation. We plan to explore this possibility in future work.

      (3) Ml ynarski and Tkaˇcik (2022): We are now citing and discussing this work in the Discussion (penultimate paragraph), in the context of a possible future direction, namely extending our framework to cover the dynamics of adaptation (via a dynamic efficient gain modulation and dynamic inference). We have noted there that Mlynarski have used such a framework (which while similar has key technical differences with our approach) based on a task-dependent efficient coding objective to model top-down attentional modulation. By contrast, we have studied bottom-up and task-independent adaptation, and it would be interesting to extend our framework and develop a model to make predictions for the temporal dynamics of such adaptation.

      (4) Haimerl et al. (2023): We have elected not to include this work within our discussion either, as we do not believe it is sufficiently relevant to our work to warrant inclusion. Although this paper also considers gain modulation of neural activity, the setting and the aims of the theoretical work and the empirical phenomena it is applied to are very different from our case in various ways. Most importantly, this paper is not offering a normative account of gain modulation; rather, gain modulation is used as a mechanism for enabling fast adaptive readouts of task relevant information.

      (5) Yerxa et al. (2020): We have now included a discussion of this paper in our Discussion section. Note that, even though this study generalises the Ganguli and Simoncelli framework to higher diemsnions, just like that paper it still places strict requirements (which are arguably even more stringent in higher dimensions) on the form of the tuning curves in the population, viz. that there exists a differentiable transform of the stimulus space which renders these unimodal curves completely homogeneous (i.e., of the same shape, and placed regularly and with uniform density).

      (6) Wang et al. (2016): We have included this paper in our discussion as well. As above, this paper does not consider general tuning curves, and places the same constraint on their shape and arrangement as in Ganguli and Simoncelli paper.

      More detailed comments and feedback:

      (1) I believe that this work offers the possibility to address an important question about novelty responses in the cortex (e.g. Homann et al, 2021 PNAS). Are they encoding novelty per-se, or are they inefficient responses of a not-yet-adapted population? Perhaps it’s worth speculating about.

      We are not sure why the relatively large responses to “novel” or odd-ball stimuli should be considered inefficient or unadapted: in the context in which those stimuli are infrequent odd-balls (and thus novel or surprising when occurring), efficient coding theory would indeed typically predict a large response compared to the (relatively suppressed) responses to frequently occurring stimuli. Of course, if the statistics change and the odd-ball stimulus now becomes frequent, adaptation should occur and would be expected to suppress responses to this stimulus. As to the question of whether (large) responses to infrequent stimuli can or should be characterised as novelty responses: this is partly an interpretational or semantic issue – unless it is grounded in knowledge of how downstream populations use this type of coding in V1, which could then provide a basis for solidly linking them to detection of novelty per se. In short, our theory, could be applied to Homann et al.’s data, but we consider that beyond the scope of the current paper.

      (2) Clustering in populations - typically in efficient coding studies, tuning curve distributions are a consequence of input statistics, constraints, and optimality criteria. Here the authors introduce randomly perturbed curves for each cluster - how to interpret that in light of the efficient coding theory? This links to a more general aspect of this work - it does not specify how to find optimal tuning curves, just how to modulate them (already addressed in the discussion).

      We begin by addressing the reviewer’s more general concern regarding the fact that our theory does not address the problem of finding optimal tuning curves, only that of modulating them optimally. As we expound within the updated version of the paper (see the newly expanded 3rd paragraph in Sec. 2.1 and the expanded 2nd paragraph in Introduction), it is not plausible that the sole function of sensory systems, and neural circuits more generally, is the transmission of information. There are many other computational tasks which must be performed by the system, such as the inference of the latent causes of sensory inputs. For many such tasks, it is not even desirable to have complete transmission of information about the external stimulus, since a substantial portion of that information is not important for the task at hand, and must be discarded. For example, such discarding of information is the basis of invariant representations that occur, e.g., in higher visual areas. So we recognise that tuning curve shapes are in general dictated and shaped by computational goals beyond transmission of information or error correction. As such, we have remained agnostic as to the computational goals of neural systems and therefore the shape of the tuning curve. We have made the assumption and adopted the postulate that those computational goals determine the shape of the tuning curves, leaving the gains to be adjuted freely for the purpose of mitigating the effect noise on coding fidelity (this is similar to how error correction is done in computers independendently of the computations performed). by assuming that those computational goals are captured adequately by the shape of tuning curves, this leaves us free to optimise the gains of those curves for purely information theoretic objectives. Finally, we note that the case where the tuning curve shapes are additionally optimised for information transmission is a special case of our more general approach. For further discussion, see the updated version of our introduction.

      We now turn to our choice to model clusters using random perturbations. This is, of course, a toy model for clustering tuning curves within a population. With this toy model we are attempting to capture the important aspects of tuning curve clusters within the population while not over-complicating the simulations. Within any neural population, there will be tuning curves that are similar; however, such curves will inevitably be heterogeneous, as opposed to completely identical. Thus, when we cluster together similar curves there will be an “average” cluster tuning curve (found by, e.g., normalising all individual curves and taking the average), which all other tuning curves within the cluster are deviations from. The random perturbations we apply are our attempt to capture these deviations. However, note that the perturbations are not fully random, but instead have an “effective dimensionality” which we vary over. By giving the perturbations an effective dimensionality, we aim to capture the fact that deviations from the average cluster tuning curve may not be fully random, and may display some structure.

      (3) Figure 8 - where do Hz come from as physical units? As I understand there are no physical units in simulations.

      We have clarified this within the figure caption. The within-cluster optimisation problem requires maximising a quadratic program subject to a constraint on the total mean spike count of the cluster. The objective for the quadratic program is however mathematically homogeneous. So we can scale the variables and parameters in a consistent to be in units of Hz – i.e., turn them into mean firing rates, instead of mean spike counts, with an assumption on the length of the coding time interval. We fix this cluster firing rate to be k × 5 Hz, so that the average single-neuron firing rate is 5 Hz (based on empirical estimates – see our Sec. 2.5). This agrees with our choice of µ in our simulations (i.e., µ = 10) if we assume a coding interval of 0.1 seconds.

      (4) Inference with DDCs in changing environments. To perform efficient inference in a dynamically changing environment (as considered here), an ideal observer needs some form of posterior-prior updating. Where does that enter here?

      A shortcoming of our theory, in its current form, is that it applies only to the system in “steady-state”, without specifying the dynamics of how adaptation temporlly evolves (we assume the enrivonment has periods of relative stability that are of relatively long duration compared to the dynamical timescales of adaptation, and consider the properties of the well-adapted steady state population). Thus our efficient coding theory (which predicts homeostatic adaptation under the outlined conditions) is silent on the time-course over which homeostasis occurs. Likewise, the DDC theory (in its original formulation in Vertes & Sahani) is silent on dynamic updating of posteriors and considers only static inference with a fixed internal model. We have now discuss a new future directoin in the Discussion (where we cite the work of Mlynarski and Tkacik) to point out that our theory can in principle be extended (based on dynamic inference and efficient coding) to account for the dynamics of attention, but this is beyond the scope of the current work.

      (5) Page 6 - ”We did this in such a way that, for all , the correlation matrices, (), were derived from covariance matrices with a 1/n power-law eigenspectrum (i.e., the ranked eigenvalues of the covariance matrix fall off inversely with their rank), in line with the findings of Stringer et al. (2019) in the primary visual cortex.” This is a very specific assumption, taken from a study of a specific brain region - how does it relate to the generality of the approach?

      Our efficient coding framework has been formulated without relying on any specific assumptions about the form of the (signal or noise) correlation matrices in cortex. The homeostatic solution to this efficient coding problem, however, emerges under certain conditions. But, as we demonstrate in our discussion of the analytic solutions to our efficient coding objective and the conditions necessary for the validity of the homeostatic solution, we expect homeostasis to arise whenever the signal geometry is sufficiently high-dimensional (among other conditions). By this we mean that the fall-off of the eigenvalues of the signal correlation matrix must be sufficiently slow. Thus, a fall-off in the eigenvalue spectrum slower than 1/n would favor homeostasis even more than our results. If the fall off was faster, then whether or not (and to what degree) firing rate homeostasis becomes suboptimal depends on factors such as the fastness of the fall-off and also the size of the population. Thus (1) rate homeostasis does not require the specific 1/n spectrum, but that spectrum is consistent with the conditions for optimality of rate homeostasis, (2) in our simulations we had to make a specific choice, and relying on empirical observations in V1 was of course a well-justified choice (moreover, as far as we are aware, there have been no other studies that have characterised the spectrum of the signal covariance matrix in response to natural stimuli, based on large population recordings).

      Reviewer #2 (Public Review):

      Strengths:

      The problem of efficient coding is a long-standing and important one. This manuscript contributes to that field by proposing a theory of efficient coding through gain adjustments, independent of the computational goals of the system. The main result is a normative explanation for firing rate homeostasis at the level of neural clusters (groups of neurons that perform a similar computation) with firing rate heterogeneity within each cluster. Both phenomena are widely observed, and reconciling them under one theory is important.

      The mathematical derivations are thorough as far as I can tell. Although the model of neural activity is artificial, the authors make sure to include many aspects of cortical physiology, while also keeping the models quite general.

      Section 2.5 derives the conditions in which homeostasis would be near-optimal in the cortex, which appear to be consistent with many empirical observations in V1. This indicates that homeostasis in V1 might be indeed close to the optimal solution to code efficiently in the face of noise.

      The application to the data of Benucci et al 2013 is the first to offer a normative explanation of stimulus-specific and neuron-specific adaptation in V1.

      We thank the reviewer for these assessments.

      Weaknesses:

      The novelty and significance of the work are not presented clearly. The relation to other theoretical work, particularly Ganguli and Simoncelli and other efficient coding theories, is explained in the Discussion but perhaps would be better placed in the Introduction, to motivate some of the many choices of the mathematical models used here.

      We thank the reviewer for this comment; we have updated our introduction to make clearer the relationship between this work and previous works within efficient coding theory. Please see the expanded 2nd paragraph of Introduction which gives a short account of previous efficient coding theories and now situates our work and differentiates it more clearly from past work.

      The manuscript is very hard to read as is, it almost feels like this could be two different papers. The first half seems like a standalone document, detailing the general theory with interesting results on homeostasis and optimal coding. The second half, from Section 2.7 on, presents a series of specific applications that appear somewhat disconnected, are not very clearly motivated nor pursued in-depth, and require ad-hoc assumptions.

      We thank the reviewer for this suggestion. The reviewer is right to note that our paper contains both the exposition of a general efficient coding theory framework in addition to applications of that framework. Following your advice we have implemented the following changes. (1) significantly shortened or entirely moved some of the less central results in the second half of Results, to the Methods or appendices (this includes the entire former section 2.7 and significant shortening of the section on implementation of Bayes ratio coding by divisive normalisation). (2) We have added a new figure (Fig 1B) and two long pieces of text to the (2nd paragraph of) Introduction, after Eq. (1), and in Sec. 2.7 (introducing homeostatic DDCs) to more clearly explain and clarify the assumptions underlying our efficient coding theory, and its connection with the second half of the Results (i.e. application to DDC theory of Bayesian inference), and better motivate why we consider the homeostatic DDC.

      For instance, it is unclear if the main significant finding is the role of homeostasis in the general theory or the demonstration that homeostatic DDC with Bayes Ratio coding captures V1 adaptation phenomena. It would be helpful to clarify if this is being proposed as a new/better computational model of V1 compared to other existing models.

      We see the central contribution of our work as not just that homeostasis arises as a result of an efficient coding objective, but also that this homeostasis is sufficient to explain V1 adaptation phenomena - in particular, stimulus specific adaptation (SSA) - when paired with an existing theory of neural representation, the DDC (itself applied to orientation coding in V1). Homeostatic adaptation alone does not explain SSA; nor do DDCs. However, when the two are combined they provide an explanation for SSA. This finding is significant, as it unifies two forms of adaptation (SSA and homeostatic adaptation) whose relationship was not previously appreciated. Our field does not currently have a standard model of V1, and we do not claim to have provided one either; rather, different models have captured different phenomena in V1, and we have done so for homeostatic SSA in V1.

      Early on in the manuscript (Section 2.1), the theory is presented as general in terms of the stimulus dimensionality and brain area, but then it is only demonstrated for orientation coding in V1.

      The efficient coding theory developed in Section 2 is indeed general throughout, we make no assumptions regarding the shape of the tuning curves or the dimensionality of the stimulus. Further, our demonstrations of the efficient coding theory through numerical simulations - make assumptions only about the form of the signal and noise covariance matrices. When we later turn our attention away from the general case, our choice to focus on orientation coding in V1 was motivated by empirical results demonstrating a co-occurrence of neural homeostasis and stimulus specific adaptation in V1.

      The manuscript relies on a specific response noise model, with arbitrary tuning curves. Using a population model with arbitrary tuning curves and noise covariance matrix, as the basis for a study of coding optimality, is problematic because not all combinations of tuning curves and covariances are achievable by neural circuits (e.g. https://pubmed.ncbi.nlm.nih.gov/27145916/ )

      First, to clarify, our theory allows for complete generality of neural tuning curve shapes, and assumes a broad family of noise models (which, while not completely arbitrary, includes cases of biological relevance and/or models commonly used in the theoretical literature). Within this class of noise covariance models, we have shown numerical results for different values for different parameters of the noise covariance model, but more importantly, have analytically outlined the general properties and requirements on noise strength and structure (and its relationship to tuning curves and signal structure) under which homeostatic adaptation would be optimal. Regarding the point that not all combinations of tuning curves and noise covariances occur in biology or are achievable by neural circuits: (1) If we are guessing correctly the specific point of the reviewer’s reference to the review paper by Kohn et al. 2016, we have in fact prominently discussed the case of information limiting noise which corresponds to a specific relationship between signal structure (as determined by tuning curves) and noise structure (as specified by the noise covariance matrix). Our family of noise models include that biologically relevant case and we have indeed paid it particular attention in our simulations and discussions (see discussion of Fig. 7 in Sec. 2.3, and that of aligned noise in Sec. 2.5). (2) As for the more general or abstract point that not all combinations of noise covariance and tuning curve structures are achievable by neural circuits, we can make the following comments. First, in lieu of a full theoretical or empirical understanding of the achievable combinations (which does not exist), we have outlined conditions for homeostatic adaptations under a broad class of noise models and arbitrary tuning curves. If some combinations within this class are not realised in biology, that does not invalidate the theoretical results, as the latter have been derived under more general conditions, which nevertheless include combinations that do occur in biology and are achievable by neural circuits (which, as pointed out, include the important case of aligned noise and signal structure – as reviewed in Kohn et al.– to which we have paid particular attention).

      The paper Benucci et al 2013 shows that homeostasis holds for some stimulus distributions, but not others i.e. when the ’adapter’ is present too often. This manuscript, like the Benucci paper, discards those datasets. But from a theoretical standpoint, it seems important to consider why that would be the case, and if it can be predicted by the theory proposed here.

      The theory we provide predicts that, under certain (specified) conditions, we ought to see deviation from exact homeostatic results; indeed, we provide a first order approximation to the optimal gains in this case which quantifies such deviations when they are small. However, unfortunately the form of this deviation depends on a precise choice of stimulus statistics (e.g. the signal correlation matrix, the noise correlation matrix averaged over all stimulus space, and other stimulus statistics), in contrasts to the universality of the homeostatic solution, when it is a valid approximation. In our model of Benucci et al.’s experiment, we restrict to a simple one-dimensional stimulus space (corresponding to orientated gratings), without specifying neural responses to all stimuli; as such, we are not immediately able to make predictions about whether the homeostatic failure can be predicted using the specific form of deviation from homeostasis. However, we acknowledge that this is a weakness of our analysis, and that a more complete investigation would address this question. For reasons of space, we elected not to pursue this further. We have added a paragraph to our Discussion (8th paragraph) explaining this.

      Reviewer#1 (Recommendations for the authors):

      (1) To make the article more accessible I would suggest the following:

      (a) Include a few more illustrations or diagrams that demonstrate key concepts: adaptationof an entire population, clustering within a population, different sources of noise, inference with homeostatic DDCs, etc.

      We thank the reviewer for this suggestion - we have added an additional figure in (Figure 8, Panel A) to explain the concept of clustering within a population. We also added a new panel to Figure 1 (Figure 1B) which we hope will clarify the conceptual postulate underlying our efficient coding framework and its link to the second half of the paper.

      (b) Within the text refer to names of quantities much more often, rather than relying onlyon mathematical symbols (e.g. w,r,Ω, etc).

      We thank the reviewer for the suggestion; we have updated the text accordingly and believe this has improved the clarity of the exposition.

      (2) It is hard to distill which components of the considered theory are crucial to reproducing the experimental observations in Figure 12. Is it the homeostatic modulation, efficient coding, DDCs, or any combination of those or all of them necessary to reproduce the experiment? I believe this could be explained much better, also with an audience of experimentalists in mind.

      We have updated the text to provide additional clarity on this matter (see the pointers to these changes and additions in the revised manuscript, given above in response to your first comment). In particular, reproducing the experimental results requires combining DDCs with homeostatic modulation – with the latter a consequence of our efficient coding theory, and not an independent ingredient or assumption.

      (3) It would be good to comment on how sensitive the results are to the assumptions made, parameter values, etc. For example: do conclusions depend on statistics of neural responses in simulated environments? Do they generalize for different values of the constraint µ? This could be addressed in the discussion / supplementary material.

      This issue is already discussed extensively within the text - see Sec. 2.4, Analytical insight on the optimality of homeostasis, and Sec. 2.5, Conditions for the validity of the homeostatic solution to hold in cortex. In these sections, we outline that - provided a certain parameter combination is small - we expect the homeostatic result to hold. Accordingly, we anticipate that our numerical results will generalise to any settings in which that parameter combination remains small.

      (4) How many neurons/units were used for simulations?

      We apologies for omitting this detail; we used 10,000 units for our simulations. We have edited both the main text and the methods section to reflect this.

      (5) Typos etc: a) Figure 5 caption - the order of panels B and C is switched. b) Figure 6A - I suggest adding a colorbar.

      Thank you. We have relabelled the panels B and C in the appropriate figures so that the ordering in the figure caption is correct. We feel that a colourbar in figure 6A would be unnecessary, since we are only trying to convey the concept of uniform correlations, rather than any particular value for the correlations; as such we have elected not to add a colourbar. We have, however, added a more explicit explanation of this cartoon matrix in the figure caption, by referring to the colors of diagonal vs off-diagonal elements.

      Reviewer#2 (Recommendations for the authors):

      The text on page 10, with the perturbation analysis, could be moved to a supplement, leaving here only the intuition.

      We thank the reviewer for this suggestion; we have moved much of the argument into the appendix so as to not distract the reader with unnecessary technical details.

      Text before eq. 12 “...in cluster a maximize the objective...” should be ‘minimize’?

      The cluster objective as written is indeed maximised, as stated in the text. Note that, in the revised manuscript, this argument has been moved to an appendix to reduce the density of mathematics in the main text.

      Top of page 25 “S<sub>0</sub> and S<sub>0</sub>” should be “S<sub>0</sub> and S<sub>1</sub>”?

      Thank you, we have corrected the manuscript accordingly.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      In this manuscript, Chen et al. investigate the role of the membrane estrogen receptor GPR30 in spinal mechanisms of neuropathic pain. Using a wide variety of techniques, they first provide convincing evidence that GPR30 expression is restricted to neurons within the spinal cord, and that GPR30 neurons are well-positioned to receive descending input from the primary sensory cortex (S1). In addition, the authors put their findings in the context of the previous knowledge in the field, presenting evidence demonstrating that GRP30 is expressed in the majority of CCK-expressing spinal neurons. Overall, this manuscript furthers our understanding of neural circuity that underlies neuropathic pain and will be of broad interest to neuroscientists, especially those interested in somatosensation. Nevertheless, the manuscript would be strengthened by additional analyses and clarification of data that is currently presented. 

      Strengths: 

      The authors present convincing evidence for the expression of GPR30 in the spinal cord that is specific to spinal neurons. Similarly, complementary approaches including pharmacological inhibition and knockdown of GPR30 are used to demonstrate the role of the receptor in driving nerve injury-induced pain in rodent models. 

      Weaknesses: 

      Although steps were taken to put their data into the broader context of what is already known about the spinal circuitry of pain, more considerations and analyses would help the authors better achieve their goal. For instance, to determine whether GPR30 is expressed in excitatory or inhibitory neurons, more selective markers for these subtypes should be used over CamK2. Moreover, quantitative analysis of the extent of overlap between GPR30+ and CCK+ spinal neurons is needed to understand the potential heterogeneity of the GPR30 spinal neuron population, and to interpret experiments characterizing descending SI inputs onto GPR30 and CCK spinal neurons. Filling these gaps in knowledge would make their findings more solid. 

      Thank you very much for your constructive feedback.

      In response to your suggestion, we have used more specific markers to distinguish excitatory (VGLUT2) and inhibitory (VGAT) neurons via in situ hybridization. These analyses revealed that GPR30 is predominantly expressed in excitatory neurons of the superficial dorsal horn (SDH), as presented in the Results section (lines 117-120) and in Figure 2A-B.

      Additionally, we performed a quantitative analysis to determine the extent of co-localization between GPR30+ and CCK+ neurons. The data were included in the Results (lines 131–132) and Figure 2G.

      Reviewer #2 (Public review):

      Using a variety of experimental manipulations, the authors show that the membrane estrogen receptor G protein-coupled estrogen receptor (GPER/GPR30) expressed in CCK+ excitatory spinal interneurons plays a major role in the pain symptoms observed in the chronic constriction injury (CCI) model of neuropathic pain. Intrathecal application of selective GPR30 agonist G-1 induced mechanical allodynia and thermal hyperalgesia in male and female mice. Downregulation of GPR30 in CCK+ interneurons prevented the development of mechanical and thermal hypersensitivity during CCI. They also show the up modulation of AMPA receptor expression by GPR30. 

      Generally, the conclusions are supported by the experimental results. I also would like to see significant improvements in the writing and the description of results. 

      Methodological details for some of the techniques are rather sparse. For example, when examining the co-localization of various markers, the authors do not indicate the number of animals/sections examined. Similarly, when examining the effect of shGper1, it is unclear how many cells/sections/animals were counted and analyzed. 

      In other sections, there is no description of the concentration of drugs used (for example, Figure 4H). In Figures 4C-E, there is no indication of the duration of the recordings, the ionic conditions, the effect of glutamate receptor blockers, etc 

      Some results appear anecdotal in the way they are described. For example, in Figure 5, it is unclear how many times this experiment was repeated. 

      We sincerely appreciate your valuable feedback and thoughtful recommendations.

      To address your concerns regarding methodological transparency, we have added the following details to the revised manuscript:

      The number of animals and sections analyzed in co-localization studies.

      The number of cells/sections/animals used in each quantification following shGper1 treatment.

      The concentrations of drugs administered (e.g., in Figure 4H).

      Detailed recording conditions, including duration, ionic composition, and pharmacological conditions (Figures 4C-E).

      In addition, we have thoroughly revised the writing throughout the manuscript to enhance clarity and precision in the description of our findings.

      Reviewer #3 (Public review): 

      Summary: 

      The authors convincingly demonstrate that a population of CCK+ spinal neurons in the deep dorsal horn express the G protein-coupled estrogen receptor GPR30 to modulate pain sensitivity in the chronic constriction injury (CCI) model of neuropathic pain in mice. Using complementary pharmacological and genetic knockdown experiments they convincingly show that GPR30 inhibition or knockdown reverses mechanical, tactile, and thermal hypersensitivity, conditioned place aversion, and c-fos staining in the spinal dorsal horn after CCI. They propose that GPR30 mediates an increase in postsynaptic AMPA receptors after CCI using slice electrophysiology which may underlie the increased behavioral sensitivity. They then use anterograde tracing approaches to show that CCK and GPR30 positive neurons in the deep dorsal horn may receive direct connections from the primary somatosensory cortex. Chemogenetic activation of these dorsal horn neurons proposed to be connected to S1 increased nociceptive sensitivity in a GPR30-dependent manner. Overall, the data are very convincing and the experiments are well conducted and adequately controlled. However, the proposed model of descending corticospinal facilitation of nociceptive sensitivity through GPR30 in a population of CCK+ neurons in the dorsal horn is not fully supported. 

      Strengths: 

      The experiments are very well executed and adequately controlled throughout the manuscript. The data are nicely presented and supportive of a role for GPR30 signaling in the spinal dorsal horn influencing nociceptive sensitivity following CCI. The authors also did an excellent job of using complementary approaches to rigorously test their hypothesis. 

      Weaknesses: 

      The primary weakness in this manuscript involves overextending the interpretations of the data to propose a direct link between corticospinal projections signaling through GPR30 on this CCK+ population of spinal dorsal horn neurons. For example, even in the cropped images presented, GPR30 is present in many other CCK-negative neurons. Only about a quarter of the cells labeled by the anterograde viral tracing experiment from S1 are CCK+. Since no direct evidence is provided for S1 signaling through GPR30, this conclusion should be revised. 

      Thank you for your encouraging comments and critical insights.

      We fully acknowledge the concern regarding the proposed direct involvement of corticospinal projections in modulating nociceptive behavior via GPR30 in CCK+ neurons. While our anterograde tracing experiments suggest anatomical overlap, we agree that definitive evidence of functional connectivity is lacking.

      Accordingly, we have revised the Abstract, Discussion, and Graphical Abstract to present our findings more cautiously. We now describe our observations as indicating that S1 projections potentially interact with GPR30<sup>+</sup> spinal neurons, rather than asserting a definitive functional link.

      To support this revised interpretation, we performed additional quantitative analyses examining the co-localization among S1 projections, CCK+, and GPR30+ neurons. Furthermore, we clarified that the chemogenetic activation studies targeted a mixed neuronal population and did not exclusively manipulate CCK+ neurons.

      These changes aim to better align our conclusions with the presented data and provide a more nuanced framework for future investigations.

      Reviewer #1 (Recommendations for the authors): 

      Major corrections 

      (1) Figure 2: The authors conclude that GPR30 is mainly expressed in excitatory spinal neurons because they are labeled by a virus with a Camk2 promoter. While there is evidence that Camk2 is specific to excitatory neurons in the brain, based on RNAseq datasets (e.g. Linnarsson Lab, http://mousebrain.org/adolescent/genesearch.html ) this is less clear cut within the spinal cord. A more direct way to assess the relative expression of GPR30 in excitatory versus inhibitory neurons would be to perform immunohistochemistry or FISH with GPR30/Vglut2/Vgat. 

      Alternatively, if this observation is not crucial for the overall arch of the story, I recommend the authors eliminate these data, as they do not support the idea that GPR30 is mainly in excitatory neurons. 

      We thank the reviewer for highlighting this important limitation. To strengthen our conclusion regarding the neuronal identity of GPR30-expressing cells, we performed fluorescent in situ hybridization (FISH) using vGluT2 (marker for excitatory neurons) and VGAT (marker for inhibitory neurons). The results confirmed that GPR30 is predominantly expressed in vGluT2-positive excitatory neurons within the spinal cord. These new data are presented in the revised manuscript (lines 117-120) and shown in Figure 2A-B.

      (2) (2a) Figure 2: The authors also report that GPR30 is expressed in most CCK+ spinal neurons. A more rigorous way to present the data would be to perform quantification and report the % of CCK neurons that are GPR30. 

      (2b) More importantly, it is unclear what % of GPR30 neurons are CCK+. These types of quantifications would provide useful insights into the heterogeneity of CCK and GPR30 neuron populations, and help align findings of experiments using the behavioral pharmacology using GRP antagonists to the knockdown of Gper1 in CCK spinal neurons - for instance, does a population of GRP30+/CCK- neurons exist? If so, it would be worth discussing what role (if any) that population might play in nerve injury-induced mechanical allodynia. 

      Understanding the breakdown of GPR30 populations becomes even more relevant when the authors characterize which cell types are targeted by descending projections from S1. It is clear that the vast majority of CCK+ neurons that receive descending input from S1 neurons are GPR30+, but there are many other GPR30+ neurons that do not receive input from SI neurons presented in 5M. Is this simply because only a small fraction of CCK+/GPR30+ neurons are targeted by descending S1 projections, or could they represent a distinct population of GPR30 neurons? 

      (2a) We appreciate the suggestion. Quantification showed that approximately 90% of CCK⁺ neurons express GPR30, and about 50% of GPR30⁺ neurons co-express CCK. These data are now provided in the revised Results (lines 131-132) and in Figure 2F-G.

      (2b) Indeed, our data reveal that a substantial portion of GPR30⁺ neurons do not co-express CCK. While this study focuses on GPR30 function in CCK⁺ neurons, we recognize the potential relevance of GPR30⁺/CCK⁻ populations. We have addressed this point in the Discussion (lines 303-306):

      “However, it should be noted that half of GPR30⁺ neurons are not co-localized with CCK⁺ neurons, and further studies are needed to explore the function of these GPR30⁺/CCK⁻ neurons in neuropathic pain.”

      Regarding descending input, our data in Figure 5 show that S1 projections selectively innervate a subset (~30%) of CCK⁺ neurons, most of which co-express GPR30. This suggests that S1-targeted CCK⁺/GPR30⁺ neurons may represent a functionally distinct population. We have added clarification to the revised manuscript, while acknowledging that further studies are needed to elucidate the roles of non-targeted GPR30⁺ neurons.

      (3) Throughout the manuscript both male and female mice were used in experiments. Rather than referring to male and female mice as different genders, it would be more appropriate to describe them as different sexes. 

      As suggested, we have replaced all instances of “gender” with “sex” throughout the revised manuscript.

      (4) Figure 5: To increase the ease of interpreting the figure, in panels 5J and 5N, it would be helpful to indicate directly on the figure panel which another marker was assessed in double-labeling analyses.

      We have revised Figures 5J and 5N to include clear labels identifying the markers used in double-labeling analyses, to improve interpretability.

      Minor corrections: 

      (1) Line 36, I believe the authors mean to say "GPER/GPR30 in spinal neurons", rather than just "spinal". 

      Corrected as suggested. The sentence now reads (line 34):

      “Here we showed that the membrane estrogen receptor G-protein coupled estrogen receptor (GPER/GPR30) in spinal neurons was significantly upregulated in chronic constriction injury (CCI) mice…”

      (2) There are minor grammatical errors throughout the manuscript that interfere with comprehension. Proofreading/editing of the English language use may be beneficial. 

      We have thoroughly revised the manuscript for clarity and corrected grammatical and syntactic errors to improve readability.

      (3) Line 169-170, reads "Known that EPSCs are mediated by glutamatergic receptors like AMPA receptors and several studies have been reported the relationship between GPR30 and AMPA receptor25,29". Rewriting the sentence such that it better describes what the known relationship is between GPR30 and AMPA would be helpful in setting up the rationale of the experiment in Figure 4. 

      We have rewritten this section to better clarify the rationale behind the electrophysiological experiments (lines 161-164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors, and emerging evidence suggesting that GPR30 enhances excitatory transmission by promoting clustering of glutamatergic receptor subunits, we examined whether GPR30 modulates EPSCs via AMPA receptor-dependent mechanisms.”

      (4) Line 198-199 "Then we explored the possible connections among GPR30, S1-SDH projections and CCK+ neuron." In the context of spinal circuitry, "connections" may raise the expectation that synaptic connectivity will be evaluated. What I think best describes what the authors investigated in Figure 5 is the "relationship" between GPR30, S1-SDH projections, and CCK+ neurons. 

      We have revised the sentence accordingly (lines 184-186):

      “Building on previous findings suggesting a functional interaction between S1-SDH projections and spinal CCK⁺ neurons, our current study aimed to further elucidate the structural relationship among GPR30, S1-SDH projections, and CCK⁺ neurons.”

      (5) Figure 5: To increase the ease of interpreting the figure, in panels 5J and FN, it would be helpful to indicate directly on the figure panel which other marker was assessed in double-labeling analyses. 

      We have added direct labels to figure panels to clarify double-labeled analyses in the revised Figure 5J and 5N.

      Reviewer #2 (Recommendations for the authors): 

      (1) Can the authors provide more detail about the distribution of CCK+ cells in the spinal cord and, in particular, the localization of double-stained (CCK/cfos) neurons? 

      We thank the reviewer for this suggestion. To better characterize the distribution of CCK⁺ neurons within the spinal dorsal horn (SDH), we performed immunostaining in CCK-tdTomato mice using lamina-specific markers: CGRP (lamina I), IB4 (lamina II), and NF200 (lamina III–V). Our results demonstrate that CCK⁺ neurons are primarily localized in the deeper laminae of the SDH. These findings are now described in the revised Results (lines 126–129) and shown in Figure 2E.

      In addition, we conducted c-Fos immunostaining in CCK-Ai14 mice and found increased activation of CCK⁺ neurons following CCI. This supports the involvement of CCK⁺ neurons in neuropathic pain. These data are included in the Results (lines 129–131) and Supplementary Figure S4.

      (2) Figure 2A. There is no formal quantification of the percentage of TdTomato+ neurons that are also CCK+. The description of these results is insufficient. 

      We appreciate this point and have revised the description of Figure 2A accordingly. To strengthen our analysis, we conducted additional FISH experiments with vGluT2 and VGAT probes. Quantification revealed that GPR30 is predominantly expressed in excitatory neurons (approximately 60%). These data are shown in the revised Results (lines 117-119) and Figures 2A-B and S3. This supports our conclusion that GPR30 is largely localized to excitatory spinal interneurons.

      (3) Figure 4H. What is the evidence that these are AMPA-mediated currents? This is not explained in the text. 

      Thank you for raising this point. We now provide detailed experimental procedures to clarify that the recorded EPSCs are AMPA receptor–mediated. Specifically, spinal slices from CCK-Cre mice were used, and excitatory postsynaptic currents were recorded in the presence of APV (100 μM, NMDA receptor blocker), bicuculline (20 μM, GABA_A receptor blocker), and strychnine (0.5 μM, glycine receptor blocker), ensuring that the observed currents were AMPA-dependent. These methodological details are now clearly described in the revised Results (lines 165–173) and supported by prior literature (Zhang et al., J Biol Chem 2012; Hughes et al., J Neurosci 2010).

      (1) Yan Zhang, Xiao Xiao, Xiao-Meng Zhang, Zhi-Qi Zhao, Yu-Qiu Zhang (2012). Estrogen facilitates spinal cord synaptic transmission via membrane-bound estrogen receptors: implications for pain hypersensitivity. J Biol Chem. Sep 28;287(40):33268-81.

      (2) Ethan G Hughes, Xiaoyu Peng, Amy J Gleichman, Meizan Lai, Lei Zhou, Ryan Tsou, Thomas D Parsons, David R Lynch, Josep Dalmau, Rita J Balice-Gordon (2010). Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci. 2010 Apr 28;30(17):5866-75.

      (4) What is the signaling mechanism leading to a larger amplitude of currents after G-1 infusion? 

      We thank the reviewer for this important question. G-1 is a selective agonist for GPR30. Based on previous studies by Luo et al. (2016), we speculate that activation of GPR30 may increase the clustering of glutamatergic receptor subunits at postsynaptic sites, thereby enhancing AMPA receptor-mediated currents. While our current study did not directly address the intracellular signaling cascade, we have incorporated this mechanistic speculation in the Discussion.

      Jie Luo, X.H., Yali Li, Yang Li, Xueqin Xu, Yan Gao, Ruoshi Shi, Wanjun Yao, Juying Liu, Changbin Ke (2016). GPR30 disrupts the balance of GABAergic and glutamatergic transmission in the spinal cord driving to the development of bone cancer pain. Oncotarget 7, 73462-73472. 10.18632/oncotarget.11867.

      (5) Figure 4I. Please include error bars. 

      We have revised Figure 4I to include error bars, as requested.

      (6) Line 198. What is the evidence that AAV2/1 EF1α FLP is an antegrade trans monosynaptic marker? 

      We thank you for this request. AAV2/1 has been widely used for anterograde monosynaptic tracing based on its properties (Wang et al., Nat Neurosci 2024; Wu et al., Neurosci Bull 2021): (1) it infects neurons at the injection site and undergoes active anterograde transport; (2) newly assembled viral particles are released at synapses and infect postsynaptic partners; (3) in the absence of helper viruses, the spread halts at the first synapse, ensuring monosynaptic restriction. We have elaborated on this in the revised manuscript (line 198), citing Wang et al. (Nat Neurosci 2024) and Wu et al. (Neurosci Bull 2021).

      (1) Hao Wang, Qin Wang, Liuzhe Cui, Xiaoyang Feng, Ping Dong, Liheng Tan, Lin Lin, Hong Lian, Shuxia Cao, Huiqian Huang, Peng Cao, Xiao-Ming Li (2024). A molecularly defined amygdalaindependent tetra-synaptic forebrain-tohindbrain pathway for odor-driven innate fear and anxiety. Nat Neurosci. 2024 Mar;27(3):514-526.

      (2) Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (7) Figure 5G. I do not understand the logic of this experiment. A Cre AAV is injected in the S1 cortex. Why should this lead to the expression of tdTomato on a downstream (postsynaptic?) neuron? The authors should quote the literature that supports this anterograde transsynaptic transport.

      We appreciate this question. As described in previous studies (e.g., Wu et al., Neurosci Bull 2021), AAV2/1-Cre injected into the S1 cortex leads to Cre expression in projection targets due to transsynaptic anterograde transport. Subsequent injection of a Cre-dependent AAV (AAV2/9-DIO-mCherry) into the spinal cord enables specific labeling of postsynaptic neurons that receive input from S1. We have clarified this mechanism in line 206 and provided the appropriate citation.

      Zi-Han Wu, Han-Yu Shao, Yuan-Yuan Fu, Xiao-Bo Wu, De-Li Cao, Sheng-Xiang Yan, Wei-Lin Sha, Yong-Jing Gao, Zhi-Jun Zhang (2021). Descending Modulation of Spinal Itch Transmission by Primary Somatosensory Cortex. Neurosci Bull. 2021 Sep;37(9):1345-1350.

      (8) The same question arises when interpreting the results obtained in Figure 6.

      We thank the reviewer for the question, and we have addressed it in point (7).

      (9) Line 257. How do the authors envision that estrogen would change its modulation of GPR30 under basal and neuropathic conditions? Is there any evidence for this speculation? 

      We thank the reviewer for raising this thoughtful question. In the current study, we focused on pharmacologically manipulating GPR30 activity via its selective agonist and antagonist. We did not directly investigate how endogenous estrogen regulates GPR30 under physiological and neuropathic states. We have recognized this limitation and highlighted the need for future research to investigate this regulatory mechanism.

      (10-20) In my opinion, the entire manuscript needs a careful revision of the English language. While one can follow the text, it contains numerous grammatical and syntactic errors that make the reading far from enjoyable. I am highlighting just a few of the many errors. 

      We appreciate the reviewer’s honest assessment. The manuscript has undergone thorough language editing by a native English speaker to correct grammatical errors, improve clarity, and enhance overall readability. We also restructured several sections, particularly the Discussion, to improve logical flow.

      (21) The discussion of results is a bit disorganized, with disconnected sentences and statements, and somewhat repetitive. For example, lines 303 to 306 lack adequate flow. It is also quite long and includes general statements that add little to the discussion of the new findings (lines 326-333). 

      We agree and have revised the Discussion extensively. Disconnected or repetitive sentences (e.g., lines 303-306, 326-333) have been removed or rewritten. For instance, we added a new transitional paragraph (lines 307-311) to improve flow:

      “Abnormal activation of neurons in the SDH is a key contributor to hyperalgesia, and enhanced excitatory synaptic transmission is a major mechanism driving increased neuronal excitability. Therefore, we evaluated excitatory postsynaptic currents (EPSCs) and observed increased amplitudes in CCK⁺ neurons following CCI, suggesting elevated excitability in these neurons.”

      We also removed redundant generalizations to maintain a focused discussion of our novel findings.

      Reviewer #3 (Recommendations for the authors): 

      (1) What is the distribution of GPR30 throughout the spinal cord and DRG? The authors demonstrate that this can overlap with a CCK+ population, but there are many GPR30+ and CCK negative neurons, even in the cropped images presented. It would be helpful to quantify the colocalization with CCK. 

      We thank the reviewer for this important point. As shown in the revised manuscript, GPR30 is expressed in both the spinal cord and dorsal root ganglia (DRG). However, our updated data (Figure 1B) demonstrate that Gper1 mRNA levels in the DRG are not significantly altered after CCI, suggesting a limited involvement of DRG GPR30 in neuropathic pain. These results are described in the revised Results (line 94).

      Regarding spinal co-expression, we performed a detailed quantification. Approximately 90% of CCK⁺ neurons express GPR30, while about 50% of GPR30⁺ neurons are CCK⁺. These co-localization results are now included in the revised Results and presented in Figure 2G.

      (2) It is clear that CCI and GPR30 influence excitatory synaptic transmission in CCK+ neurons. However, these experiments do not fully support the authors' claims of a postsynaptic upregulation of AMPARs. Comparing amplitudes and frequencies of spontaneous EPSCs cannot necessarily distinguish a pre- vs postsynaptic change since some of these EPSCs can arise from spontaneous action potential firing. I suggest revising this conclusion. 

      We appreciate these insightful comments. We fully agree that our data from spontaneous EPSC recordings (sEPSCs) in CCK⁺ neurons are not sufficient to distinguish between pre- and postsynaptic mechanisms, as sEPSCs may include spontaneous presynaptic activity. Therefore, we have revised the text throughout the manuscript to avoid overstating conclusions related to postsynaptic AMPA receptor upregulation.

      (3) What is the rationale for the evoked EPSC experiments from electrical stimulation in "the deep laminae of SDH?" I do not think that this experiment can rule out a presynaptic contribution of GPR30 to the evoked responses, particularly if these are Gs-coupled at presynaptic terminals. Paired-pulse stimulations could help answer this question, otherwise, alternative interpretations, also related to the point above, should be provided. 

      We thank the reviewer for this thoughtful critique. Indeed, electrical stimulation of the deep SDH laminae does not exclude presynaptic involvement, especially considering that GPR30 is a G protein–coupled receptor (GPCR) and could act presynaptically. We agree that paired-pulse ratio (PPR) analysis would be more informative in distinguishing pre- from postsynaptic effects, but this was not performed due to technical limitations in our current experimental setup.

      Accordingly, we have revised our interpretations in both the Results and Discussion to acknowledge that our data do not rule out presynaptic contributions. We now state that GPR30 activation enhances EPSCs in CCK⁺ neurons, while further studies are needed to dissect the precise site of action.

      (4) I appreciate the challenging nature of the trans-synaptic viral labeling approaches, but the chemogenetic and Gper knockdown experiments do not selectively target this CCK+ population of deep dorsal horn neurons. The data are clear that each of these components (descending corticospinal projections, CCK neurons, and GPR30) can modulate nociceptive hypersensitivity, but I do not agree with the overall conclusion that each of are directly linked as the authors propose. I recommend revising the overall conclusion and title to reflect the convincing data presented. 

      We thank the reviewer for this critical observation. We agree that while our data show functional roles for descending cortical input, CCK⁺ neurons, and GPR30 in modulating pain hypersensitivity, the evidence does not establish a definitive direct circuit integrating all three components.

      In response, we have revised our conclusions to reflect this limitation. Specifically, we avoided claiming a direct functional link among S1 projections, CCK⁺ neurons, and GPR30. Instead, we now propose that GPR30 modulates neuropathic pain primarily through its action in CCK⁺ spinal neurons, with potential involvement of descending facilitation from the somatosensory cortex.

      Additionally, we have revised the manuscript title to better reflect our mechanistic focus:<br /> “GPR30 in spinal CCK-positive neurons modulates neuropathic pain.”

      Minor Corrections

      (1) The authors should refer to mice by sex, not gender. 

      Corrected throughout the manuscript.

      (2) Page 9, line 195: "significantly" is used to refer to co-localization of 28.1%. What is this significant to? 

      We have revised the sentence to accurately describe the observed percentage, without implying statistical significance:

      “Our co-staining results revealed that a high proportion of CCK⁺ S1-SDH postsynaptic neurons expressed GPR30” (line 198-199).

      (3) I recommend modifying some of the transition phrases like "by the way," "what's more," and "besides". 

      All informal expressions have been replaced with academic alternatives including “Furthermore,” “Additionally,” and “Moreover.”

      (4) Additional guides to mark specific laminae in the dorsal horn would be useful. 

      We added immunostaining with laminar markers (CGRP for lamina I and NF200 for lamina III–V), and these data are now shown in Figure 2E and described in the Results (lines 126-129).

      (5) Page 5, line 115: immunochemistry should be immunohistochemistry. 

      Corrected as suggested.

      (6) Page 6, line 136: "Confirming the structural connnections" was not demonstrated here. Perhaps co-localization between GPR30 and CCK+. 

      The text was revised to “To functionally interrogate GPR30 and CCK⁺ neurons in neuropathic pain...” (line 133).

      (7) Page 8, line 166: unsure what "took and important role" means. 

      This phrasing was corrected for clarity and replaced with an accurate scientific description.

      (8) Page 8, line 168: "IPSCs of spinal CCK+ neurons" implies that they are sending inhibitory inputs. 

      We revised the term to “EPSCs” to correctly reflect excitatory synaptic currents in CCK⁺ neurons.

      (9) Page 8, line 169: "Known that EPSCs" is missing an introductory phrase. 

      The sentence was rewritten to include an appropriate introductory clause (lines 161–164):

      “Given that EPSCs are primarily mediated through glutamatergic receptors such as AMPA receptors...”

      (10) Page 10, line 227 and 228: "adequately" and "sufficiently" should be adequate and sufficient. 

      We corrected these terms to the proper adjective forms: “adequate” and “sufficient” (lines 224-225).

    1. Author response:

      (1) Maternal lactation assay and PVN oxytocin neuron identity

      Reviewers and editors noted that the maternal lactation assay felt out of place (Editors, R1, R2) and asked for clearer validation of AAV specificity in the PVN (R3). These issues are linked: the primary purpose of the lactation assay was to physiologically validate that the recorded neurons are oxytocinergic, as PVNOT neurons exhibit well-established pulsatile activity during lactation.

      In response, we will (i) explicitly frame the lactation assay as a validation experiment, (ii) streamline its presentation to sit naturally with our identity-validation rationale, and (iii) clarify our AAV targeting and expression controls; we will also address our oxytocin immunohistochemistry quantification and its limitations (we observed notable intra-individual and technical variability in oxytocin immunoreactivity), which motivated the complementary physiological approach.

      (2) Clarifications and analyses.

      The reviewers pointed to several analyses, inferences, and conclusions that should be clarified. We will clarify: (i) the oxytocin histology in Figure 1 (marker definitions and quantification), (ii) the roles of floor versus ambient temperature, and (iii) further elucidate some of the quantitative links among behavioral state, neural activity, and body temperature (e.g., behavior bout duration vs. neural responses and Tb), (iv) the computer vision methodology. These additions will address the reviewers’ requests for clearer inferences and presentation.

      (3) Optogenetic inhibition. 

      We appreciate the suggestion to include an inhibition experiment (Editors, R1, R2). While interesting, this is beyond the scope of the current revision. Our stimulation experiments were designed to functionally test a specific observation from calcium imaging, namely, that PVNOT neurons show bursts of heightened activity at transitions from quiescence to arousal/thermogenesis, and to assess causal sufficiency for thermogenic/arousal-related readouts. We will make this rationale explicit, discuss the scope limits of the current dataset, and note inhibition as an important direction for future work.

    1. Author response:

      Reviewer #1 (Public review):

      The topic is appealing given the rise in the aging population and the unclear role of BAT function in this process. Overall, the study uses several techniques, is easy to follow, and addresses several physiological and molecular manifestations of aging.  However, the study lacks an appropriate statistical analysis, which severely affects the conclusions of the work. Therefore, interpretation of the findings is limited and must be done with caution. 

      We greatly appreciate the reviewer’s encouragement. Our team is fully committed to maintaining clarity and rigor in the design, execution, and reporting of this study. We are grateful to the reviewers for bringing these issues to our attention. We also acknowledge and are working on that several statistical analyses could be reperformed to better emphasize our focus on the genetic effect of ADH5 deletion in mice of the same age.

      Reviewer #2 (Public review):

      Strengths: 

      This research provides insight into the interplay between redox biology, proteostasis, and metabolic decline in aging. By identifying a specific enzyme that controls SNO status in BAT and further developing a therapy to target ADH5 in BAT to prevent age-related decline, the authors have identified a putative mechanism to combat age-related decline in BAT function. 

      We greatly appreciate the reviewer’s encouragement. 

      Weaknesses: 

      (1) Sex needs to be considered as a biological variable, at a minimum in the reporting of the phenotypes observed in this manuscript, but also potentially by further experimentation. 

      We thank the reviewer for the insightful remark, and we agree with the reviewer that sex needs to be considered as a biological variable. We will assess ADH5 expression in aged female mice.

      (2)  It would be helpful to know the extent of ADH5 loss in the adipose tissue of knockout mice, either by mRNA or by immunoblotting for ADH5. It could also be helpful to know if ADH5 is deleted from the inguinal adipose tissue of these mice, especially since they seem to accumulate fat mass as they age (Figure 2B). 

      We thank the reviewer for the comment/suggestion. Indeed, we have measured the ADH5 expression in both brown adipose tissue (BAT) and inguinal adipose tissue (iWAT). We regret that we did not include our results in the first submission and will provide these results in the revised manuscript.

      (3)  For Figure 4D, the ChiP, it would be better to show the IgG control pulldowns. Finally, it's not clear how these BAT samples were treated with HSF1A - was this done in vivo or ex vivo? 

      We thank the reviewer for their thoughtful comment and will provide detailed information in the revised manuscript.

      (4) I didn't understand what was on the y-axis in Figure 5A, nor how it was measured.

      We apologize for not making these critical points clearer in the first submission. In the revised manuscript we will include, in detail, the logistics of the experiments in the materials and methods section, figure annotation and figure legends.  

      (5) What happens to BAT protein S-nitrosylation in HSF1A-treated mice? 

      We thank the reviewer for the insightful remark, and we will measure general protein Snitrosylation status in the BAT of HSF1A-treated mice. 

      (6) Figure 1B: What is the age of the positive (ADH5BKO) and negative (Adh5 fl) mice? 

      We regret that we did not describe our results clearly in the first submission and will provide detailed information in the revised manuscript.

      (7) Figure 1F: Can you clarify what I'm looking at in the P16ink4a panels? The red staining? Is the blue staining DAPI? This is also a problem in Figures 3C, 3D and 5G, and 5I. Figure 4B looks great - maybe this could be used as an example?  

      We regret that we did not present results clearly in the first submission and will provide detailed information in the revised manuscript.

      (8) Figure 3B looks a bit odd. Can the approach to measuring IL-1β be clarified, and could the authors explain why they can't show units of mass for IL-1β levels? 

      We will provide detailed information in the revised manuscript.

      (9) Figure 2C and 2D: I don't really understand why the Heat or VO2 need to be expressed as fold changes. Can't these just be expressed with absolute units? 

      We thank the reviewer for the insightful comment. We will present these results as suggested in the revised manuscript.

    1. Author response:

      (1) Stable annual dynamics vs. episodic outbreaks

      We agree that RVF is classically described as producing periodic epidemics interspersed with long inter-epidemic periods, often linked to extreme rainfall events. Our model predicts more regular seasonal dynamics, which reflects the endemic transmission patterns we have observed in The Gambia through serological surveys. In the revision, we will:

      Clarify that while epidemics occur in other parts of sub-Saharan Africa, our results may indicate a different epidemiological narrative in The Gambia, with sustained but low-level circulation (hyperendemicity).

      Discuss how model assumptions (e.g. seasonality, homogenous mixing) may bias results toward stable dynamics.

      Highlight the implications of this for interpretation and for public health decision-making.

      (2) Use of network analysis

      We acknowledge the reviewer’s concern. The network analysis was conducted descriptively to characterize cattle movement patterns and the structure of herd connections, but it was not formally incorporated into the model. In revisions we will:

      Clarify this distinction in the manuscript to avoid overinterpretation.

      Emphasize the need for future modelling work using finer-scale movement data, which could support more realistic herd metapopulation dynamics and better capture heterogeneity in transmission.

      (3) RVFV reproductive impacts

      While RVF outbreaks are known to cause abortions and neonatal deaths, these occur during relatively rare epidemics. In the Gambian context, where we’re not observing such large episodic outbreaks but rather low-level circulation, the annual impact of RVF infection on births is likely modest compared to baseline herd turnover. Moreover, cattle demography is partly managed, with replacement and movement buffering birth rates against short-term losses.

      Our model includes birth as a constant demographic process, it’s reasonable to assume stable population since we are not explicitly modelling outbreak-scale reproductive losses. This is consistent with other RVF transmission models that adopt a similar simplifying assumption. However, we will acknowledge this simplification as a limitation in the revised manuscript.

      (4) Missing ODEs for M herds in the dry season

      We thank the reviewer for identifying this omission. The ODEs for M herds in the dry season were not included in the appendix due to an oversight, though demographic turnover was incorporated in the model code. We will add the missing equations to the appendix.

      (5) Role of immunity loss and model structure (SIR vs. SIRS)

      We acknowledge that the decline of detectable antibodies over time (seropositivity decay/seroreversion) is an important consideration in RVFV serology, but whether this reflects true loss of protective immunity after natural infection remains unknown. Biologically, it is plausible that infected cattle develop long-lasting protection, as suggested by studies in humans, but there is an absence of longitudinal field data. From a modelling perspective, our aim was to predict age-seroprevalence curve dependent on FOI estimates and assess its ability to reproduce observed cross-sectional seroprevalence patterns. We therefore adopted a parsimonious SIR framework, treating loss of seropositivity as a potential explanation for the observed age disparity rather than modelling it as loss of immunity. In revisions we will:

      Clarify this rationale, emphasising that there is no direct evidence for waning immunity following natural RVFV infection in cattle, although evidence of seropositivity decay has been suggested in human.

      Further discuss the seropositivity decay rates predicted in our survey and their possible relation to test sensitivity.

      Highlight that while a SIRS structure could generate different long-term dynamics, evaluating this requires stronger evidence for true immunity loss; we consider this an important future modelling direction.

      (6) RVFV induced mortality in serocatalytic model

      We thank the reviewer for this comment. Disease-induced mortality was included in the serocatalytic model through the mortality parameter (γ), but we recognise that this might not have been sufficiently clear in the text. In revisions we will clarify in the Methods and Appendix.

      (7) Clarifying previous vs. current study components

      We will revise the Methods and Appendix to make clearer distinctions between our previous work (e.g. household survey data collection, seroprevalence estimates) and the analyses undertaken for this manuscript (e.g. model development and fitting).

      (8) Limitations paragraph

      We will expand the limitations section to specifically identify the assumptions contributing most to uncertainty. We will then outline how these may bias transmission dynamics and intervention estimates.

      (9) Movement ban simulations & suitability of model for vaccination interventions

      We appreciate the reviewer’s concerns regarding the movement ban simulation. On reassessment, we agree that our model structure might not be ideally suited to exploring them. In the revised manuscript, we will remove this analysis and emphasize how our modelling framework is more suited to exploring cattle vaccination scenarios, including targeting of specific herd types (e.g. T vs. M vs. L). We note that we are currently developing separate work focused on vaccination strategies in cattle, where this model structure might be more directly applicable, and will reserve a deeper investigation of vaccination interventions for that forthcoming publication.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Shigella flexneri is a bacterial pathogen that is an important globally significant cause of diarrhea. Shigella pathogenesis remains poorly understood. In their manuscript, Saavedra-Sanchez et al report their discovery that a secreted E3 ligase effector of Shigella, called IpaH1.4, mediates the degradation of a host E3 ligase called RNF213. RNF213 was previously described to mediate ubiquitylation of intracellular bacteria, an initial step in their targeting of xenophagosomes. Thus, Shigella IpaH1.4 appears to be an important factor in permitting evasion of RNF213-mediated host defense.

      Strengths:

      The work is focused, convincing, well-performed, and important. The manuscript is well-written.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of the novelty and importance of our study. We provide a comprehensive response to each of the reviewer’s specific recommendations below and highlight any changes made to the manuscript in response to those recommendations.

      Reviewer #1 (Recommendations for the authors):

      (1) In the abstract (and similarly on p.10), the authors claim to have shown "IpaH1.4 protein as a direct inhibitor of mammalian RNF213". However, they do not show the interaction is direct. This, in my opinion, would require demonstrating an interaction between purified recombinant proteins. I presume that the authors are relying on their UBAIT data to support the direct interaction, but this is a fairly artificial scenario that might be prone to indirect substrates. I would therefore prefer that the 'direct' statement be modified (or better supported with additional data). Similarly, on p.7, the section heading states "S. flexneri virulence factors IpaH1.4 and IpaH2.5 are sufficient to induce RNF213 degradation". The corresponding experiment is to show sufficiency in a 293T cell, but this leaves open the participation of additional 293T-expressed factors. So I would remove "are sufficient to", or alternatively add "...in 293T cells".

      We agree with the reviewer and made the recommended changes to the text in the abstract, in the results section on page 7, and in the Discussion on page 11. During the revision of our manuscript two additional studies were published that provide convincing biochemical evidence for the direct interaction between IpaH1.4 and RNF213 (PMID: 40205224; PMID: 40164614). These studies address the reviewer’s concern extensively and are now briefly discussed and cited in our revised MS.

      (2) In the abstract the authors state "Linear (M1-) and lysine-linked ubiquitin is conjugated to bacteria by RNF213 independent of the linear ubiquitin chain assembly complex (LUBAC)." However, it is not shown that RNF213 is able to directly perform M1-ubiquitylation. It is shown that RNF213 is required for M1-linked ubiquitylation in IpaH1.4 or MxiE mutants, this is different than showing conjugation is done by RNF213 itself. This should be reworded.

      We agree and edited the text accordingly

      (3) Introduction: one of the main points of the paper is that RNF213 conjugates linear ubiquitin to the surface of bacteria in a manner independent of the previously characterized linear ubiquitin conjugation (LUBAC) complex. This is indeed an interesting result, but the introduction does not put this discovery in much context. I would suggest adding some discussion of what was known, if anything, about the type of Ub chain formed by RNF213, and specifically whether linear Ub had previously been observed or not.

      We now provide context in the Introduction on page 3 and briefly discuss previous work that had implicated LUBAC in the ubiquitylation of cytosolic bacteria. We emphasize that LUBAC specifically generates linear (M1-linked) ubiquitin chains, while the types of ubiquitin linkages deposited on bacteria through RNF213-dependent pathways had remained unidentified.

      (4) Figure 3C: is the difference in 7KR-Ub between WT and HOIP KO cells significant? If so, the authors may wish to acknowledge the possibility that HOIP partially contributes to M1-Ub of MxiE mutant Shigella

      The frequencies at which bacteria are decorated with 7KR-Ub is not statistically different between WT and HOIP KO cells. We have included this information in the panel description of Figure 3.

      (5) On page 11, the authors state that "...we observed that LUBAC is dispensable for M1-linked ubiquitylation of cytosolic S. flexneri ∆ipaH1.4. We found that lysine-less internally tagged ubiquitin or an M1-specific antibody bound to S. flexneri ∆ipaH1.4 in cells lacking LUBAC (HOIL-1KO or HOIPKO) but failed to bind bacteria in RNF213-deficient cells". In fact, what is shown is that M1-ubiquitylation in ∆ipaH1.4 infection is RNF213-dependent (5E), but the work with lysine mutants, HOIP or HOIL-1 KOs are all with ∆mxiE, not ∆ipaH1.4 (3B) in this version of the manuscript. Ideally, the data with ∆ipaH1.4 could be added, but alternatively, the conclusion could be re-worded.

      We now include the data demonstrating that staining of ∆ipaH1.4 with an M1-specific antibody is unchanged from WT cells in HOIL-1 KO and HOIP KO cells. These data are shown in supplementary data (Fig. S3E) and referred to on page 9 of the revised manuscript.

      (6) The UBAIT experiment should be explained in a bit more detail in the text. The approach is not necessarily familiar to all readers, and the rationale for using Salmonella-infected ceca/colons is not well explained (and seems odd). Some appropriate caution about interpreting these data might also be welcome. Did HOIP or HOIL show up in the UBAIT? This perhaps also deserves some discussion.

      As expected, HOIP (listed under its official gene name Rnf31 in the table of Fig.S2B) was identified as a candidate IpaH1.4 interaction partner as the third most abundant hit from the UBAIT screen. Remarkably, Rnf213 was the hit with the highest abundance in the IpaH1.4 UBAIT screen. To address the reviewer’s comments, we now explain the UBAIT approach in more detail and provide the rational for using intestinal protein lysates from Salmonella infected mice. The text on page 8 reads as follows: “To investigate potential physical interactions between IpaH1.4 and IpaH2.5, we reanalyzed a previously generated dataset that employed a method known as ubiquitin-activated interaction traps (UBAITs) (32). As shown in Fig. S2A, the human ubiquitin gene was fused to the 3′ end of IpaH2.5, producing a C-terminal IpaH2.5-ubiquitin fusion protein. When incubated with ATP, ubiquitin-activating enzyme E1, and ubiquitin-conjugating enzyme E2, the IpaH2.5-ubiquitin "bait" protein is capable of binding to and ubiquitylating target substrates. This ubiquitylation creates an iso-peptide bond between the IpaH2.5 bait and its substrate, thereby enabling purification via a Strep affinity tag incorporated into the fusion construct (32). IpaH2.5-ubiquitin bait and IpaH3-ubiquitin control proteins were incubated with lysates from murine intestinal tissue. To detect interaction partners in a physiologically relevant setting, we used intestinal lysates derived from mice infected with Salmonella, which in contrast to Shigella causes pronounced inflammation in WT mice and therefore better simulates human Shigellosis in an animal model. Using UBAIT we identified HOIP (Rnf31) as a likely IpaH2.5 binding partner (Fig. S2B), thus confirming previous observations (28) and validating the effectiveness our approach. Strikingly, we identified mouse Rnf213 as the most abundant interaction partner of the IpaH2.5-ubiquitin bait protein (Fig. S2B). Collectively, our data and concurrent reports showing direct interactions between IpaH1.4 and human RNF213 (36, 37) indicate that the virulence factors IpaH1.4 and IpaH2.5 directly bind and degrade mouse as well as human RNF213.”

      (7) It would be helpful if the authors discussed their results in the context of the prior work showing IpaH1.4/2.5 mediate the degradation of HOIP. Do the authors see HOIP degradation? If indeed HOIP and RNF213 are both degraded by IpaH1.4 and IpaH2.5, are there conserved domains between RNF213 and HOIP being targeted? Or is only one the direct target? A HOIP-RNF213 interaction has previously been shown (https://doi.org/10.1038/s41467-024-47289-2). Since they interact, is it possible one is degraded indirectly? To help clarify this, a simple experiment would be to test if RNF213 degraded in HOIP KO cells (or vice-versa)?

      We appreciate the reviewer’s suggestions. We conducted the proposed experiments and found that WT S. flexneri infections result in RNF213 degradation in both WT and HOIP KO cells. Similarly, we found that HOIP degradation was independent of RNF213. We have included these data in Figs. 5A and S3B of our revised submission. A study published during revisions of our paper demonstrates that the LRR of IpaH1.4 binds to the RING domains of both RNF213 and LUBAC (PMID: 40205224). We refer to this work in our revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors find that the bacterial pathogen Shigella flexneri uses the T3SS effector IpaH1.4 to induce degradation of the IFNg-induced protein RNF213. They show that in the absence of IpaH1.4, cytosolic Shigella is bound by RNF213. Furthermore, RNF213 conjugates linear and lysine-linked ubiquitin to Shigella independently of LUBAC. Intriguingly, they find that Shigella lacking ipaH1.4 or mxiE, which regulates the expression of some T3SS effectors, are not killed even when ubiquitylated by RNF213 and that these mutants are still able to replicate within the cytosol, suggesting that Shigella encodes additional effectors to escape from host defenses mediated by RNF213-driven ubiquitylation.

      Strengths:

      The authors take a variety of approaches, including host and bacterial genetics, gain-of-function and loss-of-function assays, cell biology, and biochemistry. Overall, the experiments are elegantly designed, rigorous, and convincing.

      Weaknesses:

      The authors find that ipaH1.4 mutant S. flexneri no longer degrades RNF213 and recruits RNF213 to the bacterial surface. The authors should perform genetic complementation of this mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work, especially its scientific rigor. We conducted the experiment suggested by the reviewer and included the new data in the revised manuscript. As expected, complementation of the ∆ipaH1.4 with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213 (Figs. 5C-D).

      Reviewer #2 (Recommendations for the authors):

      The authors should perform genetic complementation of the ipaH1.4 mutant with WT ipaH1.4 and the catalytically inactive ipaH1.4 to confirm that ipaH1.4 catalytic activity is indeed responsible for the observed phenotype.

      We performed the suggested experiment and show in Figs. 5C-D that complementation of the ∆ipaH1.4 mutant with WT IpaH1.4 but not with the catalytically dead C338S mutant restored the ability of Shigella to efficiently escape from recognition by RNF213. These data demonstrate that the catalytic activity of IpaH1.4 is required for evasion of RNF213 binding to the bacteria.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to investigate whether and how Shigella avoids cell-autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this paper is the suggestion that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is, by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains.

      Strengths:

      The data is for the most part well controlled and clearly presented with appropriate methodology. The authors convincingly demonstrate that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome, although the site of modification is not identified.

      Weaknesses:

      (1)The work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). In this study, two pieces of evidence support this statement -fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an antibody, to Shigella mutants and the use of an internally tagged Ub-K7R mutant, which is unable to be incorporated into ubiquitin chains via its lysine residues. Given that clones of the M1-specific antibody are not always specific for M1 chains, and because it remains formally possible that the Int-K7R Ub can be added to the end of the chain as a chain terminator or as mono-ub, the authors should strengthen these findings relating to the claim that another E3 ligase can generate M1 chains de novo.

      (2) The main weakness relating to the infection work is that no bacterial protein loading control is assayed in the western blots of infected cells, leaving the reader unable to determine if changes in RNF213 protein levels are the result of the absent bacterial protein (e.g. IpaH1.4) or altered infection levels.

      (3)The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 strain could have been investigated further as it is unclear if RNF213 coating is enhanced due to increased protein expression of RNF213 or another factor. This is of interest as IFNgamma priming does not seem to be needed for RNF213 to detect and coat cytosolic Salmonella.<br /> Overall, the findings are important for the host-pathogen field, cell-autonomous/innate immune signaling fields, and microbial pathogenesis fields. If further evidence for LUBAC independent M1 ubiquitylation is achieved this would represent a significant finding.

      We would like to thank the reviewer for their time evaluating our manuscript and the positive assessment of our work and its significance. We provide a comprehensive response to the main three critiques listed under ‘weaknesses’ and also have responded to each of the reviewer’s specific recommendations below. We highlight any changes made to the manuscript in response to those recommendations.

      (1) As the reviewer correctly pointed out, 7KR ubiquitin cannot only be used for linear ubiquitylation but can also function as a donor ubiquitin and can be attached as mono-ubiquitin to a substrate or to an existing ubiquitin chain as a chain terminator. To distinguish between 7KR INT-Ub signals originating from linear versus mono-ubiquitylation, we followed the reviewer’s advice and generated a N-terminally tagged 7KR INT-Ub variant. The N-terminal tag prevents linear ubiquitylation but still allows 7KR INT-Ub to be attached as a mono-ubiquitin. We found that the addition of this N-terminal tag significantly reduced but not completely abolished the number of Δ_mxiE_ bacteria decorated with 7KR INT-Ub. These data are shown in a new Fig. S1 and indicate that 7KR lacking the N-terminal tag is attached to bacteria both in the form of linear (M1-linked) ubiquitin and as donor ubiquitin, possibly as a chain terminator. While we cannot rule out that the anti-M1 antibodies used here cross-react with other ubiquitin linkages, we reason that the 7KR data strongly argues that linear ubiquitin is part of the ubiquitin coat encasing IpaH1.4-deficient cytosolic Shigella. Collectively, our data show that both linear and lysine-linked (especially K27 and K63) ubiquitin chains are part of the RNF213-dependent ubiquitin coat on the surface of IpaH1.4 mutants. And furthermore, our data strongly indicate that this ubiquitylation of IpaH1.4 mutants is independent of LUBAC.

      (2) We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (3) We agree with the reviewer that the mechanism by which RNF213 binds to bacteria is an important unanswered question. Similarly, whether other ISGs have auxiliary functions in this process or whether binding efficiencies vary between different bacterial species are important questions in the field. However, these questions go far beyond the scope of this study and were therefore not addressed in our revisions.

      Reviewer #3 (Recommendations for the authors):

      (1) An N-terminally tagged K7R-ub should be used as a control to test whether the signal found around the mutant shigella is being added via the N terminal Met into chains. As it is known that certain batches of the M1-specific antibodies are in fact not specific and able to detect other chain types, the authors should test the specificity of the antibody used in this study (eg against different di-Ub linkage types) and include this data in the manuscript.

      We agree with the reviewer in principle. The anti-linear ubiquitin (anti-M1) monoclonal antibody, clone 1E3, prominently used in this study was tested by the manufacturer (Sigma) by Western blotting analysis and according to the manufacturer “this antibody detected ubiquitin in linear Ub, but not Ub K11, Ub K48, Ub K63.” However, this analysis did not include all possible Ub linkage types and thus the reviewer is correct that the anti-M1 antibody could theoretically also detect some other linkage types. To address this concern, we added new data during revisions demonstrating that 7KR INT-Ub targeting to S. flexneri is largely dependent on the N-terminus (M1) of ubiquitin. Our combined observations therefore overwhelmingly support the conclusion that linear (M1-linked) as well as K-linked ubiquitin is being attached to the surface of IpH1.4 S. flexneri bacteria in an RNF213-dependent and LUBAC-independent manner.

      (2) The M1 signal detected on bacteria with the antibody is still present in either Hoip or Hoil KO’s but due to the potential non-specificity of the antibody, the authors should test whether K7R ub is detected on bacteria in the Hoil ko (in addition to Hoip KO). This would strengthen the authors’ data on LUBAC-independent M1 and is important because Hoil can catalyse non-canonical ubiquitylation.

      The specific linear ubiquitin-ligating activity of LUBAC is enacted by HOIP. We show that linear ubiquitylation of susceptible S. flexneri mutants as assessed by anti-M1 ubiquitin staining or 7KR INT-Ub recruitment occurs in HOIPKO cells at WT levels (Figs. 3B, 3C, S3E [new data]). In our view , these data unequivocally show that the observed linear ubiquitylation of cytosolic S. flexneri ipaH1.4 and mxiE mutants is independent of LUBAC.

      (3) For Figure 4A, do mxiE bacteria show similar invasion - authors should include a bacterial protein control to show levels of bacteria in WT and mxiE infected conditions. A similar control should be included in Figure 5A.

      We used GFP-expressing strains of S. flexneri for our infection studies and were therefore able to use GFP expression as a loading control. We have incorporated these data into our revised figures. These new data (Figs. 4A, 5A, and S3B) show that bacterial infection levels were comparable between WT and mutant infections and that therefore the degradation of RNF213 (or HOIP – see new data in Fig. S3B) is not due to differences in infection efficiency.

      (4) Can the authors speculate why IFNg priming is needed for the coating of Shigella mxiE mutant but not in the case of Salmonella or Burkholderia? Is this just amounts of RNF213 or something else?

      In our studies we did not directly compare ubiquitylation rates of cytosolic Shigella, Burkholderia, and Salmonella bacteria with each other under the same experimental conditions. However, such a direct comparison is needed to determine whether IFNgamma priming is required for RNF213-dependent bacterial ubiquitylation of some but not other pathogens. Two papers published during the revisions of our manuscript (PMID: 40164614, PMID: 40205224) reports robust RNF213 targeting to IpaH1.4 Shigella mutants in unprimed cells HeLa cells (whereas we used A549 and HT29 cells). Therefore, differences in reagents, cell lines, and/or other experimental conditions may determine whether IFNgamma priming is necessary to observe substantial RNF213 translocation to cytosolic bacteria.

      (5) Typos - there are several, but this is hard to annotate with line numbers so the authors should proofread again carefully.

      We proofread the manuscript and corrected the small number of typos we identified

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Wang and Colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to US. They provided quantitative information on their protocol, such as the required number of Contrast enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.

      Strengths:

      The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the Authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.

      Wang and co-authors submitted a revised version of their study, which shows improvements in the clarity of the data description.

      However, the flaws and limitations of this study are substantially unchanged.

      The main issues are:

      Statistics are still inadequate. The TOST test proposed in this revised version is not equivalent to an ANOVA. Indeed, multivariate analyses should be the most appropriate, given that some quantifications were probably made on multiple vessels from different mice. The 3 reviewers mentioned the flaws in statistics as the primary concern.

      Response 01: We thank the reviewer for raising this important point. We fully acknowledge the limitations of our current statistical analysis. We would like to clarify that the TOST procedure was applied exclusively to the measurements taken from the same vessel segment in the same animal across different time points, with the purpose of evaluating the consistency of vessel diameter measurements. We recognize that the statistical analysis in this study remains limited, which we have acknowledged as a key limitation in the manuscript. This constraint arises primarily from the limited number of animals, and our analysis should be interpreted as a representative case study rather than a generalized statistical conclusion. We have revised the manuscript to clarify these points and to more explicitly acknowledge the statistical limitations.

      (Line 329) “Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      No new data has been added, such as testing other anesthetics.

      Response 02: We acknowledge that the current study does not include data involving other anesthetics, and we have also discussed this point in our initial response. In fact, we did attempt to use other anesthetics such as ketamine. However, we found it difficult to draw reliable conclusions due to experimental limitations such as variable anesthesia recovery profiles and injection timing, as elaborated in the following paragraphs. Therefore, we decided not to include these data in the current study to avoid potential misinterpretation.

      One major limitation of our experimental setup is that imaging in the awake state is necessarily conducted after a brief period of isoflurane-anesthesia. This brief anesthesia allows for the intravenous injection of microbubbles via the tail vein. Isoflurane is particularly suited for this purpose due to its rapid onset and offset. Mice can recover quickly once the gas is withdrawn, which enables relatively consistent post-anesthesia imaging in the awake state.

      In contrast, other anesthetic agents present challenges. Their recovery profiles are slower, more variable, and less controllable. Reversal drugs can be administered to awaken the animals, but they add another variability. These may lead to greater fluctuations in cerebral hemodynamics and factors introduce uncertainty in the timing of bolus microbubble injection. As such, our current setup is not ideal for systematically comparing different anesthetics and could yield misleading results.

      A more appropriate strategy for comparing awake ULM imaging with different anesthetics would be performing awake imaging first, followed by imaging under anesthesia. This would ensure that the awake condition is free from residual anesthetic effects. However, this method raises higher requirement in bubble delivery, as no anesthesia can be used for the intravenous injection.

      To address this, we are actively exploring another solution using indwelling jugular vein catheterization. By surgically implanting a catheter into the jugular vein prior to imaging, we can establish a stable and reproducible route for microbubble delivery in fully awake animals without any anesthesia induction. This method has the potential to enable direct and reliable comparisons across different physiological states. However, the implementation of this technique and the associated experimental findings go beyond the scope of the current study and will be presented in a future manuscript.

      In the present work, we have emphasized the methodological limitations of our approach and clarified that our primary goal is to highlight the necessity and feasibility of awake-state ULM imaging. The focus is not to comprehensively characterize the effects of different anesthetic agents on microvascular brain flow. We appreciate your understanding and interest in this important future direction. 

      Based the responses and previous revision, we have further refined the discussion of the relevant limitations:

      (Line 324) “Although isoflurane is widely used in ultrasound imaging because it provides long-lasting and stable anesthetic effects, it is important to note that the vasodilation observed with isoflurane is not representative of all anesthetics. Some anesthesia protocols, such as ketamine combined with medetomidine, do not produce significant vasodilation and are therefore preferred in experiments where vascular stability is essential, such as functional ultrasound imaging. Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      (Line 347) “Another limitation of this study is the potential residual vasodilatory effect of isoflurane anesthesia on awake imaging sessions and the short imaging window available after bolus injection. The awake imaging sessions were conducted shortly after the mice had emerged from isoflurane anesthesia, required for the MB bolus injections. The lasting vasodilatory effects of isoflurane may have influenced vascular responses, potentially contributing to an underestimation of differences in vascular dynamics between anesthetized and awake state. In addition, since microbubbles are rapidly cleared from circulation, the duration of effective imaging is limited to only a few minutes, which also overlaps with the anesthesia recovery period, constraining the usable awake-state imaging window. Future improvement on microbubble infusion using an indwelling jugular vein catheter presents a promising alternative to address these limitations. This method allows for stable microbubble infusion without the need for anesthesia induction, ensuring that the awake imaging condition is free from residual anesthetic effects. Moreover, it has the potential to extend the duration of imaging sessions, offering a longer and more stable time window for data acquisition. Furthermore, by performing ULM imaging in the awake state first, instead of starting with anesthetized imaging, researchers can achieve a more rigorous comparison of how various anesthetics influence cerebral microvascular dynamics relative to the awake baseline.”

      The Authors still insist on using the term Vascularity which they define as: 'proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal.'. Why not use apparent cerebral blood volume or just CBV? Introducing an unnecessary and redundant term is not scientifically acceptable. In this revised version, vascularity is also used to indicate a higher vascular density (Line 275), which does not make sense: blood vessels do not generate from the isoflurane to the awake condition in a few minutes. Rev2 also raised this point.

      Response 03: Thank you for revisiting this important point. We acknowledge that the term vascularity is difficult to interpret for readers, and we also recognize that we did not sufficiently justify its use in the earlier version.

      Based on your suggestion, we have now replaced all instances of “vascularity” with “fractional vessel area”. While the underlying definition remains the same, fractional vessel area offers a more intuitive description. The term “fractional” denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes, such as Figures 4i–k to evaluate various brain regions. We would also like to clarify that this was not introduced as an unnecessary or redundant term, but rather as a more suitable metric for longitudinal ULM analysis. We did consider using apparent cerebral blood volume (CBV), estimated from microbubble counts. However, we found that it was less robust and meaningful in the context of longitudinal ULM comparisons. Below we provide further justification for using the vessel area instead:

      (1) Using the vessel area is more robust:

      In longitudinal ULM comparisons, normalization across time points is essential to enable fair and meaningful comparisons. In our study, we normalized the data based on a cumulative 5 million microbubbles (e.g., Fig. 2). Other normalization strategies could also be adopted, as long as the resulting vascular maps reach a sufficiently saturated state. However, even with normalization, it remains important to use a quantitative metric that is minimally biased and invariant to experimental fluctuations across time points. Vessel area, derived from binarized vessel maps, is less sensitive to variations in acquisition time and microbubble concentration. This is because repeated microbubble trajectories through the same location are not counted multiple times. In contrast, apparent CBV, calculated from the microbubble counts, is more susceptible to different concentration conditions. Since repeated detections in the same location accumulate, the metric can be dependent on injection efficiency and imaging duration. While CBV may still be valid under well-controlled, steady-state conditions, we found the vessel area to be a more robust and reliable metric for longitudinal analysis under our current bolus-injection protocol.

      (2) Using the vessel area is more meaningful:

      Compared to CBV, the vessel area provides a more direct representation of structural characteristics such as vessel diameter. Anesthesia-induced vasodilation leads to an increase in vessel diameter. Although local diameter changes can be assessed by manually selecting vessel segments, this approach is labor-intensive and prone to selection bias. To enable a more comprehensive and objective assessment of such morphological changes, fractional vessel area provides a more informative alternative to CBV, as it captures diameter-related variations at a global or regional scale, and avoids potential biases associated with manually selecting specific vessels or regions.

      In response to: vascularity is also used to indicate a higher vascular density (Line 275), which does not make sense: blood vessels do not generate from the isoflurane to the awake condition in a few minutes.

      We agree that blood vessels cannot be generated in a few minutes. Vascularity (now fractional vessel area) should be interpreted as apparent vessel density, which reflects a probabilistic estimate of vessel density based on the detectable microbubble. 

      Both apparent vessel density and apparent CBV are indirect, sampling-based approximations of vascular features, and both are fundamentally limited by microbubble detection sensitivity. Low microbubble concentrations lead to underestimation of both CBV and vessel area. A change from zero to non-zero in these metrics does not imply the physical appearance or disappearance of vessels, but rather reflects a change in the likelihood of detecting flow in each region.

      In summary, while neither fractional vessel area (vascularity in previous versions) nor apparent CBV is a perfect metric due to the inherent limitations of ULM, we believe the vessel area provides a more robust and meaningful parameter for our longitudinal comparisons. We have revised the main text to include this explanation and acknowledge the limitations and interpretation of fractional vessel area more explicitly.

      Revision in Results:

      (Line 181) “To validate the broader applicability of our findings, we conducted ROI-based analyses using fractional vessel area and mean velocity as primary metrics. These metrics extended the analysis of vessel diameter and flow velocity to entire brain regions or selected ROIs, which provides a more objective assessment of cerebral blood flow changes at a global scale and reduces the bias associated with manually selecting vessel segments. For vessel area measurements, the term fractional denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes.”

      Revision in Methods: definition of vascularity

      (Line 571) “In ROI-based analysis, we focused on two primary parameters: fractional vessel area and mean velocity. Fractional vessel area was defined as the proportion of the pixel count occupied by blood vessels within each ROI, obtained by binarizing the ULM vessel density maps and calculating the percentage of the pixels with MB signal. Mean velocity was calculated by averaging all non-zero pixel of velocity estimates within the ROI. The velocity distribution within each ROI was also visualized using violin plots, as shown in Fig. 2, 4 and 6, to illustrate the range and density of flow velocity estimates across different acquisition. In this study, we focused on these two metrics because they represent the most straightforward extension of single-vessel analysis to brain-wide vascular changes.”

      We put our ROI analysis code on GitHub and added a “Code availability” section. We hope it can serve as a foundation for users to explore different quantitative metrics in their own longitudinal ULM studies. We hope to provide an example to inspire further exploration.

      (Line 578) “Code availability

      To support quantitative longitudinal analysis of ULM data, we developed an open-source MATLAB application (https://github.com/ekerwang/ULMQuantitativeAnalysis). This tool is designed to facilitate ROI-based analysis of ULM images for longitudinal comparisons. It supports multiple quantification metrics, including but not limited to vessel area and mean velocity used in this study. Users can select and adapt different metrics based on their specific applications, as a wide range of ULM-based quantification metrics have been developed for different pathological and pharmacological studies.”

      The long-term recordings mentioned by the Authors refer to the 3-week time frame analyzed in this study. However, within each acquisition, the time available from imaging is only a few minutes (< 10', referring to most of the plots showing time courses) after the animals' arousal from isoflurane and before bubbles disappear. This limitation should be acknowledged.

      Response 04: Thank you for this comment. We agree that the current imaging sessions are constrained by the short time window available after the animal’s arousal from isoflurane and before bubbles disappear. This limitation indeed restricts the duration of usable awake-state imaging in our current bolus injection protocol. As discussed earlier, we are actively exploring the use of a jugular vein catheterization approach to address this limitation. This approach has the potential to extend the imaging session duration and provide a longer, more stable time window. We have now acknowledged this limitation more explicitly in the revised Discussion section.

      (Line 347) “Another limitation of this study is the potential residual vasodilatory effect of isoflurane anesthesia on awake imaging sessions and the short imaging window available after bolus injection. The awake imaging sessions were conducted shortly after the mice had emerged from isoflurane anesthesia, required for the MB bolus injections. The lasting vasodilatory effects of isoflurane may have influenced vascular responses, potentially contributing to an underestimation of differences in vascular dynamics between anesthetized and awake state. In addition, since microbubbles are rapidly cleared from circulation, the duration of effective imaging is limited to only a few minutes, which also overlaps with the anesthesia recovery period, constraining the usable awake-state imaging window. Future improvement on microbubble infusion using an indwelling jugular vein catheter presents a promising alternative to address these limitations. This method allows for stable microbubble infusion without the need for anesthesia induction, ensuring that the awake imaging condition is free from residual anesthetic effects. Moreover, it has the potential to extend the duration of imaging sessions, offering a longer and more stable time window for data acquisition. Furthermore, by performing ULM imaging in the awake state first, instead of starting with anesthetized imaging, researchers can achieve a more rigorous comparison of how various anesthetics influence cerebral microvascular dynamics relative to the awake baseline.”

      The more precise description of the number of mice and blood vessels analyzed in Figure 6 makes it apparent the limited number of independent samples used to support the findings of this work. A limitation that should be acknowledged. The newly provided information added as Supplementary Figure 1 should be moved to the main text, eventually in the figure legends. The limited data in support of the findings was also highlighted by Rev2 and, indirectly, by Rev3.

      Response 05: We acknowledge the limited number of independent samples used in this study. In the revised manuscript, we have explicitly emphasized this limitation in the Discussion section. Specifically, we added the following statement:

      (Line 329) “Our current study primarily focused on demonstrating the feasibility of longitudinal ULM imaging in awake animals, instead of conducting a systematic investigation of how isoflurane anesthesia alters cerebral blood flow. Due to the limited number of animals used, the analyses presented in this work should be interpreted as example case studies. While the trends observed across animals were consistent, the small sample size restricts the scope of statistical inference. For future work, it would be valuable to design more rigorous control experiments with larger sample sizes to systematically compare the effects of isoflurane anesthesia, awake states, and other anesthetics that do not induce vasodilation on cerebral blood flow.”

      Following your suggestion, we have also moved the newly provided information (the table in Supplementary Figure 1) into figure captions. In addition, we have modified in the Methods section to ensure that this information is clear.

      (Line 406) “Eight healthy female C57 mice (8-12 weeks) were used for this study, numbered as Mouse 1 to Mouse 8. Three mice (Mouse 1–3) were used to compare imaging results between awake and anesthetized states (Fig. 3 and 4). Three additional mice (Mouse 4–6) underwent longitudinal imaging over a three-week period (Fig. 5 and 6). Among them, Mouse 4 was also used as an example to demonstrate the overall system schematic and saturation conditions (Fig. 1 and 2). Several mice (Mouse 2, 6, 7, and 8) exhibited suboptimal cranial window quality or image artifacts and were included to illustrate common surgical or imaging issues (Supplementary Fig. 1). The specific usage of each animal is also annotated in the corresponding figure captions.”

      Reviewer #2 (Public Review):

      The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.

      The authors made a good rewriting of the article based on the reviewers' comments. One of the message of the first version of the manuscript was that variability in measurements (vessel diameter, flow velocity, vascularity) were much more pronounced under changes of anesthesia than when considering longitudinal imaging across several weeks. This message is now not quite mitigated, as longitudinal imaging seems to show a certain variability close to the order of magnitude observed under anesthesia. In that sense, the review process was useful in avoiding hasty conclusion and calls for further caution in ULM awake longitudinal imaging, in particular regarding precision of positioning and cancellation of tissue motion.

      Strengths:

      Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been longrunning in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The manuscript is well constructed, well written, and graphics are appealing.

      The manuscript has been much strengthened by the round of review, with more animals for the longitudinal imaging study.

      Weaknesses:

      Some weaknesses remain, not hindering the quality of the work, that the authors might want to answer or explain.

      When considering fig 4e and fig 4j together: it seems that in fig 4e the vascularity reduction in the cortical ROI is around 30% for downward flow, and around 55% for upward flow; but when grouping both cortical flows in fig 4j, the reduction is much smaller (~5%), even at the individual level (only mouse 1 is used in fig 4e). Can you comment on that?

      Response 06: Thank you for carefully pointing this out. This discrepancy arises primarily from differences in ROI selections.

      The vascularity metric (now we changed the term into fractional vessel area, based on Reviewer 1’s comments) is calculated as the proportion of vessel-occupied pixels relative to the total ROI area. As such, it is best suited for longitudinal comparisons within the same ROI rather than across-ROI comparisons, particularly when the size and vessel composition of the ROIs differ.

      In Fig. 4e, the cortical ROI includes mostly the penetrating vessels, which are selected due to their clear distinction between upward (venous) and downward (arterial) flow directions. Pial vessels were intentionally excluded because flow direction alone does not reliably distinguish arteries from veins in these surface vessels. Thus, the goal of this analysis was to indicate arteriovenous differences, rather than to represent the full cortical vascular changes.

      In contrast, the ROIs used in Fig. 4j aim to provide a more comprehensive view of cortical vascular responses without distinguishing flow direction. That’s why both penetrating and pial vessels are included. Since pial vessels showed relatively smaller vascularity changes within the coronal cross-sections analyzed in our study, their inclusion in the cortical ROI likely contributed to the smaller overall reduction in vascularity observed in Figure 4j.

      To address this potential confusion, we have added further clarification in the Results section of the revised manuscript.

      (Line 209) “It is worth noting that prior analyses (Fig. 4d–h) aimed to illustrate arteriovenous differences. Since pial vessels are difficult to distinguish as arteries or veins based on flow direction in coronal plane imaging, they were excluded from the ROI selection in those analyses. In the current whole-brain comparisons (Fig. 4i-k), the cortical ROIs no longer exclude pial vessels, since distinguishing between arteries and veins is not required. This aims to provide a more comprehensive representation of cortical vasculature.”

      When considering fig 4e, fig 4j, fig 6e and fig 6i altogether, it seems that vascularity can be highly variable, whether it be under anesthesia or vascular imaging, with changes between 5 to 40%. Is this vascularity quantification worth it (namely, reliable for example to quantify changes in a pathological model requiring longitudinal imaging)?

      Response 07: Thank you for raising this important point. We found that imaging in the awake state is inherently more variable than under anesthesia. In contrast, anesthetized imaging offers a more controlled and stable physiological condition, as anesthesia suppresses many sources of variation. For pathological studies, if the vascular or hemodynamic changes induced by anesthesia do not interfere with the scientific question being addressed, imaging under anesthesia can still be a practical and effective approach, due to its experimental simplicity and better physiological consistency.

      The higher variability observed in awake imaging arises from both physiological fluctuations in animals and unavoidable experimental inconsistencies, such as small misalignment on the imaging plane across sessions. If the research question aims to avoid the confounding effects of anesthesia, then instead of suppressing variation through anesthesia, it is important to acknowledge the natural baseline variation in the awake state. However, efforts should be made to minimize technical sources of variation. We have added a brief discussion of this issue at the end of the manuscript to reflect this consideration.

      (Line 396) “However, it is also important to note that although longitudinal awake imaging presents promise to avoid the confounding effects of anesthetics, imaging under anesthesia remains more convenient and controllable in many cases. For applications where the physiological question of interest is not sensitive to anesthesia-induced vascular effects, anesthetized imaging still offers a simpler and more stable approach. Awake imaging inherently exhibits greater physiological variability. However, care must be taken at the experimental level to minimize confounding sources of variation, such as stress level of the animal or handling inconsistencies, to ensure that the measurements are physiologically meaningful.”

      Regarding whether fractional vessel area (formerly referred to as vascularity) is a worthwhile metric for longitudinal quantification: based on our experience and comparisons, we found vessel area to be relatively robust and informative (see also Response 02 to Reviewer 1 for details). However, we acknowledge that other quantitative metrics—such as microbubble count, tortuosity, or flow directionality—may be more suitable depending on the specific pathological model or research question. How these metrics perform in awake imaging and longitudinal disease models is indeed an open and important question. We hope our work can serve as a foundation to inspire further investigation in this direction. To facilitate such exploration, we have developed and open-sourced a MATLAB-based analysis tool that supports multiple quantitative ULM metrics for longitudinal comparison. We encourage users to adapt and extend this framework to evaluate different quantitative metrics.

      (Line 578) “Code availability

      To support quantitative longitudinal analysis of ULM data, we developed an open-source MATLAB application (https://github.com/ekerwang/ULMQuantitativeAnalysis). This tool is designed to facilitate ROI-based analysis of ULM images for longitudinal comparisons. It supports multiple quantification metrics, including but not limited to vessel area and mean velocity used in this study. Users can select and adapt different metrics based on their specific applications, as a wide range of ULM-based quantification metrics have been developed for different pathological and pharmacological studies.”

      Reviewer #2 (Recommendations For The Authors):

      Images in figure 4 lack color bars.

      Response 08: Thank you for pointing this out. The color bars for the images in Figure 4 are the same as those used in the corresponding images in Figure 3. We have now added the explanation of color bars to the revised version of Figure 4 caption.

      Fig 4d: upward and downward are probably swapped.

      Response 09: Thank you for pointing this out, and we apologize for the oversight. They were mistakenly swapped. We have corrected this error in the revised figure.

      No quantitative conclusions are drawn regarding the changes in vessel diameter under anesthesia? Is it not significant? If it is not then why bring changes in diameter to our attention in fig 3 (white arrows) and figure 4b?

      Response 10: Our intention in highlighting diameter changes in Figure 3 (white arrows) and Figure 4b was to provide an illustrative example of isoflurane-induced diameter changes at the single-vessel level. These examples are meant to serve as case studies, not as the basis for broad statistical conclusions.

      In the initial version of the manuscript, we attempted to draw quantitative conclusions by measuring vessel diameters from ten manually selected vessel segments at each location. However, based on feedback from other reviewers, we decided to remove this analysis in the revised version. Manual selection of vessel segments is highly subjective and prone to bias, limiting its reliability for quantitative interpretation.

      Instead, we focused on ROI-based analysis using fractional vessel area (formerly referred to as vascularity), which reflects widespread changes in vessel diameter across regions. It is a more generalizable and less biased metric for quantifying vascular diameter changes.

      We further explained this in the Results section:

      (Line 181) “To validate the broader applicability of our findings, we conducted ROI-based analyses using fractional vessel area and mean velocity as primary metrics. These metrics extended the analysis of vessel diameter and flow velocity to entire brain regions or selected ROIs, which provides a more objective assessment of cerebral blood flow changes at a global scale and reduces the bias associated with manually selecting vessel segments. For vessel area measurements, the term fractional denotes that the vessel area is normalized to the total area of the selected ROI. This normalization is essential for fair comparisons across ROIs of different sizes.”

      Line 210 "In summary, statistical analysis revealed a decrease in individual vessel diameter" this does not seem to be supported by this version of the manuscript as no analysis is done on a representative group of vessels for the diameter.

      Response 11: Thank you for pointing out this important issue. In line with our previous response (Response 10), we would like to clarify that the analysis of individual vessel diameter was intended to serve as an example study, rather than a statistically supported conclusion based on a group of vessels. To avoid confusion, we have removed the phrase “statistical analysis revealed a decrease in individual vessel diameter” from the manuscript. 

      The meaning of the *** in fig 6b and 6c should be clarified as: -it is not explicitly stated - the equivalence test interpretation is less usual than other tests.

      Response 12: We thank the reviewer for pointing out this important issue. We agree that the use of asterisks (***) in Fig. 6b and 6c may have led to confusion, as such markers are typically associated with statistical significance in difference testing. In our case, the analysis was based on the two one-sided test (TOST) procedure to assess statistical equivalence, which is indeed less commonly used and could be misinterpreted.

      To address this, we have replaced the asterisks *** in the figure with the label “equiv.”, which more clearly reflects the intended interpretation. Additionally, we have revised the figure caption and the main text to explicitly state that these markers denote statistical equivalence (not difference) as determined by TOST, with the equivalence margin defined as three times the standard deviation of one week.

      (Figure 6 Caption) “Statistical analysis was performed using the two one-sided test (TOST) to evaluate consistency of measurement. The label “equiv.” indicates statistically equivalent measurements (p < 0.001), defined as interweek differences smaller than three times the standard deviation of one week.”

      (Line 240) “Statistical testing of equivalence was conducted using the two one-sided test (TOST) procedure, which evaluates whether the difference between two time points falls within a predefined equivalence margin. Specifically, equivalence is defined as the inter-week difference being smaller than three times the standard deviation of one week. A statistically significant result in TOST (p < 0.001) supports the interpretation that the measurements are statistically equivalent, which is denoted as “equiv.” in the figures.”

      Line 237 and following: please consider rephrasing into "To further generalize these findings and examine longitudinal variation in ROI-based analysis, we used Mouse 4 as an example to show the consistency of blood flow density across different flow directions in the cortex (Fig. 6d) and extended the quantitative analysis to all three mice (Fig. 6e) (individual ULM upward and downward flow images for all three mice over the threeweek longitudinal study period can be found in Supplementary Fig. 4)." The paragraph will make much more sense.

      Response 13: We appreciate your helpful rephrasing. We have fully adopted your proposed revision to enhance the clarity and coherence of the text. The sentence now reads exactly as you recommended:

      (Line 250): “To further generalize these findings and examine longitudinal variation in ROI-based analysis, we used Mouse 4 as an example to show the consistency of blood flow density across different flow directions in the cortex (Fig. 6d) and extended the quantitative analysis to all three mice (Fig. 6e) (individual ULM upward and downward flow images for all three mice over the three-week longitudinal study period can be found in Supplementary Fig. 4).”

      Line 248: "While arterial and venous flow velocity distributions exhibit clear distinctions, their variations over the three weeks remained acceptable" the meaning of acceptable remains elusive.

      Response 14: Thank you for pointing out the ambiguity in the phrase “remained acceptable”. To improve clarity and precision, we have revised the sentence to provide a more informative description. The updated sentence now reads:

      (Line 261) “While arterial and venous flow velocity distributions exhibit clear distinctions, the distribution shapes remained relatively consistent across the three weeks. Specifically, variation in median velocity were within 1 mm/s. In contrast, anesthesia-induced changes can lead to velocity shifts exceeding 1 mm/s.”

      Line 253: consider rephrasing in "Despite subcortical regions showing the largest vascularity variability consecutive to anesthesia-induced changes, vascularity in those regions was relatively stable values in the longitudinal study" as otherwise the link between the 2 parts of the sentence feels odd.

      Response 15: Thank you for your constructive suggestion regarding the logical flow of the sentence. We fully agree with your point and have revised the sentence exactly as you proposed.

      (Line 268) “Despite subcortical regions showing the largest vascularity variability consecutive to anesthesia-induced changes, vascularity in those regions was relatively stable values in the longitudinal study.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Li et al. investigate Ca2+ signaling in T. gondii and argue that Ca2+ tunnels through the ER to other organelles to fuel multiple aspects of T. gondii biology. They focus in particular on TgSERCA as the presumed primary mechanism for ER Ca2+ filling. Although, when TgSERCA was knocked out there was still a Ca2+ release in response to TG present.

      Note that we did not generate a complete SERCA knockout, as this gene is essential, and its complete loss would not permit the isolation of viable parasites. Instead, we created conditional mutants that downregulate the expression of SERCA. Importantly, some residual activity is present in the mutant after 24 h of ATc treatment as shown in Fig 4C. This is consistent with our Western blots, which demonstrate the presence of residual SERCA protein at 1, 1.5 and 2 days post ATc treatment (Fig. 3B). We have clarified this point in the revised manuscript (lines 232233). See also lines 97-102.

      Overall the Ca2+ signaling data do not support the conclusion of Ca2+ tunneling through the ER to other organelles in fact they argue for direct Ca2+ uptake from the cytosol. The authors show EM membrane contact sites between the ER and other organelles, so Ca2+ released by the ER could presumably be taken up by other organelles but that is not ER Ca2+ tunneling. They clearly show that SERCA is required for T. gondii function.

      Overall, the data presented to not fully support the conclusions reached

      We agree that the data does not support Ca<sup>2+</sup> tunneling as defined and characterized in mammalian cells. In response to this comment, we have modified the title and the text accordingly.

      However, we respectfully would like to emphasize that the study demonstrates more than just the role of SERCA in T. gondii “function”. Our findings reveal that the ER, through SERCA activity, sequesters calcium following influx through the PM (see reviewer 2 comment). The ER calcium pool is important for replenishing other intracellular compartments.

      The experiments support a model in which the ER actively takes up cytosolic Ca²⁺ as it enters the parasite and contributes to intracellular Ca²⁺ redistribution during transitions between distinct extracellular calcium environments. We believe that the role of the ER in modulating intracellular calcium dynamics is demonstrated in Figures 1H–K, 4G-H, and 5H–K. To highlight the relevance of these findings, we have included an expanded discussion in the revised manuscript. See lines 443-449 and 510-522.

      Data argue for direct Ca2+ uptake from the cytosol

      The ER most likely takes up calcium from the cytosol following its entry through the PM and redistributes it to the other organelles. We deleted any mention of the word “tunneling” and replaced it with transfer and re-distribution as they reflect our experimental findings more accurately.

      We interpret the experiments shown in Figure 1 H and I as re-distribution because the amount of calcium released after nigericin or GPN are greatly enhanced after TG addition. We first add calcium to allow intracellular stores to become filled, followed by the addition of TG, which allows calcium leakage from the ER. This leaked calcium can either enter the cytosol and be pumped out or be taken up by other organelles. Our interpretation is that this process leads to an increased calcium content in acidic compartments.

      We conducted an additional experiment in which SERCA was inhibited prior to calcium addition, allowing cytosolic calcium to be exported or taken up by acidic stores. We observed a change in the GPN response (Fig. S2A), possibly indicating that the PLVAC can sequester calcium when SERCA is inactive. While this may support the reviewer’s view, TG treatment does not reflect physiological conditions and may enhance calcium transfer to other compartments. Although the result is interesting, interpretation is complicated by the use of parasites in suspension and drug exposure in solution. Single-parasite measurements are not feasible due to weak signals, and adhered parasites are even less physiological than those in suspension.

      In support of our view, the experiments shown in Figs 4G and H show that down regulating SERCA reduces significantly the response to GPN indicating diminished acidic store loading. In Fig 5I we observe that mitochondrial calcium uptake is reduced in the iDSERCA (+ATc) mutant in response to GPN. Fig 2B demonstrates that TgSERCA can take up calcium at 55 nM, close to resting cytosolic calcium while in Figures 5E and S5B we show that the mitochondrion is not responsive to an increase of cytosolic calcium. Uptake by the mitochondria requires much higher concentrations (Fig 5B-C), which may be achieved within microdomains at MCS between the ER and mitochondrion. This is also consistent with findings reported by Li et al (Nat Commun. 2021) where similar microdomains mediated transfer of calcium to the apicoplast (Fig. 7 E and F of the mentioned reference) was observed.

      Reviewer 2 (Public review):

      The role of the endoplasmic reticulum (ER) calcium pump TgSERCA in sequestering and redistributing calcium to other intracellular organelles following influx at the plasma membrane.

      T. gondii transitions through life cycle stages within and exterior to the host cells, with very different exposures to calcium, adds significance to the current investigation of the role of the ER in redistributing calcium following exposure to physiological levels of extracellular calcium

      They also use a conditional knockout of TgSERCA to investigate its role in ER calcium store-filling and the ability of other subcellular organelles to sequester and release calcium. These knockout experiments provide important evidence that ER calcium uptake plays a significant role in maintaining the filling state of other intracellular compartments.

      We thank the reviewer.

      While it is clearly demonstrated, and not surprising, that the addition of 1.8 mM extracellular CaCl2 to intact T. gondii parasites preincubated with EGTA leads to an increase in cytosolic calcium and subsequent enhanced loading of the ER and other intracellular compartments, there is a caveat to the quantitation of these increases in calcium loading. The authors rely on the amplitude of cytosolic free calcium increases in response to thapsigargin, GPN, nigericin, and CCCP, all measured with fura2. This likely overestimates the changes in calcium pool sizes because the buffering of free calcium in the cytosol is nonlinear, and fura2 (with a Kd of 100-200 nM) is a substantial, if not predominant, cytosolic calcium buffer. Indeed, the increases in signal noise at higher cytosolic calcium levels (e.g. peak calcium in Figure 1C) are indicative of fura2 ratio calculations approaching saturation of the indicator dye.

      We acknowledge the limitations associated with using Fura-2 for cytosolic calcium measurements. However, according to the literature (Grynkiewicz, Get al. (1985). J. Biol. Chem. 260 (6): 3440–3450. PMID 3838314) Fura-2 is suited for measurements between 100 nM and 1 µM calcium. The responses in our experiments were within that range and the experiments with the SERCA mutant and mitochondrial GCaMPfs supports the conclusions of our work.

      However, we agree with the reviewer that the experiment shown in Fig 1C (now Fig 1D) presents a response that approaches the limit of the linear range of Fura-2. In response to this, we have replaced this panel with a more representative experiment that remains within the linear range of the indicator (revised Fig 1D). Additionally, we have included new experiments adding GPN along with corresponding quantifications, which further support our conclusions regarding calcium dynamics in the parasite.

      Another caveat, not addressed, is that loading of fura2/AM can result in compartmentalized fura2, which might modify free calcium levels and calcium storage capacity in intracellular organelles.

      We are aware of the potential issue of Fura-2 compartmentalization, and our protocol was designed to minimize this effect. We load cells with Fura-2 for 26 min at room temperature, then maintain them on ice, and restrict the use of loaded parasites to 2-3 hours. We have observed evidence of compartmentalization as this is reflected in increasing concentrations of resting calcium with time. We carry out experiments within a time frame in which the resting calcium stays within the 100 nM range. We have included a sentence in the Materials and Methods section. Lines 604-606.

      Additionally, following this reviewer’s suggestion, we performed further experiments to directly assess compartmentalization. See below the full response to reviewer 2.

      The finding that the SERCA inhibitor cyclopiazonic acid (CPA) only mobilizes a fraction of the thapsigargin-sensitive calcium stores in T. gondii coincides with previously published work in another apicomplexan parasite, P. falciparum, showing that thapsigargin mobilizes calcium from both CPA-sensitive and CPA-insensitive calcium pools (Borges-Pereira et al., 2020, DOI: 10.1074/jbc.RA120.014906). It would be valuable to determine whether this reflects the off-target effects of thapsigargin or the differential sensitivity of TgSERCA to the two inhibitors.

      This is an interesting observation, and we now include a discussion of this result considering the Plasmodium study and include the citation. Lines 436-442.

      Figure S1 suggests differential sensitivity, and it shows that thapsigargin mobilizes calcium from both CPA-sensitive and CPA-insensitive calcium pools in T. gondii. Also important is that we used 1 µM TG as we are aware that TG has shown off-target effects at higher concentrations. TG is a well-characterized, irreversible SERCA inhibitor that ensures complete and sustained inhibition of SERCA activity. In contrast, CPA is a reversible inhibitor whose effectiveness is influenced by ATP levels, and it may only partially inhibit SERCA or dissociate over time, allowing residual Ca²⁺ reuptake into the ER.

      Additionally, as suggested by the reviewer we performed experiments using the Mag-Fluo-4 protocol to compare the inhibitory effects of CPA and TG. These results are presented in Fig. S3 (Lines 217-223). Under the conditions of the Mag-Fluo-4 assay with digitonin-permeabilized cells, both TG and CPA showed similar rates of Ca<sup>2+</sup> leakage following the addition of the inhibitor. This may indicate that under the conditions of the Mag-Fluo-4 experiments the rate of Ca<sup>2+</sup> leak is mostly determined by the intrinsic leak mechanism and not by the nature of the inhibitor. By contrast, in intact Fura-2–loaded cells, CPA induces a smaller cytosolic Ca²⁺ increase than TG, consistent with less efficient SERCA inhibition likely due to its reversibility and possibly incomplete inhibition under cellular conditions.

      The authors interpret the residual calcium mobilization response to Zaprinast observed after ATc knockdown of TgSERCA (Figures 4E, 4F) as indicative of a target calcium pool in addition to the ER. While this may well be correct, it appears from the description of this experiment that it was carried out using the same conditions as Figure 4A where TgSERCA activity was only reduced by about 50%.

      We partially agree with the reviewer that 50% knockdown of TgSERCA means that the ER may still be targeted by zaprinast, and that there is no definitive evidence of the involvement of another calcium pool. The Mag-Fluo-4 experiment, while we acknowledge that the fluorescence of MagFluo-4 is not linear to calcium, indicates that SERCA activity is present even after 24 hr of ATc treatment. However, when Zaprinast is added after TG, we observed a significant calcium release in wild type cells. This result suggests the presence of another large calcium pool than the one mobilized by TG (PMID: 2693306).

      We recently published work describing the Golgi as a calcium store in Toxoplasma (PMID: 40043955) and we showed in Fig. S4 D-G of that work, that GPN treatment of tachyzoites loaded with Fura-2 diminished the Zaprinast response indicating that they could be impacting a similar store. In the present study we performed additional experiments in which TG was followed by GPN and Zaprinast showing a similar pattern. GPN significantly diminished the Zaprinast response. These results are shown now in Figure S2B. We address these possibilities in the discussion and interpretation of the result. Lines 451-460.

      The data in Figures 4A vs 4G and Figures 4B vs 4H indicate that the size of the response to GPN is similar to that with thapsigargin in both the presence and absence of extracellular calcium. This raises the question of whether GPN is only releasing calcium from acidic compartments or whether it acts on the ER calcium stores, as previously suggested by Atakpa et al. 2019 DOI: 10.1242/jcs.223883. Nonetheless, Figure 1H shows that there is a robust calcium response to GPN after the addition of thapsigargin.

      The results of the indicated experiments did not exclude the possibility that GPN can also mobilize some calcium from the ER besides acidic organelles. We don’t have any evidence to support that GPN can mobilize calcium from the ER either. Based on our unpublished work, we think GPN mainly release calcium from the PLVAC. We included the mentioned citation and discuss the result considering the possibility that GPN may be acting on more than one store. Lines 451-460.

      An important advance in the current work is the use of state-of-the-art approaches with targeted genetically encoded calcium indicators (GECIs) to monitor calcium in important subcellular compartments. The authors have previously done this with the apicoplast, but now add the mitochondria to their repertoire. Despite the absence of a canonical mitochondrial calcium uniporter (MCU) in the Toxoplasma genome, the authors demonstrate the ability of T. gondii mitochondrial to accumulate calcium, albeit at high calcium concentrations. Although the calcium concentrations here are higher than needed for mammalian mitochondrial calcium uptake, there too calcium uptake requires calcium levels higher than those typically attained in the bulk cytosolic compartment. And just like in mammalian mitochondria, the current work shows that ER calcium release can elicit mitochondrial calcium loading even when other sources of elevated cytosolic calcium are ineffective, suggesting a role for ER-mitochondrial membrane contact sites. With these new tools in hand, it will be of great value to elucidate the bioenergetics and transport pathways associated with mitochondrial calcium accumulation in T. gondii.

      We thank this reviewer praising our work. Studies of bioenergetics and transport pathways associated with mitochondrial calcium accumulation is part of our future plans mentioned in lines 520-522 and 545.

      The current studies of calcium pools and their interactions with the ER and dependence on SERCA activity in T. gondi are complemented by super-resolution microscopy and electron microscopy that do indeed demonstrate the presence of close appositions between the ER and other organelles (see also videos). Thus, the work presented provides good evidence for the ER acting as the orchestrating organelle delivering calcium to other subcellular compartments through contact sites in T. gondi, as has become increasingly clear from work in other organisms.

      Thank you

      Reviewer #3 (Public review):

      This manuscript describes an investigation of how intracellular calcium stores are regulated and provides evidence that is in line with the role of the SERCA-Ca2+ATPase in this important homeostasis pathway. Calcium uptake by mitochondria is further investigated and the authors suggest that ER-mitochondria membrane contact sites may be involved in mediating this, as demonstrated in other organisms.

      The significance of the findings is in shedding light on key elements within the mechanism of calcium storage and regulation/homeostasis in the medically important parasite Toxoplasma gondii whose ability to infect and cause disease critically relies on calcium signalling. An important strength is that despite its importance, calcium homeostasis in Toxoplasma is understudied and not well understood.

      We agree with the reviewer. Thank you

      A difficulty in the field, and a weakness of the work, is that following calcium in the cell is technically challenging and thus requires reliance on artificial conditions. In this context, the main weakness of the manuscript is the extrapolation of data. The language used could be more careful, especially considering that the way to measure the ER calcium is highly artificial - for example utilising permeabilization and over-loading the experiment with calcium. Measures are also indirect - for example, when the response to ionomycin treatment was not fully in line with the suggested model the authors hypothesise that the result is likely affected by other storage, but there is no direct support for that.

      The Mag-Fluo-4-based protocol for measuring intraluminal calcium is well established and has been extensively used in mammalian cells, DT40 cells and other cells for measuring intraluminal calcium, activity of SERCA and response to IP3 (Some examples: PMID: 32179239, PMID: 15963563, PMID: 19668195, PMID: 30185837, PMID: 19920131).

      Furthermore, we have successfully employed this protocol in previous work, including the characterization of the Trypanosoma brucei IP3R (PMID: 23319604) and the assessment of SERCA activity in Toxoplasma (PMID: 40043955 and 34608145). The citation PMID: 32179239 provides a detailed description of the protocol, including references to its prior use. In addition, the schematic at the top of Figure 2 summarizes the experimental workflow, reinforcing that the protocol follows established methodologies. We included more references and an expanded discussion, lines 425-435.

      We respectfully disagree with the concern regarding potential calcium overloading. The cells used in our assays were permeabilized, which is a critical step that allows to precisely control calcium concentrations. All experiments were conducted at 220 nM free calcium, a concentration within the physiological range of cytosolic calcium fluctuations. This concentration was consistently used across all studies described above. Importantly, permeabilization ensures that the dye present in the cytosol becomes diluted, and allows MgATP (which cannot cross intact membranes) to access the ER membrane, in addition to be able to expose the ER to precise calcium concentrations.

      The Mag-Fluo-4 loading conditions are designed to allow compartmentalization of the indicator to all intracellular compartments and the calcium uptake stimulated by MgATP exclusively occurs in the compartment occupied by SERCA as only SERCA is responsive to MgATP-dependent transport in this experimental setup

      Regarding the use of IO, we would like to clarify that its broad-spectrum activity is welldocumented. As a calcium ionophore, IO facilitates calcium release across multiple membranes, and not just the ER leading to a more substantial calcium release compared to the more selective effect of TG. The results observed with IO were consistent with this expected broader activity and support our interpretation.

      Lastly, we emphasize that the experiment in Figure 2 was designed specifically to assess SERCA activity in situ under defined conditions. It was not intended to provide a comprehensive characterization of the role of TgSERCA in the parasite. We now clarify this distinction in the revised Discussion lines 425-435.

      Below we provide some suggestions to improve controls, however, even with those included, we would still be in favour of revising the language and trying to avoid making strong and definitive conclusions. For example, in the discussion perhaps replace "showed" with "provide evidence that are consistent with..."; replace or remove words like "efficiently" and "impressive"; revise the definitive language used in the last few lines of the abstract (lines 13-17); etc. Importantly we recommend reconsidering whether the data is sufficiently direct and unambiguous to justify the model proposed in Figure 7 (we are in favour of removing this figure at this early point of our understanding of the calcium dynamic between organelles in Toxoplasma).

      We thank the reviewer for the suggestions and we modified the language as suggested. We limited the use of the word "showed" to references to previously published work. We deleted the other words

      Figure 7 is intended as a conceptual model to summarize our proposed pathways, and, like all models, it represents a working hypothesis that may not fully capture the complexity of calcium dynamics in the parasite. In light of the reviewer’s comments, we revised the figure and legend to clearly distinguish between pathways for which there is experimental evidence from those that are hypothetical.

      Another important weakness is poor referencing of previous work in the field. Lines 248250 read almost as if the authors originally hypothesised the idea that calcium is shuttled between ER and mitochondria via membrane contact sites (MCS) - but there is extensive literature on other eukaryotes which should be first cited and discussed in this context. Likewise, the discussion of MCS in Toxoplasma does not include the body of work already published on this parasite by several groups. It is informative to discuss observations in light of what is already known.

      The sentence in which we state the hypothesis about the calcium transfer refers specifically to Toxoplasma. To clarify this, we have now added the phrase “In mammalian cells” (Line 311) and included additional citations, as suggested by the reviewer. While only a few studies have described membrane contact sites (MCSs) in Toxoplasma, we do cite several pertinent articles (e.g., lines 479-486). We believe that we cited all articles mentioning MCS in T. gondii

      However, we must clarify to the reviewer that the primary focus of our study is not to characterize or confirm the presence of MCSs in T. gondii, but rather to demonstrate functional calcium transfer between the ER and mitochondria. Our data support the conclusion that this transfer requires close apposition of these organelles, consistent with the presence of MCSs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Line 45: change influx to release as Ca2+ influx usually referred to Ca2+ entry from the extracellular space. Same for line 71.

      Corrected, line 47 and 73

      (2) Line 54: consider toning down the strong statement of 'widely' accepted as ER Ca2+ subdomain heterogeneity remains somewhat debated.

      Changed the sentence to “it has been proposed”, Line 56

      (3) Line 119-21: A lower release in response to TG is typical and does not reflect TG specific for SERCA. It is due to the slow kinetics of Ca2+ leak out of the ER allowing other buffering and transport mechanisms to act. Also, could be a reflection of the duration after TG treatment to allow complete store depletion. Figure S1A-B shows that there is still Ca2+ in the stores following TG but the TG signal does not go back to baseline arguing that the leak is still active. Hence the current data does not address the specificity of TG for TgSERCA. Please revise the statement accordingly.

      Thank for the suggestion, we changed the sentence to this: “This result could reflect the slow kinetics of Ca²⁺ leak from the ER, allowing other buffering and transport mechanisms to mitigate the phenomenon. Alternatively, it may indicate the duration after TG treatment allowing time to complete store depletion. As shown in Figure S1A-B, residual Ca²⁺ remains in the stores after TG treatment, and the TG-induced phenomenon does not return to baseline, suggesting that the leak remains active”. Lines 124-128

      (4) Figure 1C: the authors interpret the data 'This Ca2+ influx appeared to be immediately taken up by the ER as the response to TG was much greater in parasites previously exposed to extracellular Ca2+'. I don't understand this interpretation, in Ca2+-containing solution it would expected to have a larger signal as TG is likely to activate store-operated Ca2+ entry which would contribute to a larger cytosolic Ca2+ transient. Does T. gondii have SOCE? It cannot be uptake into the ER as SERCA is blocked. Unless the authors are arguing for another ER Ca2+ uptake pathway? But why are Ca2+ uptake in the ER would lower the signal whereas the data show an increased signal?

      We pre-incubated the suspension with calcium to allow filling of the stores, while SERCA is still active, and added thapsigargin (TG) at 400 seconds to measure calcium release. The experiment was designed to introduce the concept that the ER may have access to extracellular calcium, a phenomenon not yet clearly demonstrated in Toxoplasma. We did not expect to have less release by TG but if the ER is not efficient in filling after extracellular calcium entry it would be expected to have a similar response to TG. Yes, it is very possible that when we add TG we are also seeing more calcium entry through the PM as we previously proposed that the increased cytosolic Ca<sup>2+</sup> may regulate Ca<sup>2+</sup> entry. However, the evidence does not support that this increased entry would be triggered by store depletion. The experiments with the SERCA mutant (Fig. 4D) shows that in the conditional knockout mutant, the ER is partially depleted, yet this does not lead to enhanced calcium entry, suggesting that the depletion alone is not sufficient to trigger increased influx.

      There is no experimental evidence supporting the regulation of calcium entry by store depletion in Toxoplasma (PMID: 24867952). We revised the text to clarify this point and expanded the discussion on store-operated calcium entry (SOCE). While it is possible that a channel similar to Orai exists in Toxoplasma, it is highly unlikely to be regulated by store depletion, as there is no gene homologous to STIM. If store-regulated calcium entry does occur in Toxoplasma, it is likely mediated through a different, still unidentified, mechanism. Lines 461-467.

      (5) The choice of adding Ca2+ first followed by TG is curious as it is more difficult to interpret. Would be more informative to add TG, allow the leak to complete, and then add Ca2+ which would allow temporal separation between Ca2+ release from stores and Ca2+ influx from the extracellular space. Was this experiment done? If not would be useful to have the data.

      Yes, this experiment was already published: PMID: 24867952 and PMID: 38382669.

      It mainly highlighted that increased cytosolic calcium may regulate calcium entry most likely through a TRP channel. See our response to point 4 and the description of the new Fig. S2 in the response to point 7.

      (6) Line 136-39: these experiments as designed - partly because of the issues discussed above - do not address the ability of organelles to access extracellular Ca2+ or the state of refilling of intracellular Ca2+ stores. They can simply be interpreted as the different agents (TG, Nig, GPN, CCCP) inducing various levels of Ca2+ influx.

      Concerning TG, the experiment shown in Fig. 4D shows that depletion of the ER calcium does not result in stimulation of calcium entry, indicating the absence of classical SOCE activation in Toxoplasma.

      To our knowledge, neither mitochondria nor lysosomes (or other acidic compartments) are capable of triggering classical SOCE in mammalian cells.

      Given that the ER in Toxoplasma lacks the canonical components required to initiate SOCE, it is unclear why the mitochondria or acidic compartments would be able to do so. While it is possible that T. gondii utilizes an alternative mechanism for store-operated calcium entry, investigating such a pathway would require a comprehensive study. In mammalian systems, it took almost 15 years and the efforts of multiple research groups to identify the molecular components of SOCE. Expecting this complex question to be resolved within the scope of a single study is unrealistic.

      Our current data show that the mitochondrion is unable to access calcium from the cytosol, as shown in Figure 5E. Performing a similar experiment for the PLVAC would be ideal; however, expression of fluorescent calcium indicators in this organelle has not been successful. This is likely due to the presence of several proteases that degrade expressed proteins, as well as the acidic environment, which quenches fluorescence. These challenges have made studying calcium dynamics in the PLVAC particularly difficult.

      To address the reviewer’s comment, we performed an additional experiment presented in Fig. S2A. In this experiment, we first inhibited SERCA with thapsigargin (TG), preventing calcium uptake into the ER, and subsequently added calcium to the suspension. Under these conditions, calcium cannot be sequestered by the ER. We then applied GPN and quantified the response, comparing it to a similar experimental condition without TG. Indeed, under these conditions, we observed a significant but modest increase in the GPN-induced response, suggesting that the PLVAC may be capable of directly taking up calcium from the cytosol. However, this occurs under conditions of SERCA inhibition which creates nonphysiological conditions with elevated cytosolic calcium levels and the presence of TG may promote additional ER leakage, both of which could artificially enhance PLVAC uptake. Under physiological conditions, with functional SERCA activity, the ER would likely sequester cytosolic calcium more efficiently, thereby limiting calcium availability for PLVAC direct uptake. Thus, while the result is intriguing, it may not reflect calcium handling under normal cellular conditions. See lines 172-178.

      (7) Figure 1H-I: I disagree with the authors' interpretation of the results (lines 144-153). The data argue that by blocking ER Ca2+ uptake by TG, other organelles take up Ca2+ from the cytosol where it accumulates due to the leak and Ca2+ influx as is evident from the data allowing more release. The data does not argue for ER Ca2+ tunneling to other organelles. Tunneling would be reduced in the presence of TG (see PMID: 30046136, 24867608).

      We partially agree with this concern. In our experiments, TG was used to inhibit SERCA and block calcium uptake into the ER, allowing calcium to leak into the cytosol. We propose that this leaked calcium is subsequently taken up by other intracellular compartments. This effect is observed immediately upon TG addition. However, pre-incubation with TG or knockdown of SERCA reduces calcium storage in the ER, thereby diminishing the transfer of calcium to other stores.

      To further support our claim, we performed additional experiments in the absence of extracellular calcium, now presented in Figure 1J-K. We observed that calcium release triggered by GPN or nigericin was significantly enhanced when both agents were added after TG. These results suggest that calcium initially released from the ER can be sequestered by other compartments. As mentioned, we deleted any mention of “tunneling,” but we believe the data support the occurrence of calcium transfer. New results described in lines 166-171.

      The experiment in Fig S2A described in the response to (6) also addresses this concern. Under physiological conditions with functional SERCA, cytosolic calcium would likely be rapidly sequestered by the ER, limiting its availability to other compartments. See lines 172178.

      (8) Line 175: SERCA-dependent Ca2+ uptake is higher at 880 nM as would be expected yet the authors state that it's optimal at 220 nM Ca2+ ?

      Yes, it is true that the SERCA-dependent Ca<sup>2+</sup> uptake rate is higher at elevated Ca²⁺ concentrations. We chose to use 220 nM free calcium because of several reasons: 1) this concentration is close to physiological cytosolic levels fluctuations; 2) it is commonly used in studies of mammalian SERCA; and 3) calcium uptake is readily detectable at this level. While this may not represent the maximal activity conditions for SERCA, we believe it is a reasonable and physiologically relevant choice for assessing calcium transport activity SERCA-dependent. We added one sentence to the results explaining this reasoning (lines 204-207) and we deleted the word optimal.

      (9) Figure 3H: the saponin egress data support the conclusion that organelles Ca2+ take up cytosolic Ca2+ directly without the need for ER tunneling.

      The saponin concentration used permeabilizes the host cell membrane, allowing the intracellular tachyzoite to be surrounded with the added higher extracellular calcium concentration. The saponin concentration used does not affect the tachyzoite membrane as the parasite is still moving and calcium oscillations were clearly seen under similar conditions (PMID: 26374900 ). The resulting calcium increase in the tachyzoite cytosol is what stimulates parasite motility and egress. Since SERCA activity is reduced in the mutant, cytosolic calcium accumulates more rapidly, reaching the threshold for egress sooner and thereby accelerating parasite exit. The result does not support that the other stores contribute to this because of the Ionomycin response, which shows that egress is diminished in the mutant, likely because the calcium stores are depleted. We added an explanation in the results, lines 262-269 and the discussion, lines 532-539.

      (10) Figure S2: the HA and SERCA signals do not match perfectly? Could this reflect issues with HA tagging, potentially off-target effects? Was this tested?

      These are not off-target effects, as we did not observe them in the control cells lacking HA tagging. The HA signal also disappeared after treatment with ATc, further confirming that the IFA signal is specific. We agree with the reviewer that the signals do not align perfectly. This discrepancy could be due to differences in antibody accessibility or the fact that the two antibodies recognize different regions of the protein. We added a sentence about this in the result; lines 240-243.

      Reviewer #2 (Recommendations for the authors):

      The description of the data of Figures 1B and S1A starting on line 108 would be easier to follow if Figure S1A was actually incorporated into Figure 1. It is not clear why these two complementary experiments were separated since they are both equally important in understanding and interpreting the data.

      We re-arranged figure 1 and incorporated S1A now as Fig 1C.

      As noted in the public comments, loading of fura2/AM can result in compartmentalized fura2, which can contaminate the cytosolic calcium measurements and might modify free calcium levels and calcium storage capacity in intracellular organelles. This can be assessed using the digitonin permeabilization method used in the MagFluo4 measurements, but in this case, detecting the fura2 signal remaining after cell permeabilization.

      As suggested by the reviewer, we measured Fura-2 compartmentalization by permeabilizing cells with digitonin as we do for the Mag-Fluo-4 and the fluorescence was reduced almost completely and was unresponsive to any additions (see Author response image 1).

      Author response image 1.

      T. gondii tachyzoites in suspension exposed to Thapsigargin Calcium and GPN. The dashed lines shows and experiments using the same conditions but parasites were permeabilized with digitonin shows a similar experiment with parasites exposed to MgATP.to release the cytosolic Fura. Part B

      Following the public comment regarding the residual calcium mobilization response to Zaprinast observed after 24 h ATc knockdown of SERCA (Figsures 4E, 4F, as explained in the legend to Figure 4), was there still a response to Zaprinast after 48 h knockdown, where the thapsigargin response was apparently fully ablated?

      Unfortunately, we were unable to perform this experiment as it is not possible to obtain sufficient cells at 48 h with ATc. Due to the essential role of TgSERCA, parasites are unable to replicate after 24 h.

      As noted in the public comments, the data in Figure 4A vs 4G and Figure 4B vs 4H appear to show that the calcium responses to GPN are similar to that with thapsigargin, which seems unexpected if the acidic compartment is loaded from the ER. The results with GPN addition after thapsigargin (Figure 1H) argue against this, but the authors should still cite the work of Atakpa et al.

      We think that the reviewer is concerned that GPN may also be acting on the ER. This is a possibility that we considered, and we now included the suggested citation (line 457). However, we believe that it is difficult to directly compare the responses, as the kinetics of calcium release from the ER may differ from those of release from the PLVAC. This could be due to differences in the calcium buffering capacity between the two compartments. Additionally, it is possible that calcium leaked from the ER is more efficiently sequestered by other stores or extruded through the plasma membrane than calcium released from the PLVAC. Besides, GPN is known to have a more disruptive effect on membranes compared to TG, which may also influence their responses. As noted by the reviewer, Figure 1H also supports the idea that the acidic compartment is loaded from the ER.

      The abbreviation for the plant-like vacuolar compartment (PLVAC) only appears in a figure legend but should be defined in the main text on first use.

      Corrected, lanes 140-143

      The authors should cite the previous study of Borges-Pereira et al., 2020 (PMID: 32848018) that also demonstrates the incomplete overlap of the calcium pools mobilized by thapsigargin and CPA in P. falciparum. The ability to measure calcium in intracellular stores using MagFluo4 opens the possibility to further investigate this discrepancy between CPA and thapsigargin, but CPA does not appear to have been used in the permeabilized cell experiments with MagFluo4. I would suggest that this could be added to Figure 2 and/or Figure 4, or at least as a supplementary figure.

      In response to this reviewer’s critique we performed additional experiments with Mag-Fluo4 loaded parasites. These are presented in the new Figure S3. We added CPA and TG and combined them to inhibit SERCA and to allow calcium leak from the loaded organelle. Under these conditions, we observed a very similar leak rate after the addition of the inhibitors as measured by the slope of Ca<sup>2+</sup> leak. We believe that the leak rate is most likely determined by the intrinsic ER mechanism. See the discussion of this result in lines 436442 and the previous response to the same reviewer comment.

      Reviewer #3 (Recommendations for the authors):

      Suggestions for improved or additional experiments, data, or analyses

      (1) Figure 1A is not mentioned in the main text even though it is discussed.

      Corrected

      (2) Figure 1G: Values do not match, how can GPN be so high?

      These figures were replaced by new traces and individual quantification analyses for each experiment.

      (3) Figure 1H and I: Is this type of data/results also available for the mitochondrion?

      Unfortunately, we were not able to include this experiment because we were unable to accurately quantify the mitochondrial calcium release. Instead, we used mitochondrial GECIs and the results are shown in Figure 5 to study mitochondrial calcium uptake.

      (4) Figure 1H: where does the calcium go after GPN addition? Taken up by another calcium store?

      Most likely calcium is extruded through the plasma membrane by the activity of the Calcium ATPase TgA1.

      However, the reviewer’s suggestion is also possible, and calcium could be taken by another store like the mitochondrion. In this regard, we did observe a large mitochondrial calcium increase (parasites expressing SOD2-GCaMp6) after adding GPN (Fig 5I) suggesting that the mitochondrion may take calcium from the organelle targeted by GPN. However, the calcium affinity of the mitochondrion is very low, so the concentration of calcium needs to be very high to activate it and these concentrations are most likely achieved at the microdomains formed between the mitochondrion and other organelles.

      (5) Figure 2B-C: Further explanation of why these particular values were chosen for the follow-up experiments would be helpful for the reader.

      We tested a wide range of MgATP and free calcium concentrations to measure ER Ca<sup>2+</sup> uptake catalyzed by TgSERCA. The concentrations shown fall within the linear range.

      We followed the free calcium concentrations used by studies of mammalian SERCA (https://doi.org/10.1016/j.ceca.2020.102188 ). In this protocol they used 220 nM free calcium, which was close to cytosolic Ca<sup>2+</sup> levels. TgSERCA can take up calcium efficiently at this concentration, as shown in Fig 2. We used less MgATP than the mammalian cell protocols, since we did not observe a significant increase in SERCA activity beyond 0.5 mM MgATP. We added one more sentence explaining in the results, lines 204-207.

      (6) Figure 3E: Revise the error bar? (and note that colours do not match the graph legend).

      The colors do match; the problem visualizing it is because vacuoles containing a single parasite are virtually absent in the control group without ATc treatment.

      (7) Figure 3H: 'Interestingly, when testing egress after the addition of saponin in the presence of extracellular Ca2+, we observed that the tachyzoites egressed sooner (Figure 3H, saponin egress).' This is the only graph showing egress timing, and thus it is not clear what is the comparison. The egressed here is sooner compared to what condition? Egress in the absence of Ca2+? This requires clarification and might require the control data to be added.

      In the saponin experiment we compare time to egress of the mutant grown with or without ATc. The measurement is for time to egress after adding saponin. This experiment is in the presence of extracellular calcium. The protocol was previously used to measure time to egress: PMID: 40043955, PMID: 38382669, PMID: 26374900. See also response to question 9 of reviewer 1.

      (8) Figure 4C: There is a small peak appearing right after TG addition this should be discussed and explained.

      This trace was generated in a different fluorometer, F-4000. This was an artifact due to jumping of the signal when adding TG. Multiple repeats of the same experiment in the newer F7000 did not show the peak. We included in the MM the use of the F-4000 fluorometer for some experiments. We apologize for the omission. Lines 609-610

      (9) Figure 5A: An important control that is missing is co-localisation with a mitochondrial marker.

      The expression of the SOD2-GCaMP6 has been characterized: PMID: 31758454

      (10) Figure 5H: This line was made for this study however the line genetic verification is missing.

      In response to this concern we now include a new Figure S5 showing the fluorescence of GCaMP6 in the mitochondrion of the iDTgSERCA mutant (Fig. S5A). We include several parasites. In addition, we show fluorescence measurements after addition of Calcium showing that the cells are unresponsive indicating that the indicator is not in the cytosol. Lines 650-651 and 344-348.

      (11) Figure 6D: since the membranes are hard to see, it is not clear whether the arrows show structures that are in line with the definition of membrane contact sites. The authors should provide an in-depth analysis of the length of the interaction between the membranes where the distance is less than 30 nM, and discuss how many structures corresponding to the definition were analysed.

      All the requested details are now included in the legend to Figure S3.

      Minor corrections to the text and figures

      (1) Unify statistical labelling throughout the paper replacing *** with p values.

      Corrected. We changed the *** with the actual p value in some figures. For figure 2 and Fig S1, we still use the *** due to the space limitation.

      (2) Unify ATC vs ATc throughout the paper.

      Corrected

      (3) Unify capitalization of line name (iΔTgserca/i ΔTgSERCA) throughout the paper.

      Corrected

      (4) Unify capitalization of p value (p/P) throughout the paper.

      Corrected in figures

      (5) Unify Fig X vs Fig. X throughout the text.

      Corrected

      (6) Add values of scale bars to legends (eg Figure S2).

      Corrected

      (7) What is the time point for the data in Figures 4E-H, 5H, and S3? 24hrs? include in the legend.

      Added 24 h to the legends. Fig S3 is now S4.

      (8) Figure 3F: The second graph is NS thus perhaps no need for the p-value?

      Corrected

      (8) Figure 3G: Worth considering swapping the two around: first attachment and then invasion?

      Corrected. Invasion and attachment bars were swapped.

      (10) Figure 4A/B: Wrong colour match for Figure 4B.

      Corrected

      (11) Figure 4F: In the main text, the authors reference to Figure 1F, correct to 4F.

      Corrected

      (12) Figure 4H: In the main text, authors reference to Figure 1H, correct to 4H.

      Corrected

    1. Author response:

      Reviewer #1 (Public review):

      In this important study, the authors develop a suite of machine vision tools to identify and align fluorescent neuronal recording images in space and time according to neuron identity and position. The authors provide compelling evidence for the speed and utility of these tools. While such tools have been developed in the past (including by the authors), the key advancement here is the speed and broad utility of these new tools. While prior approaches based on steepest descent worked, they required hundreds of hours of computational time, while the new approaches outlined here are >600-fold faster. The machine vision tools here should be immediately useful to readers specifically interested in whole-brain C. elegans data, but also for more general readers who may be interested in using BrainAlignNet for tracking fluorescent neuronal recordings from other systems.

      I really enjoyed reading this paper. The authors had several ground truth examples to quantify the accuracy of their algorithms and identified several small caveats users should consider when using these tools. These tools were primarily developed for C. elegans, an animal with stereotyped development, but whose neurons can be variably located due to internal motion of the body. The authors provide several examples of how BrainAlignNet reliably tracked these neurons over space and time. Neuron identity is also important to track, and the authors showed how AutoCellLoader can reliably identify neurons based on their fluorescence in the NeuroPAL background. A challenge with NeuroPAL though, is the high expression of several fluorophores, which compromises behavioral fidelity. The authors provide some possible avenues where this problem can be addressed by expressing fewer fluorophores. While using all four channels provided the best performance, only using the tagRFP and CyOFP channels was sufficient for performance that was close to full performance using all 4 NeuroPAL channels. This result indicates that the development of future lines with less fluorophore expression could be sufficient for reliable neuronal identification, which would decrease the genetic load on the animal, but also open other fluorescent channels that could be used for tracking other fluorescent tools/markers. Even though these tools were developed for C. elegans specifically, they showed BrainAlignNet can be applied to other organisms as well (in their case, the cnidarian C. hemisphaerica), which broadens the utility of their tools.

      Strengths:

      (1) The authors have a wealth of ground-truth training data to compare their algorithms against, and provide a variety of metrics to assess how well their new tools perform against hand annotation and/or prior algorithms.

      (2) For BrainAlignNet, the authors show how this tool can be applied to other organisms besides C. elegans.

      (3) The tools are publicly available on GitHub, which includes useful README files and installation guidance.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Most of the utility of these algorithms is for C. elegans specifically. Testing their algorithms (specifically BrainAlignNet) on more challenging problems, such as whole-brain zebrafish, would have been interesting. This is a very, very minor weakness, though.

      We appreciate the reviewer’s point that expanding to additional animal models would be valuable. In the study, we have so far tested our approaches on C. elegans and Jellyfish. Given that this is considered a ‘very, very minor weakness’ and that it does not directly affect the results or analyses in the paper, we think this might be better to address in future work.

      (2) The tools are benchmarked against their own prior pipeline, but not against other algorithms written for the same purpose.

      We agree that it would be valuable to benchmark other labs’ software pipelines on our datasets. We note that most papers in this area, which describe those pipelines, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ on our data might not represent those pipelines in their best light when compared to our pipeline that was developed with our data in mind. Data from different microscopy platforms can be surprisingly different and we wouldn’t want to perform an analysis that had this bias. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (3) Considerable pre-processing was done before implementation. Expanding upon this would improve accessibility of these tools to a wider audience.

      Indeed, some pre-processing was performed on images before registration and neuron identification -- understanding these nuances can be important. The pre-processing steps are described in the Results section and detailed in the Methods. They are also all available in our open-source software. For BrainAlignNet, the key steps were: (1) selecting image registration problems, (2) cropping, and (3) Euler alignment. Steps (1) and (3) were critically important and are extensively discussed in the Results and Discussion sections of our study (lines 142-144, 218-234, 318-323, 704-712). Step (2) is standard in image processing. For AutoCellLabeler and CellDiscoveryNet, the pre-processing was primarily to align the 4 NeuroPAL color channels to each other (i.e. make sure the blue/red/orange/etc channels for an animal are perfectly aligned). This is also just a standard image processing step to ensure channel alignment. Thus, the more “custom” pre-processing steps were extensively discussed in the study and the more “common” steps are still described in the Methods. The implementation of all steps is available in our open-source software.

      Reviewer #2 (Public review):

      Summary:

      The paper introduced the pipeline to analyze brain imaging of freely moving animals: registering deforming tissues and maintaining consistent cell identities over time. The pipeline consists of three neural networks that are built upon existing models: BrainAlignNet for non-rigid registration, AutoCellLabeler for supervised annotation of over 100 neuronal types, and CellDiscoveryNet for unsupervised discovery of cell identities. The ambition of the work is to enable high-throughput and largely automated pipelines for neuron tracking and labeling in deforming nervous systems.

      Strengths:

      (1) The paper tackles a timely and difficult problem, offering an end-to-end system rather than isolated modules.

      (2) The authors report high performance within their dataset, including single-pixel registration accuracy, nearly complete neuron linking over time, and annotation accuracy that exceeds individual human labelers.

      (3) Demonstrations across two organisms suggest the methods could be transferable, and the integration of supervised and unsupervised modules is of practical utility.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) Lack of solid evaluation. Despite strong results on their own data, the work is not benchmarked against existing methods on community datasets, making it hard to evaluate relative performance or generality.

      We agree that it would be valuable to benchmark many labs’ software pipelines on some common datasets, ideally from several different research labs. We note that most papers in this area, which describe the other pipelines that have been developed, provide the same performance metrics that we do (accuracy of neuron identification, tracking accuracy, etc), so a crude, first-order comparison can be obtained by comparing the numbers in the papers. But, we agree that a rigorous head-to-head comparison would require applying these different pipelines to a common dataset. We considered performing these analyses, but we were concerned that using other labs’ software ‘off the shelf’ and comparing the results to our pipeline (where we have extensive expertise) might bias the performance metrics in favor of our software. Therefore, we feel that this comparison would be best pursued by all of these labs collaboratively (so that they can each provide input on how to run their software optimally). Indeed, this is an important area for future study. In this spirit, we have been sharing our eat-4::GFP datasets (that permit quantification of tracking accuracy) with other labs looking for additional ways to benchmark their tracking software.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) Lack of novelty. All three models do not incorporate state-of-the-art advances from the respective fields. BrainAlignNet does not learn from the latest optical flow literature, relying instead on relatively conventional architectures. AutoCellLabeler does not utilize the advanced medNeXt3D architectures for supervised semantic segmentation. CellDiscoveryNet is presented as unsupervised discovery but relies on standard clustering approaches, with limited evaluation on only a small test set.

      We appreciate that the machine learning field moves fast. Our goal was not to invent entirely novel machine learning tools, but rather to apply and optimize tools for a set of challenging, unsolved biological problems. We began with the somewhat simpler architectures described in our study and were largely satisfied with their performance. It is conceivable that newer approaches would perhaps lead to even greater accuracy, flexibility, and/or speed. But, oftentimes, simple or classical solutions can adequately resolve specific challenges in biological image processing.

      Regarding CellDiscoveryNet, our claim of unsupervised training is precise: CellDiscoveryNet is trained end-to-end only on raw images, with no human annotations, pseudo-labels, external classifiers, or metadata used for training, model selection, or early stopping. The loss is defined entirely from the input data (no label signal). By standard usage in machine learning, this constitutes unsupervised (often termed “self-supervised”) representation learning. Downstream clustering is likewise unsupervised, consuming only image pairs registered by CellDiscoveryNet and neuron segmentations produced by our previously-trained SegmentationNet (which provides no label information).

      (3) Lack of robustness. BrainAlignNet requires dataset-specific training and pre-alignment strategies, limiting its plug-and-play use. AutoCellLabeler depends heavily on raw intensity patterns of neurons, making it brittle to pose changes. By contrast, current state-of-the-art methods incorporate spatial deformation atlases or relative spatial relationships, which provide robustness across poses and imaging conditions. More broadly, the ANTSUN 2.0 system depends on numerous manually tuned weights and thresholds, which reduces reproducibility and generalizability beyond curated conditions.

      Regarding BrainAlignNet: we agree that we trained on each species’ own data (worm, jellyfish) and we would suggest other labs working on new organisms to do the same based on our current state of knowledge. It would be fantastic if there was an alignment approach that generalized to all possible cases of non-rigid-registration in all animals – an important area for future study. We also agree that pre-alignment was critical in worms and jellyfish, which we discuss extensively in our study (lines 142-144, 318-321, 704-712).

      Regarding AutoCellLabeler: the animals were not recorded in any standardized pose and were not aligned to each other beforehand – they were basically in a haphazard mix of poses and we used image augmentation to allow the network to generalize to other poses, as described in our study. It is still possible that AutoCellLabeler is somehow brittle to pose changes (e.g. perhaps extremely curved worms) – while we did not detect this in our analyses, we did not systematically evaluate performance across all possible poses. However, we do note that this network was able to label images taken from freely-moving worms, which by definition exhibit many poses (Figure 5D, lines 500-525); aggregating the network’s performance across freely-moving data points allowed it to nearly match its performance on high-SNR immobilized data. This suggests a degree of robustness of the AutoCellLabeler network to pose changes.

      Regarding ANTSUN 2.0: we agree that there are some hyperparameters (described in our study) that affect ANTSUN performance. We agree that it would be worthwhile to fully automate setting these in future iterations of the software.

      Evaluation:

      To make the evaluation more solid, it would be great for the authors to (1) apply the new method on existing datasets and (2) apply baseline methods on their own datasets. Otherwise, without comparison, it is unclear if the proposed method is better or not. The following papers have public challenging tracking data: https://elifesciences.org/articles/66410, https://elifesciences.org/articles/59187, https://www.nature.com/articles/s41592-023-02096-3.

      Please see our response to your point (1) under Weaknesses above.

      Methodology:

      (1) The model innovations appear incrementally novel relative to existing work. The authors should articulate what is fundamentally different (architectural choices, training objectives, inductive biases) and why those differences matter empirically. Ablations isolating each design choice would help.

      There are other efforts in the literature to solve the neuron tracking and neuron identification problems in C. elegans (please see paragraphs 4 and 5 of our Introduction, which are devoted to describing these). However, they are quite different in the approaches that they use, compared to our study. For example, for neuron tracking they use t->t+1 methods, or model neurons as point clouds, etc (a variety of approaches have been tried). For neuron identification, they work on extracted features from images, or use statistical approaches rather than deep neural networks, etc (a variety of approaches have been tried). Our assessment is that each of these diverse approaches has strengths and drawbacks; we agree that a meta-analysis of the design choices used across studies could be valuable.

      We also note that there are not really any pipelines to directly compare against CellDiscoveryNet, as we are not aware of any other fully unsupervised approach for neuron identification in C. elegans.

      (2) The pipeline currently depends on numerous manually set hyperparameters and dataset-specific preprocessing. Please provide principled guidelines (e.g., ranges, default settings, heuristics) and a robustness analysis (sweeps, sensitivity curves) to show how performance varies with these choices across datasets; wherever possible, learn weights from data or replace fixed thresholds with data-driven criteria.

      We agree that there are some ANTSUN 2.0 hyperparameters (described in our Methods section) that could affect the quality of neuron tracking. It would be worthwhile to fully automate setting these in future iterations of the software, ensuring that the hyperparameter settings are robust to variation in data/experiments.

      Appraisal:

      The authors partially achieve their aims. Within the scope of their dataset, the pipeline demonstrates impressive performance and clear practical value. However, the absence of comparisons with state-of-the-art algorithms such as ZephIR, fDNC, or WormID, combined with small-scale evaluation (e.g., ten test volumes), makes the strength of evidence incomplete. The results support the conclusion that the approach is useful for their lab's workflow, but they do not establish broader robustness or superiority over existing methods.

      We wish to remind the reviewer that we developed BrainAlignNet for use in worms and jellyfish. These two animals have different distributions of neurons and radically different anatomy and movement patterns. Data from the two organisms was collected in different labs (Flavell lab, Weissbourd lab) on different types of microscopes (spinning disk, epifluorescence). We believe that this is a good initial demonstration that the approach has robustness across different settings.

      Regarding comparisons to other labs’ C. elegans data processing pipelines, we agree that it will be extremely valuable to compare performance on common datasets, ideally collected in multiple different research labs. But we believe this should be performed collaboratively so that all software can be utilized in their best light with input from each lab, as described above. We agree that such a comparison would be very valuable.

      Impact:

      Even though the authors have released code, the pipeline requires heavy pre- and post-processing with numerous manually tuned hyperparameters, which limits its practical applicability to new datasets. Indeed, even within the paper, BrainAlignNet had to be adapted with additional preprocessing to handle the jellyfish data. The broader impact of the work will depend on systematic benchmarking against community datasets and comparison with established methods. As such, readers should view the results as a promising proof of concept rather than a definitive standard for imaging in deformable nervous systems.

      Regarding worms vs jellyfish pre-processing: we actually had the exact opposite reaction to that of the reviewer. We were surprised at how similar the pre-processing was for these two very different organisms. In both cases, it was essential to (1) select appropriate registration problems to be solved; and (2) perform initialization with Euler alignment. Provided that these two challenges were solved, BrainAlignNet mostly took care of the rest. This suggests a clear path for researchers who wish to use this approach in another animal. Nevertheless, we also agree with the reviewer’s caution that a totally different use case could require some re-thinking or re-strategizing. For example, the strategy of how to select good registration problems could depend on the form of the animal’s movement.

      Reviewer #3 (Public review):

      Context:

      Tracking cell trajectories in deformable organs, such as the head neurons of freely moving C. elegans, is a challenging task due to rapid, non-rigid cellular motion. Similarly, identifying neuron types in the worm brain is difficult because of high inter-individual variability in cell positions.

      Summary:

      In this study, the authors developed a deep learning-based approach for cell tracking and identification in deformable neuronal images. Several different CNN models were trained to: (1) register image pairs without severe deformation, and then track cells across continuous image sequences using multiple registration results combined with clustering strategies; (2) predict neuron IDs from multicolor-labeled images; and (3) perform clustering across multiple multicolor images to automatically generate neuron IDs.

      Strengths:

      Directly using raw images for registration and identification simplifies the analysis pipeline, but it is also a challenging task since CNN architectures often struggle to capture spatial relationships between distant cells. Surprisingly, the authors report very high accuracy across all tasks. For example, the tracking of head neurons in freely moving worms reportedly reached 99.6% accuracy, neuron identification achieved 98%, and automatic classification achieved 93% compared to human annotations.

      We thank the reviewer for noting these strengths of our study.

      Weaknesses:

      (1) The deep networks proposed in this study for registration and neuron identification require dataset-specific training, due to variations in imaging conditions across different laboratories. This, in turn, demands a large amount of manually or semi-manually annotated training data, including cell centroid correspondences and cell identity labels, which reduces the overall practicality and scalability of the method.

      We performed dataset-specific training for image registration and neuron identification, and we would encourage new users to do the same based on our current state of knowledge. This highlights how standardization of whole-brain imaging data across labs is an important issue for our field to address and that, without it, variations in imaging conditions could impact software utility. We refer the reviewer to an excellent study by Sprague et al. (2025) on this topic, which is cited in our study.

      However, at the same time, we wish to note that it was actually reasonably straightforward to take the BrainAlignNet approach that we initially developed in C. elegans and apply it to jellyfish. Some of the key lessons that we learned in C. elegans generalized: in both cases, it was critical to select the right registration problems to solve and to preprocess with Euler registration for good initialization. Provided that those problems were solved, BrainAlignNet could be applied to obtain high-quality registration and trace extraction. Thus, our study provides clear suggestions on how to use these tools across multiple contexts.

      (2) The cell tracking accuracy was not rigorously validated, but rather estimated using a biased and coarse approach. Specifically, the accuracy was assessed based on the stability of GFP signals in the eat-4-labeled channel. A tracking error was assumed to occur when the GFP signal switched between eat-4-negative and eat-4-positive at a given time point. However, this estimation is imprecise and only captures a small subset of all potential errors. Although the authors introduced a correction factor to approximate the true error rate, the validity of this correction relies on the assumption that eat-4 neurons are uniformly distributed across the brain - a condition that is unlikely to hold.

      We respectfully disagree with this critique. We considered the alternative suggested by the reviewer (in their private comments to the authors) of comparing against a manually annotated dataset. But this annotation would require manually linking ~150 neurons across ~1600 timepoints, which would require humans to manually link neurons across timepoints >200,000 times for a single dataset. These datasets consist of densely packed neurons rapidly deforming over time in all 3 dimensions. Moreover, a single error in linking would propagate across timepoints, so the error tolerance of such annotation would be extremely low. Any such manually labeled dataset would be fraught with errors and should not be trusted. Instead, our approach relies on a simple, accurate assumption: GFP expression in a neuron should be roughly constant over a 16min recording (after bleach correction) and the levels will be different in different neurons when it is sparsely expressed. Because all image alignment is done in the red channel, the pipeline never “peeks” at the GFP until it is finished with neuron alignment and tracking. The eat-4 promoter was chosen for GFP expression because (a) the nuclei labeled by it are scattered across the neuropil in a roughly salt-and-pepper fashion – a mixture of eat-4-positive and eat-4-negative neurons are found throughout the head; and (b) it is in roughly 40% of the neurons, giving very good overall coverage. Our view is that this approach of labeling subsets of neurons with GFP should become the standard in the field for assessing tracking accuracy – it has a simple, accurate premise; is not susceptible to human labeling error; is straightforward to implement; and, since it does not require manual labeling, is easy to scale to multiple datasets. We do note that it could be further strengthened by using multiple strains each with different ‘salt-and-pepper’ GFP expression patterns.

      (3) Figure S1F demonstrates that the registration network, BrainAlignNet, alone is insufficient to accurately align arbitrary pairs of C. elegans head images. The high tracking accuracy reported is largely due to the use of a carefully designed registration sequence, matching only images with similar postures, and an effective clustering algorithm. Although the authors address this point in the Discussion section, the abstract may give the misleading impression that the network itself is solely responsible for the observed accuracy.

      Our tracking accuracy requires (a) a careful selection of registration problems, (b) highly accurate registration of the selected registration problems, and (c) effective clustering. We extensively discussed the importance of the choosing of the registration problems in the Results section (lines 218-234 and 318-321), Discussion section (lines 704-708), and Methods section (955-970 and 1246-1250) of our paper. We also discussed the clustering aspect in the Results section (lines 247-259), Discussion section (lines 708-712), and Methods section (lines 1162-1206). In addition, our abstract states that the BrainAlignNet needs to be “incorporated into an image analysis pipeline,” to inform readers that other aspects of image analysis need to occur (beyond BrainAlignNet) to perform tracking.

      (4) The reported accuracy for neuron identification and automatic classification may be misleading, as it was assessed only on a subset of neurons labeled as "high-confidence" by human annotators. Although the authors did not disclose the exact proportion, various descriptions (such as Figure 4f) imply that this subset comprises approximately 60% of all neurons. While excluding uncertain labels is justifiable, the authors highlight the high accuracy achieved on this subset without clearly clarifying that the reported performance pertains only to neurons that are relatively easy to identify. Furthermore, they do not report what fraction of the total neuron population can be accurately identified using their methods-an omission of critical importance for prospective users.

      The reviewer raises two points here: (1) whether AutoCellLabeler accuracy is impacted by ease of human labeling; and (2) what fraction of total neurons are identified. We address them one at a time.

      Regarding (1), we believe that the reviewer overlooked an important analysis in our study. Indeed, to assess its performance, one can only compare AutoCellLabeler’s output against accurate human labels – there is simply no way around it. However, we noted that AutoCellLabeler was identifying some neurons with high confidence even when humans had low confidence or had not even tried to label the neurons (Fig. 4F). To test whether these were in fact accurate labels, we asked additional human labelers to spend extra time trying to label a random subset of these neurons (they were of course blinded to the AutoCellLabeler label). We then assessed the accuracy of AutoCellLabeler against these new human labels and found that they were highly accurate (Fig. 4H). This suggests that AutoCellLabeler has strong performance even when some human labelers find it challenging to label a neuron. However, we agree that we have not yet been able to quantify AutoCellLabeler performance on the small set of neuron classes that humans are unable to identify across datasets.

      Regarding (2), we agree that knowing how many neurons are labeled by AutoCellLabeler is critical. For example, labeling only 3 neurons per animal with 100% accuracy isn’t very helpful. We wish to emphasize that we did not omit this information: we reported the number of neurons labeled for every network that we characterized in the study, alongside the accuracy of those labels (please see Figures 4I, 5A, and 6G; Figure 4I also shows the number of human labels per dataset, which the reviewer requested). We also showed curves depicting the tradeoff between accuracy and number of neurons labeled, which fully captures how we balanced accuracy and number of neurons labeled (Figures 5D and S4A). It sounds like the reviewer also wanted to know the total number of recorded neurons. The typical number of recorded neurons per dataset can also be found in the paper in Fig. 2E.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The study investigated how individuals living in urban slums in Salvador, Brazil, interact with environmental risk factors, particularly focusing on domestic rubbish piles, open sewers, and a central stream. The study makes use of the step selection functions using telemetry data, which is a method to estimate how likely individuals move towards these environmental features, differentiating among groups by gender, age, and leptospirosis serostatus. The results indicated that women tended to stay closer to the central stream while avoiding open sewers more than men. Furthermore, individuals who tested positive for leptospirosis tended to avoid open sewers, suggesting that behavioral patterns might influence exposure to risk factors for leptospirosis, hence ensuring more targeted interventions. 

      Strengths: 

      (1) The use of step selection functions to analyze human movement represents an innovative adaptation of a method typically used in animal ecology. This provides a robust quantitative framework for evaluating how people interact with environmental risk factors linked to infectious diseases (in this case, leptospirosis). 

      (2) Detailed differentiation by gender and serological status allows for nuanced insights, which can help tailor targeted interventions and potentially improve public health measures in urban slum settings. 

      (3) The integration of real-world telemetry data with epidemiological risk factors supports the development of predictive models that can be applied in future infectious disease research, helping to bridge the gap between environmental exposure and health outcomes. 

      Weaknesses: 

      (1) The sample size for the study was not calculated, although it was a nested cohort study. 

      We thank Reviewer #1 for highlighting this weakness. We will make sure that this is explained in the next version of the manuscript. At the time of recruiting participants, we found no literature on how to perform a sample size calculation for movement studies involving GPS loggers and associated methods of analysis. Therefore, we aimed to recruit as many individuals as possible within the resource constraints of the study.  

      “Participants who were already enrolled in the cohort study were recruited to take part in the movement analysis study. At the time of recruitment, we found no published scientific studies detailing how to perform sample size calculations for research using GPS data in humans. Therefore, we opted to use convenience sampling instead. A target of 30 people per study area, balanced by gender and blind to their serological status, was chosen for this study.” [Lines 163 - 169]

      (2) The step‐selection functions, though a novel method, may face challenges in fully capturing the complexity of human decision-making influenced by socio-cultural and economic factors that were not captured in the study. 

      We agree with Reviewer #1 that this model may fail to capture the full breadth of human decisionmaking when it comes to moving through local environments. We included a section discussing the aspect of violence and how this influences residents’ choices, along with some possibilities on how to record and account for this. Although it is outside of the scope of this study, we believe that coupling these quantitative methods with qualitative studies would provide a comprehensive understanding of movement in these areas.  

      (3) The study's context is limited to a specific urban slum in Salvador, Brazil, which may reduce the generalizability of its findings to other geographical areas or populations that experience different environmental or socio-economic conditions. 

      We thank the reviewer for highlighting this limitation. We have made this more clear in the discussion section: 

      “As a result, the findings are biased towards the more represented individuals, limiting their generalisability. Additionally, all participants are from specific areas in Salvador, which may further limit the generalisability to similar contexts.” [Lines 561 - 564]

      (4) The reliance on self-reported or telemetry-based movement data might include some inaccuracies or biases that could affect the precision of the selection coefficients obtained, potentially limiting the study's predictive power. 

      We agree that telemetry data has inherent inaccuracies, which we have tried to account for by using only those data points within the study areas. We would like to clarify that there is no self-reported movement data used in this study. All movement data was collected using GPS loggers.  

      (5) Some participants with less than 50 relocations within the study area were excluded without clear justification, see line 149. 

      We found that the SSF models would not run properly if there weren’t enough relocations. Therefore, we decided to remove these individuals from the analysis. They are also removed from any descriptive statistics presented. We have now clarified this in the manuscript.  

      “Individuals with less than 50 relocations within the study area were excluded from the analysis to ensure good model convergence. Details of these excluded individuals can be found in Supplementary Material I.” [Lines 183 – 186]

      (6) Some figures are not clear (see Figure 4 A & B). 

      We have improved the resolution of the image and believe it is more clear now. Please let us know if the resolution still is not clear enough.  

      (7) No statement on conflict of interest was included, considering sponsorship of the study. 

      The conflict of interest forms for each author were sent to eLife separately. I believe these should be made available upon publication, but please reach out if these need to be re-sent.  

      Reviewer #2 (Public review): 

      Summary: 

      Pablo Ruiz Cuenca et al. conducted a GPS logger study with 124 adult participants across four different slum areas in Salvador, Brazil, recording GPS locations every 35 seconds for 48 hours. The aim of their study was to investigate step-selection models, a technique widely used in movement ecology to quantify contact with environmental risk factors for exposure to leptospires (open sewers, community streams, and rubbish piles). The authors built two different types of models based on distance and based on buffer areas to model human environmental exposure to risk factors. They show differences in movement/contact with these risk factors based on gender and seropositivity status. This study shows the existence of modest differences in contact with environmental risk factors for leptospirosis at small spatial scales based on socio-demographics and infection status. 

      Strengths: 

      The authors assembled a rich dataset by collecting human GPS logger data, combined with fieldrecorded locations of open sewers, community streams, and rubbish piles, and testing individuals for leptospirosis via serology. This study was able to capture fine-scale exposure dynamics within an urban environment and shows differences by gender and seropositive status, using a method novel to epidemiology (step selection). 

      Weaknesses: 

      Due to environmental data being limited to the study area, exposure elsewhere could not be captured, despite previous research by Owers et al. showing that the extent of movement was associated with infection risk. Limitations of step selection for use in studying human participants in an urban environment would need to be explicitly discussed. 

      The environmental factors used in the study required research teams to visit the sites and map the locations. Given that individuals travelled throughout the city of Salvador, performing this task at a large scale would be unachievable. Therefore, we limited the data to only those points within the study area boundaries to avoid any biases from interactions with unrecorded environmental factors.  

      Reviewing Editor Comments: 

      The manuscript would benefit from clearer articulation of SSF assumptions, data exclusions, and buffer choices, as well as improvements in figure clarity, to strengthen its generalizability and impact. 

      Please see replies to Reviewer #2 below regarding the assumptions (2.3), data exclusions (2.1) and buffer choices (2.2). We have improved Figure 4 clarity, please let us know if this is not sufficient.  

      Reviewer #1 (Recommendations for the authors): 

      (1) Provide comprehensive details on telemetry data collection for improved data quality and reproducibility. 

      Details for this are included under the “Methods/GPS Data” section. We have included a sentence to explain that we used to GPS device manufacturer’s software to programme them. We believe this provides enough information on how to collect the data for reproducibility, but please let us know if there is further information that we could provide.  

      “Individuals who consented to take part in this study were asked to wear GPS loggers for continuous periods of up to 48 hours, which could be repeated. The GPS loggers used were i-got U GT-600, set to record their location every 35 seconds. We used the manufacturer’s software to programme the devices. Data were collected between March and November 2022.” [Lines 172 - 176]

      (2) Check all figures and improve on clarity (see Figure 4). 

      We have updated Figure 4 and believe the resolution is better now. Please let us know if this it not the case from the readers perspective.  

      (3) Revisit sentence structures to improve readability and reduce overly complex phrasing. 

      We have reviewed the manuscript and made some changes to improve readability. 

      Reviewer #2 (Recommendations for the authors): 

      I thank Ruiz Cuenca et al. for putting together this interesting manuscript on the use of step selection functions for understanding exposure to leptospires in urban Brazil. I thoroughly enjoyed reading it and have a few suggestions that may improve the manuscript. 

      I also apologise, but I was not able to find some of the supplementary materials, for instance, Supplementary Material I. That may have been my oversight. 

      To eLife: These should have been included with the submitted manuscript file. Please let me know if it has to be resubmitted to eLife.

      (1) Descriptive statistics 

      Some more descriptive statistics would be helpful. For instance, what was the leptospirosis infection status of the six individuals who were removed due to having <50 points inside the area? As part of the analysis relies on exposure, defined as GPS locations within a 20m buffer of open sewers, community streams, and rubbish piles, it would be good to have some descriptive statistics around this. How many visits to these different sites did people make, and how did these statistics vary by study area, age, gender, and leptospirosis infection status? 

      We thank Reviewer #2 for highlighting this. Thanks to their comment, we noticed a mistake in the code which excluded more individuals from the summary statistics table than were actually excluded from the full analysis. There were only 2 individuals that had less than 50 relocations across the whole day (5 am to 9 pm) which were excluded from further analysis. The mistake has been rectified and the summary statistics updated. (see table 1)

      We have included the demographic details of excluded participants as a table in the supplementary material, which we have referenced to in the manuscript. We have also explained that the exclusion is to aid model convergence, as we found that too few relocations would result in SSF models not working properly.  

      “Individuals with less than 50 relocations within the study area were excluded from the analysis to ensure good model convergence. Details of these excluded individuals can be found in Supplementary Material I.” [Lines 183 – 186]

      We have also now included a table (Table 2),  to show more descriptive statistics of how much time individuals spent within each of the environmental buffers. 

      (2) Definitions of buffers 

      I was surprised that the authors chose a 20m buffer for each factor but 10m around the household.Could this be more clearly justified, especially given that there will be location errors in both the GPS location point and the GPS logger points? These buffers do appear quite small, particularly in an urban environment where obstruction from buildings can be expected to yield substantial GPS errors. 

      The 20 meter buffer represents an intense interaction with the point of interest. This distance was decided after visiting the sites and seeing the points of interest in person. The 10 meter buffer accounts for the size of dwellings in these areas. We have included these explanations in the new manuscript:  

      “The buffer rasters, one for each factor, were created using a 20 meter buffer around each reference point. The size of this buffer was decided after visiting the study areas and represented an area within which it could be considered a strong interaction with the point of interest.” [Lines 198 – 202]

      “Buffer rasters were also created for each individual’s household location, with a 10 meter buffer around each location.This represented space within and immediately outside each house.  This buffer size accounted for the size of dwellings in these study areas.” [Lines 205 - 208]

      (3) Assumptions of the step selection function 

      Step selection functions (SSFs) rely on a number of assumptions. Whether these assumptions are met needs to be critically discussed within the article. (For a discussion of the assumptions, I am relying on points raised in this article: Integrated step selection analysis: bridging the gap between resource selection and animal movement (2015): Tal Avgar, Jonathan R. Potts, Mark A. Lewis, Mark S. Boyce, DOI: https://doi.org/10.1111/2041-210X.12528). 

      First, SSFs typically assume each step is independent, conditional only on the previous step (Markovian process). This is violated in circular movements, for instance. Circular movements are highly likely in human movement as people will leave and return to their homes during the day. While this is partially addressed by conducting separate analyses by time of day, circular journeys can still exist within these segments. 

      Second, SSFs do not account for goal-oriented behaviour like intentional destination-seeking. So, for instance, when someone executes a plan to visit a specific stream to fetch drinking water, such behaviour is poorly approximated using SSFs because SSFs compare observed steps to random alternatives drawn from a movement kernel, assuming movement is opportunistic rather than intentional. 

      This is true of SSF that do not include movement attributes. However, in our SSF we have included both step lengths and turning angles, which, according to Avgar et al, should be enough to account for this goal-oriented behaviour. It may be clearer to call the model an integrated step selection function (iSSF), as they do in Avgar et al., which we can change in the next version of the manuscript.  

      Third, turning angles in human movement are often sharp due to regular street layout, which can violate the assumptions of SSFs, which usually assume smooth, correlated movement. 

      As this paper proposes SSFs as a novel method to measure exposure to environmentally transmitted pathogens, a discussion on the extent to which assumptions of SSFs are valid for this purpose should be included in the paper. 

      We thank Reviewer #2 for highlighting these points. We have included a section discussing these assumptions in detail: 

      “Additionally, these models have some underlying assumptions that may be violated in this study. Step-selection functions assume each step is independent, conditioned on the previous step. This can be violated by circular journeys. Although we attempted to account for these by analysing specific periods of the day, a higher temporal resolution of analysis may be needed if circular journeys are still present within each period. Another assumption is that movement is smooth through the environment. In urban environments this may not hold true, as street layouts may force sharp corners in movements. The effect of violating this assumption is not immediately clear and requires further methodological research to understand its significance. Finally, we assumed that by including movement characteristics (step lengths and turning angles) into our models, we were accounting for goal-oriented behaviour. These assumptions need to be considered in future studies that attempt to use step-selection functions to analyse human mobility.” [Lines 593 - 607]

      (4) Abstract 

      While it is highlighted in the abstract that this "study introduces a novel method for analysing human telemetry data in infectious disease research, providing critical insights for targeted interventions", I did not see any discussion about how the findings can inform interventions. 

      We thank Reviewer #2 for highlighting this. We have now removed this wording from the abstract to avoid misunderstanding.  

      (5) Effect sizes 

      It would have helped me if there had been some discussion around the size of these effects. Especially for the distance-based models, the effects seem very small. Maybe this is a misinterpretation on my part, but it would help to contextualise if the observed effect were small or large. 

      We agree with Reviewer #2 on this point and have now included a paragraph explaining that these effect sizes are indeed very small. We believe that this may be linked to the spatial scale of the rasters used (1 meter), as the selection coefficients represent changes with regards to increasing distances of 1 meter. This may not be that significant for human mobility. However, given the focus on analysing fine scale movement, we decided to keep the spatial scale of the rasters as small as possible. 

      “It is important to highlight that the effect sizes of the selection coefficients for the distance based rasters are very small and could be considered negligible. This may be linked to the spatial scale used, as these values represent increases of 1 meter. A coarser scale may have produced larger effect sizes that may have been easier to conceptualise. However, given the focus on fine-scale movement, we decided to keep this spatial scale for the analysis.” [Lines 421 - 427]

    1. Author response:

      eLife Assessment

      This valuable study presents a theoretical model of how punctuated mutations influence multistep adaptation, supported by empirical evidence from some TCGA cancer cohorts. This solid model is noteworthy for cancer researchers as it points to the case for possible punctuated evolution rather than gradual genomic change. However, the parametrization and systematic evaluation of the theoretical framework in the context of tumor evolution remain incomplete, and alternative explanations for the empirical observations are still plausible.

      We thank the editor and the reviewers for their thorough engagement with our work. The reviewers’ comments have drawn our attention to several important points that we have addressed in the updated version. We believe that these modifications have substantially improved our paper.

      There were two major themes in the reviewers’ suggestions for improvement. The first was that we should demonstrate more concretely how the results in the theoretical/stylized modelling parts of our paper quantitatively relate to dynamics in cancer.

      To this end, we have now included a comprehensive quantification of the effect sizes of our results across large and biologically-relevant parameter ranges. Specifically, following reviewer 1’s suggestion to give more prominence to the branching process, we have added two figures (Fig S3-S4) quantifying the likelihood of multi-step adaptation in a branching process for a large range of mutation rates and birth-death ratios. Formulating our results in terms of birth-death ratios also allowed us to provide better intuition regarding how our results manifest in models with constant population size vs models of growing populations. In particular, the added figure (Fig S3) highlights that the effect size of temporal clustering on the probability of successful 2-step adaptation is very sensitive to the probability that the lineage of the first mutant would go extinct if it did not acquire a second mutation. As a result, the phenomenon we describe is biologically likely to be most effective in those phases during tumor evolution in which tumor growth is constrained. This important pattern had not been described sufficiently clearly in the initial version of our manuscript, and we thank both reviewers for their suggestions to make these improvements.

      The second major theme in the reviewers’ suggestions was focused on how we relate our theoretical findings to readouts in genomic data, with both reviewers pointing to potential alternative explanations for the empirical patterns we describe.

      We have now extended our empirical analyses following some of the reviewers’ suggestions. Specifically, we have included analyses investigating how the contribution of reactive oxygen species (ROS)-related mutation signatures correlates with our proxies for multi-step adaptation; and we have included robustness checks in which we use Spearman instead of Pearson correlations. Moreover, we have included more discussion on potential confounds and the assumptions going into our empirical analyses as well as the challenges in empirically identifying the phenomena we describe.

      Below, we respond in detail to the individual comments made by each reviewer.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Grasper et al. present a combined analysis of the role of temporal mutagenesis in cancer, which includes both theoretical investigation and empirical analysis of point mutations in TCGA cancer patient cohorts. They find that temporally elevated mutation rates contribute to cancer fitness by allowing fast adaptation when the fitness drops (due to previous deleterious mutations). This may be relevant in the case of tumor suppressor genes (TSG), which follow the 2-hit hypothesis (i.e., biallelic 2 mutations are necessary to deactivate TS), and in cases where temporal mutagenesis occurs (e.g., high APOBEC, ROS). They provide evidence that this scenario is likely to occur in patients with some cancer types. This is an interesting and potentially important result that merits the attention of the target audience. Nonetheless, I have some questions (detailed below) regarding the design of the study, the tools and parametrization of the theoretical analysis, and the empirical analysis, which I think, if addressed, would make the paper more solid and the conclusion more substantiated.

      Strengths:

      Combined theoretical investigation with empirical analysis of cancer patients.

      Weaknesses:

      Parametrization and systematic investigation of theoretical tools and their relevance to tumor evolution.

      We sincerely thank Reviewer 1 for their comments. As communicated in more detail in the point-by-point replies to the “Recommendations for the authors”, we have revised the paper to address these comments in various ways. To summarize, Reviewer 1 asked for (1) more comprehensive analyses of the parameter space, especially in ranges of small fitness effects and low mutation rates; (2) additional clarifications on details of mechanisms described in the manuscript; and (3) suggested further robustness checks to our empirical analyses. We have addressed these points as follows: we have added detailed analyses of dynamics and effect sizes for branching processes (see Sections SI2 and SI3 in the Supplementary Information, as well as Figures S3 and S4). As suggested, these additions provide characterizations of effect sizes in biologically relevant parameter ranges (low mutation rates and smaller fitness effect sizes), and extend our descriptions to processes with dynamically changing population sizes. Moreover, we have added further clarifications at suggested points in the manuscript, e.g. to elaborate on the non-monotonicities in Fig 3. Lastly, we have undertaken robustness checks using Spearman rather than Pearson correlation coefficients to quantify relations between TSG deactivation and APOBEC signature contribution, and have performed analyses investigating dynamics of reactive oxygen species-associated mutagenesis instead of APOBEC.

      Reviewer #2 (Public review):

      This work presents theoretical results concerning the effect of punctuated mutation on multistep adaptation and empirical evidence for that effect in cancer. The empirical results seem to agree with the theoretical predictions. However, it is not clear how strong the effect should be on theoretical grounds, and there are other plausible explanations for the empirical observations.

      Thank you very much for these comments. We have now substantially expanded our investigations of the parameter space as outlined in the response to the “eLife Assessment” above and in the detailed comments below (A(1)-A(3)) to convey more quantitative intuition for the magnitude of the effects we describe for different phases of tumor evolution. We agree that there could be potential additional confounders to our empirical investigations besides the challenges regarding quantification that we already described in our initial version of the manuscript. We have thus included further discussion of these in our manuscript (see replies to B(1)-B(3)), and we have expanded our empirical analyses as outlined in the response to the “eLife Assessment”.

      For various reasons, the effect of punctuated mutation may be weaker than suggested by the theoretical and empirical analyses:

      (A1) The effect of punctuated mutation is much stronger when the first mutation of a two-step adaptation is deleterious (Figure 2). For double inactivation of a TSG, the first mutation--inactivation of one copy--would be expected to be neutral or slightly advantageous. The simulations depicted in Figure 4, which are supposed to demonstrate the expected effect for TSGs, assume that the first mutation is quite deleterious. This assumption seems inappropriate for TSGs, and perhaps the other synergistic pairs considered, and exaggerates the expected effects.

      Thank you for highlighting this discrepancy between Figure 2 and Figure 4. For computational efficiency and for illustration purposes, we had opted for high mutation rates and large fitness effects in Figure 2; however, our results are valid even in the setting of lower mutation rates and fitness effects. To improve the connection to Figure 4, and to address other related comments regarding parameter dependencies, we have now added more detailed quantification of the effects we describe (Figures SF3 and SF4) to the revised manuscript. These additions show that the effects illustrated in Figure 2 retain large effect sizes when going to much lower mutation rates and much smaller fitness effects. Indeed, while under high mutation rates we only see the large relative effects if the first mutation is highly deleterious, these large effects become more universal when going to low mutation rates.

      In general, it is correct that the selective disadvantage (or advantage) conveyed by the first mutation affects the likelihood of successful 2-step adaptations. It is also correct that the magnitude of the ‘relative effect’ of temporal clustering on valley-crossing is highest if the lineage with only the first of the two mutations is vanishingly unlikely to produce a second mutant before going extinct. If the first mutation is strongly deleterious, the lineage of such a first mutant is likely to quickly go extinct – and therefore also more likely to do so before producing a second mutant.

      However, this likelihood of producing the second mutant is also low if the mutation rate is low. As our added figure (Figure SF3) illustrates, at low mutation rates appropriate for cancer cells, is insensitive to the magnitude of the fitness disadvantage for large parts of the parameter space. Especially in populations of constant size (approximated by a birth/death ratio of 1), the relative effects for first mutations that reduce the birth rate by 0.5 or by 0.05 are indistinguishable (Figure SF3f).

      Moreover, the absolute effect (f<sub>k</sub> - f<sub>1</sub>), as we discuss in the paper (Figures SF2 and SF3) is largest in regions of the parameter space in which the first mutant is not infinitesimally unlikely to produce a second mutant (and f<sub>k</sub>  and f<sub>1</sub> would be infinitesimally small), but rather in parameter regions in which this first mutant has a non-negligible chance to produce a second mutant. The absolute effect (f<sub>k</sub> - f<sub>1</sub>) therefore peaks around fitness-neutral first mutations. While the next comment (below) says that our empirical investigations more closely resemble comparisons of relative effects and not absolute effects, we would expect that the observations in our data come preferentially from multi-step adaptations with large absolute effect since the absolute effect is maximal when both f<sub>k</sub> and f<sub>1</sub> are relatively high.

      In summary, we believe Figure 2, while having exaggerated parameters for very defendable reasons, is not a misleading illustration of the general phenomenon or of its applicability in biological settings, as effect sizes remain large when moving to biologically realistic parameter ranges. To clarify this issue, we have largely rewritten the relevant paragraphs in the results section and have added two additional figures (Figures SF3 and SF4) as well as a section in the SI with detailed discussion (SI2).

      (A2) More generally, parameter values affect the magnitude of the effect. The authors note, for example, that the relative effect decreases with mutation rate. They suggest that the absolute effect, which increases, is more important, but the relative effect seems more relevant and is what is assessed empirically.

      Thank you for this comment. As noted in the replies to the above comments, we have now included extensive investigations of how sensitive effect sizes are to different parameter choices. We also apologize for insufficiently clearly communicating how the quantities in Figure 4 relate to the findings of our theoretical models.

      The challenge in relating our results to single-timepoint sequencing data is that we only observe the mutations that a tumor has acquired, but we do not directly observe the mutation rate histories that brought about these mutations. As an alternative readout, we therefore consider (through rough proxies: TSGs and APOBEC signatures) the amount of 2-step adaptations per acquired/retained mutation. While we unfortunately cannot control for the average mutation rate in a sample, we motivate using this “TSG-deactivation score” by the hypothesis that for any given mutation rate, we expect a positive relationship between the amount of temporal clustering and the amount of 2-step adaptations per acquired/retained mutation. This hypothesis follows directly from our theoretical model where it formally translates to the statement that for a fixed μ, f<sub>k</sub> is increasing in k.

      However, while both quantities f<sub>k</sub>/f<sub>1</sub> or f<sub>k</sub> - f<sub>1</sub> from our theoretical model relate to this hypothesis – both are increasing in k –, neither of them maps directly onto the formulation of our empirical hypothesis.

      We have now rewritten the relevant passages of the manuscript to more clearly convey our motivation for constructing our TSG deactivation score in this form (P. 4-6).

      (A3) Routes to inactivation of both copies of a TSG that are not accelerated by punctuation will dilute any effects of punctuation. An example is a single somatic mutation followed by loss of heterozygosity. Such mechanisms are not included in the theoretical analysis nor assessed empirically. If, for example, 90% of double inactivations were the result of such mechanisms with a constant mutation rate, a factor of two effect of punctuated mutagenesis would increase the overall rate by only 10%. Consideration of the rate of apparent inactivation of just one TSG copy and of deletion of both copies would shed some light on the importance of this consideration.

      This is a very good point, thank you. In our empirical analyses, the main motivation was to investigate whether we would observe patterns that are qualitatively consistent with our theoretical predictions, i.e. whether we would find positive associations between valley-crossing and temporal clustering. Our aim in the empirical analyses was not to provide a quantitative estimate of how strongly temporally clustered mutation processes affect mutation accumulation in human cancers. We hence restricted attention to only one mutation process which is well characterized to be temporally clustered (APOBEC mutagenesis) and to only one category of (epi)genomic changes (SNPs, in which APOBEC signatures are well characterized). Of course, such an analysis ignores that other mutation processes (e.g. LOH, copy number changes, methylation in promoter regions, etc.) may interact with the mechanisms that we consider in deactivating Tumor suppressor genes.

      We have now updated the text to include further discussion of this limitation and further elaboration to convey that our empirical analyses are not intended as a complete quantification of the effect of temporal clustering on mutagenesis in-vivo (P. 10,11).

      Several factors besides the effects of punctuated mutation might explain or contribute to the empirical observations:

      (B1) High APOBEC3 activity can select for inactivation of TSGs (references in Butler and Banday 2023, PMID 36978147). This selective force is another plausible explanation for the empirical observations.

      Thank you for making this point. We agree that increased APOBEC3 activity, or any other similar perturbation, can change the fitness effect that any further changes/perturbations to the cell would bring about. Our empirical analyses therefore rely on the assumption that there are no major confounding structural differences in selection pressures between tumors with different levels of APOBEC signature contributions. We have expanded our discussion section to elaborate on this potential limitation (P. 10-11).

      While the hypothesis that APOBEC3 activity selects for inactivation of TSGSs has been suggested, there remain other explanations. Either way, the ways in which selective pressures have been suggested to change would not interfere relevantly with the effects we describe. The paper cited in the comment argues that “high APOBEC3 activity may generate a selective pressure favoring” TSG mutations as “APOBEC creates a high [mutation] burden, so cells with impaired DNA damage response (DDR) due to tumor suppressor mutations are more likely to avert apoptosis and continue proliferating”. To motivate this reasoning, in the same passage, the authors cite a high prevalence of TP53 mutations across several cancer types with “high burden of APOBEC3-induced mutations”, but also note that “this trend could arise from higher APOBEC3 expression in p53-mutated tumors since p53 may suppress APOBEC3B transcription via p21 and DREAM proteins”.

      Translated to our theoretical framework, this reasoning builds on the idea that APOBEC3 activity increases the selective advantage of mutants with inactivation of both copies of a TSG. In contrast, the mechanism we describe acts by altering the chances of mutants with only one TSG allele inactivated to inactivate the second allele before going extinct. If homozygous inactivation of TSGs generally conveys relatively strong fitness advantages, lineages with homozygous inactivation would already be unlikely to go extinct. Further increasing the fitness advantage of such lineages would thus manifest mostly in a quicker spread of these lineages, rather than in changes in the chance that these lineages survive. In turn, such a change would have limited effect on the “rate” at which such 2-step adaptations occur, but would mostly affect the speed at which they fixate. It would be interesting to investigate these effects empirically by quantifying the speed of proliferation and chance of going extinct for lineages that newly acquired inactivating mutations in TSGs.

      Beyond this explicit mention of selection pressures, the cited paper also discusses high occurrences of mutations in TSGs in relation to APOBEC. These enrichments, however, are not uniquely explained by an APOBEC-driven change in selection pressures. Indeed, our analyses would also predict such enrichments.

      (B2) Without punctuation, the rate of multistep adaptation is expected to rise more than linearly with mutation rate. Thus, if APOBEC signatures are correlated with a high mutation rate due to the action of APOBEC, this alone could explain the correlation with TSG inactivation.

      Thank you for making this point. Indeed, an identifying assumption that we make is that average mutation rates are balanced between samples with a higher vs lower APOBEC signature contribution. We cannot cleanly test this assumption, as we only observe aggregate mutation counts but not mutation rates. However, the fact that we observe an enrichment for APOBEC-associated mutations among the set of TSG-inactivating mutations (see Figure 4F) would be consistent with APOBEC-mutations driving the correlations in Fig 4D, rather than just average mutation rates. We have now added a paragraph to our manuscript to discuss these points (P. 10-11).

      (B3) The nature of mutations caused by APOBEC might explain the results. Notably, one of the two APOBEC mutation signatures, SBS13, is particularly likely to produce nonsense mutations. The authors count both nonsense and missense mutations, but nonsense mutations are more likely to inactivate the gene, and hence to be selected.

      Thank you for making this point.  We have included it in our discussion of potential confounders/limitations in the revised manuscript (P. 10-11).

    1. Author response:

      We thank the reviewers for their constructive feedback on the article’s strengths and weaknesses. In response, we plan to strengthen our work in a revised version by (i) providing an additional example of our method’s implementation and (ii) framing our contribution more clearly as a continuation of the line of research that characterises neuronal models in terms of their bifurcation structure.

      Experimental validation, however, is beyond the scope of this study. Constructing experimental bifurcation diagrams remains a major challenge, particularly for unstable branches. Although some techniques exist to approximate branches of unstable steady states, unstable limit cycles are far more difficult to capture. Additionally, in practice, many factors vary during recordings, and generating reliable diagrams would require a large number of tightly controlled experimental repetitions whose stability often cannot be ensured. Two-dimensional bifurcation diagrams, as needed for the analysis in our manuscript, are even more challenging to obtain because the extensive and stable recordings would have to be available from the same cell at different values of the second parameter (such as different extracellular potassium concentrations). At this stage, our method can be applied to the reduction of detailed conductance-based models, which themselves are constrained by experimental data (for example, gating functions fitted to voltage-clamp recordings). This way, simple yet dynamically faithful phenomenological models for efficient use in network analysis and simulation can be derived from more complex, biophysical models. In contrast to the traditional voltage fitting approach, these models can also capture changes in additional parameters (such as extracellular potassium concentration).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written but identified a number of technical issues that I suggest should be addressed:

      We thank Reviewer 1 for finding our work interesting. We have addressed the technical issues below.

      (1) Neither the acyl chain chemical makeup nor the protonation state of CDL are specified. The acyl chain is likely 18:2/18:2/18:2/18:2, but the choice of the protonation state is not straightforward.

      We thank the Reviewer for highlighting this missing information. We have now added this information in the Materials and Methods section:

      "…were performed in a POPC:POPE:cardiolipin (2:2:1) membrane containing 5 mol% QH<sub>2</sub> / Q (1:1 ratio). Cardiolipin was modeled as tetraoleoyl cardiolipin (18:1/18:1/18:1/18:1) with a headgroup modeled in a singly protonated state (with Q<sub>tot</sub>=-1)."

      (2) The analysis of the bilayer deformation lacks membrane mechanical expertise. Here I am not ridiculing the authors - the presentation is very conservative: they find a deformed bilayer, do not say what the energy is, but rather try a range of energies in their Monte Carlo model - a good strategy for a group that focuses on protein simulations. The bending modulus and area compressibility modulus are part of the standard model for quantifying the energy of a deformed membrane. I suppose in theory these might be computed by looking at the per-lipid distribution in thickness fluctuations, but this route is extremely perilous on a per-molecule basis. Instead, the fluctuation in the projected area of a lipid patch is used to imply the modulus [see Venable et al "Mechanical properties of lipid bilayers from molecular dynamics simulation" 2015 and citations within]. Variations in the local thickness of the membrane imply local variations of the leaflet normal vector (the vector perpendicular to the leaflet surface), which is curvature. With curvature and thickness, the deformation energy is analyzed.

      See:

      Two papers: "Gramicidin A Channel Formation Induces Local Lipid Redistribution" by Olaf Andersen and colleagues. Here the formation of a short peptide dimer is experimentally linked to hydrophobic mismatch. The presence of a short lipid reduces the influence of the mismatch. See below regarding their model cardiolipin, which they claim is shorter than the surrounding lipid matrix.

      Also, see:

      Faraldo-Gomez lab "Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states", 2021. Mondal et al "Membrane Driven Spatial Organization of GPCRs" 2013 and many citations within these papers.

      While I strongly recommend putting the membrane deformation into standard model terms, I believe the authors should retain the basic conservative approach that the membrane is strongly deformed around the proteins and that making the SC reduces the deformation, then exploring the consequences with their discrete model.

      We thank the Reviewer for the suggestions and for pointing out the additional references, which are now cited in the revised manuscript. The analysis is indeed significantly more complex for large multi-million atom supercomplexes in comparison to small peptides (gramicidin A) or model systems of lipid membranes. However, in the revised manuscript, we have conducted further analysis on the membrane curvature effects based on the suggestions. We were able to estimate the energetic contribution of the changes in local membrane thickness and curvature, which are now summarized in Table 1, and described in the main text and SI. We find that both the curvature and local thickness contribute to the increased stability of SC.

      We have now extensively modified the result to differentiate between different components of membrane strain properly:

      "We observe a local decrease in the membrane thickness at the protein-lipid interface (Fig. 2G, Fig S2A,D,E), likely arising from the thinner hydrophobic belt region of the OXPHOS proteins (ca. 30 Å, Fig. S1A) relative to the lipid membrane (40.5 Å, Fig. S1). We further observe ∼30% accumulation of cardiolipin at the thinner hydrophobic belt regions (Fig. 2H, Fig. S2B,F,G), with an inhomogeneous distribution around the OXPHOS complexes. While specific interactions between CDL and protein residues may contribute to this enrichment (Fig. 2N), CDL prefers thermodynamically thinner membranes (∼38 Å, Fig. S1B, Fig. S5F). These changes are further reflected in the reduced end-toend distance of lipid chains in the local membrane belt (see Methods, Fig. S6, cf. also Refs. (41-44). In addition to the perturbations in the local membrane thickness, the OXPHOS proteins also induce a subtle inward curvature towards the protein-lipid interface (Fig. S5G), which could modulate the accessibility of the Q/QH2 substrate into the active sites of CI and CIII<sub>2</sub> (see below, section Discussion). This curvature is accompanied by a distortion of the local membrane plane itself (Fig. 2A-F, Fig. S4AC, Fig. S7), with perpendicular leaflet displacements reaching up to ~2 nm relative to the average leaflet plane.

      To quantify the membrane strain effects, we analyzed the cgMD trajectories by projecting the membrane surface onto a 2-dimensional grid and calculating the local membrane height and thickness at each grid point. From these values, we quantified the local membrane curvature (Fig. S5H), which measures the energetic cost of deforming the membrane from a flat geometry (ΔG<sub>curv</sub>). We also computed the energetics associated with changes in the membrane thickness, assessed from the deviations from an ideal local membrane in the absence of embedded proteins (ΔG<sub>thick</sub>, see Supporting Information, for technical details). Our analysis suggests that both contributions are substantially reduced upon formation of the SC, with the curvature decreasing by 19.8 ± 1.3 kcal mol-1 and the thickness penalty by 2.8 ± 2.0 kcal mol-1 (Table 1). These results indicate a significant thermodynamic advantage for SC formation, as it minimizes lipid deformation and stabilizes the membrane environment surrounding Complex I and III.”

      […]

      “Taken together, the analysis suggests that the OXPHOS complexes affect the mechanical properties of the membranes by inducing a small inwards curvature towards the protein-lipid interface (Fig. S5), resulting in a membrane deformation effect, while the SC formation releases some deformation energy relative to the isolated OXPHOS complexes. The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, is also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      Our Supporting Information section now provides additional information about the membrane curvature.

      (41) R. M. Venable, F. L. H. Brown, R. W. Pastor, Mechanical properties of lipid bilayers from molecular dynamics simulation. Chemistry and Physics of Lipids 192, 60-74 (2015).

      (42) R. Chadda et al., Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states. eLife 10, e63288 (2021).

      (43) S. Mondal et al., Membrane Driven Spatial Organization of GPCRs. Scientific Reports 3, 2909 (2013).

      (44) J. A. Lundbæk, S. A. Collingwood, H. I. Ingólfsson, R. Kapoor, O. S. Andersen, Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of The Royal Society Interface 7, 373-395 (2009).

      We also expanded our SI Method section to account for the new calculations:

      “Analysis of lipid chain end-to-end length

      To probe the protein-induced deformation effect of the membrane, the membrane curvature (H), and the end-to-end distance between the lipid chains, were computed based on aMD and cgMD simulations. The lipid chain length was computed from simulations A1-A6 and C1 based on the first and last carbon atoms of each lipid chain. For example, the end-to-end length of a cardiolipin chain was determined as the distance between atom “CA1” and atom “CA18”.

      “Membrane Curvature and Deformation Energy

      The local mean curvature of the membrane midplane was computed by approximating the membrane surface as a height function Z(x,y), defined as the average location of the N-side and P-side leaflets at each grid point. Based on this, the mean curvature H(x,y) was calculated as,

      where the derivatives are defined as .

      The thickness deformation energy was computed from the local thickness d(x,y) relative to a reference thickness distribution F(d), derived from membrane-only simulations, and converted to a free energy profile via Boltzmann inversion. At each grid point, the F(d) was summed over the grid,

      The bending deformation energy was computed from the mean curvature field H(x,y), assuming a constant bilayer bending modulus κ (taken as 20 kJ mol-1 = 4.78 kcal mol-1):

      where Δ_A_ is the area of the grid cell.

      The thickness and curvature fields were obtained by projecting the coarse-grained MD trajectories (one frame per ns) onto a 2D-grid with a resolution of 0.5 nm. Grid points with low occupancy were downweighted to mitigate noise. More specifically, points with counts below 50% of the median grid count were scaled linearly by their relative count value. To focus the analysis on the region around the protein– membrane interface, only grid points within a radius of 20 nm from the center of the complex were included in the energy calculations. Energies were normalized to an effective membrane area of 1000 nm2 to facilitate the comparison between systems. Bootstrapping with resampling over frames was performed to estimate the standard deviations of G<sub>thick</sub> and G<sub>curv</sub>.

      We find that G<sub>curve</sub> converges slowly due to its sensitivity to local derivatives and the small grid size required to resolve the curvature contribution near the protein. Consequently, tens of microseconds of simulations were necessary to obtain well-converged estimates of the curvature energy.”

      (1) If CDL matches the hydrophobic thickness of the protein it would disrupt SC formation, not favor it. The authors' hypothesis is that the SC stabilizes the deformed membrane around the separated elements. Lipids that are compatible with the monomer deformed region stabilize the monomer, similarly to a surfactant. That is, if CDL prefers the interface because the interface is thin and their CDL is thin, CDL should prevent SC formation. A simpler hypothesis is that CDL's unique electrostatics are part of the glue.

      We rephrased the corresponding paragraph in the Discussion section to reflect the role of electrostatics for the behavior of cardiolipin.

      "…supporting the involvement of CDL as a "SC glue". In this regard, electrostatic effects arising from the negatively charged cardiolipin headgroup could play an important role in the interaction of the OXPHOS complexes."

      Generally our simulations suggest that CDL prefers thinner membranes, which could rationalize these findings.

      "We find that CDL prefers thinner membranes relative to the neutral phospholipids (PE/PC, Fig. S5F),[…]”

      (2) Error bars for lipid and Q* enrichments should be computed averaging over multi-lipid regions of the protein interface, e.g., dividing the protein-lipid interface into six to ten domains, in particular functionally relevant regions. Anionic lipids may have long, >500 ns residence times, which makes lipid enrichment large and characterization of error bars challenging in short simulations. Smaller regions will be noisy. The plots depicted in, for example, Figure S2 are noisy.

      It is indeed challenging to capture lipid movements on the timescales accessible for atomistic MD, and hence the data in Figure S2 contains some noise. In this regard, for the cgMD data presented in the revised Fig. S2H,I, the concentration data was averaged for six domains of the protein-lipid interface.

      (3) The membrane deformation is repeatedly referred to as "entropic" without justification. The bilayer has significant entropic and enthalpic terms just like any biomolecule, why are the authors singling out entropy? The standard "Helfrich" energetic Hamiltonian is a free energy model in that it implicitly integrates over many lipid degrees of freedom.

      We apologize for the unclear message – our intention was not to claim that the effects are purely entropic, but could arise from a combination of both entropic and enthalpic effects. We hope that this has now been better clarified in the revised manuscript. We also agree that it is difficult to separate between entropic and enthalpic effects. However, we wish to point out that, e.g., the temperature-dependence of the SC formation suggests that the entropic contribution is also affecting the process.

      Regarding the Helfrich Hamiltonian, we note that the standard model assumes a homogeneous fluid-like sheet. We have thus difficulties in relating this model to capture the local effects.

      Revisions / clarifications in the main manuscript:

      "SC formation is affected by both enthalpic and entropic effects."

      "We have shown here that the respiratory chain complexes perturb the IMM by affecting the local membrane dynamics. The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) Figure S7 shows the surface area per lipid and leaflet height. This appears to show a result that is central to the interpretation of SC formation but which makes very little sense. One simply does not increase both the height and area of a lipid. This is a change in the lipid volume! The bulk compressibility of most anything is much higher than its Young's modulus [similar to area compressibility]. Instead, something else has happened. My guess is that there is *bilayer* curvature around these proteins and that it has been misinterpreted as area/thickness changes with opposite signs of the two leaflets. If a leaflet gets thin, its area expands. If the manuscript had more details regarding how they computed thickness I could help more. Perhaps they measured the height of a specific atom of the lipid above the average mid-plane normal? The mid-plane of a highly curved membrane would deflect from zero locally and could be misinterpreted as a thickness change.

      We thank the Reviewer for this insightful comment. We chose to define the membrane thickness based on the height of the lipid P-atoms above the average midplane normal. The Reviewer is correct that this measurement gives a changing thickness for a highly curved membrane. However, in this scenario, the thickness would always be overestimated [d<sub>true</sub> = d<sub>measured</sub> / cos (angle between global mid-plane normal and local mid-plane normal)]. Therefore, since we observe a smaller thickness at the protein-lipid interface, the effect is not likely to result from an artifact. For further clarification, see Fig. S4I showing the averaged local position of the Patoms in the cgMD simulations, which further supports that there is a local deformation of the lipid.

      The changes in the local membrane thickness are also supported by our analysis of the membrane thickness (Fig.S2A) and by the lipid chain length distributions (Fig.S6).

      (5) The authors write expertly about how conformational changes are interpreted in terms of function but the language is repeatedly suggestive. Can they put their findings into a more quantitative form with statistical analysis? "The EDA thus suggests that the dynamics of CI and CIII2 are allosterically coupled."

      We extended our analysis on the allosteric effects, which is now described in the revised main text, the SI and the Methods section:

      "In this regard, our graph theoretical analysis (Fig. S11C,D) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (50, 51), and affecting also the motion of UQCRC2 with respect to its surroundings. Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on cryo-EM analysis (40)."

      “Extended Methods

      Allosteric Network Analysis. Interactions between amino acid residues were modeled as an interaction graph, where each residue was represented by a vertex. Two nodes were connected by an edge, if the Ca atoms of the corresponding amino acid residues were closer than 7.5 Å for more than 50% of the frames of simulations S1-S6 (time step of frames: 1 ns). (7) This analysis was carried out for the aMD simulations of the supercomplex, analyzing differences between the Q bound and apo states (simulations A1+A2+A3 vs. A4+A5+A6).”

      (6) The authors write "We find that an increase in the lipid tail length decreases the relative stability of the SC (Figure S5C)" This is a critical point but I could not interpret Figure S5C consistently with this sentence. Can the authors explain this?

      We apologize for this oversight. This sentence should refer to Fig. S5F, which has now been corrected. We have additionally updated the figure to provide an improved estimation of the thickness contribution based on the lipid tail length.

      "We find that an increase in the lipid tail length decreases the relative stability of the SC (Fig. S5F)"

      (7) The authors use a 6x6 and 15x15 lattice to analyze SC formation. The SC assembly has 6 units of E_strain favoring its assembly, which they take up to 4 kT. At 3 kT, the SC should be favored by 18 kT, or a Boltzmann factor of 10^8. With only 225 sites, specific and non-specific complex formation should be robust. Can the authors please check their numbers or provide a qualitative guide to the data that would make clear what I'm missing?

      In the revised manuscript, we have now clarified the definition of the lattice model and the respective energies:

      In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results) ... but confusing in terms of the non-standard presentation of membrane mechanics and the difficulty of this reviewer to interpret some of the underlying figures: especially, the thickness of the leaflets around the protein and the relative thickness of cardiolipin. Resolving the quantitative interpretation of the bilayer deformation would greatly enhance the significance of their Monte Carlo model of SC formation.

      We thank the Reviewer for the helpful suggestion. We hope that the revisions help to clarify the non-standard presentation and connect to concepts used in the lipid membrane community.

      Reviewer #2 (Public review):

      Summary:

      The authors have used large-scale atomistic and coarse-grained molecular dynamics simulations on the respiratory chain complex and investigated the effect of the complex on the inner mitochondrial membrane. They have also used a simple phenomenological model to establish that the super complex (SC) assembly and stabilisation are driven by the interplay between the "entropic" forces due to strain energy and the enthalpies forces (specific and non-specific) between lipid and protein domains. The authors also show that the SC in the membrane leads to thinning and there is preferential localisation of certain lipids (Cardiolipin) in the annular region of the complex. The data reports that the SC assembly has an effect on the conformational dynamics of individual proteins making up the assembled complex and they undergo "allosteric crosstalk" to maintain the stable functional complex. From their conformational analyses of the proteins (individual and while in the complex) and membrane "structural" properties (such as thinning/lateral organization etc) as well from the out of their phenomenological lattice model, the authors have provided possible implications and molecular origin about the function of the complex in terms of aspects such as charge currents in internal mitochondrion membrane, proton transport activity and ATP synthesis.

      Strengths:

      The work is bold in terms of undertaking modelling and simulation of such a large complex that requires simulations of about a million atoms for long time scales. This requires technical acumen and resources. Also, the effort to make connections to experimental readouts has to be appreciated (though it is difficult to connect functional pathways with limited (additive forcefield) simulations.

      We thank the Reviewer for recognizing the challenge in simulating multimillion atom membrane proteins. We also thank the Reviewer for recognizing the connections we have made to different experiments. Our work indeed relies on atomistic and coarse-grained molecular simulations, which are widely recognized to provide accurate models of membrane proteins.

      Weakness:

      There are several weaknesses in the paper (please see the list below). Claims such as "entropic effect", "membrane strain energy" and "allosteric cross talks" are not properly supported by evidence and seem far-fetched at times. There are other weaknesses as well. Please see the list below.

      We thank the Reviewer for pointing out that key concepts needed further clarification. Please see answers to specific questions below:

      (i) Membrane "strain energy" has been loosely used and no effort is made to explain what the authors mean by the term and how they would quantify it. If the membrane is simulated in stress-free conditions, where are strains building up from?

      We thank the Reviewer for this important question. In the revised manuscript, we have toned down the assignment of the effects into pure entropic or enthalpic effects. We have also provided further clarification of the effects observed in the membrane.

      Example of revisions / clarifications in the main text:

      "SC formation is affected by both enthalpic and entropic effects."

      "We have shown here that the respiratory chain complexes perturb the IMM by affecting the local membrane dynamics. The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex, also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      We have also revised the result section, where we now have explicitly defined and clarified the different contributions to membrane strain, observed in our simulations:

      In the following, we define membrane strain as the local perturbations of the lipid bilayer induced by protein-membrane interactions. These include changes in (i) membrane thickness, (ii) the local membrane composition, (iii) lipid chain configurations, and (iv) local curvature of the membrane plane relative to an undisturbed, protein-free bilayer. Together, these phenomena reflect the thermodynamic effects associated with accommodating large protein complexes within the membrane.

      We now also provide a more quantitative estimation of the membrane strain based on the contribution of changes in local thickness and curvature, summarize in Table 1.

      (ii) In result #1 (Protein membrane interaction modulates the lipid dynamics ....), I strongly feel that the readouts from simulations are overinterpreted. Membrane lateral organization in terms of lipids having preferential localisation is not new (see doi: 10.1021/acscentsci.8b00143) nor membrane thinning and implications to function (https://doi.org/10.1091/mbc.E20-12-0794). The distortions that are visible could be due to a mismatch in the number of lipids that need to be there between the upper and lower leaflets after the protein complex is incorporated. Also, the physiological membrane will have several chemically different lipids that will minimise such distortions as well as would be asymmetric across the leaflets - none of which has been considered. Connecting chain length to strain energy is also not well supported - are the authors trying to correlate membrane order (Lo vs Ld) with strain energy?

      We thank the Reviewer for the suggestions. The role of the membrane in driving supercomplex formation has not, to our knowledge, been suggested before. There are certainly many important studies, which have been better highlighted in the revised manuscript. In this context, we also now cite the papers Srivastava & coworkers and Tielemann & coworkers.

      “The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, are also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      (45) V. Corradi et al., Lipid–Protein Interactions Are Unique Fingerprints for Membrane Proteins. ACS Central Science 4 (June 13, 2018).

      (46) K. Baratam, K. Jha, A. Srivastava, Flexible pivoting of dynamin pleckstrin homology domain catalyzes fission: insights into molecular degrees of freedom. Molecular Biology of the Cell 32 (2021 Jul 1).

      Physiological membrane will have several chemically different lipids that will minimise such distortions as well as would be asymmetric across the leaflets

      We agree with this point. As shown in Figs. 2H,N, S6, S13, we suggest that cardiolipin functions as a buffer molecule. However, very little is experimentally known about the asymmetric distribution of lipids in the IMM. Therefore, modelling the effect of asymmetry across the left is outside the scope of this study. Moreover, as now better clarified in the revised manuscript, we agree that it is difficult to unambiguously divide the effect into enthalpic and entropic contributions.

      To address the main concern of the Reviewer, we have updated the main text and Supporting Information to clearly state the different aspects of how the proteinmembrane interactions induce perturbations of the lipid bilayer. We define these effects as membrane strain. We now use the changes in local thickness and local curvature to quantify the effect of membrane strain on the stability of the respiratory SC.

      (iii) Entropic effect: What is the evidence towards the entropic effect? If strain energy is entropic, the authors first need to establish that. They discuss enthalpy-entropy compensation but there is no clear data or evidence to support that argument. The lipids will rearrange themselves or have a preference to be close to certain regions of the protein and that generally arises because of enthalpies reasons (see the body of work done by Carol Robinson with Mass Spec where certain lipids prefer proteins in the GAS phase, certainly there is no entropy at play there). I find the claims of entropic effects very unconvincing.

      We agree that it is difficult to distinguish the entropic vs. enthalpic contributions. In the revised manuscript, we better clarify that both effects are likely to be involved.

      The native MS work by Robinson and coworkers and others support that many lipids are strongly bound to membrane proteins, as also supported by the local binding of certain lipid molecules, such as CDL to the SC (Figs. S2, S6, S13).

      We suggest that the accumulation of cardiolipin at the protein-lipid interface involves a combination of entropic and enthalpic effects, arising from the reduction of the lipid mobility (entropy) as indicated by lowered diffusion (Fig. S9), and formation of noncovalent bonds between the lipid and the OXPHOS protein (Fig. S14).

      We added further clarification to the Discussion section.

      “Taken together, our combined findings suggest that the SC formation is affected by thermodynamic effects that reduce the molecular strain in the lipid membrane, whilst the perturbed micro-environment also affects the lipid and Q dynamics, as well as the dynamics of the OXPHOS proteins (see below).”

      (iv) The changes in conformations dynamics are subtle as reported by the authors and the allosteric arguments are made based on normal mode analyses. In the complex, there are large overlapping regions between the CI, CIII2, and SCI/III2. I am not sure how the allosteric crosstalk claim is established in this work - some more analyses and data would be useful. Normal mode analyses (EDA) suggest that the motions are coupled and correlated - I am not convinced that it suggests that there is allosteric cross-talk.

      Our analysis suggests that the SC changes the dynamics of the system. Although it is difficult to assign how these effects result in activity modulation of the system, we note these changes relate to sites that are central for the charge transfer reactions. We thank the Reviewer for suggesting to extend the analysis, which further suggests that regions of the proteins could be allosterically coupled.

      (v) The lattice model should be described better and the rationale for choosing the equation needs to be established. Specific interactions look unfavourable in the equation as compared to non-specific interactions.

      We have now provided further clarification of the lattice model in the Methods section. Addition to the main text:

      “Lattice model of SC formation. A lattice model of the CI and CIII<sub>2</sub> was constructed (Fig. 4A,B) by modeling the OXPHOS proteins in unique grid positions on a 2D N×N lattice. Depending on the relative orientation, the protein-protein interaction was described by specific interactions (giving rise to the energetic contribution E<sub>specific</sub> < 0) and non-specific interactions (E<sub>non-specific</sub> > 0). The membrane-protein interaction determined the strain energy of the membrane (E<sub>strain</sub>), based on the number of neighboring "lipid" occupied grids that are in contact with proteins (Fig. 4A). The interaction between the lipids was indirectly accounted for by the background energy of the model. The proteins could occupy four unique orientations on a grid ([North, East, South, West]). The states and their respective energies that the system can visit are summarized in Table S6.”

      “The conformational landscape was sampled by Monte Carlo (MC) using 10<sup>7</sup> MC iterations with 100 replicas. Temperature effects were modeled by varying β, and the effect of different protein-to-lipid ratios by increasing the grid area. The simulation details can be found in Table S7.”

      Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained, and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. Overall, the study is rather thorough and highly creative, and the impact on the field is expected to be significant.

      Weaknesses:

      In general, I don't think the work contains any obvious weaknesses, although I was left with some questions.

      We thank the Reviewer for acknowledging that our work is thorough and creative, and that it is likely to have a significant impact on the field.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Diffusion is quantified in speed units (Figure S8). The authors should explain why they have used an apparently incorrect model for quantifying diffusion. The variance of the distribution of a diffusing molecule is linear with time, not its standard deviation (as I suppose I would use for computing effective molecular speed). Perhaps they are quantifying residence times, in which molecules near a wall (protein) will appear to have half the movements of a bulk molecule. This is confusing.

      We thank the Reviewer for the comment. The data shown in previous version of Figure S8 corresponded to the effective molecular velocity, which is now clarified in the revised figure (now Fig. S9). This measure was used to reflect the average residence time of the groups in the vicinity of the sites.

      However, as suggested by the Reviewer, we now also analyzed the positiondependent diffusion of the quinone in the new Figure S9:

      (2) With a highly charged bilayer a large water layer is necessary to verify that the concentration of salt is plateauing at 150 mM at the box edge. 45 A appears to be the default in CHARMM-GUI, but this default guidance is not based on the charge of the bilayer. I suggest the authors plot the average concentration of both anions and cations in mM units along the z coordinate of the simulation cell.

      We thank the Reviewer for the suggestion. We have now provided an analysis of the average ion concentrations along the z coordinate, supporting that the salt concentration plateaus at 150 mM at the box edge.

      Typos:

      SI: "POPC/POPE or CLD" should be CDL

      We apologize for the mistake. We have corrected the typos:

      "of the membrane thickness in a POPC/POPE/CDL/QH2 membrane and a CDL membrane."

      "a pure CDL membrane"

      Reviewer #2 (Recommendations for the authors):

      (1) Suggestion regarding membrane strain energy claims:

      Changes in area per lipid and membrane thinning are surely not akin to membrane strain energy changes. At best, the authors should calculate the area compressibility (both in bilayers with and without proteins) and then make comments. In general, if they are talking about the in-plane properties (bilayer being liquid in 2D), I do not see how they can discuss membrane strain energy with NPT=1 atms barostat reservoir that they are simulating against. At least they can try to plot the membrane lateral pressures in various conditions and then start making such comments. If it was a closed vesicle, I would expect some tension in the membrane due to the closed surface but in the conditions in which the simulations are run, I do not see how strain is so important. If the authors want to be more rigorous, they can calculate "atomic viral" values by doing a tessellation and showing the data to make their point. Strain energy would mean that there is a modulus in-plane. Bending modulus would surely change with membrane thinning and area compressibility changes (simple plate theory) but linear strain is surely something to be defined well before making claims out of it.

      Our work shows that the OXPHOS proteins alter the local membrane thickness and curvature, and we now quantify the deformation penalty associated with that (Table 1). As stated above, we now provide a better definition and description 'membrane strain’ and the observed effect, which is likely to contain both enthalpic and entropic contributions.

      As suggested by the Reviewer, we have computed the lateral pressure profiles around the OXPHOS proteins, further supporting that there are energetic effects related to the "solvation" of the membrane proteins in the IMM. To this end, Figs. S2D,E; Figure S4I and Fig. S5G,H shows the membrane distortion effect; while in Fig. S5A supports that there the 'internal energy' of the lipids changes as result of the SC formation, further justifying that these effects can be assigned as 'strain effects'. The analysis has also been extended by computing the end-to-end distances, shown in Fig. S6.

      Unfortunately, it is technically unfeasible to accurately estimate the area compressibility, bending modulus, or the atomic virial for the present multi-million membrane protein simulations.

      Summary of Revisions/Additions:

      Fig. S2 [...] (D, E) Difference in the membrane thickness around the SC relative to CI (left) or relative to CIII<sub>2</sub> (right) from (D) aMD and (E) cgMD.

      Fig. S4. [...] (I) Visualization of the membrane distortion effect.

      Fig. S5. Analysis of membrane-induced distortion effects. (A) Relative strain effect relative to a lipid membrane from atomistic MD simulations of the SCI/III2, CI, and CIII<sub>2</sub>, suggesting reduction of the membrane strain (blue patches) in the SC surroundings. The figure shows the non-bonded energies relative to the average non-bonded energies from membrane simulations (simulation M4, Table S1). (B) The lipid strain contribution for different lipids calculated from non-bonded interaction energies of the lipids relative to the average lipid interaction in a IMM membrane model (simulation M4). The figure shows the relative strain contribution for nearby lipids (r < 2 Å, in color from panel (C), and lipids >5 Å from the OXPHOS proteins. (C) Selection of lipids (< 2 Å) interacting with the OXPHOS proteins. (D) Potential of mean force (PMF) of membrane thickness derived from thickness distributions from cgMD simulations of a membrane, the SCI/III2, CI, and CIII<sub>2</sub>. (E) Membrane thickness as a function of CDL concentration from cgMD simulations. (F) ΔGthick of the SC as a function of membrane thickness based on cgMD simulations. (G) Membrane curvature around the SCI/III2 (left), CI (middle), and CIII<sub>2</sub> (right) from atomistic simulations. (H) Squared membrane curvature obtained from cgMD simulations, within a 20 nm radius around the center of the system. These maps correspond to the curvature field used in the calculation of the bending deformation energy term (G<sub>curv</sub>).

      Fig. S6. Analysis of lipid end-to-end distance from aMD simulations of (A) SC, (B) CI, (C) CIII<sub>2</sub>.

      (2) Membrane distortions:

      Membrane distortions can arise due to a mismatch in the area between the upper leaflet and the lower left especially when a protein is embedded. Authors can carefully choose the numbers to keep the membrane stable.

      We have further clarified in the revised manuscript that the membranes are stable in all simulation setups. During building the simulation setups, it was carefully considered that no leaflet introduced higher lipid densities that could result in artificial displacements. Our results of the local changes in the lipid dynamics and structure around the OXPHOS complexes are independently supported by both our atomistic and coarse-grained simulations, which contain significantly larger membranes. Moreover, as discussed in our work, the local membrane distortion is also experimentally supported by cryoEM analysis as well as recent in situ cryoTEM data, showing that the OXPHOS proteins indeed affect the local membrane properties.

      Clarifications/Additions to the main text:

      “We find that the individual OXPHOS complexes, CI and CIII<sub>2</sub>, induce pronounced membrane strain effects, supported both by our aMD (Fig. S2A) and cgMD simulations with a large surrounding membrane (Fig. 2G).“

      ” The localization of specific lipids around the membrane proteins, as well as local membrane perturbation effects, are also supported by simulations of other membrane proteins (45, 46), suggesting that the effects could arise from general protein-membrane interactions.”

      "During construction of the simulation setups, it was carefully considered that no leaflet introduced higher lipid densities that could result in artificial displacement effects."

      (3) Strain energy as an entropic effect:

      Please establish that the strain energy (if at all present) can be called an entropic effect.

      We have now better clarified that the SC formation results from combined enthalpic and entropic effects. We apologize that the previous version of the text was unclear in this respect.

      To further probe the involvement of entropic effects, we derived entropic and enthalpic contributions from our lattice model. The model supports that increased strain contributions also alters the entropic contributions, further supporting the coupling between the effects.

      We have also clarified our definition of the effects:

      " The perturbed thickness and alteration in the lipid dynamics leads to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex, also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) Allosteric cross-talk:

      A thorough network analysis (looking at aspects like graph laplacian, edge weights, eigenvector centrality, changes in characteristic path length, etc can be undertaken to establish allostery (see https://doi.org/10.1093/glycob/cwad094, Ruth Nussinov/Ivet Bahar papers).

      We have expanded the network analysis as suggested by the Reviewer. In this regard, we have expanded the analysis by computing the covariance matrix, further supporting that the SC could involve correlated protein dynamics. We observe a prominent change especially with respect to the ligand state of Complex I, indicative of some degree of allostery, while we find that the apo state of Complex I leads to a slight uncoupling of the motion between CI and CIII<sub>2</sub>.

      Additions in the main text:

      In this regard, our graph theoretical analysis (Fig. S11) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (48, 49), and affecting also the motion of UQCRC2 with respect to its surroundings_._ Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on the cryoEM analysis.

      (5) Lattice model:

      The equation needs to be rationalised. For example, specific interaction (g_i g_j favours separation (lower energy when i and j are not next to each other), and nonspecific interaction favours proximity. Why is that? Also, the notation for degeneracy in partition function and the notation for lattice point. It is mentioned that the "interaction between the lipids was indirectly accounted for by the "background energy" of the model". If the packing/thinning etc are so important to the molecular simulations, will not the background energy change with changing lipid organising during complex formation?

      We have further expanded the technical discussion of the energy terms in our lattice model.

      For example, specific interaction (g_i g_j favours separation (lower energy when i and j are not next to each other), and non-specific interaction favours proximity. Why is that

      "The g<sub>i</sub>g<sub>j</sub> -term assigns a specific energy contribution when the OXPHOS complexes are in adjacent lattice points only in a correct orientation (modeling a specific non-covalent interaction between the complexes such as the Arg29<sup>FB4</sup>-Asp260<sup>C1</sup>/Glu259<sup>C1</sup> interaction between CI and CIII<sub>2</sub>). The d<sub>i</sub>d<sub>j</sub> -term assigns a non-specific interaction for the OXPHOS complexes when they are in adjacent lattice points, but in a "wrong" orientation relative to each other to form a specific interaction. The term introduces a strain into all lattice points surrounding an OXPHOS complex, mimicking the local membrane perturbation effects observed in our molecular simulations.

      This leads to the partition function,

      where wi is the degeneracy of the state, modeling that the SC and OXPHOS proteins can reside at any lattice position of the membrane, and where β=1/k<sub>B</sub>T (k<sub>B</sub>, Boltzmann's constant; T, temperature). The probability of a given state i was calculated as,

      with the free energy (G) defined as,

      This discussion has been included in the methods sections to ensure that our work remains readable for the biological community studying supercomplexes from a biochemical, metabolic, and physiological perspectives.

      (6) This is a minor issue but the paper is poorly organised and can be fixed readily. The figures are not referenced in order. For example, Figure 2G is discussed before discussing Figures 2A-2F (never discussed). Figure S2 is referenced before Figure S1.

      Answer: We thank the Reviewer for pointing this out. The order of the figures was revised.

      Reviewer #3 (Recommendations for the authors):

      A few minor questions/suggestions, not necessarily in the order of importance:

      (1) The discussion of the timescale of simulations is a bit misleading. For example, the discussion cites a timescale of 0.3 ms of CG simulations. The value is actually the sum of multiple CG simulations on the order of 50-75 microseconds. These are already very impressive lengths of CG simulations, there is no need to use the aggregated time to claim even longer time scales.

      We thank the Reviewer for the suggestion on this important clarification. We have now modified the text and tables accordingly:

      "(0.3 ms in cumulative simulation time, 50-75 μs/cgMD simulation)"

      (2) The observation of cardiolipin (CDL) accumulation is interesting. How close are the head groups, relative to the electrostatic screening length at the interface? Should one worry about the potential change of protonation state coupled with the CDL redistribution?

      Answer: We thank the Reviewer for this excellent comment, which has also been on our mind. The CDL indeed form contacts with various functional groups at the protein interface (as shown in Fig. S13), as well as bulk ions (sodium) that could tune the p_K_a of the CDLs, and result in a protonation change. We have clarified these effects in the revised manuscript:

      "While CDL was modeled here in the singly anionic charged state (but cf. Fig. S5E), we note that the local electrostatic environment could tune their p_K_a that result in protonation changes of the lipid, consistent with its function as a proton collecting antenna (62)."

      (3) The authors refer to the membrane strain effect as entropic. Since membrane bending implicates a free energy change that includes both enthalpic and entropic components, I wonder how the authors reached the conclusion that the effect is largely entropic in nature.

      We agree with the Reviewer that the effects are likely to comprise both enthalpic and entropic contributions, which are difficult to separate in practice. To reflect this, we have now better clarified why we consider that both contributions are involved. We apologize that our previous version of the manuscript was unclear in this respect. Clarifications in the main text:

      “The perturbed thickness and alteration in the lipid dynamics lead to an energetic penalty, which can be related to molecular strain effects, as suggested by the changes of both the internal energy of lipid and their interaction with the surroundings (Fig. S2, S5, S6), which are likely to be of enthalpic origin. However, lipid binding to the OXPHOS complex also results in a reduction in the translational and rotational motion of the lipids and quinone (Fig. S8-S9), which could result in entropic changes. The strain effects are therefore likely to arise from a combination of enthalpic and entropic effects."

      (4) The authors refer to the computed dielectric constant as epsilon_perpendicular. Did the authors really distinguish the parallel and perpendicular component of the dielectric tensor, as was done by, for example, R. Netz and co-workers for planar surfaces?

      We have extracted the perpendicular dielectric constant from the total dielectric profiles. We clarify that this differs from the formal definition of by Netz and coworkers.

      “The calculations were performed by averaging the total M over fixed z values from the membrane plane. Note that this treatment differs from extraction of radial and axial contributions of the dielectric tensor, as developed by Netz and co-workers (cf. Ref. (3) and refs therein) that requires a more elaborate treatment, which is outside the scope of the present work.”

      (3) P. Loche, C. Ayaz, A. Schlaich, Y. Uematsu, R.R. Netz. Giant Axial Dielectric Response in Water-Filled Nanotubes and Effective Electrostatic Ion-Ion Interactions from a Tensorial Dielectric Model. J Phys Chem B 123, 10850-10857 (2019).

      (5) Regarding the effect of SC formation on protein structure and dynamics, especially allosteric effects, most of the discussions are rather qualitative in nature. More quantitative analysis would be valuable. For example, the authors did compute covariance matrix although it appears that they chose not to discuss the results in depth. Is the convergence of concern and therefore no thorough discussion is given?

      We have now expanded the analysis by computing the covariance matrix, further supporting that the SC could involve correlated protein dynamics. We observe a prominent change, especially with respect to the ligand state of Complex I, indicative of some degree of allostery, while we find that the apo state of Complex I leads to a slight uncoupling of the motion between CI and CIII<sub>2</sub>.

      Additions in the main text:

      “In this regard, our graph theoretical analysis (Fig. S11) further indicates that ligand binding to Complex I induces a dynamic crosstalk between NDUFA5 and NDUFA10, consistent with previous work (48, 49), and affecting also the motion of UQCRC2 with respect to its surroundings. Taken together, these effects suggest that the dynamics of CI and CIII<sub>2</sub> show some correlation that could result in allosteric effects, as also indicated based on the cryoEM analysis (40).”

      (6) The discussion of quinone diffusion is interesting, although I'm a bit intrigued by the unit of the diffusion constant cited in the discussion. Perhaps a simple typo?

      The plot showed the molecular velocity, which roughly corresponding to the residence times. However, as suggested by the Reviewer, we now also analyzed the position-dependent diffusion of the quinone in the new Figure S9:

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      This manuscript investigated the mechanism underlying boundary formation necessary for proper separation of vestibular sensory end organs. In both chick and mouse embryos, it was shown that a population of cells abutting the sensory (marked by high Sox2 expression) /nonsensory cell populations (marked by Lmx1a expression) undergo apical expansion, elongation, alignment and basal constriction to separate the lateral crista (LC) from the utricle. Using Lmx1a mouse mutant, organ cultures, pharmacological and viral-mediated Rock inhibition, it was demonstrated that the Lmx1a transcription factor and Rock-mediated actomyosin contractility is required for boundary formation and LC-utricle separation.

      Strengths:

      Overall, the morphometric analyses were done rigorously and revealed novel boundary cell behaviors. The requirement of Lmx1a and Rock activity in boundary formation was convincingly demonstrated.

      Weaknesses:

      However, the precise roles of Lmx1a and Rock in regulating cell behaviors during boundary formation were not clearly fleshed out. For example, phenotypic analysis of Lmx1a was rather cursory; it is unclear how Lmx1a, expressed in half of the boundary domain, control boundary cell behaviors and prevent cell mixing between Lmx1a+ and Lmx1a- compartments? Well-established mechanisms and molecules for boundary formation were not investigated (e.g. differential adhesion via cadherins, cell repulsion via ephrin-Eph signaling). Moreover, within the boundary domain, it is unclear whether apical multicellular rosettes and basal constrictions are drivers of boundary formation, as boundary can still form when these cell behaviors were inhibited. Involvement of other cell behaviors, such as radial cell intercalation and oriented cell division, also warrant consideration. With these lingering questions, the mechanistic advance of the present study is somewhat incremental.

      We have acknowledged the lingering questions this referee points out in our Discussion and agree that the roles of differential cell adhesion and cell intercalation would be worth exploring in further studies. Despite these remaining questions, the conceptual advances are significant, since this study provides the first evidence that a tissue boundary forms in between segregating sensory organs in the inner ear (there are only a handful of embryonic tissues in which a tissue boundary has been found in vertebrates) and highlights the evolutionary conservation of this process. This work also provides a strong descriptive basis for any future study investigating the mechanisms of tissue boundary formation in the mouse and chicken embryonic inner ear. 

      Reviewer #2 (Public review):

      Summary:

      Chen et al. describe the mechanisms that separate the common pan-sensory progenitor region into individual sensory patches, which presage the formation of the sensory epithelium in each of the inner ear organs. By focusing on the separation of the anterior and then lateral cristae, they find that long supra-cellular cables form at the interface of the pansensory domain and the forming cristae. They find that at these interfaces, the cells have a larger apical surface area, due to basal constriction, and Sox2 is down-regulated. Through analysis of Lmx1 mutants, the authors suggest that while Lmx1 is necessary for the complete segregation of the sensory organs, it is likely not necessary for the initial boundary formation, and the down-regulation of Sox2.

      Strengths:

      The manuscript adds to our knowledge and provides valuable mechanistic insight into sensory organ segregation. Of particular interest are the cell biological mechanisms: The authors show that contractility directed by ROCK is important for the maintenance of the boundary and segregation of sensory organs.

      Weaknesses:

      The manuscript would benefit from a more in-depth look at contractility - the current images of PMLC are not too convincing. Can the authors look at p or ppMLC expression in an apical view? Are they expressed in the boundary along the actin cables? Does Y-27362 inhibit this expression?

      The authors suggest that one role for ROCK is the basal constriction. I was a little confused about basal constriction. Are these the initial steps in the thinning of the intervening nonsensory regions between the sensory organs? What happens to the basally constricted cells as this process continues?

      In our hands, the PMLC immunostaining gave a punctate staining in epithelial cells and was difficult to image and interpret in whole-mount preparations, which did not allow us to investigate its specific association to the actin-cable-like structures. It is a very valuable suggestion to try alternative methods of fixation to improve the quality of the staining and images in future work. 

      The basal constriction of the cells at the border of the sensory organs was not always clearly visible in freshly-fixed samples, and was absent in the majority of short-term organotypic cultures in control medium, which made it impossible to ascertain the role of ROCK in its formation using pharmacological approaches in vitro (see Figure 7 and corresponding Result section).  On the other hand, the overexpression of a dominant-negative form of ROCK (RCII-GFP) in ovo using RCAS revealed a persistence of basal constriction in transfected cells despite a disorganisation of the boundary domain (Figure 8). We conclude from these experiments that ROCK activity is not necessary for the formation and maintenance of the basal constriction. We also remain uncertain about the exact role of this basal constriction. It could be either a cause or consequence of the expansion of the apical surface of cells in the boundary domain, it could contribute to the limitation of cell intermingling and the formation of the actin-cable-like structure at the interface of Lmx1a-expressing and non-expressing cells, and may indeed prefigure some of the further changes in cell morphology occurring in non-sensory domains separating the sensory organs (cell flattening and constrictions of the epithelial walls in between sensory organs). 

      The steps the authors explore happen after boundaries are established. This correlates with a down-regulation of Sox2, and the formation of a boundary. What is known about the expression of molecules that may underlie the apparent interfacial tension at the boundaries? Is there any evidence for differential adhesion or for Eph-Ephrin signalling? Is there a role for Notch signalling or a role for Jag1 as detailed in the group's 2017 paper?

      Great questions. It is indeed likely that some form of differential cell tension and/or adhesion participates to the formation and maintenance of this boundary, and we have mentioned in the discussion some of the usual suspects (cadherins, eph/ephrin signalling,…) although it is beyond the scope of this paper to determine their roles in this context. 

      As we have discussed in this paper and in our 2017 study (see also Ma and Zhang, Development,  2015 Feb 15;142(4):763-73. doi: 10.1242/dev.113662) we believe that Notch signalling is maintaining prosensory character, and its down-regulation by Lmx1a/b expression is required for the specification of the non-sensory domains in between segregating sensory organs. Although we have not tested this directly in this study, any disruption in Notch signalling would be expected to affect indirectly the formation or maintenance of the boundary domain. 

      A comment on whether cellular intercalation/rearrangements may underlie some of the observed tissue changes.

      We have not addressed this topic directly in the present study but we have included a brief comment on the potential implication of cellular intercalation and rearrangements in the discussion: “It is also possible that the repositioning of cells through medial intercalation could contribute to the straightening of the boundary as well as the widening of the nonsensory territories in between sensory patches.”

      The change in the long axis appears to correlate with the expression of Lmx1a (Fig 5d). The authors could discuss this more. Are these changes associated with altered PCP/Vangl2 expression?

      We are not sure about the first point raised by the referee. We have quantified cell elongation and orientation in Lmx1a-GFP heterozygous and homozygous (null) mice, and our results suggest that the elongation of the cells occurs throughout the boundary domain, and is probably not dependent on Lmx1a expression (boundary cells are in fact more elongated in the Lmx1a mutant).  We have not investigated the expression of components of the planar cell polarity pathway. This is a very interesting suggestion, worth exploring in further studies.

      Reviewer #3 (Public review):

      Summary:

      Lmx1a is an orthologue of apterous in flies, which is important for dorsal-ventral border formation in the wing disc. Previously, this research group has described the importance of the chicken Lmx1b in establishing the boundary between sensory and non-sensory domains in the chicken inner ear. Here, the authors described a series of cellular changes during border formation in the chicken inner ear, including alignment of cells at the apical border and concomitant constriction basally. The authors extended these observations to the mouse inner ear and showed that these morphological changes occurred at the border of Lmx1a positive and negative regions, and these changes failed to develop in Lmx1a mutants. Furthermore, the authors demonstrated that the ROCK-dependent actomyosin contractility is important for this border formation and blocking ROCK function affected epithelial basal constriction and border formation in both in vitro and in vivo systems.

      Strengths:

      The morphological changes described during border formation in the developing inner ear are interesting. Linking these changes to the function of Lmx1a and ROCK dependent actomyosin contractile function are provocative.

      Weaknesses:

      There are several outstanding issues that need to be clarified before one could pin the morphological changes observed being causal to border formation and that Lmx1a and ROCK are involved.

      We have addressed the specific comments and suggestions of the reviewer below. We wish however to point out that we do not think that ROCK activity is required for the formation or maintenance of the basal constriction at the interface of Lmx1a-expressing and nonexpressing cells (see previous answer to referee #2)

      Reviewer #1 (Recommendations for the authors):

      Specific comments:

      (1) Figures 1 and 2, and related text. Based on the whole-mount images shown, the anterior otocyst appeared to be a stratified epithelium with multiple cell layers. If so, it should be clarified whether the x-y view of in the "apical" and "basal" plane are from cells residing in the apical and basal layers, respectively. Moreover, it would be helpful to include a "stage 4", a later stage to show if and when basal constrictions resolve.

      In fact, at these early stages of development, the otic epithelium is “pseudostratified”: it is formed by a single layer of irregularly shaped cells, each extending from the base to the apical aspect of the epithelium, but with their nuclei residing at distinct positions along this basal-apical axis as mitotic cells progress through the cell cycle.  The nuclei divide at the surface of the epithelium, then move back to the most basal planes within daughter cells during interphase. This process, known as interkinetic nuclear migration, has been well described in the embryonic neural tube and occurs throughout the developing otic epithelium (e.g. Orr, Dev Biol. 1975, 47,325-340, Ohta et al., Dev Biol. 2010 Sep 15;347(2):369–381. doi: 10.1016/j.ydbio.2010.09.002; ). Consequently, the nuclei visible in apical or basal planes in x-y views belong to cells extending from the base to the apex of the epithelium, but which are at different stages of the cell cycle. 

      We have not included a late stage of sensory organ segregation in this study (apart from a P0 stage in the mouse inner ear, see Figure 4) since data about later stages of sensory organ morphogenesis are available in other studies, including our Mann et al. eLife 2017 paper describing Lmx1a-GFP expression in the embryonic mouse inner ear.

      (2) Related to above, the observed changes in cell organization raised the possibility that the apical multicellular rosettes and basal constrictions observed in Stage 3 (and 2) could be intermediates of radial cell intercalations, which would lead to expansion of the space between sensory organs and thinning of the boundary domains. To see if it might be happening, it would be helpful to include DAPI staining to show the overall tissue architecture at different stages and use optical reconstruction to assess the thickness of the epithelium in the presumptive boundary domain over time.

      We agree with this referee. Besides cell addition by proliferation and/or changes in cell morphology, radial cell intercalations could indeed contribute to the spatial segregation of inner ear sensory organs (a brief statement on this possibility was added to the Discussion). It is clear from images shown in Figure 4 (and from other studies) that the non-sensory domain separating the cristae from the utricle gets flatter and its cells also enlarge as development proceeds. We do not think that DAPI staining is required to demonstrate this. Perhaps the best way to show that radial cell intercalations occur would be to perform liveimaging of the otic epithelium, but this is technically challenging in the mouse or chicken inner ear. An alternative model system might be the zebrafish inner ear, in which some liveimaging data have shown a progressive down-regulation of Jag1 expression during sensory organ segregation (and a flattening of “boundary domains”), suggesting a conservation of the basic mechanisms at play (Ma and Zhang, Development,  2015 Feb 15;142(4):763-73. doi: 10.1242/dev.113662).

      (3) Similarly, it would be helpful to include the DAPI counterstain in Figures 4, 7, and 8 to show the overall tissue architecture.

      We do not have DAPI staining for these particular images but in most cases, Sox2 immunostaining gives a decent indication of tissue morphology. 

      (4) Figure 2(z) and Figure 4d. The arrows pointing at the basal constrictions are obstructing the view of the basement membrane area, making it difficult to appreciate the morphological changes. They should be moved to the side. Can the authors comment whether they saw evidence for radial intercalations (e.g. thinning of the boundary domain) or partial unzippering of adjoining compartments along the basal constrictions?

      The arrows in Figure 2(z) and Figure 4d have been moved to the side of the panels. 

      See previous comment. Besides the presence of multicellular rosettes, we have not seen direct evidence of radial cell intercalation – this would be best investigated using liveimaging. As development proceeds, the epithelial domain separating adjoining sensory organs becomes wider. The cells that compose it gradually enlarge and flatten, as can be seen for example at P0 in the mouse inner ear (Figure 4g). 

      (5) Figures 3 and 5, and related text. It should be clarified whether the measurements were all taken from the surface cells. For Fig. 3e and 5d, the mean alignment angles of the cell long axis in the boundary regions should be provided in the text.

      The sensory epithelium in the otocyst is pseudostratified, hence, the measurement was taken from the surface of all epithelial cells labelled with F-actin. 

      We have added histograms representing the angular distribution of the cell long axis orientations in the boundary region to Figure 3 and Figure 5 Supplementary 1. We believe that this type of representation is more informative than the numerical value of the mean alignment angles of the cell long axis for defined sub-domains. 

      (6) It would be helpful to also quantify basal constrictions using the cell skeleton analysis. In addition, it would be helpful to show x-y views of cell morphology at the level of basal constrictions in the mouse tissue, similar to the chick otocyst shown in Figure 2.

      The data that we have collected do not allow a precise quantification of basal constrictions with cell skeleton analysis, due to the generally fuzzy nature of F-actin staining in the basal planes of the epithelium. However, we have followed the referee’s advice and analysed Factin staining in x-y views in the Lmx1a-GFP knock-in (heterozygous) mice. We found that the first signs of basal F-actin enrichment and multicellular actin-cable like structures at the interface of Lmx1a-positive and negative cells are visible at E11.5, and F-actin staining in the basal planes increases in intensity and extent at E13.5. (shown in new Figure 4 – Supplementary Figure 1).

      (7) Figure 5 and related text. It would be informative to analyze Lmx1a mutants at early stages (E11-E13) to pinpoint cell behavior defects during boundary formation.

      We chose the E15 stage because it is one at which we can unequivocally recognize and easily image and analyse the boundary domain from a cytoarchitectural point of view. We recognize that it would have been worth including earlier stages in this analysis but have not been able to perform these additional studies due to time constraints and unavailability of biological material. 

      (8) Figure 5-Figure S1, the quantifications suggest that Lmx1a loss had both cellautonomous and non-autonomous effects on boundary cell behaviors. This is an interesting finding, and its implication should be discussed.

      It is well-known that the absence of Lmx1a function induces a very complex (and variable) phenotype in terms of inner ear morphology and patterning defects. It is also clear from this study that the absence of Lmx1 causes non-cell autonomous defects in the boundary domain and we have already mentioned this in the discussion: “Finally, the patterning abnormalities in Lmx1a<sup>GFP/GFP</sup> samples occurred in both GFP-positive and negative territories, which points at some type of interaction between Lmx1a-expressing and nonexpressing cells, and the possibility that the boundary domain is also a signalling centre influencing the differentiation of adjacent territories.”

      (9) Figure 6 and related text. To correlate myosin II activity with boundary cell behaviors, it would be important to immunolocalize pMLC in the boundary domain in whole-mount otocyst preparations from stage 1 to stage 3.

      We tried to perform the suggested immunostaining experiments, but in our hands at least, the antibody used did not produce good quality staining in whole-mount preparations. We have therefore included images of sectioned otic tissue, which show some enrichment in pMLC immunostaining at the interface of segregating organs (Figure 6).

      (10) Figures 7 and 8. A caveat of long-term Rock inhibition is that it can affect cell proliferation and differentiation of both sensory and non-sensory cells, which would cause secondary effects on boundary formation. This caveat was not adequately addressed. For example, does Rock signaling control either the rate or the orientation of cell division to promote boundary formation? Together with the mild effect of acute Rock inhibition, the precise role of Rock signaling in boundary formation remains unclear.

      We absolutely agree that the exact function of ROCK could not be ascertained in the in vitro experiments, for the reasons we have highlighted in the manuscript (no clear effect in short term treatments, great level of tissue disorganisation in long-term treatments). This prompted us to turn to an in ovo approach. The picture remains uncertain in relation to the role of ROCK in regulating cell division/intercalation but we have been at least able to show a requirement for the maintenance of an organized and regular boundary. 

      (11) Figure 8. RCII-GFP likely also have non-autonomous effects on cell apical surface area. In 8d, it would be informative to include cell area quantifications of the GFP control for comparison.

      It is possible that some non-autonomous effects are produced by RCII-GFP expression, but these were not the focus of the present study and are not particularly relevant in the context of large patches of overexpression, as obtained with RCAS vectors. 

      We have added cell surface area quantifications of the control RCAS-GFP construct for comparison (Figure 8e).

      (12) The significance of the presence of cell divisions shown in Figure 9 is unclear. It would be informative to include some additional analysis, such as a) quantify orientation of cell divisions in and around the boundary domain and b) determine whether patterns of cell division in the sensory and nonsensory regions are disrupted in Lmx1a mutants.

      These are indeed fascinating questions, but which would require considerable work to answer and are beyond the scope of this paper. 

      Minor comments:

      (1) Figure 1. It should be clarified whether e', h' and k' are showing cortical F-actin of surface cells. Do the arrowheads in i' and l' correspond to the position of either of the arrowheads in h' and k', respectively?

      The epithelium in the otocyst is pseudostratified. Therefore, images e’, h’, k’ display F-actin labelling on the surface of tissue composed of a single cell layer. We have added arrows to images e”, h”, and k” to indicate the corresponding position of z-projections and included appropriate explanation in the legend of Figure 1: “Black arrows on the side of images e”, h”, and k” indicate the corresponding position of z-projections.”

      (2) Figure 3-Figure S1. Please mark the orientation of the images shown.

      We labelled the sensory organs in the figure to allow for recognizing the orientation. 

      (3) Figure 4. Orthogonal reconstructions should be labeled (z) to be consistent with other figures.

      We have corrected the labelling in the orthogonal reconstruction to (z). 

      (4) Figure 4g. It is not clear what is in the dark area between the two bands of Lmx1a+ cells next to the utricle and the LC. Are those cells Lmx1a negative? It is unclear whether a second boundary domain formed or the original boundary domain split into two between E15 and P0? Showing the E15 control tissue from Figure 5 would be more informative than P0.

      In this particular sample there seems to be a folding of the tissue (visible in z-reconstructions) that could affect the appearance of the projection shown in 4g. We believe the P0 is a valuable addition to the E15 data, showing a slightly later stage in the development of the vestibular organs.

      (5) Figure 5a, e. Magnified regions shown in b and f should be boxed correspondingly.

      This figure has been revised. We realized that the previous low-magnification shown in (e) (now h) was from a different sample than the one shown in the high-magnification view. The new figure now includes the right low-magnification sample (in h) and the regions shown in the high-magnification views have been boxed.

      (6) Figure 8f, h, j. Magnified regions shown in g, i and k should be boxed correspondingly.

      The magnified regions were boxed in Figure 8 f, h, and j. Additionally, black arrows have been placed next to images 8g", 8i", and 8k" to highlight the positions of the z-projections. An appropriate explanation has also been added to the figure legend.

      (9) Figure 8. It would be helpful to show merged images of GFP and F-actin, to better appreciate cell morphology of GFP+ and GFP- cells.

      As requested, we have added images showing overlap of GFP and F-actin channels in Figure 8.

      Reviewer #2 (Recommendations for the authors):

      The PMLC staining could be improved. Two decent antibodies are the p-MLC and pp-MLC antibodies from CST. pp-MLC works very well after TCA fixation as detailed in https://www.researchsquare.com/article/rs-2508957/latest . As phalloidin does not work well after TCA fixation, affadin works very well for segmenting cells.

      If the authors do not wish to repeat the pMLC staining, the details of the antibody used should be mentioned.

      We used mouse IgG1 Phospho-Myosin Light Chain 2 (Ser19) from Cell Signaling Technology (catalogue number #3675) in our immunohistochemistry for PMLC. This is one of the two antibodies recommended by the reviewer #2. Information about this antibody has now been included in material and methods. This antibody has been referenced by many manuscripts, but unfortunately, in our hands at least, it did not perform well in whole-mount preparations.

      A statement on the availability of the data should be included.

      We have included a statement on the data availability: “All data generated or analysed during this study is available upon request.”

      Reviewer #3 (Recommendations for the authors):

      Outstanding issues:

      (1) Morphological description: The apical alignment of epithelial cells at the border is clear but not the upward pull of the basal lamina. Very often, it seems to be the Sox2 staining that shows the upward pull better than the F-actin staining. Perhaps, adding an anti-laminin staining to indicate the basement membrane may help.

      Indeed, the upward pull of the basement membrane is not always very clear. We performed some anti-laminin immunostaining on mouse cryosections and provide below (Figure 1) an example of such experiment. The results appear to confirm an upward displacement of the basement membrane in the region separating the lateral crista from the utricle in the E13 mouse inner ear, but given the preliminary nature of these experiments, we believe that these results do not warrant inclusion in the manuscript. The term “pull” is somehow implying that the epithelial cells are responsible for the upward movement of the basement membrane, but since we do not have direct evidence that this is the case, we have replaced “pull” by “displacement” throughout the text. 

      (2) It is not clear how well the cellular changes are correlated with the timing of border formation as some of the ages shown in the study seem to be well after the sensory patches were separated and the border was established.

      For some experiments (for example E15 in the comparison of mouse Lmx1a-GFP heterozygous and homozygous inner ear tissue; E6 for the RCAS experiments), the early stages of boundary formation are not covered because we decided to focus our analysis on the late consequences of manipulating Lmx1a/ROCK activity in terms of sensory organ segregation. The dataset is more comprehensive for the control developmental series in the chicken and mouse inner ear. 

      (3) The Lmx1a data, as they currently stand could be explained by Lmx1a being required for non-sensory development and not necessarily border formation. Additionally, the relationship between ROCK and Lmx1a was not investigated. Since the investigators have established the molecular mechanisms of Lmx1 function using the chicken system previously, the authors could try to correlate the morphological events described here with the molecular evidence for Lmx1 functioning during border formation in the same chicken system. Right now, only the expression of Sox2 is used to correlate with the cellular events, and not Lmx1, Jag1 or notch.

      These are valid points. Exploring in detail the epistatic relationships between Notch signalling/Lmx1a/ROCK/boundary formation in the chicken model would be indeed very interesting but would require extensive work using both gain and loss-of-function approaches, combined with the analysis of multiple markers (Jag1/Sox2/Lmx1b/PMLC/Factin..). At this point, and in agreement with the referee’s comment, we believe that Lmx1a is above all required for the adoption of the non-sensory fate. The loss of Lmx1a function in the mouse inner ear produce defects in the patterning and cellular features of the boundary domain, but these may be late consequences of the abnormal differentiation of the nonsensory domains that separate sensory organs. Furthermore, ROCK activity does not appear to be required for Sox2 expression (i.e. adoption or maintenance of the sensory fate) since the overexpression of RCII-GFP does not prevent Sox2 expression in the chicken inner ear. This fits with a model in which Notch/Lmx1a regulate cell differentiation whilst ROCK acts independently or downstream of these factors during boundary formation. 

      Specific comments:

      (1) Figure 1. The downregulation of Sox2 is consistent between panels h and k, but not between panels e and h. The orthogonal sections showing basal constriction in h' and k' are not clear.

      The downregulation is noticeable along the lower edge of the crista shown in h; the region selected for the high-magnification view sits at an intermediate level of segregation (and Sox2 downregulation). 

      The basal constriction is not very clear in h, but becomes easier to visualize in k. We have displaced the arrow pointing at the constriction, which hopefully helps. 

      (2) Figure 2. Where was the Z axis taken from? One seems to be able to imagine the basal constriction better in the anti-Sox2 panel than the F-actin panel. A stain outlining the basement membrane better could help.

      Arrows have been added on the side of the horizontal views to mark the location of the zreconstruction. See our previous replies to comments addressing the upward displacement of the basement membrane.

      (3) Figure 4

      I question the ROI being chosen in this figure, which seems to be in the middle of a triad between LC, prosensory/utricle and the AC, rather than between AC and LC. If so, please revise the title of the figure. This could also account for the better evidence of the apical alignment in the upper part of the f panel.

      We have corrected the text. 

      In this figure, the basal constriction is a little clearer in the orthogonal cuts, but it is not clear where these sections were taken from.

      We have added black arrows next to images 4c’, 4f’, and 4i’ to indicate the positions of the zprojections.  

      By E13.5, the LC is a separate entity from the utricle, it makes one wonder how well the basal constriction is correlated with border formation. The apical alignment is also present by P0, which raises the question that the apical alignment and basal restriction may be more correlated with differentiation of non-sensory tissue rather than associated with border formation.

      We agree E13.5 is a relatively late stage, and the basal constriction was not always very pronounced. The new data included in the revised version include images of basal planes of the boundary domain at E11.5, which reveal F-actin enrichment and the formation of an actin-cable-like structure (Figure 4 suppl. Fig1). Furthermore, the chicken dataset shows that the changes in cell size, alignment, and the formation of actin-cable-like structure precede sensory patch segregation and are visible when Sox2 expression starts to be downregulated in prospective non-sensory tissue (Figure 1, Figure 2). Considering the results from both species, we conclude that these localised cellular changes occur relatively early in the sequence of events leading to sensory patch segregation, as opposed to being a late consequence of the differentiation of the non-sensory territories.  

      I don't follow the (x) cuts for panels h and I, as to where they were taken from and why there seems to be an epithelial curvature and what it was supposed to represent.

      We have added black arrows next to the panels 4c’, 4f’, and 4i’ to indicate the positions of the z-projections and modified the legend accordingly. The epithelial curvature is probably due to the folding of the tissue bordering the sensory organs during the manipulation/mounting of the tissue for imaging.

      (4) Figure 5 The control images do not show the apical alignment and the basal constriction well. This could be because of the age of choice, E15, was a little late. Unfortunately, the unclarity of the control results makes it difficult for illustrating the lack of cellular changes in the mutant. The only take-home message that one could extract from this figure is a mild mixing of Sox2 and Lmx1a-Gfp cells in the mutant and not much else. Also, please indicate the level where (x) was taken from.

      Black arrows have been placed next to images 5e and 5l to highlight the positions of the zprojections. The stage E15 chosen for analysis was appropriate to compare the boundary domains once segregation is normally completed. We believe the results show some differences in the cellular features of the boundary domain in the Lmx1a-null mouse, and we have in fact quantified this using Epitool in Figure 5 – Suppl. Fig 1. Cells are more elongated and better aligned in the Lmx1a-null than in the heterozygous samples.  

      (5) Figure 7. I think the cellular disruption caused by the ROCK inhibitor, shown in q', is too severe to be able to pin to a specific effect of ROCK on border formation. In that regard, the ectopic expression of the dominant negative form of ROCK using RCAS approach is better, even though because it is a replication competent form of RCAS, it is still difficult to correlate infected cells to functional disruption.

      We used a replication-competent construct to induce a large patch of infection, increasing our chances of observing a defect in sensory organ segregation and boundary formation. We agree that this approach does not allow us to control the timing of overexpression, but the mosaicism in gene expression, allowing us to compare in the same tissue large regions with/without perturbed ROCK activity, proved more informative than the pharmacological/in vitro experiments.

      (6) Figure 8. Outline the ROI of i in h, and k in j. Outline in k the comparable region in k'. In k", F-actin staining is not uniform. Indicate where (x) was taken from in K.

      The magnified regions were boxed in Figure 8 f, h, and j. Region outlined in figures k’-k” has also been outlined in corresponding region in figure k. Additionally, black arrows have been placed next to images 8g", 8i", and 8k" to highlight the positions of the z-projections. An appropriate explanation has also been added to the figure legend.

      Minor comments:

      (1) P.18, 1st paragraph, extra bracket at the end of the paragraph.

      Bracket removed

      (2) P.22, line 11, in ovo may be better than in vivo in this case.

      We agree, this has been corrected. 

      (3) P.25, be consistent whether it is GFP or EGFP.

      Corrected to GFP.

      (4) P.26, line 5. Typo on "an"

      Corrected to “and”

      Author response image 1.

      Expression of Laminin and Sox2 in the E13 mouse inner ear. a-a’’’) Low magnification view of the utricle, the lateral crista, and the non-sensory (Sox2-negative) domain separating these. Laminin staining is detected at relatively high levels in the basement membrane underneath the sensory patches. At higher magnification (b-b’’’), an upward displacement of the basement membrane (arrow) is visible in the region of reduced Sox2 expression, corresponding to the “boundary domain” (bracket). 

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Strengths: 

      Sarpaning et al. provide a thorough characterization of putative Rnt1 cleavage of mRNA in S. cerevisiae. Previous studies have discovered Rnt1 mRNA substrates anecdotally, and this global characterization expands the known collection of putative Rnt1 cleavage sites. The study is comprehensive, with several types of controls to show that Rnt1 is required for several of these cleavages.

      Weaknesses: 

      (1) Formally speaking, the authors do not show a direct role of Rnt1 in mRNA cleavage - no studies were done (e.g., CLIP-seq or similar) to define direct binding sites. Is the mutant Rnt1 expected to trap substrates? Without direct binding studies, the authors rely on genetics and structure predictions for their argument, and it remains possible that a subset of these sites is an indirect consequence of rnt1. This aspect should be addressed in the discussion.

      We have added to this point in the discussion, as requested. We do not, however, agree that CLIP-seq or other methods are needed to address this point, or would even be helpful in the question the reviewer raises. 

      Importantly, we show that recombinant Rnt1 purified from E. coli cleaves the same sites as those mapped in vivo. This does provide direct evidence that Rnt1 directly binds those RNAs. Furthermore, it shows that it can bind these RNAs without the need of other proteins. Our observation that many mRNAs are cleaved at -14 and +16 positions from NGNN stem loops to leave 2-nt 3’ overhangs provides further support that these are the products of an RNase III enzyme, and Rnt1 is the only family member in yeast. Thus, we disagree with the reviewer that our studies do not show direct targeting.

      CLIP-seq experiments would be valuable, but they would address a different point. CLIP-seq measures protein binding to RNA targets, and it is likely that Rnt1 binds some RNAs without cleaving them. In addition, only a transient interaction are needed for cleavage and such transient interactions might not be readily detected by CLIP-seq. Thus, CLIP-seq would reveal the RNAs bound by Rnt1, but would not help identify which ones are cleaved. Catala et al (2004) showed that the catalytically inactive mutant of Rnt1 carries out some functions that are important for the cell cycle. The CLIP-seq studies would be valuable to determine these non-catalytic roles of Rnt1, but we consider those questions beyond the scope of the current study.

      (2) The comprehensive list of putative Rnt1 mRNA cleavage sites is interesting insofar as it expands the repertoire of Rnt1 on mRNAs, but the functional relevance of the majority of these sites remains unknown. Along these lines, the authors should present a more thorough characterization of putative Rnt1 sites recovered from in vitro Rnt1 cleavage.

      We have included new data that confirm that YDR514C cleavage by Rnt1 is relevant to yeast cell physiology. We show that YDR514C overexpression is indeed toxic, as we previously postulated. More importantly, we generated an allele of YDR514C that has synonymous mutations designed to disrupt the stem-loop recognized by Rnt1. We show that at 37 °C, both the wild-type and mutant allele are toxic to rnt1∆ cells, but that in cells that express Rnt1, the wild-type cleavable allele is more toxic than the allele with the mutated stem-loop. This genetic interaction provides strong evidence that cleavage of YDR514C by Rnt1 is relevant to cell physiology. 

      We have also added PARE analysis of poly(A)-enriched and poly(A)-depleted reactions and show that compared to Dcp2, Rnt1 preferentially targets poly(A)+ mRNAs, consistent with it targeting nuclear RNAs. We discuss in more detail that by cleaving nuclear RNA, Rnt1 provides a kinetic proofreading mechanism for mRNA export competence.

      (3) The authors need to corroborate the rRNA 3'-ETS tetraloop mutations with a northern analysis of 3'-ETS processing to confirm an ETS processing defect (which might need to be done in decay mutants to stabilize the liberated ETS fragment). They state that the tetraloop mutation does not yield a growth defect and use this as the basis for concluding that rRNA cleavage is not the major role of Rnt1 in vivo, which is a surprising finding. But it remains possible that tetraloop mutations did not have the expected disruptive effect in vivo; if the ETS is processed normally in the presence of tetraloop mutations, it would undermine this interpretation. This needs to be more carefully examined.

      We have removed the rRNA 3'-ETS tetraloop mutations, because initial northern blot analysis indicated that Rnt1 cleavage is not completely blocked by the mutations we designed. Therefore, the reviewer is correct that tetraloop mutations did not have the expected disruptive effect in vivo. Future investigations will be required to fully understand this. This was a minor point and removing this focuses the paper on its major contributions

      (4) To support the assertion that YDR514C cleavage is required for normal "homeostasis," and more specifically that it is the major contributor to the rnt1∆ growth defect, the authors should express the YDR514C-G220S mutant in the rDNA∆ strains with mutations in the 3'-ETS (assuming they disrupt ETS processing, see above). This simple experiment should provide a relative sense of "importance" for one or the other cleavage being responsible for the rnt1∆ defect. Given the accepted role of Rnt1 cleavage in rRNA processing and a dogmatic view that this is the reason for the rnt1∆ growth defect, such a result would be surprising and elevate the functional relevance and significance of Rnt1 mRNA cleavage.

      We agree that the experiment proposed by the reviewer is very simple, but we are puzzled by the rationale. First, our experiments do not support that there is anything special about the G220S mutation in YDR514C. A complete loss of function (ydr514c∆) also suppresses the growth defect, suggesting that ydr514c-G220S is a simple loss of function allele. We have clarified that the G220S mutation is distant from the stem-loop recognized by Rnt1 and is unlikely to affect cleavage by Rnt1. Instead, Rnt1 cleavage and the G220S mutation are independent alternative ways to reduce Ydr514c function. We have clarified this point in the text. 

      As mentioned in response to point #3, we have included other additional experiments that address the same overall question raised here – the importance of YDR514C mRNA cleavage by Rnt1.    

      (5) Given that some Rnt1 mRNA cleavage is likely nuclear, it is possible that some of these targets are nascent mRNA transcripts, as opposed to mature but unexported mRNA transcripts, as proposed in the manuscript. A role for Rnt1 in co-transcriptional mRNA cleavage would be conceptually similar to Rnt1 cleavage of the rRNA 3'-ETS to enable RNA Pol I "torpedo" termination by Rat1, described by Proudfoot et al (PMID 20972219). To further delineate this point, the authors could e.g., examine the poly-A tails on abundant Rnt1 targets to establish whether they are mature, polyadenylated mRNAs (e.g., northern analysis of oligo-dT purified material). A more direct test would be PARE analysis of oligo-dT enriched or depleted material to determine the poly-A status of the cleavage products. Alternatively, their association with chromatin could be examined. 

      We have added the requested PARE analysis of oligo-dT enriched or depleted material to determine the polyA status of the cleavage products and related discussions. These confirm our proposal that Rnt1 cleaves mature but unexported mRNA transcripts

      We also note that the northern blots shown in figures 2E, 4C, and 5B use oligo dT selected RNA because the signal was undetectable when we used total RNA. This suggests that the cleaved mRNAs are indeed polyadenylated. 

      The term nascent is somewhat ambiguous, but if the reviewer means RNA that is still associated with Pol II and has not yet been cleaved by the cleavage and polyadenylation machinery, we think that is inconsistent with our findings. We have also re-analyzed the NET-seq data from https://pubmed.ncbi.nlm.nih.gov/21248844/ and find no prominent peaks for our Rnt1 sites in Pol II associated RNAs, although for BDF2 NET-seq does suggest that “spliceosome-mediated decay” is co-transcriptional as would be expected. Altogether these data confirm our previous proposal that Rnt1 mainly cleaves mRNAs that have completed polyadenylated but are not yet exported.

      (6) While laboratory strains of budding yeast have a single RNase III ortholog Rnt1, several other budding yeast have a functional RNAi system with Dcr and Ago (PMID 19745116), and laboratory yeast strains are a derived state due to pressure from the killer virus to lose the RNAi system (PMID 21921191). The current study could provide new insight into the relative substrate preferences of Rnt1 and budding yeast Dicer, which could be experimentally confirmed by expressing Dcr in RNT1 and rnt1∆ strains. In lieu of experiments, discussion of the relevance of Rnt1 cleavage compared to yeast RNAi should be included in the discussion before the "human implications" section.

      The reviewer points out that most other eukaryotic species have multiple RNase III family members, which is a general point we discussed and have now expanded on. The reviewer specifically points to papers that study a species that was incorrectly referred to as Saccharomyces castellii in PMID 19745116, but whose current name is Naumovozyma castellii, reflecting that it is not that closely related to S. cerevisiae (diverged about 86 million years ago; for the correct species phylogeny, see http://ygob.ucd.ie/browser/species.html, as both of the published papers the reviewer cites have some errors in the phylogeny). 

      The other species discussed in PMID 19745116 (Vanderwaltozyma polyspora and Candida albicans) are even more distant. There have been several studies on substrate specificity of Dcr1 versus Rnt1 (including PMID 19745116). 

      The reviewer suggests that expressing Dcr1 in S. cerevisiae would be a valuable addition. However, we can’t envision a mechanism by which S. cerevisiae maintained physiologically relevant Dcr1 substrates in the absence of Dcr1. The results from the proposed study would, in our opinion, be limited to identifying RNAs that can be cleaved in this particular artificial system. We think an important implication of our work is that similar studies to ours should be caried out in rnt1∆, dcr1∆, and double mutants in either S. pombe or N. castellii, as well as in drosha knock outs in animals, and we discuss this in more detail in the revised paper. 

      (7) For SNR84 in Figure S3D, it appears that the TSS may be upstream of the annotated gene model. Does RNA-seq coverage (from external datasets) extend upstream to these additional mapped cleavages? The assertion that the mRNA is uncapped is concerning; an alternative explanation is that the nascent mRNA has a cap initially but is subsequently cleaved by Rnt1. This point should be clarified or reworded for accuracy.

      We agree with the reviewer that the most likely explanation is that the primary SNR84 transcript is capped, and 5’ end processed by Rnt1 and Rat1 to make a mature 5’ monophosphorylated SNR84 and have clarified the text accordingly. We suspect our usage of “uncapped” might have been confusing. “uncapped” was not meant to indicate that the primary transcript did not receive a cap, but instead that the mature transcript did not have a cap. We now use “5’ end processed” and “5’ monophosphorylated”. 

      Reviewer #2 (Public review):  

      The yeast double-stranded RNA endonuclease Rnt1, a homolog of bacterial RNase III, mediates the processing of pre-rRNA, pre-snRNA, and pre-snoRNA molecules. Cells lacking Rnt1 exhibit pronounced growth defects, particularly at lower temperatures. In this manuscript, Notice-Sarpaning examines whether these growth defects can be attributed at least in part to a function of Rnt1 in mRNA degradation. To test this, the authors apply parallel analysis of RNA ends (PARE), which they developed in previous work, to identify polyA+ fragments with 5' monophosphates in RNT1 yeast that are absent in rnt1Δ cells. Because such RNAs are substrates for 5' to 3' exonucleolytic decay by Rat1 in the nucleus or Xrn1 in the cytoplasm, these analyses were performed in a rat1-ts xrn1Δ background. The data recapitulate known Rtn1 cleavage sites in rRNA, snRNAs, and snoRNAs, and identify 122 putative novel substrates, approximately half of which are mRNAs. Of these, two-thirds are predicted to contain double-stranded stem loop structures with A/UGNN tetraloops, which serve as a major determinant of Rnt1 substrate recognition. Rtn1 resides in the nucleus, and it likely cleaves mRNAs there, but cleavage products seem to be degraded after export to the cytoplasm, as analysis of published PARE data shows that some of them accumulate in xrn1Δ cells. The authors then leverage the slow growth of rnt1Δ cells for experimental evolution. Sequencing analysis of thirteen faster-growing strains identifies mutations predominantly mapping to genes encoding nuclear exosome co-factors. Some of the strains have mutations in genes encoding a laratdebranching enzyme, a ribosomal protein nuclear import factor, poly(A) polymerase 1, and the RNAbinding protein Puf4. In one of the puf4 mutant strains, a second mutation is also present in YDR514C, which the authors identify as an mRNA substrate cleaved by Rnt1. Deletion of either puf4 or ydr514C marginally improves the growth of rnt1Δ cells, which the authors interpret as evidence that mRNA cleavage by Rnt1 plays a role in maintaining cellular homeostasis by controlling mRNA turnover. 

      While the PARE data and their subsequent in vitro validation convincingly demonstrate Rnt1mediated cleavage of a small subset of yeast mRNAs, the data supporting the biological significance of these cleavage events is substantially less compelling. This makes it difficult to establish whether Rnt1-mediated mRNA cleavage is biologically meaningful or simply "collateral damage" due to a coincidental presence of its target motif in these transcripts.

      We thank the reviewer and have added additional data to support our conclusion that mRNA cleavage, at least for YDR514C, is not simply collateral damage, but a physiologically relevant function of Rnt1. From an evolutionary perspective, cleavage of mRNAs by Rnt1 might have initially been collateral damage, but if there is a way to use this mechanism, evolution is probably going to use it.

      (1) A major argument in support of the claim that "several mRNAs rely heavily on Rnt1 for turnover" comes from comparing number of PARE reads at the transcript start site (as a proxy for fraction of decapped transcripts) and at the Rnt1 cleavage site (as a proxy for fraction of Rnt1-cleaved transcripts). The argument for this is that "the major mRNA degradation pathway is through decapping". However, polyA tail shortening usually precedes decapping, and transcripts with short polyA tails would be strongly underrepresented in PARE sequencing libraries, which were constructed after two rounds of polyA+ RNA selection. This will likely underestimate the fraction of decapped transcripts for each mRNA. There is a wide range of well-established methods that can be used to directly measure differences in the half-life of Rnt1 mRNA targets in RNT1 vs rnt1Δ cells. Because the PARE data rely on the presence of a 5' phosphate to generate sequencing reads, they also cannot be used to estimate what fraction of a given mRNA transcript is actually cleaved by Rnt1. 

      The reviewer is correct that decapping preferentially affects mRNAs with shortened poly(A) tails, that Rnt1 cleavage likely affects mostly newly made mRNAs with long poly(A) tails, and that PARE may underestimate the decay of mRNAs with shortened poly(A) tails. We have reanalyzed our previously published data where we performed PARE on both the poly(A)-enriched fraction and the poly(A)-depleted fraction (that remains after two rounds of oligo dT selection). Rnt1 products are over-represented in the poly(A)-enriched fraction, while decapping products are enriched in the poly(A)-depleted fraction, providing further support to our conclusion that Rnt1 cleaves nuclear RNA. We have re-written key sections of the paper accordingly.

      The reviewer also points out that “There is a wide range of well-established methods that can be used to directly measure differences in the half-life of Rnt1 mRNA targets in RNT1 vs rnt1Δ cells.” However, all of those methods measure mRNA degradation rates from the steady state pool, which is mostly cytoplasmic. We have, in different contexts, used these methods, but as we pointed out they are inappropriate to measure degradation of nuclear RNA. There are some studies that measure nuclear degradation rates, but this requires purifying nuclei. There are two major drawbacks to this. First, it cannot distinguish between degradation in the nucleus and export from the nucleus because both processes cause disappearance from the nucleus. Second, the purification of yeast nuclei requires “spheroplasting” or enzymatically removing the rigid cell wall. This spheroplasting is likely to severely alter the physiological state of the yeast cell. Given these significant drawbacks and the substantial time and money required, we chose not to perform this experiment.  

      (2) Rnt1 is almost exclusively nuclear, and the authors make a compelling case that its concentration in the cytoplasm would likely be too low to result in mRNA cleavage. The model for Rnt1-mediated mRNA turnover would therefore require mRNAs to be cleaved prior to their nuclear export in a manner that would be difficult to control. Alternatively, the Rnt1 targets would need to re-enter prior to cleavage, followed by export of the cleaved fragments for cytoplasmic decay. These processes would need to be able to compete with canonical 5' to 3' and 3' to 5' exonucleolytic decay to influence mRNA fate in a biologically meaningful way.

      We disagree that mRNA export would be difficult to control, as is elegantly demonstrated by the 13 KDa HIV Rev protein. The export of many other RNAs is tightly controlled such that many RNAs are rapidly degraded in the nucleus by, for example, Rat1 and the RNA exosome, while other RNAs are rapidly exported. Indeed, the competition between RNA export and nuclear degradation is generally thought to be an important quality control for a variety of mRNAs and ncRNAs. We do agree with the reviewer that re-import of mRNAs appears unlikely (which is why we do not discuss it), although it occurs efficiently for other Rnt1-cleaved RNAs such as snRNAs. We have clarified the text accordingly, including in the introduction, results, and discussion. 

      (3) The experimental evolution clearly demonstrates that mutations in nuclear exosome factors are the most frequent suppressors of the growth defects caused by Rnt1 loss. This can be rationalized by stabilization of nuclear exosome substrates such as misprocessed snRNAs or snoRNAs, which are the major targets of Rnt1. The rescue mutations in other pathways linked to ribosomal proteins (splicing, ribosomal protein import, ribosomal mRNA binding) support this interpretation. By contrast, the potential suppressor mutation in YDR514C does not occur on its own but only in combination with a puf4 mutation; it is also unclear whether it is located within the Rnt1 cleavage motif or if it impacts Rnt1 cleavage at all. This can easily be tested by engineering the mutation into the endogenous YDR514C locus with CRISPR/Cas9 or expressing wild-type and mutant YDR514C from a plasmid, along with assaying for Rnt1 cleavage by northern blot. Notably, the growth defect complementation of YDR514C deletion in rnt1Δ cells is substantially less pronounced than the growth advantage afforded by nuclear exosome mutations (Figure S9, evolved strains 1 to 5). These data rather argue for a primary role of Rnt1 in promoting cell growth by ensuring efficient ribosome biogenesis through pre-snRNA/pre-snoRNA processing. 

      The reviewer makes several points. 

      First, we have clarified that the ydr514c-G220S mutation is not near the Rnt1 cleavage motif and is unlikely to affect cleavage by Rnt1. This is exactly what would be expected for a mutation that was selected for in an rnt1∆ strain. Although the reviewer appears to expect it, a mutation that affects Rnt1 cleavage could not be selected for in a strain that lacks Rnt1.

      Second, the reviewer points out that the original ydr514c mutations arose in a strain that also had a puf4 deletion. However, we show that ydr514c∆ also suppresses rnt1∆. Furthermore, we have added additional data that overexpressing an uncleavable YDR514C mRNA affects yeast growth at 37 °C more than the wild-type cleavable form further supporting that the cleavage of YDR154C by Rnt1 is physiologically relevant. 

      Reviewer #2 (Recommendations for the authors): 

      (1) The description of the PARE library construction protocol and data analysis workflow is insufficient to ensure their robustness and reproducibility. The library construction protocol should include details of the individual steps, and the data analysis workflow description should include package versions and exact commands used for each analysis step.

      We have clarified that the experiments were performed exactly as previously described and have included very detailed methods. The Galaxy server does not require commands and instead we have indicated the parameters chosen in the various steps. We have also added that the PARE libraries for poly(A)+ and poly(A)- fractions were generated in the lab of Pam Green according to their protocol, which is not exactly the same as ours. Nevertheless, the Rnt1 sites are also evident from those libraries, further demonstrating the robustness of our data. 

      (2) PARE signal is expressed as a ratio of sequencing coverage at a given nucleotide in RNT1 vs rnt1Δ cells. This poses challenges to estimating fold changes: by definition, there should be no coverage at Rnt1 cleavage sites in rnt1Δ cells, as there will not be any 5' monophosphate-containing mRNA fragments to be ligated to the library construction linker. This should be accounted for in the data analysis pipeline - the DESeq2 package, for example, handles this very well (https://support.bioconductor.org/p/64014/).

      The reviewer is correct and we have clarified how we do account for the possibility of having 0 reads by adding an arbitrary 0.01 cpm to all PARE scores for wild type and mutant. In the original manuscript this was not explicitly mentioned and the reader would have to go to our previous paper to learn about this detail. Adding this 0.01 cpm pseudocount avoids dividing by 0 when we calculate a comPARE score. This means we actually underestimate the fold change. As can be seen in the red line in the image below, the y-axis modified log2FC score maxes out along a diagonal line at log2([average RNT1 reads]/0.01) instead of at infinity. That is, at a wild type peak height of 1 cpm, the maximum possible score is log2(1.01/.01), which equals 6.66, and at 10 cpm, the maximum score is ~10, etc.). As can be seen, many of the scores fall along this diagonal, reflecting that indeed, there are 0 reads in the rnt1∆ samples.

      Author response image 1.

      There are multiple ways to deal with this issue, and ours is not uncommon. DESeq2, suggested by the reviewer, uses a different method, which relies on the assumption that the dispersion of read counts for genes of any given expression strength is constant, and then uses that dispersion to “correct” the 0 read counts. While this is a valid way for differential gene expression when comparing similar RNAs, the underlying assumption that the dispersion of expression of all genes is similar for similar expression level is questionable for comparing, for example, mRNAs, snoRNAs, and snRNAs. Thus, we are not convinced that this is a better way to deal with 0 counts. Our analysis accepts that 0 might be the best estimate for the number of counts that are expected from rnt1∆ samples. 

      (3) The analysis in Figure S8 is insufficient to demonstrate that the four mRNAs depicted are significantly more abundant in rnt1Δ vs RNT1 cells - differences in coverage could simply be a result of different sequencing depth. Please use an appropriate method for estimating differential expression from RNA-Seq data (e.g., DESeq2). 

      Unfortunately, the previously published data we included as figure S8 (now figure S9) did not include replicates, and we agree that it does not rigorously show an effect. The reviewer suggests that we analyze the data by DESeq2, which requires replicates, and thus, cannot be done. Instead we have clarified this. If the reviewer is not satisfied with this, we are prepared to delete it.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The objective of this study was to infer the population dynamics (rates of differentiation, division, and loss) and lineage relationships of clonally expanding NK cell subsets during an acute immune response. 

      Strengths: 

      A rich dataset and thorough analysis of a particular class of stochastic models. 

      We thank the reviewer for the positive comment.

      Weaknesses: 

      The stochastic models used are quite simple; each population is considered homogeneous with first-order rates of division, death, and differentiation. In Markov process models such as these, there is no dependence of cellular behavior on its history of divisions. In recent years models of clonal expansion and diversification, in the settings of T and B cells, have progressed beyond this picture. So I was a little surprised that there was no mention of the literature exploring the role of replicative history in differentiation (e.g. Bresser Nat Imm 2022), nor of the notion of family 'division destinies' (either in division number or the time spent proliferating, as described by the Cyton and Cyton2 models developed by Hodgkin and collaborators; e.g. Heinzel Nat Imm 2017). The emerging view is that variability in clone (family) size may arise predominantly from the signals delivered at activation, which dictate each precursor's subsequent degree of expansion, rather than from the fluctuations deriving from division and death modeled as Poisson processes. 

      As you pointed out, the Gerlach and Buchholz Science papers showed evidence for highly skewed distributions of family sizes and correlations between family size and phenotypic composition. Is it possible that your observed correlations could arise if the propensity for immature CD27+ cells to differentiate into mature CD27- cells increases with division number? The relative frequency of the two populations would then also be impacted by differences in the division rates of each subset - one would need to explore this. But depending on the dependence of the differentiation rate on division number, there may be parameter regimes (and time points) at which the more differentiated cells can predominate within large clones even if they divide more slowly than their immature precursors. One might not then be able to rule out the two-state model. I would like to see a discussion or rebuttal of these issues. 

      We thank the reviewer for the insightful comment and drawing our attention to the Cyton models. We have discussed the Cyton models in the Introduction (lines 80-95) and the Discussion (lines 538-553) sections of the revised manuscript and carried out simulations for the variant of the Cyton model suggested by the reviewer. The two-state model showed that for certain parameters it can give rise to a negative correlation between the clone size and the percentage of immature (CD27+) NK cells in the absence of any death suggesting the potential importance of division destiny along with stochastic fluctuations in giving rise to the heterogeneity observed in NK cell clone size distributions in the expansion phase. In addition, we also considered a two-state model where the NK cell activation time in individual cells vary following a log-normal distribution; this two-state model also shows the presence of negative correlations between clone sizes and the percentage of immature NK cells within the clones. We have added new results (Figs. S2-3) and discussed the results (lines 223-232) in the Results and the Discussion (lines 538-553) sections. We believe these additional simulations provide new insights into the results we carried out with our two- and three- state models. 

      Reviewer #2 (Public review): 

      Summary: 

      Wethington et al. investigated the mechanistic principles underlying antigen-specific proliferation and memory formation in mouse natural killer (NK) cells following exposure to mouse cytomegalovirus (MCMV), a phenomenon predominantly associated with CD8+ T cells. Using a rigorous stochastic modeling approach, the authors aimed to develop a quantitative model of NK cell clonal dynamics during MCMV infection. 

      Initially, they proposed a two-state linear model to explain the composition of NK cell clones originating from a single immature Ly49+CD27+ NK cell at 8 days post-infection (dpi). Through stochastic simulations and analytical investigations, they demonstrated that a variant of the twostate model incorporating NK cell death could explain the observed negative correlation between NK clone sizes at 8 dpi and the percentage of immature (CD27+) NK cells (Page 8, Figure 1e, Supplementary Text 1). However, this two-state model failed to accurately reproduce the first (mean) and second (variance and covariance) moments of the measured CD27+ and CD27- NK cell populations within clones at 8 dpi (Figure 1g). 

      To address this limitation, the authors increased the model's complexity by introducing an intermediate maturation state, resulting in a three-stage model with the transition scheme: CD27+Ly6C- → CD27-Ly6C- → CD27-Ly6C+. This three-stage model quantitatively fits the first and second moments under two key constraints: (i) immature CD27+ NK cells exhibit faster proliferation than CD27- NK cells, and (ii) there is a negative correlation (upper bound: -0.2) between clone size and the fraction of CD27+ cells. The model predicted a high proliferation rate for the intermediate stage and a high death rate for the mature CD27-Ly6C+ cells. 

      Using NK cell reporter mice data from Adams et al. (2021), which tracked CD27+/- cell population dynamics following tamoxifen treatment, the authors validated the three-stage model. This dataset allowed discrimination between NK cells originating from the bone marrow and those pre-existing in peripheral blood at the onset of infection. To test the prediction that mature CD27- NK cells have a higher death rate, the authors measured Ly49H+ NK cell viability in the mice spleen at different time points post-MCMV infection. Experimental data confirmed that mature (CD27-) NK cells exhibited lower viability compared to immature (CD27+) NK cells during the expansion phase (days 4-8 post-infection). 

      Further mathematical analyses using a variant of the three-stage model supported the hypothesis that the higher death rate of mature CD27- cells contributes to a larger proportion of CD27- cells in the dead cell compartment, as introduced in the new variant model. 

      Altogether, the authors proposed a three-stage quantitative model of antigen-specific expansion and maturation of naïve Ly49H+ NK cells in mice. This model delineates a maturation trajectory: (i) CD27+Ly6C- (immature) → (ii) CD27-Ly6C- (mature I) → (iii) CD27-Ly6C+ (mature II). The findings highlight the highly proliferative nature of the mature I (CD27-Ly6C-) phenotype and the increased cell death rate characteristic of the mature II (CD27-Ly6C+) phenotype. 

      Strengths: 

      By designing models capable of explaining correlations, first and second moments, and employing analytical investigations, stochastic simulations, and model selection, the authors identified the key processes underlying antigen-specific expansion and maturation of NK cells. This model distinguishes the processes of antigen-specific expansion, contraction, and memory formation in NK cells from those observed in CD8+ T cells. Understanding these differences is crucial not only for elucidating the distinct biology of NK cells compared to CD8+ T cells but also for advancing the development of NK cell therapies currently under investigation. 

      We thank the reviewer for the positive comments.

      Weaknesses: 

      The conclusions of this paper are largely supported by the available data. However, a comparative analysis of model predictions with more recent works in the field would be desirable. Moreover, certain aspects of the simulations, parameter inference, and modeling require further clarification and expansion, as outlined below: 

      (1) Initial Conditions and Grassmann Data: The Grassmann data is used solely as a constraint, while the simulated values of CD27+/CD27- cells could have been directly fitted to the Grassmann data, which assumes a 1:1 ratio of CD27+/CD27- at t = 0. This approach would allow for an alternative initial condition rather than starting from a single CD27+ cell, potentially improving model applicability. 

      We fit the moments of the cell populations along with the ratio of resulting cells from an initial condition of 1:1 ratio of CD27+/CD27- cells at t=0 in the model. The initial condition agrees with the experimental data. However, this fit produced parameter values that will lead to greater growth of mature CD27- NK cells compared to that of immature CD27+ NK cells. This could result from the equal weights given to the ratio as well as to the different moments, and a realistic parameter estimate could correspond to an unequal weight between the ratio and the moments. Imposing the constraint Δ<sub>k</sub> >0 in the fitting drives the parameter search in the region, which seems to alleviate this issue that produces estimates of the rates consistent with higher growth of immature NK cells. We included Table S6 and accompanying description to show this, as well as an additional section in the Materials and Methods (lines 669-676). 

      (2) Correlation Coefficients in the Three-State Model: Although the parameter scan of the threestate model (Figure 2) demonstrates the potential for achieving negative correlations between colony size and the fraction of CD27+ cells, the authors did not present the calculated correlation coefficients using the estimated parameter values from fitting the three-state model to the data. Including these simulations would provide additional insight into the parameter space that supports negative correlations and further validate the model.  

      We have included this figure (Figure 2d) in the revised manuscript.

      (3) Viability Dynamics and Adaptive Response: The authors measured the time evolution of CD27+/- dynamics and viability over 30 days post-infection (Figure 4). It would be valuable to test whether the three-state model can reproduce the adaptive response of CD27- cells to MCMV infection, particularly the observed drop in CD27- viability at 5 dpi (prior to the 8 dpi used in the study) and its subsequent rebound at 8 dpi. Reproducing this aspect of the experiment is critical to determine whether the model can simultaneously explain viability dynamics and moment dynamics. Furthermore, this analysis could enable sensitivity analysis of CD27- viability with respect to various model parameters. 

      We have compared the expansion kinetics of the adoptively transferred Ly49H+ NK cells (Figure 2) and endogenous Ly49H+ NK cells, where the endogenous NK cells show slower growth rates than their adoptively transferred counterparts (see lines 422-429). The data shown in Figure 4 refer to the relative percentage of the mature and immature endogenous NK cells, thus cannot be explained by the three-state model calibrated by the expansion of the adoptively transferred NK cells. One of the issues with using the viability data for parameter estimation for endogenous cells is the need to assume a model for dead cell clearance. We assume a model where dead cells are cleared according to a first-order decay reaction and vary the rate of this reaction to show that the qualitative results are in line with our model rates. This model cannot recreate the dip and rebound observed in the data, and instead monotonically and asymptotically approaches a percentage of live cells. We have attached a figure showing this behavior below. Rather, we intend to use this model as qualitative validation that the relative viability of mature NK cells is lower than that of immature NK cells. Models that include time-dependence of clearance of dead cells, or models with a higher-order (i.e. second) reaction for clearance of dead cells in which propensity for clearance is lower at early times and greater at later times may be better suited for this purpose but are beyond the scope of our validation. 

      Author response image 1.

      Reviewer #1 (Recommendations for the authors):  

      I think the manuscript could be improved substantially by exploring alternative models that incorporate replicative history. At the very least it needs a deeper discussion of the literature relating to clonal expansion, putting the existing models in the context of these studies, and arguing convincingly that your conclusions are robust.  

      We have substantially expanded our explorations with alternative models, in particular we considered a variant of the Cyton model suggested by Reviewer#1, a model where NK cells become activated at different times, and a model with asymmetric NK cell division. We have shown the results (Figs. S2-3) in the Supplementary material and discussed the results in the Results and Discussion sections. Please refer to our response #1 to Reviewer #1 for more details. 

      Reviewer #2 (Recommendations for the authors): 

      (1) Possible Typo (Page 12, Line 254): 

      The phrase: "immature NK cells compared to their immature counterparts" appears to contain a typo. Consider rephrasing for clarity. 

      Done. Thanks for finding this. 

      (2) Clarification of Data Source and Computational Procedure: 

      In the statement: "The NK cell clones reported by Flommersfeld et al. contained mixtures of CD27+ and CD27- NK cells. We evaluated the percentage of CD27+ NK cells in each clone and computed the correlation (Csize-CD27+) of the size of the clone with the percentage of CD27+ NK cells in the clones." Please clarify the data source and computational methodology for evaluating the percentage of CD27+ cells within clones. Additionally, consider including the curated data in the supplementary materials. Since the data originates from different immune compartments, explain which compartments were used. If data from all compartments were included, discuss how the calculated correlation changes when stratifying data from different sources (e.g., spleen and lymph nodes).  

      We have clarified the data source (spleen) where appropriate.

      (3) Figure 1b (Correlation Coefficient): 

      While the correlation coefficient with p-value is mentioned, it would be beneficial to also provide the standard deviation of the correlation coefficient and a 95% confidence band for the fitted line. This is particularly relevant as the authors use -0.2 as the upper bound for the correlation coefficient when fitting the three-stage model. 

      We have included the CI and the p-value for the correlation shown in Figure 1b. The figure with the 95% confidence band shown in the figure (appended below) where both axes are in normal scale does not appear visually clear as in Figure 1b where the clone sizes are shown in the logscale. Thus, we did not include the confidence band in Figure 1b but display the CI and p-values on the figure. If the reviewer prefers, we can include the figure with the confidence band in the SI.

      Author response image 2.

      (4) Confidence Intervals in Tables: 

      If confidence intervals in the tables are calculated using bootstrapping, please mention this explicitly in the table headings for clarity. 

      Done.

      (5) Figure 2d-e (Simulation Method): 

      Specify the simulation method used (e.g., stochastic simulation algorithm [SSA], as mentioned in the materials and methods). Panel (e) lacks a caption-please provide one. Additionally, it would be interesting to include the correlation between clone size and the fraction of CD27+ cells in the clones (similar to the experimental data from Flommersfeld et al., 2021). 

      Done.

      (6) Figure 3 (Confidence Band): 

      Include a 95% confidence band for the simulated values to enhance the interpretability of the plots. 

      Done.

      (7) Materials and Methods Section:  Include a mathematical formula defining the metrics described, ensuring clarity and precision. 

      Done. See newly added lines 587-599, as well as existing content in the Supplementary Materials.

      (8) Supplementary Text 1 (Numerical Integration and AICc): 

      The section "Numerical Integration of Master Equation and Calculation of the AICc" is well done. However, given that the master equation involves a system of 106 coupled ODEs, it would be highly appreciated if the authors provided the formulation in matrix representation for better comprehension. 

      We have included a supplementary text (Supplementary Text I) and a schematic figure within the text to provide the details.

      (9) Figure S7b (Three-State Model Validation): 

      Given that the three-state model fits the data, assess whether it can also fit the first and secondmoment data effectively. This validation would strengthen the robustness of the model.

      Although we showed that the best fit of the clonal burst data (moments) vastly overestimates the growth rates of endogenous cells (Figure S9a, previously Figure S7a), we did not fully emphasize the differences in the datasets that make fitting both with the same parameters impossible. We have added additional text in the main text where Figure S9a is located (lines 427-429) to discuss this.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Raices et al., provides novel insights into the role and interactions between SPO-11 accessory proteins in C. elegans. The authors propose a model of meiotic DSBs regulation, critical to our understanding of DSB formation and ultimately crossover regulation and accurate chromosome segregation. The work also emphasizes the commonalities and species-specific aspects of DSB regulation.

      Strengths:

      This study capitalizes on the strengths of the C. elegans system to uncover genetic interactions between a large number of SPO-11 accessory proteins. In combination with physical interactions, the authors synthesize their findings into a model, which will serve as the basis for future work, to determine mechanisms of DSB regulation.

      Weaknesses:

      The methodology, although standard, lacks quantification. This includes the mass spectrometry data , along with the cytology. The work would also benefit from clarifying the role of the DSB machinery on the X chromosome versus the autosomes.

      • We have uploaded the MS data and added a summary table with the number of peptides and coverage.

      • We have added statistics to the comparisons of DAPI body counts.

      • We have provided additional images of the change in HIM-5 localization

      • We have quantified the overlap (or lack thereof) between XND-1 and HIM-17 and the DNA axis

      Reviewer #2 (Public Review):

      Summary:

      Meiotic recombination initiates with the formation of DNA double-strand break (DSB) formation, catalyzed by the conserved topoisomerase-like enzyme Spo11. Spo11 requires accessory factors that are poorly conserved across eukaryotes. Previous genetic studies have identified several proteins required for DSB formation in C. elegans to varying degrees; however, how these proteins interact with each other to recruit the DSB-forming machinery to chromosome axes remains unclear.

      In this study, Raices et al. characterized the biochemical and genetic interactions among proteins that are known to promote DSB formation during C. elegans meiosis. The authors examined pairwise interactions using yeast two-hybrid (Y2H) and co-immunoprecipitation and revealed an interaction between a chromatin-associated protein HIM-17 and a transcription factor XND-1. They further confirmed the previously known interaction between DSB-1 and SPO-11 and showed that DSB-1 also interacts with a nematodespecific HIM-5, which is essential for DSB formation on the X chromosome. They also assessed genetic interactions among these proteins, categorizing them into four epistasis groups by comparing phenotypes in double vs. single mutants. Combining these results, the authors proposed a model of how these proteins interact with chromatin loops and are recruited to chromosome axes, offering insights into the process in C. elegans compared to other organisms.

      Weaknesses:

      This work relies heavily on Y2H, which is notorious for having high rates of false positives and false negatives. Although the interactions between HIM-17 and XND-1 and between DSB-1 and HIM-5 were validated by co-IP, the significance of these interactions was not tested, and cataloging Y2H interactions does not yield much more insight.

      We appreciate that the reviewer recognized the value of our IP data, but we beg to differ that we rely too heavily on the Y2H. We also provide genetic analysis on bivalent formation to support the physical interaction data. We do acknowledge that there are caveats with Y2H, however, including that a subset of the interactions can only be examined with proteins in one orientation due to auto-activation. While we acknowledge that it would be nice to have IP data for all of the proteins using CRISPR-tagged, functional alleles, these strains are not all feasible (e.g. no functional rec-1 tag has been made) and are beyond the scope of the current work.

      Moreover, most experiments lack rigor, which raises serious concerns about whether the data convincingly supports the conclusions of this paper. For instance, the XND-1 antibody appears to detect a band in the control IP; however, there was no mention of the specificity of this antibody.

      We previously showed the specificity of this antibody in its original publication showing lack of staining in the xnd-1 mutant by IF (Wagner et al., 2010). To further address this, however, we have now included a new supplementary figure (Figure S1) demonstrating the specificity of the XND-1 antibody by Western blot. The antibody detects a distinct band in extracts from wild-type (N2) worms, but this band is absent in two independent xnd-1 mutant strains. This confirms that the antibody specifically recognizes XND-1, supporting the validity of the IP results shown in the main figures.

      Additionally, epistasis analysis of various genetic mutants is based on the quantification of DAPI bodies in diakinesis oocytes, but the comparisons were made without statistical analyses.

      We have added statistical analysis to all datasets where quantification was possible, strengthening the rigor and interpretation of our findings.

      For cytological data, a single representative nucleus was shown without quantification and rigorous analysis. The rationale for some experiments is also questionable (e.g. the rescue by dsb-2 mutants by him-5 transgenes in Figure 2), making the interpretation of the data unclear. Overall, while this paper claims to present "the first comprehensive model of DSB regulation in a metazoan", cataloging Y2H and genetic interactions did not yield any new insights into DSB formation without rigorous testing of their significance in vivo. The model proposed in Figure 4 is also highly speculative.

      Regarding the cytology, we provide new images and quantification of HIM-17 and XND-1 overlap with the DNA axes. We also added full germ line images showing HIM-5 localization in wild type and dsb-1 mutants, to provide a more complete and representative view of the observed phenotype. To further support our findings, we’ve also included images demonstrating that this phenotype is consistently observed with both in live worm with the the him-5::GFP transgene and in fixed worms with an endogenously tagged version of HIM-5.

      Reviewer #3 (Public Review):

      During meiosis in sexually reproducing organisms, double-strand breaks are induced by a topoisomerase-related enzyme, Spo11, which is essential for homologous recombination, which in turn is required for accurate chromosome segregation. Additional factors control the number and genome-wide distribution of breaks, but the mechanisms that determine both the frequency and preferred location of meiotic DSBs remain only partially understood in any organism.

      The manuscript presents a variety of different analyses that include variable subsets of putative DSB factors. It would be much easier to follow if the analyses had been more systematically applied. It is perplexing that several factors known to be essential for DSB formation (e.g., cohesins, HORMA proteins) are excluded from this analysis, while it includes several others that probably do not directly contribute to DSB formation (XND-1, HIM-17, CEP-1, and PARG-1).

      We respectfully disagree with the reviewer’s statement regarding the selection of factors included in our analysis. In this work, our focus was specifically on SPO-11 accessory factors — proteins that directly interact with or regulate SPO-11 activity during doublestrand break formation. Cohesins and chromosome axis proteins (such as the HORMA domain proteins) are essential for establishing the correct chromosome architecture that supports DSB formation, but there is no evidence that they are direct accessory factors of SPO-11. Therefore, they were intentionally excluded from this study to maintain a clear and focused scope on proteins that more directly modulate SPO-11 function.

      Conversely, XND-1, HIM-17, CEP-1, and PARG-1 have all been implicated in regulating aspects of SPO-11-mediated DSB formation or its immediate environment. Although their contributions mayinvolve broader chromatin or DNA damage response regulation, prior literature supports their inclusion as relevant modulators of SPO-11 activity, justifying their analysis within the context of this work.

      The strongest claims seem to be that "HIM-5 is the determinant of X-chromosome-specific crossovers" and "HIM-5 coordinates the actions of the different accessory factors subgroups." Prior work had already shown that mutations in him-5 preferentially reduce meiotic DSBs on the X chromosome. While it is possible that HIM-5 plays a direct role in DSB induction on the X chromosome, the evidence presented here does not strongly support this conclusion. It is also difficult to reconcile this idea with evidence from prior studies that him-5 mutations predominantly prevent DSB formation on the sex chromosomes, while the protein localizes to autosomes.

      HIM-5 is not the only protein that is autosomally enriched but preferentially affects the X chromosome: MES-4 and MRG-1 are both autosomally-enriched but influence silencing of the X chromosome. While HIM-5 appears autosomally-enriched, it does not appear to be autosomal-exclusive. While we would ideally perform ChIP to determine its localization on chromatin, this method for assaying DSB sites is likely insufficient to identify DSB sites which differ in each nucleus and for which there are no known hotspots in the worm.

      him-5 mutants confer an ~50% reduction in total number of breaks and a very profound change in break dynamics (seen by RAD-51 foci (Meneely et al., 2012)). Since the autosomes receives sufficient breaks in this context to attain a crossover in >98% of nuclei, this indicates that the autosomes are much less profoundly impacted by loss of DSB functions than is the X chromosome. Indeed, prior data from co-author, Monica Colaiacovo, showed that fewer breaks occur on the X (Gao, 2015) likely resulting from differences in the chromatin composition of the X and autosome resulting from X chromosome silencing.

      The conclusion that HIM-5 must be required for breaks on the X comes from the examination of DSB levels and their localization in different mutants that impair but do not completely abrogate breaks. In any situation where HIM-5 protein expression is affected (xnd-1, him-17, and him-5 null alleles), breaks on the X are reduced/ eliminated. By contrast, in dsb-2 mutants, where HIM-5 expression is unaffected, both X and autosomal breaks are impacted equally. As discussed above, in the absence of HIM-5 function, there are ~15 breaks/ nucleus. The Ppie1::him-5 transgene is expressed to lower levels than Phim-5::him-5, but in the best case, the ectopic expression of this protein should give a maximum of ~15 breaks (the total # of breaks is thought to be ~30/nucleus). By these estimates, Ppie-1::him-5; him-17 and him-5 null mutants have the same number of breaks. Yet, in the former case, breaks occur on the X; whereas in the latter they do not. The best explanation for this discrepancy is that HIM-5 is sufficient to recruits the DSB machinery to the X chromosome.

      The one experiment that seems to elicit the conclusion that HIM-5 expression is sufficient for breaks on the X chromosome is flawed (see below). The conclusion that HIM-5 "coordinates the activities of the different accessory sub-groups" is not supported by data presented here or elsewhere.

      We have reorganized the discussion to more directly address the reviewers’ concerns. We raise the possibility that HIM-5 has an important role in bringing together the SPO-11 and its interacting components (DSB-1/2/3) with the other DSB inducing factors, including those factors that regulating DSB timing (XND-1), coordination with the cell cycle (REC-1), association with the chromosome axis (PARG-1, MRE-11), and coupling to downstream resection and repair (MRE-11, CEP-1).  

      This raises a natural question: if HIM-5 has such a central role, why are the phenotypes of HIM-5 so mild? We propose that while the loss of DSBs on the X appears mild, more profound effects are seen in the total number, timing, and placement of the DSBs across the genome- all of which are diminished or altered in the absence of HIM-5. The phenotypes of him-5 loss reminiscent of those observed in Prdm9-/- in mice where breaks are relocated to transcriptional start sites and show significant delay in formation. As with PRDM9, the comparatively subtle phenotypes of HIM-5 loss do not diminish its critical role in promoting proper DSB formation in most mammals.

      Like most other studies that have examined DSB formation in C. elegans, this work relies on indirect assays, here limited to the cytological appearance of RAD-51 foci and bivalent chromosomes, as evidence of break formation or lack thereof. Unfortunately, neither of these assays has the power to reveal the genome-wide distribution or number of breaks. These assays have additional caveats, due to the fact that RAD-51 association with recombination intermediates and successful crossover formation both require multiple steps downstream of DSB induction, some of which are likely impaired in some of the mutants analyzed here. This severely limits the conclusions that can be drawn. Given that the goal of the work is to understand the effects of individual factors on DSB induction, direct physical assays for DSBs should be applied; many such assays have been developed and used successfully in other organisms.

      We appreciate the reviewer’s thoughtful comments. We agree that RAD-51 foci are an indirect readout of DSB formation and that their dynamics can be influenced by defects in downstream repair processes. However, in C. elegans, the available methods for directly detecting DSBs are limited. Unlike other organisms, C. elegans lacks γH2AX, eliminating the possibility of using γH2AX as a DSB marker. TUNEL assays, while conceptually appealing, have proven unreliable and poorly reproducible in the germline context. Similarly, RPA foci do not consistently correlate with the number of DSBs and are influenced by additional processing steps.

      Given these limitations, RAD-51 foci remain the most widely accepted surrogate for monitoring DSB formation in C. elegans. While we fully acknowledge the caveats associated with this approach — particularly the potential effects of downstream repair defects — RAD-51 analysis continues to provide valuable insight into DSB dynamics and regulation, especially when interpreted in combination with other phenotypic assessments.

      Throughout the manuscript, the writing conflates the roles played by different factors that affect DSB formation in very different ways. XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes, including genes encoding proteins that directly promote DSBs. Mutations in either xnd-1 or him-17 result in dysregulation of germline gene expression and pleiotropic defects in meiosis and fertility, including changes in chromatin structure, dysregulation of meiotic progression, and (for xnd-1) progressive loss of germline immortality. It is thus misleading to refer to HIM-17 and XND-1 as DSB "accessory factors" or to lump their activities with those of other proteins that are likely to play more direct roles in DSB induction.

      It is clear that we will not reach agreement about the direct vs indirect roles here of chromatin remodelers/transcription factors in break formation. In yeast, there is a precedent for SPP1 and in mouse for Prdm9, both of which could be described as transcription factors as well, as having roles in break formation by creating an open chromatin environment for the break machinery. We envision that these proteins function in the same fashion. The changes in histone acetylation in the xnd-1 mutants supports such a claim.

      We do not know what the reviewer is referring to in statement that “XND-1 and HIM-17 have previously been shown to be transcription factors that promote the expression of many germline genes.” While the Carelli et al paper indeed shows a role for HIM-17 in expression of many germline genes, there is only one reference to XND-1 in this manuscript (Figure S3A) which shows that half of XND-1 binding sites overlap with the co-opted germline promoters. There is no transcriptional data at all on xnd-1 mutants, save our studies (referenced herein) that XND-1 regulates him-5 expression.

      For example, statements such as the following sentence in the Introduction should be omitted or explained more clearly: "xnd-1 is also unique among the accessory factors in influencing the timing of DSBs; in the absence of xnd-1, there is precocious and rapid accumulation of DSBs as monitored by the accumulation of the HR strand-exchange protein RAD-51.

      We are not sure what is confusing here. The distribution of RAD-51 foci is significantly altered in xnd-1 mutants and peak levels of breaks are achieved as nuclei leave the transition zone (Wagner et al., 2010; McClendon et al., 2016). There is no other mutation that causes this type of change in RAD-51 distribution.

      "The evidence that HIM-17 promotes the expression of him-5 presented here corroborates data from other publications, notably the recent work of Carelli et al. (2022), but this conclusion should not be presented as novel here.

      We have clarified this in the text. We note that this paper showed alterations in him-5 levels by RNA-Seq but they did not validate these results with quantitative RT-PCR. Thus, our studies do provide an important validation of their prior results.

      The other factors also fall into several different functional classes, some of which are relatively well understood, based largely on studies in other organisms. The roles of RAD50 and MRE-11 in DSB induction have been investigated in yeast and other organisms as well as in several prior studies in C. elegans. DSB-1, DSB-2, and DSB-3 are homologs of relatively well-studied meiotic proteins in other organisms (Rec114 and Mei4) that directly promote the activity of Spo11, although the mechanism by which they do so is still unclear.

      Whilst we agree that we understand some of the functions of the homologs, there are clearly examples in other processes of conserved proteins adopting unique regulatory function. We should not presume evolutionary conservation until proven. Indeed the comparison between the Mer2 proteins becomes particularly relevant here. For example, the RMM complex in plants does not contain PRD3, although this protein is thought to have function in DSB formation and repair (Lambing et al, 2022; Vrielynck et al., 2021; Thangavel et al., 2023). In Sordaria, as well, the Mer2 homolog has distinct functions (Tesse et al., 2017).  

      Mutations in PARG-1 (a Poly-ADP ribose glycohydrolase) likely affect the regulation of polyADP-ribose addition and removal at sites of DSBs, which in turn are thought to regulate chromatin structure and recruitment of repair factors; however, there is no convincing evidence that PARG-1 directly affects break formation.

      Our prior collaborative studies on PARG-1 showed that is has a non-catalytic function that promote DSBs that is independent of accumulation of PAR (Janisiw et al., 2020; Trivedi et al., 2022)

      CEP-1 is a homolog of p53 and is involved in the DNA damage response in the germline, but again is unlikely to directly contribute to DSB induction.

      We respectfully disagree with the reviewer’s statement. While CEP-1 is indeed a homolog of p53 and plays a major role in the DNA damage response, prior work from Brent Derry’s lab and from our group (Mateo et al., 2016) demonstrated that specific cep-1 separationof-function alleles affect DSB induction and/or repair pathway choice independently of canonical DNA damage checkpoint activation. In particular, defects in DSB formation observed in certain cep-1 mutants can be rescued by exogenous irradiation, supporting a direct or closely linked role in promoting DSB formation rather than merely responding to damage. Thus, based on these functional data, we considered CEP-1 a relevant factor to include in our analysis. We have now clarified this rationale in the revised manuscript.

      HIM-5 and REC-1 do not have apparent homologs in other organisms and play poorly understood roles in promoting DSB induction. A mechanistic understanding of their functions would be of value to the field, but the current work does not shed light on this. A previous paper (Chung et al. G&D 2015) concluded that HIM-5 and REC-1 are paralogs arising from a recent gene duplication, based on genetic evidence for a partially overlapping role in DSB induction, as well as an argument based on the genomic location of these genes in different species; however, these proteins lack any detectable sequence homology and their predicted structures are also dissimilar (both are largely unstructured but REC-1 contains a predicted helical bundle lacking in HIM-5). Moreover, the data presented here do not reveal overlapping sets of genetic or physical interactions for the two genes/proteins. Thus, this earlier conclusion was likely incorrect, and this idea should not be restated uncritically here or used as a basis to interpret phenotypes.

      Actually, there is quite good bioinformatic analysis that the rec-1 and him-5 loci evolved from a gene duplication and that each share features of the ancestral protein (Chung et al., 2015). We are sorry if the reviewer casts aspersions on the prior literature and analyses. The homology between these genes with the ancestral protein is near the same degree as dsb-1, dsb-2, or dsb-3 to their ancestral homologs (<17%).

      DSB-1 was previously reported to be strictly required for all DSB and CO formation in C. elegans. Here the authors test whether the expression of HIM-5 from the pie-1 promoter can rescue DSB formation in dsb-1 mutants, and claim to see some rescue, based on an increase in the number of nuclei with one apparent bivalent (Figure 2C). This result seems to be the basis for the claim that HIM-5 coordinates the activities of other DSB proteins. However, this assay is not informative, and the conclusion is almost certainly incorrect. Notably, a substantial number of nuclei in the dsb-1 mutant (without Ppie-1::him-5) are reported as displaying a single bivalent (11 DAPI staining bodies) despite prior evidence that DSBs are absent in dsb-1 mutants; this suggests that the way the assay was performed resulted in false positives (bivalents that are not actually bivalents), likely due to inclusion of nuclei in which univalents could not be unambiguously resolved in the microscope. A slightly higher level of nuclei with a single unresolved pair of chromosomes in the dsb-1; Ppie-1::him-5 strain is thus not convincing evidence for rescue of DSBs/CO formation, and no evidence is presented that these putative COs are X-specific. The authors should provide additional experimental evidence - e.g., detection of RAD-51 and/or COSA-1 foci or genetic evidence of recombination - or remove this claim. The evidence that expression of Ppie-1::him-5 may partially rescue DSB abundance in dsb-2 mutants is hard to interpret since it is currently unknown why C. elegans expresses 2 paralogs of Rec114 (DSB-1 and DSB-2), and the age-dependent reduction of DSBs in dsb-2 mutants is not understood.

      We have removed this claim in part because we have been unable to create the triple mutants strains to analyze COSA-1 foci.

      To the point about 11 vs 12 DAPI bodies: the literature is actually replete with examples of 11 DAPI bodies vs 12 in mutants with no breaks:

      Hinman al., 2021: null allele of dsb-3 has an average of 11.6 +/- 0.6 breaks;

      Stamper et al, 2013, show just over 60% of dsb-1 nuclei with 12 DAPI bodies and 5-10% with 10 DAPI bodies. (Figure 1);

      In addition, we also previously showed (Machovina et al., 2016) that a subset of meiotic nuclei have a single RAD-51 focus and can achieve a crossover. RAD-51 foci in spo-11 were also reported in Colaiacovo et al., 2003.

      Several of the factors analyzed here, including XND-1, HIM-17, HIM-5, DSB-1, DSB-2, and DSB-3, have been shown to localize broadly to chromatin in meiotic cells. Coimmunoprecipitation of pairs of these factors, even following benzonase digestion, is not strong evidence to support a direct physical interaction between proteins.

      Similarly, the super-resolution analysis of XND-1 and HIM-17 (Figure 1EF) does not reveal whether these proteins physically interact with each other, and does not add to our understanding of these proteins functions, since they are already known to bind to many of the same promoters. Promoters are also likely to be located in chromatin loops away from the chromosome axis, so in this respect, the localization data are also confirmatory rather than novel.

      While the binding to promoters would be expected to be on DNA loops, that has not been definitively shown in the worm germ line. The supplemental data of the Carelli paper suggests that there are ~250 binding sites for each protein at these coopted promoters. This could not account for crossover map seen in C. elegans.

      The reviewer states correct that we do not reveal that these proteins interact, but we have shown that the two proteins co-IP and have a Y2H interaction. This interaction is supporedt by a recent publication (Blazickova et al., 2025) corroborating this conclusion and identifies XND-1 in HIM-17 co-IPs also in the presence of benzonase. We do now show, however, by immuno-localization that the two proteins appear to be adjacent, but nonoverlapping. As now described in the text, AlphaFold 3 modeling and structural analysis suggests that the two proteins do interact directly and that the tagged 5’ end of HIM-17 used in our studies is likely to be at least 200nm from the putative XND-1 binding interface, a distance that is consistent with our confocal images showing frequent juxtaposition of the two proteins.

      The phenotypic analysis of double mutant combinations does not seem informative. A major problem is that these different strains were only assayed for bivalent formation, which (as mentioned above) requires several steps downstream of DSB induction. Additionally, the basis for many of the single mutant phenotypes is not well understood, making it particularly challenging to interpret the effects of double mutants. Further, some of the interactions described as "synergistic" appear to be additive, not synergistic. While additive effects can be used as evidence that two genes work in different pathways, this can also be very misleading, especially when the function of individual proteins is unknown. I find that the classification of genes into "epistastasis groups" based on this analysis does not shed light on their functions and indeed seems in some cases to contradict what is known about their functions. ‘

      As described above, each of the proteins analyzed is thought to have a direct role in regulating meiotic DSB formation and single mutant phenotypes are consistent with this interpretation. In almost all-if not all- of these cases, IR induced breaks suppress univalent phenotypes (or uncover a downstream repair defect (e.g. in mre-11)) supporting this conclusion. We have changed the terminology from “epistasis groups” since this is not strict epistasis, but rather, “functional groups”.  

      The yeast two-hybrid (Y2H) data are only presented as a single colony. While it is understandable to use a 'representative' colony, it is ideal to include a dilution series for the various interactions, which is how Y2H data are typically shown.

      The Y2H data are presented as spots on a plate and are from three to four individual transformants per interaction tested, and are not individual colonies. The experiment was repeated in triplicate from different transformations. We have now made this clearer in the materials and methods section. This approach has been successfully used to examine protein interactions in our prior manuscripts of yeast and human proteins [Gaines et al (2015) Nat. Comms 6:7834; Kondrashova et al (2017) Cancer Discovery 7:984; Garcin et al (2019) PLoS Genetics 15:e1008355; Bonilla et al (2021) eLife 1: e68080) Prakash et al (2022) PNAS 119: e2202727119, etc]

      Additional (relatively minor) concerns about these data:

      (1) Several interactions reported here seem to be detected in only one direction - e.g., MRE-11-AD/HIM-5-BD, REC-1-AD/XND-1-BD, and XND-1-AD/HIM-17-BD - while no interactions are seen with the reciprocal pairs of fusion proteins. I'm not sure if some of this is due to pasting "positive" colony images into the wrong position in the grid, but this should be addressed.

      The asymmetry in the interactions observed is due to the well-known phenomenon in yeast two-hybrid (Y2H) assays where certain plasmids exhibit self-activation when fused in one orientation, making interpretation of reciprocal interactions challenging. In our experiment, some of the plasmids indeed showed self-activation in one direction, which likely accounts for the lack of interaction seen with the reciprocal pairs of fusion proteins. We have clarified this point in the Methods.

      (2) DSB-3 was only assayed in pairwise combinations with a subset of other proteins; this should be explained; it is also unclear why the interaction grids are not symmetrical about the diagonal.

      We have now completed the analysis by adding the interactions of DSB-3 with the remaining proteins that were missing from the initial set.

      (3) I don't understand why the graphic summaries of Y2H data are split among 3 different figures (1, 2, and 3).

      We chose to split the graphic summaries of the Y2H data across Figures 1, 2, and 3 because we felt this organization better aligns with the flow of the results presented in each figure. Each set of interactions is shown in the context of the specific experiments and findings discussed in those sections, which we believe helps provide a clearer and more logical presentation of the data.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Figure 1: B) The IP is difficult to interpret - there is a band of the corresponding size to XND-1 in the control lane calling into question the specificity of the IP/Western.

      We added a supplemental figure with the specificity of the antibody showing that there is a background non-specific band.

      C) More information about the mass spectrometry should be included. No indication of the number of times a peptide was identified, or the overall coverage of the identified proteins.

      Done

      This is important as in the results section (line 114) the authors indicate that there was "strong" interaction yet there is no way to assess this.

      D) Why wasn't hatching measured in the him-5p::him-5; him-17(ok424) strain?

      Great question. I guess we need to do this while back out for review. If anyone has suggestions of what to say here. Clearly we overlooked this point but do have the strain.

      E) Quantification of the cytology should be included.

      We have now quantified overlap between XND-1 and HIM-17

      Figure 2: C) Statistics should be included.

      Done

      E) Quantification should be included for the cytology. I recommend changing the eals15 to HIM-5.

      We included better images showing whole gonads instead of one or two nuclei. We were not sure what the reviewers want us to quantify here since the relocalization of the protein to the cytoplasm is very clear.

      I have a general issue with the use of the term epistasis - this is used to order gene function based on different mutant phenotypes, usually with null alleles. While I think the authors have valid points with how they group the different SPO-11 accessory proteins, I do not think they should use the word epistasis, but rather genetic interactions.

      We appreciate the reviewers thoughts on this matter and have removed the term epistasis and use functional groups or genetic interactions throughout the text.

      Figure 4 and the nature of the X chromosome: First, I think it would help the non-C. elegans reader to include a little more information on the X chromosome with respect to its differences compared to the autosomes. I also think that, if possible, it would be beneficial to include a model of the X in Figure 4.

      We have added more about X/autosome differences in the intro and during the discussion of HIM-5 function and have added a figure showing difference in the behavior of the X/autosomes during DSB/crossover formation.

      Minor points:

      Abstract: Given the findings of Silva and Smolikove on SPO-11 breaks, I recommend removing "early" from line 28 in the Abstract.

      Done

      Introduction (line 93): I think "biochemical studies" is a stretch here - I recommend "interaction studies".

      Done

      Results: (lines 160-161): mutations are not required for breaks. Line 172, there is a problem with the sentence.

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      Major comments:

      (1) Figure 1B- The signal for XND-1 seems to appear both in the control and him-17::HA IP. Do the authors have tested the specificity of the XND-1 antibody?

      We included a supplementary figure demonstrating the specificity of the XND-1 antibody by Western blot. This was also previously published (Wagner et al., 2010)

      (2) Figure 1D - can the authors provide an explanation why the him-5p::him-5 transgene that drives a higher expression than pie-1p::him-5 fails to suppress the Him phenotype seen in him-17? What are the HIM-5 levels like in these two strains compared to N2 and him-17 null mutants? Can this information provide explanation for the differential effect of the him-5 transgenes?

      We previously reported that him-5p::him-5 drives higher expression than pie-1p::him-5 (McClendon et al, 2016).

      The reason that him-5p::him-5 does not rescue, despite higher wild type expression is that HIM-17 directly regulates expression of him-5. Since HIM-17 does not regulate the pie-1 promoter, the pie-1p::him-5 construct can at least partially suppress the him-17 mutation.

      We have (hopefully) explained this better in the text.  

      (3) Line 102- the subheading "HIM-5 is the essential factor for meiotic breaks in the Xchromosome" may not be appropriate for this section. This is what has previously been known. However, the results in Figure 1 demonstrate that a him-5 transgene can partially rescue the him-17 and ¬xnd-1 phenotype, but not that it is essential for meiotic DSB formation on X chromosomes.

      We think some of the concern here is sematic and have changed the phraseology to say that HIM-5 is SUFFICIENT for DSBs on the X… which had not previously been shown.

      Vis-à-vis the X chromosome, in all genetic backgrounds examined, the absence of HIM-5 consistently results in a complete lack of DSBs on the X. For instance, in dsb-2 mutants— where HIM-5 is still expressed—DSBs are reduced genome-wide, but the X chromosome occasionally retains breaks. In contrast, even a weak allele of him-17 results specifically in the loss of X chromosome breaks, underscoring a unique requirement for HIM-5 in promoting DSBs on the X. While Figure 1 shows that a him-5 transgene can partially rescue him-17 and xnd-1 phenotypes, the consistent observation that X breaks are absent without HIM-5 supports its classification as sufficient for DSB formation on the X chromosome.

      (4) Figure 1E - please consider enlarging the images and showing multiple examples.

      Done.

      I also suggest that the authors perform a more rigorous analysis to support the conclusion that XND-1 and HIM-17 localize away from the axis by quantifying multiple images and doing line-scan analysis.

      Provided. New images are provided in both, the main and supplemental figures, and quantification is included. There is no detectable overlap of the two protein with one another or the DNA axes (see quantification of overlap in Fig. 1).

      (5) Line 162 - This is the first mention of DSB-1, DSB-2, and DSB-3 in the paper. DSB-1 and DSB-2 are Rec114 homologs in C. elegans (Tesse et al., 2017), while DSB-3 is a homolog of Mei4 (Hinman et al., 2021). These proteins should be properly introduced in the introduction with appropriate citations.

      Done. We appreciate the reviewer pointing out that this was the first reference to these genes.

      (6) Line 169 - the rationale for this experiment is unclear. Why did the Y2H interaction between HIM-5 and DSB-1 prompt the authors to test the rescue of dsb-1 or dsb-2 phenotypes by the ectopic expression of him-5? Do the authors have evidence that HIM-5 level is reduced in dsb-1 or dsb-2 mutants?

      We have reorganized this section to better explain the motivation for looking at these interactions. We did see a difference in the localization in HIM-5 in the dsb-1 mutant animals and we did have a sense that HIM-5 was critical for breaks on the X. We reasoned that it could have independent functions in promoting breaks that were not yet appreciated so wanted to do this experiment.

      (7) Line 172 - "very slightly reduced". This claim requires statistical analysis.

      We added statistical analysis, but we also removed this claim.

      (8) Figures 2C and 2D - Can the authors provide an explanation why the pie-1p::him-5 transgene fails to suppress the phenotypes in dsb-1, while the him-5p::him-5 trasgene can? Again, the rationale for these experiments is unclear. Because of this, the interpretation is also unclear.

      The difference in rescue between the pie-1p::him-5 and him-5p::him-5 transgenes likely reflects differences in expression levels. As previously shown (McClendon et al., 2016), the him-5p::him-5 construct results in significantly higher expression of HIM-5 protein compared to pie-1p::him-5. This elevated expression likely explains its ability to partially rescue the dsb-1 phenotype. In contrast, the lower expression driven by the pie-1 promoter is insufficient to compensate for the absence of dsb-1 function. We have clarified the rationale and interpretation of these experiments in the revised manuscript to better reflect this point.

      (9) Lines 184-185 - the data for endogenously tagged HIM-5::3xHA are not shown anywhere in the paper. This must be shown.

      We have added this in the supplemental figures.

      (10) Figure 2D and 2E - what does the localization of pie-1p::him-5::GFP (eaIs15) and him5p::him-5::GFP (eaIs4) look like in wild-type and dsb-1 mutants? Are the cytoplasmic aggregates caused by increased levels of HIM-5 expression? Can the differential behavior of him-5 transgenes provide explanation for differential rescues?

      We now show both live and fixed images of Phim-5::him-5::gfp transgenes, as well as the localization of the endogenously HA-tagged HIM-5 locus (Figure 2 and S3). In all cases, the protein is initially nuclear and then absent from meiotic nuclei with similar timing. The Ppie1::him-5 transgene was very difficult to image due to low expression (even in wild type) so it not shown here. We presume it is the slightly elevated level of expression of the Phim5::him-5::gfp that can explain the differential rescue.

      (11) Lines 221-222, where are the results shown? Please refer to Figure S3.

      Done

      (12) Figure S3 - these need statistical analyses.

      Done

      (13) Lines 230-231 - what about the rec-1; parg-1; cep-1 triple mutant?

      This is an excellent suggestion and not one we have not yet pursued. Given the lack of strong phenotypes in all combination of double mutants, we prioritized other experiments . However, we agree that examining the rec-1; parg-1; cep-1 triple mutant would provide a valuable test of whether these factors act in the same pathway, and we appreciate the reviewer highlighting this potential future direction.

      (14) Line 298 - I suggest the authors take a look at the Alphafold prediction of DSB-1/DSB-2/DSB-3 and the comparison to human and budding yeast Rec114/Mei4 complex in Guo et al., 2022 eLife, which could provide insights into the Y2H results.

      We thank the reviewer for these comments and have indeed used these interactions and predicted homologies to zero in a region of interaction between these proteins that resembles what is seen in humans and yeast with a dimer of REC114 like proteins wraps stabilizing a central Mei4 helix . This is now shown in Figure 3H, I. Satisfyingly, this modeling predicts that a trimer comprised of 2 DSB-1 proteins with DSB-3 is more stable than a DSB1-DSB-2-DSB-3 trimer. This might explain why DSB-2 is not required in young adults and only becomes essential as DSB-1 levels drop in older animals (Rosu et al., 2013)

      (15) Can the authors introduce mutations within the DSB-1 interfaces that disrupt the interaction to either SPO-11 or DSB-2?

      We have begun to address this question by introducing targeted mutations within DSB-1. As shown in Figure 3E and 3F, mutations in the C-terminal region of DSB-1—which includes a core of four α-helices—disrupt its interaction with DSB-2 and DSB-3, but not with SPO-11. These findings suggest that the C-terminus mediates interactions specifically with DSB2 and DSB-3

      (16) Line 323 - The him-5 phenotypes are too weak to support the idea that it serves as the linchpin for the whole DSB complex. Do the authors have an explanation for why him-5 mutants exhibit X-chromosome-specific DSB defects?

      In response to the reviewer, above, and in the text, we have included a more detailed explanation of why we think HIM-5 has a key role in coordinating meiotic break formation. Although, identified for its role on the X, the phenotypes associated with DSB formation in the mutant are really quite pleiotropic and severe.

      (17) Line 436 - C. elegans lacks DSB hotspots.

      Removed

      Minor comments:

      (1) Figure 1A - please show the raw data for the yeast two-hybrid.

      We show representative yeast colonies in Figure S3.

      (2) It looks like the labeling for Figure 1B and 1C are switched.

      Fixed.

      (3) Figure 1B - what does the red box indicate? Please explain it in the legend.

      It indicates the XND-1 band. We added that information in the legend.

      (4) Figure 1C - in the legend, it was noted that the results are from GFP pulldowns of HIM17::GFP. However, the method for Figure 1B and the method section noted that HIM-17 was tagged with 3xHA, and the pull-down was performed using anti-HA affinity matrix. Please reconcile this discrepancy.

      That’s because they were done in two different sets of experiments. For the IPs we used a HIM-17::HA strain and for the MS, a HIM-17::GFP strain.

      (5) Also in Figure 1C - please call Table S2 in the main text when discussing the mass spec results. Also, it is not clear what HIM-17 and GFP indicate in the table. What makes CKU80 different from the other proteins listed under GFP? Please explain more clearly in the legend.

      We have move the table to supplemental data where we have included all of the peptide counts and gene coverage. We have included in the revised method rationale for inclusion in this table which explains why CKU-80 differs.

      (6) Line 527 - it is unclear what experiment was done for HIM-17. Please revise it to indicate that this is for "HIM-17 immunoprecipitation". Also please indicate the strain used for HIM17 pull-down (AV280?).

      (7) Line 113- please be specific about how the HIM-17 IP was performed. Which epitope and strains are used for pull-downs?

      This indeed was AV280. This has been added to the text and methods.

      (8) Figure 1D- What does ND mean? In the text, it was stated that there was only a minor suppression of hatching rates. The hatching rate for him-5p::him-5; him-17 must have been measured, and the data must be presented.

      ND does mean not determined. We have removed the statement about “minor suppression”. We only tested the overall population dynamics in the Phim-5::him-5;him17(ok424) and the DAPI body counts. The failure to suppress the latter suggests there would be no enect on hatching rates, although we did not test this directly. Since we had done this for the Ppie-1::him-5;him-17 strain, we provided this information to further support the claims of genetic rescue by ectopic expression.

      (9) Line 151 - please specify that STED was used.

      We have removed the STED images, and just show the confocal images with Lightning Processing.

      (10) Figure 1E- the authors suggested that HIM-17 and XND-1 mainly localize to autosomes but not the X chromosome. However, there is not enough evidence that the chromosome excluded from HIM-17 staining is indeed an X chromosome.

      (11) Figure 1E (Line 154) - what are the active chromatin markers examined? Where are the data?

      We have previously shown that the chromosome lacking XND-1 staining is the X (Wagner et al., 2010). The X is heterochromatic and chromatin marks associated with active transcription, including H3K4me3 and HTZ-1 (a variant H2A), preferentially localize to autosomes, effectively anti-marking the X chromosome. As shown in the new Figure 1E, a single chromosome has very little XND-1 and HIM-17 associated proteins. This is the X chromosome.

      (12) Line 172 - It should be a comma instead of the period after "In dsb-1 mutants".

      Fixed

      (13) Figure S3H-K - I suggest the authors indicate the alleles of mre-11 (null vs. iow1) on the graph, similarly to him-5(e1490) to avoid confusion.

      Done

      (14) Lines 294 and 600 - Guo et al. 2022 is now published in eLife. The authors must cite the published paper, not the preprint.

      Fixed

      (15) Line 407 - the reference Carelli et al., 2022 is missing.

      Added

      (16) Line 766 - please remove "is" before nuclear.

      Done

      Reviewer #3 (Recommendations For The Authors):

      Major issues:

      In my view, the most interesting mechanistic finding in the paper is the evidence that HIM-5 may not bind to chromatin in the absence of DSB-1. If validated, this would suggest that HIM-5 is likely to be directly involved in a process that promotes break formation, in contrast to factors such as HIM-17 and XND-1. It does not, however, support the idea that HIM-5 is at the top of a hierarchy of DSB factors, as it is interpreted here. More importantly, the data supporting this claim are unconvincing; only a single image of an unfixed gonad from an animal expressing HIM-5::GFP is shown. Immunofluorescence should be performed and the results must be quantified.

      We have provided additional images of the HIM-5 relocalization to show that we observed this in both fixed and live worms with two different tagged strains. The exclusion from the nucleus is seen in all scenarios. Whether the protein now accumulates exclusively in the cytoplasm/ is destabilized is challenging to address with the fixed images due to the arbitrariness of defining “background” staining.

      More generally, this type of analysis, looking at the interdependence of different factors for their association with chromosomes, is much more informative than the genetic interaction data presented in the paper, which does not seem to provide any mechanistic insights into the functions of the factors analyzed. The paper could potentially be greatly improved through a more extensive, systematic analysis of the interdependence of DSBpromoting factors for their localization to chromosomes.

      We have at least added this for XND-1 and HIM-17 and show they are not interdependent for chromosome association. We also provide for the first time data on the localization of HIM-5 in the dsb-1 mutant. Many of the other interactions have already been shown in the literature and/or were not warranted base on the lack of genetic interaction we present here.

      Minor issues:

      The title is vague and inconclusive. A more concrete title summarizing the major findings would help readers to assess whether the work is of interest.

      We have discussed the title extensively with all authors and all would like to keep the current title.

      The authors claim that the expression of HIM-5 from a different promoter (Ppie-1::him-5) but not its endogenous promoter (Phim-5::him-5) can partially rescue the DSB defect in him-17 mutants. To support this claim, they should really quantify the germline expression of HIM-5 in wild-type, him-17, him-17; Ppie-1::him-5, and Phim-5::him-5; him-17.

      We had previously reported the expression in the N2 background of both transgenes (McClendon et al., 2016)

      Panel O appears to be missing from Figure S3.

      Fixed

      The evidence for chromosome fusions in cep-1; mre-11 mutants shown in S4D is not convincing and the claim should be removed unless stronger evidence can be obtained.

      A clearer image has been added

      The basis of the following statement is unclear: "Furthermore, rec-1;him-5 double mutants give an age-dependent severe loss of DSBs (like dsb-2 mutants) suggesting that the ancestral function of the protein may have a more profound effect on break formation." The manuscript does not seem to include data regarding age-dependent loss of DSBs and no other publication is cited to support this claim. The interpretation is also perplexing; I think that it may be predicated on the idea that REC-1 and HIM-5 are paralogs, but as stated above, this claim is not well supported and is likely specious.

      We have added the reference. This was shown in Chung et al., 2013 – the paper that presented the cloning of the rec-1 locus.

  3. Sep 2025
    1. Author response:

      We thank the reviewers and editors for their thoughtful and constructive feedback. We have carefully considered the comments and plan to revise the manuscript as follows:

      · Methods: We will expand the Methods section to provide additional details regarding the Pavlovian fear conditioning procedure, including instructions, experimental parameters, and the randomization process.

      · Figures and Statistical Reporting: We will break down some figures where appropriate and clearly display the distributions of key variables. We will also include additional statistical details in the main text and elaborate on the analyses where needed.

      · Language and Interpretation: We will revise the text to consistently use correlational rather than causal terminology, ensuring that our conclusions accurately reflect the findings from the fMRI data.

      · Computational Model of the Pulvinar: We will further elaborate on the assumptions and limitations of the intra-pulvinar model, discuss potential neural pathways and candidate regions (e.g., visual cortex), and highlight directions for future work, including studies in nonhuman primates to investigate anatomical connectivity.

      · Alternative Hypotheses of the mediodorsal thalamus-anterior pulvinar relationships: Other pulvinar subregions were already included as covariates in our hierarchical regression analyses, allowing us to account for anatomical proximity and shared variance. We will make this analysis more explicit and clarify the thinking process behind this analysis to allow readers to assess the specificity of the anterior pulvinar-mediodorsal thalamus relationship.

      · Limitations: We will add a dedicated subsection outlining key limitations, including considerations specific to fMRI studies.

      · Data Availability: All data and materials used in this study will be made available upon request from the corresponding author, subject to obtaining the necessary institutional authorization for the data-sharing agreement.

      We are confident that these revisions will enhance the clarity, transparency, and interpretability of the work, and we are grateful to the reviewers for their valuable suggestions. We will provide a detailed, point-by-point response along with the revised submission as soon as possible.

    1. Author response:

      Joint Public Review

      This manuscript puts forward the provocative idea that a posttranslational feedback loop regulates daily and ultradian rhythms in neuronal excitability. The authors used in vivo long-term tip recordings of the long trichoid sensilla of male hawkmoths to analyze spontaneous spiking activity indicative of the ORNs' endogenous membrane potential oscillations. This firing pattern was disrupted by pharmacological blockade of the Orco receptor. They then use these recordings together with computational modeling to predict that Orco receptor neuron (ORN) activity is required for circadian, not ultradian, firing patterns. Orco did not show a circadian expression pattern in a qPCR experiment, and its conductance was proposed to be regulated by cyclic nucleotide levels. This evidence led the authors to conclude that a post-translational feedback loop (PTFL) clockwork, associated with the ORN plasma membrane, allows for temporal control of pheromone detection via the generation of multi-scale endogenous membrane potential oscillations. The findings will interest researchers in neurophysiology, circadian rhythms, and sensory biology. However, the manuscript has limited experimental evidence to support its central hypothesis and is undermined by several questionable assumptions that underlie their data analysis and model builds, as well as insufficient biological data, including critical controls to validate and/or fully justify the model the authors are proposing.

      We thank the reviewers for their thorough and thoughtful comments and believe that the manuscript will be much stronger once we incorporate the requested changes.

      Please note that we used ORN as acronym for “olfactory receptor neuron” throughout the manuscript. ORNs contain odorant receptors (ORs), and in insects these ORs have to associate with the olfactory receptor co-receptor (Orco) in the cilium of the neuron to form functional OR-Orco complexes for odorant detection. Besides this chaperone function, Orco can form homomers with the potential to act as ionic pacemaker channels; a role which we explore in this study.

      Strengths:

      The study is notable for its combination of long-term in vivo tip recordings with computational modeling, which is technically challenging and adds weight to the authors' claims. The link between Orco, cyclic nucleotides, and circadian regulation is potentially important for sensory neuroscience, and the modeling framework itself - a stochastic Hodgkin-Huxley formulation that explicitly incorporates channel noise - is a solid and forward-looking contribution. Together, these elements make the study conceptually bold and of clear interest to circadian and olfactory biologists.

      Major weaknesses:

      At the same time, several limitations temper the conclusions. The pharmacological evidence relies on a single antagonist and concentration, without key controls. The circadian analysis is based on relatively small numbers of neurons, with rhythms detected only in subsets, and the alignment procedure used in constant darkness raises concerns of bias. The molecular evidence is sparse, with only three qPCR timepoints, and the model, while creative, rests on assumptions that are not yet fully supported by in vivo data.

      Please see our responses to the detailed comments.

      Detailed comments are provided below:

      (1) The role for Orco proposed in the authors' model largely stems from the effects seen following the administration of (a single dose) of the Orco antagonist, OLC15. However, this hypothesis is undercut by the lack of adequate pharmacological controls, including a basic multipoint OLC15 dose-response series in addition to the administration of blockers for the other channels that are embedded in their model, but which were ruled out as being involved in the modulation of biological rhythms. In addition, these studies would (ideally) also benefit from the inclusion of the same concentration (series) of an inactive OLC15 analog to better control for off-target effects.

      The Orco agonist VUAA1 (Jones et al., 2011) binds directly to Orco and increases the channel open time probability. In M. sexta hawkmoths, we have already published that VUAA 1 increases the low spontaneous activity of ORNs in a dose-dependent fashion (Nolte et al., 2016). Chen and Luetje (2012) systematically varied the chemical structure of VUAA1 to identify new Orco ligands and discovered 22 Orco Ligand Candidates (OLC) that either activated or inhibited Orco. In their heterologous expression system, Orco was most sensitive to inhibition by OLC15. Based on these results, we published a dose-response curve of OLC15 inhibition (1-100 µM) using in vivo tip recordings of pheromone-sensitive long trichoid sensilla of M. sexta (Nolte et al., 2016). In that study, we could also demonstrate that OLC15 antagonizes the VUAA1 activation of Orco.

      Furthermore, we tested other published Orco antagonists in in vivo assays in intact hawkmoths, focusing on amiloride-derived antagonists, because we previously identified an amiloride-sensitive cation channel in hawkmoth ORNs. We found that, in contrast to OLC15, the amilorides HMA and MIA were not Orco-specific but instead affected different targets depending on time-of-day (Nolte et al., 2016). Based on those experiments and the dose-response curves we determined that the Orco agonist VUAA1 (Jones et al., 2011) and the Orco antagonist OLC15 (Chen and Luetje, 2012) worked best in hawkmoth ORNs to target Orco pharmacologically. Based on comparative tests with other published Orco antagonists we settled since then in all further experiments on a dose of 50 µM OLC15.

      We will clarify the Methods section accordingly.

      (2) The expression pattern of Orco was assessed using qPCR at only three timepoints. Rhythmic transcripts can easily be missed with such sparse sampling (Hughes et al., 2017). A minimum of six evenly spaced timepoints across a 24-hour cycle would be required to confidently rule out circadian transcriptional regulation. In addition, the use of the timeless mRNA control from another study is not acceptable. Furthermore, qPCR analysis measures transcript abundance, not transcription, as the authors repeatedly state. Transcriptional studies would require nuclear run-off or, more recently, can be done with snRNAseq analysis. Taken together, these concerns undermine the authors' desire to rule out TTFL-based control that directly led them to implicate a PTTF-based model.

      We agree with the referees that more time points and a direct comparison between timeless and Orco mRNA levels should be included in this manuscript. We will include these additional qPCR experiments and edit the manuscript to make clear that we measure transcript abundance, but we will not perform snRNAseq analysis due to time- and financial constraints. We are currently working on the transcriptional control of Orco, both during ontogeny and throughout the day but this work in progress is beyond the scope of this manuscript.

      (3) The modelling presented is based on Orco as a ZT-dependent conductance tied to the cAMP oscillations that were reported by this group in the cockroach and from the presence and functionality in Manduca of homomeric Orco complexes that are devoid of tuning ORs. While these complexes have been generated in cell culture and other heterologous expression systems, as well as presumably exist in vivo in the Drosophila empty neuron and other tuning OR mutants, there is no evidence that these complexes exist in wild-type Manduca ORNs. While this doesn't necessarily undermine every aspect of their models, the authors should note the presence of Orco/OR complexes rather than Orco homomeric complexes.

      Our ELISAs found circadian oscillations in cAMP levels not only in antennae of the Madeira cockroach (Schendzielorz et al., 2014, 2012), but also in hawkmoth antennae (Schendzielorz et al., 2015). We will add the 2015 citation to the Modeling chapter in the Methods section to clarify this.

      We agree with the referees that we cannot distinguish between Orco homo- and heteromers in the different compartments of our hawkmoth ORNs. Thus, as the referee suggests, we will add text regarding the presence and localization of OR-Orco heteromers. However, we have indications that Orco homomers could indeed be present in the hawkmoth ORNs. In a heterologous expression system, MsexOrco expression alone was sufficient to increase intracellular Ca<sup>2+</sup> levels in response to VUAA1 application (Nolte et al., 2013). In differentiating primary cell cultures of hawkmoth antennae, Orco expression started during a developmental time window where ORNs did not yet express pheromone receptors, and Orco affected spontaneous activity (Nolte et al., 2016). Thus, Orco homomers are present in developing hawkmoth ORNs during a time window where ORNs already express spontaneous activity but cannot heteromerize with pheromone receptors. However, we do not know whether and in what ratio homo- and heteromers of Orco and ORs are present in the respective sensillum compartments of adult hawkmoths (Nolte et al., 2013; Stengl, 1994; Stengl and Hildebrand, 1990).

      We will clarify our manuscript accordingly.

      (4) Some aspects of the authors' models, most notably the decision to phase align/optimize their DD and OLC15 recordings, are likely to bias their interpretations.

      It is consensus that insects display daily and circadian rhythms in pheromone-dependent mating, odor-gated feeding, and egg-laying behavior that phase-locks to environmental rhythms, corresponding with daily/circadian rhythms of sensory neuron physiology (e.g., Merlin et al., 2007; Rymer et al., 2007; Schendzielorz et al., 2015, 2012). However, circadian rhythms can be easily masked by stress, like the disturbances during a very challenging long-term recording experiment over several days. In addition, we observed in our animal raising facility that in LD 17:7 light-dark cycles the originally nocturnal hawkmoths M. sexta distribute their activity patterns over the course of the day, finding nocturnal as well as diurnal hawkmoths. Thus, light-dark cycles were not enough to ensure phase-synchronized behavioral rhythms, and it is very likely that the nocturnal hawkmoths rely heavily on pheromone/odor dependent synchronization as also found in other moth species (Ghosh et al., 2024). Here, we used isolated males that were never exposed to the female pheromones so that their circadian activity patterns readily disperse. Therefore, it became necessary in free-running conditions to first determine the respective behavioral rhythm for each animal, and then to phase-align their activity patterns to allow for statistical analysis. Otherwise, circadian differences would average out in a free-running population. As requested by the referees in point (7), we will use additional tests for rhythmicity in each of our recordings and revise the manuscript accordingly.

      Assuming that hawkmoths need pheromone presence as additional Zeitgeber, we are currently working on a new set of experiments where we attempt to improve synchronization by exposure to LD cycles and pheromone before DD and OLC15 recordings. We will add these experiments to the manuscript.

      (5) The tip recordings from long trichoid sensilla are critical aspects of this study. These recordings were carried out on upper sensillar tips located on the distal-most second annulus. Since there are approximately 80 annuli on the Manduca antennae, it is unclear whether the recordings are representative of the antennal response.

      We think the reviewers might have misinterpreted our description of the recording site. In the Methods, we state that we clip off the 20 most distal annuli (leaving a stump of about 60 annuli) and insert the reference electrode into the flagellum up to the second annulus from the cut end, i.e., the recording site is located at 2/3 – 3/4 of the antenna length as seen from the head of the animal. We will make this more clear in the Methods section.

      In addition, our lab did show with antibody stainings against Orco that apparently all ORNs that innervate long and short trichoid sensilla along the whole flagellum express the same staining pattern (Nolte et al., 2016). Furthermore, our patch clamp recordings of primary cell cultures of whole male antennae found largely overlapping ion channel populations across ORNs. This would indicate that all ORNs, whether they express pheromone- or general odorant receptors, could potentially share the same Orco-dependent spontaneous activity rhythms. In our lab, different experimenters from different years that recorded from long trichoid sensilla on different annuli did not detect obvious differences in neither the spontaneous activity nor the pheromone responses (c.f., Dolzer et al., 2003; Gawalek and Stengl, 2018; Schneider et al., 2025). Thus, it is very likely that we are reporting a general encoding mechanism that is not locally restricted along the antennal flagellum.

      (5.1) The authors do not provide any data in support of their cAMP/cGMP-based Orco gating…

      There are publications supporting cyclic nucleotide gating of Orco in Drosophila, but only after previous phosphorylation via protein kinase C (PKC; review: (Wicher and Miazzi, 2021)). Since Orco is very conserved among insect species, it is likely that these PKC and cGMP/cAMP-dependent regulations are present in other insect species. We are currently running thorough tip-recording experiments on the regulation of Orco gating, which are beyond the scope of this manuscript. However, we will add a set of experiments to this manuscript that demonstrates cAMP gating of Orco.

      (5.2)… and the PTTF model proposed is somewhat disappointing.

      For a detailed introduction of our PTFL membrane clock hypothesis please see our opinion paper (Stengl and Schneider, 2024).

      (5.3) The model seems to be influenced by their long-held proposal that insect olfactory signaling has a critical metabotropic component involving cyclic nucleotides, PKC, etc, a view that may be influenced by the use of Orco homomeric complexes generated in HEK cells.

      Indeed, we propose a metabotropic pheromone-transduction cascade, which in moths and cockroaches is based on G-protein-mediated activation of phospholipase C but not on adenylyl cyclase activation. Our hypothesis is not influenced by HEK cell heterologous expression studies of Orco but is supported by our own work comparing in vivo tip recordings of intact hawkmoths with patch clamp experiments on hawkmoth primary cell cultures of olfactory receptor neurons, which are able to respond to their species-specific pheromones in vitro ((Schneider et al., 2025; Stengl, 2010; Stengl and Funk, 2013; Wicher and Miazzi, 2021). In addition, a multitude of publications by other laboratories with in vivo and in vitro studies using physiological, genetic, and immunocytochemical assays all support a metabotropic signal transduction cascade in insect olfaction (reviews: Stengl, 2010; Stengl and Funk, 2013; Wicher and Miazzi, 2021). In contrast, the hypothesis suggesting a solely ionotropic pheromone- and general odor-dependent transduction cascade for all insect species is based on very sparse experimental evidence, based primarily on heterologous expression studies such as HEK cells that lack the insect’s WT molecular surroundings, and thus, cannot predict OR-Orco function in vivo. Furthermore, the ionotropic hypothesis is heavily based upon the argument that an inverse 7TM receptor cannot couple to G-proteins, which lacks careful backup via biochemical and structural studies. In addition, the ionotropic hypothesis lacks support via carefully performed physiological in vivo studies in different insect species that paid attention to analysis of the distinct kinetic components of ORN´s odor/pheromone responses and that employ physiological concentrations and durations of odor/pheromone stimuli (please see our most recent publication by Schneider et al. (2025)).

      (5.4) Nevertheless, structural studies on Orco do not support a cyclic nucleotide binding site, although PKC-based phosphorylation has been implicated in the fine-tuning/adaptation of olfactory signaling.

      While structural studies did not find evidence for conserved known cyclic nucleotide binding sites on Orco, this does not exclude the presence of so far unknown binding sites, or via sites that fold out only after a specific sequence of previous phosphorylations of the many phosphorylation sites on Orco. Indeed, physiological studies in Drosophila presented evidence for cyclic nucleotide dependence of Orco after previous PKC-dependent phosphorylation (Getahun et al., 2013). Our ongoing in vivo experiments in hawkmoths further corroborate a PKC- and cAMP-dependent modulation of Orco. These studies will be published in a follow-up publication.

      (6) Because only 5/11 LD and 7/10 DD animals showed daily rhythms, with averages lacking clear daily modulation, the methods are not sufficiently reliable enough to reveal novel underlying mechanisms of circadian rhythm generation. The reported results are therefore not yet reliable or quantifiable. To quantify their results, the authors should apply tests for circadian rhythmicity using methods such as RAIN, JTK CYCLE, MetaCycle, or Echo. The use of FFT and Wavelet is applauded, but these methods do not have tests of significance for rhythms and can be biased when analyzing data in which there could only be 1-3 circadian cycles. Because the conclusions appear to be based on 11-12 neurons that were recorded for 2-4 days, the reader is concerned that the methods are not yet perfected to provide strong evidence for circadian regulation of spontaneous firing of ORNs. The average data (e.g., Figure 3Bii and 3Cii) highlight the apparent lack of daily rhythms. In summary, the results would be more compelling if more than 50% of the recordings had significant circadian amplitudes and with similar periods and phases.

      The long-term tip-recordings of intact hawkmoths are very challenging and take a very long time to accomplish, thus, we are very happy that we succeeded in obtaining so many of them (N=34). Since 5/11 LD recordings and 7/10 DD recordings revealed daily/circadian rhythmicity and since many other physiological recordings at different ZTs of different members of our laboratory all revealed ZT-dependent pheromone-transduction we can be certain that the physiology of hawkmoth antennae is under strict circadian control. Please see also our response to (4) above commenting the phase-dispersal of activity rhythms observed in our experiments, as well as in the behavior of hawkmoth males in the mating cage.

      Nevertheless, we will follow the advice of the referees to apply additional tests for significance of rhythms in spontaneous activity, and we are thankful for the tests suggested that we were not aware of.

      (7) The statement that circadian patterns of ORN firing are lost with the Orco antagonist (OLC15) is not strongly supported. The manuscript should be revised to quantify how Orco changed circadian amplitude in the 12 recorded neurons. Measures of circadian amplitude can avoid confusing/vague statements like Line 394 “low and high frequency bands appeared to merge during the activity phase around ZT 0 in the animals that showed clear circadian rhythms (N = 5 of 11 in LD)”. The conclusion that Orco blocks circadian firing appears to be contradicted by Figure 6, which indicates that ~6 of these neurons had circadian periods detected by wavelet. The manuscript would be strengthened with details about the specificity and reproducibility of the Orco antagonist. The authors quantify the gradual decrease in firing with the slope of a linear fit to estimate how the “effectiveness [of OLC15] increased over time.” They conclude that the drug “obliterated circadian rhythms and attenuated the spontaneous activity in several, but not all experiments (N = 8 of 12).” The report would be greatly strengthened with corroborating data from additional Orco antagonists and additional doses of OLC15 (the authors use only 50 uM OLC15).

      We will revise our data analysis, according to the valuable suggestions of the referees.

      However, based upon our previous studies with other Orco antagonists and different doses of OLC15 (Nolte et al., 2016) we found that 50 µM OLC15 is the best Orco antagonist dose in M. sexta to target Orco-dependent modulation of spontaneous action potential activity of hawkmoth olfactory receptor neurons. Please see also our response to (1).

      (8) The manuscript includes several statements that are more speculation than conclusion. For example, there is no evidence for tuning or plasticity in this report. Statements like the following should be removed or addressed with experiments that show changes in odor response specificity or sensitivity: "ORN signalosomes are highly plastic endogenous PTFL clocks comprising receptors for circadian and ultradian Zeitgebers that allow to tune into internal physiological and external environmental rhythms as basis for active sensing." (Discussion Line 622). The paper concludes that (line 380) "mean frequency of spontaneous spiking and the frequency of bursting expressed daily modulation, and are both most likely controlled via a circadian clock that targets the leak channel Orco." This is too bold given the available results.

      We will revise the discussion accordingly and clarify which statements are supported via published evidence and which are predictions based upon our novel hypothesis published in our opinion paper (Stengl and Schneider, 2024).

      (9.1) Because Orco conductance is modulated by cyclic nucleotides, it remains highly plausible that circadian regulation occurs upstream at the level of signaling pathways (e.g., calcium, calcium-binding proteins, GPCRs, cyclases, phosphodiesterases).

      We agree with the referees that it is very likely that there are multiple layers of interconnected feedback cycles that control Orco localization and activity. Our novel hypothesis suggests interlocked TTFL and PTFL control of physiological circadian rhythms, not strictly hierarchical TTFL control, which would require a daily turnover of membrane proteins and transcriptional control via the established TTFL clock in insect ORNs. We currently search for TTFL control at all levels of odor/pheromone transduction using ZT-dependent transcriptomics in combination with qPCR and single nuclear transcriptomics, involving also all the molecules suggested by the referees. These studies are ongoing, are very time- and money-consuming, and are beyond the scope of this manuscript.

      (9.2) The possibility that circadian oscillations of cyclic nucleotides are generated by the canonical TTFL mechanism has not been excluded. In fact, extensive work in Drosophila has demonstrated that the TTFL-based molecular clock proteins are required for circadian rhythms in olfaction.

      Our experiments that test circadian TTFL control at different levels of the cAMP transduction cascade in hawkmoth antennae are on the way and are part of another publication. We will revise our discussion accordingly.

      The experiments published for TTFL dependent control of Drosophila olfaction that we are aware of (Krishnan et al., 1999; Tanoue et al., 2004) do not exclude interlinked PTFL and TTFL clocks. Krishnan et al. (1999) demonstrate that the TTFL clock in antennal olfactory receptor neurons correlates with circadian rhythms in odor responses measured in electroantennogram (EAG) recordings, not in single sensillum recordings as in our experiments. EAG recordings comprise not only voltage responses of the olfactory sensory neurons but also voltage changes generated in non-neuronal antennal cells such as trichogen and tormogen cells that built the transepithelial potential gradient via vATPases that generates the high K<sup>+</sup> concentration in the sensillum lymph (Jain et al., 2024; Klein, 1992; Thurm and Küppers, 1980). In addition, EAG recordings most likely contain responses of afferent neurons originating from somata in the brain that maintain central control of the antennae. Thus, EAG recordings are difficult to interpret.

      (11) A defining feature of circadian oscillators is the feedback mechanism that generates a time delay (e.g., PERIOD/TIMELESS repressing their own transcription). While the authors describe how cyclic nucleotides can regulate Orco conductance, they do not provide a convincing explanation of how Orco activity could, in turn, feed back into the proposed PTFL to sustain oscillations. For these reasons, the authors should consider:

      a) Providing a broader discussion of non-TTFL models of circadian rhythms (e.g., redox cycles, post-translational modifications).

      We will revise the discussion accordingly.

      b) Reassessing Orco expression using a higher-resolution temporal sampling ({greater than or equal to}6 timepoints per 24 h).

      We will add those experiments to the revised version of the manuscript (see our response to (2)).

      c) Clarifying or revising the PTFL model to explicitly address how feedback would be achieved. Alternatively, the data may be more consistent with Orco conductance rhythms being regulated by post-translational mechanisms downstream of the canonical TTFL oscillator, as suggested by the Drosophila olfactory system literature.

      We will revise the manuscript accordingly.

      Minor weaknesses:

      (1) The authors should compare the firing patterns of ORN neurons to the bursts, clusters, and packets of retinal efferent spikes reported in Liu JS and Passaglia CL (2011; JBR). By comparing measures in moths to measures in Limulus, the authors might be able to address the question: Is the daily firing pattern of ORN neurons likely a conserved feature of circadian control of sensory sensitivity?

      We will revise the discussion accordingly.

      (2) The methods need further details. For example, it is unclear if or how single neuron activity was discriminated and whether the results were compromised by the relatively large environmental fluctuations in temperature (21-27oC), humidity (35-60%), or other cues known to modulate spontaneous firing.

      We will clarify the Methods section.

      References

      Chen S, Luetje CW. 2012. Identification of New Agonists and Antagonists of the Insect Odorant Receptor Co-Receptor Subunit. PLOS ONE 7:e36784. doi:10.1371/journal.pone.0036784

      Dolzer J, Fischer K, Stengl M. 2003. Adaptation in pheromone-sensitive trichoid sensilla of the hawkmoth Manduca sexta. J Exp Biol 206:1575–1588. doi:10.1242/jeb.00302

      Gawalek P, Stengl M. 2018. The Diacylglycerol Analogs OAG and DOG Differentially Affect Primary Events of Pheromone Transduction in the Hawkmoth Manduca sexta in a Zeitgebertime-Dependent Manner Apparently Targeting TRP Channels. Front Cell Neurosci 12:218. doi:10.3389/fncel.2018.00218

      Getahun MN, Olsson SB, Lavista-Llanos S, Hansson BS, Wicher D. 2013. Insect Odorant Response Sensitivity Is Tuned by Metabotropically Autoregulated Olfactory Receptors. PLOS ONE 8:e58889. doi:10.1371/journal.pone.0058889

      Ghosh S, Suray C, Bozzolan F, Palazzo A, Monsempès C, Lecouvreur F, Chatterjee A. 2024. Pheromone-mediated command from the female to male clock induces and synchronizes circadian rhythms of the moth Spodoptera littoralis. Curr Biol 34:1414-1425.e5. doi:10.1016/j.cub.2024.02.042

      Jain K, Prelic S, Hansson BS, Wicher D. 2024. Expression of Drosophila melanogaster V-ATPases in Olfactory Sensillum Support Cells. Insects 15:1016. doi:10.3390/insects15121016

      Jones PL, Pask GM, Rinker DC, Zwiebel LJ. 2011. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci 108:8821–8825. doi:10.1073/pnas.1102425108

      Klein U. 1992. The insect V-ATPase, a plasma membrane proton pump energizing secondary active transport: immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J Exp Biol 172:345–354. doi:10.1242/jeb.172.1.345

      Krishnan B, Dryer SE, Hardin PE. 1999. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400:375–378. doi:10.1038/22566

      Merlin C, Lucas P, Rochat D, François M-C, Maïbèche-Coisne M, Jacquin-Joly E. 2007. An Antennal Circadian Clock and Circadian Rhythms in Peripheral Pheromone Reception in the Moth Spodoptera littoralis. J Biol Rhythms 22:502–514. doi:10.1177/0748730407307737

      Nolte A, Funk NW, Mukunda L, Gawalek P, Werckenthin A, Hansson BS, Wicher D, Stengl M. 2013. In situ Tip-Recordings Found No Evidence for an Orco-Based Ionotropic Mechanism of Pheromone-Transduction in Manduca sexta. PLOS ONE 8:e62648. doi:10.1371/journal.pone.0062648

      Nolte A, Gawalek P, Koerte S, Wei H, Schumann R, Werckenthin A, Krieger J, Stengl M. 2016. No Evidence for Ionotropic Pheromone Transduction in the Hawkmoth Manduca sexta. PLOS ONE 11:e0166060. doi:10.1371/journal.pone.0166060

      Rymer J, Bauernfeind AL, Brown S, Page TL. 2007. Circadian rhythms in the mating behavior of the cockroach, Leucophaea maderae. J Biol Rhythms 22:43–57. doi:10.1177/0748730406295462

      Schendzielorz J, Schendzielorz T, Arendt A, Stengl M. 2014. Bimodal Oscillations of Cyclic Nucleotide Concentrations in the Circadian System of the Madeira Cockroach Rhyparobia maderae. J Biol Rhythms 29:318–331. doi:10.1177/0748730414546133

      Schendzielorz T, Peters W, Boekhoff I, Stengl M. 2012. Time of Day Changes in Cyclic Nucleotides Are Modified via Octopamine and Pheromone in Antennae of the Madeira Cockroach. J Biol Rhythms 27:388–397. doi:10.1177/0748730412456265

      Schendzielorz T, Schirmer K, Stolte P, Stengl M. 2015. Octopamine Regulates Antennal Sensory Neurons via Daytime-Dependent Changes in cAMP and IP3 Levels in the Hawkmoth Manduca sexta. PLOS ONE 10:e0121230. doi:10.1371/journal.pone.0121230

      Schneider AC, Schröder K, Chang Y, Nolte A, Gawalek P, Stengl M. 2025. Hawkmoth Pheromone Transduction Involves G-Protein–Dependent Phospholipase Cβ Signaling. eNeuro 12:ENEURO.0376-24.2024. doi:10.1523/ENEURO.0376-24.2024

      Stengl M. 2010. Pheromone Transduction in Moths. Front Cell Neurosci 4:133. doi:10.3389/fncel.2010.00133

      Stengl M. 1994. Inositol-trisphosphate-dependent calcium currents precede cation currents in insect olfactory receptor neurons in vitro. J Comp Physiol A 174:187–194. doi:10.1007/BF00193785

      Stengl M, Funk NW. 2013. The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A 199:897–909. doi:10.1007/s00359-013-0837-3

      Stengl M, Hildebrand JG. 1990. Insect olfactory neurons in vitro: morphological and immunocytochemical characterization of male-specific antennal receptor cells from developing antennae of male Manduca sexta. J Neurosci 10:837–847. doi:10.1523/JNEUROSCI.10-03-00837.1990

      Stengl M, Schneider AC. 2024. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 14:1243455. doi:10.3389/fphys.2023.1243455

      Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE. 2004. Circadian Clocks in Antennal Neurons Are Necessary and Sufficient for Olfaction Rhythms in Drosophila. Curr Biol 14:638–649. doi:10.1016/j.cub.2004.04.009

      Thurm U, Küppers J. 1980. Epithelial physiology of insect sensilla In: Locke M, Smith DS, editors. Insect Biology in the Future. Academic Press. pp. 735–763. doi:10.1016/B978-0-12-454340-9.50039-2

      Wicher D, Miazzi F. 2021. Functional properties of insect olfactory receptors: ionotropic receptors and odorant receptors. Cell Tissue Res 383:7–19. doi:10.1007/s00441-020-03363-x

    1. Author response:

      Reviewer #1 (Public review):

      Summary: 

      In this study, the authors employed comprehensive proteomics and transcriptomics analysis to investigate the systemic and organ-specific adaptations to IF in males. They found that shared biological signaling processes were identified across tissues, suggesting unifying mechanisms linking metabolic changes to cellular communication, which revealed both conserved and tissue-specific responses by which IF may optimize energy utilization, enhance metabolic flexibility, and promote cellular resilience. 

      Strengths: 

      This study detected multiple organs, including the liver, brain, and muscle, and revealed both conserved and tissue-specific responses to IF.

      We appreciate the recognition of the study’s strengths and the opportunity to clarify the points raised.

      Weaknesses: 

      (1) Why did the authors choose the liver, brain, and muscle, but not other organs such as the heart and kidney? The latter are proven to be the largest consumers of ketones, which is also changed in the IF treatment of this study.

      We agree that the heart and kidney are critical organs in ketone metabolism. Our selection of the liver, brain, and muscle was guided by their distinct metabolic functions and relevance to systemic energy balance, neuroplasticity, and locomotor activity, key domains influenced by intermittent fasting (IF). These tissues also offer complementary perspectives on central and peripheral adaptations to IF. Notably, we have previously examined the effects of IF on the heart (eLife 12:RP89214), and we fully acknowledge the importance of the kidney. We intend to include it in future studies to broaden the scope and deepen our understanding of IF-induced systemic responses.

      (2) The proteomics and transcriptomics analyses were only performed at 4 months. However, a strong correlation between IF and the molecular adaptations should be time point-dependent.

      We appreciate this insightful comment. The 4-month time point was selected to capture long-term adaptations to IF, beyond acute or transitional effects. While we acknowledge that molecular responses to IF are time-dependent, our goal in this study was to establish a foundational understanding of sustained systemic and tissue-specific changes. We fully agree that a longitudinal approach would provide deeper insights into the temporal dynamics of IF-induced adaptations. To address this, we are currently undertaking a comprehensive 2-year study that is specifically designed to explore these time-dependent effects in greater detail.

      (3) The context lacks a "discussion" section, which would detail the significance and weaknesses of the study.

      We appreciate this observation. The manuscript was originally structured to emphasize results and interpretation within each section, but we recognize that a dedicated discussion section would enhance clarity and contextual depth. In the revised version, we will add a comprehensive discussion section addressing broader implications, limitations, and future directions of the study.

      (4) There is no confirmation for the proteomic and transcriptomic profiling. For example, the important changes in proteomics could be further identified by a Western blot. 

      We acknowledge the importance of orthogonal validation to support high-throughput findings. While our study primarily focused on uncovering systemic patterns through proteomic and transcriptomic profiling, we agree that targeted confirmation would strengthen the conclusions. To this end, we have included immunohistochemical validation of a key protein common to all three organs—Serpin A1C. Additionally, we are planning a dedicated follow-up study to expand functional validation of several key proteins identified in this manuscript, which will be pursued as a separate project.

      Reviewer #2 (Public review): 

      Summary: 

      Fan and colleagues measure proteomics and transcriptomics in 3 organs (liver, skeletal muscle, cerebral cortex) from male C57BL/6 mice to investigate whether intermittent fasting (IF; 16h daily fasting over 4 months) produces systemic and organ-specific adaptations. 

      They find shared signaling pathways, certain metabolic changes, and organ-specific responses that suggest IF might affect energy utilization, metabolic flexibility, while promoting resilience at the cellular level.

      Strengths: 

      The fact that there are 3 organs and 2 -omics approaches is a strength of this study. 

      We appreciate the reviewer’s recognition of the breadth of our study design. By integrating proteomics and transcriptomics across three metabolically distinct organs, we aimed to provide a comprehensive view of systemic and tissue-specific adaptations to IF. This multi-organ, multi-omics approach was central to uncovering both conserved and divergent biological responses.

      Weaknesses: 

      (1) The analytical approach of the data generated by the present study is not well posed, because it doesn't help to answer key questions implicit in the experimental design. Consequently, the paper, as it is for now, reads as a mere description of results and not a response to specific questions.

      We thank the reviewer for this important observation. Our initial aim was to establish a foundational atlas of molecular changes induced by IF across key organs. However, we recognize that clearer framing of the biological questions would enhance interpretability. In the revised manuscript, we will have restructured the introduction, results, and discussion to align more explicitly with specific hypotheses, particularly those related to energy metabolism, cellular resilience, and inter-organ signaling. We have also added targeted analyses and clarified how each dataset contributes to answering these questions.

      (2) The presentation of the figures, the knowledge of the literature, and the inclusion of only one sex (male) are all weaknesses.

      We appreciate this feedback and agree that these are important considerations. Regarding figure presentation, we will revise several figures for improved clarity, add more descriptive legends, and reorganize supplemental materials to better support the main findings. On the literature front, we will expand the discussion to include recent and relevant studies on IF, metabolic adaptation, and sex-specific responses. As for the use of only male mice, this was a deliberate choice to reduce hormonal variability and focus on establishing baseline molecular responses. We fully acknowledge the importance of sex as a biological variable and will soon be conducting studies in female mice to address this gap.

      Reviewer #3 (Public review):

      Summary: 

      Fan et al utilize large omics data sets to give an overview of proteomic and gene expression changes after 4 months of intermittent fasting (IF) in liver, muscle, and brain tissue. They describe common and distinct pathways altered under IF across tissues using different analysis approaches. The main conclusions presented are the variability in responses across tissues with IF. Some common pathways were observed, but there were notable distinctions between tissues.

      Strengths: 

      (1) The IF study was well conducted and ran out to 4 months, which was a nice long-term design. 

      (2) The multiomics approach was solid, and additional integrative analysis was complementary to illustrate the differential pathways and interactions across tissues. 

      (3) The authors did not overstep their conclusions and imply an overreached mechanism. 

      We sincerely thank the reviewer for acknowledging the strengths of our study design and analytical approach. We aimed to strike a careful balance between comprehensive data generation and cautious interpretation, and we appreciate the recognition that our conclusions were appropriately framed within the scope of the data.

      Weaknesses: 

      The weaknesses, which are minor, include the use of only male mice and the early start (6 weeks) of the IF treatment. See specifics in the recommendations section.

      We appreciate the reviewer’s thoughtful comments. The decision to use male mice and initiate IF at 6 weeks was based on minimizing hormonal variability and capturing early adult metabolic programming. We acknowledge that sex and developmental timing are important biological variables. To address this, we are conducting parallel studies in female mice and evaluating IF initiated at later life stages. These follow-up investigations will help determine the extent to which sex and timing influence the molecular and physiological outcomes of IF.

    1. Author response:

      We thank the editors and reviewers for their positive and constructive comments. The three most substantial points raised by the public review are the following:

      No explicit modelling of targeting of young men as a course to ending HIV. 

      We did not intend to imply that the epidemic could be ended by this alone, or even that targeting young men was the optimum strategy if resources were available for more general preventative interventions. The “last mile” for HIV will be a very complex scenario in which key populations will start to play an outsize role, and our modelling framework was not developed to consider it. As a result, we would not have confidence in modelling the decline of the viral population to zero. We shall be qualifying the existing language in the paper in order to make this clear.

      Subtype-specific disease progression data. 

      The criticism is that our modelling of disease progression was based on subtype B, while the HIV viral population in Zambia is overwhelmingly subtype C. Sensitivity to subtype has not been looked at in detail in this analysis as the literature suggests that the rate of CD4 decline does not differ between subtypes B and C.

      While some studies have shown differences in CD4 cell decline between subtypes, they have generally highlighted that subtype D progresses faster than other subtypes. Little evidence has been published on the differences between subtype B and C, and studies that do include both subtypes concluded that there was no significant difference in rates of CD4 decline between subtypes.

      No significant difference between rate of CD4 progression by subtype is evidenced in the following publications:<br /> - Klein et al. (2014) (N=9772)<br /> - Bouman et al. (2023) (although no subtype B)<br /> - Easterbrook et al. (2010) (N=861)

      While some studies have illustrated that "progression changes with HIV subtype", an interrogation of the underlying data highlights that subtype B is not included, e.g.<br /> - Kanki et al. (1999) looked at A versus "non-A subtype" but included no subtype B data.<br /> - Vasan et al. (2006) claims differences in rate of CD4 decline by subtype when compared to subtype D but includes no subtype B data.<br /> - Baeten et al. (2007) claims subtype D has faster progression that subtype A but includes no subtype B data.<br /> - Kiwanuka et al. (2008) claims differences in rate of CD4 decline but includes no subtype B data.<br /> - Amornkul et al. (2013) has no subtype B data.

      Furthermore, to explain why we used subtype B data to parameterise the model: usually, statistical analyses of CD4 count progression do not report parameters in a form that can be directly imported into models. Analysing summary statistics to include in models results in under-specified models of disease progression in simulations. For this reason we use the estimates from Cori et al. (2015); where the statistical analysis was specifically tailored to generate modelling parameters. The trade-off is therefore to use subtype C data with model misspecification, or subtype B data without; neither choice is perfect, and we chose the subtype B correctly specified estimates.

      The role of undiagnosed versus diagnosed and untreated subpopulations. 

      We will add an additional analysis us to compare age differences in sources and recipients according to the diagnostic status of the source.

      The rest of the comments in the public review ask for improvements in data presentation (including some additional statistical analyses) and to make sure qualitative claims are fully justified. We are happy to oblige with these, and will make our thinking clear on all points in the full response.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Response to eLife Assessment:

      We sincerely appreciate your recognition of the novelty and potential significance of our study, and we are grateful for your constructive and valuable comments.

      With regard to your concern that cast immobilization (CI) may itself act as a stressor—potentially influencing skeletal muscle, brown adipose tissue (BAT), and locomotor energy expenditure—we fully recognize this as a highly important issue. In our study, we sought to interpret the findings in light of oxygen consumption and activity data; however, it is inherently difficult to disentangle systemic stress responses and the increased energetic costs associated with CI. We have therefore revised the manuscript to explicitly acknowledge this point as a limitation, and to identify it as a subject for future investigation.

      We also greatly value your suggestion concerning the potential involvement of branched-chain amino acids (BCAAs) derived from adipose tissue in BAT thermogenesis. While our present work primarily focused on muscle-derived amino acids, previous studies have reported that impaired BCAA catabolism in white adipose tissue (WAT) is associated with elevated circulating BCAA levels and metabolic dysfunction [1]. Thus, the possibility that adipose tissue contributes to the BCAA pool used by BAT cannot be disregard. We fully agree that directly addressing this possibility would be highly valuable, and in future work we plan to locally administer isotope-labeled BCAAs into skeletal muscle or adipose tissue and analyze their contribution to circulating BCAA levels and BAT utilization. Although such experiments could not be performed within the timeframe of this resubmission, we have explicitly stated this limitation in the revised manuscript.

      In summary, we have revised the text to acknowledge the limitations highlighted in your comments and to better clarify future research directions. We believe these revisions more accurately position our current study within the broader context. Once again, we are deeply grateful for your recognition of the originality of our work and for your constructive guidance in refining it.

      Response to Reviewers:

      We sincerely appreciate the reviewers’ thoughtful evaluations and constructive comments, and we are grateful for their recognition of the novelty and significance of our study.

      Response to Reviewer 1:

      We thank the reviewer for the detailed and thoughtful comments regarding the potential systemic effects of CI, including stress responses, energy balance, and tissue wasting. These factors are indeed critical when interpreting our findings, and we agree that CI is not merely a passive loss-of-function model but also introduces stress-related influences.

      The principal aim of our study was to investigate the “physiological compensatory mechanisms” that are triggered by loss of muscle function induced by CI. Although CI inevitably elicits systemic metabolic alterations—including stress-related responses—our study is, to our knowledge, the first to demonstrate that a compensatory thermogenic pathway, mediated by the supply of amino acids from skeletal muscle to BAT, is activated under such conditions. We regard this as the central novelty of our work, and it is consistent with the reviewer’s observation that CI results in a “gain of function.”

      Our intention is not to exclude stress as a contributing factor. Rather, we emphasize that under physiological stress conditions requiring BAT thermogenesis—such as reduced energy stores or decreased heat production from skeletal muscle—amino acid supply from muscle to BAT is induced. Importantly, this mechanism is not unique to CI, as we have confirmed similar metabolic crosstalk under acute cold exposure.

      At the same time, we acknowledge that our current data do not allow us to conclude that “stress is not a primary driver” of BAT thermogenesis induced by CI. Chronic stress induced by CI appeared to be limited in our study (Fig. 2_figure supplement 2), but we cannot fully exclude stress-related effects. Accordingly, we now describe the potential triggers of BAT thermogenesis in the manuscript as either decreased body temperature due to muscle functional loss or stress, explicitly noting in the Discussion that stress and reductions in energy reserves may both contribute, as the reviewer suggested. We also modified the original overstatement that “suppression of muscle thermogenesis induces hypothermia,” and now limit the description to the observed phenomenon that “CI-induced restriction of muscle activity leads to reduced cold tolerance,” while recognizing that multiple factors—including stress, substrate availability, and BAT functional capacity—may underlie this effect.

      We further appreciate the reviewer’s comment regarding the energetic burden imposed by CI. The cast weighed less than 2 g (5–10% of body weight), and thus increased locomotor costs cannot be excluded. However, locomotor activity during the dark phase was reduced by approximately 50%, making the net energetic effect difficult to quantify. In the manuscript, we now present oxygen consumption data and restrict our description to “an increase in oxygen consumption per body weight.” Moreover, as food intake remained almost unchanged compared with controls, the animals appear to have compensated for additional energetic demands, supporting the interpretation that the observed effects were not solely attributable to starvation.

      We also find the reviewer’s suggestion—that CI induces BAT overactivation but impairs its functional capacity—extremely important. Indeed, although CI increased thermogenic gene expression in BAT, body temperature maintenance was impaired. We interpret this reduction in thermoregulation as reflecting decreased heat production from skeletal muscle; however, as the reviewer noted, under prolonged CI, depletion of energy stores could further prevent BAT from fully exerting its thermogenic function.

      We have clarified in the revised Discussion that BAT activation under CI is transient, and that long-term outcomes may be influenced by contributions from other thermogenic organs, and that we recognize the impact of energy depletion as an important issue to be addressed in future studies. We also agree that detailed analyses of metabolic changes and BCAA dynamics following prolonged CI will be an important next step.

      Regarding the reviewer’s concern about potential anesthesia effects on acute cold exposure experiments, we confirmed that body temperature had returned to baseline one hour before testing, and that mice displayed spontaneous feeding and grooming behaviors, which suggested adequate recovery. Moreover, the differences observed compared with sham-anesthetized controls support our interpretation that the results reflect CI-specific effects. Nonetheless, we acknowledge this potential confounding factor as an additional limitation.

      Response to Reviewer 2:

      We thank the reviewer for the constructive comments and clear summary of our findings. We fully agree that the impact of immobilization on skeletal muscle and BAT function under cold exposure represents a key future direction. In the present study, we performed acute cold exposure following short-term immobilization and assessed UCP1 expression and metabolic changes in BAT. However, we acknowledge that we did not fully examine coordinated functional adaptations between skeletal muscle and BAT under cold stress. In particular, how skeletal muscle–derived amino acid supply and IL-6–dependent mechanisms operate during cold exposure remains unresolved. We have therefore noted this explicitly as a limitation and highlighted it as a focus for future work. Going forward, we plan to investigate muscle–BAT metabolic crosstalk and IL-6 signaling in detail under cold conditions to clarify whether the observed responses are specific to CI or represent more general physiological adaptations.

      (1) Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J Biol Chem. 2010;285(15):11348-56. doi:10.1074/jbc.M109.075184.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      Heat production mechanisms are flexible, depending on a wide variety of genetic, dietary, and environmental factors. The physiology associated with each mechanism is important to understand since loss of flexibility is associated with metabolic decline and disease. The phenomenon of compensatory heat production has been described in some detail in publications and reviews, notably by modifying BAT-dependent thermogenesis (for example by deleting UCP1 or impairing lipolysis, cited in this paper). These authors chose to eliminate exercise as an alternative means of maintaining body temperature. To do this, they cast either one or both mouse hindlimbs. This paper is set up as an evaluation of a loss of function of muscle on the functionality of BAT.

      Strengths:

      The study is supported by a variety of modern techniques and procedures.

      Weaknesses:

      The authors show that cast immobilization (CI) does not work as a (passive) loss of function, instead, this procedure produces a dramatic gain of function, putting the animal under considerable stress, inducing b-adrenergic effectors, increased oxygen consumption, and IL6 expression in a variety of tissues, together with commensurate cachectic effects on muscle and fat. The BAT is put under considerable stress, super-induced but relatively poor functioning. Thus within hours and days of CI, there is massive muscle loss (leading to high circulating BCAAs), and loss of lipid reserves in adipose and liver. The lipid cycle that maintains BAT thermogenesis is depleted and the mouse is unable to maintain body temperature.

      I cannot agree with these statements in the Discussion:  

      "We have here shown that cast immobilization suppressed skeletal muscle thermogenesis, resulting in failure to maintain core body temperature in a cold environment."

      This result could also be attributed to high stress and decreased calorie reserves. Note also: CI suppresses 50% of locomotor activity, but the actual work done by the mouse carrying bilateral casts is not taken into account.

      We appreciate the reviewer's suggestion. We thank you for raising this issue. As the reviewers suggest, we also consider that cold intolerance resulting from cast immobilization may be attributed to high stress levels, decreased calorie reserves, or reduced systemic locomotor activity. Indeed, reductions in the weight of visceral adipose tissue weight and increases in lipid utilization were observed in the early phase of cast immobilization (Fig.2G and 2F). This suggests that the depletion of calorie reserves induced by stress may affect cold intolerance in cast immobilized mice (Fig.1A-1B). On the other hand, the experiment shown in Fig.1C involved acute cold exposure of mice 2 h after cast immobilization. This result suggests that, even before the depletion of energy stores by immobilization of skeletal muscle, cast immobilization may cause cold intolerance in mice. In addition, as the reviewer suggests, cast immobilization may result in BAT thermogenesis and cachectic effects on muscle and fat. However, circulating corticosterone concentrations and hypothalamic CRH gene expression are not significantly altered after cast immobilization (Figure 2_figure supplement 2D-F). This raises questions about the contribution of stress to the changes in the systemic energy metabolism in this model. As such, we responded to the reviewers’ comments by revising this statement at the beginning of the ‘Discussion’ section and adding a discussion on pages 16, in addition to the existing discussion on pages 17–18.

      Furthermore, to respond as best we could to the reviewer's comments, we performed additional experiments using the restraint stress model (Figure 7). We found that short-term restraint stress may recruit substrate supply from skeletal muscle for BAT thermogenesis via Il6 gene expression. Based on these data, we speculate that the interaction between BAT and skeletal muscle amino acid metabolism may operate under various physiological stress conditions, including infection and exercise, as well as skeletal muscle immobilization, stress, and cold exposure. This interaction may play a significant role in regulating body temperature and energy metabolism. We are currently investigating the effects of sympathetic activation on skeletal muscle amino acid metabolism and systemic thermoregulation via IL-6 secretion from skeletal muscle using a new model. These data will be reported in a subsequent report.

      "Thermoregulatory system in endotherms cannot be explained by thermogenesis based on muscle contraction alone, with nonshivering thermogenesis being required as a component of the ability to tolerate cold temperatures in the long term."

      This statement is correct, and it clearly showcases how difficult it is to interpret results using this CI strategy. The question to the author is- which components of muscle thermogenesis are actually inhibited by CI, and what is the relative heat contribution?

      We appreciate raising this important issue. This study required the measurements of skeletal muscle temperature and electromyography in mice with cast immobilization, but we were unable to perform these measurements. We have therefore described the reviewers suggest on page 18 as limitations of this study.

      In our additional experiments, we found that several genes that are usually activated in skeletal muscle during cold exposure are repressed in mice with cast immobilization (Figure 1_figure supplement 1_G-1K). Skeletal muscle is an important thermogenic organ. Although the role of the sarcolipin gene in non-shivering thermogenesis is well understood, the primary regulator of thermogenesis in metabolism and shivering remains unclear. In Future, we would like to use models in which key signals for energy metabolism are inhibited, such as muscle-specific PGC-1α-deficient mice and muscle-specific AMPK-deficient mice, to clarify important factors in skeletal muscle heat thermogenesis. We expect this approach to enable us to analyze the relative thermal contributions of each component of the heat production process in skeletal muscle, which has proven difficult in immobilized muscle models.

      This conclusion is overinterpreted:

      "In conclusion, we have shown that cast immobilization induced thermogenesis in BAT that was dependent on the utilization of free amino acids derived from skeletal muscle, and that muscle-derived IL-6 stimulated BCAA metabolism in skeletal muscle. Our findings may provide new insights into the significance of skeletal muscle as a large reservoir of amino acids in the regulation of body temperature".

      In terms of the production of the article - the data shown in the heat maps has oddly obscure log10 dimensions. The changes are minimal, approx. 1.5x increase/decrease and therefore significance would be key to reporting these data. Fig.3C heatmap is not suitable. What are the 6 lanes to each condition? Overall, this has little/no information.

      Rather than cherry-picking for a few genes, the results could be made more rigorous using RNA-seq profiling of BAT and muscle tissues.

      We agree that this is an important point. Indeed, our model of skeletal muscle immobilization reveals only modest changes in metabolomics and gene expression analysis. We consider this to be a weakness of the study. However, the interactive thermogenic system that we discovered between skeletal muscle and BAT may also function under other conditions, such as acute stress and cold exposure. We should investigate this further in future models involving such dramatic metabolic changes. In fact, it has been shown that the levels of several metabolites are significantly altered in BAT after acute cold exposure.[1] Therefore, we have corrected the conclusion of this section, as stated on page 18, and added it. We also performed an enrichment analysis on the metabolomics data in BAT following cast immobilization and included the results in Figure 2_figure Supplement 1A. In addition, we excluded the heatmap from Fig. 3C of the pre-revision manuscript, as advised by the reviewer. Although we excluded the results in Figure 3C, we consider Figure 3_figure supplement_1 to be sufficient for the text.  

      In addition, we agree with the reviewer's remarks on our gene expression analysis. In this study, we were unable to examine RNA-seq profiling of BAT and muscle tissue. Therefore, we have described this as a limitation of the study on page 20. However, we are interested in investigating the effect of IL-6 derived from skeletal muscle on RNA-seq profiling of skeletal muscle and BAT. We will conduct future RNA-seq analyses of BAT and skeletal muscle, using models of skeletal muscle immobilization, acute cold exposure and restraint stress.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors identified a previously unrecognized organ interaction where limb immobilization induces thermogenesis in BAT. They showed that limb immobilization by cast fixation enhances the expression of UCP1 as well as amino acid transporters in BAT, and amino acids are supplied from skeletal muscle to BAT during this process, likely contributing to increased thermogenesis in BAT. Furthermore, the experiments with IL-6 knockout mice and IL-6 administration to these mice suggest that this cytokine is likely involved in the supply of amino acids from skeletal muscle to BAT during limb immobilization.

      Strengths:

      The function of BAT plays a crucial role in the regulation of an individual's energy and body weight. Therefore, identifying new interventions that can control BAT function is not only scientifically significant but also holds substantial promise for medical applications. The authors have thoroughly and comprehensively examined the changes in skeletal muscle and BAT under these conditions, convincingly demonstrating the significance of this organ interaction.

      Weaknesses:

      Through considerable effort, the authors have demonstrated that limb-immobilized mice exhibit changes in thermogenesis and energy metabolism dynamics at their steady state. However, The impact of immobilization on the function of skeletal muscle and BAT during cold exposure has not been thoroughly analyzed.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors show that impairment of hind limb muscle contraction by cast immobilization suppresses skeletal muscle thermogenesis and activates thermogenesis in brown fat. They also propose that free BCAAs derived from skeletal muscle are used for BAT thermogenesis, and identify IL-6 as a potential regulator.

      Strengths:

      The data support the conclusions for the most part.

      Weaknesses: The data provided in this manuscript are largely descriptive. It is therefore difficult to assess the potential significance of the work. Moreover, many of the described effects are modest in magnitude, questioning the overall functional relevance of this pathway. There are no experiments that directly test whether BCAAs derived from adipose tissue are used for thermogenesis, which would require more robust tracing experiments. In addition, the rigor of the work should be improved. It is also recommended to put the current work in the context of the literature.

      We appreciate the reviewer's valuable feedback. As the reviewer pointed out, many of the effects described in this study are modest in magnitude. This reflects a limitation of our study, which used skeletal muscle immobilization as a model. To clarify the overall functional relevance of this pathway, we therefore plan to use alternative models in which BAT thermogenesis and systemic cachectic effect are more strongly induced. We have added this point to the 'Conclusion' section on page 18.

      In addition, previous findings reported that mitochondrial BCAA catabolism in brown adipocytes promotes systemic BCAA clearance, suggesting that BCAAs may be supplied to BAT from other organs during BAT thermogenesis.[5] However, as the reviewer rightly pointed out, the current study did not directly investigate whether BCAAs derived from adipose tissue contribute to thermogenic processes. In light of this, we have revised the manuscript to include a statement in the limitations section on page 20 that addresses this point. 

      Metabolomic analysis of white adipose tissue (WAT) following skeletal muscle immobilization revealed alterations in amino acid concentrations in WAT in response to cast immobilization (Author response image 1A). Notably, levels of BCAAs in WAT remained largely unchanged at 24 hours after cast immobilization, but increased significantly by day 7 (Author response image 1B). At the 24-hour time point, when BAT thermogenesis is known to be activated, WAT weights was found to be reduced (Fig. 2H). Gene expression analysis of amino acid metabolism-related genes in WAT at this time point revealed a modest upregulation of several genes (Author response image 1C). Furthermore, a slight increase in the uptake of [<sup>3</sup>H] leucine into WAT was observed following immobilization (Fig. 3C). Collectively, these findings suggest that BCAAs within WAT may be primarily metabolized locally rather than being mobilized and supplied to BAT. In addition, given the relatively low levels of BCAAs per tissue mass and the limited capacity for BCAA uptake in WAT compared to other tissues, we consider it unlikely that WAT serves as a major reservoir of BCAAs.

      Author response image 1.

      (A) Amino acids in epididymal white adipose tissue (eWAT) of IL-6 KO (–/–) and WT (+/+) mice without (control) or with bilateral cast immobilization for the indicated times. Results are presented as heat maps of the log10 value of the fold change relative to control WT mice and are means of four mice in each group. (B) BCAA concentrations in eWAT of IL-6 KO and WT mice without (control) or with bilateral cast immobilization for 1 or 7 days. (n = 4 per group) (C) RT and real-time PCR analysis of the expression of SLC1A5, SLC7A1, SLC38A2, SLC43A1, BCAT2 and BCKDHA genes in eWAT of mice without (control) or with bilateral cast immobilization for 24 h. (n = 6 per group). All data other than in (A) are means ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 as determined by Dunnett's test (B) or by the unpaired t test (C).

      Reviewer #1 (Recommendations for the authors): 

      • Gypsum is an irrelevant label. Label consistently, with a procedure acronym, like CI or Imm.

      We apologize for any confusion that our notation may have caused. We corrected all labels relating to the skeletal muscle immobilization model in mice to 'Imm'.

      There are many grammatical errors and typos. Search for an example on Fudure1. The sense of some sentences is enough to obscure their meaning.

      We appreciate the reviewer's points. We have checked the article for grammatical and typographical errors, correcting them where necessary.

      • Figures 6E and F need to be re-annotated in the legend and on figures.

      Following the peer reviewer's advice, we have re-annotated the Figure legends of this result.

      Reviewer #2 (Recommendations for the authors): 

      (1) It is difficult to understand how the data presented in Supplemental Table 1 were obtained. This appears to be data showing that the skeletal muscle weight of the hind limbs in mice accounts for 40 to 50% of the total skeletal muscle weight. How did the authors calculate the muscle weight? Specifically, how did they measure the weight of muscles that are neither in the hind limbs nor in the forelimbs ("Other")? Was this estimated from whole-body CT or MRI data?

      In the legend, it mentions "the posterior cervical region," but what exactly was measured in the posterior cervical region? The methods for this data should be clearly described.

      We appreciate the reviewers' comments. We apologize for any confusion caused by inadequate explanation of this data. This data was obtained by removing skeletal muscle from the posterior cervical region and measuring the weight of the wet tissue. We have taken care to remove most of the skeletal muscle, but some will remain. However, we do not believe that these errors are significant enough to alter the interpretation of the results. This has now been added to the 'Methods' section on page 21.

      (2) Through considerable effort, the authors have demonstrated that limb-immobilized mice exhibit changes in thermogenesis and energy metabolism dynamics at their steady state. However, it remains unclear why limb-immobilized mice have reduced tolerance to cold exposure. Was there any change in the abundance of energy metabolism-related genes during cold exposure between the immobilized and control mice? For example, if the gene expression of UCP1 and UCP2, which are typically upregulated in brown adipose tissue (BAT) and skeletal muscle during cold exposure, was suppressed in the immobilized mice, it might explain their reduced cold tolerance. Thus, the changes in the response of skeletal muscle and BAT to cold exposure between immobilized and control mice should also be analyzed.

      We thank the reviewer for the constructive comments. We consider the main weakness of this study to be the fact that we were unable to measure the temperature and electromyography (EMG) of the skeletal muscles of the cast-immobilized mice. Following the reviewers' advice, we analyzed the expression levels of several genes related to heat production or energy metabolism (Ucp1, Ucp2, Ucp3, Sln and Ppargc1a) in BAT and skeletal muscle of cast-immobilized mice after acute cold exposure (Figure1_figure supplement 1G-1K). The results showed that the expression of several genes that are usually increased in BAT and skeletal muscle during cold exposure was repressed in cast-immobilized mice. Notably, cast immobilization did not induce the UCP2 and PGC-1α genes at room temperature, and their upregulation during cold exposure was also suppressed in cast-immobilized mice. UCP2 is known to alter its expression in relation to energy metabolism, but it is unclear whether it regulates energy metabolism.[2] Additionally, UCP2 is understood to play a non-role in thermogenesis, and the function of the UCP2 in skeletal muscle remains unclear.[3] On the other hands, PGC-1α is widely recognized as a transcriptional coactivator that regulates various metabolic processes, including thermogenesis.[4] In our study, we found that the amounts of metabolites in the TCA cycle and the expression of the PGC-1α gene were decreased rapidly in immobilized skeletal muscle. This suggests that the metabolic rate is reduced in immobilized skeletal muscle (Figure 1_figure supplement 2A and 2F). In endothermic animals, energy expenditure in skeletal muscle plays a significant role in maintaining body temperature during both activity and rest. Hence, it is assumed that the reduced metabolic rate in skeletal muscle significantly impacts the maintenance of body temperature in cold conditions. Further investigation is required into the function of these genes in skeletal muscle thermogenesis, but we expect that the additional data suggest that the loss of muscle function due to immobilization affects the maintenance of body temperature under cold temperature. These results were discussed further on page 15.

      Reviewer #3 (Recommendations for the authors): 

      There are also more specific concerns related to the data supporting the claims.

      (1) The relevance of increasing thermogenesis in BAT after cast immobilization is unclear, as adult humans have very little BAT. Thermogenesis gene and protein expression should be measured in white adipose tissue.

      We would like to thank the reviewers for highlighting this important issue. We agree with the reviewer's comments. We did not observe significant changes in UCP1 expression in the subcutaneous adipose tissue of the inguinal region following skeletal muscle immobilization. We suspect that this is because skeletal muscle immobilization in mice did not exert a strong enough effect to induce browning of white adipose tissue. The ability of immobilizing skeletal muscle to activate thermogenesis in brown or beige adipocytes in adults remains unclear. We have therefore noted this limitation in our study in line 6.

      Additionally, in this study, we aimed to clarify the role of skeletal muscle as an amino acid reservoir under metabolic stress conditions that increase BAT thermogenesis. To this end, we employed models of skeletal muscle immobilization, acute cold exposure, and restraint stress. We also intend to analyze the metabolic interactions between beige adipose tissue and skeletal muscle in more detail using models that induce browning, such as exercise or cold acclimation.

      (2) In Figures 1E-G, there is no significant difference in UCP1 levels relative to the control, but body temperature is lowered from day 2 to day 7. How do the authors explain this?

      This is an important point. We consider the decrease in body temperature of mice following cast immobilization at room temperature to be the result of a reduction in systemic locomotor activity.

      (3) The small induction of PGC1a seen at 10 hours goes away after day 3. Why is this?

      This is an important point. Our investigation showed that the norepinephrine concentration in BAT and blood of cast-immobilized mice tends to increase, peaking at 24 hours of immobilization (Fig. 1H and Figure 2_figure supplement 2D), and then gradually returns to baseline. We speculate that this transient activation of the sympathetic nervous system may affect the expression of PGC1α in BAT. Additionally, although thermogenesis in BAT temporarily increases after skeletal muscle immobilization, studies from other research groups suggest that long-term skeletal muscle immobilization (two weeks) may increase non-shivering thermogenesis in skeletal muscle via high expression SLN.[6] Therefore, we hypothesize that other thermogenic mechanisms besides BAT might be involved during prolonged cast immobilization. We have added a discussion of these topics on page 16.

      (4) The metabolic cage data are marked in multiple places as significant, but the effect size is extremely small. Please describe how significance was calculated (Figure 5 supplement 1B, E, F).

      This is a valid point. This data was statistically analyzed using daily averages, with the results then being compiled. However, the figure was amended because it was not appropriate to use the original to demonstrate significant differences.

      (5) How does IL-6 increase BCAA levels in muscle?

      This is an important point. We are also investigating this issue with great interest. In future, we will use RNA-seq profiling to investigate the mechanism by which IL-6 regulates amino acid metabolism in skeletal muscle. This point was added as a

      limitation of the study on page 19.

      (6) What is the mechanism behind the elevated il6 levels after cast immobilization?

      We appreciate the reviewer's points. Since IL-6 gene expression in skeletal muscle increases in response to acute cold exposure and acute stress, we hypothesize that IL-6 is regulated by β-adrenergic effectors. In our preliminary experiments, stimulation with norepinephrine or with clenbuterol, a β2-adrenergic receptor agonist, suggests an increase in IL-6 gene expression and the intracellular free BCAA concentration in cultured mouse muscle cells (Author response image 2A-2D). Going forward, our plans include conducting further studies using a mouse model in which the sympathetic nervous system is activated by administering LPS intracerebroventricularly, as well as using muscle-specific β2-adrenergic receptor knockout mice.  

      Reference:

      (1) Okamatsu-Ogura, Y., et al. UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism. 2020 113:  154396 doi: 10.1016/j.metabol.2020.154396.

      (2) Patrick Schrauwen and Matthijs Hesselink, UCP2 and UCP3 in muscle controlling body metabolism., J Exp Biol. 2002 Aug;205(Pt 15):2275-85. doi: 10.1242/jeb.205.15.2275.

      (3) C Y Zhang, et al., Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes., Cell. 2001 Jun 15;105(6):745-55. doi: 10.1016/s0092-8674(01)00378-6.

      (4) Christophe Handschin and Bruce M Spiegelman, Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism., Endocr Rev. 2006 Dec;27(7):728-35. doi: 10.1210/er.2006-0037.

      (5) Yoneshiro, et al., BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature. 2019 572(7771): 614-619 doi: 10.1038/s41586-019-1503-x.

      (6) Shigeto Tomiya, et al., Cast immobilization of hindlimb upregulates sarcolipin expression in atrophied skeletal muscles and increases thermogenesis in C57BL/6J mice., Am J Physiol Regul Integr Comp Physiol. 2019 Nov1;317(5):R649-R661.doi:10.1152/ajpregu.00118.2019.

    1. Author response:

      We thank all three reviewers for their positive comments and valuable suggestions for improving the manuscript. A detailed blood stage analysis of LSA3-deificient parasites was conducted with, and led by, collaborators at Ehime University in a separate study that is currently in revision at another journal and will be published separately. We intend to cite the complementary publication once it is accepted for publication and to revise the wording in the current manuscript in accordance with suggested feedback. These changes will be reflected in the revised manuscript to be submitted as the eLife Version of Record.

    1. Author response:

      We thank both reviewers for their valuable comments. We have prepared a point-by-point response below.

      Reviewer #1 (Public review):

      Weaknesses:

      (1) The conclusions regarding the links between neural and behavioral mechanisms are mostly well supported by the data. However, what is less convincing is the authors' argument that their study offers evidence of 'priming'. An important hallmark of priming, at least as is commonly understood by cognitive scientists, is that it is stimulus specific: i.e., a repeated stimulus facilitates response times (repetition priming), or a repeated but previously ignored stimulus increases response times (negative priming). That is, it is an effect on a subsequent repeated stimulus, not ANY subsequent stimulus. Because (prime or target) stimuli are not repeated in the current experiments, the conditions necessary for demonstrating priming effects are not present. Instead, a different phenomenon seems to be demonstrated here, and one that might be more akin to approach/avoidance behavior to a novel or salient stimulus following an appetitive/aversive stimulus, respectively.

      (2) On a similar note, the authors' claim that 'priming' per se has not been well studied in non-human animals is not quite correct and would need to be revised. Priming effects have been demonstrated in several animal types, although perhaps not always described as such. For example, the neural underpinnings of priming effects on behavior have been very well characterized in human and non-human primates, in studies more commonly described as investigations of 'response suppression'.

      We thank the reviewer for these critical comments. After careful consideration of both reviews, we agree that “priming” may not be the most accurate term to describe the behavioral phenomenon. We plan to revise our terminology throughout the manuscript accordingly to better capture the generalized nature of the effect we observe.

      (3) The outcome measure - i.e., difference scores between the two odors or odor and non-odor (i.e., the number of flies choosing to approach the novel odor versus the number approaching the non-odor (air)) - appears to be reasonable to account for a natural preference for odors in the mock-trained group. However, it does not provide sufficient clarification of the results. The findings would be more convincing if these relative scores were unpacked - that is, instead of analyzing difference scores, the results of the interaction between group and odor preference (e.g., novel or air) (or even within the pre- and post-training conditions with the same animals) would provide greater clarity. This more detailed account may also better support the argument that the results are not due to conditioning of the US with pure air.

      We use the PI score as a standard metric to quantify all the odor preference in behavioral assays because it allows for robust comparison across different genetic or treatment groups under the same experimental setting. In T-maze, real time tracking of fly trajectories is technically difficult. With olfactory arenas, we showed some examples of fly distribution in quadrants over the entire odor choice test period (Figure 2—figure supplement 2) for both pre-trained and post-trained groups and discussed the trajectories in Discussion. We will ensure this point is clarified in the revised text.                       

      Reviewer #2 (Public review):

      […] They finally recorded from different mushroom body output neurons, including the one (MBON-γ4γ5) likely affected by the increased activity of the corresponding γ4 reward dopaminergic neurons after shock preexposure. They recorded odour-evoked responses from these neurons before and after shock preexposure, but did not find any plasticity, while they found a logical effect during spaced cycles of aversive training.

      We thank the reviewer for the summary. We would like to clarify that we did, in fact, observe plasticity in MBON-γ4γ5 following shock exposure, as shown in Figure 4B.

      Overall, the study is very interesting with a substantial amount of behavioural analysis and in vivo 2-photon calcium imaging data, but some major (and some minor) issues have to be resolved to strengthen their conclusions.

      (1) According to neuropsychological work (Henson, Encyclopedia of Neuroscience (2009), vol. 7, pp. 1055-1063), « Priming refers to a change in behavioral response to a stimulus, following prior exposure to the same, or a related, stimulus. Examples include faster reaction times to make a decision about the stimulus, a bias to produce that stimulus when generating responses, or the more accurate identification of a degraded version of the stimulus". Or "Repetition priming refers to a change in behavioural response to a stimulus following re-exposure" (PMID: 18328508). I therefore do not think that the effects observed by the authors are really the investigation of the neural mechanisms of priming. To me, the effect they observed seems more related to sensitisation, especially for the activation of sweet-sensing neurons. For the shock effect, it could be a safety phenomenon, as in Jacob and Waddell, 2020, involving (as for sugar reward) different subsets for short-term and long-term safety.

      As noted in our response to Reviewer #1, we plan to revise our use of the term “priming” in the manuscript to more accurately interpret the behavioral phenomenon.

      (2) The author missed the paper from Thomas Preat, The Journal of Neuroscience, October 15, 1998, 18(20):8534-8538 (Decreased Odor Avoidance after Electric Shock in Drosophila Mutants Biases Learning and Memory Tests). In this paper, one of the effects observed by the authors has already been described, and the molecular requirement of memory-related genes is investigated. This paper should be mentioned and discussed.

      We thank the reviewer for bringing this important reference to our attention. We will cite the Preat (1998) paper and discuss its relevant findings in relation to our own in the revised manuscript.

      (3) Overall, the bidirectional effect they observed is interesting; however, their results are not always clear, and the use of a delta PI is sometimes misleading. The authors have mentioned that shocks induced attraction to the novel odour, while they should stick to the increase or decrease in preference/avoidance.

      The ΔPI is calculated either as (trained PI – mock PI) for different animals or as (post PI – pre PI) for the same animals, with the specific calculation clarified in each figure legend. A positive ΔPI signifies an increase in preference for the odor, which is equivalent to a relative attraction or a decrease in avoidance.

      As not all experiments are done in parallel logic, it is not always easy to understand which protocol the authors are using. For example, only optogenetics is used in the appetitive preexposure. Does exposing flies to sugar or activating reward dopaminergic neurons also increase odour avoidance? The observed increased odour avoidance after optogenetic activation of sweet-sensing neurons involve reward (e.g., decreased response) and/or punishment (e.g., increased response) to increase odour avoidance?  

      We used different behavioral assays (T-maze or arena), stimuli (real shock or optogenetics), and protocols (different or same animal groups) to robustly demonstrate the phenomenon across platforms. We explained each protocol in the figures or texts, and we’ll make them clearer to follow in the revised version. We focused on activating a clean set of sugar sensing neurons because this optogenetic stimulus is an effective and efficient substitute to real sugar. We agree that testing reward dopaminergic neuron activation is a logical extension and will consider adding these experiments in the revised work.

      The author should always statistically test the fly behavioural performances against 0 to have an idea of random choice or a clear preference toward an odour.

      Our primary focus is on the change in preference induced by training, rather than the innate odor preference itself, which can be highly variable due to physiological and environmental factors. Statistical testing against 0 for innate preference scores is not standard practice in this specific paradigm, as the critical question is whether a treatment alters behavior relative to a control.

      On the appetitive side, the internal hunger state would play an important role. The author should test it or at least discuss it.

      For appetitive experiments, we always starve the flies on 1% agar for two days prior to behavioral tests to standardize their hunger state. We will consider adding fed flies as control groups in the revised work.

      (4) The authors found a discrepancy between genetic backgrounds; sometimes the same odour can be attractive or aversive.

      We observed minor discrepancies in innate odor preferences across genetic backgrounds, which is a known and common occurrence. Different genotypes and temperatures can result in different baseline PI scores. However, the key finding is that the relative change in odor preference following an aversive stimulus is consistent: it increases the relative preference for an odor compared to air. This sometimes reverses valence (aversion to attraction) and other times simply reduces aversion. Our analysis focuses on this consistent, relative change.

      Different effects between the T-maze and the olfactory arena are found. The authors proposed that: "Punishment priming effect was still not detected, probably due to the insensitivity of the optogenetic arena". This is unclear to me, considering all prior work using this arena. The author should discuss it more clearly.

      The punishment effect with CS+ present was reliably detected in the T-maze (Figure 1A) but was not significant in the olfactory arena (Figure 2—figure supplement 1B-C). We hypothesize that the olfactory arena assay is less sensitive than the T-maze for detecting such subtle behavioral changes. This is evidenced by the fact that even classical odor-shock conditioning yields lower PI in the arena (typically ~0.4) than in the T-maze (~0.8), likely due to the greater distance flies must explore and travel. The higher variance in the arena may therefore mask more modest effects. Here the effect under investigation was induced by optogenetically activating only a small subset of aversive dopaminergic neurons, a stimulus that is likely weaker than full electric shock. This reduced stimulus strength may have contributed to the challenge of detecting a significant effect in the less sensitive arena paradigm.

      They mentioned that flies could not be conditioned with air and electric shock. However, flies could be conditioned with the context + shock, which is changing in the T-maze and not in the optogenetic area.

      While flies can be conditioned to context, during the optogenetic stimulation period in the arena, the light is delivered uniformly across all four quadrants. Therefore, any potential context conditioning would be equivalent across the entire chamber and should not bias the final distribution of flies between the odor and air quadrants during the test, nor affect the calculated PI score.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Liang et al. have conducted a small-scale pilot study focusing on the feasibility and tolerability of Low-dose chemotherapy combined with delayed immunotherapy in the neoadjuvant treatment of non-small cell lung cancer. The design of delayed immunotherapy after chemotherapy is relatively novel, while the reduced chemotherapy, although somewhat lacking in innovation, still serves as an early clue for exploring future feasible strategies. Also, the dynamic ctDNA and TCR profiles could give some important hints of intrinsic tumor reaction.

      However, as the author mentioned in the limitation part, due to the small sample size and lack of a control group, we cannot fully understand the advantages and disadvantages of this approach compared to standard treatment. Compared to standard immunotherapy, the treatment group in this study has three differences: (1) reduced chemotherapy, (2) the use of cisplatin instead of the commonly used carboplatin in neoadjuvant therapy trials, and (3) delayed immunotherapy. Generally, in the exploration of updated treatment strategies, the design should follow the principle of "controlling variables." If there are too many differences at once, it becomes difficult to determine which variable is responsible for the effects, leading to confusion in the interpretation of the results. Moreover, the therapeutic strategy may lack practical clinical operability due to the long treatment duration.

      Thank you for your advice. As you pointed out, incorporating too many variables can obscure research findings. Our study focuses on two primary objectives: (1) to demonstrate that our approach is less toxic than the standard regimen; and (2) to fully activate the immune system in order to achieve better therapeutic outcomes. Based on these two objectives, we reduced chemotherapy dosage to alleviate toxicity, and perform delayed immunotherapy administration to alleviate the killing of activated immune cells by chemotherapy so as to maximize the immune response. Therefore, the two variables of reduced chemotherapy and delayed immunotherapy are unified in this study. The reduction of cisplatin to 60mg/m2 is supported by data for Chinese people; A retrospective study conducted by our center found that delayed immunotherapy also has great therapeutic effects. Considering the previous blood toxicity of carboplatin and albumin paclitaxel, we replaced carboplatin with cisplatin to alleviate bone marrow suppression. Usually, our patients are hospitalized for 4-7 days to receive treatment, observe and manage potential side effects, including nausea, vomiting, diarrhea, bone marrow suppression and so on. Therefore, it is convenient and feasible for immunotherapy administration on the 5th day.

      Furthermore, in the exploration of biomarkers, the authors emphasized the procedure of whole RNA sequencing in tumor tissues in the method section, and this was also noted in the flowchart in Figure 1. However, I didn't find any mention of RNA-related analyses in the Results section, which raises some concerns about the quality of this paper for me. If the authors have inadvertently omitted some results, they should supplement the RNA-related analyses so that I can re-evaluate the paper.

      Thanks for your comment. In this study, we employed a multi-omics approach involving whole transcriptome, ctDNA, and TCR sequencing to investigate the effects of a neoadjuvant treatment on NSCLC. The sequencing details are described in the Materials and Methods section. RNA-related analyses are presented in Figure S3. Given that our primary focus is on the impact of this modified treatment on immune cells, we estimate immune cell compositions by using the xCell and immunCellAI algorithms based on the RNA sequencing results. The estimated immune cell profiles have been added to Supplementary Tables 5 and 6.

      To sum up, this article exhibited a certain degree of innovation to some extent, However, due to its intrinsic design defects and data omissions, the quality of the research warranted further improvement.

      Thanks for your comment. We have provided a more detailed explanation of the administration for all patients. Additionally, we have clarified and supplemented the sequencing results to enhance the clarity and overall quality of the article.

      Reviewer #2 (Public review):

      Summary:

      In this single center, single arm, open label non-randomised study the authors tested the use of paclitaxel at 180-220 mg/m2 and cisplatin at 60mg/m2 in patients with squamous NSCLC and pemetrexed at 500mg/m2 and cisplatin at 60mg/m2 in adenocarcinoma of lung origin in the neoadjuvant setting. The chemotherapy appears to have been given at a relatively standard dose; though the platin dose at 60mg/m2 is somewhat lower than has been used in the checkmate 816 trial (75mg/m2/dose), this is a well-established dose for NSCLC.

      Key differences to currently approved neoadjuvant chemo-ICI treatment is that anti-PD1 antibody sintilimab (at 200mg/dose) was given on day 5 and that only 2 cycles of chemotherapy were given pre surgery, but then repeated on two occasions post surgery. Between May/2020 and Nov/2023 50 patients were screened, 38 went on to have this schedule of tx, 31 (~82%) went on to have surgery and 27 had the adjuvant treatment. The rate of surgery is entirely consistent with the checkmate 816 data.

      Question to the authors:

      It would be very helpful to understand why 7 (~18% of the population) patients did not make it to surgery and whether this is related to disease progression, toxicity or other reasons for withdrawal.

      Thank you for your comment. No patients were denied surgery due to disease progression or side effects. 7 patients did not undergo surgery: three declined to undergo total pneumonectomy, 2 were unable to come to our hospital for treatment because of the COVID-19 pandemic, and 2 were ineligible for radical surgery due to tumor invasion of the arteries.

      The key clinical endpoints were pCR and mPR rates. 2/38 patients are reported to have achieved a radiological pCR but only 31 patients underwent surgery with histological verification. Supp table2 suggests that 10/31 patients achieved a pCR, 6/31 additional patients achieved a major pathological response and that 13/31 did not achieve a major pathological response.

      It would be really helpful for understanding the clinical outcome to present the histopathological findings in the text in a bit more detail and to refer the outcome to the radiological findings. I note that the reference for pathological responses incorrectly is 38 patients as only 31 patients underwent surgery and were evaluated histologically.

      Thanks for your comment. The ITT population consisted of 38 individuals, of whom 31 underwent surgery. After surgery, 18 patients achieved MPR, including 12 achieved pCR and 13 achieved non-MPR. So for ITT population, the rate of pCR and MPR is 12/38 (31.6%) and 18/38 (47.4%) respectively; for patients who have completed surgery, both pCR and MPR have improved, accounting for 12/31 (38.7%) and 18/31 (58.1%) respectively (Results, line 268 to 269).

      Author response image 1.

      The treatment was very well tolerated with only 1 grade 3 AE reported. The longer term outcome will need to be assessed over time as the cohort is very 'young'. It is not clear what the adjuvant chemo-ICI treatment would add and how this extra treatment would be evaluated for benefit - if all the benefit is in the neoadjuvant treatment then the extra post-operative tx would only add toxicity.

      Please consider what the two post-operative chemo-ICI cycles might add to the outcome and how the value of these cycles would be assessed. Would there be a case for a randomised assessment in the patients who have NOT achieved a mPR histologically?

      Thanks for your comment. The purpose of postoperative adjuvant therapy is to prevent recurrence and metastasis.  Both clinical trial Keynote091 and Impower010 have achieved positive test results. The clinical trial design of Checkmate-77T is neoadjuvant therapy followed by surgery and adjuvant therapy. Checkmate-77T resulted in significantly longer event-free survival than chemotherapy in patients with resectable NSCLC. So we designed this perioperative treatment method, which is currently a common approach, hoping to reduce tumor burden and improve surgical remission rate through neoadjuvant therapy; and to kill residual tumor cells and prolong the DFS through adjuvant therapy. As for DFS, follow-up shows that there are currently 3 cases of recurrence, but the overall data is not yet mature (updated in Table S1). The side effect includes all patients who received neoadjuvant therapy and adjuvant therapy, and the addition of immunotherapy shows no new safety signals.

      While the clinical dataset identifies that the proposed reduced chemo-ICI therapy has clinical merit and should be assessed in a randomized study, the translational work is less informative.

      Thanks for your comment. As mentioned in the shortcomings of the article, our research is preliminary and exploratory, and more large-scale randomized studies are needed to be invested in the future.

      The authors suggest that the treatment has a positive impact on T lymphocytes. Blood sampling was done at day 0 and day 5 of each of the four cycle of chemotherapy with an additional sample post cycle 4. The authors state that data were analysed at each stage.

      The data in Figure 3B are reported for three sets of pairs: baseline to pre day 5 in cycle 1, day 5 to day 21 in cycle 1, baseline of cycle to to day 5. It remains unclear whether the datasets contain the same top 20 clones and it would be very helpful to show kinetic change for the individual 'top 20 clones' throughout the events in individual patients; as it stands the 'top20 clones' may vary widely from timepoint to timepoint. Of note, the figures do not demonstrate that the top 20 TCR clones were 'continuously increased'.

      Thanks for your comment. The data in Fig. 3B do not represent the overlapping top 20 clones across all samples but rather illustrate the changes in the individual top 20 clones for each patient. The changes in the top 20 TCR clones during neoadjuvant treatment for specific samples are shown in Fig. S1. Due to tumor heterogeneity, both within and between samples, the top 20 clones for each patient at the same time point may differ. Additionally, since the top 20 TCR clones can vary between stages as a result of antigen exposure over time, the top 20 clones for the same patient may also differ across different time points. Indeed, when analyzing the data, we measured the dynamic changes of the top 20 TCR clones across three stages in cycle 1, and describing these changes as "continuously increased" may not be entirely accurate. Therefore, we believe it is more accurate to correct it to a phased increase. (Results line 293).

      Instead, the data suggest that there are fluctuations in the relative distributions over time but that may simply be a reflection of shifts in T cell populations following chemotherapy rather than of immunological effects in the cancer tissue.<br /> Consistent with this the authors conclude (line 304/5): "No significant difference was observed in the diversity, evenness, and clonality of TCR clones across the whole treatment procedure" and this seems to be a more persuasive conclusion than the statement 'that a positive effect on T lymphocytes was observed' - where it is also not clear what 'positive' means.

      Thanks for your comment. The scores for diversity, evenness, and clonality assess changes in the overall TCR repertoire. In our cohort, we did not observe significant changes in these three metrics throughout the treatment process, indicating the overall stability of the TCR repertoire. Despite this overall stability, we observed a significant increase in the top 20 and large clones—representative of major TCR clone dynamics—during the treatment period. Additionally, integrating RNA results (Table S5-S6 and Fig. S3) from baseline and surgical samples, we found an increasing trend in the proportion of T cells following neoadjuvant therapy. Therefore, we suggested that the treatment has a positive effect on T lymphocytes.

      The text needs a more balanced representation of the data: only a small subset of four patients appear to have been evaluated to generate the data for figure 3B and only three patients (P5, P6, P7) can have contributed to figure 3C if the sample collection is represented accurately in Figure 3A.

      Thanks for your comment. In Fig. 3B, we utilized TCR data from six patients (P1, P2, P3, P10, P11, P12) for the period from day 1 to day 5 of cycle 1. For the period from day 5 of cycle 1 to day 1 of cycle 2, we used data from six patients (P1, P2, P5, P10, P11, P12). For the period from day 1 of cycle 2 to day 5 of cycle 2, we included data from five patients (P2, P4, P10, P11, P12). In Fig. 3C, we used TCR data from eight patients (P1, P2, P4, P6, P7, P10, P11, P12) to generate the images for cycle 1, and data from two patients (P6, P7) to create the images for cycle 3. Therefore, the sampling illustration in Fig. 3A is accurate.

      The text refers to flow cytometric results in SF3. However, no information is given on the flow cytometry in M&M, markers or gating strategy.

      Thanks for your comment. In this study, we performed tissue sampling and whole transcriptome sequencing at both the baseline and surgical stages. Based on the sequencing results, we evaluated T cell populations using two algorithms, xCell and immunoCellAI, and detailed the analysis procedures in the Methods and Materials section. Additionally, we have included the assessment results from both algorithms in Supplementary Tables 5 and 6.

      Please consider changing the terminology of the 'phases' into something that is easier to understand. One option would be to use a reference to a more standard unit (cycle 1-4 of chemotherapy and then d0/d5/d21).

      Thanks for your advice. Since each treatment cycle consists of both chemotherapy and immunotherapy, with chemotherapy administered on day 1 and immunotherapy on day 5 of each cycle, blood samples are collected at these two time points. Following your suggestion, we will use the notation d0/d5 within each treatment cycle to better clarify this process for the readers.

      Please make it explicit in the text that molecular analyses were undertaken for some patients only, and how many patients contribute to the data in figures 3B-F. Figure 3A suggests paired mRNA data were obtained in 2 patients (P2 and P5) but I cannot find the results on these analyses; four individual blood samples to assess TCR changes int PH1/PH2/PH3and PH4 were only available in four patients (P4,P5,P7,P9). Only three patients seem to have the right samples collected to allow the analysis for 'C3' in figure 3C.

      Thanks for your comment. In Fig. 3B and 3D, we used TCR data from six patients (P1, P2, P3, P10, P11, P12) for the period from day 0 to day 5 of cycle 1. For the period from day 5 of cycle 1 to day 0 of cycle 2, data from six patients (P1, P2, P5, P10, P11, P12) were used. For the period from day 0 of cycle 2 to day 5 of cycle 2, we included data from five patients (P2, P4, P10, P11, P12). In Fig. 3C and 3E, TCR data from eight patients (P1, P2, P4, P6, P7, P10, P11, P12) were used to generate the images for cycle 1, while data from two patients (P6, P7) were used to create the images for cycle 3. In Fig. 3F, all patients who underwent sequencing are included in the analysis, with each patient's data represented by dots of different colors.

      For the mRNA data, we sampled and sequenced five patients (P1, P2, P4, P5, P7) before treatment. During the surgical phase, we sampled and sequenced three patients (P2, P5, P6). The T cell assessments and comparisons based on the mRNA sequencing results are presented in Fig. S3 and Tables S5-S6.

      Please display for each of the 'top 20 clones' at any one timepoint how these clones evolve throughout the study; I expect that a clone that is 'top 20' at a given timepoint may not be among the 'top twenty' at all timepoints.

      Thanks for your comment. Yes, due to the heterogeneity of tumors, a variety of different antigens are exposed during the course of cancer treatment. As a result, the formation of TCR dominant clones is a dynamic process, with new dominant clones emerging at each stage. Therefore, the top 20 clones at each time point do not necessarily represent the overall top 20 clones across all time points. However, there is still some overlap in the dominant TCR clones. We have chosen to present the data from P2, which provides the most complete results throughout the entire treatment process.

      Author response image 2.

      Please also assess if the expanded clonotypes are present (and expanded) in the cancer tissue at resection, to link the effect in blood to the tumour. Given that tissue was collected for 31 patients, mRNA sequencing to generate TCR data should be possible to add to the blood analyses in the 12 patients in Figure 3A. Without this data no clear link can be made to events in the cancer.

      Thanks for your comment. Due to limitations in sampling conditions, we were unable to collect samples from all patients at every time point. As shown in Fig. 3A, we performed tissue sampling and RNA sequencing on five patients (P1, P2, P4, P5, P7) before treatment. During the surgical phase, we sampled and conducted RNA sequencing on three patients (P2, P5, P6). This study primarily focuses on TCR analysis in peripheral blood. The relationship between peripheral blood TCR and tissue TCR clones will be addressed in future research.

      Please provide in M&M the missing information on the flow cytometry methodology (instrument, antibody clones, gating strategy) and what markers were used to define T cell subsets (naïve, memory, central memory, effector memory).

      Thanks for your comment. In this study, we evaluated immune cells based on RNA sequencing results rather than using flow cytometry. Subsequently, we compared T cell subsets between the baseline and post-neoadjuvant treatment stages. The steps for RNA sequencing and the evaluation of immune cells using the xCell and ImmunoCellAI algorithms are detailed in the Methods and Materials section. The comparison of T cell subsets is presented in Fig. S3. The estimated immune cell data have been added to Tables S5 and S6.

      The authors also describe that ctDNA reduces after chemo-ICI treatment. This is well documented in their data but ultimately irrelevant: if the cancer volume is reduced to the degree of a radiological or pathological response /complete response then the quantity of circulating DNA from the cancer cells must reduce. More interesting would be the question whether early changes predict clinical outcome and whether recurrent ct DNA elevations herald recurrence.

      Thanks for your comment. If the tumor responds to treatment, its volume will decrease. Over the long term, ctDNA levels in the blood are expected to decline. However, in the short term, as tumor cells are killed, there may be a surge of ctDNA released into the patient's bloodstream, potentially causing a rise in the maxVAF. Based on the current follow-up data, the ctDNA maxVAF for patient P8 has increased compared to baseline levels. However, given the relatively short follow-up period, no recurrence has been observed yet.

      Please probe whether the molecular data identify good radiological or pathological outcomes before cycle 2 is started and whether the ctDNA levels identify patients who will have a poor response and/or who relapse early.

      Thanks for your comment. Before initiating Cycle 2 of treatment, we observed all patients whom performed ctDNA sequencing. Among them, Patients P1 to P4 were classified as MPR, whereas Patients P5 to P9 were categorized as non-MPR. It was noted that Patients P7 and P8 showed a trend of increasing maximum variant allele frequency (maxVAF) in their ctDNA. Thus, 50% (2 out of 4) of the MPR patients could be identified as having potential issues through molecular testing before Cycle 2. Additionally, only P3 experienced a recurrence, which was predicted by molecular testing prior to starting cycle 2.

      Author response image 3.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I have some detailed comments for the authors:

      (1) Please explain the reason for putting forward the opinion that "cytotoxic drugs with standard doses and anti-PD1 antibody were administrated on the same day (9), which may result in unsatisfactory eradication rates and relatively high incidence of severe treatment-related adverse events (TRAEs)" (Page 3 Line 76), especially "unsatisfactory eradication rates". Is this based on actual evidence, or is it purely theoretical speculation?

      Thanks for your comment. Our team have done relative research to explore impact of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy on the outcomes in patients with refractory lung cancer. Our findings suggest that administering PD-1/PD-L1 inhibitors 1-10 days (especially 3-5 days) after chemotherapy is superior to administering PD-1/PD-L1 inhibitors before or concurrent with chemotherapy in patients with refractory lung cancer, but this result needs to be further explored by prospective studies. So we infer that cytotoxic drugs with standard doses and anti-PD1 antibody were administrated on the same day may lead to unsatisfactory eradication rates and more side-effects.

      Yao W, Zhao X, Gong Y, Zhang M, Zhang L, Wu Q, et al. Impact of the combined timing of PD-1/PD-L1 inhibitors and chemotherapy on the outcomes in patients with refractory lung cancer. ESMO Open. 2021;6(2):100094.

      (2) Due to the lack of a control group, we cannot assess the advantages and disadvantages of this treatment strategy compared to standardized neoadjuvant immuno-chemotherapy. We can refer to historical data. In the current clinical trials on neoadjuvant chemotherapy combined with immunotherapy (CheckMate-816, etc), what is the proportion of patients who had their chemotherapy reduced due to adverse reactions? Is there a difference in their efficacy? This could serve as a good historical reference.

      Thanks for your comment. In checkmate816, the rate of off neoadjuvant treatment in treatment group and control treatment group is 5.7% and 6.8% respectively. No patients have reduced their chemotherapy dosage due to intolerable side effects. However, it’s a excellent suggestion to find a historical refence, so we will check details in other clinical trials.

      (3) Among the 38 patients, there are 21 cases of SCC and 17 cases of LUAD. From the protocol, it can be seen that SCC patients had both albumin-bound paclitaxel and cisplatin reduced, whereas LUAD patients did not have a reduction in pemetrexed, only in cisplatin. Considering the different pathological subtypes and treatment strategies, I suggest the author to present the efficacy data for SCC and LUAD separately rather than combining them together.

      Thanks for your comment. In this cohort of 31 patients who underwent pathological evaluation, the ratio of squamous cell carcinoma (SCC) to lung adenocarcinoma (LUAD) was 16 vs 15. Upon comparing the groups, no statistically significant difference was observed in the treatment efficacy between SCC and LUAD patients.

      Author response table 1.

      (4) In the discussion, the authors mention that during the adjuvant treatment phase, "no significant change was observed in evenness or clonality of TCR" (Page 13, Line 364). However, in Figure 3E, it can be seen that the evenness and clonality of TCR during the adjuvant treatment phase (i.e., C3) are significantly increased (P < 0.05).

      Thanks for your comment. For the TCR repertoire evenness and clonality, we present these metrics in Fig. S2 B-C. Throughout the treatment process of all patients, there were no significant changes in the Pielou index (representing evenness) or clonality. In Fig. 3E, we defined TCR clones with a frequency greater than 0.001 as "large clones" and examined their changes during cycle 1 and cycle 3. Therefore, although there was a significant increase in large clones during cycle 3, the overall TCR evenness and clonality did not show notable changes.

      (5) The authors indicated that low-dose chemotherapy does not inhibit TCR expansion; however, due to the lack of a control group, we cannot conclude that "standard doses would affect TCR expansion." To better explore this possibility, please analyze the differences in TCR expansion between patients with bone marrow suppression and those without.

      We analyzed the incidence of bone marrow suppression in patients who underwent blood TCR testing. The statistical results are shown in the figure below. Patients were grouped based on the presence or absence of bone marrow suppression to compare differences in TCR clonal dynamics between the two groups during neoadjuvant therapy. As shown in the figure below, patients in the non-bone marrow suppression group exhibited higher TCR diversity (SW score) during treatment compared to those in the bone marrow suppression group. During neoadjuvant therapy, the dominant clones in both groups significantly increased from c2d0 to c2d5. However, from c1d0 to c2d0, there was no significant change observed in the non-bone marrow suppression group, possibly due to the limited sample size. Additionally, Patient P11 in the non-bone marrow suppression group showed a downward trend in dominant clones from c1d5 to c2d0, which may have influenced the overall results for this group during this phase.

      Author response table 2.

      Author response image 4.

      (6) In the analysis of ctDNA maxVAF, I noticed that one patient showed a significant drop at T1 (after C1 chemotherapy), followed by a notable rebound at T2 (after C1 delayed immunotherapy), and then a decline again at T3 (after C2 chemotherapy). Theoretically, maxVAF can reflect tumor burden and should change in accordance with treatment response. Could this indicate that the patient has a poor response to the delayed immunotherapy without concurrent chemotherapy? Additionally, please examine this patient's efficacy separately. What is the status of dynamic TCR? Does it show a trend opposite to that of maxVAF?

      Thanks for your comment. For Patient P7, the radiological evaluation reached PR, while the pathological assessment was non-MPR. The naming of time points has been revised according to the requirements: T0, T1, T2, and T3 were changed to c1d0, c1d5, c2d0, and c2d5, respectively. Combining both radiological and pathological evaluations, the patient experienced a certain degree of tumor shrinkage during neoadjuvant therapy but still retained some residual tumor cells. Theoretically, maxVAF can reflect the tumor burden in the bloodstream as a real-time indicator of treatment response. For patients with long-term benefits, maxVAF is expected to decrease as tumors are eliminated. However, in the short term, the release of large amounts of clonal ctDNA from destroyed tumor cells may lead to a temporary increase in maxVAF. Therefore, it is not possible to conclude that this patient had an adverse response to delayed immunotherapy based on individual cases. The increase in maxVAF from c1d5 to c2d0 might result from the extensive release of newly exposed antigens. During this period, the top 20 and large clone TCRs did not show significant changes, suggesting that the patient's immune response was insufficient, leading to suboptimal neoadjuvant treatment efficacy and failure to achieve MPR. Additionally, there were no noticeable changes in maxVAF or TCR metrics from c1d0 to c2d0 for this patient, indicating that there is no evidence to suggest an inverse trend between TCR and maxVAF.

      Author response image 5.

      (7) In line with the previous question, another patient's maxVAF shows a significant rebound at T3. Please examine this patient's efficacy as well as the status of dynamic TCR.

      Thanks for your comment. For Patient P4, the radiographic assessment showed SD, while the pathological assessment indicated a MPR. Although the reduction rate of the tumor volume in this patient was low, the tumor cell content within the lesion was less than 10%, which suggests that this patient had a good response to neoadjuvant therapy. From c1d0 to c2d0, the maxVAF of this patient showed a downward trend, while there was no significant change in the dominant clone indices of the TCR. From c2d0 to c2d5, both the maxVAF and the TCR dominant clone indices increased significantly. This implies that this patient had a stronger immune response level compared to Patient P7.

      Author response image 6.

      Minor Comments:

      (1) Figure 2E shows only OS, but the corresponding description in the text mentions that OS and DFS are not reached.

      Thanks for your comment. Both OS and disease-free survival (DFS) records are available in Table S1. By January 31, 2025, the follow-up data were updated for 31 patients in Supplementary Table1. Among them, three patients experienced tumor recurrence, one of whom passed away. Additionally, seven patients were lost to follow-up. As a result, neither the overall survival (OS) nor the progression-free survival (PFS) reached the median number of events required for analysis. Since neither OS nor DFS have reached their median values, we opted to display only the OS in Fig. 2E.

      (2) In the Discussion section, it is mentioned that there is controversy regarding chemotherapy combined with immunotherapy. I disagree with this statement. I believe that chemotherapy combined with immunotherapy is a consensus. The wording should be revised accordingly.

      Thanks for your comment. Yes, as you said, the combination of chemotherapy and immunotherapy has become a consensus. What we want to express is that how to optimize the administration time and dosage is worth further exploration. We will make a revise accordingly (Discussion line 328-331).

      (3) The authors mentioned that the study involves multi-omics, but only ctDNA and TCR levels are included, with no RNA-related content observed. Perhaps a different term could be used.

      Thanks for your comment. In this study, we employed a multi-omics approach involving whole transcriptome, ctDNA, and TCR sequencing to investigation. RNA-related analyses are presented in Figure S3. Given that our primary focus is on the impact of this modified treatment on immune cells, we utilized RNA sequencing results to estimate immune cell compositions using the xCell and immunCellAI algorithms. The estimated immune cell profiles have been added to Supplementary Tables 5 and 6.

      Reviewer #2 (Recommendations for the authors):

      Additional comment to the authors:

      The methods section refers to mRNA sequencing of the tumour tissue to define immune cell populations. Figure 3A also identifies that up to two timepoints were to be sequenced for individual patients. I could not find the results in the document.

      Please review the methods section and remove experimental methods where no data are presented.

      Thanks for your comment. As shown in Fig. 3A, for the mRNA data, we sampled and sequenced five patients (P1, P2, P4, P5, P7) before treatment. During the surgical phase, we sampled and sequenced three patients (P2, P5, P6). Then we utilized RNA sequencing results to estimate immune cell compositions using the xCell and immunCellAI algorithms. The estimated immune cell data have been added to Supplementary Tables 5 and 6. The T cells proportion comparisons were shown in fig. S3. The description of Whole transcriptome sequencing and immune cell abundance estimation were detailed in methods section.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Cai et al have investigated the role of msiCAT-tailed mitochondrial proteins that frequently exist in glioblastoma stem cells. Overexpression of msiCAT-tailed mitochondrial ATP synthase F1 subunit alpha (ATP5) protein increases the mitochondrial membrane potential and blocks mitochondrial permeability transition pore formation/opening. These changes in mitochondrial properties provide resistance to staurosporine (STS)-induced apoptosis in GBM cells. Therefore, msiCAT-tailing can promote cell survival and migration, while genetic and pharmacological inhibition of msiCAT-tailing can prevent the overgrowth of GBM cells.

      Strengths:

      The CAT-tailing concept has not been explored in cancer settings. Therefore, the present provides new insights for widening the therapeutic avenue. 

      Your acknowledgment of our study's pioneering elements is greatly appreciated.

      Weaknesses:

      Although the paper does have strengths in principle, the weaknesses of the paper are that these strengths are not directly demonstrated. The conclusions of this paper are mostly well-supported by data, but some aspects of image acquisition and data analysis need to be clarified and extended.

      We are grateful for your acknowledgment of our study’s innovative approach and its possible influence on cancer therapy. We sincerely appreciate your valuable feedback. In response, this updated manuscript presents substantial new findings that reinforce our central argument. Moreover, we have broadened our data analysis and interpretation, as well as refined our methodological descriptions.

      Reviewer #2 (Public Review):

      This work explores the connection between glioblastoma, mito-RQC, and msiCAT-tailing. They build upon previous work concluding that ATP5alpha is CAT-tailed and explore how CAT-tailing may affect cell physiology and sensitivity to chemotherapy. The authors conclude that when ATP5alpha is CAT-tailed, it either incorporates into the proton pump or aggregates and that these events dysregulate MPTP opening and mitochondrial membrane potential and that this regulates drug sensitivity. This work includes several intriguing and novel observations connecting cell physiology, RQC, and drug sensitivity. This is also the first time this reviewer has seen an investigation of how a CAT tail may specifically affect the function of a protein. However, some of the conclusions in this work are not well supported. This significantly weakens the work but can be addressed through further experiments or by weakening the text.

      We appreciate the recognition of our study's novelty. To address your concerns about our conclusions, we have revised the manuscript. This revision includes new data and corrections of identified issues. Our detailed responses to your specific points are outlined below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) In Figure 1B, please replace the high-exposure blots of ATP5 and COX with representative results. The current results are difficult to interpret clearly. Additionally, it would be helpful if the author could explain the nature of the two different bands in NEMF and ANKZF1. Did the authors also examine other RQC factors and mitochondrial ETC proteins? I'm also curious to understand why CAT-tailing is specific to C-I30, ATP5, and COX-V, and why the authors did not show the significance of COX-V.

      We appreciate your inquiry regarding the data.  Additional attempts were made using new patient-derived samples; however, these results did not improve upon the existing ATP5⍺, (NDUS3)C-I30, and COX4 signals presented in the figure.  This is possibly due to the fact that CAT-tail modified mitochondrial proteins represent only a small fraction of the total proteins in these cells.  It is acknowledged that the small tails visible above the prominent main bands are not particularly distinct. To address this, the revised version includes updated images to better illustrate the differences. We believe the assertion that GBM/GSCs possess CAT-tailed proteins is substantiated by a combination of subsequent experimental findings. The figure (refer to new Fig. 1B) serves primarily as an introduction. It is important to note that the CAT-tailed ATP5⍺ plays a vital role in modulating mitochondrial potential and glioma phenotypes, a function which has been demonstrated through subsequent experiments.

      It is acknowledged that the CAT-tail modification is not exclusive to the ATP5⍺protein.  ATP5⍺ was selected as the primary focus of this study due to its prevalence in mitochondria and its specific involvement in cancer development, as noted by Chang YW et al.  Future research will explore the possibility of CAT tails on other mitochondrial ETC proteins. Currently, NDUS3 (C-I30), ATP5⍺, and COX4 serve as examples confirming the existence of these modifications. It remains challenging to detect endogenous CAT-tailing, and bulk proteomics is not yet feasible for this purpose. COX4 is considered significant.  We hypothesize that CAT-tailed COX4 may function similarly to the previously studied C-I30 (Wu Z, et al), potentially causing substantial mitochondrial proteostasis stress.  

      Concerning RQC proteins, our blotting analysis of GBM cell lines now includes additional RQC-related factors. The primary, more prominent bands (indicated by arrowheads) are, in our assessment, the intended bands for NEMF and ANKZF1.  Subsequent blotting analyses showed only single bands for both ANKZF1 and NEMF, respectively. The additional, larger molecular weight band of NEMF, which was initially considered for property analysis (phosphorylation, ubiquitination, etc.), was not examined further as it did not appear in subsequent experiments (refer to new Fig. S1C).

      References:

      Chang YW, et al. Spatial and temporal dynamics of ATP synthase from mitochondria toward the cell surface. Communications biology. 2023;6(1).

      Wu Z, et al. MISTERMINATE Mechanistically Links Mitochondrial Dysfunction With Proteostasis Failure. Molecular cell. 2019;75(4).

      (2) In addition to Figure 1B, it would be interesting to explore CAT-tailed mETC proteins in cancer tissue samples.

      This is an excellent point, and we appreciate the question. We conducted staining for ATP5⍺ and key RQC proteins in both tumor and normal mouse tissues. Notably, ATP5⍺ in GBM exhibited a greater tendency to form clustered punctate patterns compared to normal brain tissue, and not all of it co-localized with the mitochondrial marker TOM20 (refer to new Fig. S3C-E). Crucially, we observed a significant increase in NEMF expression within mouse xenograft tumor tissues, alongside a decrease in ANKZF1 expression (refer to new Fig. S1A, B). These findings align with our observations in human samples.

      (3) Please knock down ATP5 in the patient's cells and check whether both the upper band and lower band of ATP5 have disappeared or not.

      This control was essential and has been executed now. To validate the antibody's specificity, siRNA knockdown was performed. The simultaneous elimination of both upper and lower bands upon siRNA treatment (refer to new Fig. S2A) confirms they represent genuine signals recognized by the antibody.

      (4) In Figure 1C and ID, add long exposure to spot aggregation and oligomer. Figure 1D, please add the blots where control and ATP5 are also shown in NHA and SF (similar to SVG and GSC827).

      New data are included in the revised manuscript to address the queries. Specifically, the new Fig 1D now displays the full queue as requested, featuring blots for Control, ATP5α, AT3, and AT20. Our analysis reveals that AT20 aggregates exhibit higher expression and accumulation rates in GSC and SF cells.

      Fig. 1C has been updated to include experimental groups treated with cycloheximide and sgNEMF. Our results show that sgNEMF effectively inhibits CAT-tailing in GBM cell lines, whereas cycloheximide has no impact. After consulting with the Reporter's original creator and optimizing expression conditions, we observed no significant aggregates with β-globin-non-stop protein, potentially due to the length of endogenous CAT-tail formation (as noted by Inada, 2020, in Cell Reports). Our analysis focused on the ratio of CAT-tailed (red box blots) and non-CAT-tailed proteins (green box blots). Comparing these ratios revealed that both anisomycin treatment and sgNEMF effectively hinder the CAT-tailing process, while cycloheximide has no effect.

      (5) In Figure 1E, please double-check the results with the figure legend. ATP5A aggregated should be shown endogenously. The number of aggregates shown in the bar graph is not represented in micrographs. Please replace the images. For Figure 1E, to confirm the ATP5-specific aggregates, it would be better if the authors would show endogenous immunostaining of C-130 and Cox-IV.

      Labels in Fig. 1E were corrected to reflect that the bar graph in Fig. 1F indicates the number of cells with aggregates, not the quantity of aggregates per cell. The presence of endogenous ATP5⍺ is accurately shown. To address the specificity of ATP5⍺, immunostaining for endogenous NUDS3 was conducted. This revealed NUDS3 aggregation in GBM cells (SF and GSC) lacking TOM20, as demonstrated in the new Fig. S3A, B. These findings suggest NUDS3 also undergoes CAT-tailing modification, similar to ATP5⍺.

      (6) Figure 3A. Please add representative images in the anisomycin sections. It is difficult to address the difference.

      We appreciate your feedback. Upon re-examining the Calcein fluorescence intensity data in Fig. 3A, we believe the images accurately represent the statistical variations presented in Fig. 3B. To address your concerns more effectively, please specify which signals in Fig. 3A you find potentially misleading. We are prepared to revise or substitute those images accordingly.

      (7) Figure 3D. If NEMF is overexpressed, is the CAT-tailing of ATP 5 reversed?

      Thank you. Your prediction aligns with our findings. We've added data to the revised Fig. S6A, B, which demonstrates that both NEMF overexpression and ANKZF1 knockdown lead to elevated levels of CRC. This increase, however, was not statistically significant in GSC cells. A plausible explanation for this discrepancy is that the MPTP of GSC cells is already closed, thus any additional increase in CAT-tailing activity does not result in further amplification.

      (8) Figure 3G. Why on the BN page are AT20 aggregates not the same as shown in Figure 2E?

      We appreciate your inquiry regarding the ATP5⍺ blots, specifically those in the original Fig. 3G (left) and 2E (right). Careful observation of the ATP5⍺ band placement in these figures reveals a high degree of similarity. Notably, there are aggregates present at the top, and the diffuse signals extend downwards. Given that this is a gradient polyacrylamide native PAGE, the concentration diminishes towards the top. Consequently, the non-rigid nature of the Blue Native PAGE gel may lead to slight variations in the aggregate signals; however, the overall patterns are very much alike. To mitigate potential misinterpretations, we have rearranged the blot order in the new Fig. 3M.

      (9) Figure 4D. The amount of aggregation mediated by AT20 is more compared to AT3. Why are there no such drastic effects observed between AT3 and AT20 in the Tunnel assay?

      The previous Figure 4D presents the quantification of cell migration from the experiment depicted in Figure 4C. But this is a good point. TUNEL staining results are directly influenced by mitochondrial membrane potential and the state of mitochondrial permeability transition pores (MPTP), not by the degree of protein aggregation. Our previous experiments showed comparable effects of AT3 and AT20 on mitochondria (Fig. 2E, 3K), which aligns with the expected similar outcomes on TUNEL staining. As for its biological nature, this could be very complicated. We hope to explore it in future studies.

      (10) Figure 5C: The role of NEMF and ANKZF1 can be further clarified by conducting Annexin-PI assays using FACS. The inclusion of these additional data points will provide more robust evidence for CAT-tailing's role in cancer cells.

      In response to your suggestion, we have incorporated additional data into the revised version.

      Using the Annexin-PI kit, we labeled apoptotic cells and detected them using flow cytometry (FACS). Our findings indicate that anisomycin pretreatment, NEMF knockdown (sgNEMF), and ANZKF1 upregulation (oeANKZF1) significantly increase the rate of STS-induced apoptosis compared to the control group (refer to new Fig. S9D-G).

      (11) Figure 5F: STS is a known apoptosis inhibitor. Why it is not showing PARP cleavage?

      Also, cell death analysis would be more pronounced, if it could be shown at a later time point. What is the STS and Anisomycin at 24h or 48h time-point? Since PARP is cleaved, it would also be better if the authors could include caspase blots.

      I guess what you meant to say here is "Staurosporine is a protein kinase inhibitor that can induce apoptosis in multiple mammalian cell lines." Our study observed PARP cleavage even in GSCs, which are typically more resistant to staurosporine-induced apoptosis (C-PARP in Fig. S9B). The ratio of C-PARP to total PARP increased. We selected a 180-minute treatment duration because longer treatments with STS + anisomycin led to a late stage of apoptosis and non-specific protein degradation (e.g., at 24 or 48 hours), making PARP comparisons less meaningful. Following your suggestion, we also examined caspase 3/7 activity in GSC cells treated with DMSO, CHX, and anisomycin. We found that anisomycin treatment also activated caspases (Fig. S9A).

      (12) In Figure 5, the addition of an explanation, how CAT-tailing can induce cell death, would add more information such as BAX-BCL2 ratio, and cytochrome-c release from the mitochondria.

      Thank you for your suggestion. In this study, we state that specific CAT-tails inhibit GSC cell death/apoptosis rather than inducing it. Therefore, we do not expect that examining BAX-BCL2 and mitochondrial cytochrome c release would offer additional insights.

      (13) To confirm the STS resistance, it would be better if the author could do the experiments in the STS-resistant cell line and then perform the Anisomycin experiments.

      Thank you. We should emphasize that our data primarily originates from GSC cells. These cells already exhibit STS-resistance when compared to the control cells (Fig. S8A-C).

      (14) It would be more advantageous if the author could show ATP5 CATailed status under standard chemotherapy conditions in either cell lines or in vivo conditions.

      This is an interesting question. It's worth exploring this question; however, GSC cells exhibit strong resistance to standard chemotherapy treatments like temozolomide (TMZ).

      Additionally, we couldn't detect changes in CAT-tailed ATP5⍺ and thus did not include that data.

      (15) In vivo (cancer mouse model or cancer fly model) data will add more weight to the story.

      We appreciate your intriguing question. An effective approach would be to test the RQC pathway's function using the Drosophila Notch overexpression-induced brain tumor model. However, Khaket et al. have conducted similar studies, stating, "The RNAi of Clbn, VCP, and Listerin (Ltn), homologs of key components of the yeast RQC machinery, all attenuated NSC over-proliferation induced by Notch OE (Figs. 5A and S5A–D, G)." This data supports our theory, and we have incorporated it into the Discussion. While the mouse model more closely resembles the clinical setting, it is not covered by our current IACUC proposal. We intend to verify this hypothesis in a future study.

      Reference:

      Khaket TP, Rimal S, Wang X, Bhurtel S, Wu YC, Lu B. Ribosome stalling during c-myc translation presents actionable cancer cell vulnerability. PNAS Nexus. 2024 Aug 13;3(8):pgae321.

      Reviewer #2 (Recommendations For The Authors):

      Figure 1B, C: To demonstrate that Globin, ATP5alpha, and C-130 are CAT-tailed, it is necessary to show that the high mobility band disappears after NEMF deletion or mutagenesis of the NFACT domain of NEMF. This can be done in a cell line. The anisomycin experiment is not convincing because the intensity of the bands drops and because no control is done to show that the effects are not due to translation inhibition (e.g. cycloheximide, which inhibits translation but not CAT tailing). Establishing ATP5alpha as a bonafide RQC substrate and CAT-tailed protein is critical to the relevance of the rest of the paper.

      Thank you for suggesting this crucial control experiment.

      To confirm the observed signal is indeed a bona fide CAT-tail, it's essential to demonstrate that NEMF is necessary for the CAT-tailing process. We have incorporated data from NEMF knockdown (sgNEMF) and cycloheximide treatment into the revised manuscript. Our findings show that both sgNEMF and anisomycin treatment effectively inhibit the formation of CAT-tailing signals on the reporter protein (Fig. 1C). Similarly, NEMF knockdown in a GSC cell line also effectively eliminated CAT-tails on overexpressed ATP5⍺ (Fig. S2B).

      In general, the text should be weakened to reflect that conclusions were largely gleaned from artificial CAT tails made of AT repeats rather than endogenously CAT-tailed ATP5alpha. CAT tails could have other sequences or be made of pure alanine, as has been suggested by some studies.

      Thank you for your reminder. We have reviewed the recent studies by Khan et al. and Chang et al., and we found their analysis of CAT tail components to be highly insightful. We concur with your suggestion regarding the design of the CAT tail sequence. We aimed to design a tail that maintained stability and resisted rapid degradation, regardless of its length. In the revised version, we clarify that our conclusions are based on artificial CAT tails, specifically those composed of AT repeat sequences (p. 9). We acknowledge that the presence of other sequence components may lead to different outcomes (p. 19).

      Reference:

      Khan D, Vinayak AA, Sitron CS, Brandman O. Mechanochemical forces regulate the composition and fate of stalled nascent chains. bioRxiv [Preprint]. 2024 Oct 14:2024.08.02.606406. Chang WD, Yoon MJ, Yeo KH, Choe YJ. Threonine-rich carboxyl-terminal extension drives aggregation of stalled polypeptides. Mol Cell. 2024 Nov 21;84(22):4334-4349.e7. 

      Throughout the work (e.g. 3B, C), anisomycin effects should be compared to those with cycloheximide to observe if the effects are specific to a CAT tail inhibitor rather than a translation inhibitor.

      We agree that including cycloheximide control experiments is crucial. The revised version now incorporates new data, as depicted in Fig. S5A, B, illustrating alterations in the on/off state of MPTP following cycloheximide treatment. Furthermore, Fig. S6A, B present changes in Calcium Retention Capacity (CRC) under cycloheximide treatment. The consistency of results across these experiments, despite cycloheximide treatment, suggests that anisomycin's role is specifically as a CAT tail inhibitor, rather than a translation inhibitor.

      Line 110, it is unclear what "short-tailed ATP5" is. Do you mean ATP5alpha-AT3? If so this needs to be introduced properly. Line 132: should say "may indicate accumulation of CAT-tailed protein" rather than "imply".

      We acknowledge your points. We have clarified that the "short-tailed ATP5α" refers to ATP5α-AT3 and incorporated the requested changes into the revised manuscript.

      Figure 1C: how big are those potential CAT-tails (need to be verified as mentioned earlier)?

      They look gigantic. Include a ladder.

      In the revised Fig. 1D, molecular weight markers have been included to denote signal sizes. The aggregates in the previous Fig. 1C, also present in the control plasmid, are likely a result of signal overexposure. The CAT-tailed protein is observed just above the intended band in these blots. These aggregates have been re-presented in the updated figures, and their signal intensities quantified.

      Line 170: "indicating that GBM cells have more capability to deal with protein aggregation".

      This logic is unclear. Please explain.

      We appreciate your question and have thoroughly re-evaluated our conclusion. We offer several potential explanations for the data presented in Fig. 1D: (1) ATP5α-AT20 may demonstrate superior stability. (2) GSC (GBM) cells might lack adequate mechanisms to monitor protein accumulation. (3) GSC (GBM) cells could possess an increased adaptive capacity to the toxicity arising from protein accumulation. This discussion has been incorporated into the revised manuscript (lines 166-169).

      Line 177: how do you know the endogenous ATP5alpha forms aggregates due to CAT-tailing? Need to measure in a NEMF hypomorph.

      We understand your concern and have addressed it. Revised Fig. 3G, H demonstrates that a reduction in NEMF levels, achieved through sgNEMF in GSC cells, significantly diminishes ATP5α aggregation. This, in conjunction with the Anisomycin treatment data presented in revised Fig. 3E, F, confirms the substantial impact of the CAT-tailing process on this aggregation.

      Line 218: really need a cycloheximide or NEMF hypomorph control to show this specific to CAT-tailing.

      We have revised the manuscript to include data from sgNEMF and cycloheximide treatments, specifically Fig. 3G, H, and Fig. S5C, D, as detailed in our response above.

      Lines 249,266, Figure 5A: The mentioned experiments would benefit from controls including an extension of ATP5alpha that was not alanine and threonine, perhaps a gly-ser linker, as well as an NEMF hypomorph.

      We sincerely appreciate your insightful comments. In response, the revised manuscript now incorporates control data for ATP5α featuring a poly-glycine-serine (GS) tail. This data is specifically presented in Figs. S2E-G, S4E, S7A, D, E, and S8F, G. Our experimental findings consistently demonstrate that the overexpression of ATP5α, when modified with GS tails, had no discernible impact on protein aggregation, mitochondrial membrane potential, GSC cell mobility, or any other indicators assessed in our study.

      Figure S5A should be part of the main figures and not in the supplement.

      This has been moved to the main figure (Fig. 5C).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors tackled the public concern about E-cigarettes among young adults by examining the lung immune environment in mice using single-cell RNA sequencing, discovering a subset of Ly6G- neutrophils with reduced IL-1 activity and increased CD8 T cells following exposure to tobaccoflavored e-cigarettes. Preliminary serum cotinine (nicotine metabolite) measurements validated the effective exposure to fruit, menthol, and tobacco-flavored e-cigarettes with air and PG:VG serving as control groups. They also highlighted the significance of metal leaching, which fluctuated over different exposure durations to flavored e-cigarettes, underscoring the inherent risks posed by these products. The scRNAseq analysis of e-cig exposure to flavors and tobacco demonstrated the most notable differences in the myeloid and lymphoid immune cell populations. Differentially expressed genes (DEGs) were identified for each group and compared against the air control. Further subclustering revealed a flavor-specific rise in Ly6G- neutrophils and heightened activation of cytotoxic T cells in response to tobacco-flavored e-cigarettes. These effects varied by sex, indicating that immune changes linked to e-cig use are dependent on gender. By analyzing the expression of various genes and employing gene ontology and gene enrichment analysis, they identified key pathways involved in this immune dysregulation resulting from flavor exposure. Overall, this study affirmed that e-cigarette exposure can suppress the neutrophil-mediated immune response, subsequently enhancing T cell toxicity in the lung tissue of mice.

      Strengths:

      This study used single-cell RNA sequencing to comprehensively analyze the impact of e-cigarettes on the lung. The study pinpointed alterations in immune cell populations and identified differentially expressed genes and pathways that are disrupted following e-cigarette exposure. The manuscript is well written, the hypothesis is clear, the experiments are logically designed with proper control groups, and the data is thoroughly analyzed and presented in an easily interpretable manner. Overall, this study suggested novel mechanisms by which e-cigs impact lung immunity and created a dataset that could benefit the lung immunity field.

      Weaknesses:

      The authors included a valuable control group - the PG:VG group, since PG:VG is the foundation of the e-liquid formulation. However, most of the comparative analyses use the air group as the control. Further analysis comparing the air group to the PG:VG group, and the PG:VG group to the individual flavored e-cig groups will provide more clear insights into the true source of irritation. This is done for a few analyses but not consistently throughout the paper. Flavor-specific effects should be discussed in greater detail. For example, Figure 1E shows that the Fruit flavor group exhibits more severe histological pathology, but similar effects were not corroborated by the singlecell data.

      We thank the reviewer for this query. We agree that PG:VG group is the foundation of the e-liquid formulation and hence comparisons with this group are of significance to understand the effect of individual flavors on the cell population. Though we compared the flavored e-cig groups with PG:VG group, we did not discuss it in detail within the manuscript to avoid confusions in interpretation for this study. However, we have now included the comparisons with the PG:VG group as a Supplement File S13-S18 in our revised manuscript to facilitate proper interpretation of our omics data to interested readers.

      While we agree that flavor-specific effects might be of interest, we did not delve into exploring them in detail as the fruit flavor e-liquids have now been regulated/banned from sale in the US. Thus, from regulatory point of view, the effects of tobacco-flavored e-liquids hold most interest. Since at the time of conducting this study, fruit flavors were in the market, we have still included the data. However, studying it further was not the focus of this work.

      The characterization of Ly6g+ vs Ly6g- neutrophils is interesting and potentially very impactful. Key results like this from scRNAseq analyses should be validated by qPCR and flow cytometry.

      Also, a recent study by Ruscitti et al reported Ly6g+ macrophages in the lung which can potentially confound the cell type analysis. A more detailed marker gene and sub-population analysis of the myeloid clusters could rule out this potential confounding factor.

      We agree with the reviewer that the loss of Ly6G on neutrophils is a very interesting finding and we have designed a neutrophil specific experiment to study the impact of e-cig exposure on neutrophil maturation and function which will be discussed in subsequent work by our group. To address the concerns raised by the reviewer, we stained the lung tissue samples from air-and tobacco flavored e-cig aerosol exposed mouse lungs with Ly6G and S100A8 (universal marker for neutrophil) to see the infiltration of Ly6G+ vs Ly6G- neutrophils within the lungs of exposed and unexposed mice. Results from this study showed that exposure to tobacco-flavored e-cig aerosol affects the neutrophil population within the mouse lungs. In fact, the changes were more pronounced for female mice. The data have now been shown in Figure 4.

      Reviewer #2 (Public review):

      This study provides some interesting observations on how different flavors of e-cigarettes can affect lung immunology, however there are numerous flaws including a low number of replicates and a lack of effective validation methods which reduces the robustness and rigor of the findings.

      Strengths:

      The strength of the study is the successful scRNA-seq experiment which gives good preliminary data that can be used to create new hypotheses in this area.

      Weaknesses:

      The major weakness is the low number of replicates and the limited analysis methods. Two biological n per group is not acceptable to base any solid conclusions. Any validatory data was too little (only cell % data) and did not always support the findings (e.g. Figure 4D does not match 4C). Often n seems to be combined and only one data point is shown, it is not at all clear how the groups were analyzed and how many cells in each group were compared.

      We thank the reviewer for recognizing the strengths of this manuscript while pointing out the errors to allow us to improve our analyses. We understand that the low number of replicates in this work makes the analyses difficult to draw solid conclusions, but this was a pilot study to identify the changes in the mouse lung upon acute exposures to flavored e-cig aerosols at a single cell level. So far, the e-cig field has been primarily focused on conducting toxicological studies to help regulatory bodies to set standards and enforce laws to better regulate the manufacture, sale and distribution of e-cig products. However, adolescents and young adults are still getting access to these products, and there is little to no understanding of how this may affect the lung health upon acute and chronic exposures. Single cell technology is a powerful tool to analyze the gene expression changes within cell populations to study cell heterogeneity and function. Yet, it is a costly tool owing to which conducting such analyses on large sample sizes is not ideal. This pilot study was designed to get some initial leads for our future studies involving larger sample sizes and chronic exposures. However, due to the vast information that is provided by a single cell RNA sequencing experiment, we intend to share it with a larger audience to support research and further study in this area. We understand that the validations are limited in our current work and so we have now conducted coimmunostaining to validate the Ly6G+ and Ly6G- neutrophil population. We have now included single cell findings with the validating experiments using classical methods of experimentation including ELISA, immunostaining or flow cytometry and revamped the whole manuscript. However, it is important to mention that such validations are sometimes challenging as many of these techniques still investigate the tissue while the changes shown in single cell analyses are mainly pertaining to a single cell type. This could be well-understood by looking at the flow cytometry results for neutrophils where we use Ly6G as a marker to stain for neutrophils which is only found in mature neutrophil population.

      Only 71,725 cells mean only 7,172 per group, which is 3,586 per animal - how many of these were neutrophils, T-cells, and macrophages? This was not shown and could be too low.

      We do agree that the number of cells could be too low. To avoid this, we did not study gene expression variations at the finest level of cell identity. We classified the cell clusters into general annotations -myeloid, lymphoid, endothelial, stromal and epithelial- and identified the changes in the gene expressions. Of these, only two clusters (myeloid and lymphoid) with more than ~1000 cells per cell type per group were studied in detail. We have included the cell count information to allow better interpretation of our results in the revised manuscript. For a single cell point of view, a cell count of ~3500 each with over 20000 features (genes) has good statistical strength and merit in our opinion.

      The dynamic range of RNA measurement using scRNA seq is known to be limited - how do we know whether genes are not expressed or just didn't hit detection? This links into the Ly6G negative neutrophil comment, but in general, the lack of gene expression in this kind of data should be viewed with caution, especially with a low n number and few cells.

      This is a well-taken point, and we thank the reviewer for this comment. We agree that the dynamic range RNA measurement is limited low cell numbers that could lead to bias. However, none of the clusters with counts lower than 150 were included for differential gene analyses. To avoid confusion, we now show immunofluorescence results to validate the findings. We are certain that with the inclusion of these validation experiments, will convince the reviewer about the loss of Ly6G marker from neutrophils and lack of proper neutrophilic response in exposed mouse lungs as compared to the controls.

      There is no rigorous quantification of Ly6G+ and Ly6G- cells int he flow cytometry data.

      We understand that flow-based quantification of our scRNA seq findings would be interesting. However, flow cytometry and single cell suspension to perform sequencing were performed parallelly for this study. We used a basic flow panel using single markers to identify individual immune cell type. We did identify changes in the Ly6G population in our treated and control samples using scRNA seq and intend to exclude it as a marker for our future studies using flow cytometry. Unfortunately, the same analyses could not be performed for the current batch of samples. We have now included results from IHC staining to identify the Ly6G+ and Ly6G- population in the lung tissues from control and treated mice in revised manuscript to address some of the concerns raised here. 

      Eosinophils are heavily involved in lung biology but are missing from the analysis.

      We use RBC lysis buffer to remove the excess RBCs during lung digestion for preparation of single cell suspension for scRNA seq in this study. Reports suggest that RBC lysis could adversely affect the eosinophil number and function. We did not identify any cell cluster, representing markers for eosinophils through our scRNA seq data and we believe that our lung digestion protocol could be the reason for it. We have studied the eosinophil changes through flow cytometry in these samples and have found significant changes as well. However, due to our inability to find cell clusters for eosinophil through scRNA seq data, we did not include these results in the final manuscript previously. To avoid confusion and maintain transparency, we have now included the changes in eosinophils through flow cytometry in revised manuscript (Figure S4).

      The figures had no titles so were difficult to navigate.

      We have now revamped the figures to make it easier for the readers to navigate.

      PGVG is not defined and not introduced early enough.

      We have made the necessary changes in the revised manuscript.

      Neutrophils are not well known to proliferate, so any claims about proliferation need to be accompanied by validation such as BrdU or other proliferation assays.

      We have now removed the cell cycle scoring information from the revised manuscript. Performing BrDU assay was not possible for these tissues due to limited samples and resources. However, we may consider performing it in our future studies.

      It was not clear how statistics were chosen and why Table S2 had a good comparison (two-way ANOVA with gender as a variable) but this was not used for other data particularly when looking at more functional RNA markers (Table S2 also lacks the interaction statistic which is most useful here).

      We have now included the two-way ANOVA statistics (Supplementary File S3) for other data included in the revised manuscript. It is important to note that since we did not identify any significant changes upon two-way ANOVA, the interaction statistics were not available for the abovementioned statistical test. We have included the interaction information wherever available.

      Many statistics are only vs air control, but it would be more useful as a flavor comparison to see these vs PGVG. In some cases, the carrier PGVG looks worse than some of the flavors (which have nicotine).

      While we agree with this comment of the reviewer, comparisons with PG:VG were not included due to the low cell numbers for PG:VG samples obtained following quality control and filtering of scRNA seq analyses.  However, considering the reviewer’s question we still include the details of comparisons with PG:VG included as supplementary files S13-S18 in the revised manuscript.

      The n number is a large issue, but in Figures such as 4, 6, and 7 it could be a bigger factor. The number of significant genes identified has been determined by chance rather than any real difference, e.g. Is Il1b not identified in Fruit flavor vs air because there wasn't enough n, while in Air vs Tobacco, it randomly hit the significance mark. This is but an example of the problems with the analysis and conclusions.

      While we agree in part with the concern raised here. In our opinion, an omics study is not necessarily aimed at finding the changes at transcript level with absolute certainty, but rather to identify probable cell and gene targets to validate with subsequent work. We did not claim that our findings are absolute outcomes but rather add the limitation of sample number and need for further research at every step. The strength of this work is to be the first study of its kind looking at changes in the lung cell population at single cell level upon e-cig aerosol exposure. This study has provided us with interesting gene and cell targets that we are now validating with future work. We still strongly believe that a dataset like this is a useful resource for a wider audience.  

      The data in Figure 7A is confusing, if this is a comparison to air, then why does air vs air not equal 1? Even if this was the comparison to the average of air between males and females, then this doesn't explain why CCL12 is >1 in both. Is this z-score instead? Regardless the data is difficult to interpret in this format.

      We have now changed the format of data representation in the figure.

      Individual n was not shown for almost all experiments - e.g. Figure 1D - what is this representative of? Figure 2D - is this bulk-grouped data for all cells and all mice? The heatmaps are also pooled from 2n and don't show the variability.

      Wherever needed, the n number has been included in the Figure legend. Additionally, the n number is shown in Figure 1A. However, with respect to the second comment we would like to differ from the reviewer’s opinion. Each scRNA seq data had 2 samples – one for male and another for female which has been clearly shown in the current figures. The pooling of cells as mentioned in the comment happened at the stage of preparation of cell suspension from each sex/group at the start of the sequencing. We show the results of the pooled sample showing the variability amongst pooled samples, which we acknowledge is a shortcoming of our work. In terms of representation of the heat maps and data analyses we have included all the needed information to uphold transparency of our study design and data visualization for each figure and would like to stick to the current representations. However, validation cohort does not involve any pooling of sample and still agrees with most of the deductions made from this study. So we are confident that no over statements have been made in this work and we still provide a useful dataset to inform future research in this area.

      Reviewer #3 (Public review):

      This work aims to establish cell-type specific changes in gene expression upon exposure to different flavors of commercial e-cigarette aerosols compared to control or vehicle. Kaur et al. conclude that immune cells are most affected, with the greatest dysregulation found in myeloid cells exposed to tobacco-flavored e-cigs and lymphoid cells exposed to fruit-flavored e-cigs. The up-and-downregulated genes are heavily associated with innate immune response. The authors suggest that a Ly6G-deficient subset of neutrophils is found to be increased in abundance for the treatment groups, while gene expression remains consistent, which could indicate impaired function. Increased expression of CD4+ and CD8+ T cells along with their associated markers for proliferation and cytotoxicity is thought to be a result of activation following this decline in neutrophil-mediated immune response.

      Strengths:

      (1) Single-cell sequencing data can be very valuable in identifying potential health risks and clinical pathologies of lung conditions associated with e-cigarettes considering they are still relatively new.

      (2) Not many studies have been performed on cell-type specific differential gene expression following exposure to e-cig aerosols.

      (3) The assays performed address several factors of e-cig exposure such as metal concentration in the liquid and condensate, coil composition, cotinine/nicotine levels in serum and the product itself, cell types affected, which genes are up- or down-regulated and what pathways they control.

      (4)Considerations were made to ensure clinical relevance such as selecting mice whose ages corresponded with human adolescents so that the data collected was relevant.

      Weaknesses:

      The exposure period of 1 hour a day for 5 days is not representative of chronic use and this time point may be too short to see a full response in all cell types. The experimental design is not well-supported based on the literature available for similar mouse models.

      This study was not designed to study the effects of chronic exposures on lung tissues. We were interested in delineating the effect of acute exposures for which the proposed study design was chosen. Previous work by our group has performed similar exposures and has been well received by the community. We understand that chronic exposures will be interesting to look at, but that was beyond the scope of this pilot study. Longer / chronic exposures will be conducted considering disease modifying effects of e-cigarettes.

      Several claims lack supporting evidence or use data that is not statistically significant. In particular, there were no statistical analyses to compare results across sex, so conclusions stating there is a sex bias for things like Ly6G+ neutrophil percentage by condition are observational.

      We thank the reviewer for this observation, and we have now included the necessary validations and details of the sex-based statistical analyses in the revised version of this manuscript. 

      Statistical analyses lack rigor and are not always displayed with the most appropriate graphical representation.

      We thank the reviewer and have included all the necessary statistical details with more details in the revised manuscript.

      Overall, the paper and its discussion are relatively limited and do not delve into the significance of the findings or how they fit into the bigger picture of the field.

      As pointed out by the reviewers themselves the strength of this work is in the first ever scRNA seq analyses of mice exposed to differently flavored e-cig aerosols in vivo. We also show cellspecific differential gene expressions and address some of the major queries made around e-cig research including release of metals on a day-to-day basis from the same coil. The limited sample number makes it difficult to draw solid conclusions from this work, which has been discussed as a shortcoming. Nevertheless, the major strength of this work is not in identifying specific trends, but rather to determine the possible cell and gene targets to expand the study for longer (chronic) exposures with a larger sample group. We have mentioned the significance of the study with respect to vaping effects on cellular heterogeneity leading to deleterious effects.

      The manuscript lacks validation of findings in tissue by other methods such as staining.

      We have now included some validation experiments and revamped the revised manuscript to support scRNA seq findings.

      This paper provides a foundation for follow-up experiments that take a closer look at the effects of e-cig exposure on innate immunity. There is still room to elaborate on the differential gene expression within and between various cell types.

      We thank the reviewer for this observation. The cell numbers for some cell clusters (especially epithelial cells) were too low. So, though we have performed the differential gene expression analyses on all the cell clusters, we refrained from discussing it in the manuscript to avoid over interpretation of our results. Only clusters with high enough (> 150) cells per sex per group were used to plot the heatmaps. We have now included the cell numbers for each cell type in the revisions to allow better interpretation of our data. Furthermore, the raw data from this study will be freely available to the public upon publication of this manuscript. This would enable the interested readers to access the raw data and study the cell types of interest in detail based on their study requirements. This data will be a useful resource for all in this community to inform and design future studies. 

      Recommendation For The Author:

      Major comments

      Mouse experiments are extremely variable and an n of 2 is not enough. Because of the complexity of separating male and female mice, the analyses are not adequately powered to support conclusions. The two-way ANOVA style approach to consider sex as a separate variable was a great idea in Table S2 - but this was not used elsewhere, and there is a need to show the interaction statistic (which would say if there is a flavor effect dependent on sex).

      We thank the reviewers for this recommendation. We agree that the experiments are highly variable. However, it is not merely an outcome of a small sample size (which we address as one of the limitations). What is important to mention here is the fact that validating results from single cell technologies using regular molecular biology techniques is challenging and may not completely align. It is because we are comparing single cell population in the former and a heterogeneous cell population in latter. However, considering this comment, we have now toned down our conclusions and performed some extra experiments to validate single cell findings. We also provide the results from two-way ANOVA statistics for all the figures/experiments performed in this work. 

      More validatory data with PCR, immunostaining, and flow cytometry would be very helpful. This includes validating the neutrophil functional and phenotype data and the T-cell data by flow cytometry.

      To validate the presence of Ly6G+ and Ly6G- neutrophil population, we performed coimmunostaining experiments and proved that exposure to tobacco-flavored e-cig aerosols results in increase in cell percentages of two neutrophil population in female mice. We also re-analyzed our Flow cytometry data to align with scRNA seq results. Multiplex protein assay was another technique used to show altered innate/adaptive immune responses upon exposure to differently flavored e-cig aerosol. Of note, considering the short duration of exposure we did not identify significant changes in cell numbers or inflammatory responses. But we have now validated our scRNA seq results using various techniques to draw meaningful conclusions.

      The in vivo experimental design seems to model very short-term exposure. In the literature, including the papers cited in the references, much longer time points are used, extending from several weeks to months of exposure. There seem to be few examples of papers using 5-day exposure and those that do are inspired by traditional cigarette smoke rather than e-cig aerosols or model acute exposure by making the daily duration longer. It is important to consider the possibility that the greatest number of up- or down-regulated genes are found in immune cell populations solely because they are the first to be affected by e-cig exposure and the other cell types just do not have time to become dysregulated in 5 days.

      We thank the reviewers for this comment. We do not refute the fact that our observations of major changes in the immune cell population are due to the short duration of exposure. This was one of the first studies using single cell technologies to look at cell specific changes in the mouse lungs exposed to e-cig aerosols. However, the future experiments being conducted in our lab are using more controlled approach to mimic chronic exposures to e-cig aerosols to identify changes in other cell types and long-term effects of e-cig exposures in vivo. However, since this was not the focus of this work, we have not discussed it in detail.

      The validity of the claims pertaining to septal thickening and mean linear intercept (MLI) are questionable due to the poor lung inflation of the treatment group, which the authors acknowledge. Thus, MLI cannot be accurately used. It is contradictory to state that the fruit-flavored treatment group presented challenges with inflation but then concluded that there is a phenotype. In addition, inflation with low-melting agarose is not an ideal method because it does not use a liquid column to maintain constant pressure. For these metrics to be used and evaluated, it is imperative that all lobes are properly inflated. Therefore, these data should either be repeated or removed.

      We agree with this critique and have removed the MLI quantification from the revised manuscripts, we also do not make claims regarding much histological changes upon exposure. We suggest further work in future to get better understanding of the effect of differently flavored e-cig aerosol exposure on mouse lungs.

      What is the purpose of analyzing cell cycle scores? Why is it relevant that neutrophils are in G2M-phase? Figure 3B shows that neutrophils are clearly in both G1- and G2M-phase and this cluster includes both Ly6G+ and Ly6G- subsets, so it does not seem accurate to claim that they are in the G2M-phase of the cell cycle, nor does it reveal anything novel about Ly6G- neutrophils. Is it possible that the cell cycle score is noting a point in differentiation when neutrophils acquire/begin expressing Ly6G? Ly6G expression in neutrophils has been found to be associated with differentiation and maturation. To rule out the possibility that this is a cell state being identified, differential gene expression between the 2 neutrophil subsets should be shown in a volcano plot. It would also be useful to stain for Ly6G+/- neutrophils using either IF or RNAscope to prove they are present. If the claim is that Ly6G- neutrophils are a "unique" population, it must be established to what extent they are unique. Immune cells cluster together on UMAPs, so what if these are a different cell type entirely, like another immature myeloid lineage, and this is an artifact of clustering? This could be clarified with a trajectory analysis and further subsetting of the immune population.

      We thank the reviewers for this comment. We now realize that analyzing the cell cycle scores was not serving the intended purpose in this work. Moreover, due to the use of pooled samples for scRNA seq analyses, it may not be best to perform such downstream analyses in our datasets. We have thus removed these graphs from the revised version and have tried to simplify the conclusions of our study to the readers. 

      Our main take home from this study is the increase in number of mature (Ly6G+) and immature (Ly6G-) neutrophils in tobacco-flavored e-cig aerosol exposed mouse lungs as compared to air control. This result was validated using co-immunofluorescence in the revised manuscript (Figure 4).

      In vivo validation of findings should be included, especially for the claimed changes. As of now, this paper serves more as a dataset that could be further explored by other groups, which in itself is valuable, but it is just one single cell sequencing experiment without validation.

      We thank the reviewers for this comment. We have used multiple techniques (flow cytometry, multiplex protein assay, co-immunofluorescence) in the revised manuscript to validate the scRNA seq findings. However, this was a preliminary study which was designed to generate a small dataset for future experiments, and we do not have resources to add more validatory experiments for this study. We are currently designing chronic e-cig exposure studies to elaborate upon certain hypothesis generated through this study in future.

      Minor Comments

      There are several examples of typos or small errors in the text that would benefit from proofreading. Examples: line 51 "in the many countries including (the) United States (US), (the) United Kingdom..."; on line 54, the reference cited states that 9.4% of middle schoolers are daily users, not 9.2%; on line 55 the reference cited states that these are the most commonly used flavors, not the most preferred, which explains why the percentages do not add up to 100; line 120 "the lungs were in a collapsed state than the other groups"; line 127 "to confirm out speculations"; line 136 "PGVG" instead of the previously used "PG:VG"; line 140 "(single cell capture))"; line 999 "result in" rather than "results in" for Figure 4 title, etc.

      We thank the reviewer for this comment. The manuscript has been thoroughly proofread and edited to avoid typos and grammatical errors.

      If this is a "pilot study" (as it is stated in the introduction) it is meant to assess the validity of experimental design on a small scale to later test a hypothesis. The authors should change the phrasing.

      We have now changed the phrasing as suggested.

      The introduction lacked the necessary context and background. Some information described in the results section could be addressed in the intro. For example: What is the significance of neutrophils having a Ly6G deficiency? Why was the exposure duration of 1 hour a day for 5 days chosen? Why use nose-only exposure when many models use whole-body exposure? Why look at cell-type-specific changes?

      We have made the necessary amendments in the introduction.

      Some figure titles only address certain panels rather than summarizing the figure as a whole. For example, the title of Figure 1 only refers to panel D and is unrelated to serum cotinine levels, septa thickening, or mean linear intercept. The text discussed conclusions about septa thickening and Lm values for the fruit-flavored treatment group, so they are equally relevant to the figure compared to the metal levels.

      We have now changed the Figures and Figure legends to summarize the figure.

      significance level is not defined in Figure 1 legend although it is used in Figure 1C.

      The Figure legend has now been updated.

      Figure 1E does not include a scale bar.

      We have now included the scale bar in updated figures.

      The multiplex ELISA shown in the experimental design schematic is not further discussed in the paper. Flow cytometry plots should be displayed in addition to the data they generated.

      The flow cytometry plots have now been included (Figures 3&5) and the results for Multiplex ELISA are shown as Figure S3D and lines 327-342 of the revised manuscript.

      In Figure 1F, a multivariate ANOVA should be used so that multiple groups can be compared across sex, rather than plotting in a sex-specific manner and claiming there exists a sex bias. The small sample size also introduces an issue because a p-value cannot be generated with so few samples.

      Per the suggestions made previously, figure 1F has now been removed from the revised manuscript.

      The protocol for achieving a single-cell suspension should be detailed in the methods section. As is, it only describes the sample collection and preparation. This could help elucidate to the reader why the UMAP shows such a large abundance of immune cells.

      We have now included the protocol in the revised manuscript.

      Clarify whether PG:VG was used as a control in the scRNA sequencing in addition to air to generate the UMAP in Figure 2A.

      Yes, PG:VG was used as one of the controls which has now been illustrated as groupwise comparison in Figure 2D. We have also included the comparisons to identify DEGs in myeloid and lymphoid clusters upon comparison of various treatment groups versus PGVG (Supplementary Files S13-S18)

      A UMAP should be shown for each treatment group/flavor. The overall UMAP in Figure 1A is good, but there could be another panel with separate projections for each condition.

      A groupwise UMAP has now been included in Figure 2D.

      In Figure 2C, relative cell percentage is not a reliable method to quantify cell type and the histogram is not a great way to visualize the data or its statistical significance. These claims should also be validated in tissue.

      We thank the reviewers for this comment and have tried to validate the findings using Flow cytometry. However, we may want to add that the changes observed in single cell technologies cannot be validated using simple molecular biology techniques as the markers used to specify cell clusters in scRNA seq is too specific which was not the case for the design of flow panel in this work. Our major purpose of using cell percentages was to show the flavor-specific changes in generalized cell populations in mouse lungs. So, we have still included these graphs in the revised manuscript.

      Figure 2D could be better illustrated with a volcano plot to show which genes are being dysregulated rather than just how many. Knowing which genes are affected is more valuable than knowing just the number of genes.

      Figure 2D is no longer a part of the revised manuscript. For the other comparisons we have still used heatmaps as they also depict sex-specific changes in gene expressions, which would have been difficult to elucidate using volcano plots.

      Assuming Figure 3C is representative of all conditions, then Figures 3C and D demonstrate that Ly6G- neutrophils are present in all conditions including controls. To see whether they are truly present in different abundances between treatment and control groups, separate UMAPs of the neutrophil subsets should be made per condition or use a dot plot for Figure 3A. This also applies to Figure 3B.

      We thank the reviewers for pointing this out. We have now revamped the whole manuscript and used additional validation experiments to show the presence of Ly6G- and Ly6G+ neutrophil population upon exposure to tobacco-flavored e-cig aerosols. 

      Figure 3E shows that there is no statistically significant change in % of Ly6G+ neutrophils across treatment groups, but the text claims that there is "an increase in the levels of Ly6G+ neutrophils in lung digests from mouse lungs exposed to tobacco-flavored e-cig aerosols" (lines 207-209). The text also claims that "The observed increase was more pronounced in males as compared to females" (lines 209-210), but there was no statistical analysis across sexes to support this statement. It is clear that the change in % of Ly6G+ neutrophils is more pronounced in males than females, but it is still not statistically significant. This figure should also be repeated for analysis of Ly6G- neutrophils. Lines 272-274 mention that the % increase is higher for Ly6G- neutrophils than for Ly6G+ neutrophils, but there is not an analogous histogram to demonstrate this. The claims made in lines 275-280 are not clearly shown in any figure.

      We thank the reviewer for this query. This was an error on our part. We have now added sex-specific changes using scRNA seq, flow cytometry and co-immunofluorescence-based experiments to prove that more pronounces changes in the Ly6G+ and Ly6G- neutrophil population occurs in female mice and not males.

      Figures 4 and 6 have an overwhelming amount of heatmaps. Volcano plots with downstream analyses could be used to make some of this data more legible. The main findings should be validated in vivo/in tissue.

      We have now revamped the figures and data distribution to make the data legible and remove overwhelming amount of data from the slides.

      For Figure 5, show cell type by condition and do differential gene expression analysis displayed in a volcano plot. Then, stain tissue to validate the findings. Compare across sex during statistical analysis.

      The necessary changes have been made.

      Figure 6 error: panels E and F should be labeled as "tobacco" rather than "fruit".

      Error has now been fixed.

      Figure 7C can be placed in the supplemental materials.

      It has now been included in supplemental materials.

      The Figure 6E title should have been tobacco instead of fruit.

      This error has now been fixed.

      Line 381 mentioned the wrong subfigure. (Figure 7B instead of 7E).

      We have now made the necessary edits.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The authors revealed the cellular heterogeneity of companion cells (CCs) and demonstrated that the florigen gene FT is highly expressed in a specific subpopulation of these CCs in Arabidopsis. Through a thorough characterization of this subpopulation, they further identified NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. Overall, these findings are intriguing and valuable, contributing significantly to our understanding of florigen and the photoperiodic flowering pathway. However, there is still room for improvement in the quality of the data and the depth of the analysis. I have several comments that may be beneficial for the authors. 

      Strengths: 

      The usage of snRNA-seq to characterize the FT-expressing companion cells (CCs) is very interesting and important. Two findings are novel: 1) Expression of FT in CCs is not uniform. Only a subcluster of CCs exhibits high expression level of FT. 2) Based on consensus binding motifs enriched in this subcluster, they further identify NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1)-like transcription factors as potential new regulators of FT. 

      We are pleased to hear that reviewer 1 noted the novelty and importance of our work. As reviewer 1 mentioned, we are also excited about the identification of a subcluster of companion cells with very high FT expression. We believe that this work is an initial step to describe the molecular characteristics of these FT-expressing cells. We are also excited to share our new findings on NIGT1s as potential FT regulators. We believe this finding will attract a broader audience, as the molecular factor coordinating plant nutrition status with flowering time remains largely unknown despite its well-known phenomenon.

      Weaknesses: 

      (1) Title: "A florigen-expressing subpopulation of companion cells". It is a bit misleading. The conclusion here is that only a subset of companion cells exhibit high expression of FT, but this does not imply that other companion cells do not express it at all. 

      We agree with this comment, as it was not our intention to sound like that FT is not produced in other companion cells than the subpopulation we identified. We revised the title to more accurately reflect the point. The new title is “Companion cells with high florigen production express other small proteins and reveal a nitrogen-sensitive FT repressor.”

      (2) Data quality: Authors opted for fluorescence-activated nuclei sorting (FANS) instead of traditional cell sorting method. What is the rationale behind this decision? Readers may wonder, especially given that RNA abundance in single nuclei is generally lower than that in single cells. This concern also applies to snRNA-seq data. Specifically, the number of genes captured was quite low, with a median of only 149 genes per nucleus. Additionally, the total number of nuclei analyzed was limited (1,173 for the pFT:NTF and 3,650 for the pSUC2:NTF). These factors suggest that the quality of the snRNA-seq data presented in this study is quite low. In this context, it becomes challenging for the reviewer to accurately assess whether this will impact the subsequent conclusions of the paper. Would it be possible to repeat this experiment and get more nuclei?

      We appreciate this comment; we noticed that we did not clearly explain the rationale for using single-nucleus RNA sequencing (snRNA-seq) instead of single-cell RNA-seq (scRNA-seq). As reviewer 1 mentioned, RNA abundance in scRNA-seq is higher than in snRNA-seq. To conduct scRNA-seq using plant cells, protoplasting is the necessary step. However, in our study, protoplasting has many drawbacks in isolating our target cells from the phloem. First, it is technically challenging to efficiently isolate protoplasts from highly embedded phloem companion cells from plant tissues. Typically, at least several hours of enzymatic incubation are required to obtain protoplasts from companion cells (often using semi-isolated vasculatures), and the efficiency of protoplasting vasculature cells remains low. Secondly, for our analysis, restoring the time information within a day is also crucial. Therefore, we employed a more rapid isolation method. In the revision, we will explain our rationale for choosing snRNA-seq due to the technical limitations. In the revised manuscripts, we added four new sentences in the Introduction section to clearly explain these points.

      Reviewer 1 also raised a concern about the quality of our snRNA-seq data, referring to the relatively low readcounts per nucleus. Although we believe that shallow reads do not necessarily indicate low quality and are confident in the accuracy of our snRNA-seq data, as supported by the detailed follow-up experiments (e.g., imaging analysis in Fig. 4B), we agree that it is important to address this point in the revision and alleviate readers’ concerns regarding the data quality. 

      We believe the primary reason for the low readcounts per cell is the small amount of RNA present in each Arabidopsis vascular cell nucleus that we isolated. For bulk nuclei RNAseq, we collected 15,000 nuclei. However, the total RNA amount was approximately 3 ng. It indicates that each nucleus isolated contains a very limited amount of RNA (by the simple calculation, 3,000 pg / 15,000 nuclei = 0.2 pg/nucleus). It appears that the size of cells and nuclei was still small in 2-week-old seedlings; thus, each nucleus may contain lower levels of RNA. During the optimization process, we also tried to fix the tissues that we hoped to restore nuclear retained RNA, but unfortunately, in our hands, we encountered the technical issue of nuclei aggregation that hindered the sorting process, which is not suitable for single-nucleus RNA-seq.

      Reviewer 1 suggested that we repeat the same snRNA-seq experiment. We agree that having more cells increases the reliability of data. However, to our knowledge, higher cell numbers enhance the confidence of clustering, but not readcounts per cell. In our snRNAseq data, our target, FT-expressing cells, were observed in cluster 7, which projected at an obvious distance from other cell clusters. Therefore, we think that having more nuclei does not significantly help in separating high FT-expressing cluster 7 cells and different types of cells, although we may obtain more DEGs from the cluster 7 cells. Considering the costs and time required for additional snRNA-seq experiments, we think that adding more followup molecular biology experiment data would be more practical. We clearly stated the limitations of our approach in the Discussion section. “A drawback of our snRNA-seq analysis was shallow reads per nucleus. It appears mainly due to the low abundance of mRNA in nuclei from 2-week-old leaves. Based on our calculation, the average mRNA level per nucleus is approximately 0.2 pg (3,000 pg mRNA from 15,000 sorted nuclei). Future technological advance is needed to improve the data quality“

      In this revised version of the manuscript, we silenced FT gene expression using an amiRNA against FT driven by tissue-specific promoters [pROXY10, cluster 7; pSUC2, companion cells; pPIP2.6, cluster 4 (for the spatial expression pattern of PIP2.6, please see the new data shown in Fig. S8F); pGC1, guard cells]. Given that both FT and ROXY10 were highly expressed in cluster 7 of our snRNA-seq dataset, we anticipated the late flowering phenotype of pROXY10:amiRNA-ft. As we expected, pROXY10:amiR-ft but not pPIP2.6:amiR-ft lines showed delayed flowering phenotypes (Fig. S14A), supporting the validity of our snRNA-seq approach. We are also now more confident in the resolution of our snRNA-seq analysis, since cluster 4-specific PIP2.6 did not cause late flowering despite its higher basal expression than ROXY10 (Fig. S14B).

      (3) Another disappointment is that the authors did not utilize reporter genes to identify the specific locations of the FT-high expressing cells (cluster 7 cells) within the CC population in vivo. Are there any discernible patterns that can be observed? 

      In the original manuscript, as we showed only limited spatial images of overlap between FT and other cluster 7 genes in Fig. 4B, this comment is totally understandable. To respond to it, we added whole leaf images showing the spatial expression of FT and other cluster 7 genes (Fig. S12). These data indicate that cluster 7 genes including FT are expressed highly in minor veins in the distal part of the leaf but weakly in the main vein. We also added enlarged images of spatial expression of FT and cluster 7 genes (FLP1 and ROXY10) to note that those genes do not overlap completely (Fig. S13).

      In contrast to cluster 7 genes, genes highly expressed in cluster 4, such as LTP1 and MLP28, are reportedly highly expressed in the main leaf vein. To further confirm it, we established a transgenic line that expresses a GFP-fusion protein controlled by the promoter of a cluster 4-specific gene PIP2.6 (Fig. S8F). It also showed strong GFP signals in the main vein, consistent with previous observations of LTP1 and MLP28.   In summary, FT-expressing cells (cluster 7 cells) are enriched in companion cells in the minor vein, and their expression patterns show a clear distinction from genes expressed in the main vein (e.g., cluster 4-specific genes). 

      (4) The final disappointment is that the authors only compared FT expression between the nigtQ mutants and the wild type. Does this imply that the mutant does not have a flowering time defect particularly under high nitrogen conditions? 

      We agree with reviewer 1 that more experiments are required to conclude the role of NIGT1 on FT regulation, in addition to our Y1H data, flowering time data of NIGT1 overexpressors, and FT expression in NIGT1 overexpressors and nigtQ mutant.

      First, to test the direct regulation of NIGT1s on FT transcription, we conducted a transient luciferase (LUC) assay in tobacco leaves using effectors (p35S:NIGT1.2, p35S:NIGT1.4, and p35S:GFP) and reporters [pFT:LUC (FT promoter fused with LUC) and pFTm:LUC (the same FT promoter with mutations in NIGT1-binding sites fused with LUC)]. Our result showed that NIGT1.2 and NIGT1.4, but not GFP, decreased the activity of pFT:LUC but not pFTm:LUC (Fig. 5C). This indicates that NIGT1s directly repress the FT gene.

      Second, to address reviewer 1’s suggestion about the effect of of nigtQ mutation on flowering time, we have grown WT and nigtQ plants on 20 mM and 2 mM NH<sub>4</sub>NO<sub>3</sub>. Under 20 mM NH<sub>4</sub>NO<sub>3</sub>, the nigtQ line bolted at earlier days than WT; under 2 mM NH<sub>4</sub>NO<sub>3</sub>, nigtQ and WT bolted at almost same timing (Fig. S17D and E). This result suggests that the nigtQ mutation affects flowering timing depending on nitrogen nutrient status. However, leaf numbers of bolted plants were not different between WT and nigtQ lines (Fig. S17E). Therefore, it appears that nigtQ mutation also accelerated overall growth of plants rather than flowering promotion. We also have measured flowering time by counting leaf numbers of the nigtQ and WT plants at bolting on nitrogen-rich soil. The mutant generated slightly more leaves than WT when they flowered (Fig. S17G). These results suggest that the NIGT-derived fine-tuning of FT regulation is conditional on higher nitrogen conditions. 

      Minor: 

      (1) Abstract: "Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and in true leaves differed transcriptionally.". This sentence is not informative. What exactly is the difference in FT-expressing cells between cotyledons and true leaves? 

      We modified the sentence to clarify the differences between cotyledons and true leaves. “Our bulk nuclei RNA-seq demonstrated that FT-expressing cells in cotyledons and true leaves showed differences especially in FT repressor genes.”

      (2) As a standard practice, to support the direct regulation of FT by NIGT1, the authors should provide EMSA and ChIP-seq data. Ideally, they should also generate promoter constructs with deletions or mutations in the NIGT1 binding sites. 

      To test direct interaction of NIGT1 to the FT promoter sequences, we performed the transient reporter assay using FT promoter driven luciferase reporter (Fig. 5C). NIGT1.2 and NIGT1.4 repressed the FT promoter activity; however, with NIGT1 binding site mutations, this repression was not observed, indicating that NIGT1 binds to the ciselements in the FT promoter to repress its transcription.

      (3) Sorting: Did the authors fix the samples before preparing the nuclei suspension? If not, could this be the reason the authors observed the JA-responsive clusters (Fig. 2J)? Please provide more details related to nuclei sorting in the Methods section. 

      We added a new subsection in the Materials and Methods section to explain a detail of the nuclei sorting procedure. We did not include a sample fixation step. We have tried formaldehyde fixation; however, it clumped nuclei, which was not suitable for snRNA-seq. Moreover, fixation steps generally reduce readcounts of single-cell RNA-seq according to the 10X Genomics’ guideline.

      We agree that JA responses were triggered during the FANS nuclei isolation. Therefore, we added the following sentence. “Since our FANS protocol did not include a sample fixation step to avoid clumping, these cells likely triggered wounding responses during the chopping and sorting process (Fig. S1B).  

      Reviewer #2 (Public review): 

      This manuscript submitted by Takagi et al. details the molecular characterization of the FTexpressing cell at a single-cell level. The authors examined what genes are expressed specifically in FT-expressing cells and other phloem companion cells by exploiting bulk nuclei and single-nuclei RNA-seq and transgenic analysis. The authors found the unique expression profile of FT-expressing cells at a single-cell level and identified new transcriptional repressors of FT such as NIGT1.2 and NIGT1.4. 

      Although previous researchers have known that FT is expressed in phloem companion cells, they have tended to neglect the molecular characterization of the FT-expressing phloem companion cells. To understand how FT, which is expressed in tiny amounts in phloem companion cells that make up a very small portion of the leaf, can be a key molecule in the regulation of the critical developmental step of floral transition, it is important to understand the molecular features of FT-expressing cells in detail. In this regard, this manuscript provides insight into the understanding of detailed molecular characteristics of the FT-expressing cell. This endeavor will contribute to the research field of flowering time. 

      We are grateful that reviewer 2 recognizes the importance of transcriptome profiling of FTexpressing cells at the single-cell level.

      Here are my comments on how to improve this manuscript. 

      (1) The most noble finding of this manuscript is the identification of NTGI1.2 as the upstream regulator of FT-expressing cluster 7 gene expression. The flowering phenotypes of the nigtQ mutant and the transgenic plants in which NIGT1.2 was expressed under the SUC2 gene promoter support that NIGT1.2 functions as a floral repressor upstream of the FT gene. Nevertheless, the expression patterns of NIGT1.2 genes do not appear to have much overlap with those of NIGT1.2-downstream genes in the cluster 7 (Figs S14 and F3). An explanation for this should be provided in the discussion section. 

      We agree with reviewer 2 that the spatial expression patterns of NIGT1.2 and cluster 7 genes do not overlap much, and some discussion should be provided in the manuscript. Although we do not have a concrete answer for this phenomenon, we obtained the new data showing that NIGT1.2 and NIGT1.4 directly repress the FT gene in planta (Fig. 5C).  As NIGT1.2/1.4 are negative regulators of FT, it is plausible that NIGT1.2/1.4 may suppress FT gene expression in non-cluster 7 cells to prevent the misexpression of FT. We added this point in the Results section.

      (2) To investigate gene expression in the nuclei of specific cell populations, the authors generated transgenic plants expressing a fusion gene encoding a Nuclear Targeting Fusion protein (NTF) under the control of various cell type-specific promoters. Since the public audience would not know about NTF without reading reference 16, some explanation of NTF is necessary in the manuscript. Please provide a schematic of constructs the authors used to make the transformants.

      As reviewer 2 pointed out, we lacked a clear explanation of why we used NTF in this study. NTF is the fusion protein that consists of a nuclear envelope targeting WPP domain, GFP, and a biotin acceptor peptide. It was initially designed for the INTACT (isolation of nuclei tagged in specific cell types) method, which enables us to isolate bulk nuclei from specific tissues. Although our original intention was to profile the bulk transcriptome of mRNAs that exist in nuclei of the FT-expressing cells using INTACT, we utilized our NTF transgenic lines for snRNA-seq analysis. To explain what NTF is to readers, we included a schematic diagram of NTF (Fig. S1A) and more explanation about NTF in the Results section.

      Again, we appreciate all reviewers’ careful and constructive comments. With these changes, we hope our revised manuscript is now satisfactory.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function. 

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments. 

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic. 

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences? 

      We thank the reviewer for the comments and for raising additional interpretations of our results. We agree that determining the relative number of D1- versus D2-SPN starter cells would allow a more accurate estimate of connectivity. However, due to current technical limitations, achieving this level of precision remains challenging. As the reviewer also noted, differences in the number of cortical neurons targeting D1- versus D2-SPNs could introduce additional complexity to the functional effects observed in the behavioral experiments. Moreover, functional heterogeneity is likely to exist not only among cortical neurons projecting to striatal D1- or D2-SPNs, but also within the striatal D1- and D2-SPN populations themselves. Addressing these questions at the single-neuron level will require more refined viral tools in combination with improved recording and manipulation techniques. Despite these limitations, our results suggest that a subpopulation of cortical neurons selectively targets striatal D1-SPNs, supporting a functional dichotomy of pathway-specific corticostriatal subcircuits in the control of behavior.   

      Reviewer #2 (Public review): 

      Summary: 

      Klug et al. use monosynaptic rabies tracing of inputs to D1- vs D2-SPNs in the striatum to study how separate populations of cortical neurons project to D1- and D2-SPNs. They use rabies to express ChR2, then patch D1-or D2-SPNs to measure synaptic input. They report that cortical neurons labeled as D1-SPN-projecting preferentially project to D1-SPNs over D2-SPNs. In contrast, cortical neurons labeled as D2-SPN-projecting project equally to D1- and D2-SPNs. They go on to conduct pathway-specific behavioral stimulation experiments. They compare direct optogenetic stimulation of D1- or D2-SPNs to stimulation of MCC inputs to DMS and M1 inputs to DLS. In three different behavioral assays (open field, intra-cranial self-stimulation, and a fixed ratio 8 task), they show that stimulating MCC or M1 cortical inputs to D1-SPNs is similar to D1-SPN stimulation, but that stimulating MCC or M1 cortical inputs to D2-SPNs does not recapitulate the effects of D2-SPN stimulation (presumably because both D1- and D2-SPNs are being activated by these cortical inputs). 

      Strengths: 

      Showing these same effects in three distinct behaviors is strong. Overall, the functional verification of the consequences of the anatomy is very nice to see. It is a good choice to patch only from mCherry-negative non-starter cells in the striatum. This study adds to our understanding of the logic of corticostriatal connections, suggesting a previously unappreciated structure. 

      Weaknesses: 

      One limitation is that all inputs to SPNs are expressing ChR2, so they cannot distinguish between different cortical subregions during patching experiments. Their results could arise because the same innervation patterns are repeated in many cortical subregions or because some subregions have preferential D1-SPN input while others do not. 

      Thank you for raising this thoughtful concern. It is indeed not feasible to restrict ChR2 expression to a specific cortical region using the first-generation rabies-ChR2 system alone. A more refined approach would involve injecting Cre-dependent TVA and RG into the striatum of D1- or A2A-Cre mice, followed by rabies-Flp infection. Subsequently, a Flp-dependent ChR2 virus could be injected into the MCC or M1 to selectively label D1- or D2-projecting cortical neurons. This strategy would allow for more precise targeting and address many of the current limitations.

      However, a significant challenge lies in the cytotoxicity associated with rabies virus infection. Neuronal health begins to deteriorate substantially around 10 days post-infection, which provides an insufficient window for robust Flp-dependent ChR2 expression. We have tested several new rabies virus variants with extended survival times (Chatterjee et al., 2018; Jin et al., 2024), but unfortunately, they did not perform effectively or suitably in the corticostriatal systems we examined.

      In our experimental design, the aim is to delineate the connectivity probabilities to D1 or D2-SPNs from cortical neurons. Our hypothesis considered includes the possibility that similar innervation patterns could occur across multiple cortical subregions, or that some subregions might show preferential input to D1-SPNs while others do not, or a combination of both scenarios. This leads us to perform a series behavior test that using optogenetic activation of the D1- or D2-projecting cortical populations to see which could be the case.

      In the cortical areas we examined, MCC and M1, during behavioral testing, there is consistency with our electrophysiological results. Specifically, when we stimulated the D1-projecting cortical neurons either in MCC or in M1, mice exhibited facilitated local motion in open field test, which is the same to the activation of D1 SPNs in the striatum along (MCC: Fig 3C & D vs. I; M1: Fig 3F & G vs. L). Conversely, stimulation of D2-projecting MCC or M1 cortical neurons resulted in behavioral effects that appeared to combine characteristics of both D1- and D2-SPNs activation in the striatum (MCC: Fig 3C & D vs. J; M1: Fig 3F & G vs. M). The similar results were observed in the ICSS test. Our interpretation of these results is that the activation of D1-projecting neurons in the cortex induces behavior changes akin to D1 neuron activation, while activation of D2-projecting neurons in the cortex leads to a combined effect of both D1 and D2 neuron activation. This suggests that at least some cortical regions, the ones we tested, follow the hypothesis we proposed.

      There are also some caveats with respect to the efficacy of rabies tracing. Although they only patch non-starter cells in the striatum, only 63% of D1-SPNs receive input from D1-SPN-projecting cortical neurons. It's hard to say whether this is "high" or "low," but one question is how far from the starter cell region they are patching. Without this spatial indication of where the cells that are being patched are relative to the starter population, it is difficult to interpret if the cells being patched are receiving cortical inputs from the same neurons that are projecting to the starter population. The authors indicate they are patching from mCherry-negative neurons within the region of the mCherry-positive neurons, but since the mCherry population will include both true starter cells and monosynaptically connected cells, this is not perfectly precise. Convergence of cortical inputs onto SPNs may vary with distance from the starter cell region quite dramatically, as other mapping studies of corticostriatal inputs have shown specialized local input regions can be defined based on cortical input patterns (Hintiryan et al., Nat Neurosci, 2016, Hunnicutt et al., eLife 2016, Peters et al., Nature, 2021). 

      This is a valid concern regarding anatomical studies. Investigating cortico-striatal connectivity at the single-cell level remains technically challenging due to current methodological limitations. At present, we rely on rabies virus-mediated trans-synaptic retrograde tracing to identify D1- or D2-projecting cortical populations. This anatomical approach is coupled with ex vivo slice electrophysiology to assess the functional connectivity between these projection-defined cortical neurons and striatal SPNs. This enables us to quantify connection ratios, for example, the proportion of D1-projecting cortical neurons that functionally synapse onto non-starter D1-SPNs.

      To ensure the robustness of our conclusions, it is essential that both the starter cells and the recorded non-starter SPNs receive comparable topographical input from the cortex and other brain regions. Therefore, we carefully designed our experiments so that all recorded cells were located within the injection site, were mCherry-negative (i.e., non-starter cells), and were surrounded by ChR2-mCherry-positive neurons. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.

      These methodological details are also described in the section on ex vivo brain slice electrophysiology, specifically in the Methods section, lines 453–459:

      “D1-SPNs (eGFP-positive in D1-eGFP mice, or eGFP-negative in D2-eGFP mice) or D2-SPNs (eGFP-positive in D2-eGFP mice, or eGFP-negative in D1-eGFP mice) that were ChR2-mCherry-negative, but in the injection site and surrounded by cells expressing ChR2-mCherry were targeted for recording. This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.”

      This experimental strategy was implemented to control for potential spatial biases and to enhance the interpretability of our connectivity measurements.

      A caveat for the optogenetic behavioral experiments is that these optogenetic experiments did not include fluorophore-only controls, although a different control (with light delivered in M1) is provided in Supplementary Figure 3. Another point of confusion is that other studies (Cui et al, J Neurosci, 2021) have reported that stimulation of D1-SPNs in DLS inhibits rather than promotes movement. This study may have given different results due to subtly different experimental parameters, including fiber optic placement and NA.

      We appreciate the reviewer’s thoughtful evaluation and comments. We have added a short discussion of Cui et al.’s study on optogenetic stimulation of D1-SPNs in the DLS (lines 341-343), which reports findings that contrast with ours and those of other studies.

      Reviewer #3 (Public review): 

      Review of resubmission: The authors provided a response to the reviews from myself and other reviewers. While some points were made satisfactorily, particularly in clarification of the innervation of cortex to striatum and the effects of input stimulation, many of my points remain unaddressed. In several cases, the authors chose to explain their rationale rather than address the issues at hand. A number of these issues (in fact, the majority) could be addressed simply by toning done the confidence in conclusions, so it was disappointing to see that the authors by and large did not do this. I repeat my concerns below and note whether I find them to have been satisfactorily addressed or not. 

      In the manuscript by Klug and colleagues, the investigators use a rabies virus-based methodology to explore potential differences in connectivity from cortical inputs to the dorsal striatum. They report that the connectivity from cortical inputs onto D1 and D2 MSNs differs in terms of their projections onto the opposing cell type, and use these data to infer that there are differences in cross-talk between cortical cells that project to D1 vs. D2 MSNs. Overall, this manuscript adds to the overall body of work indicating that there are differential functions of different striatal pathways which likely arise at least in part by differences in connectivity that have been difficult to resolve due to difficulty in isolating pathways within striatal connectivity, and several interesting and provocative observations were reported. Several different methodologies are used, with partially convergent results, to support their main points. 

      However, I have significant technical concerns about the manuscript as presented that make it difficult for me to interpret the results of the experiments. My comments are below. 

      Major: 

      There is generally a large caveat to the rabies studies performed here, which is that both TVA and the ChR2-expressing rabies virus have the same fluorophore. It is thus essentially impossible to determine how many starter cells there are, what the efficiency of tracing is, and which part of the striatum is being sampled in any given experiment. This is a major caveat given the spatial topography of the cortico-striatal projections. Furthermore, the authors make a point in the introduction about previous studies not having explored absolute numbers of inputs, yet this is not at all controlled in this study. It could be that their rabies virus simply replicates better in D1-MSNs than D2-MSNs. No quantifications are done, and these possibilities do not appear to have been considered. Without a greater standardization of the rabies experiments across conditions, it is difficult to interpret the results. 

      This is still an issue. The authors point out why they chose various vectors. I can understand why the authors chose the fluorophores etc. that they did, yet the issues I raised previously are still valid. The discussion should mention that this is a potential issue. It does not necessarily invalidate results, but it is an issue. Furthermore, it is possible (in all systems) that rabies replicates better/more efficiently in some cells than others. This is one possible interpretation that has not really been explored in any study. I don't suggest the authors attempt to do that, but it should be raised as a potential interpretation. If the rabies results could mean several different things, the authors owe it to the readership to state all possible interpretations of data.

      We thank the reviewer for the comments and suggestions. Because the same fluorophore (mCherry) was used in both TVA- and ChR2-expressing viruses, it was not possible to distinguish true starter SPNs from TVA-only SPNs or monosynaptically labeled SPNs. This limitation makes it difficult to precisely assess the efficiency of rabies labeling and retrograde tracing in our experimental setup. Moreover, differences in rabies replication efficiency between D1- and D2-SPNs could potentially lead to an apparent lower connection probability from D1-projecting cortical neurons to D2-SPNs than from D2-projecting cortical neurons to D1-SPNs. We have added this clarification to the Discussion (lines 280-297).

      The authors claim using a few current clamp optical stimulation experiments that the cortical cells are healthy, but this result was far from comprehensive. For example, membrane resistance, capacitance, general excitability curves, etc are not reported. In Figure S2, some of the conditions look quite different (e.g., S2B, input D2-record D2, the method used yields quite different results that the authors write off as not different). Furthermore, these experiments do not consider the likely sickness and death that occurs in starter cells, as has been reported elsewhere. Health of cells in the circuit is overall a substantial concern that alone could invalidate a large portion, if not all, of the behavioral results. This is a major confound given those neurons are thought to play critical roles in the behaviors being studied. This is a major reason why first-generation rabies viruses have not been used in combination with behavior, but this significant caveat does not appear to have been considered, and controls e.g., uninfected animals, infected with AAV helpers, etc, were not included. 

      This issue remains unaddressed. I did not request clarity about experimental design, but rather, raised issues about the potential effects of toxicity. I believe this to be a valid concern that needs to be discussed in the manuscript, especially given what look visually like potential differences in S2. 

      We understand and appreciate the reviewer’s concern regarding the potential cytotoxicity of rabies virus infection. Although we performed the in vivo optogenetic behavioral experiments during a period when rabies-infected cells are generally considered relatively healthy, some deficits in starter cells may still occur and could contribute to the observed effects of optogenetic cortical stimulation. We have added this clarification to the Discussion (lines 298-306).

      The overall purity (e.g., EnvA pseudotyping efficiency) of the RABV prep is not shown. If there was a virus that was not well EnvA-pseudotyped and thus could directly infect cortical (or other) inputs, it would degrade specificity. This issue has not been addressed. Viral strain is irrelevant. The quality of the specific preparations used is what matters.

      While most of the study focuses on the cortical inputs, in slice recordings, inputs from the thalamus are not considered, yet likely contribute to the observed results. Related to this, in in vivo optogenetic experiments, technically, if the thalamic or other inputs to the dorsal striatum project to the cortex, their method will not only target cortical neurons but also terminals of other excitatory inputs. If this cannot be ruled it, stating that the authors are able to selectively activate the cortical inputs to one or the other population should be toned down. 

      The authors added text to the discussion to address this point. While it largely does what is intended, based on the one study cited, I disagree with the authors' conclusions that it is "clear" that potential contamination from other sites does not play a role. The simplest interpretation is the one the authors state, and there is some supporting evidence to back up that assertion, but to me that falls short of making the point "clear" that there are no other interpretations. 

      The statements about specificity of connectivity are not well founded. It may be that in the specific case where they are assessing outside of the area of injections, their conclusions may hold (e.g., excitatory inputs onto D2s have more inputs onto D1s than vice versa). However, how this relates to the actual site of injection is not clear. At face value, if such a connectivity exists, it would suggest that D1-MSNs receive substantially more overall excitatory inputs than D2s. It is thus possible that this observation would not hold over other spatial intervals. This was not explored and thus the conclusions are over-generalized. e.g., the distance from the area of red cells in the striatum to recordings was not quantified, what constituted a high level of cortical labeling was not quantified, etc. Without more rigorous quantification of what was being done, it is difficult to interpret the results. 

      Again, the goal here would be to make a statement about this in the discussion to clarify limitations of the study. I don't expect the authors to re-do all of these experiments, but since they are discussing the corticostriatal circuits, which have multiple subdomains, this remains a relevant point. It has not been addressed. 

      The results in Figure 3 are not well controlled. The authors show contrasting effects of optogenetic stimulation of D1-MSNs and D2-MSNs in the DMS and DLS, results which are largely consistent with the canon of basal ganglia function. However, when stimulating cortical inputs, stimulating the inputs from D1-MSNs gives the expected results (increased locomotion) while stimulating putative inputs to D2-MSNs had no effect. This is not the same as showing a decrease in locomotion - showing no effect here is not possible to interpret. 

      I think that the caveat of showing no clear effects of inputs to D2 stimulation should be pointed out. Yes, I understand that the viruses appeared to express etc., but again it remains possible that the results are driven by a lack of e.g., sufficient ChR2 expression. Aside from a full quantification of the number of cells expressing ChR2, overlap in fiber placement and ChR2 expression (which I don't suggest), this remains a possibility and should be pointed out, as it remains a possibility. 

      In the light of their circuit model, the result showing that inputs to D2-MSNs drive ICSS is confusing. How can the authors account for the fact that these cells are not locomotor-activating, stimulation of their putative downstream cells (D2-MSNs) does not drive ICSS, yet the cortical inputs drive ICSS? Is the idea that these inputs somehow also drive D1s? If this is the case, how do D2s get activated, if all of the cortical inputs tested net activate D1s and not D2s? Same with the results in Figure 4 - the inputs and putative downstream cells do not have the same effects. Given potential caveats of differences in viral efficiency, spatial location of injections, and cellular toxicity, I cannot interpret these experiments. 

      The explanation the authors provide in their rebuttal makes sense, however this should be included in the discussion of the manuscript, as it is interesting and relevant. 

      We thank the reviewer for the valuable comments and suggestions. In line with the reviewer’s recommendation, we have incorporated these explanations into the Discussion (lines 242–279) to help interpret the complex behavioral outcomes of optogenetic stimulation of cortical neurons projecting to D1- or D2-SPNs.

      Reviewer #2 (Recommendations for the authors): 

      I appreciate the authors' responses, which helped clarify some experimental choices. I appreciate that the experiment in Fig S3 serves as a reasonable light control for optogenetics experiments. The careful comparison with methods in Cui et al (2021) is useful, although not added to the main manuscript. Some of the other citations here don't really address the controversy, e.g. Kravitz at al is in DMS, but perhaps fully addressing this issue is outside the scope of the current manuscript and awaits further experiments. I also appreciate the clarification for recording locations that "This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry." However, the statement in the reviewer response does not seem to be added to the manuscript's methods, which I think would be helpful. The criteria for choosing recorded cells are still a bit fuzzy without a map of recording locations and histology. There is also a problem that mCherry-positive cells could be starter cells or could be monosynaptically traced cells, so it is hard to know the area of the starter cell population in these experiments for sure. My evaluation of the manuscript remains largely the same as the original. However, I have adjusted my public review a bit to incorporate the authors' responses. I still think this paper has valuable information, suggesting an interesting and previously unappreciated structure of corticostriatal inputs that I hope this group and others will continue to investigate and incorporate into models of basal ganglia function.

      We thank the reviewer for the valuable suggestions. We have now included a comparison with Cui et al. in the Discussion. In addition, we have added the criteria for selecting recorded cells to the Methods section: ‘This configuration ensured that the distance between recorded and starter cells did not exceed 100 µm, maintaining close anatomical proximity and thereby preserving the likelihood of shared cortical innervation within the examined circuitry.’

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary: 

      This paper applies methods for segmentation, annotation, and visualization of acoustic analysis to zebra finch song. The paper shows that these methods can be used to predict the stage of song development and to quantify acoustic similarity. The methods are solid and are likely to provide a useful tool for scientists aiming to label large datasets of zebra finch vocalizations. The paper has two main parts: 1) establishing a pipeline/ package for analyzing zebra finch birdsong and 2) a method for measuring song imitation. 

      Strengths: 

      It is useful to see existing methods for syllable segmentation compared to new datasets.

      It is useful, but not surprising, that these methods can be used to predict developmental stage, which is strongly associated with syllable temporal structure.

      It is useful to confirm that these methods can identify abnormalities in deafened and isolated songs. 

      Weaknesses: 

      For the first part, the implementation seems to be a wrapper on existing techniques. For instance, the first section talks about syllable segmentation; they made a comparison between whisperseg (Gu et al, 2024), tweetynet (Cohen et al, 2022), and amplitude thresholding. They found that whisperseg performed the best, and they included it in the pipeline. They then used whisperseg to analyze syllable duration distributions and rhythm of birds of different ages and confirmed past findings on this developmental process (e.g. Aronov et al, 2011). Next, based on the segmentation, they assign labels by performing UMAP and HDBScan on the spectrogram (nothing new; that's what people have been doing). Then, based on the labels, they claimed they developed a 'new' visualization - syntax raster ( line 180 ). That was done by Sainburg et. al. 2020 in Figure 12E and also in Cohen et al, 2020 - so the claim to have developed 'a new song syntax visualization' is confusing. The rest of the paper is about analyzing the finch data based on AVN features (which are essentially acoustic features already in the classic literature). 

      First, we would like to thank this reviewer for their kind comments and feedback on this manuscript. It is true that many of the components of this song analysis pipeline are not entirely novel in isolation. Our real contribution here is bringing them together in a way that allows other researchers to seamlessly apply automated syllable segmentation, clustering, and downstream analyses to their data. That said, our approach to training TweetyNet for syllable segmentation is novel. We trained TweetyNet to recognize vocalizations vs. silence across multiple birds, such that it can generalize to new individual birds, whereas Tweetynet had only ever been used to annotate song syllables from birds included in its training set previously. Our validation of TweetyNet and WhisperSeg in combination with UMAP and HDBSCAN clustering is also novel, providing valuable information about how these systems interact, and how reliable the completely automatically generated labels are for downstream analysis. We have added a couple sentences to the introduction to emphasize the novelty of this approach and validation.

      Our syntax raster visualization does resemble Figure 12E in Sainburg et al. 2020, however it differs in a few important ways, which we believe warrant its consideration as a novel visualization method. First, Sainburg et al. represent the labels across bouts in real time; their position along the x axis reflects the time at which each syllable is produced relative to the start of the bout. By contrast, our visualization considers only the index of syllables within a bout (ie. First syllable vs. second syllable etc) without consideration of the true durations of each syllable or the silent gaps between them. This makes it much easier to detect syntax patterns across bouts, as the added variability of syllable timing is removed. Considering only the sequence of syllables rather than their timing also allows us to more easily align bouts according to the first syllable of a motif, further emphasizing the presence or absence of repeating syllable sequences without interference from the more variable introductory notes at the start of a motif. Finally, instead of plotting all bouts in the order in which they were produced, our visualization orders bouts such that bouts with the same sequence of syllables will be plotted together, which again serves to emphasize the most common syllable sequences that the bird produces. These additional processing steps mean that our syntax raster plot has much starker contrast between birds with stereotyped syntax and birds with more variable syntax, as compared to the more minimally processed visualization in Sainburg et al. 2020. There doesn’t appear to be any similar visualizations in Cohen et al. 2020. 

      The second part may be something new, but there are opportunities to improve the benchmarking. It is about the pupil-tutor imitation analysis. They introduce a convolutional neural network that takes triplets as an input (each tripled is essentially 3 images stacked together such that you have (anchor, positive, negative), Anchor is a reference spectrogram from, say finch A; positive means a different spectrogram with the same label as anchor from finch A, and negative means a spectrogram not related to A or different syllable label from A. The network is then trained to produce a low-dimensional embedding by ensuring the embedding distance between anchor and positive is less than anchor and negative by a certain margin. Based on the embedding, they then made use of earth mover distance to quantify the similarity in the syllable distribution among finches. They then compared their approach performance with that of sound analysis pro (SAP) and a variant of SAP. A more natural comparison, which they didn't include, is with the VAE approach by Goffinet et al. In this paper (https://doi.org/10.7554/eLife.67855, Fig 7), they also attempted to perform an analysis on the tutor pupil song.  

      We thank the reviewer for this suggestion. We have included a comparison of our triplet loss embedding model to the VAE model proposed in Goffinet et al. 2021. We also included comparisons of similarity scoring using each of these embedding models combined with either earth mover’s distance (EMD) or maximum mean discrepancy (MMD) to calculate the similarity of the embeddings, as was done in Goffinet et al. 2021. As discussed in the updated results section of the paper and shown in the new Figure 6–figure supplement 1, the Triplet loss model with MMD performs best for evaluating song learning on new birds, not included in model training. We’ve updated the main text of the paper to reflect this switch from EMD to MMD for the primary similarity scoring approach.

      Reviewer #2 (Public Review):

      Summary: 

      In this work, the authors present a new Python software package, Avian Vocalization Network (AVN) aimed at facilitating the analysis of birdsong, especially the song of the zebra finch, the most common songbird model in neuroscience. The package handles some of the most common (and some more advanced) song analyses, including segmentation, syllable classification, featurization of song, calculation of tutor-pupil similarity, and age prediction, with a view toward making the entire process friendlier to experimentalists working in the field.

      For many years, Sound Analysis Pro has served as a standard in the songbird field, the first package to extensively automate songbird analysis and facilitate the computation of acoustic features that have helped define the field. More recently, the increasing popularity of Python as a language, along with the emergence of new machine learning methods, has resulted in a number of new software tools, including the vocalpy ecosystem for audio processing, TweetyNet (for segmentation), t-SNE and UMAP (for visualization), and autoencoder-based approaches for embedding.

      Strengths: 

      The AVN package overlaps several of these earlier efforts, albeit with a focus on more traditional featurization that many experimentalists may find more interpretable than deep learning-based approaches. Among the strengths of the paper are its clarity in explaining the several analyses it facilitates, along with high-quality experiments across multiple public datasets collected from different research groups. As a software package, it is open source, installable via the pip Python package manager, and features high-quality documentation, as well as tutorials. For experimentalists who wish to replicate any of the analyses from the paper, the package is likely to be a useful time saver.

      Weaknesses: 

      I think the potential limitations of the work are predominantly on the software end, with one or two quibbles about the methods.

      First, the software: it's important to note that the package is trying to do many things, of which it is likely to do several well and few comprehensively. Rather than a package that presents a number of new analyses or a new analysis framework, it is more a codification of recipes, some of which are reimplementations of existing work (SAP features), some of which are essentially wrappers around other work (interfacing with WhisperSeg segmentations), and some of which are new (similarity scoring). All of this has value, but in my estimation, it has less value as part of a standalone package and potentially much more as part of an ecosystem like vocalpy that is undergoing continuous development and has long-term support. 

      We appreciate this reviewer’s comments and concerns about the structure of the AVN package and its long-term maintenance. We have considered incorporating AVN into the VocalPy ecosystem but have chosen not to for a few key reasons. (1) AVN was designed with ease of use for experimenters with limited coding experience top of mind. VocalPy provides excellent resources for researchers with some familiarity with object-oriented programming to manage and analyze their datasets; however, we believe it may be challenging for users without such experience to adopt VocalPy quickly. AVN’s ‘recipe’ approach, as you put it, is very easily accessible to new users, and allows users with intermediate coding experience to easily navigate the source code to gain a deeper understanding of the methodology. AVN also consistently outputs processed data in familiar formats (tables in .csv files which can be opened in excel), in an effort to make it more accessible to new users, something which would be challenging to reconcile with VocalPy’s emphasis on their `dataset`classes. (2) AVN and VocalPy differ in their underlying goals and philosophies when it comes to flexibility vs. standardization of analysis pipelines. VocalPy is designed to facilitate mixing-and-matching of different spectrogram generation, segmentation, annotation etc. approaches, so that researchers can design and implement their own custom analysis pipelines. This flexibility is useful in many cases. For instance, it could allow researchers who have very different noise filtering and annotation needs, like those working with field recordings versus acoustic chamber recordings, to analyze their data using this platform. However, when it comes to comparisons across zebra finch research labs, this flexibility comes at the expense of direct comparison and integration of song features across research groups. This is the context in which AVN is most useful. It presents a single approach to song segmentation, labeling, and featurization that has been shown to generalize well across research groups, and which allows direct comparisons of the resulting features. AVN’s single, extensively validated, standard pipeline approach is fundamentally incompatible with VocalPy’s emphasis on flexibility. We are excited to see how VocalPy continues to evolve in the future, and recognize the value that both AVN and VocalPy bring to the songbird research community, each with their own distinct strengths, weaknesses, and ideal use cases. 

      While the code is well-documented, including web-based documentation for both the core package and the GUI, the latter is available only on Windows, which might limit the scope of adoption. 

      We thank the reviewer for their kind words about AVN’s documentation. We recognize that the GUI’s exclusive availability on Windows is a limitation, and we would be happy to collaborate with other researchers and developers in the future to build a Mac compatible version, should the demand present itself. That said, the python package works on all operating systems, so non-Windows users still have the ability to use AVN that way.

      That is to say, whether AVN is adopted by the field in the medium term will have much more to do with the quality of its maintenance and responsiveness to users than any particular feature, but I believe that many of the analysis recipes that the authors have carefully worked out may find their way into other code and workflows. 

      Second, two notes about new analysis approaches:

      (1) The authors propose a new means of measuring tutor-pupil similarity based on first learning a latent space of syllables via a self-supervised learning (SSL) scheme and then using the earth mover's distance (EMD) to calculate transport costs between the distributions of tutors' and pupils' syllables. While to my knowledge this exact method has not previously been proposed in birdsong, I suspect it is unlikely to differ substantially from the approach of autoencoding followed by MMD used in the Goffinet et al. paper. That is, SSL, like the autoencoder, is a latent space learning approach, and EMD, like MMD, is an integral probability metric that measures discrepancies between two distributions. (Indeed, the two are very closely related: https://stats.stackexchange.com/questions/400180/earth-movers-distance-andmaximum-mean-discrepency.) Without further experiments, it is hard to tell whether these two approaches differ meaningfully. Likewise, while the authors have trained on a large corpus of syllables to define their latent space in a way that generalizes to new birds, it is unclear why such an approach would not work with other latent space learning methods.  

      We recognize the similarities between these approaches and have included comparisons of the VAE and MMD as in the Goffinet paper to our triplet loss model and EMD.  As discussed in the updated results section of the paper and shown in the new Figure 6–figure supplement 1, the Triplet loss model with MMD performs best for evaluating song learning on new birds, not included in model training. We’ve updated the main text of the paper to reflect this switch from EMD to MMD for the primary similarity scoring approach. 

      (2) The authors propose a new method for maturity scoring by training a model (a generalized additive model) to predict the age of the bird based on a selected subset of acoustic features. This is distinct from the "predicted age" approach of Brudner, Pearson, and Mooney, which predicts based on a latent representation rather than specific features, and the GAM nicely segregates the contribution of each. As such, this approach may be preferred by many users who appreciate its interpretability.  

      In summary, my view is that this is a nice paper detailing a well-executed piece of software whose future impact will be determined by the degree of support and maintenance it receives from others over the near and medium term.

      Reviewer #3 (Public Review):

      Summary: 

      The authors invent song and syllable discrimination tasks they use to train deep networks. These networks they then use as a basis for routine song analysis and song evaluation tasks. For the analysis, they consider both data from their own colony and from another colony the network has not seen during training. They validate the analysis scores of the network against expert human annotators, achieving a correlation of 80-90%. 

      Strengths: 

      (1) Robust Validation and Generalizability: The authors demonstrate a good performance of the AVN across various datasets, including individuals exhibiting deviant behavior. This extensive validation underscores the system's usefulness and broad applicability to zebra finch song analysis, establishing it as a potentially valuable tool for researchers in the field.

      (2) Comprehensive and Standardized Feature Analysis: AVN integrates a comprehensive set of interpretable features commonly used in the study of bird songs. By standardizing the feature extraction method, the AVN facilitates comparative research, allowing for consistent interpretation and comparison of vocal behavior across studies.

      (3) Automation and Ease of Use. By being fully automated, the method is straightforward to apply and should introduce barely an adoption threshold to other labs.

      (4) Human experts were recruited to perform extensive annotations (of vocal segments and of song similarity scores). These annotations released as public datasets are potentially very valuable. 

      Weaknesses: 

      (1) Poorly motivated tasks. The approach is poorly motivated and many assumptions come across as arbitrary. For example, the authors implicitly assume that the task of birdsong comparison is best achieved by a system that optimally discriminates between typical, deaf, and isolated songs. Similarly, the authors assume that song development is best tracked using a system that optimally estimates the age of a bird given its song. My issue is that these are fake tasks since clearly, researchers will know whether a bird is an isolated or a deaf bird, and they will also know the age of a bird, so no machine learning is needed to solve these tasks. Yet, the authors imagine that solving these placeholder tasks will somehow help with measuring important aspects of vocal behavior.  

      We appreciate this reviewer’s concerns and apologize for not providing sufficiently clear rationale for the inclusion of our phenotype classifier and age regression models in the original manuscript. These tasks are not intended to be taken as a final, ultimate culmination of the AVN pipeline. Rather, we consider the carefully engineered 55-interpretable feature set to be AVN’s final output, and these analyses serve merely as examples of how that feature set can be applied. That said, each of these models do have valid experimental use cases that we believe are important and would like to bring to the attention of the reviewer.

      For one, we showed how the LDA model that can discriminate between typical, deaf, and isolate birds’ songs not only allows us to evaluate which features are most important for discriminating between these groups, but also allows comparison of the FoxP1 knock-down (FP1 KD) birds to each of these phenotypes. Based on previous work (Garcia-Oscos et al. 2021), we hypothesized that FP1 KD in these birds specifically impaired tutor song memory formation while sparing a bird’s ability to refine their own vocalizations through auditory feedback. Thus, we would expect their songs to resemble those of isolate birds, who lack a tutor song memory, but not to resemble deaf birds who lack a tutor song memory and auditory feedback of their own vocalizations to guide learning. The LDA model allowed us to make this comparison quantitatively for the first time and confirm our hypothesis that FP1 KD birds’ songs are indeed most like isolates’. In the future, as more research groups publish their birds’ AVN feature sets, we hope to be able to make even more fine-grained comparisons between different groups of birds, either using LDA or other similar interpretable classifiers. 

      The age prediction model also has valid real-world use cases. For instance, one might imagine an experimental manipulation that is hypothesized to accelerate or slow song maturation in juvenile birds. This age prediction model could be applied to the AVN feature sets of birds having undergone such a manipulation to determine whether their predicted ages systematically lead or lag their true biological ages, and which song features are most responsible for this difference. We didn’t have access to data for any such birds for inclusion in this paper, but we hope that others in the future will be able to take inspiration from our methodology and use this or a similar age regression model with AVN features in their research. We have added a couple lines to the ‘Comparing Song Disruptions with AVN Features’ and ‘Tracking Song Development with AVN Features’ sections of the results to make this more clear. 

      Along similar lines, authors assume that a good measure of similarity is one that optimally performs repeated syllable detection (i.e. to discriminate same syllable pairs from different pairs). The authors need to explain why they think these placeholder tasks are good and why no better task can be defined that more closely captures what researchers want to measure. Note: the standard tasks for self-supervised learning are next word or masked word prediction, why are these not used here? 

      This reviewer appears to have misunderstood our similarity scoring embedding model and our rationale for using it. We will explain it in more depth here and have added a paragraph to the ‘Measuring Song Imitation’ section of the results explaining this rationale more briefly.

      First, nowhere are we training a model to discriminate between same and different syllable pairs. The triplet loss network is trained to embed syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. The loss function is related to the relative distance between embeddings of syllables with the same or different labels, not the classification of syllables as same or different. This approach was chosen because it has repeatedly been shown to be a useful data compression step (Schorff et al. 2015, Thakur et al. 2019) before further downstream tasks are applied on its output, particularly in contexts where there is little data per class (syllable label). For example, Schorff et al. 2015 trained a deep convolutional neural network with triplet loss to embed images of human faces from the same individual closer together than images of different individuals in a 128dimensional space. They then used this model to compute 128-dimensional representations of additional face images, not included in training, which were used for individual facial recognition (this is a same vs. different category classifier), and facial clustering, achieving better performance than the previous state of the art. The triplet loss function results in a model that can generate useful embeddings of previously unseen categories, like new individuals’ faces, or new zebra finches’ syllables, which can then be used in downstream analyses. This meaningful, lower dimensional space allows comparisons of distributions of syllables across birds, as in Brainard and Mets 2008, and Goffinet et al. 2021. 

      Next word and masked word prediction are indeed common self-supervised learning tasks for models working with text data, or other data with meaningful sequential organization. That is not the case for our zebra finch syllables, where every bird’s syllable sequence depends only on its tutor’s sequence, and there is no evidence for strong universal syllable sequencing rules (James et al. 2020). Rather, our embedding model is an example of a computer vision task, as it deals with sets of two-dimensional images (spectrograms), not sequences of categorical variables (like text). It is also not, strictly speaking, a selfsupervised learning task, as it does require syllable labels to generate the triplets. A common selfsupervised approach for dimensionality reduction in a computer vision task such as this one would be to train an autoencoder to compress images to a lower dimensional space, then faithfully reconstruct them from the compressed representation.  This has been done using a variational autoencoder trained on zebra finch syllables in Goffinet et al. 2021. In keeping with the suggestions from reviewers #1 and #2, we have included a comparison of our triplet loss model with the Goffinet et al. VAE approach in the revised manuscript. 

      (2) The machine learning methodology lacks rigor. The aims of the machine learning pipeline are extremely vague and keep changing like a moving target. Mainly, the deep networks are trained on some tasks but then authors evaluate their performance on different, disconnected tasks. For example, they train both the birdsong comparison method (L263+) and the song similarity method (L318+) on classification tasks. However, they evaluate the former method (LDA) on classification accuracy, but the latter (8-dim embeddings) using a contrast index. In machine learning, usually, a useful task is first defined, then the system is trained on it and then tested on a held-out dataset. If the sensitivity index is important, why does it not serve as a cost function for training?

      Again, this reviewer seems not to understand our similarity scoring methodology. Our similarity scoring model is not trained on a classification task, but rather on an embedding task. It learns to embed spectrograms of syllables in an 8-dimensional space such that syllables with the same label are closer together than syllables with different labels. We could report the loss values for this embedding task on our training and validation datasets, but these wouldn’t have any clear relevance to the downstream task of syllable distribution comparison where we are using the model’s embeddings. We report the contrast index as this has direct relevance to the actual application of the model and allows comparisons to other similarity scoring methods, something that the triplet loss values wouldn’t allow. 

      The triplet loss method was chosen because it has been shown to yield useful low-dimensional representations of data, even in cases where there is limited labeled training data (Thakur et al. 2019). While we have one of the largest manually annotated datasets of zebra finch songs, it is still quite small by industry deep learning standards, which is why we chose a method that would perform well given the size of our dataset. Training a model on a contrast index directly would be extremely computationally intensive and require many more pairs of birds with known relationships than we currently have access to. It could be an interesting approach to take in the future, but one that would be unlikely to perform well with a dataset size typical to songbird research. 

      Also, usually, in solid machine learning work, diverse methods are compared against each other to identify their relative strengths. The paper contains almost none of this, e.g. authors examined only one clustering method (HDBSCAN).  

      We did compare multiple methods for syllable segmentation (WhisperSeg, TweetyNet, and Amplitude thresholding) as this hadn’t been done previously. We chose not to perform extensive comparison of different clustering methods as Sainburg et al. 2020 already did so and we felt no need to reduplicate this effort. We encourage this reviewer to refer to Sainburg et al.’s excellent work for comparisons of multiple clustering methods applied to zebra finch song syllables.

      (3) Performance issues. The authors want to 'simplify large-scale behavioral analysis' but it seems they want to do that at a high cost. (Gu et al 2023) achieved syllable scores above 0.99 for adults, which is much larger than the average score of 0.88 achieved here (L121). Similarly, the syllable scores in (Cohen et al 2022) are above 94% (their error rates are below 6%, albeit in Bengalese finches, not zebra finches), which is also better than here. Why is the performance of AVN so low? The low scores of AVN argue in favor of some human labeling and training on each bird.  

      Firstly, the syllable error rate scores reported in Cohen et al. 2022 are calculated very differently than the F1 scores we report here and are based on a model trained with data from the same bird as was used in testing, unlike our more general segmentation approach where the model was tested on different birds than were used in training. Thus, the scores reported in Cohen et al. and the F1 scores that we report cannot be compared. 

      The discrepancy between the F1<sub>seg</sub> scores reported in Gu et al. 2023 and the segmentation F1 scores that we report are likely due to differences in the underlying datasets. Our UTSW recordings tend to have higher levels of both stationary and non-stationary background noise, which make segmentation more challenging. The recordings from Rockefeller were less contaminated by background noise, and they resulted in slightly higher F1 scores. That said, we believe that the primary factor accounting for this difference in scores with Gu et al. 2023 is the granularity of our ‘ground truth’ syllable segments. In our case, if there was never any ambiguity as to whether vocal elements should be segmented into two short syllables with a very short gap between them or merged into a single longer syllable, we chose to split them. WhisperSeg had a strong tendency to merge the vocal elements in ambiguous cases such as these. This results in a higher rate of false negative syllable onset detections, reflected in the low recall scores achieved by WhisperSeg (see Figure 2–figure supplement 1b), but still very high precision scores (Figure 2–figure supplement 1a). While WhisperSeg did frequently merge these syllables in a way that differed from our ground truth segmentation, it did so consistently, meaning it had little impact on downstream measures of syntax entropy (Figure 3c) or syllable duration entropy (Figure 3–figure supplement 2a). It is for that reason that, despite a lower F1 score, we still consider AVN’s automatically generated annotations to be sufficiently accurate for downstream analyses. 

      Should researchers require a higher degree of accuracy and precision with their annotations (for example, to detect very subtle changes in song before and after an acute manipulation) we suggest they turn toward one of the existing tools for supervised song annotation, such as TweetyNet.

      (4) Texas bias. It is true that comparability across datasets is enhanced when everyone uses the same code. However, the authors' proposal essentially is to replace the bias between labs with a bias towards birds in Texas. The comparison with Rockefeller birds is nice, but it amounts to merely N=1. If birds in Japanese or European labs have evolved different song repertoires, the AVN might not capture the associated song features in these labs well.  

      We appreciate the author’s concern about a bias toward birds from the UTSW colony. However, this paper shows that despite training (for the similarity scoring) and hyperparameter fitting (for the HDBSCAN clustering) on the UTSW birds, AVN performs as well if not better on birds from Rockefeller than from UTSW. To our knowledge, there are no publicly available datasets of annotated zebra finch songs from labs in Europe or in Asia but we would be happy to validate AVN on such datasets, should they become available. Furthermore, there is no evidence to suggest that there is dramatic drift in zebra finch vocal repertoire between continents which would necessitate such additional validation. While we didn’t have manual annotations for this dataset (which would allow validation of our segmentation and labeling methods), we did apply AVN to recordings shared with us by the Wada lab in Japan, where visual inspection of the resulting annotations suggested comparable accuracy to the UTSW and Rockefeller datasets. 

      (5) The paper lacks an analysis of the balance between labor requirement, generalizability, and optimal performance. For tasks such as segmentation and labeling, fine-tuning for each new dataset could potentially enhance the model's accuracy and performance without compromising comparability. E.g. How many hours does it take to annotate hundred song motifs? How much would the performance of AVN increase if the network were to be retrained on these? The paper should be written in more neutral terms, letting researchers reach their own conclusions about how much manual labor they want to put into their data.  

      With standardization and ease of use in mind, we designed AVN specifically to perform fully automated syllable annotation and downstream feature calculations. We believe that we have demonstrated in this manuscript that our fully automated approach is sufficiently reliable for downstream analyses across multiple zebra finch colonies. That said, if researchers require an even higher degree of annotation precision and accuracy, they can turn toward one of the existing methods for supervised song annotation, such as TweetyNet. Incorporating human annotations for each bird processed by AVN is likely to improve its performance, but this would require significant changes to AVN’s methodology, and is outside the scope of our current efforts.

      (6) Full automation may not be everyone's wish. For example, given the highly stereotyped zebra finch songs, it is conceivable that some syllables are consistently mis-segmented or misclassified. Researchers may want to be able to correct such errors, which essentially amounts to fine-tuning AVN. Conceivably, researchers may want to retrain a network like the AVN on their own birds, to obtain a more fine-grained discriminative method.  

      Other methods exist for supervised or human-in-the-loop annotation of zebra finch songs, such as TweetyNet and DAN (Alam et al. 2023). We invite researchers who require a higher degree of accuracy than AVN can provide to explore these alternative approaches for song annotation. Incorporating human feedback into AVN was never the goal of our pipeline, would require significant changes to AVN’s design and is outside the scope of this manuscript.

      (7) The analysis is restricted to song syllables and fails to include calls. No rationale is given for the omission of calls. Also, it is not clear how the analysis deals with repeated syllables in a motif, whether they are treated as two-syllable types or one.  

      It is true that we don’t currently have any dedicated features to describe calls. This could be a useful addition to AVN in the future. 

      What a human expert inspecting a spectrogram would typically call ‘repeated syllables’ in a bout are almost always assigned the same syllable label by the UMAP+HDBSCAN clustering. The syntax analysis module includes features examining the rate of syllable repetitions across syllable types, as mentioned in lines 222-226 of the revised manuscript. See https://avn.readthedocs.io/en/latest/syntax_analysis_demo.html#Syllable-Repetitions for further details.

      (8) It seems not all human annotations have been released and the instruction sets given to experts (how to segment syllables and score songs) are not disclosed. It may well be that the differences in performance between (Gu et al 2023) and (Cohen et al 2022) are due to differences in segmentation tasks, which is why these tasks given to experts need to be clearly spelled out. Also, the downloadable files contain merely labels but no identifier of the expert. The data should be released in such a way that lets other labs adopt their labeling method and cross-check their own labeling accuracy.  

      All human annotations used in this manuscript have indeed been released as part of the accompanying dataset. Syllable annotations are not provided for all pupils and tutors used to validate the similarity scoring, as annotations are not necessary for similarity comparisons. We have expanded our description of our annotation guidelines in the methods section of the revised manuscript. All the annotations were generated by one of two annotators. The second annotator always consulted with the first annotator in cases of ambiguous syllable segmentation or labeling, to ensure that they had consistent annotation styles. Unfortunately, we haven’t retained records about which birds were annotated by which of the two annotators, so we cannot share this information along with the dataset. The data is currently available in a format that should allow other research groups to use our annotations either to train their own annotation systems or check the performance of their existing systems on our annotations.  

      (9) The failure modes are not described. What segmentation errors did they encounter, and what syllable classification errors? It is important to describe the errors to be expected when using the method. 

      As we discussed in our response to this reviewer’s point (3), WhisperSeg has a tendency to merge syllables when the gap between them is very short, which explains its lower recall score compared to its precision on our dataset (Figure 2–figure supplement 1). In rare cases, WhisperSeg also fails to recognize syllables entirely, again impacting its precision score. TweetyNet hardly ever completely ignores syllables, but it does tend to occasionally merge syllables together or over-segment them. Whereas WhisperSeg does this very consistently for the same syllable types within the same bird, TweetyNet merges or splits syllables more inconsistently. This inconsistent merging and splitting has a larger effect on syllable labeling, as manifested in the lower clustering v-measure scores we obtain with TweetyNet compared to WhisperSeg segmentations. TweetyNet also has much lower precision than WhisperSeg, largely because TweetyNet often recognizes background noises (like wing flaps or hopping) as syllables whereas WhisperSeg hardly ever segments non-vocal sounds. 

      Many errors in syllable labeling stem from differences in syllable segmentation. For example, if two syllables with labels ‘a’ and ‘b’ in the manual annotation are sometimes segmented as two syllables, but sometimes merged into a single syllable, the clustering is likely to find 3 different syllable types; one corresponding to ‘a’, one corresponding to ‘b’ and one corresponding to ‘ab’ merged. Because of how we align syllables across segmentation schemes for the v-measure calculation, this will look like syllable ‘b’ always has a consistent cluster label (or is missing a label entirely), but syllable ‘a’ can carry two different cluster labels, depending on the segmentation. In certain cases, even in the absence of segmentation errors, a group of syllables bearing the same manual annotation label may be split into 2 or 3 clusters (it is extremely rare for a single manual annotation group to be split into more than 3 clusters). In these cases, it is difficult to conclusively say whether the clustering represents an error, or if it actually captured some meaningful systematic difference between syllables that was missed by the annotator. Finally, sometimes rare syllable types with their own distinct labels in the manual annotation are merged into a single cluster. Most labeling errors can be explained by this kind of merging or splitting of groups relative to the manual annotation, not to occasional mis-classifications of one manual label type as another.

      For examples of these types of errors, we encourage this reviewer and readers to refer to the example confusion matrices in figure 2f and Figure 2–figure supplement 3b&e. We also added two paragraphs to the end of the ‘Accurate, fully unsupervised syllable labeling’ section of the Results in the revised manuscript. 

      (10) Usage of Different Dimensionality Reduction Methods: The pipeline uses two different dimensionality reduction techniques for labeling and similarity comparison - both based on the understanding of the distribution of data in lower-dimensional spaces. However, the reasons for choosing different methods for different tasks are not articulated, nor is there a comparison of their efficacy.  

      We apologize for not making this distinction sufficiently clear in the manuscript and have added a paragraph to the ‘Measuring Song Imitation’ section of the Results explaining the rational for using an embedding model for similarity scoring. 

      We chose to use UMAP for syllable labeling because it is a common embedding methodology to precede hierarchical clustering and has been shown to result in reliable syllable labels for birdsong in the past (Sainburg et al. 2020). However, it is not appropriate for similarity scoring, because comparing EMD or MMD scores between birds requires that all the birds’ syllable distributions exist within the same shared embedding space. This can be achieved by using the same triplet loss-trained neural network model to embed syllables from all birds. This cannot be achieved with UMAP because all birds whose scores are being compared would need to be embedded in the same UMAP space, as distances between points cannot be compared across UMAPs. In practice, this would mean that every time a new tutor-pupil pair needs to be scored, their syllables would need to be added to a matrix with all previously compared birds’ syllables, a new UMAP would need to be computed, and new EMD or MMD scores between all bird pairs would need to be calculated using their new UMAP embeddings. This is very computationally expensive and quickly becomes unfeasible without dedicated high power computing infrastructure. It also means that similarity scores couldn’t be compared across papers without recomputing everything each time, whereas EMD and MMD scores obtained with triplet loss embeddings can be compared, provided they use the same trained model (which we provide as part of AVN) to embed their syllables in a common latent space. 

      (11) Reproducibility: are the measurements reproducible? Systems like UMAP always find a new embedding given some fixed input, so the output tends to fluctuate.

      There is indeed a stochastic element to UMAP embeddings which will result in different embeddings and therefore different syllable labels across repeated runs with the same input. We observed that v-measures scores were quite consistent within birds across repeated runs of the UMAP, and have added an additional supplementary figure to the revised manuscript showing this (Figure 2–figure supplement 4).

      Reviewer #1 (Recommendations For The Authors):

      (1) Benchmark their similarity score to the method used by Goffinet et al, 2021 from the Pearson group. Such a comparison would be really interesting and useful.  

      This has been added to the paper. 

      (2) Please clarify exactly what is new and what is applied from existing methods to help the reader see the novelty of the paper.  

      We have added more emphasis on the novel aspects of our pipeline to the paper’s introduction. 

      Minor:

      It's unclear if AVN is appropriate as the paper deals only with zebra finch song - the scope is more limited than advertised.

      We assume this is in reference to ‘Birdsong’ in the paper’s title and ‘Avian’ in Avian Vocalization Network. There is a brief discussion of how these methods are likely to perform on other commonly studied songbird species at the end of the discussion section.

      Reviewer #2 (Recommendations For The Authors):

      A few points for the authors to consider that might strengthen or inform the paper:

      (1) In the public review, I detailed some ways in which the SSL+EMD approach is unlikely to be appreciably distinct from the VAE+MMD approach -- in fact, one could mix and match here. It would strengthen the authors' claim if they showed via experiments that their method outperforms VAE+MMD, but in the absence of that, a discussion of the relation between the two is probably warranted.  

      This comparison has been added to the paper.

      (2) ll. 305-310: This loss of accuracy near the edge is expected on general Bayesian grounds. Any regression approach should learn to estimate the conditional mean of the age distribution given the data, so ages estimated from data will be pulled inward toward the location of most training data. This bias is somewhat mitigated in the Brudner paper by a more flexible model, but it's a general (and expected) feature of the approach.

      (3) While the online AVA documentation looks good, it might benefit from a page on design philosophy that lays out how the various modules fit together - something between the tutorials and the nitty-gritty API. That way, users would be able to get a sense of where they should look if they want to harness pieces of functionality beyond the tutorials.

      Thank you for this suggestion. We will add a page on AVN’s design philosophy to the online documentation. 

      (4) While the manuscript does compare AVN to packages like TweetyNet and AVA that share some functionality, it doesn't really mention what's been going on with the vocalpy ecosystem, where the maintainers have been doing a lot to standardize data processing, integrate tools, etc. I would suggest a few words about how AVN might integrate with these efforts.

      We thank the reviewer for this suggestion.

      (5) ll. 333-336: It would be helpful to provide a citation to some of the self-supervised learning literature this procedure is based on. Some citations are provided in methods, but the general approach is worth citing, in my opinion. 

      We have added a paragraph to the results section with more background on self-supervised learning for dimensionality reduction, particularly in the context of similarity scoring.

      (6) One software concern for medium-term maintenance: AVN docs say to use Python 3.8, and GitHub says the package is 3.9 compatible. I also saw in the toml file that 3.10 and above are not supported. It's worth noting that Python 3.9 reaches its end of life in October 2025, so some dependencies may have to be altered or changed for the package to be viable going forward.  

      Thank you for this comment. We will continue to maintain AVN and update its dependencies as needed.

      Minor points:

      (1) It might be good to note that WhisperSeg is a different install from AVN. May be hard for novice users, though there's a web interface that's available. 

      We’ve added a line to the methods section making this clear. 

      (2) Figure 6b: Some text in the y-axis labels is overlapping here. 

      This has been fixed. Thank you for bringing it to our attention. 

      (3) The name of the Python language is always capitalized.  

      We’ve fixed this capitalization error throughout the manuscript. Thank you.

      Reviewer #3 (Recommendations For The Authors):

      (1) I recommend that the authors improve the motivation of the chosen tasks and data or choose new tasks that more clearly speak to the optimizations they want to perform. 

      We have included more details about the motivation for our LDA classification analysis, age prediction model and embedding model for similarity scoring in the results of the revised manuscript, as discussed in more detail in the above responses to this reviewer. Thank you for these suggestions. 

      (2) They need to rigorously report the (classification) scores on the test datasets: these are the scores associated with the cost function used during training.  

      Based on this reviewer’s ‘Weaknesses: 3’ comment in the public reviews, we believe that they are referring to a classification score for the triplet loss model. As we explained in response to that comment, this is not a classification task, therefor there is no classification score to report. The loss function used to train the model was a triplet loss function. While we could report these values, they are not informative for how well this approach would perform in a similarity scoring context, as explained above. As such, we prefer to include contrast index and tutor contrast index scores to compare the models’ performance for similarity score, as these are directly relevant to the task and are established in the field for said task.

      (3) They need to explain the reasons for the poor performance (or report on the inconsistencies with previous work) and why they prefer a fully automated system rather than one that needs some fine-tuning on bird-specific data.

      We’ve addressed this comment in the public response to this reviewer’s weakness points 3, 5, and 6. 

      (4) They should consider applying their method to data from Japanese and European labs.  

      We’ve addressed this comment in the public response to this reviewer’s weakness point 4.

      (5) The need to document the failure modes and report all details about the human annotations.  

      We’ve added additional description of the failure modes for our segmentation and labeling approaches in the results section of the revised manuscript.

      Details: 

      The introduction is very vague, it fails to make a clear case of what the problem is and what the approach is. It reads a bit like an advertisement for machine learning: we are given a hammer and are looking for a nail.  

      We thank the reviewer for this viewpoint; however, we disagree and have decided to keep our Introduction largely unchanged. 

      L46 That interpretability is needed to maximize the benefits of machine learning is wrong, see self-driving cars and chat GPT.  

      This line states that ‘To truly maximize the benefits of machine learning and deep learning methods for behavior analysis, their power must be balanced with interpretability and generalizability’. We firmly believe that interpretability is critically important when using machine learning tools to gain a deeper scientific understanding of data, including animal behavior data in a neuroscience context. We believe that the introduction and discussion of this paper already provide strong evidence for this claim. 

      L64 What about zebra finches that repeat a syllable in the motif, how are repetitions dealt with by AVN?  

      This is already described in the results section in lines 222-226, and in the methods in the ‘Syntax Features: Repetition Bouts’ section.

      L107 Say a bit more here, what exactly has been annotated?  

      We’ve added a sentence in the introduction to clarify this. Line 113-115. 

      L112 Define spectrogram frames. Do these always fully or sometimes partially contain a vocalization? 

      Spectrogram frames are individual time bins used to compute the spectrogram using a short-term Fourier transform. As described in the ‘Methods; Labeling : UMAP Dimensionality Reduction” section, our spectrograms are computed using ‘The short term Fourier transform of the normalized audio for each syllable […] with a window length of 512 samples and a hop length of 128 samples’. Given that the song files have a standard sampling rate of 44.1kHz, this means each time bin represents 11.6ms of song data, with successive frames advancing in time by 2.9ms. These contain only a small fraction of a vocalization. 

      L122 The reported TweetyNet score of 0.824 is lower than the one reported in Figure 2a.  

      The center line in the box plot in Figure 2a represents the median of the distribution of TweetyNet vmeasure scores. Given that there are a couple outlying birds with very low scores, the mean (0.824 as reported in the text of the results section) is lower than the median. This is not an error.

      L155 Some of the differences in performance are very small, reporting of the P value might be necessary. 

      These methods are unlikely to statistically significantly differ in their validation scores. This doesn’t mean that we cannot use the mean/median values reported to justify favoring one method over another. This is why we’ve chosen not to report p-values here.

      L161 The authors have not really tested more than a single clustering method, failing to show a serious attempt to achieve good performance.  

      We’ve addressed this comment in the public response to this reviewer’s weakness point 2.

      L186 Did isolate birds produce stereotyped syllables that can be clustered? 

      Yes, they did. The validation for clustering of isolate bird songs can be found in Figure 2–figure supplement 4. 

      Fig. 3e: How were the multiple bouts aligned?

      This is described in lines 857-876 in the ‘Methods: Song Timing Features: Rhythm Spectrograms” section of the paper.

      L199 There is a space missing in front of (n=8).  

      Thank you for bringing this to our attention. It’s been corrected in the updated manuscript. 

      L268 Define classification accuracy.  

      We’ve added a sentence in lines 953-954 of the methods section defining classification accuracy. 

      L325 How many motifs need to be identified, why does this need to be done manually? There are semiautomated methods that can allow scaling, these should be  cited here. Also, the mention of bias here should be removed in favor of a more extensive discussion on the experimenter bias (traditionally vs Texas bias (in this paper).  

      All of the methods cited in this line have graphical user interfaces that require users to select a file containing song and manually highlight the start and end each motif to be compared. The exact number of motifs required varies depending on the specific context (e.g. more examples are needed to detect more subtle differences or changes in song similarity) but it is fairly standard for reviewers to score 30 – 100 pairs of motifs. 

      We’ve discussed the tradeoffs between full automation and supervised or human-in-the loop methods in response to this reviewer’s public comment ‘weakness #5 and 6’. Briefly, AVN’s aim is to standardize song analysis, to allow direct comparisons between song features and similarity scores across research groups. We believe, as explained in the paper, that this can be best achieve by having different research groups use the same deep learning models, which perform consistently well across those groups. Introducing semi-automated methods would defeat this benefit of AVN. 

      We’ve also addressed the question of ‘Texas bias’ in response to their reviewer’s public comment ‘Weakness #4’. 

      L340 How is EMD applied? Syllables are points in 8-dim space, but now suddenly authors talk about distributions without explaining how they got from points to distributions. Same in L925.  

      We apologize for the confusion here. The syllable points in the 8-d space are collectively an empirical distribution, not a probability distribution. We referred to them simply as ‘distributions’ to limit technical jargon in the results of the paper, but have changed this to more precise language in the revised manuscript.

      L351 Why do authors now use 'contrast index' to measure performance and no longer 'classification accuracy'?  

      We’ve addressed this comment in the public response to this reviewer’s weakness points 1 and 2.

      Figure 6 What is the confusion matrix, i.e. how well can the model identify pupil-pupil pairings from pupiltutor and from pupil-unrelated pairings? I guess that would amount to something like classification accuracy.  

      There is no model classifying comparisons as pupil-pupil vs. pupil-tutor etc. These comparisons exist only to show the behavior of the similarity scoring approach, which consists of a dissimilarity measure (MMD or EMD) applied to low dimensional representations of syllable generated by the triplet loss model or VAE. This was clarified further in our public response to this reviewer’s weakness points 1 and 2. 

      L487 What are 'song files', and what do they contain?   

      ‘Song files’ are .wav files containing recordings of zebra finch song. They typically contain a single song bout, but they can include multiple song bouts if they are produced close together, or incomplete song bouts if the introductory notes were very soft or the bouts were very long (>30s from the start of the file). Details of these recordings are provided in the ‘Methods: Data Acquisition: UTSW Dataset’ section of the manuscript.

      L497 Calls were only labelled for tweetynet but not for other tasks.  

      That is correct. The rationale for this is provided in the ‘Methods: Manual Song Annotation’ section of the manuscript. 

      L637 There is a contradiction (can something be assigned to the 'own manual annotation category' when the same sentence states that this is done 'without manual annotation'?) 

      We believe there is confusion here between automated annotation and validation. Any bird can be automatically annotated without the need for any existing manual annotations for that individual bird. However, manual labels are required to compare automatically generated annotations against for validation of the method.

      L970 Spectograms of what? (what is the beginning of a song bout, L972). 

      The beginning of a song bout is the first introductory note produced by a bird after a period without vocalizations. This is standard.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This paper investigates the control signals that drive event model updating during continuous experience. The authors apply predictions from previously published computational models to fMRI data acquired while participants watched naturalistic video stimuli. They first examine the time course of BOLD pattern changes around human-annotated event boundaries, revealing pattern changes preceding the boundary in anterior temporal and then parietal regions, followed by pattern stabilization across many regions. The authors then analyze time courses around boundaries generated by a model that updates event models based on prediction error and another that uses prediction uncertainty. These analyses reveal overlapping but partially distinct dynamics for each boundary type, suggesting that both signals may contribute to event segmentation processes in the brain.

      Strengths:

      (1) The question addressed by this paper is of high interest to researchers working on event cognition, perception, and memory. There has been considerable debate about what kinds of signals drive event boundaries, and this paper directly engages with that debate by comparing prediction error and prediction uncertainty as candidate control signals.

      (2) The authors use computational models that explain significant variance in human boundary judgments, and they report the variance explained clearly in the paper.

      (3) The authors' method of using computational models to generate predictions about when event model updating should occur is a valuable mechanistic alternative to methods like HMM or GSBS, which are data-driven.

      (4) The paper utilizes an analysis framework that characterizes how multivariate BOLD pattern dissimilarity evolves before and after boundaries. This approach offers an advance over previous work focused on just the boundary or post-boundary points.

      We appreciate this reviewer’s recognition of the significance of this research problem, and of the value of the approach taken by this paper.

      Weaknesses:

      (1) While the paper raises the possibility that both prediction error and uncertainty could serve as control signals, it does not offer a strong theoretical rationale for why the brain would benefit from multiple (empirically correlated) signals. What distinct advantages do these signals provide? This may be discussed in the authors' prior modeling work, but is left too implicit in this paper.

      We added a brief discussion in the introduction highlighting the complementary advantages of prediction error and prediction uncertainty, and cited prior theoretical work that elaborates on this point. Specifically, we now note that prediction error can act as a reactive trigger, signaling when the current event model is no longer sufficient (Zacks et al., 2007). In contrast, prediction uncertainty is framed as proactive, allowing the system to prepare for upcoming changes even before they occur (Baldwin & Kosie, 2021; Kuperberg, 2021). Together, this makes clearer why these two signals could each provide complementary benefits for effective event model updating.

      "One potential signal to control event model updating is prediction error—the difference between the system’s prediction and what actually occurs. A transient increase in prediction error is a valid indicator that the current model no longer adequately captures the current activity. Event Segmentation Theory (EST; Zacks et al., 2007) proposes that event models are updated when prediction error increases beyond a threshold, indicating that the current model no longer adequately captures ongoing activity. A related but computationally distinct proposal is that prediction uncertainty (also termed "unpredictability"), in addition to error, serves as the control signal (Baldwin & Kosie, 2021). The advantage of relying on prediction uncertainty to detect event boundaries is that it is inherently proactive: the cognitive system can start looking for cues about what might come next before the next event starts (Baldwin & Kosie, 2021; Kuperberg, 2021)."

      (2) Boundaries derived from prediction error and uncertainty are correlated for the naturalistic stimuli. This raises some concerns about how well their distinct contributions to brain activity can be separated. The authors should consider whether they can leverage timepoints where the models make different predictions to make a stronger case for brain regions that are responsive to one vs the other.

      We addressed this concern by adding an analysis that explicitly tests the unique contributions of prediction error– and prediction uncertainty–driven boundaries to neural pattern shifts. In the revised manuscript, we describe how we fit a combined FIR model that included both boundary types as predictors and then compared this model against versions with only one predictor. This allowed us to identify the variance explained by each boundary type over and above the other. The results revealed two partially dissociable sets of brain regions sensitive to error- versus uncertainty-driven boundaries (see Figure S1), strengthening our argument that these signals make distinct contributions.

      "To account for the correlation between uncertainty-driven boundaries and error-driven boundaries, we also fitted a FIR model that predicts pattern dissimilarity from both types of boundaries (combined FIR) for each parcel. Then, we performed two likelihood ratio tests: combined FIR to error FIR, which measures the unique contribution of uncertainty boundaries to pattern dissimilarity, and combined FIR to uncertainty FIR, which measures the unique contribution of error boundaries to pattern dissimilarity. The analysis also revealed two dissociable sets of brain regions associated with each boundary type (see Figure S1)."

      (3) The authors refer to a baseline measure of pattern dissimilarity, which their dissimilarity measure of interest is relative to, but it's not clear how this baseline is computed. Since the interpretation of increases or decreases in dissimilarity depends on this reference point, more clarity is needed.

      We clarified how the FIR baseline is estimated in the methods section. Specifically, we now explain that the FIR coefficients should be interpreted relative to a reference level, which reflects the expected dissimilarity when timepoints are far from an event boundary. This makes it clear what serves as the comparison point for observed increases or decreases in dissimilarity.

      "The coefficients from the FIR model indicates changes relative to baseline, which can be conceptualized as the expected value when far from the boundary."

      (4) The authors report an average event length of ~20 seconds, and they also look at +20 and -20 seconds around each event boundary. Thus, it's unclear how often pre- and post-boundary timepoints are part of adjacent events. This complicates the interpretations of the reported time courses.

      This is related to reviewer's 2 comment, and it will be addressed below.

      (5) The authors describe a sequence of neural pattern shifts during each type of boundary, but offer little setup of what pattern shifts we might expect or why. They also offer little discussion of what cognitive processes these shifts might reflect. The paper would benefit from a more thorough setup for the neural results and a discussion that comments on how the results inform our understanding of what these brain regions contribute to event models.

      We thank the reviewer for this advice on how better to set the context for the different potential outcomes of the study. We expanded both the introduction and discussion to better set up expectations for neural pattern shifts and to interpret what these shifts may reflect. In the introduction, we now describe prior findings showing that sensory regions tend to update more quickly than higher-order multimodal regions (Baldassano et al., 2017; Geerligs et al., 2021, 2022), and we highlight that it remains unclear whether higher-order updates precede or follow those in lower-order regions. We also note that our analytic approach is well-suited to address this open question. In the discussion, we then interpret our results in light of this framework. Specifically, we describe how we observed early shifts in higher-order areas such as anterior temporal and prefrontal cortex, followed by shifts in parietal and dorsal attention regions closer to event boundaries. This pattern runs counter to the traditional bottom-up temporal hierarchy view and instead supports a model of top-down updating, where high-level representations are updated first and subsequently influence lower-level processing (Friston, 2005; Kuperberg, 2021). To make this interpretation concrete, we added an example: in a narrative where a goal is reached midway—for instance, a mystery solved before the story formally ends—higher-order regions may update the event representation at that point, and this updated model then cascades down to shape processing in lower-level regions. Finally, we note that the widespread stabilization of neural patterns after boundaries may signal the establishment of a new event model.

      Excerpt from Introduction:

      “More recently, multivariate approaches have provided insights into neural representations during event segmentation. One prominent approach uses hidden Markov models (HMMs) to detect moments when the brain switches from one stable activity pattern to another (Baldassano et al., 2017) during movie viewing; these periods of relative stability were referred to as "neural states" to distinguish them from subjectively perceived events. Sensory regions like visual and auditory cortex showed faster transitions between neural states. Multi-modal regions like the posterior medial cortex, angular gyrus, and intraparietal sulcus showed slower neural state shifts, and these shifts aligned with subjectively reported event boundaries. Geerligs et al. (2021, 2022) employed a different analytical approach called Greedy State Boundary Search (GSBS) to identify neural state boundaries. Their findings echoed the HMM results: short-lived neural states were observed in early sensory areas (visual, auditory, and somatosensory cortex), while longer-lasting states appeared in multi-modal regions, including the angular gyrus, posterior middle/inferior temporal cortex, precuneus, anterior temporal pole, and anterior insula. Particularly prolonged states were found in higher-order regions such as lateral and medial prefrontal cortex...

      The previous evidence about evoked responses at event boundaries indicates that these are dynamic phenomena evolving over many seconds, with different brain areas showing different dynamics (Ben-Yakov & Henson, 2018; Burunat et al., 2024; Kurby & Zacks, 2018; Speer et al., 2007; Zacks, 2010). Less is known about the dynamics of pattern shifts at event boundaries, because the HMM and GSBS analysis methods do not directly provide moment-by-moment measures of pattern shifts. For example, one question is whether shifts in higher-order regions precedes or follow shifts in lower-level regions. Both the spatial and temporal aspects of evoked responses and pattern shifts at event boundaries have the potential to provide evidence about potential control processes for event model updating.”

      Excerpt from Discussion:

      “We first characterized the neural signatures of human event segmentation by examining both univariate activity changes and multivariate pattern changes around subjectively identified event boundaries. Using multivariate pattern dissimilarity, we observed a structured progression of neural reconfiguration surrounding human-identified event boundaries. The largest pattern shifts were observed near event boundaries (~4.5s before) in dorsal attention and parietal regions; these correspond with regions identified by Geerligs et al. as shifting their patterns on an intermediate timescale (2022). We also observed smaller pattern shifts roughly 12 seconds prior to event boundaries in higher-order regions within anterior temporal cortex and prefrontal cortex, and these are slow-changing regions identified by Geerligs et al. (2022). This is puzzling. One prevalent proposal, based on the idea of a cortical hierarchy of increasing temporal receptive windows (TRWs), suggests that higher-order regions should update representations after lower-order regions do (Chang et al., 2021). In this view, areas with shorter TRWs (e.g., word-level processors) pass information upward, where it is integrated into progressively larger narrative units (phrases, sentences, events). This proposal predicts neural shifts in higher-order regions to follow those in lower-order regions. By contrast, our findings indicate the opposite sequence. Our findings suggest that the brain might engage in top-down event representation updating, with changes in coarser-grain representations propagating downward to influence finer-grain representations. (Friston, 2005; Kuperberg, 2021). For example, in a narrative where the main goal is achieved midway—such as a detective solving a mystery before the story formally ends—higher-order regions might update the overarching event representation at that point, and this updated model could then cascade down to reconfigure how lower-level regions process the remaining sensory and contextual details. In the period after a boundary (around +12 seconds), we found widespread stabilization of neural patterns across the brain, suggesting the establishment of a new event model. Future work could focus on understanding the mechanisms behind the temporal progression of neural pattern changes around event boundaries.”

      Reviewer #2 (Public review):

      Summary:

      Tan et al. examined how multivoxel patterns shift in time windows surrounding event boundaries caused by both prediction errors and prediction uncertainty. They observed that some regions of the brain show earlier pattern shifts than others, followed by periods of increased stability. The authors combine their recent computational model to estimate event boundaries that are based on prediction error vs. uncertainty and use this to examine the moment-to-moment dynamics of pattern changes. I believe this is a meaningful contribution that will be of interest to memory, attention, and complex cognition research.

      Strengths:

      The authors have shown exceptional transparency in terms of sharing their data, code, and stimuli, which is beneficial to the field for future examinations and to the reproduction of findings. The manuscript is well written with clear figures. The study starts from a strong theoretical background to understand how the brain represents events and has used a well-curated set of stimuli. Overall, the authors extend the event segmentation theory beyond prediction error to include prediction uncertainty, which is an important theoretical shift that has implications in episodic memory encoding, the use of semantic and schematic knowledge, and attentional processing.

      We thank the reader for their support for our use of open science practices, and for their appreciation of the importance of incorporating prediction uncertainty into models of event comprehension.

      Weaknesses:

      The data presented is limited to the cortex, and subcortical contributions would be interesting to explore. Further, the temporal window around event boundaries of 20 seconds is approximately the length of the average event (21.4 seconds), and many of the observed pattern effects occur relatively distal from event boundaries themselves, which makes the link to the theoretical background challenging. Finally, while multivariate pattern shifts were examined at event boundaries related to either prediction error or prediction uncertainty, there was no exploration of univariate activity differences between these two different types of boundaries, which would be valuable.

      The fact that we observed neural pattern shifts well before boundaries was indeed unexpected, and we now offer a more extensive interpretation in the discussion section. Specifically, we added text noting that shifts emerged in higher-order anterior temporal and prefrontal regions roughly 12 seconds before boundaries, whereas shifts occurred in lower-level dorsal attention and parietal regions closer to boundaries. This sequence contrasts with the traditional bottom-up temporal hierarchy view and instead suggests a possible top-down updating mechanism, in which higher-order representations reorganize first and propagate changes to lower-level areas (Friston, 2005; Kuperberg, 2021). (See excerpt for Reviewer 1’s comment #5.)

      With respect to univariate activity, we did not find strong differences between error-driven and uncertainty-driven boundaries. This makes the multivariate analyses particularly informative for detecting differences in neural pattern dynamics. To support further exploration, we have also shared the temporal progression of univariate BOLD responses on OpenNeuro for interested researchers.

      Reviewer #3 (Public review):

      Summary:

      The aim of this study was to investigate the temporal progression of the neural response to event boundaries in relation to uncertainty and error. Specifically, the authors asked (1) how neural activity changes before and after event boundaries, (2) if uncertainty and error both contribute to explaining the occurrence of event boundaries, and (3) if uncertainty and error have unique contributions to explaining the temporal progression of neural activity.

      Strengths:

      One strength of this paper is that it builds on an already validated computational model. It relies on straightforward and interpretable analysis techniques to answer the main question, with a smart combination of pattern similarity metrics and FIR. This combination of methods may also be an inspiration to other researchers in the field working on similar questions. The paper is well written and easy to follow. The paper convincingly shows that (1) there is a temporal progression of neural activity change before and after an event boundary, and (2) event boundaries are predicted best by the combination of uncertainty and error signals.

      We thank the reviewer for their thoughtful and supportive comments, particularly regarding the use of the computational model and the analysis approaches.

      Weaknesses:

      (1) The current analysis of the neural data does not convincingly show that uncertainty and prediction error both contribute to the neural responses. As both terms are modelled in separate FIR models, it may be that the responses we see for both are mostly driven by shared variance. Given that the correlation between the two is very high (r=0.49), this seems likely. The strong overlap in the neural responses elicited by both, as shown in Figure 6, also suggests that what we see may mainly be shared variance. To improve the interpretability of these effects, I think it is essential to know whether uncertainty and error explain similar or unique parts of the variance. The observation that they have distinct temporal profiles is suggestive of some dissociation, but not as convincing as adding them both to a single model.

      We appreciate this point. It is closely related to Reviewer 1's comment 2; please refer to our response above.

      (2) The results for uncertainty and error show that uncertainty has strong effects before or at boundary onset, while error is related to more stabilization after boundary onset. This makes me wonder about the temporal contribution of each of these. Could it be the case that increases in uncertainty are early indicators of a boundary, and errors tend to occur later?

      We also share the intuition that increases in uncertainty are early indicators of a boundary, and errors tend to occur later. If that is the case, we would expect some lags between prediction uncertainty and prediction error. We examined lagged correlation between prediction uncertainty and prediction error, and the optimal lag is 0 for both uncertainty-driven and error-driven models. This indicates that when prediction uncertainty rises, prediction error also simultaneously rises.

      Author response image 1.

      (3) Given that there is a 24-second period during which the neural responses are shaped by event boundaries, it would be important to know more about the average distance between boundaries and the variability of this distance. This will help establish whether the FIR model can properly capture a return to baseline.

      We have added details about the distribution of event lengths. Specifically, we now report that the mean length of subjectively identified events was 21.4 seconds (median 22.2 s, SD 16.1 s). For model-derived boundaries, the average event lengths were 28.96 seconds for the uncertainty-driven model and 24.7 seconds for the error-driven model.

      "For each activity, a separate group of 30 participants had previously segmented each movie to identify fine-grained event boundaries (Bezdek et al., 2022). The mean event length was 21.4 s (median 22.2 s, SD 16.1 s). Mean event lengths for uncertainty-driven model and error-driven model were 28.96s, and 24.7s, respectively."

      (4) Given that there is an early onset and long-lasting response of the brain to these event boundaries, I wonder what causes this. Is it the case that uncertainty or errors already increase at 12 seconds before the boundaries occur? Or if there are other makers in the movie that the brain can use to foreshadow an event boundary? And if uncertainty or errors do increase already 12 seconds before an event boundary, do you see a similar neural response at moments with similar levels of error or uncertainty, which are not followed by a boundary? This would reveal whether the neural activity patterns are specific to event boundaries or whether these are general markers of error and uncertainty.

      We appreciate this point; it is similar to reviewer 2’s comment 2. Please see our response to that comment above.

      (5) It is known that different brain regions have different delays of their BOLD response. Could these delays contribute to the propagation of the neural activity across different brain areas in this study?

      Our analyses use ±20 s FIR windows, and the key effects we report include shifts ~12s before boundaries in higher-order cortex and ~4.5s pre-boundary in dorsal attention/parietal areas. Given the literature above, region-dependent BOLD delays are much smaller (~1–2s) than the temporal structure we observe (Taylor et al., 2018), making it unlikely that HRF lag alone explains our multi-second, region-specific progression.

      (6) In the FIR plots, timepoints -12, 0, and 12 are shown. These long intervals preclude an understanding of the full temporal progression of these effects.

      For page length purposes, we did not include all timepoints. We uploaded an animation of all timepoints in Openneuro for interested researchers.

      References

      Taylor, A. J., Kim, J. H., & Ress, D. (2018). Characterization of the hemodynamic response function across the majority of human cerebral cortex. NeuroImage, 173, 322–331. https://doi.org/10.1016/j.neuroimage.2018.02.061

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Weaknesses: 

      The main weakness in this paper lies in the authors' reliance on a single model to derive conclusions on the role of local antigen during the acute phase of the response by comparing T cells in model antigen-vaccinia virus (VV-OVA) exposed skin to T cells in contralateral skin exposed to DNFB 5 days after the VV-OVA exposure. In this setting, antigen-independent factors may contribute to the difference in CD8+ T cell number and phenotype at the two sites. For example, it was recently shown that very early memory precursors (formed 2 days after exposure) are more efficient at seeding the epithelial TRM compartment than those recruited to skin at later times (Silva et al, Sci Immunol, 2023). DNFB-treated skin may therefore recruit precursors with reduced TRM potential. In addition, TRM-skewed circulating memory precursors have been identified (Kok et al, JEM, 2020), and perhaps VV-OVA exposed skin more readily recruits this subset compared to DNFB-exposed skin. Therefore, when the DNFB challenge is performed 5 days after vaccinia virus, the DNFB site may already be at a disadvantage in the recruitment of CD8+ T cells that can efficiently form TRM. In addition, CD8+ T cell-extrinsic mechanisms may be at play, such as differences in myeloid cell recruitment and differentiation or local cytokine and chemokine levels in VV-infected and DNFB-treated skin that could account for differences seen in TRM phenotype and function between these two sites. Although the authors do show that providing exogenous peptide antigen at the DNFB-site rescues their phenotype in relation to the VV-OVA site, the potential antigen-independent factors distinguishing these two sites remain unaddressed. In addition, there is a possibility that peptide treatment of DNFB-treated initiates a second phase of priming of new circulatory effectors in the local-draining lymph nodes that are then recruited to form TRM at the DFNB-site, and that the effect does not solely rely on TRM precursors at the DNFB-treated skin site at the time of peptide treatment. 

      Thank you for pointing out these potential caveats to our work.  We have considered the possibility that late application of peptide or cell-extrinsic difference could affect the interpretation of our results.  We would like to highlight that in our prior publication on this topic [1], we found that OT-1 responses in mice infected with VV-OVA and VV-N (irrelevant antigen) yielded the same responses as in our VV-OVA/DNFB models.  In addition, in both our prior publication and our current manuscript, application of peptide to DNFB painted sites results in T<sub>RM</sub> with a similar phenotype to those in the VV-OVA site.  Thus, we are confident that it is the presence of cognate antigen in the skin that drives the augmented T<sub>RM</sub> fitness that we observe.

      Secondly, although the authors conclusively demonstrate that TGFBRIII is induced by TCR signals and required for conferring increased fitness to local-antigen-experienced CD8+ TRM compared to local antigen-inexperienced cells, this is done in only one experiment, albeit repeated 3 times. The data suggest that antigen encounter during TRM formation induces sustained TGFBRIII expression that persists during the antigen-independent memory phase. It remains unclear why only the antigen encounter in skin, but not already in the draining lymph nodes, induces sustained TGFBRIII expression. Further characterizing the dynamics of TGFBRIII expression on CD8+ T cells during priming in draining lymph nodes and over the course of TRM formation and persistence may shed more light on this question. Probing the role of this mechanism at other sites of TRM formation would also further strengthen their conclusions and enhance the significance of this finding. 

      This is an intriguing point.  We do not understand why expression of TGFbR3 in T<sub>RM</sub> required antigen encounter in the skin if T<sub>RM</sub> at all sites clearly have encountered antigen during priming in the LN.  We speculate that durable TGFbR3 expression may require antigen encounter in the context of additional cues present in the periphery or only once cells have committed to the T<sub>RM</sub> lineage.  A more detailed characterization of the dynamics of TGFbR3 expression in multiple tissues would be informative and represents a promising future direction for this project.  We note that to robustly perform these experiments a reporter mouse would likely be a requirement.

      Reviewer #2 (Public review): 

      Weaknesses: 

      Overall, the authors' conclusions are well supported, although there are some instances where additional controls, experiments, or clarifications would add rigor. The conclusions regarding skin-localized TCR signaling leading to increased skin CD8+ TRM proliferation in-situ and increased TGFBR3 expression would be strengthened by assessing skin CD8+ TRM proliferation and TGFBR3 expression in models of high versus low avidity topical OVA-peptide exposure.

      Thank you for these helpful suggestions.  We did not attempt these experiment as we were concerned that given the relatively modest expansion differences observed with the APL that resolving differences in TGFbR3 and BrdU would prove unreliable. However, this is something that we could attempt as we continue working on this project.

      The authors could further increase the novelty of the paper by exploring whether TGFBR3 is regulated at the RNA or protein level. To this end, they could perform analysis of their single-cell RNA sequencing data (Figure 1), comparing Tgfbr3 mRNA in DNFB versus VV-treated skin. 

      As discussed above, a more detailed analysis of TGFbR3 regulation is of great interest.  These experiments would likely require the creation of additional tools (e.g. a reporter mouse) to provide robust data.  However, as suggested, we have re-analyzed our scRNAseq looking for expression of Tgfbr3. Pseudobulk analysis of cells isolated from VV or DNFB sites suggests that Tgfbr3 appears to be elevated in antigen-experienced TRM at steady-state (Author response image 1).

      Author response image 1.

      Pseudobulk analysis by average gene expression of Tgfbr3 in cells isolated from either VV or DNFB treated flanks, divided by the average gene expression of Tgfbr3 in naïve CD8 T cells from the same dataset.

      For clarity, when discussing antigen exposure throughout the paper, it would be helpful for the authors to be more precise that they are referring to the antigen in the skin rather than in the draining lymph node. A more explicit summary of some of the lab's previous work focused on CD8+ TRM and the role of TGFb would also help readers better contextualize this work within the existing literature on which it builds. 

      We appreciate this feedback, and we have clarified this in the text.

      For rigor, it would be helpful where possible to pair flow cytometry quantification with the existing imaging data.

      Thank you for these suggestions.  In terms of quantification of number of T<sub>RM</sub>by flow cytometry, we have previously demonstrated as much as a 36-fold decrease in cell count when compared to numbers directly visualized by immunofluorescence [1].  Thus, for enumeration of T<sub>RM</sub> we rely primarily on direct IF visualization and use flow cytometry primarily for phenotyping.

      Additional controls, namely enumerating TRM in the opposite, untreated flank skin of VV-only-treated mice and the treated flank skin of DNFB-only treated mice, would help contextualize the results seen in dually-treated mice in Figure 2.

      Without a source of inflammation (e.g. VV infection of DNFB) we see very few T<sub>RM</sub>in untreated skin.  A representative image is provided (Author response image 2).  A single DNFB stimulation does not recruit any CD8+ T cells to the skin without a prior sensitization [2].

      Author response image 2.

      Representative images of epidermal whole mounts of VV treated flank skin, and an untreated site from the same mouse isolated on day 50 post infection and stained for CD8a.

      In figure legends, we suggest clearly reporting unpaired T tests comparing relevant metrics within VV or DNFB-treated groups (for example, VV-OVA PBS vs VV-OVA FTY720 in Figure 3F).

      Thank you for this suggestion.  The figure legends have been amended.

      Finally, quantifying right and left skin draining lymph node CD8+ T cell numbers would clarify the skin specificity and cell trafficking dynamics of the authors' model. 

      We quantified the numbers of CD8 T cells in left and right skin draining lymph nodes by flow cytometry in mice at day 50 post VV infection DNFB-pull.  We observe similar numbers of cells at both sites (Author response Image 3).

      Author response Image 3.

      Quantification of total number of CD8+ T cells in left and right inguinal lymph nodes. Each symbol represents paired data from the same individual animal, and this is representative of 3 separate experiments.

      Reviewer #1 (Recommendations for the authors): 

      (1) Figures 1D and S1C demonstrate that 80-90 % of TRM at both VV and DNFB sites express CD103+. In contrast, the sequencing data suggests the TRM at the VV site has much higher Itgae expression. Also, clusters 3 and 4, which express significantly more Itgae than all other clusters, together comprise only ~30% of CD8+ T cells at the VV-infected skin site. How can these discrepancies between transcript and protein expression be explained? 

      Thank you for these excellent comments. T<sub>RM</sub> at both VV and DNFB sites appear to express similarly high levels of CD103 protein in both the OT-I system as we previously published [1] and in a polyclonal system using tetramers.  The lower penetrance of Itgae expression in the scRNAseq data we attribute to a lack of sensitivity which is common with this modality.  However, the relative increased expression of Itgae in clusters 3 and 4 is interesting and may suggest increased Itgae production/stability.  However, in the absence of any effect on protein expression, we chose not to focus on these mRNA differences.

      (2) For the experiments in Figure 3D, in order to exclude a contribution from circulating memory cells, FTY720 should have been administered during the duration of, not prior to, the initiation of the recall response. The effect of FTY720 wears off quickly, so the current experimental setting likely allows for circulating cells to enter the skin. This concern is mitigated by the results of anti-Thy1.1 mAb treatment, but documenting the experiment as in Figure D will likely be confusing to readers. 

      Thank you for this comment.  We relied on the literature indicating that the half-life of FTY720 in blood is longer than 6 days [3-5].  However, on reviewing this again, there are other reports suggesting a lower halflife.  Thank you for pointing out this potential caveat.  As mentioned above, we do not think this affects the interpretation of our data as similar results were obtained with anti-Thy1.1

      (3) Similar to what is described in the weaknesses section, the data on TGFBRIII expression is lacking. When is TGFBRIII induced? In the LN during primary activation and it is then sustained by a secondary antigen exposure at the peripheral target tissue site? Or is it only induced in the peripheral tissue, and there is interesting biology to uncover in regard to how it is induced by the TCR only after secondary exposure, etc.? 

      Thank you for these comments. As discussed above, a more detailed analysis of TGFbR3 regulation is of great interest.  These experiments would likely require the creation of additional tools (e.g. a reporter mouse) to provide robust data and are part of our future directions.

      (4) As described in the weakness section, there could be TCR-independent differences between the VV-OVA and DNFB sites that lead to phenotypic changes in the TRMs that are formed there, both CD8+ T cell-intrinsic (kinetics; with regard to time after initial priming) and extrinsic (microenvironmental differences due to the nature of the challenge, recruited cell types, cytokines, chemokines, etc.). Since the authors report the use of both VV and VV-ova, we recommend an experimental strategy that controls for this by challenging one site with VV and another with VV-OVA concomitantly, followed by repeating the key experiments reported in this manuscript. 

      As discussed above, we have previously published a very similar experiment using VV-OVA and VV-N infection on opposite flanks [1].

      (5) In Figure 6J please indicate means and provide more of the statistics comparing the groups (such as comparing VV-WT vehicle to VV-KO vehicle etc.), and potentially display on a linear scale as with all of the other figures looking at cells/mm2 to help convince the reader of the conclusions and support the secondary findings mentioned in the text such as "Notably, numbers of Tgfbr3ΔCD8 TRM in cohorts treated with vehicle remained at normal levels indicating that loss of TGFβRIII does not affect TRM epidermal residence in the steady state" despite it looking like there is a decrease when looking at the graph. 

      We appreciate the feedback on the readability of this figure, and so have updated figure 6J to be on a linear scale and added additional helpful statistics to the figure legend. The difference between Tgfbr3<sup>WT</sup> and Tgfbr3<sup>∆CD8</sup> at steady state is excellent point, and we agree that there could to be a trend towards reduction in the huNGFR+ T<sub>RM</sub> across both groups, even without CWHM12 administration. However, we did not see statistically significant reductions in steady-state Tgfbr3<sup>∆CD8</sup> T<sub>RM</sub>, but the slight reduction in both VV-OVA and DNFB treated flanks suggests that TGFßRIII may play a role in steady-state maintenance of all T<sub>RM</sub>. Perhaps with more sensitive tools to better visualize TGFßRIII expression, we could identify stepwise upregulation of TGFßRIII depending on TCR signal strength, possibly starting in the lymph node. We have also amended our description of this figure in the text, to allow for the possibility that a low, but under the level of detection amount of TGFßRIII could play a role in steady-state maintenance of both local antigen-experienced and bystander T<sub>RM</sub>.

      Minor points: 

      (1) In describing Figure 4B, the term "doublets" for pairs of connected dividing cells is confusing. 

      Thank you for this comment, the term has been revised to “dividing cells” in the text and figure.

      (2) Figure legend 4F: BrdU is not "expressed" . 

      Very true, it has been changed to “incorporation”.

      (3) Do CreERT2 and/or huNGFR expressed by transferred OT-I cells act as foreign antigens in C57BL/6 mice, potentially causing elimination of circulating memory cells? If that were the case, this would not necessarily confound the read-out of TRM persistence studied here, since skin TRM are likely protected from at least antibody-mediated deletion and their numbers are not maintained by recruitment of circulating cells at stead-state. However, it would be useful to be aware of this potential limitation of this and similar models. 

      Thank you for raising the important technical concern.  In our prior work [1] and this work, we monitor the levels of transferred OT-I cells in the blood over time.  We have not observed rejection of huNGFR+ cells.  We also note that others using the same system have also not observed rejection [6].

      (4) In Figure 6J, means or medians should be indicated 

      This has been updated in Figure 6J.

      (5) Using the term "antigen-experienced" to specifically refer to TRM at the VV site could be confusing, since those at the DNFB site are also Ag-experienced (in the LN draining the VV skin site). 

      We agree that it is a challenging term, as all T<sub>RM</sub> are memory cells. That is why in the text we refer to T<sub>RM</sub> isolated from the VV site as “local antigen experienced T<sub>RM</sub>.”, to try to distinguish them from bystanders that did not experience local antigen.

      (6) The Title essentially restates what was already reported in the authors' prior study. If the data supporting the TGFBRIII-mediated mechanism is studied in more depth, maybe adding this aspect to the title may be useful? 

      Thank you for this suggestion.  I think the current title is probably most suitable for the current manuscript but we are willing to change it should the editors support an alternative title.

      Reviewer #2 (Recommendations for the authors): 

      (1) Definition of bystander CD8+ TRM: The first paragraph of the introduction defines CD8+ TRM. To improve the clarity of this definition, we suggest being explicit that bystander TRM experience cognate antigen in the SDLNs but, in contrast to other TRM, do not experience cognate antigen in the skin. 

      Thank you, we have clarified this is in the text.

      (2) Consider softening the language when comparing the efficiency of CD8+ recruitment of the skin between DNFB and VV-treated flanks. For example, substitute "equal efficiency" with "comparable efficiency" since it is difficult to directly compare the extent of inflammation between viral and hapten-based treatments. 

      We have adjusted this terminology throughout the paper.

      (3) Throughout figure legends, we appreciate the indication of the number of experimental repeats performed. We suggest, either through statistics or supplemental figures, demonstrating the degree of variability between experiments to aid readers in understanding the reproducibility of results. 

      Thank you for this suggestion.  In key figures we show data from individual mice across multiple experiments. Thus, inter-experiment variability is captured in our figures.  

      (4) Figure 1: 

      a) Add control mice treated with either vaccinia virus or DNFB and harvest back skin at day 52 to demonstrate baseline levels of polyclonal and B8R tetramer-positive CD8s in the epidermis. These controls would clarify the background CD8+ expansion that might occur in DNFB-treated mice in the absence of vaccinia virus. 

      This point was addressed above.

      b) Figure 1: It would be helpful to see the %Tet+ population specifically in the CD103+ population, recognizing that the majority of the CD8+ from the skin are CD103+. 

      We did look only at CD103+ CD8 T cells from the skin for our tetramer analysis, so this has been clarified in the figure legend.

      c) Provide a UMAP, very similar to 1H, where CD8+ T cells, vaccinia virus, and DNFB-treated flanks are overlaid.

      Thank you for this suggestion.  A UMAP combining aspects of 1G (cell types from the whole ImmgenT dataset) with 1H (our data) results in a figure that is very difficult to interpret.  Thus, we have separated cell types across the entire ImmgenT data set (e.g. CD8+ T cells) and our data into 2 separate panels.

      d) 1D: left flow plot has numbered axis while the right flow plot does not. 

      Thank you, this has been fixed.

      (5) Figure 2: 

      a) In the figure legend, define what is meant by the grey line present in Figures 2C and 2D. 

      This has been updated in the figure legend.

      b) Edit the Y axis of 2C and 2D to specify the TRM signature score. 

      This has been updated in the figure.

      c) Include panel 1D from 1S into Figure 2 to help clarify for the reader what genes are expressed in the 0 - 5 clusters.

      We appreciate the feedback, but we found the heatmap made the figure look too busy, so we feel comfortable keeping it available within supplemental figure 1.

      d) In body of text explicitly discuss that the TRM module used to calculate a signature score was created using virus infection modules (HSV, LCMV and influenza) and thus some of the transcriptional similarity between the authors vaccinia virus treated CD8+ TRM and the TRM module might be due to viral infection rather than TRM status.

      Thank you for this comment.  We have now emphasized this point in the text.

      (6) Figure 3: 

      a) If there are leftover tissue sections, it would be optimal to show specific staining for CD103. We recognize that this data has been previously published by the lab, but it would be ideal to show it once in this paper. 

      Unfortunately, we do not have leftover tissue sections, so we are unable to measure CD103 by I.F. in these experiments.

      b) If you did collect skin draining lymph nodes in the Thy1.1 depletion model, it would be nice to see flow data showing the depletion effects in the skin draining lymph nodes in addition to the blood. 

      Unfortunately, we did not collect the skin draining lymph nodes, and do not have that data for the relevant experiments.

      c) Figure 3 F & G: Perform a T-test comparing vaccinia virus PBS to FTY720 and isotype to anti-Thy1.1 within the same treatment group. Showing no significance with these two comparisons would strengthen the authors' claims. Statistics can be described in legend. 

      We have included this analysis in the figure legend.

      (7) Figure 4: 

      a) It would be helpful to have the CD69+/CD103+ population in this model discussed/defined more. The CD69 expression seen in 4E is lower than the reviewers would've predicted, and it would be interesting to see CD103 expression as well.

      We have found that generally CD103 is a stronger marker for in the skin by flow, as CD69 staining is somewhat less robust in the colors we have chosen.  By way of example, we present gating we did upstream in that experiment, gated previously on liveCD45+CD3+CD8+ events (Author response image 4).

      Author response image 4.

      Representative flow cytometric plots showing CD69 and CD103 expression in gated live CD45+CD8+CD90.1+ cells isolates from VV-OVA or DNFB treated flanks.

      (8) Figure 5: 

      a) Define APL and its purpose in both the body of text and the figure legend. 

      We have clarified this in the text and the figure legend.

      b) Using in-vivo BrdU, compare proliferation between high avidity N4 and low avidity Y3 OVA-peptide at the primary recall timepoint. 

      We considered this, but due to the lack of sensitivity of the BrdU incorporation and the relatively subtle phenotype of the Y3, we did not think the assay would be sensitive enough to identify differences.

      (9) Figure 6: 

      a) Compare TGFBR3 expression in CD8+ T cells from mice receiving high avidity N4 versus low avidity Y3 OVA-peptide at the primary recall timepoint. 

      This point was discussed above.

      b) Either 1) examine TGFBR3 mRNA expression in VV vs DNFB skin from scRNA-seq dataset or 2) perform a qPCR on epidermal CD8+ T cells from mice receiving high avidity N4 versus low avidity Y3 at the primary recall timepoint. This would help distinguish whether TGFBR3 regulation occurs at the mRNA versus protein level. 

      This point has been discussed above.

      c) Figure 6A: Not required, but it seems like the TGFBR3 gate could be shifted to the right a bit. 

      The gates were set using FMO.

      d) Figure 6C: What comparison is the asterisk indicating significance referring to?

      It is the Dunnett’s test comparing VV-OVA to DNFB and untreated skin, the figure has been amended to clarify this point.

      e) Figure 6: To increase the rigor of the claim that CWHM12 is creating a TGFb limiting condition, the authors could either 1) perform an ELISA or cell-based assay measuring active TGFb, 2) recapitulate results of 6J using monoclonal antibody against avb6 as done in Hirai et al., 2021, Immunity., or 3) examine Tgfbr3 mRNA expression in your single cell RNAseq data, comparing cluster 0 and cluster 3.

      We are pleased to have the opportunity to show Tgfbr3 mRNA, which is above in figure R1.

      (10) Material and methods: 

      Specify how the localization of the back skin used for imaging was made consistent between the right and left flanks. 

      We have updated this methodology in the text.

      Literature Cited

      (1) Hirai, T., et al., Competition for Active TGFβ Cytokine Allows for Selective Retention of Antigen-Specific Tissue- Resident Memory T Cells in the Epidermal Niche. Immunity, 2021. 54(1): p. 84-98.e5.

      (2) Manresa, M.C., Animal Models of Contact Dermatitis: 2,4-Dinitrofluorobenzene-Induced Contact Hypersensitivity, in Animal Models of Allergic Disease: Methods and Protocols, K. Nagamoto-Combs, Editor. 2021, Springer US: New York, NY. p. 87-100.

      (3) Müller, H.C., et al., The Sphingosine-1 Phosphate receptor agonist FTY720 dose dependently affected endothelial integrity in vitro and aggravated ventilator-induced lung injury in mice. Pulmonary Pharmacology & Therapeutics, 2011. 24(4): p. 377-385.

      (4) Nofer, J.-R., et al., FTY720, a Synthetic Sphingosine 1 Phosphate Analogue, Inhibits Development of Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Circulation, 2007. 115(4): p. 501-508.

      (5) Brinkmann, V., et al., Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov, 2010. 9(11): p. 883-97.

      (6) Andrews, L.P., et al., A Cre-driven allele-conditioning line to interrogate CD4<sup>+</sup> conventional T cells. Immunity, 2021. 54(10): p. 2209-2217.e6.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This study investigates how collective navigation improvements arise in homing pigeons. Building on the Sasaki & Biro (2017) experiment on homing pigeons, the authors use simulations to test seven candidate social learning strategies of varying cognitive complexity, ranging from simple route averaging to potentially cognitively demanding selective propagation of superior routes. They show that only the simplest strategy-equal route averaging-quantitatively matches the experimental data in both route efficiency and social weighting. More complex strategies, while potentially more effective, fail to align with the observed data. The authors also introduce the concept of "effective group size," showing that the chaining design leads to a strong dilution of earlier individuals' contributions. Overall, they conclude that cognitive simplicity rather than cumulative cultural evolution explains collective route improvements in pigeons.

      Strengths:

      The manuscript addresses an important question and provides a compelling argument that a simpler hypothesis is necessary and sufficient to explain findings of a recent influential study on pigeon route improvements, via a rigorous systematic comparison of seven alternative hypotheses. The authors should be commended for their willingness to critically re-examine established interpretations. The introduction and discussion are broad and link pigeon navigation to general debates on social learning, wisdom of crowds, and CCE.

      We thank the reviewer for their positive comments.

      Weaknesses:

      The lack of availability of codes and data for this manuscript, especially given that it critically examines and proposes alternative hypotheses for an important published work.

      We thank the reviewer for their comment. The code and data for our manuscript are an important aspect of the study, and we had intended to make them publicly available upon publication. The link to our code and data on figshare can be found here: (https://doi.org/10.6084/m9.figshare.28950032.v1). We will further add this link to the Data Availability Statement of our revised version.  

      Reviewer #2 (Public review):

      Summary:

      The manuscript investigates which social navigation mechanisms, with different cognitive demands, can explain experimental data collected from homing pigeons. Interestingly, the results indicate that the simplest strategy - route averaging - aligns best with the experimental data, while the most demanding strategy - selectively propagating the best route - offers no advantage. Further, the results suggest that a mixed strategy of weighted averaging may provide significant improvements.

      The manuscript addresses the important problem of identifying possible mechanisms that could explain observed animal behavior by systematically comparing different candidate models. A core aspect of the study is the calculation of collective routes from individual bird routes using different models that were hypothesized to be employed by the animals, but which differ in their cognitive demands.

      The manuscript is well-written, with high-quality figures supporting both the description of the approach taken and the presentation of results. The results should be of interest to a broad community of researchers investigating (collective) animal behavior, ranging from experiment to theory. The general approach and mathematical methods appear reasonable and show no obvious flaws. The statistical methods also appear.

      Strengths:

      The main strength of the manuscript is the systematic comparison of different meta-mechanisms for social navigation by modeling social trajectories from solitary trajectories and directly comparing them with experimental results on social navigation. The results show that the experimentally observed behavior could, in principle, arise from simple route averaging without the need to identify "knowledgeable" individuals. Another strength of the work is the establishment of a connection between social navigation behavior and the broader literature on the wisdom of crowds through the concept of effective group size.

      We thank the reviewer for their positive comments.

      Weaknesses:

      However, there are two main weaknesses that should be addressed:

      (1) The first concerns the definition of "mechanism" as used by the authors, for example, when writing "navigation mechanism." Intuitively, one might assume that what is meant is a behavioral mechanism in the sense of how behavior is generated as a dynamic process. However, here it is used at a more abstract (meta) level, referring to high-level categories such as "averaging" versus "leader-follower" dynamics. It is not used in the sense of how an individual makes decisions while moving, where the actual route followed in a social context emerges from individuals navigating while simultaneously interacting with conspecifics in space and time. In the presented work, the approach is to directly combine (global) route data of solitary birds according to the considered "meta-mechanisms" to generate social trajectories. Of course, this is not how pigeon social navigation actually works-they do not sit together before the flight and say, "This is my route, this is your route, let's combine them in this way." A mechanistic modeling approach would instead be some form of agent-based model that describes how agents move and interact in space and time. Such a "bottom-up" approach, however, has its drawbacks, including many unknown parameters and often strongly simplifying (implicit) assumptions. I do not expect the authors to conduct agent-based modeling, but at the very least, they should clearly discuss what they mean by "mechanism" and clarify that while their approach has advantages-such as naturally accounting for the statistical features of solitary routes and allowing a direct comparison of different meta-mechanisms is also limited, as it does not address how behavior is actually generated. For example, the approach lacks any explicit modeling of errors, uncertainty, or stochasticity more broadly (e.g., due to environmental influences). Thus, while the presented study yields some interesting results, it can only be considered an intermediate step toward understanding actual behavioral mechanisms.

      We thank the reviewer for their comment and thoughtful suggestions. We agree that the inherent behavioral mechanisms and the biological basis of these mechanisms cannot be determined just through the navigational data alone. For instance, it remains unexplored if pigeons are adapting their behavior based only on social cues from their partners or using other navigational features such as landmarks or roads, location of the sun, geomagnetic cues or prior learnt routes. However, we do agree (as also pointed by the reviewer) that these behavioral rules generate an emergent ‘meta-mechanism’ where the bird pairs are behaving as if their preferred routes are averaged during a flight. It will be important in future work to explore the biological basis of these mechanisms, but our current approach allows us to only describe the mechanisms in a meta sense with any confidence. Considering this, we believe that our analysis is a more top-down approach towards describing the outcomes of these underlying mechanisms in an abstract sense. We would also like to point the reviewer to Dalmaijer, 2024 [1] who used a bottom up approach, using naive agents and showed that cumulative route improvements emerged in the absence of any sophisticated communication in the same dataset, in agreement with our approach. Considering these points, we will make changes in our revised version to clearly elaborate on what the definition of ‘mechanism’ should include in line with the reviewer’s feedback.

      (2) While the presented study raises important questions about the applicability and viability of cumulative cultural evolution (CCE) in explaining certain animal behaviors such as social navigation, I find that it falls short in discussing them. What are the implications regarding the applicability of CCE to animal data and to previously claimed experimental evidence for CCE? Should these experiments be re-analyzed or critically reassessed? If not, why? What are good examples from animal behavior where CCE should not be doubted? Furthermore, what about the cited definitions and criteria of CCE? Are they potentially too restrictive? Should they be revised-and if so, how? Conversely, if the definitions become too general, is CCE still a useful concept for studying certain classes of animal behavior? I think these are some of the very important questions that could be addressed or at least raised in the discussion to initiate a broader debate within the community.

      We thank the reviewer for their comments and interesting questions regarding our study. We agree with the reviewer that our study opens up new avenues for critically analysing the criteria previous studies have used for providing evidence of CCE in non-human animals. According to our literature review, we found that the field has been usually motivated in thinking about CCE in a ‘process’ focused manner (Reindl et al. [2]) in regards to individuals being able to compare strategies and selecting ones resulting in higher individual fitness. This preferential selection of strategies – termed innovations — allows for the stereotypical ratcheting effect seen in CCE. In our study, we propose that in the case of homing pigeons, the ratcheting effect is more of a statistical outcome rather than deliberate individual judgement. We believe that this strategy is also amenable to certain task types (which in our study was homing route choice) and may change for others (for example solving a puzzle box) and the task also needs to be sufficiently complex for animals to benefit from the use of social information (Caldwell et al. 2008 [3]). Thus, we recommend future work to address what classes of problems would fit well within the definition of “emergent” CCE and which ones don’t. Keeping this framework in mind, studies should clearly state what definition of CCE they are using and should be critically evaluated for their underlying task type and cognitive mechanisms to deem them as CCE. Considering these points we will expand our discussion to highlight these key questions that could be critical to think upon for future research.

      References:

      (1) Dalmaijer ES (2024) Cumulative route improvements spontaneously emerge in artificial navigators even in the absence of sophisticated communication or thought. PLoS Biol. 22:e3002644.

      (2) Reindl, E., Gwilliams, A.L., Dean, L.G. et al. (2020) Skills and motivations underlying children’s cumulative cultural learning: case not closed. Palgrave Commun 6, 106.

      (3) Caldwell CA, Millen AE (2008) Studying cumulative cultural evolution in the laboratory. Phil. Trans. R. Soc. B 363:3529-3539.

    1. Author response:

      We thank the reviewers for their detailed and thoughtful comments on the manuscript.  In general, the reviewers found the data supporting the role of Enterovirus D68 proteases in disrupting the composition of the nuclear pore complex, the 2A protease disrupting nucleocytoplasmic transport of protein cargoes, and the mechanistic dissection of this process to be convincing and potentially relevant to the pathogenesis of AFM.  Reviewers requested additional experiments evaluating our observation that RNA export was not similarly impaired, particularly in the context of viral infection rather than solely expression of recombinant proteases.  They also requested that cleavage of POM121 and Nup98 by 2A protease, which was demonstrated in 2A<sup>pro</sup> transfected cells and in biochemical assays, also be demonstrated in motor neurons infected by EV-D68.  Finally, reviewers noted that while suggestive, the evidence falls short of demonstrating that the toxicity of 2A<sup>pro</sup> is mediated through nuclear pore complex dysfunction.

      To address these critiques, we aim to do the following:

      (1) Determine the impact of live virus infection on RNA export by repeating the ethinyl uridine pulse-chase assay in the setting of live virus infection.  We will also provide representative images for these data and the previously reported data from transfection with GFP-2A<sup>pro</sup> and GFP-3C<sup>pro</sup>.

      (2) Evaluate cleavage of POM121 and Nup98 in EV-D68-infected diMNs and inhibition of cleavage by telaprevir by Western blot.

      (3) Present motor neuron survival data in figure 4 as separate graphs for each of the viral strains tested, rather than pooling the data.  To clarify reviewer #3’s concern, these were not mixed cultures.

      We agree that we have not demonstrated conclusively that the mechanism by which 2A<sup>pro</sup> is toxic to motor neurons is via NPC dysfunction.  Future work will determine the extent to which NPC dysfunction contributes to 2A<sup>pro</sup>-mediated motor neuron toxicity versus other potential targets of 2A<sup>pro</sup>.  We feel that the additional experiments required to achieve this will be extensive and are beyond the scope of the present manuscript, which represents a key first step in this line of inquiry.

      In addition to the above, there were several points of disagreement between reviewers.  We would like to respond to those as follows:

      Reviewer #1: “The hypothesis that infection of motoneurons is the cause of EVD68-induced neurological complications so far is supported by only one autopsy report.  Other data suggest that infection of other cell types, such as astrocytes, and/or inflammatory cell infiltration in the CNS, are likely to be responsible for the symptoms.”

      Reviewer #3: “This study opens up a very intriguing hypothesis: that EV-D68 2Apro could be directly responsible for motor neuron cell death, mediated by POM121 and possibly Nup98 cleavage, that ultimately results in paralysis known as acute flaccid myelitis. This hypothesis notably does run counter to other published data showing that human neuronal organoids derived from iPSCs can support productive EV-D68 infection for weeks without cell death and that EV-D68-infected mice can have paralysis prevented by depletion of CD8 T cells, still with EV-D68 infection of the spinal cord. However, even if 2Apro is not ultimately responsible for motor neurons dying in human infections, that does not exclude the possibility that cleavage of nups could still disrupt motor neuron function. Notably, most children with AFM have some amount of motor function return after their acute period of paralysis, but most still have some residual paralysis for years to life. It is possible that 2A pro could mediate the acute onset of weakness, while T cells killing neurons could determine the amount of long-term, residual paralysis.”

      The infection of motor neurons is strongly supported not only by the aforementioned autopsy data[1], but also by mouse model data demonstrating replication of EV-D68 within motor neurons in the anterior horn of the spinal cord.[2 ] There are also extensive reports of electromyography and nerve conduction studies from human AFM patients demonstrating that the site of pathology is the spinal motor neuron.[3-10]. By contrast, infection of astrocytes has been demonstrated only in primary murine astrocyte cultures in which no neurons were present.[11] .Therefore, while the available data suggest that EV-D68 infection of astrocytes is possible, in the in vivo context of human and mouse spinal cord, tropism to motor neurons appears to be preferential.  The relative contributions to toxicity of neuron-autonomous vs non-autonomous processes such as glial dysfunction and inflammatory cell infiltration remain to be elucidated, and are not mutually exclusive.

      Our working hypothesis is more in line with that of Reviewer #3.  Motor neuron dysfunction and motor neuron death may ultimately prove to have dissociable causes, each of which may be neuron-autonomous, non-neuron-autonomous, or a mixture thereof.  The infection of motor neurons is likely the initiating event, with multiple downstream consequences.  Much additional work will be required to resolve this controversy.

      Reviewer #1: “Demonstrates a therapeutic effect of telaprevir, with neuroprotection independent of viral replication inhibition, adding translational value to the findings.”

      Reviewer #3: “The authors' claim that the neuroprotective effect of telaprevir is independent of its antiviral effect is not well-founded. Figure 4E (neuroprotection) was done with MOI 5, and Figure 4G (virus growth) was MOI 0.5. Telaprevir neuroprotection is not shown at MOI 0.5, nor is the neuroprotective effect correlated with inhibition of 2A cleavage of Nup98 or POM121.”

      The selection of MOIs for these two experiments was limited by technical considerations.  If the viral growth curve were to be performed at MOI 5, it would be confounded by cell death.  Further, a low MOI is required in order to allow multiple rounds of infection, replication, and spread within the culture, and is therefore more sensitive for assaying the effect of telaprevir on viral replication.  On the other hand, at MOI 0.5 diMN death is very gradual, and in the neuroprotection assay we would have lacked the statistical power to determine whether a rescue of this small magnitude of toxicity is significant.  The EC<sub>50</sub> of telaprevir is not expected to vary significantly at different MOIs.

      References:

      (1) Vogt, M. R. et al. Enterovirus D68 in the Anterior Horn Cells of a Child with Acute Flaccid Myelitis. N Engl J Med 386, 2059-2060 (2022). https://doi.org/10.1056/NEJMc2118155

      (2) Hixon, A. M. et al. A mouse model of paralytic myelitis caused by enterovirus D68. PLoS Pathog 13, e1006199 (2017). https://doi.org/10.1371/journal.ppat.1006199

      (3) Andersen, E. W., Kornberg, A. J., Freeman, J. L., Leventer, R. J. & Ryan, M. M. Acute flaccid myelitis in childhood: a retrospective cohort study. Eur J Neurol 24, 1077-1083 (2017). https://doi.org/10.1111/ene.13345

      (4) Elrick, M. J. et al. Clinical Subpopulations in a Sample of North American Children Diagnosed With Acute Flaccid Myelitis, 2012-2016. JAMA Pediatr 173, 134-139 (2018). https://doi.org/10.1001/jamapediatrics.2018.4890

      (5) Hovden, I. A. & Pfeiffer, H. C. Electrodiagnostic findings in acute flaccid myelitis related to enterovirus D68. Muscle Nerve 52, 909-910 (2015). https://doi.org/10.1002/mus.24738

      (6) Knoester, M. et al. Twenty-Nine Cases of Enterovirus-D68 Associated Acute Flaccid Myelitis in Europe 2016; A Case Series and Epidemiologic Overview. Pediatr Infect Dis J 38, 16-21 (2018). https://doi.org/10.1097/INF.0000000000002188

      (7) Martin, J. A. et al. Outcomes of Colorado children with acute flaccid myelitis at 1 year. Neurology 89, 129-137 (2017). https://doi.org/10.1212/WNL.0000000000004081

      (8) Saltzman, E. B. et al. Nerve Transfers for Enterovirus D68-Associated Acute Flaccid Myelitis: A Case Series. Pediatr Neurol 88, 25-30 (2018). https://doi.org/10.1016/j.pediatrneurol.2018.07.018

      (9) Van Haren, K. et al. Acute Flaccid Myelitis of Unknown Etiology in California, 2012-2015. JAMA 314, 2663-2671 (2015). https://doi.org/10.1001/jama.2015.17275

      (10) Natera-de Benito, D. et al. Acute Flaccid Myelitis With Early, Severe Compound Muscle Action Potential Amplitude Reduction: A 3-Year Follow-up of a Child Patient. J Clin Neuromuscul Dis 20, 100-101 (2018). https://doi.org/10.1097/CND.0000000000000217

      (11) Rosenfeld, A. B., Warren, A. L. & Racaniello, V. R. Neurotropism of Enterovirus D68 Isolates Is Independent of Sialic Acid and Is Not a Recently Acquired Phenotype. Mbio (2019). https://doi.org/10.1128/mBio

    1. Author response:

      Reviewer #1 (Public review):

      For summary:

      Thank you for your insightful and rigorous review. We fully agree with your core concern: establishing a causal link between MORC2 phase separation (PS) and its gene regulatory function is not only a key need in the phase separation field but also essential to elevating the overall utility of our work. To resolve the current gap in causal evidence, we will design experiments that explicitly distinguish the role of phase-separated condensates from soluble MORC2 complexes: We will generate a phase-separation-deficient but dimerization-competent MORC2 mutant by mutating key hydrophobic residues in the IDRa region (critical for IDR-IBD multivalent interactions driving phase separation) without disrupting the CC3 domain’s dimerization interface. In addition, we plan to investigate whether introducing a KS sequence[1] at the C-terminus can effectively attenuate the phase separation propensity of MORC2. These mutants will allow us to decouple “phase separation capacity” from “protein dimerization” (a prerequisite for both soluble complex formation and condensates).

      For strengths:

      We appreciate the reviewer’s recognition of our characterization of MORC2 phase separation and its structural basis. Our understanding of the CW domain’s function remains preliminary. Although we observed that the CW domain can influence condensate size, the IDR, IBD, and CC3 domains constitute the core structural elements driving phase separation. Consequently, the CW domain was not a primary focus of the current study. Nonetheless, investigating its functional contributions represents an interesting avenue for future work.

      For weaknesses:

      (1) We appreciate the reviewer’s rigorous concern. Our RNA-seq data were generated from fully independent transfections performed in triplicate across different time points and cell culture batches, aiming to maximize sample independence. However, for sensitive sequencing experiments, we observed that variability in transfection efficiency and cell culture across batches can introduce experimental differences, resulting in variable regulation of differentially expressed genes across samples. During differential gene analysis, p-value filtering excluded an additional 40 overlapping genes. In total, 61 genes overlapped with those reported in reference 22[2] (ZNF91, ZNF721, ZNF66, ZNF493, ZNF462, ZNF221, ZNF121, VGLL3, TUFT1, TLE4, TGFB2, SYS1-DBNDD2, STXBP6, SPRY2, SAMD9, ROR1, PTGES, PLK2, PLCXD2, PEA15, PDE2A, OLR1, NYAP2, NTN4, NRXN3, NEXN, MYLK, MPP7, MDGA1, MAMDC2, LBH, KRT80, ITGB8, IGFBP3, IGF2BP2, ICAM1, HIVEP3, GRB14, GPRC5A, GLCE, GJB3, GADD45B, GADD45A, FOXE1, FOSL1, FGF2, ETV5, ERBB3, DNAJC22, DIRAS1, DBNDD2, CXCL16, CRB2, COL9A3, CLDN1, BDNF, ATP8A1, AMOTL2, AHNAK2, ADAMTS16, ACSF2). To further enhance reproducibility, we will perform additional sequencing experiments.

      (2).Disease-associated mutants of MORC2

      At the current stage, the results for disease-associated mutations are descriptive. While we observed that certain mutations clustered at the N-terminus can affect MORC2 condensate formation, ATPase activity, and DNA binding, we did not identify a mechanistic explanation for these correlations. Notably, the T424R mutation, previously reported to significantly enhance ATPase activity, also increased both intracellular condensate formation and in vitro DNA binding in our experiments. In contrast, other mutations did not show such consistent effects. Previous studies have established that MORC2’s ATP-binding and DNA-binding activities are independent[2]. Our results further suggest that MORC2’s phase separation behavior is also independent of both ATP and DNA binding, although existing evidence hints at potential cross-regulatory interactions among these three functions.

      We are fully committed to implementing these revisions with strict rigor and plan to complete them within 8–10 weeks. We will submit a comprehensive response letter alongside the revised manuscript, explicitly mapping how each of your concerns has been addressed, and ensuring that our conclusions about MORC2 PS’s functional role are supported by solid, reproducible data. We believe these revisions will transform our study from a strong “mechanism-focused” work to a comprehensive one that bridges PS mechanisms and biological function—aligning with the high standards of the phase separation field. Thank you again for your invaluable guidance in improving our work.

      Reviewer #2 (Public review):

      For summary:

      Thank you for your thorough and constructive review of our manuscript. We fully agree with the key concerns you raised and have developed a detailed revision plan to address each point comprehensively. We will perform additional control and validation experiments to directly link MORC2’s condensate-forming capacity with its gene silencing function. At the current stage, the results for disease-associated mutations are descriptive. While we observed that certain mutations clustered at the N-terminus can affect MORC2 condensate formation, ATPase activity, and DNA binding, we did not identify a mechanistic explanation for these correlations. Notably, the T424R mutation, previously reported to significantly enhance ATPase activity[3], also increased both intracellular condensate formation and in vitro DNA binding in our experiments. In contrast, other mutations did not show such consistent effects. Previous studies have established that MORC2’s ATP-binding and DNA-binding activities are independent[4]. Our results further suggest that MORC2’s phase separation behavior is also independent of both ATP and DNA binding, although existing evidence hints at potential cross-regulatory interactions among these three functions.

      For strengths:

      We thank the reviewer for their appreciation of the key findings presented in this manuscript.

      For weaknesses:

      We thank the reviewer for their careful assessment of MORC2’s DNA-binding properties and its relationship with ATPase and transcriptional activities. We would like to offer the following clarifications to address these concerns, which will also be incorporated into the Discussion section of the revised manuscript.

      (1) Recent work by Tan et al.[4] similarly identified multiple DNA-binding sites in MORC2, consistent with our findings, though there are discrepancies in the precise binding regions. In particular, they reported that isolated CC1 and CC2 domains do not bind 60 bp dsDNA, which contrasts with our observations. We attribute this difference to the types of DNA used in the assays. In our study, we employed 601 DNA, a defined nucleosome-positioning sequence, which differs substantially from randomly designed short dsDNA. For instance, prior work by Christopher H. Douse et al.[3] also confirmed that MORC2’s CC1 domain can bind 601 DNA.

      (2) In the study by Fendler et al.², DNA binding was reported to reduce MORC2’s ATPase activity—an observation that appears inconsistent with the results presented in our Fig. 5j. A critical distinction between the two studies lies in the experimental systems used: Fendler et al. employed a truncated MORC2 construct (residues 1–603) and 35 bp double-stranded DNA (dsDNA), whereas our experiments utilized full-length MORC2 and 601 bp DNA (a sequence with high nucleosome assembly potential). These differences—including the absence of potentially regulatory C-terminal regions in the truncated construct and the varying length/structural properties of the DNA substrates—introduce variables that substantially complicate direct comparative analysis of ATPase activity outcomes.

      Separately, Douse et al.³ demonstrated that the efficiency of HUSH complex-dependent epigenetic silencing decreases as MORC2’s ATP hydrolysis rate increases, implying an inverse relationship between ATPase activity and silencing function. Notably, our current work has not established a direct mechanistic link between MORC2 phase separation and its ATPase activity. Thus, we refrain from inferring that the effect of MORC2 phase separation on transcriptional repression is mediated through modulation of its ATPase function—this remains an important question to address in future studies.

      (3) Finally, we plan to perform additional experiments to rule out the potential effects of CC3 dimerization. We will generate a phase-separation-deficient but dimerization-competent MORC2 mutant by mutating key hydrophobic residues in the IDRa region (critical for IDR-IBD multivalent interactions driving phase separation) without disrupting the CC3 domain’s dimerization interface. In addition, we plan to investigate whether introducing a KS sequence[1] at the C-terminus can effectively attenuate the phase separation propensity of MORC2. These mutants will allow us to decouple “phase separation capacity” from “protein dimerization”.

      We are committed to implementing these revisions with strict rigor and plan to complete them within 8–10 weeks. We will submit a detailed response letter alongside the revised manuscript, explicitly mapping how each of your concerns has been addressed, and ensuring the Discussion section is robust, context-rich, and fully integrates our work with the existing literature. We believe these improvements will significantly enhance the reliability, contextual relevance, and impact of our study, and we sincerely thank you for guiding us to elevate its quality.

      Reviewer #3 (Public review):

      For summary:

      Thank you for your insightful review and constructive suggestions, which have been invaluable in refining our manuscript. We greatly appreciate your recognition of the study’s strengths, including its logical structure, integration of multi-disciplinary approaches (in vitro LLPS assays, cellular studies, NMR, and crystallography), and the establishment of a functional link between MORC2 phase separation, DNA binding, and transcriptional control. Your identification of areas needing stronger evidence has provided clear, actionable directions for improvement, and we are fully committed to addressing each point comprehensively.

      For Major comments:

      To strengthen the manuscript as per your recommendations:

      (1) For the characterization of IDR-IBD interactions in PS: We will perform systematic in vitro assays, including PS turbidity measurements and confocal imaging of MORC2 variants lacking IDR or IBD (ΔIDR, ΔIBD) and truncated constructs (IDR alone, IBD alone). These experiments will quantify how each domain individually or synergistically contributes to phase separation propensity (e.g., critical concentration, condensate size/distribution).

      (2) To assess DNA’s influence on PS: We will generate phase diagrams by testing a range of MORC2 concentrations (0.5–10 μM) or with 601 DNA (147bp) and concentrations (0–2 μM), using turbidity assays and microscopy to map phase boundaries. This will systematically clarify how DNA modulates MORC2 phase separation.

      We plan to complete these experiments within 3–4 weeks, with rigorous quantification and statistical analysis to support our conclusions. The revised manuscript will include a detailed response letter mapping each of your suggestions to specific data additions, ensuring enhanced robustness and conviction. We believe these revisions will significantly strengthen the study’s conclusions, and we sincerely thank you for guiding us to improve its quality.

      Reference:

      [1] Mensah, M. A., Niskanen, H., Magalhaes, A. P., Basu, S., Kircher, M., Sczakiel, H. L., Reiter, A. M. V., Elsner, J., Meinecke, P., Biskup, S., et al. (2023). Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature 614, 564-571. https://doi.org/10.1038/s41586-022-05682-1.

      [2] Fendler, N. L., Ly, J., Welp, L., Lu, D., Schulte, F., Urlaub, H., and Vos, S. M. (2024). Identification and characterization of a human MORC2 DNA binding region that is required for gene silencing. Nucleic Acids Res 53, gkae1273. https://doi.org/10.1093/nar/gkae1273.

      [3] Douse, C. H., Bloor, S., Liu, Y. C., Shamin, M., Tchasovnikarova, I. A., Timms, R. T., Lehner, P. J., and Modis, Y. (2018). Neuropathic MORC2 mutations perturb GHKL ATPase dimerization dynamics and epigenetic silencing by multiple structural mechanisms. Nat Commun 9, 651. https://doi.org/10.1038/s41467-018-03045-x.

      [4] Tan, W., Park, J., Venugopal, H., Lou, J. Q., Dias, P. S., Baldoni, P. L., Moon, K. W., Dite, T. A., Keenan, C. R., Gurzau, A. D., et al. (2025). MORC2 is a phosphorylation-dependent DNA compaction machine. Nat Commun 16, 5606. https://doi.org/10.1038/s41467-025-60751-z.

    1. Author response:

      Description of the planned revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      Summary

      The authors focused on medaka retinal organoids to investigate the mechanism underlying the eye cup morphogenesis. The authors succeeded to induce lens formation in fish retinal organoids using 3D suspension culture with minimal growth factor-containing media containing the Hepes. At day 1, Rx3:H2B-GFP+ cells appear in the surface region of organoids. At day 1.5, Prox1+cells appear in the interface area between the organoid surface and the core of central cell mass, which develops a spherical-shaped lens later. So, Prox1+ cells covers the surface of the internal lens cell core. At day 2, foxe3:GFP+ cells appear in the Prox1+ area, where early lens fiber marker, LFC, starts to be expressed. In addition, foxe3:GFP+ cells show EdU+ incorporation, indicating that foxe3:GFP+ cells have lens epithelial cell-characters. At day 4, cry:EGFP+ cells differentiate inside the spherical lens core, whose the surface area consists of LFC+ and Prox1+ cells. Furthermore, at day 4, the lens core moves towards the surface of retinal organoids to form an eye-cup like structure, although this morphogenesis "inside out" mechanism is different from in vivo cellular "outside -in" mechanism of eye cup formation. From these data, the authors conclude that optic cup formation, especially the positioning of the lens, is established in retinal organoids though the different mechanism of in vivo morphogenesis.

      Overall, manuscript presentation is nice. However, there are still obscure points to understand background mechanism. My comments are shown below.

      Major comments

      (1) At the initial stage of retinal organoid morphogenesis, a spherical lens is centrally positioned inside the retinal organoids, by covering a central lens core by the outer cell sheet of retinal precursor cells. I wonder if the formation of this structure may be understood by differential cell adhesive activity or mechanical tension between lens core cells and retinal cell sheet, just like the previous study done by Heisenberg lab on the spatial patterning of endoderm, mesoderm and ectoderm (Nat. Cell Biol. 10, 429 - 436 (2008)). Lens core cells may be integrated inside retinal cell mass by cell sorting through the direct interaction between retinal cells and lens cells, or between lens cells and the culture media. After day 1, it is also possible to understand that lens core moves towards the surface of retinal organoids, if adhesive/tensile force states of lens core cells may be change by secretion of extracellular matrix. I wonder if the authors measure physical property, adhesive activity and solidness, of retinal precursor cells and lens core cells. If retinal organoids at day 1 are dissociated and cultured again, do they show the same patterning of internal lens core covering by the outer retinal cell sheet?

      The question, whether different adhesive activity is involved in cell sorting and lens formation is indeed very intriguing. To address this point, we will include additional experiment (see Revision Plan, experiment 1). This experiment will be based on the dissociation and re-aggregation of lens-forming organoids as suggested by the reviewer. To monitor cell type specific sorting, we will employ a lens progenitor reporter line Foxe3::GFP and the retina-specific Rx2::H2B-RFP. If different adhesive activities of lens and retinal progenitor cells are involved and drive the process of cell sorting, dissociation and re-aggregation will result in cell sorting based on their identity. 

      (2) Optic cup is evaginated from the lateral wall of neuroepithelium of the diencephalon. In zebrafish, cell movement occurs from the pigment epithelium to the neural retina during eye morphogenesis in an FGF-dependent manner. How the medaka optic cup morphogenesis is coordinated? I also wonder if the authors conduct the tracking of cell migration during optic cup morphogenesis to reveal how cell migration and cell division are regulated in lens of the Medaka retinal organoids. It is also interesting to examine how retinal cell movement is coordinated during Medaka retinal organoids.

      Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. Our previous study showed that optic vesicles of medaka retinal organoids do not form optic cups (for details please see Zilova et al., 2021, eLIFE). We assume that the formation of cup-looking structure of the ocular organoids is mediated by the following processes: establishment of retina and lens domains at the specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of the centrally formed lens towards the organoid periphery through the retina layer, places the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens from the center of the organoid. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2) and follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #2).

      (3) The authors showed that blockade of FGF signaling affects lens fiber differentiation in day 1-2, whereas lens formation seems to be intact in the presence of FGF receptor inhibitor in day 0-1. I suggest the authors to examine which tissue is a target of FGF signaling in retinal organoids, using markers such as pea3, which is a downstream target of ERK branch of FGF signaling. Since FGF signaling promotes cell proliferation, is the lens core size normal in SU5402-treated organoids from day 0 to day 1?

      Assessing the activity of FGF signaling (cross-reference to Reviewer #3) in the organoids is indeed an important point. To address which tissue is the target of FGF signaling we will include additional experiments and assess the phosphorylation status of ERK (pERK) and expression of the ERK downstream target pea3, as suggested by the reviewer (see Revision Plan, experiment 3). That will allow to identify the tissue within the organoid responding to the Fgf signaling.

      Lens core size of organoids treated with SU5402 from day 0 to day 1 is fully comparable to the control (please see Figure 6b).

      (4) Fig. 3f and 3g indicate that there is some cell population located between foxe3:GFP+ cells and rx2:H2B-RFP+ cells. What kind of cell-type is occupied in the interface area between foxe3:GFP+ cells and rx2:H2B-RFP+ cells?

      That is for sure an interesting question. We are aware of this population of cells. We currently do not have data that would with certainty clarify the fate of those cells. We are currently following up on that question with the use of scRNA sequencing, however we will not be able to address this question in the current manuscript.

      (5) Fig. 5e indicates the depth of Rx3 expression at day 1. Is the depth the thickness of Rx3 expressing cell sheet, which covers the central lens core in the organoids? If so, I wonder if total cell number of Rx3 expressing cell sheet may be different in each seeded-cell number, because thickness is the same across each seeded-cell number, but the surface area size may be different depending on underneath the lens core size. Please clarify this point.

      Yes. Figure 5e indicates the thickness of the cell sheet expressing Rx3 that lies on the surface of the organoid. Indeed, the number of Rx3-expressing cells (and lens cells) scales with the size of the organoid as stated in the submitted manuscript.

      (6) Noggin application inhibits lens formation at day 0-1. BMP signaling regulates formation of lens placode and olfactory placode at the early stage of development. It is interesting to examine whether Noggin-treated organoid expands olfactory placode area. Please check forebrain territory markers.

      What tissue differentiates at the expense of the lens in BMP inhibitor-treated organoids is of course an intriguing question. To address the identity of cells differentiated under this condition we will include an additional experiment (see Revision Plan, experiment 4 as suggested by the reviewer). We will check for the expression of Lhx2, Otx2 and Huc/D to address this point.

      I have no minor comments

      Referees cross-commenting

      I agree that all reviewers have similar suggestions, which are reasonable and provided the same estimated time for revision.

      Reviewer #1 (Significance):

      Strength:

      This study is unique. The authors examined eye cup morphogenesis using fish retinal organoids. Eye cup normally consists of the lens, the neural retina, pigment epithelium and optic stalk. However, retinal organoids seem to be simple and consists of two cell types, lens and retina. Interestingly, a similar optic cup-like structure is achieved in both cases; however, underlying mechanism is different. It is interesting to investigate how eye morphogenesis is regulated in retinal organoids,under the unconstrained embryo-free environment.

      Limitation:

      Description is OK, but analysis is not much profound. It is necessary to apply a bit more molecular and cellular level analysis, such as tracking of cell movement and visualization of FGF signnaling in organoid tissues.

      Advancement:

      The current study is descriptive. Need some conceptual advance, which impact cell biology field or medical science.

      Audience:

      The target audience of current study are still within ophthalmology and neuroscience community people, maybe translational/clinical rather than basic biology. To beyond specific fields, need to formulate a general principle for cell and developmental biology.

      Reviewer #2 (Evidence, reproducibility and clarity):

      In this study from Stahl et al., the authors demonstrate that medaka pluripotent embryonic cells can self-organise into eye organoids containing both retina and lens tissues. While these organoids can self-organize into an eye structure that resembles the vertebrate eye, they are built from a fundamentally different morphogenetic process – an “inside-out” mechanism where the lens forms centrally and moves outward, rather than the normal “outside-in” embryonic process. This is a very interesting discovery, both for our understanding of developmental biology and the potential for tissue engineering applications. The study would benefit from some additional experiments and a few clarifications.

      The authors suggest that the lens cells are the ones that move from the central to a more superficial position. Is this an active movement of lens cells or just the passive consequence of the retina cells acquiring a cup shape? Are the retina cells migrating behind the lens or the lens cells pushing outwards? High-resolution imaging of organoid cup formation, tracking retina cells in combination with membrane labeling of all cells would help elucidate the morphogenetic processes occurring in the organoids. Membrane labeling would also be useful as Prox1 positive lens cells appear elongated in embryos while in the organoids, cell shapes seem less organised, less compact and not elongated (for example as shown in Fig 3f,g).

      Looking into the detail of how optic cup-looking tissue arrangement of ocular organoids is achieved on cellular level is of course interesting. We assume that the formation of cup-looking structures of the ocular organoids is mediated by following processes: establishment of retina and lens domains at a specific region of the organoid – retina on the surface and lens in the center (see Figure S2 d and Figure 3e, and Figure 4). Further dislocation of centrally formed lenses towards the organoid periphery through the retina layer, place the lens to the periphery while retinal cells stay static. We assume that the “cup-like” shape is acquired by extrusion of the lens. To clarify this process with respect to tissue rearrangements and cell movements, we will include additional experiments (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion to dissect the individual contribution of retinal/lens cells to this process (cross-reference with Reviewer #1).

      The organoids could be a useful tool to address how cell fate is linked to cell shape acquisition. In the forming organoids, retinal tissue initially forms on the outside, while non-retinal tissue is located in the centre; this central tissue later expresses lens markers. Do the authors have any insights into why fate acquisition occurs in this pattern? Is there a difference in proliferation rates between the centrally located cells and the external ones? Could it be that highly proliferative cells give rise to neural retina (NR), while lower proliferating cells become lens?

      The question how is the retinal and lens domain established in this specific manner is indeed intriguing and very interesting. We dedicated a part of the discussion to this topic. We discuss the role of the diffusion limit and the potential contribution of BMB and FGF signaling to this arrangement. Additional experiments (see Revision Plan, experiment 3) addressing the source and target tissues of FGF and BMP signaling in the organoid will ultimately bring more clarity to our understanding of the tissue arrangements in the organoid. 

      Although analysis of the proliferation rate of the cells at the surface and in the central region of the organoid might possibly show some differences in the proliferation rates between lens and retinal cells, we do not have any indications, that the proliferation rate itself would be instructive or superior to the cell fate decisions.

      What happens in organoids that do not form lenses? Do these organoids still generate foxe3 positive cells that fail to develop into a proper lens structure? And in the absence of lens formation, does the retina still acquire a cup shape?

      Lens formation is primarily dependent on acquisition/specification of Foxe3-expressing lens placode progenitors. If those are not present, a lens does not develop. Once Foxe3-expressing progenitors are established, a lens is formed in unperturbed conditions (measured by the presence of expression of crystallin proteins). In such conditions, organoids that do not have a lens, do not carry Foxe3-expressing cells.

      In the absence of the lens, the organoid is composed of retinal neuroepithelium, that does not form an optic cup (for details of such phenotypes please see Zilova et al., 2021, eLIFE).

      The author suggest that lens formation occurs even in the absence of Matrigel. Is the process slower in these conditions? Are the resulting organoids smaller? While there are indeed some LFC expressing cells by day2, these cells are not very well organised and the pattern of expression seems dotty. Moreover, LFC staining seems to localise posterior to the LFC negative, lens-like structure (e.g. Fig.S1 3o’clock).

      How do these organoids develop beyond day 4? Do they maintain their structural integrity at later stages?

      The role of HEPES in promoting organoid formation is intriguing. Do the authors have any insights into why it is important in this context? Have the authors tried other culture conditions and does culture condition influence the morphogenetic pathways occurring within the organoids?

      We thank the reviewer for pointing this out. We were not clear in the wording and describing of our observation. Indeed, Matrigel is not required for acquisition of lens fate, which can be demonstrated with the expression of lens-specific markers. However, the presence of Matrigel has a profound impact on the structural aspects of organoid formation. Matrigel is essential for organization of retinal-committed cells into the retinal epithelium (Zilova et al., 2021, eLIFE). The absence of the structure of the retinal epithelium can indeed negatively impact on the cellular organization and the overall lens structure. To clarify the contribution of the Matrigel to the speed of organoid lens development and to the overall structure of the organoid lens we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #3).

      The role of the HEPES in lens formation is indeed very intriguing and currently under investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes, it will require significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #3) and therefore cannot be addressed in the current manuscript.

      Referees cross-commenting

      Pleased to see that all the other reviewers are positive about the study and raise similar concerns and comments

      Reviewer #2 (Significance):

      This is a very interesting paper, and it will be important to determine whether this alternative morphogenetic process is specific to medaka or if similar developmental routes can be recapitulated in organoid cultures from other vertebrate species.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Summary:

      The manuscript by Stahl and colleagues reports an approach to generate ocular organoids composed of retinal and lens structures, derived from Medaka blastula cells. The authors present a comprehensive characterisation of the timeline followed by lens and retinal progenitors, showing these have distinct origins, and that they recapitulate the expression of differentiation markers found in vivo. Despite this molecular recapitulation, morphogenesis is strikingly different, with lens progenitors arising at the centre of the organoid, and subsequently translocating to the outside.

      Comments:

      - The manuscript presents a beautiful set of high quality images showing expression of lens differentiation markers over time in the organoids. The set of experiments is very robust, with high numbers of organoids analysed and reproducible data. The mechanism by which lens specification is promoted in these organoids is, however, poorly analysed, and the reader does not get a clear understanding of what is different in these experiments, as compared to previous attempts, to support lens differentiation. There is a mention to HEPES supplementation, but no further analysis is provided, and the fact that the process is independent of ECM contradicts, as the authors point out, previous reports. The manuscript would benefit from a more detailed analysis of the mechanisms that lead to lens differentiation in this setting.

      The role of the HEPES in lens formation is indeed very intriguing and under current investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have an impact on multiple cellular processes it will require a significant time investment to dissect molecular mechanism underlying the effect of HEPES on the process of lens formation (cross reference with Reviewer #2) and therefore unfortunately cannot be addressed in the current manuscript.

      To clarify the contribution of the Matrigel to the organoid lens development we will perform additional experiments (see Revision Plan, experiment 5). With the use of Foxe3::GFP reporter line we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel (cross-reference with Reviewer #2).

      - The markers analysed to show onset of lens differentiation in the organoids seem to start being expressed, in vivo, when the lens placode starts invaginating. An analysis of earlier stages is not presented. This would be very informative, allowing to determine whether progenitors differentiate as placode and neuroepithelium first, to subsequently continue differentiating into lens and retina, respectively. Could early placodal and anterior neural plate markers be analysed in the organoids? This would provide a more complete sequence of lens vs retina differentiation in this model.

      Yes. The figures show the expression of lens and retinal markers in the embryo in later developmental stages and the timing of their expression can be documented with higher temporal resolution. In the revised version of the manuscript, we will provide the information about the onset of expression of Rx3::H2B-GFP (retina) and Foxe3::GFP (lens) (see Author response image 1). Rx3 represents one of the earlies markers labeling the presumptive eye field within the region of the anterior neural plate (S16, late gastrula). FoxE3::GFP expression can be detected within the head surface ectoderm before the lens placode is formed showing that Foxe3 is a suitable marker of placodal progenitors in medaka.

      We are convinced that the onset of Rx3 and Foxe3-driven reporters is early enough to make the claim about the separate origin of the lens (placodal) and retinal (anterior neuroectoderm) tissues within the ocular organoids.

      Author response image 1.

      - The analysis of BMP and Fgf requirement for lens formation and differentiation is suggestive, but the source of these signals is not resolved or mentioned in the manuscript. Are BMP4 and Fgf8 expressed by the organoids? Where are they coming from?

      Indeed, addressing the source of BMP and FGF activation would bring more clarity in understanding the mechanism of retina/lens specification within the ocular organoids (cross reference with Reviewer #1). To address this point, we will include additional experiments (see Revision Plan, experiment 3). We will analyze the expression of respective ligands (Bmp4 and Fgf8) and activation of downstream effectors of BMP and FGF signaling pathways within the ocular organoids as suggested by Reviewer #1 and Reviewer #3.

      - The fact that the lens becomes specified in the centre of the organoid is striking, but it is for me difficult to visualise how it ends up being extruded from the organoid. Did the authors try to follow this process in movies? I understand that this may be technically challenging, but it would certainly help to understand the process that leads to the final organisation of retinal and lens tissues in the organoid. There is no discussion of why the morphogenetic mechanism is so different from the in vivo situation. The manuscript would benefit from explicitly discussing this.

      Following the extruding lens in vivo is indeed very relevant suggestion. To clarify the process of ocular organoid formation in the respect of tissue rearrangements and cell movements, we will include additional experiment (see Revision Plan, experiment 2). We will follow lens- and retina-fated cells (by employing lens-specific Foxe3::GFP and retina-specific Rx2::H2B-RFP reporter lines) through the process of lens extrusion (cross-reference with Reviewer #1 and Reviewer #2).

      Referees cross-commenting

      We all seem to have similar comments and concerns. I think overall the suggestions are feasible and realistic for the timeframe provided.

      Reviewer #3 (Significance):

      This study describes a reproducible approach to differentiate ocular organoids composed of lens and retinal tissues. The characterisation of lens differentiation in this model is very detailed, and despite the morphogenetic differences, the molecular mechanisms show many similarities to the in vivo situation. The manuscript however does not highlight, in my opinion, why this model may be relevant. Clearly articulating this relevance, particularly in the discussion, will enhance the study and provide more clarity to the readers regarding the significance of the study for the field of organoid research, ocular research and regenerative studies.

      Revision Plan:

      (1) To address whether differential adhesion properties of retinal and lens progenitors mediate cell sorting to establish retina and lens domains in the organoids (Reviewer #1, comment 1), we will perform dissociation of the organoids on day 1 and subsequential re-aggregation. This experiment will allow to follow cell type specific adhesion properties of lens and retinal progenitor cells. We will employ lens progenitor reporter line Foxe3::GFP and retina-specific Rx2::H2B-RFP to monitor cell type specific sorting with fluorescent microscopy.

      (2)   Multiple reviewers (Reviewer #1, Reviewer #2, Reviewer #3) asked for the presentation of detailed in vivo imaging experiment showing individual contributions of retina- and lens- fated cells to the resulting tissue organization withing the ocular organoid. We will perform in vivo live imaging experiment to follow the movements of individual lens (Foxe3::GFP) and retinal (Rx2::H2B-GFP) cells from day 1 to day 2 of organoid development to address this point.

      (3) Reviewer #1 and Reviewer #3 raised questions concerning the role of FGF and BMP signaling and sources of these signaling pathway activities in ocular organoid tissue arrangement. To address this point and bring more light into the molecular mechanisms regulating lens and retina tissue arrangement in the organoid, we will perform additional experiment. We will assess the expression of candidate FGF and BMP ligands (Fgf8, Bmp7 and Bmp4) and activation of downstream effectors (p-ERK, p-SMAD) and the direct transcriptional target of Fgf signaling (Pea3) in the developing organoids. This will allow the identification of the tissue producing the ligand on one site and tissue responding to the signaling on the other site and help out to narrow down the molecular mechanism controlling tissue arrangements in the organoid.

      (4) We will analyze the expression of forebrain territory markers in organoids treated with the BMP inhibitor to identify the identity of the tissue differentiating at the expense of lens under the BMP inhibition (suggested by Reviewer #1). We will label Noggin-treated organoids with the antibodies against Lhx2, Otx2 and HuC/D to address this point.

      (5) We will provide more comprehensive analysis of the organoids grown without the Matrigel and compare them to the organoids grown in the presence of the Matrigel (mentioned by Reviewer #2 and Reviewer #3). With the use of lens progenitor-specific Foxe3::GFP reporter line, we will measure the onset of the lens-specific gene expression. In addition, we will use the immunohistochemistry to assess the gross morphology and size of the organoids grown without the Matrigel.

      Description of analyses that authors prefer not to carry out

      Reviewer #1:

      (4) Fig. 3f and 3g indicate that there is some cell population located between foxe3:GFP+ cells and rx2:H2B-RFP+ cells. What kind of cell-type is occupied in the interface area between foxe3:GFP+ cells and rx2:H2B-RFP+ cells?

      That is for sure interesting question. We are aware of this population of cells. We currently do not have a data that would with certainty clarify the fate of those cells. We are currently following up on that question with the use of scRNA sequencing, however we will not be able to address this question in the current manuscript.

      Reviewer #2:

      The role of HEPES in promoting organoid formation is intriguing. Do the authors have any insights into why it is important in this context? Have the authors tried other culture conditions and does culture condition influence the morphogenetic pathways occurring within the organoids?

      The role of the HEPES in lens formation is indeed very intriguing and under current investigation. As HEPES is mainly used to regulate pH of the culture media and pH might have impact on multiple cellular processes it will require significant time investment to dissect molecular mechanism underlying the effect of the HEPES on the process of lens formation (cross reference with Reviewer #3) and cannot be addressed in the current manuscript.

      Is there a difference in proliferation rates between the centrally located cells and the external ones? Could it be that highly proliferative cells give rise to neural retina (NR), while lower proliferating cells become lens?

      Although analysis of the proliferation rate of the cells at the surface and in the central region of the organoid might possibly show some differences in the proliferation rates between lens and retinal cells, we do not have any indications, that the proliferation rate itself would be instructive or superior to the cell fate decisions.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      In this manuscript by Lopez-Blanch and colleagues, 21 microexons are selected for a deep analysis of their impacts on behavior, development, and gene expression. The authors begin with a systematic analysis of microexon inclusion and conservation in zebrafish and use these data to select 21 microexons for further study. The behavioral, transcriptomic, and morphological data presented are for the most part convincing. Furthermore, the discussion of the potential explanations for the subtle impacts of individual microexon deletions versus lossof-function in srrm3 and/or srrm4 is quite comprehensive and thoughtful. One major weakness: data presentation, methods, and jargon at times affect readability / might lead to overstated conclusions. However, overall this manuscript is well-written, easy to follow, and the results are of broad interest.

      We thank the Reviewer for their positive comments on our manuscript. In the revised version, we will try to improve readability, reduce jargon and avoid overstatements.  

      Strengths:

      (1) The study uses a wide variety of techniques to assess the impacts of microexon deletion, ranging from assays of protein function to regulation of behavior and development.

      (2) The authors provide comprehensive analyses of the molecular impact of their microexon deletions, including examining how host-gene and paralog expression is affected.

      Weaknesses:

      Major Points:

      (1) According to the methods, it seems that srrm3 social behavior is tested by pairing a 3mpf srrm3 mutant with a 30dpf srrm3 het. Is this correct? The methods seem to indicate that this decision was made to account for a slower growth rate of homozygous srrm3 mutant fish. However, the difference in age is potentially a major confound that could impact the way that srrm3 mutants interact with hets and the way that srrm3 mutants interact with one another (lower spread for the ratio of neighbour in front value, higher distance to neighbour value). This reviewer suggests testing het-het behavior at 3 months to provide age-matched comparisons for del-del, testing age-matched rather than size-matched het-del behavior, and also suggests mentioning this in the main text / within the figure itself so that readers are aware of the potential confound.

      Thank you for bringing up this point. For the tests shown in Figure 5, we indeed decided to match the pairs involving srrm3 mutant fish by fish size since we reasoned this would be more comparable to the other lines, both biologically and methodologically (in terms of video tracking, etc.). However, we are confident the results would be very similar if matched by age, since the differences in social interactions between the srrm3 homozygous mutants and their control siblings are very dramatic at any age. As an example, this can be appreciated, in line with the Reviewer's suggestion, in Videos S2 and S3, which show groups of five 5 mpf fish that are either srrm3 mutant or wild type. It can be observed that the behavior of 5 mpf WT fish (Video S3) is very similar to those of 1 mpf WT fish pairs, with very small interindividual distances, while the difference with repect to the srrm3 mutant group (Video S2) is dramatic. We nonetheless agree that this decision on the experimental design should be clearly stated in the main text and figure legend and we have done so in the revised version.

      (2) Referring to srrm3+/+; srrm4-/- controls for double mutant behavior as "WT for simplicity" is somewhat misleading. Why do the authors not refer to these as srrm4 single mutants?

      This comment applies to Figure 4 as well as the associated figure supplements. We reasoned that this made the understanding of plots easier, but the Reviewer is correct that it can be misleading. As a middle ground, we have now changed Figure 4 to follow the nomenclature of Figure 3D (WD, HD, DD), which is further explained in the legend, but kept the original format in the figure supplements for consistency with the (many) other plots in those figures.

      (3) It's not completely clear how "neurally regulated" microexons are defined / how they are different from "neural microexons"? Are these terms interchangeable?

      Yes, they are interchangeable. We have now double checked the wording to avoid confusion and for consistency.

      (4) Overexpression experiments driving srrm3 / srrm4 in HEK293 cells are not described in the methods.

      We apologized for this omission. We now briefly describe the data and asscoiated methods in more detail in the revised version; however, please note that the data was obtained from a previous publication (Torres-Mendez et al, 2019), where the detailed methodology is reported.

      (5) Suggest including more information on how neurite length was calculated. In representative images, it appears difficult to determine which neurites arise from which soma, as they cross extensively. How was this addressed in the quantification?

      We have added further details to the revised version. With regards to the specific question, we would like to mention that this has not been a very common issue for the time points used in the manuscript (10 hap and 24 hap). At those stages, it was nearly always evident how to track each individual neurite. Dubious cases were simply ignored and not measured, as we aimed for 100 neurites per well. Of course, such complex cases become much more common at later time points (48 and 72 hap), which were not used in this study.

      Reviewer #2 (Public review):

      Summary:

      This manuscript explores in zebrafish the impact of genetic manipulation of individual microexons and two regulators of microexon inclusion (Srrm3 and Srrm4). The authors compare molecular, anatomical, and behavioral phenotypes in larvae and juvenile fish. The authors test the hypothesis that phenotypes resulting from Srrm3 and 4 mutations might in part be attributable to individual microexon deletions in target genes.

      The authors uncover substantial alterations in in vitro neurite growth, locomotion, and social behavior in Srrm mutants but not any of the individual microexon deletion mutants. The individual mutations are accompanied by broader transcript level changes which may resemble compensatory changes. Ultimately, the authors conclude that the severe Srrm3/4 phenotypes result from additive and/or synergistic effects due to the de-regulation of multiple microexons.

      Strengths:

      The work is carefully planned, well-described, and beautifully displayed in clear, intuitive figures. The overall scope is extensive with a large number of individual mutant strains examined. The analysis bridges from molecular to anatomical and behavioral read-outs. Analysis appears rigorous and most conclusions are well-supported by the data.

      Overall, addressing the function of microexons in an in vivo system is an important and timely question.

      Weaknesses:

      The main weakness of the work is the interpretation of the social behavior phenotypes in the Srrm mutants. It is difficult to conclude that the mutations indeed impact social behavior rather than sensory processing and/or vision which precipitates apparent social alterations as a secondary consequence. Interpreting the phenotypes as "autism-like" is not supported by the data presented.

      The Reviewer is absolutely right. It was not our intention to imply that these social defects should be interpreted simply as autistic-like. It is indeed very likely that the main reason for the social alterations displayed by the srrm3 mutants is their impaired vision. We have now added this discussion point explicitly in the revised version. 

      Reviewer #3 (Public review):

      Summary:

      Microexons are highly conserved alternative splice variants, the individual functions of which have thus far remained mostly elusive. The inclusion of microexons in mature mRNAs increases during development, specifically in neural tissues, and is regulated by SRRM proteins. Investigation of individual microexon function is a vital avenue of research since microexon inclusion is disrupted in diseases like autism. This study provides one of the first rigorous screens (using zebrafish larvae) of the functions of individual microexons in neurodevelopment and behavioural control. The authors precisely excise 21 microexons from the genome of zebrafish using CRISPR-Cas9 and assay the downstream impacts on neurite outgrowth, larvae motility, and sociality. A small number of mild phenotypes were observed, which contrasts with the more dramatic phenotypes observed when microexon master regulators SRRM3/4 are disrupted. Importantly, this study attempts to address the reasons why mild/few phenotypes are observed and identify transcriptomic changes in microexon mutants that suggest potential compensatory gene regulatory mechanisms.

      Strengths:

      (1) The manuscript is well written with excellent presentation of the data in the figures.

      (2) The experimental design is rigorous and explained in sufficient detail.

      (3) The identification of a potential microexon compensatory mechanism by transcriptional alterations represents a valued attempt to begin to explain complex genetic interactions.

      (4) Overall this is a study with a robust experimental design that addresses a gap in knowledge of the role of microexons in neurodevelopment.

      Thank you very much for your positive comments to our manuscript.

      Reviewer #1 (Recommendations for the authors):

      Minor Suggestions

      (1) Axes are often scaled differently even between panels in the same figure. For example in Figure 5 - supplement 10, the srrm3_17 y axis scales from 0-20, while the neighboring panels scale from ~1-2.5. This somewhat underrepresents the finding that srrm3 mutants have much larger inter-individual distances. Similarly, in the panel above (src_1), the y-axis is scaled to include a single point around 17cm. As a result, it appears at first glance that the src_1 trials resulted in much lower inter-individual distance. Suggest scaling all of these the same to improve readability.

      While the Reviewer is certainly correct, after careful consideration we decided to have autoscaled axis to prioritize within-plot visualization (i.e. among genotypes within an experiment) than across plots (i.e. among experiments and lines).

      (2) Attention to italicizing gene names.

      Thanks.

      (3) In many points in the methods, we are instructed to "see below." Suggest directing the reader to a particular section heading.

      We found only one such instance, and we directed the reader to the specific section, as suggested.

      (4) In Methods, remove "in the corpus callosum." This is not an accurate descriptor for the site at which Mauthner axons cross.

      This is absolutely correct, apologies for this mistake.

      Clarify:

      (1) In the results section, "tissue-specific regulation was validated..." - suggest mentioning that this was performed in adult tissues / describe dissection in the methods.

      Added.

      (2) In the results section, the meaning of "no event ortholog" is not clear. Does this mean that a microexon does not have a human homolog? If so, suggest stating more clearly.

      Correct. We have added addition information.

      (3) In the results, the authors state that 78% of microexons are affected by srrm3/4 loss-offunction. Suggest stating the method used here (e.g. RNA-seq in mutants as compared to siblings)

      Added.

      (4) It is not clear what "siblings for the main founders means" for example in 3D. Is this effectively the analysis of microexon knockouts across multiple independent lines? Are the lines pooled for stats, for example in 3C?

      The main founder correspond to that listed as _1 and as default for experiments when only one found is used. We now explicitely state this.  

      For 3C, the lines are not pooled for stats; the stats correspond only to the main founder for each line. However, for each main founder line, multiple experiments are usually analyzed together and the stats are done taking their data structure into account (i.e. not simply pooling the values).

      (5) The purpose and a general description of NanoBRET assays should be included in the results.

      We added the main purpose of the NanoBRET assays (testing protein-protein interactions).

      (6) Specify that baseline behavior is analyzed in the light.

      Added.

      (7) In Figure 4A, adult fish are schematized being placed into a 96-well plate. Suggest using the larval diagram as in Figure 6 for accuracy.

      Done.

      (8) In Figure 4, plot titles could be made more accessible, especially in 4 F. Suggest removing extraneous information / italicizing gene names, etc. In G, suggest writing out Baseline, Dark, and Light to make it more accessible. Same in 4B.

      We have implemented some of the suggestions. In particular, italics were not used, since we are referring to the founder line, not the gene.

      (9) Figure 6 legend B - after (barplots), suggest inserting the word "and", to make clear that barplots indicate host gene *and* closely related paralogs are indicated by dots.

      Done.

      (10) In methods: "To better capture all microexons..." This sentence is difficult to understand. Suggested edit: "we excluded *from our calculation?* tissues with known or expected partial overlap... from comparison (for example, ...).

      Done.

      (11) In the methods, "which were defined with similar parameters but -min_rep 2." Suggest spelling this out, e.g. "with similar parameters, but requiring sufficient read coverage in at least n=2 samples per valid tissue group, whereas we only required one.".

      Done.

      (12) RNA was extracted for event and knockout validations. What does event mean here?

      Event refers to the validation of the exon regulatory pattern in WT tissues. We added this information.

      Provide definitions for abbreviations:

      (1) (Figure 6) Delta corrected VST Expression.

      Done.

      (2) "Mic-hosting genes" paralogs.

      Done.

      (3) In Figure 1F, "emic" is not defined.

      Done.

      Misspellings:

      All corrected.

      (1) Figure 6B (percentile is spelled percentil).

      (2) Figure 6B legend (bottom or top decile*).

      (3) Figure 6D - Schizophrenia* genes.

      (4) In Zebrafish husbandry and genotyping: suggest "srrm3 mutants grew more slowly.".

      (5) In results, "reduced body size at 90pdf" > 90dpf.

      Reviewer #2 (Recommendations for the authors):

      (1) Characterization of microexon mutants (Figure 2): The semi-quantitative PCR with flanking primers (Figure 2, supplement1) is well-suited to assess successful deletion of the exon and enables detection of potential mis-splicing around the alternative segment. However, it does not quantify the impact on total transcript levels. The authors should complement those experiments with qPCR measures of the transcript levels - otherwise, it is difficult to link mutant phenotypes to isoforms (as opposed to alterations in the level of gene expression). This point is somewhat addressed in Figure 6 by the RNA Seq analysis but it might help to add data specifically in Figure 2.

      As the Reviewer says, this point is explicitely addressed in Figure 6, where were show the change in the host gene's expression that follows the the removal of some microexons. We prefer to keep this in Figure 6, for consistency, as we believe this is not a direct (regulatory) consequence of the removal, but more likely a compensation effect.

      (2) Social behavior alterations in juvenile fish: The authors report "increased leadership" in Srrm3 mutant fish. However, these fish have impaired vision. Thus, "increased leadership" may simply reflect the fact that they do not perceive their conspecifics and, thus, do not follow them. The heterozygous conspecific will then mostly follow the Srrm3 mutant which appears as the mutant exhibiting an increase in leadership. Figure 5D suggests that Srrm3 del and het fish have the same ratio of "neighbor in front" which would be consistent with the hypothesis that the change in this metric is a consequence of a loss of following behavior due to a loss of vision. The authors should either adjust the discussion of this point or assess with additional experiments whether this is indeed a "social phenotype" or rather a secondary consequence of a loss of vision.

      The Reviewer is absolutely correct, and we have thus modified the short discussion directly related to these patterns.

      (3) The discussion centers on potential reasons why only mild phenotypes are observed in the single microexon mutants. One caveat of the phenotypic analysis provided in the manuscript is that it does not very deeply explore the phenotypic space of neuronal morphologies or circuit function. The behavioral and anatomical read-outs are rather coarse. There are no experiments exploring fine-structure of neuronal projections in vivo or synapse number, morphology, or function. Moreover, no attempts are made to explore which cell types normally express the microexons to potentially focus the loss-of-function analysis to these specific cell types. Of course, such analysis would substantially expand the scope of a study that already covers a large number of mutant alleles. However, the authors may want to add a discussion of these limitations in the manuscript.

      The Reviewer is correct. We aimed at covering this when referring to "(i) we may not be assessing the traits that these microexons are impacting, (ii) we may not have the sensitivity to robustly measure the magnitude of the changes caused by microexon removal". We have now added some of the specific points raised by the Reviewer as examples.

      (4) Note typos in Figure 6D: "schizoFrenia", "WNT signIalling"

      Done.

      Reviewer #3 (Recommendations for the authors):

      I only have a few minor suggestions for the authors.

      (1) It is interesting that a not insignificant number of microexon deletions (3/21) result in cryptic inclusions of intron fragments, and perhaps alludes to an as yet unreported molecular function of microexons in the regulation of host gene expression. Is it possible that microexon inclusion in these 3 genes could be important for expression? I think this requires some further discussion, as (if I'm not mistaken) microexons have thus far only been hypothesised to act as modulators of protein function, not as gene regulatory units.

      While we see that microexon removal can impact expression of the host gene (Figure 6), this is likely a compensatory mechanism (or so we suggest). We do not think these three cases are related to a putative physiological regulation, since the cryptic exons appear only in the deletion line. On the contrary, we think these are "regulatory artifacts" that originate in the nonWT mutated context. I.e. we removed the exon but some splicing signals remained in the intron, which are then recoginized by the spliceosome that incorrectly includes a different piece of the intron.

      (2) The flow of the text accompanying the molecular investigation of microexon function for evi5b and vav in Figure 3 could be improved. The text currently fades out with a speculative explanation for the lack of evi5b interaction phenotype. This final sentence could be moved to the discussion and replaced with a more general summary of the data.

      We have now swapped the order in which these results are described and leave out the discussion about evi5b's microexon function.

      (3) Is this a co-submission with Calhoun et al? If so, both papers should reference each other in the discussion and discuss the relative contributions of each.

      Done

      (4) "1 × 104 cells" in methods Nanobret paragraph should be superscript.

      Done

    1. Author response:

      We thank the reviewers for their primarily positive comments and the critiques about where the manuscript could be improved. We agree with the vast majority of points raised. In our revised submission, we will:

      • Clarify some of the wording such as “unified mechanism” so that our intended meaning is clear to all readers

      • Completely change figure 2, as we accept the critique that an X-Y plot is not the logical way to present this concept

      • Amend the legends of figures 1 and 3 so that the disease pathways we are attempting to illustrate are clear for all readers

      • Expand on the genetic interactions between humans and TB and cite the manuscripts suggested

      • Add further discussion on multiple disease endotypes, and the immunological events that may lead to these distinct end points, along with how this may inform treatment stratification approaches

      • Extend the discussion about trained immunity

      • Make specific changes to address each of the reviewers’ points in the recommendations to authors

      • In the minority of cases where we feel a change is not necessary, we will justify this in our response to reviews

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review): 

      Summary: 

      Kang et al. provide the first experimental insights from holographic stimulation of auditory cortex. Using stimulation of functionally-defined ensembles, they test whether overactivation of a specific subpopulation biases simultaneous and subsequent sensory-evoked network activations. 

      Strengths: 

      The investigators use a novel technique to investigate the sensory response properties in functionally defined cell assemblies in auditory cortex. These data provide the first evidence of how acutely perturbing specific frequency-tuned neurons impacts the tuning across a broader population. Their revised manuscript appropriately tempers any claims about specific plasticity mechanisms involved. 

      Weaknesses: 

      Although the single cell analyses in this manuscript are comprehensive, questions about how holographic stimulation impacts population coding are left to future manuscripts, or perhaps re-analyses of this unique dataset. 

      Reviewer #2 (Public review): 

      The goal of HiJee Kang et al. in this study is to explore the interaction between assemblies of neurons with similar pure-tone selectivity in mouse auditory cortex. Using holographic optogenetic stimulation in a small subset of target cells selective for a given pure tone (PTsel), while optically monitoring calcium activity in surrounding non-target cells, they discovered a subtle rebalancing process: co-tuned neurons that are not optogenetically stimulated tend to reduce their activity. The cortical network reacts as if an increased response to PTsel in some tuned assemblies is immediately offset by a reduction in activity in the rest of the PTseltuned assemblies, leaving the overall response to PTsel unchanged. The authors show that this rebalancing process affects only the responses of neurons to PTsel, not to other pure tones. They also show that assemblies of neurons that are not selective for PTsel don't participate in the rebalancing process. They conclude that assemblies of neurons with similar pure-tone selectivity must interact in some way to organize this rebalancing process, and they suggest that mechanisms based on homeostatic signaling may play a role. 

      The authors have successfully controlled for potential artefacts resulting from their optogenetic stimulation. This study is therefore pioneering in the field of the auditory cortex (AC), as it is the first to use single-cell optogenetic stimulation to explore the functional organization of AC circuits in vivo. The conclusions of this paper are very interesting. They raise new questions about the mechanisms that could underlie such a rebalancing process. 

      (1) This study uses an all-optical approach to excite a restricted group of neurons chosen for their functional characteristics (their frequency tuning), and simultaneously record from the entire network observable in the FOV. As stated by the authors, this approach is applied for the first time to the auditory cortex, which is a tour de force. However, such approach is complex and requires precise controls to be convincing. The authors provide important controls to demonstrate the precise ability of their optogenetic methods. In particular, holographic patterns used to excite 5 cells simultaneously may be associated with out-of-focus laser hot spots. Cells located outside of the FOV could be activated, therefore engaging other cells than the targeted ones in the stimulation. This would be problematic in this study as their tuning may be unrelated to the tuning of the targeted cells. To control for such effect, the authors have decoupled the imaging and the excitation planes, and checked for the absence of out-of-focus unwanted excitation (Suppl Fig1). 

      (2) In the auditory cortex, assemblies of cells with similar pure-tone selectivity are linked together not only by their ability to respond to the same sound, but also by other factors. This study clearly shows that such assemblies are structured in a way that maintains a stable global response through a rebalancing process. If a group of cells within an assembly increases its response, the rest of the assembly must be inhibited to maintain the total response. 

      One surprising result is the clear boundary between assemblies: a rebalancing process occurring in one assembly does not affect the response in another assembly comprising cells tuned to a different frequency. However, this is slightly challenged by the data shown in Figure 3. 

      Figure 3B-left, for example, shows that, compared to controls, non-target 16 kHzpreferring neurons only decrease their response to a 16 kHz pure tone when the cells targeted by the opto stimulation also prefer 16 kHz, but not when the targeted cells prefer 54 kHz. However, the inverse is not entirely true. Again compared to controls, Figure 3B (right) shows that non-target 54 kHz-preferring neurons decrease their response to a 54 kHz pure tone when the targeted cells also prefer 54 kHz; however, they also tend to be inhibited when the targeted cells prefer 16 kHz. 

      The authors suggest this may be due to the partial activation of 54 kHz-preferring cells by 16 kHz tones and propose examining the response of highly selective neurons. The results are shown in Figure 3F. It would have been more logical to show the same results as in Figure 3B, but with the left part restricted to highly 16 kHz-selective cells and the right part to highly 54 kHz-selective cells. However, the authors chose to pool all responses to 16 kHz and 54 kHz tones in every triplet of conditions (control, opto stimulation on 16 kHz-preferring cells and opto stimulation on 54 kHz-preferring cells), which blurs the result of the analysis. 

      We thank reviewers for highlighting the strengths of our work and providing valuable feedback. We further developed our manuscript mainly from Reviewer 2’s point on the overall effect explained as the main result. One of the main reasons why we chose to pool all tone preferring cells instead of highly selective cells was to ensure that the observed effect not necessarily driven by only a small group of neurons but rather that the effect was driven at the population level, especially at a subject level for Figure 3B. While Figure 3F represents how highly selective cells to each frequency play a major role in the effect, we now have added additional results with only highly selective neurons as Supplementary Figure 3. The left panel shows restricting the population to highly selective neurons to 16 kHz and the right panel restricting the population to highly selective neurons to 54 kHz at cell population level to emphasize the result (Supplementary Figure 3). 

      We appreciate an additional raised point by Reviewer 1 regarding the stimulation effect on population coding. Our primary focus in this manuscript was to establish single cell level effects of holographic stimulation, and we believe that population coding analyses would benefit from a more cell-type-specific approach. We plan to pursue such analyses in follow-up studies where cell types can be better identified and linked to network dynamics. 

      Reviewer #1 (Recommendations for the authors): 

      The authors have appropriately addressed my concerns. 

      As this dataset will be of general interest, it would be helpful to include a doi/link to their data repository in the data availability section. 

      Updating the data repository to the institution server is currently in progress. We will provide the correct doi or link as soon as it becomes available. In the meantime, we will ensure to share them with anyone who contacts to us directly. 

      Reviewer #2 (Recommendations for the authors): 

      Many references to Figures have not been updated between the two versions of the manuscript. See lines 107, 128, 297, 321 and 346. 

      We are sorry for the confusion with mislabelled figures. We now have updated all the figure numbers accordingly.

      In the paragraph beginning on line 266, there is no explicit reference to Figure 3C. 

      We now added Figure 3C reference in the main text (line 290). 

      If the new analysis includes 15 FOV for stim on 54 kHz-preferring cells, as indicated in the rebuttal, the corresponding numbers should be corrected in lines 152 and 180. 

      We now updated the number of FOVs accordingly. 

      The added model is not explained well enough. How are the calcium traces simulated? It is difficult to ascertain whether the result shown in Figure 3C is merely a trivial consequence of the hypothesis that suppression is applied to co-tuned neurons or to all neurons. 

      We are sorry for the lack of important details in the explanation of the model. We simulated time-varying sound-evoked calcium transient especially by applying different decay time constant (faster decay for co-tuned neurons and slower decay for non co-tuned neurons) to closely match the real data. More detailed explanation on this is now included in the manuscript (lines 644 – 650). Since our data do not currently allow us to identify specific cell types, we focused on modelling the stronger suppression observed in co-tuned neurons, especially by adapting the stimulation effect of target cells from the real data. In this revision, we now added data showing that ‘Randomly selected cells’ from the two groups (co-tuned or non co-tuned cell groups) did not exhibit any stimulation effect (added column in Figure 3D) to further indicate that suppression specific to co-tuned neurons is the key factor underlying the observed effects in the real data. We hope to build on this work in future studies to identify cell-type-specific effects and their computational roles. 

      Although the rebuttal clearly states that experiments are carried out on awake animals, this information is still missing from the manuscript. 

      We now stated ‘Fully awake animals’ in the experimental procedures.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The aim of this paper is to develop a simple method to quantify fluctuations in the partitioning of cellular elements. In particular, they propose a flow-cytometry-based method coupled with a simple mathematical theory as an alternative to conventional imaging-based approaches.

      Strengths:

      The approach they develop is simple to understand and its use with flow-cytometry measurements is clearly explained. Understanding how the fluctuations in the cytoplasm partition vary for different kinds of cells is particularly interesting.

      Weaknesses:

      The theory only considers fluctuations due to cellular division events. This seems a large weakness because it is well known that fluctuations in cellular components are largely affected by various intrinsic and extrinsic sources of noise and only under particular conditions does partitioning noise become the dominant source of noise.

      We thank the Reviewer for her/his evaluation of our manuscript. The point raised is indeed a crucial one. In a cell division cycle, there are at least three distinct sources of noise that affect component numbers [1] :

      (1) Gene expression and degradation, which determine component numbers fluctuations during cell growth.

      (2) Variability in cell division time, which depending on the underlying model may or may not be a function of protein level and gene expression.

      (3) Noise in the partitioning/inheritance of components between mother and daughter cells.

      Our approach specifically addresses the latter, with the goal of providing a quantitative measure of this noise source. For this reason, in the present work, we consider homogeneous cancer cell populations that could be considered to be stationary from a population point-of-view. By tracking the time evolution of the distribution of tagged components via live fluorescent markers, we aim at isolating partitioning noise effects. However, as noted by the Reviewer, other sources of noise are present, and depending on the considered system the relative contributions of the different sources may change. Thus, we agree that a quantification of the effect of the various noise sources on the accuracy of our measurements will improve the reliability of our method.

      In this respect, assuming independence between noise sources, we reasoned that variability in cell cycle length would affect the timing of population emergence but not the intrinsic properties of those populations (e.g., Gaussian variance). To test this hypothesis, we conducted a preliminary set of simulations in which cell division times were drawn from an Erlang distribution (mean = 18 h, k=4k = 4k=4). The results, showing the behavior of the mean and variance of the component distributions across generations, are presented in Supplementary Information - Figure 1. Under the assumption of independence between different noise sources, no significant effects were observed even for high asymmetries of the partitioning distribution.

      Next, we quantified the accuracy of our measurements in the presence of cross-talks between the various noise sources.Indeed, cells may adopt different growth and division strategies, which can be grouped into three categories based on what triggers division:

      ● Sizer-like cells divide upon reaching a certain size;

      ● Timer-like cells divide after a fixed time (corresponding to the previously treated case with independent noise);

      ● Adder-like cells divide once their volume has increased by a finite amount.

      A detailed discussion of these strategies, including their mathematical formulation, can be found in [2]. Here we have assumed that cells follow a sizer-like model. In this way, we study a system in which cells with a higher number of components have shorter division times. Hence, older (newer) generations are emptied (populated) starting from higher values.

      As can be observed, higher levels of division asymmetry increase the fluctuations of the system relative to the analytically expected behavior, particularly in later generations.

      The result in Supplementary Information - Figure 3 demonstrates the robustness of our method, as the estimates remain within the pre-established experimental error margin. We have now discussed this aspect both in the main and in the Supplementary Information and thank the Reviewer for pointing it out.

      (1) Soltani, Mohammad, et al. "Intercellular variability in protein levels from stochastic expression and noisy cell cycle processes." PLoS computational biology 12.8 (2016): e1004972.

      (2) Mattia Miotto, Simone Scalise, Marco Leonetti, Giancarlo Ruocco, Giovanna Peruzzi, and Giorgio Gosti. A size-dependent division strategy accounts for leukemia cell size heterogeneity. Communications Physics, 7(1):248, 2024.

      Reviewer #2 (Public review):

      Summary:

      The authors present a combined experimental and theoretical workflow to study partitioning noise arising during cell division. Such quantifications usually require time-lapse experiments, which are limited in throughput. To bypass these limitations, the authors propose to use flow-cytometry measurements instead and analyse them using a theoretical model of partitioning noise. The problem considered by the authors is relevant and the idea to use statistical models in combination with flow cytometry to boost statistical power is elegant. The authors demonstrate their approach using experimental flow cytometry measurements and validate their results using time-lapse microscopy. However, while I appreciate the overall goal and motivation of this work, I was not entirely convinced by the strength of this contribution. The approach focuses on a quite specific case, where the dynamics of the labelled component depend purely on partitioning. As such it seems incompatible with studying the partitioning noise of endogenous components that exhibit production/turnover. The description of the methods was partly hard to follow and should be improved. In addition, I have several technical comments, which I hope will be helpful to the authors.

      We are grateful to the Reviewer for the comments. Indeed, both partitioning and production turnover noise are in general fundamental processes. At present the only way to consider them together are time-consuming and costly transfection/microscopy/tracking experiments. In this work, we aimed at developing a method to effectively pinpoint the first component, i.e. partitioning noise thus we opted to separate the two different noise sources.

      Below, we provided a point-by-point response that we hope will clarify all raised concerns.

      Comments:

      (1) In the theoretical model, copy numbers are considered to be conserved across generations. As a consequence, concentrations will decrease over generations due to dilution. While this consideration seems plausible for the considered experimental system, it seems incompatible with components that exhibit production and turnover dynamics. I am therefore wondering about the applicability/scope of the presented approach and to what extent it can be used to study partitioning noise for endogenous components. As presented, the approach seems to be limited to a fairly small class of experiments/situations.

      We see the Reviewer's point. Indeed, we are proposing a high-throughput and robust procedure to measure the partitioning/inheritance noise of cell components through flow cytometry time courses. By using live-cell staining of cellular compounds, we can track the effect of partitioning noise on fluorescence intensity distribution across successive generations. This specific procedure is purposely optimized to isolate partitioning noise from other sources and, as it is, can not track endogenous components or dyes that require fixation. While this certainly poses limits to the proposed approach, there are numerous contexts in which our methodology could be used to explore the role of asymmetric inheritance. Among others, (i) investigating how specific organelles are differentially partitioned and how this influences cellular behavior could provide deeper insights into fundamental biological processes: asymmetric segregation of organelles is a key factor in cell differentiation, aging, and stress response. During cell division, organelles such as mitochondria, the endoplasmic reticulum, lysosomes, peroxisomes, and centrosomes can be unequally distributed between daughter cells, leading to functional differences that influence their fate. For instance, Kajaitso et al. [1] proposed that asymmetric division of mitochondria in stem cells is associated with the retention of stemness traits in one daughter cell and differentiation in the other. As organisms age, stem cells accumulate damage, and to prevent exhaustion and compromised tissue function, cells may use asymmetric inheritance to segregate older or damaged subcellular components into one daughter cell. (ii) Asymmetric division has also been linked to therapeutic resistance in Cancer Stem Cells [2]. Although the functional consequences are not yet fully determined, the asymmetric inheritance of mitochondria is recognized as playing a pivotal role [3]. Another potential application of our methodology may be (iii) the inheritance of lysosomes, which, together with mitochondria, appears to play a crucial role in determining the fate of human blood stem cells [4]. Furthermore, similar to studies conducted on liquid tumors [5][6], our approach could be extended to investigate cell growth dynamics and the origins of cell size homeostasis in adherent cells [7][8][9]. The aforementioned cases of study can be readily addressed using our approach that in general is applicable whenever live-cell dyes can be used. We have added a discussion of the strengths and limitations of the method in the Discussion section of the revised version of the manuscript

      (1) Katajisto, Pekka, et al. "Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness." Science 348.6232 (2015): 340-343.

      (2) Hitomi, Masahiro, et al. "Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells." JCI insight 6.3 (2021): e130510.

      (3) García-Heredia, José Manuel, and Amancio Carnero. "Role of mitochondria in cancer stem cell resistance." Cells 9.7 (2020): 1693.

      (4) Loeffler, Dirk, et al. "Asymmetric organelle inheritance predicts human blood stem cell fate." Blood, The Journal of the American Society of Hematology 139.13 (2022): 2011-2023.

      (5) Miotto, Mattia, et al. "Determining cancer cells division strategy." arXiv preprint arXiv:2306.10905 (2023).

      (6) Miotto, Mattia, et al. "A size-dependent division strategy accounts for leukemia cell size heterogeneity." Communications Physics 7.1 (2024): 248.

      (7) Kussell, Edo, and Stanislas Leibler. "Phenotypic diversity, population growth, and information in fluctuating environments." Science 309.5743 (2005): 2075-2078.

      (8) McGranahan, Nicholas, and Charles Swanton. "Clonal heterogeneity and tumor evolution: past, present, and the future." Cell 168.4 (2017): 613-628.

      (9) De Martino, Andrea, Thomas Gueudré, and Mattia Miotto. "Exploration-exploitation tradeoffs dictate the optimal distributions of phenotypes for populations subject to fitness fluctuations." Physical Review E 99.1 (2019): 012417.

      (2) Similar to the previous comment, I am wondering what would happen in situations where the generations could not be as clearly identified as in the presented experimental system (e.g., due to variability in cell-cycle length/stage). In this case, it seems to be challenging to identify generations using a Gaussian Mixture Model. Can the authors comment on how to deal with such situations? In the abstract, the authors motivate their work by arguing that detecting cell divisions from microscopy is difficult, but doesn't their flow cytometry-based approach have a similar problem?

      The point raised is an important one, as it highlights the fundamental role of the gating strategy. The ability to identify the distribution of different generations using the Gaussian Mixture Model (GMM) strongly depends on the degree of overlap between distributions. The more the distributions overlap, the less capable we are of accurately separating them.

      The extent of overlap is influenced by the coefficients of variation (CV) of both the partitioning distribution function and the initial component distribution. Specifically, the component distribution at time t results from the convolution of the component distribution itself at time t−1 and the partitioning distribution function. Therefore, starting with a narrow initial component distribution allows for better separation of the generation peaks. The balance between partitioning asymmetry and the width of the initial component distribution is thus crucial.

      As shown in Supplementary Information - Figure 5, increasing the CV of either distribution reduces the ability to distinguish between different generations.

      However, the variance of the initial distribution cannot be reduced arbitrarily. While selecting a narrow distribution facilitates a better reconstruction of the distributions, it simultaneously limits the number of cells available for the experiment. Therefore, for components exhibiting a high level of asymmetry, further narrowing of the initial distribution becomes experimentally impractical.

      In such cases, an approach previously tested on liquid tumors [1] involves applying the Gaussian Mixture Model (GMM) in two dimensions by co-staining another cellular component with lower division asymmetry.

      Regarding time-lapse fluorescence microscopy, the main challenge lies not in disentangling the interplay of different noise sources, but rather in obtaining sufficient statistical power from experimental data. While microscopy provides detailed insights into the division process and component partitioning, its low throughput limits large-scale statistical analyses. Current segmentation algorithms still perform poorly in crowded environments and with complex cell shapes, requiring a substantial portion of the image analysis pipeline to be performed manually, a process that is time-consuming and difficult to scale. In contrast, our cytometry-based approach bypasses this analysis bottleneck, as it enables a direct population-wide measurement of the system's evolution. We have added a detailed discussion of this argument in the Supplementary Material of the manuscript and added a clarification of the role of the gating strategy in the main text.

      (1) Peruzzi, Giovanna, et al. "Asymmetric binomial statistics explains organelle partitioning variance in cancer cell proliferation." Communications Physics 4.1 (2021): 188.

      (3) I could not find any formal definition of division asymmetry. Since this is the most important quantity of this paper, it should be defined clearly.

      We thank the Reviewer for the note. With division asymmetry we refer to a quantity that reflects how similar two daughter cells are likely to be in terms of inherited components after a division process. We opted to measure it via the coefficient of variation (root squared variance divided by the mean) of the partitioning fraction distribution. We have amended this lack of definition in the reviewed version of the manuscript.

      (4) The description of the model is unclear/imprecise in several parts. For instance, it seems to me that the index "i" does not really refer to a cell in the population, but rather a subpopulation of cells that has undergone a certain number of divisions. Furthermore, why is the argument of Equation 11 suddenly the fraction f as opposed to the component number? I strongly recommend carefully rewriting and streamlining the model description and clearly defining all quantities and how they relate to each other.

      We have amending the text carefully to avoid double naming of variables and clarifying each computation passage. In equation 11 the variable f refers to the fluorescent intensity, but the notation will be changed to increase clarity.

      (5) Similarly, I was not able to follow the logic of Section D. I recommend carefully rewriting this section to make the rationale, logic, and conclusions clear to the reader.

      We have updated the manuscript clarifying the scope of section D and its results. In brief, Section A presents a general model to derive the variance of the partitioning distribution from flow cytometry time-course data without making any assumptions about the shape of the distribution itself. In Section D, our goal is to interpret the origin of asymmetry and propose a possible form for the partitioning distribution. Since the dyes used bind non-specifically to cytoplasmic amines, the tagged proteins are expected to be uniformly distributed throughout the cytoplasm and present in large numbers. Given these assumptions the least complex model for division follows the binomial distribution, with a parameter that measures the bias in the process. Therefore, we performed a similar computation to that in Section A, which allows us to estimate not only the variance but also the degree of biased asymmetry. Finally, we fitted the data to this new model and proposed an experimental interpretation of the results.

      (6) Much theoretical work has been done recently to couple cell-cycle variability to intracellular dynamics. While the authors neglect the latter for simplicity, it would be important to further discuss these approaches and why their simplified model is suitable for their particular experiments.

      We agree with the Reviewer, we have added a discussion on this topic in the Introduction and Discussion sections of the main text.

      (7) In the discussion the authors note that the microscopy-based estimates may lead to an overestimation of the fluctuations due to limited statistics. I could not follow that reasoning. Due to the gating in the flow cytometry measurements, I could imagine that the resulting populations are more stringently selected as compared to microscopy. Could that also be an explanation? More generally, it would be interesting to see how robust the results are in terms of different gating diameters.

      The Reviewer is right on the importance of the sorting procedure. As already discussed in a previous point, the gating strategy we employed plays a fundamental role: it reduces the overlap of fluorescence distributions as generations progress, enables the selection of an initial distribution distinct from the fluorescence background, allowing for longer tracking of proliferation, and synchronizes the initial population. The narrower the initial distribution, the more separated the peaks of different generations will be. However, this also results in a smaller number of cells available for the experiment, requiring a careful balance between precision and experimental feasibility. A similar procedure, although it would certainly limit the estimation error, would be impracticable In the case of microscopy. Indeed, the primary limitation and source of error is the number of recorded events. Our pipeline allowed us to track on the order of hundreds of division dynamics, but the analysis time scales non-linearly with the number of events. Significantly increasing the dataset would have been extremely time-consuming. Reducing the analysis to cells with similar fluorescence, although theoretically true, would have reduced the statistics to a level where the sampling error would drastically dominate the measure. Moreover, different experiments would have been hardly comparable, since different fluorescences could map in equally sized cells. In light of these factors, we expect higher CV for the microscopy measure than for flow cytometry’s ones. In the plots below, we show the behaviour of the mean and the standard deviation of N numbers sampled from a gaussian distribution N(0,1) as a function of the sampling number N. The higher is N the closer the sampled distribution will be to the true one. The region in the hundreds of samples is still very noisy, but to do much better we would have to reach the order of thousands. We have added a discussion on these aspects in the reviewed version of the manuscript, with a deeper description of the importance of the sorting procedure in the Supplementary Material. .

      Author response image 1.

      Standard deviation and mean value of a distribution of points sampled from a Gaussian distribution with mean 0 and standard deviation 1, versus the number of samples, N. Increasing N leads to a closer approximation of the expected values. In orange is highlighted the Microscopy Working Region (Microscopy WR) which corresponds to the number of samples we are able to reach with microscopy experiments. In yellow the region we would have to reach to lower the estimating error, which is although very expensive in terms of analysis time.

      (7) It would be helpful to show flow cytometry plots including the identified subpopulations for all cell lines, currently, they are shown only for HCT116 cells. More generally, very little raw data is shown.

      We have provided the requested plots for the other cell lines together with additional raw data coming from simulations in the Supplementary Material.

      (8) The title of the manuscript could be tailored more to the considered problem. At the moment it is very generic.

      We see the Reviewer point. The proposed title aims at conveying the wide applicability of the presented approach, which ultimately allows for the assessment of the levels of fluctuations in the levels of the cellular components at division. This in turn reflects the asymmetricity in the division.

      Reviewer #1 (Recommendations for the authors):

      (1) I am quite concerned about the fact that the theory only considers fluctuations due to cellular division events since intrinsic and extrinsic noise sources are often dominant. I suggest that the authors simulate a full model of cell growth and division (that accounts for fluctuations in gene expression, cell-cycle dynamics, and cell division to generate a controlled synthetic dataset and then use this as input to their method to understand how robust are their results to the influence of noise sources other than partitioning.

      We thank the reviewer for the suggestions and following his advice we performed two sets of simulations in which we took into account the effect of the other noise sources. A detailed description of the results and the methods has been added to the Supplementary Material, while the topic has also been assessed in the main text. A cell proliferation cycle is affected by different sources of variability: (i) production and degradation processes of molecules; (ii) variability in length of the cell cycle; (iii) partitioning noise, which identifies asymmetric inheritance of components between the two daughter cells. However, the experimental approach and the model have been formulated to specifically address the effects of partitioning noise. Indeed, since we are dealing with components tagged via live fluorescent markers, production of new fluorophores is impossible and can therefore be discarded. Instead, the degradation process is a global effect that influences the behavior of the mean of the distribution in a time-dependent manner. However, by looking at the experimental data in Figure 1 of the main text, no significant depletion of fluorescence is observed, or at least it is hidden by the experimental fluctuations of the measure. Instead, a more careful evaluation has to be done for what concerns fluctuation in cell cycle length. We conducted two sets of simulations. In the first, we assumed the independence between fluctuations in cell cycle length and partitioning noise.

      Cell’s division time was extracted from an Erlang distribution (mean = 18 , k = 4) and the results, showing the behavior of the mean and variance of the component distributions across generations, are presented in Supplementary Information - Figure 1. Under the assumption of independence between different noise sources, no significant effects were observed even for high asymmetries of the partitioning distribution. The second set of simulations considered a situation in which the cell’s components and division time are coupled. We assumed a sizer-like division strategy for which bigger cells have a shorter division time and the results of the simulations are shown in Supplementary Information - Figure 2.

      As can be observed, higher levels of division asymmetry increase the fluctuations of the system relative to the analytically expected behavior, particularly in later generations.

      The result in Supplementary Information - Figure 3 demonstrates the robustness of our method, as the estimates remain within the pre-established experimental error margin. However, a detailed description of this topic has been provided in the Supplementary Information and into the main text.

      (2) I find the use of the Cauchy distribution somewhat odd since this does not have a finite mean or a variance and I suspect it is unlikely this mimics a naturally measurable distribution in their experiments. This should either be justified biologically or else replaced by a more realistic distribution.

      Following the reviewer’s suggestion, we have changed the distribution to Gaussian one.

      (3) There is a large body of literature on gene expression models that incorporate a large amount of detail including cell-cycle dynamics and cell division which are relevant to their discussion but not referenced. I suggest they read the following and see how to incorporate at least some of them in their discussion:

      Frequency domain analysis of fluctuations of mRNA and protein copy numbers within a cell lineage: theory and experimental validation., Physical Review X, 11.2 (2021): 021032.

      Exact solution of stochastic gene expression models with bursting, cell cycle and replication dynamics., Physical Review E, 101.3 (2020): 032403.

      Coupling gene expression dynamics to cell size dynamics and cell cycle events: Exact and approximate solutions of the extended telegraph model., Iscience, 26.1 (2023).

      Models of protein production along the cell cycle: An investigation of possible sources of noise., Plos one, 15.1 (2020): e0226016.

      Sources, propagation and consequences of stochasticity in cellular growth., Nature communications, 9(1), 4528

      Intrinsic and extrinsic noise of gene expression in lineage trees., Scientific Reports, 9.1 (2019): 474.

      We thank the Reviewer for the provided articles. We enlarged both introduction and discussion commenting on them, also in response to the second Reviewer comments.

      Reviewer #2 (Recommendations for the authors):

      (1) Even when it is used only during simulation for the sake of illustration, the Cauchy distribution is a somewhat unfortunate choice as its moments do not exist and hence, the authors' approach would not apply. I would recommend using another distribution instead.

      Following the Reviewer’s suggestion we have changed the distribution to Gaussian ones.

      (2) "cells population" should be "cell population".

      We have amended this mistake in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review)

      The weaknesses are in the clarity and resolution of the data that forms the basis of the model. In addition to whole embryo morphology that is used as evidence for convergent extension (CE) defects, two forms of data are presented, co-expression and IP, as well as a strong reliance on IF of exogenously expressed proteins. Thus, it is critical that both forms of evidence be very strong and clear, and this is where there are deficiencies; 1) For vast majority of experiments general morphology and LWR was used as evidence of effects on convergent extension movements rather than Keller explants or actual cell movements in the embryo. 2) The study would benefit from high or super resolution microscopy, since in many cases the differences in protein localization are not very pronounced. 3) The IP and Western analysis data often show subtle differences, and not apparent in some cases. 4) It is not clear how many biological repeats were performed or how and whether statistical analyses were performed. 

      (1) To more objectively assess the convergent extension phenotypes, we developed a Fiji macro to automatically quantify the LWR in various injected Xenopus embryos, as detailed in the Methods section. We acknowledge that a limitation in the current manuscript is how to link our mechanistic model at the molecular level with the actual cellular behavior during convergent extension, and we plan to perform cell biological studies in the future to elucidate the link;

      (2) We have repeated some of the imaging experiments in DMZ explants using a Zeiss LSM 900 confocal equipped with Airyscan2 detector that can increase the resolution to ~100 nm. The new data are in Suppl. Fig. 4, 9, 11, 16;

      (3) We have repeated all IP and western blots at least three times and provided quantification and statistical analyses;

      (4) We have added the information on biological repeats and statistical analyses in all figures and figure legends.

      Reviewer #2 (Public Review):

      The protein localization experiments in animal cap assays are for the most part convincing, but with the caveat that the authors assume that the proteins are acting within the same cell. As Fzd and Vangl2 are thought to localize to opposite cell ends in many contexts, can the authors be sure that the effects they observe are not due to trans interactions? 

      In our previous publication, we provided evidence that Vangl is necessary and sufficient to recruit Dvl to the plasma membrane within the same cell (Figure 3 in 10.1093/hmg/ddx095). In a more recent publication ( 10.1038/s41467-025-57658-0 ), we further elucidated a mechanism through which Dvl oligomerization switches its binding from Vangl to Fz, and determined that Dvl binding to Vangl and Fz are differentially mediated by its PDZ and DEP domain, respectively. In the current manuscript, we also performed co-IP experiment under various conditions to demonstrate binding between Dvl and Vangl. We feel that these evidences together provide a strong argument for our model where Vangl2 acts within the same cell to sequester Dvl from Fz.

      In regards to the Dvl patches induced by Wnt11 (Fig. 3 and Suppl. Fig. 9), we performed separate injection of EGFP- and mSc-tagged Dvl into adjacent blastomeres, and demonstrated that the Wnt11-induced patches arise from symmetrical accumulation of Dvl at contact of two neighboring cells (Suppl. Fig. 9a-c’). This scenario is different from epithelial PCP where Fz/Dvl and Vangl/Pk are asymmetrically accumulated at the contact between two adjacent cells.

      The authors propose a model whereby Vangl2 acts as an adaptor between Dvl and Ror, to first prevent ectopic activation of signaling, and then to relay Dvl to Fzd upon Wnt stimulation. This is based on the observation that Ror2 can be co-IPed with Vangl2 but not Dvl; and secondly that the distribution of Ror2 in membrane patches after Wnt11 stimulation is broader than that of Fzd7/Dvl, while Vangl2 localizes to the edges of these patches. The data for both these points is not wholly convincing. The co-IP of Ror2 and Vangl2 is very weak, and the input of Dvl into the same experiment is very low, so any direct interaction could have been missed. Secondly, the broader distribution of Ror2 in membrane patches is very subtle, and further analysis would be needed to firm up this conclusion. 

      (1) We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b). Whereas this data confirms our previous conclusion, we acknowledge that a negative data does not fully exclude the possibility for direct biding between Ror and Dvl.

      (2) We re-analyzed the signal intensity of Dvl and Ror in Wnt11-induced patches. By quantifying the intensity ratio between Ror and Dvl along the patches, we found an increase over two folds at the border of the patches (Fig. 7j, bottom panel). We interpret this data to suggest that Ror is accumulated to a higher level than Dvl at the patch borders.     

      A final caveat to these experiments is that in the animal cap assays, loss of function and gain of function both cause convergence and extension defects, so any genetic interactions need to be treated with caution i.e. two injected factors enhancing a phenotype does not imply they act in the same direction in a pathway, in particular as there are both cis/trans and positive/negative feedbacks between the PCP proteins. 

      We agree with the reviewer that a difficulty in studying PCP/ non-canonical signaling is that both loss and gain of function of any its components can cause convergence and extension defects. Genetic interactions, especially synergistic interactions, should be interpreted with caution. But we do want to point out that, in a number of case, we were also able to demonstrate epistasis. For instance, we found that Dvl2 over-expression induced CE defects can be rescued by Pk over-expression (Fig. 1e and f), whereas Vangl/ Pk co-injection induced severe CE defects can be reciprocally rescued by Dvl2 over-expression (Fig. 1g). Likewise, we showed that Fz2/ Dvl2 co-injection induced CE defects can be rescued by wild-type Vangl2 but not Vangl2 RH mutant (Suppl. Fig. 6b), and Ror2 can rescue Vangl2 overexpression induced CE defect (Suppl. Fig. 14). Collectively, these functional interaction data consistently demonstrate an antagonism between Dvl/ Fz/ Ror2 and Vangl2/ Pk, which is correlated with our imaging and biochemical studies.

      As you can see from the reviews, the referees generally agree that your paper is a potentially valuable contribution to the field. Your observations are important because of the novel model based on the inhibitory feedback regulation between planar cell polarity (PCP) protein complexes. However, the reviewers also stated that the model is only partly supported by data because of insufficient clarity and missing controls in several experiments supporting the proposed model. The paper would be significantly improved if your conclusions are backed up by additional experimentation. Specifically, the referees wanted to see the reproducibility of the results shown in Figures 3, 4, 8, S3, S7, S12. 

      We hope that you are able to revise the paper along the lines suggested by the referees to increase the impact of your study on the current understanding of PCP signaling mechanisms. 

      We thank the reviewers for careful reading of our manuscript and for their constructive critiques and suggestions. We have repeated the animal cap studies in original Figures 3, 4, 8 and S3 with DMZ explants, and the new data are in Supplementary Fig. 9, 11, 16 and 4, respectively. We also repeated the biochemical studies in original Figure S 7and 12, and the new data are in Supplementary Fig. 8 and 15.

      Reviewer #1 (Recommendations For The Authors):

      Major points:(1) The author conducted an analysis of the subcellular localization of PCP core proteins, including Vangl2, Pk, Fz, and Dvl, within animal cap explants (ectodermal explants). To validate the model proposing that 'non-canonical Wnt induces Dvl to transition from Vangl to Fz, while PK inhibits this transition, and they function synergistically with Vangl to suppress Dvl during Convergent Extension (CE),' it is crucial to assess the subcellular localization of PCP core proteins in dorsal marginal zone (DMZ) cells, which are known to undergo CE. Notably, the overexpression of Wnt11 alone, as employed by the author, does not induce animal cap elongation. Therefore, the use of animal cap explants may not be sufficient to substantiate the model during Convergent Extension (CE). Indeed, previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants. However, the results presented in this manuscript appear to differ from this established understanding. Consequently, to provide more robust support for the proposed model, it is advisable to replicate the key experiments (Figures 3, 4, 8, and Figure S3) using DMZ explants. 

      We repeated the experiments in Figure 3, 4, 8 and Figure S3 with DMZ explant and the new data are in new Supplementary Fig. 9, 11, 16 and 4, respectively.In regards to “previous knowledge indicates that Vangl2 and Pk localize to the anterior region in DMZ explants”, we are aware Vangl/ Pk localization to the anterior cell cortex in neural epithelium from the studies by the Sokol and Wallingford labs, but are not aware of similar reports in DMZ explants. When we examined the localization of small amount of injected EGFP-mPk2 (0.1 ng mRNA) in DMZ explants, we saw a somewhat uniform distribution on the plasma membrane (Suppl. Fig. 4). In addition, in a related recent publication, we examined endogenous XVangl2 protein localization in activin induced animal cap explants that do undergo CE. What we observed was that whereas low level injected Dvl2 and Fz form clusters on the plasma member, endogenous XVangl2 remains uniformly distributed on the plasma membrane (Suppl. Fig. 3S-Z in 10.1038/s41467-025-57658-0 ). These observations may suggest potential differences of PCP protein localization during neural vs. mesodermal convergence and extension.

      (2) The author suggests that 'Vangl2 and Pk together synergistically disrupt Fz7-Dvl2 patches.' As shown in Figure 4 (panels J' to I'), it is evident that the co-expression of Pk and Vangl2 increases Fz7 endocytosis. Nevertheless, a significant amount of Fz7 still co-localizes with Dvl2. To strengthen the author's hypothesis, additional clear assay is required such as Fluorescence resonance energy transfer (FRET) assay. 

      We appreciate this valuable advice. Since none of the tagged Fz/ Dvl/ Vangl proteins we had were suitable for FRET, we made proteins tagged with mClover and mRuby2, which were reported as optimized FRET pairs. But in our hands mRuby2 seems to require very long time (~2 days) to mature and become detectable at room temperature, and is not suitable for our Xenopus experiments. We are in the process of establishing a luciferase based NanoBiT system to detect Fz-Dvl and Dvl-Vangl interactions in live cells and cell lysates, and will use it in future studies to investigate their interaction dynamics.

      For the current manuscript, we reason that a substantial reduction of Fz7-Dvl2 clusters with Vangl2/ Pk co-injection would still support our idea that Vangl2 and Pk act synergistically to sequester Dvl from Fz to prevent their clustering in response to non-canonical Wnt ligands.

      (3) The IP data is less clear and evident. A couple of examples are: a) Fig 2g where the authors report that the Vangl2 R177H variant reduced Vangl2 interaction with Pk and recruitment of Pk to the plasma membrane, but it appears that the variant interacts slightly better than WT Vangl2 with Pk. In Fig. S7a, the authors state that Pk overexpression can indeed significantly reduce Wnt11-induced dissociation of EGFP-Vangl2 and Flag-Dvl2 in the DMZ. However, there is a minimal impact when compared to the Wnt11 absent control. Based on the results presented in Fig S12a the authors indicate that Wnt11 reduces the association between Vangl2 and Dvl2, which can be discerned, but loss of Ror2 does not change this in any obvious way - but the authors indicate it does. In S12b, the authors have suggested that Ror and Dvl do not form a direct binding interaction. However, the interpretation of Figure S12b is not entirely convincing due to several issues. Notably, the expression levels of each protein appear inconsistent, the bands are not sufficiently clear, and there is the detection of three different tag proteins on a single blot. To strengthen the validity of these findings, it is advisable to repeat this experiment with improved quality. 

      We repeated all the co-IP and western blot analyses pointed out by the reviewer, and performed quantification and statistical analyses.

      Fig 2g had a mistake in the labeling and is replaced with new Figure 2g;

      Fig. S7a is replaced by new data in Supplementary Figure 8a and b;

      Fig. S12a and 12b are replaced by new data in Supplementary Figure 15a, a’ and b, respectively. In 15a and a’, we noticed a consistent decrease of Dvl2-Vangl2 co-IP in Xror2 morphant. The reason for this is not yet clear and will need further study in the future.

      Minor points: (1) In all the whole embryo injection assays examining morphology, no Western analysis is performed to show roughly equivalent and appropriate levels of the various proteins are being expressed. Differences will affect the data. 

      Although we did not do western analyses to examine the protein levels in various functional interaction assays, we did examine how co-expression of Vangl2, mPk2 or Dvl2 may impact each other’s protein levels in Supplementary Fig. 2, which did not reveal any significant change when co-injected in different combination.

      (2) The author's prior publication (Bimodal regulation of Dishevelled function by Vangl2 during morphogenesis, Hum Mol Genet. 2017) presented clear evidence of Vangl2 overexpression inducing Dvl2 membrane localization. However, Figure S4 in the current manuscript did not provide clear evidence of membrane localization. To strengthen the hypothesis that Vangl2-RH mutant also induces Dvl2 membrane localization, further comprehensive imaging analysis is needed. 

      We re-analyzed the imaging data and replaced old Figure S4 with a new Supplementary Fig. 5.

      (3) In Supplementary Figure 9, the authors propose that the overexpression of Vangl2/Pk induces Fz7 endocytosis, as indicated by its co-localization with FM4-64. However, it raises a question: how does the Fz7-GFP protein internalize into the cells without endocytosis, as seen in Figures S9a-c'? To enhance readers' understanding, a discussion addressing this point should be included. 

      We think that this might be a technical issue. As detailed in the Method section, we only incubated the embryos transiently with FM4-64 for 30 minutes, and the embryos were subsequently washed and dissected in 0.1X MMR without the dye. Therefore, only the Fz7-GFP protein endocytosed during the 30 minute-incubation would be labeled by FM-64, whereas that endocytosed before or after the incubation would not. Alternatively, the very few Fz7-GFP puncta occasionally observed in the absence of Vangl2/Pk overexpression could be vesicles trafficking to the plasma membrane.

      (4) Statistical analyses are absent for several results, including those in Figure 2f, Figure S4d, and Figure S7b. 

      We repeated these experiments and included statistical analyses. The new data are in Figure 2f, Supplementary Fig. 5d and Supplementary Fig. 8b.

      (5) This manuscript lacks any results regarding Ck1. Therefore, it is advisable to consider removing the discussion or mention of CK1. 

      We agree, and tune down the discussion on CK1 and removed CK1 from our model in Fig. 9.

      Reviewer #2 (Recommendations For The Authors):

      (1) In all the convergence and extension assays, the authors should report n numbers (i.e. number of animals), what statistical test is used, and what the error bars show. Ideally dot-plots would be used instead of bar charts as they give a better insight into the data distribution. It might be useful to give a section on the statistical analyses used in the M&M, including e.g. any power calculations carried out, as now required by many journals. 

      We have follow the advice to use dot-plots for all the quantification analyses in the manuscript. We include in the figure legends the statistical test used and what the error bars show. The number of embryos analyzed were included in each panel in the figures. We also provided more details in the Methods section on how the LWR quantification was carried out.

      (2) I think Figure 2g is wrongly labelled? FLAG bands are in all three lanes in the western blot, but not labelled as such in the schematic. 

      We corrected the schematic labeling in Figure 2g, and thank the reviewer for catching this mistake.

      (3) In Figure S7, the authors show that co-IP of Dvl and Vangl2 is reduced by Wnt11 and the effects of Wnt are blocked by Pk. Does Pk have any effect in the absence of Wnt? 

      We examined the effect of Pk over-expression on Dvl2-Vangl2 co-IP as advised, and did not see a significant impact in the absence of Wnt11 co-injection. The data is included in the new Supplementary Figure 8a. We interpret the data to suggest that “at least under the condition of our co-IP experiment, Pk may not directly impact the steady-state binding between Vangl and Dvl”.

      (4) In Figure 3, the authors show (as published previously) that Wnt11 induces patches of Dvl at the plasma membrane. It would be useful to see Dvl in the absence of Wnt and Vangl2/Dvl in the absence of Wnt. 

      Dvl is widely known as a cytoplasmic protein and its localization has been published by many labs over the past 20-30 years. In our recent publication (10.1038/s41467-025-57658-0 ), we also re-examined Dvl localization when injected at various dosages. So we did not feel it was necessary to show its localization in the absence of Wnt11 again, but included a reference to our prior publication. In regards to Vangl/Dvl distribution in the absence of Wnt11, the readers can see Suppl. Fig. 5b as an example, in addition to our previous publications referenced in the manuscript.

      (5) In the review figures, the difference in Fz7-GFP patch formation in d' and e' (vs e.g. a') is not very clear. Could the images be improved or (better) quantified in some way? 

      We assume that “review figures” refer to Figure 3 or 4? If so, we felt that Fz7-GFP patch formation was clear in Fig. 3d’, e’ or Fig. 4d’, e’. Nevertheless, we repeated these experiments in DMZ explants as advised by Reviewer 1, and additional examples of Fz7-EGFP patch formation can be seen in the new Suppl. Fig. 9d-f’ and Suppl. Fig. 11d-f’.

      (6) In Figure 6d, I'm concerned that the loss of flag-Dvl2 might occur via dephosphorylation in the IP reaction. Also the M&M don't include methodological details about buffers and whether phosphatase inhibitors were used. A compelling control would be anti-FLAG pulldown showing retention of phosphorylation. Also Figure 6f shows a reduced ratio of fast-to-slow migrating bands of Dvl with Vangl2/Pk - unless I have misunderstood, is this ratio the wrong way round? 

      We added co-IP buffer and protease inhibitor information in Methods.

      We agree that the concern about dephosphorylation during IP reaction is valid, and that direct pull down of Dvl to show the phosphorylated form is a compelling control. We therefore note that in Suppl. Fig. 8a and 15b, direct pull down of Flag-Dvl or Myc-Dvl (with anti-Flag or anti-Myc) did show the slower migrating, phosphorylated form. Additional examples in which Vangl only co-IP the faster migrating unphosphorylated Dvl include Suppl. Fig. 15a, and in a related paper we published recently (Fig. 3R and R’ in 10.1038/s41467-025-57658-0 ).

      Finally, we did wrongly label Figure 6f in the last submission, and the ratio should have been “slow/fast”. We have made the correction, and appreaicte the reviewer for the meticulousness in perusing our manuscript.

      (7) In Figure 7, what does Ror2 look like in the absence of Wnt11? 

      We included new Figure 7a-c to show that without Wnt11 co-injection, Ror2 is uniformly distributed on the plasma membrane.

      (8) Also in Figure 7, Ror2 patches are said to be slightly wider than Dvl2 patches "reminiscent of Vangl2" - I wouldn't describe them as being similar. Vangl2 shows a distinct dip in the center of the Dvl patches, Ror2 does not show a dip, and is only (at best) in a slightly wider patch, and I would want to see further examples to be convinced that the localization domain is reproducibly wider. The merge of many samples in 7d may actually be making the distribution harder to see and if the Xror2 and Dvl2 intensities were normalized I'm not sure how different the curves would appear. (i.e. the Xror2 curve looks like a flattened version of the Dvl2 curve). 

      We have added an additional panel in the new Figure 7j to compare the intensity ratio of Ror/ Dvl2 along the patches, and this analysis reveals an over two folds increase of the ratio at the border region. This quantification may make a more convincing argument that at the patch border region, Dvl is diminished whereas Ror2 accumulate with Vangl2. 

      (9) In Figure S12a, the authors suggest Wnt11 induced dissociation of Dvl from Vangl2 (by co-IP), and this is reduced after Ror2 MO. This would be more convincing with replicates and quantitation. 

      We have repeated this experiment with Vangl2 pull down and added quantification. The data is in the new Suppl. Fig. 15a.

      (10) In Figure S12b, the authors suggest Ror2 can co-IP Vangl2 but not Dvl. This is not very convincing, as the Dvl input band is very weak, and the Vangl2 co-IP band is very weak. 

      We repeated the co-IP experiment with Myc-tagged Vangl or Dvl. Using the same anti-Myc antibody and experimental condition (including the expression level of Vangl, Dvl and Ror2), we still found that Ror2 could be pulled down by Vangl but not Dvl (Suppl. Fig. 15b).

      (11) "Prickle" spelled "Prickel" in the abstract (and abbreviated to "PK" not "Pk" at one place in the abstract and several places in text) 

      We have corrected these typos.

      (12) Quite a lot of interesting observations are in supplemental figures. Normally it might be expected that extra data supporting a conclusion would be in supplemental, but here some of the supplemental data feels like it is more than simply additional evidence. For instance supplemental Figures 2 and 3 feel more than just supplemental (and Supplemental Figure 3 if merged with Figure 2 would make it easier for the reader). Moreover, for example, the description of the results in Figure 2 is punctuated by references to supplemental Figures 4 and 5 that contain key data to support the conclusions, which means the reader has to flick backwards and forwards from place to place in the manuscript to follow the argument. It is of course up to the authors, but in some cases putting supplemental data back into the main figures (for which there is no size or number limit) would increase clarity. 

      These are excellent points; in the resubmitted manuscript we have a total of 24 data figures, and we used 8 as main figures since we felt that they provide the most relevant and conclusive evidence to our model. We will consult the copy editors at eLife on how to arrange the rest as main vs. supporting figures when requesting publication as version of record.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Joint Public Review:

      Summary:

      This study investigates plasticity effects in brain function and structure from training in navigation and verbal memory.

      The authors used a longitudinal design with a total of 75 participants across two sites. Participants were randomised to one of three conditions: verbal memory training, navigation training, or a video control condition. The results show behavioural effects in relevant tasks following the training interventions. The central claim of the paper is that network-based measures of task-based activation are affected by the training interventions, but structural brain metrics (T2w-derived volume and diffusion-weighted imaging microstructure) are not impacted by any of the training protocols tested.

      Strengths:

      (1) This is a well-designed study which uses two training conditions, an active control, and randomisation, as appropriate. It is also notable that the authors combined data acquisition across two sites to reach the needed sample size and accounted for it in their statistical analyses quite thoroughly. In addition, I commend the authors on using pre-registration of the analysis to enhance the reproducibility of their work.

      (2) Some analyses in the paper are exhaustive and compelling in showcasing the presence of longitudinal behavioural effects, functional activation changes, and lack of hippocampal volume changes. The breadth of analysis on hippocampal volume (including hippocampal subfields) is convincing in supporting the claim regarding a lack of volumetric effect in the hippocampus.

      Weaknesses:

      (1) The rationale for the study and its relationship with previous literature is not fully clear from the paper. In particular, there is a very large literature that has already explored the longitudinal effects of different types of training on functional and structural neuroimaging. However, this literature is barely acknowledged in the Introduction, which focuses on cross-sectional studies. Studies like the one by Draganski et al. 2004 are cited but not discussed, and are clumped together with cross-sectional studies, which is confusing. As a reader, it is difficult to understand whether the study was meant to be confirmatory based on previous literature, or whether it fills a specific gap in the literature on longitudinal neuroimaging effects of training interventions.

      We thank the reviewer for these comments and feedback. 

      We want to clarify that through our pre-registered analysis plan, our approach was confirmatory, rather than exploratory (or rather than post-hoc justified.) This confirmatory approach allowed us to critically evaluate the theoretically novel and important hypotheses which tested what no other study like our longitudinal/intervention study proposed or performed previously. We have now clarified this in the introduction. 

      This allowed us to address the following novel theoretical questions: 1) what neural changes, if any, result from an intensive within-participant intervention that improves memory or navigation skills in healthy young adults 2) if such changes occur, what is the degree of neural overlap between the acquisition of these cognitive skills.”

      “We pre-registered three novel and specific hypotheses, which are described in more detail here (https://osf.io/etxvj) ”

      We have also attempted to better separate cross-section and longitudinal studies. Due to space limitations, we have focused on interventional studies that involved gray matter changes that could relevance to either navigation, episodic memory, or the hypothesized time frame we chose for the training. We also note that some of these relevant studies are discussed in more depth in the discussion.

      “Successful cognitive interventions suggest that targeted within-participant cognitive training, even for as little as 1-2 weeks, can result in improvements to specific cognitive functions, including changes in focal gray matter [4,23-27]; but see[28].”

      We have also added some additional citations to relevant cognitive intervention work, although we agree that this is an extensive literature, only a subset of which we are able to capture here:

      “In some instances, interventions may even generalize to areas not explicitly trained but closely related to the training (termed “near transfer”)[29-33].”

      (2.1) The main claim regarding the lack of changes in brain structure seems only partially supported by the analyses provided. The limited whole-brain evidence from structural neuroimaging makes it difficult to confirm whether there is indeed no effect of training. Beyond hippocampal analyses, many whole-brain analyses of both volumetric and diffusion-weighted imaging metrics are only based on coarse ROIs (for example, 34 cortical parcellations for grey matter analyses).

      Although vertex-wise analyses in FreeSurfer are reported, it is unclear what metrics were examined (cortical thickness? area? volume?). 

      We appreciate the reviewer’s thoughtful feedback. We apologize for the lack of clarity in the original manuscript regarding the type of metric used in the vertex-wise analysis. We confirm that these analyses were based on cortical volume, not thickness or area. To clarify this, we have explicitly stated in the revised Methods that the vertex-wise analyses were conducted on cortical volume using FreeSurfer’s mri_glmfit.

      In addition, in response to the concern regarding the coarse nature of the ROI-based analyses, we have re-analyzed the volumetric data using the more fine-grained Destrieux atlas, which contains 148 cortical ROIs (74 per hemisphere), instead of the original, coarser 34-region atlas. These more detailed analyses still revealed no significant volume changes from pre- to post-training in any of the three groups. We believe this provides stronger support for the lack of training-induced volumetric changes outside the medial temporal lobe.

      Relevant revisions have been made to the Results and Methods sections. Below is the updated content added to the manuscript:

      In Results:

      “We also analyzed gray matter volume changes outside of the medial temporal lobe using FreeSurfer (see Methods) to determine if any cortical or other relevant brain areas might have been affected by the training. We applied a vertex-wise analysis of cortical volume, again finding no significant differences across the entire cortex (see Methods). This finding was further validated using the Destrieux atlas, which includes 74 cortical parcellations per hemisphere (148 ROIs in total). Paired-sample t-tests revealed that none of the ROIs exhibited significant volume changes from pre- to post-test in any of the three groups (all ps > 0.542, FDR-corrected). These findings suggest that training did not result in any measurable cortical volumetric changes.”

      In Methods:

      “Whole-brain structural analyses were conducted using FreeSurfer (version 7.4.1; https://surfer.nmr.mgh.harvard.edu). T1-weighted anatomical images were processed using the longitudinal processing pipeline. Vertex-wise analyses of cortical volume were performed using FreeSurfer’s general linear modeling tool, mri_glmfit. Group-level comparisons were corrected for multiple comparisons using mri_glmfit-sim, which implements cluster-wise correction based on Monte Carlo simulations. A vertex-wise threshold of Z > 3.0 (corresponding to p < 0.001, two-sided) was applied to detect both positive and negative effects. Clusters were retained if they survived a cluster-wise corrected p < 0.05.

      In addition to vertex-wise analysis, cortical parcellation was performed using the Destrieux atlas (aparc.a2009s), which includes 74 cortical regions per hemisphere, yielding 148 ROIs in total. To account for variability in brain size, each ROI volume was normalized by estimated intracranial volume (ICV) and scaled by a factor of 100. Longitudinal comparisons were conducted using paired-sample t-tests. To correct for multiple comparisons, we applied FDR correction (q < 0.05).”

      (2.2) Diffusion-weighted imaging seems to focus on whole-tract atlas ROIs, which can be less accurate/sensitive than tractography-defined ROIs or voxel-wise approaches.

      We appreciate the reviewer’s important point regarding diffusion-weighted imaging (DWI) analysis. We focused primarily on atlas-defined tract-level ROIs derived from a standard white matter tract atlas as we did not feel that we had the resolution for more fine-grained analyses with our sequences. While this approach has the advantage of robust anatomical correspondence and improved interpretability, we agree that it may be less sensitive than tractography-defined or voxel-wise methods for detecting more subtle, localized training-related changes. Because of limitations in our DWI sequence, which was optimized to be shorter and identical between different scanners, we are not able to provide more fine-grained analysis of the DWI data.

      (3) Quality control of images is only mentioned for FA images in subject space. Given that most analyses are based on atlas ROIs, visual checks following registration are fundamental and should be described in further detail.

      Thank you for your thoughtful comment. We agree that visual quality control is critical when using atlas-based ROI analyses. In our study, we implemented comprehensive quality control procedures across all structural and functional imaging analyses.

      For hippocampal segmentation using ASHS, we performed manual visual inspections of each participant's subfield segmentation to verify the accuracy of the automated outputs. This is now clearly described in the revised Methods section:

      “Each participant's subfield segmentations were manually inspected to ensure the accuracy and reliability of the segmentation protocol.”

      For FreeSurfer-based hippocampal and cortical segmentation, we also conducted detailed visual inspections and manual edits following the standard FreeSurfer longitudinal pipeline. We have added the following description to the Methods section to clarify this process:

      “Visual quality control was conducted by three trained raters who systematically inspected skull stripping, surface reconstruction, and segmentation accuracy at both the within-subject template and individual timepoints. Manual edits were primarily applied to the within-subject template to correct segmentation errors—particularly in challenging regions such as the hippocampus—since corrections to the template automatically propagate to all timepoints. Raters followed standardized FreeSurfer longitudinal editing guidelines to ensure consistent and reproducible corrections across subjects. Discrepancies were resolved via consensus discussion. This quality control approach enhanced the accuracy and consistency of segmentation across longitudinal scans, thereby improving the reliability of morphometric analyses and atlas-based ROI extractions.”

      For functional MRI preprocessing, all registration steps—including transformations from individual functional runs to MNI space—were visually checked for each participant to ensure accurate alignment with the Schaefer atlas. We have clarified this point in the revised Methods section with the following statement:

      “Prior to ROI extraction, all registration steps—from individual functional space to MNI space—were visually inspected for each participant to confirm accurate alignment between the functional images and the atlas parcellation.”

      These additions now more clearly reflect the robust quality control procedures that were employed throughout our pipeline to ensure the validity of atlas-based analyses.

      Recommendations for the authors:

      (1) As a reader, I would have appreciated a short section in the methods regarding the preregistration and power analysis. Currently, it is not too straightforward to understand which analyses were included in the preregistration, and at what point in the project the pre-registration was written. Finding all the relevant information from OSF is feasible, but it would be more accessible if a summary of the information were available inside the text.

      We thank the reviewer for this valuable suggestion. We agree that providing a concise summary within the manuscript's methods section will significantly improve accessibility for readers. 

      The full preregistration is now explicitly referenced in the Methods:

      Preregistration and Power Analysis

      This study was preregistered on the Open Science Framework (OSF; https://osf.io/etxvj). The preregistration was completed on October 30, 2023, after approximately 80% of data collection had been completed, but prior to any analysis of the primary outcome variables. The preregistration outlines the study hypotheses, design, target sample size, and planned behavioral and neuroimaging analyses, including longitudinal ROI comparisons and statistical correction procedures.

      A priori power analysis was conducted using G*Power 3.1 to estimate the required sample size for detecting a Group × Time interaction in a mixed-design ANOVA. Assuming a small-to-medium effect size (f = 0.35), we determined that 24 participants per group would provide 80% power to detect a significant effect at α = 0.05. To allow for potential attrition and data exclusion (e.g., due to excessive motion or incomplete datasets), we targeted recruitment of 30 participants per group across two study sites.

      All primary hypotheses, analytic plans, and inference criteria are documented in the preregistration. Exploratory analyses are clearly delineated in both the preregistration and the present manuscript.”

      (2) The relevance of the study for "disease" is mentioned in the Abstract but is absent in the Introduction. This may be worth removing?

      Thank you for pointing this out. We agree that the reference to "disease" in the Abstract was not well-supported in the Introduction. To maintain consistency and avoid overstatement, we have removed the mention of "disease" from the Abstract in the revised manuscript.

      In Abstract:

      “Training cognitive skills, such as remembering a list of words or navigating a new city, has important implications for everyday life.”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1(Public Review):

      The correlation between rebound excitation and song structure (e.g., harmonic stack duration) may depend on outliers, such as birds with harmonic stacks >150ms.

      If in wild zebra finch, or even if in domesticated zebra finch including our birds and the birds from the other labs that we evaluated, the distribution of durations of longest harmonic stacks has a long tail, it is not apparent that birds with long duration harmonic stacks are properly considered as outliers. Examining the distribution of motif durations (a less derived statistic) in 33 birds (Fig. 2C) does not support the idea that birds with longer duration songs are outliers. Thus, we view the reviewer question as addressing whether there are different mechanisms operating in birds with long harmonic stacks than for other birds. Unfortunately, the numbers of long-duration harmonic stack birds are too small to give confidence in any statistical analysis of that group. Thus, we limited our re-analysis to the data excluding birds with harmonic stacks >150ms (which is arbitrary), examining how these birds influence our conclusions. We conclude that the influence of the excluded birds on the overall result is modest. The updated results are presented in Supplemental Figure 6, and the Results section has been revised to state:

      “We found that while some of the p values increased above 0.05 (p = 0.058 for rebound area vs. longest harmonic stack and p = 0.082 for sag ratio and longest harmonic stack), it remained significant for firing frequency and longest stack (Pearson’s R, p = 0.0017) and for sag ratio and motif duration (p = 0.024). However, when sag ratio was compared against the duration of the motif excluding the longest harmonic stack, there was no relationship (p = 0.85).”

      There is a disconnect between the physiological measurements and the HH model presented.

      We acknowledge that addressing this limitation would involve additional experimental and modeling assumptions. Rather than overextending our interpretations, we have clarified the limitations of the current study in the Discussion:

      “While this HH model provides a plausible framework for linking intrinsic properties to sequence propagation, it does not fully account for the observed relationship between IPs and song structure. A principal limitation constraining the current model is the absence of information for the same neurons combining characterization of both IPs and network activity during singing (or song playback), when HVC<sub>X</sub> express activity related to song features. Addressing this gap would requires additional and challenging experiments and is beyond the scope of this study.”

      Although disynaptic inhibition between HVC<sub>X</sub> neurons and between HVC<sub>RA</sub> and HVC<sub>X</sub> neurons is well established, I am not aware of any data indicating direct synaptic connections between HVC<sub>X</sub> neurons.

      This is an important theoretical point about the reliance of the intervaldetecting network model on HVC<sub>X</sub> neurons and about how the model would change if many of the HVC<sub>X</sub> were swapped for HVC<sub>RA</sub> neurons. Connections between HVC<sub>RA</sub> neurons to HVC<sub>X</sub> neurons are established, whereas there is relative paucity of evidence for HVC<sub>X</sub> to HVC<sub>X</sub> connectivity. This is based on work from Prather and Mooney, 2005 (among others) which performed paired sharp electrode recordings to characterized connections in HVC. This work found very few HVC<sub>X</sub> - HVC<sub>X</sub> connections. However, if connected HVC<sub>X</sub> neurons are physically more distant from each other than are connected HVC<sub>RA</sub> – HVC<sub>X</sub> neurons, they would more likely be missed in blind paired recordings. Using different approaches, recent results from the Roberts lab (Trusel et al.,eLife,  2025) supports the existence of robust HVC<sub>X</sub>  - HVC<sub>X</sub>  connections.

      Reviewer #2(Public Review):

      The interpretation of p-values is rigid, and near-significant results (e.g., p = 0.06) are dismissed without discussion.

      We revised the text to reflect a more nuanced and consistent interpretation of p-values and updated the reporting to include exact values. For example, the Results section now states:

      "Nonetheless, the longest syllable duration was not significantly correlated with the average sag ratio for each bird (Pearson’s R: R<sup>2</sup> = 0.12, p = 0.065, Supplemental Fig. 2, top left panel), though it is trending toward significance (see Discussion)”

      The conclusion that harmonic stacks influence intrinsic properties lacks necessary controls.

      We have attempted to further clarify that harmonic stacks were used as a representative feature of temporal song structure rather than a unique determinant of intrinsic properties. The Discussion now states:

      “Although harmonic stacks provide a useful test case for studying temporal integration, our findings suggest that IPs are broadly linked to song duration and structure, rather than specific syllable types. This is also consistent with prior results that found all HVC<sub>X</sub> ion currents that were modeled were influenced by song learning[31].”

      The relationship between rebound area and experimentally tutored birds was not fully explored.

      We expanded the analysis to include rebound area in instrumentally tutored birds, which has now been incorporated into Figure 4C. These additional analyses also robustly support our hypotheses. The Results section has been updated to state:

      “We then evaluated the IPs of HVC<sub>X</sub> in the birds from the two groups. HVC<sub>X</sub> neurons from birds who sang unmodified songs (N = 5 birds, 31 neurons), which had shorter harmonic stacks and shorter overall duration, had lower sag ratios (Mann-Whitney: p = 0.025), firing frequency (Mann-Whitney, p = 0.0051) and rebound area (Mann-Whitney: p = 0.0003)”

      Reviewer #3 (Public Review):

      Limited data supports the claim that intrinsic properties influence temporal integration windows.

      While we agree that further data could strengthen this claim, we show that this can happen in principle (Figure 5) but believe that the appropriate experiment to test this requires further experiments in-vivo. We emphasize in the Discussion:

      “Our findings suggest that post-inhibitory rebound excitation in HVC<sub>X</sub> could expand temporal integration. Ultimately, experiments combining in vitro with in vivo recordings can directly quantify this effect. We hope our results motivate such experiments.”

      Technical Corrections

      (1) Fixed typographical errors (e.g., Line 177: corrected "r2 = 4" to "r2 = 0.4").

      (2) Revised figure legends for clarity (e.g., Figure 4E now includes tutoring design details).

      (3) Updated methods to specify how motifs were defined and measured.

      Revised Figures

      Figure 4: Updated to include analysis of rebound area in instrumentally tutored birds, reflecting the relationship between experimental tutoring and intrinsic properties.

      Supplemental Figure 6: Correlation analysis excluding outliers

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Weakness:

      Although a familiarity preference is not found, it is possible that this is related to the nature of the stimuli and the amount of learning that they offer. While infants here are exposed to the same perceptual stimulus repeatedly, infants can also be familiarised to more complex stimuli or scenarios. Classical statistical learning studies for example expose infants to specific pseudo-words during habituation/familiarisation, and then test their preference for familiar vs novel streams of pseudo-words. The amount of learning progress in these probabilistic learning studies is greater than in perceptual studies, and familiarity preferences may thus be more likely to emerge there. For these reasons, I think it is important to frame this as a model of perceptual habituation. This would also fit well with the neural net that was used, which is processing visual stimuli rather than probabilistic structures. If statements in the discussion are limited to perceptual paradigms, they would make the arguments more compelling. 

      Thank you for your thoughtful feedback. We have now qualified our claims more explicitly throughout the manuscript to clarify the scope of our study. Specifically, we have made the following revisions:

      (1) Title Update: We have modified the title to “A stimulus-computable rational model of visual habituation in infants and adults” to explicitly specify the domain of our model.

      (2) Qualifying Language Throughout Introduction: We have refined our language throughout the introduction to ensure the scope of our claims is clear. Specifically, we have emphasized that our model applies to visual habituation paradigms by incorporating qualifying language where relevant. At the end of Section 1, we have revised the statement to: "Habituation and dishabituation to sequential visual stimuli are well described by a rational analysis of looking time." This clarification makes sure that our model is framed within the context of visual habituation paradigms, particularly those involving structured sequences of stimuli, while acknowledging that habituation extends beyond the specific cases we study.

      (3) New Paragraph on Scope in the Introduction: We have added language in the Introduction acknowledging that while visual habituation is a fundamental mechanism for learning, it is not the only form of habituation. Specifically, we highlight that: “While habituation is a broadly studied phenomenon across cognitive domains—including language acquisition, probabilistic learning, and concept formation—our focus here is on visual habituation, where infants adjust their attention based on repeated exposure to a visual stimulus.”

      (4) New Paragraph on Scope in the General Discussion: We have also revisited this issue in the General Discussion. We added a dedicated paragraph discussing the scope: “This current work focuses on visual habituation, a fundamental but specific form of habituation that applies to sequential visual stimuli. While habituation has been studied across various domains, our model is specifically designed to account for looking time changes in response to repeated visual exposure. This focus aligns with our choice of perceptual representations derived from CNNs, which process visual inputs rather than abstract probabilistic structures. Visual habituation plays a foundational role in infant cognition, as it provides a mechanism for concept learning based on visual experience. However, it does not encompass all forms of habituation, particularly those involving complex rule learning or linguistic structures. Future work should investigate whether models like RANCH can be extended to capture habituation mechanisms in other learning contexts.”

      Reviewer #2 (Public review):

      There are no formal tests of the predictions of RANCH against other leading hypotheses or models of habituation. This makes it difficult to evaluate the degree to which RANCH provides an alternative account that makes distinct predictions from other accounts. I appreciate that because other theoretical descriptions haven't been instantiated in formal models this might be difficult, but some way of formalising them to enable comparison would be useful. 

      We appreciate the reviewer's concern regarding formal comparisons between RANCH and other leading hypotheses of habituation. A key strength of RANCH is that it provides quantitative, stimulus-computable predictions of looking behavior—something that existing theoretical accounts do not offer. Because previous models can not generate predictions about behaviors, we can not directly compare the previous model with RANCH. 

      The one formal model that the reviewer might be referring to is the Goldilocks model, discussed in the introduction and shown in Figure 1. We did in fact spend considerable time in an attempt to implement a version of the Goldilocks model as a stimulus-computable framework for comparison. However, we found that it required too many free parameters, such as the precise shape of the inverted U-shape that the Goldilocks model postulates, making it difficult to generate robust predictions that we would feel confident attributing to this model specifically. This assertion may come as a surprise to a reader who expects that formal models should be able to make predictions across many situations, but prior models 1) cannot be applied to specific stimuli, and 2) do not generate dynamics of looking time within each trial. These are both innovations of our work. Instead, even prior formal proposals derive metrics (e.g., surprisal) that can only be correlated with aggregate looking time. And prior, non-formalized theories, such as the Hunter and Ames model, are simply not explicit enough to implement. 

      To clarify this point, we have now explicitly stated in the Introduction that existing models are not stimulus-computable and do not generate predictions for looking behavior at the level of individual trials: 

      “Crucially, RANCH is the first stimulus-computable model of habituation, allowing us to derive quantitative predictions from raw visual stimuli. Previous theoretical accounts have described broad principles of habituation, but they do not generate testable, trial-by-trial predictions of looking behavior. As a result, direct comparisons between RANCH and these models remain challenging: existing models do not specify how an agent decides when to continue looking or disengage, nor do they provide a mechanistic link between stimulus properties and looking time. By explicitly modeling these decision processes, RANCH moves beyond post-hoc explanations and offers a computational framework that can be empirically validated and generalized to new contexts.” 

      We also highlight that our empirical comparisons in Figure 1 evaluate theoretical predictions based on existing conceptual models using behavioral data, rather than direct model-to-model comparisons: 

      “Addressing these three challenges allowed us to empirically test competing hypotheses about habituation and dishabituation using our experimental data (Figure

      \ref{fig:conceptual}). However, because existing models do not generate quantitative predictions, we could not directly compare RANCH to alternative computational models. Instead, we evaluated whether RANCH accurately captured key behavioral patterns in looking time.”

      The justification for using the RMSEA fitting approach could also be stronger - why is this the best way to compare the predictions of the formal model to the empirical data? Are there others? As always, the main issue with formal models is determining the degree to which they just match surface features of empirical data versus providing mechanistic insights, so some discussion of the level of fit necessary for strong inference would be useful. 

      Thank you for recommending additional clarity on our choice of evaluation metrics. RMSE is a very standard measure (for example, it’s the error metric used in fitting standard linear regression!). On the other hand, it captures absolute rather than relative errors. Correlation-based measures (e.g., r and r<sup>2</sup>-type measures) provide a measure of relative distance between predictive measures. In our manuscript we reported both RMSE and R². In the revised manuscript, we have now:

      (1) Added a paragraph in the main text explaining that RMSE captures the absolute error in the same units as looking time, whereas r² reflects the relative proportion of variance explained by the model: 

      “RANCH predictions qualitatively matched habituation and dishabituation in both infants and adults. To quantitatively evaluate these predictions, we fit a linear model (adjusting model‐generated samples by an intercept and scaling factor) and then assessed two complementary metrics. First, the root mean squared error (RMSE) captures the absolute error in the same units as looking time. Second, the coefficient of determination ($R^2$) measures the relative variation in looking time that is explained by the scaled model predictions. Since each metric relies on different assumptions and highlights distinct aspects of predictive accuracy, they together provide a more robust assessment of model performance. We minimized overfitting by employing cross‐validation—using a split‐half design for infant data and ten‐fold for adult data—to compute both RMSE and $R^2$ on held‐out samples.”

      (2) We updated Table 1 to include both RMSE and R² for each model variant and linking hypothesis. We now reported both RMSE and R² across the two experiments. 

      We hope these revisions address your concerns by offering a more comprehensive and transparent assessment of our model’s predictive accuracy.

      Regarding your final question, the desired level of fit for insight, our view is that – at least in theory development – measures of fit should always be compared between alternatives (rather than striving for some absolute level of prediction). We have attempted to do this by comparing fit within- and across-samples and via various ablation studies. We now make this point explicit in the General Discussion:

      More generally, while there is no single threshold for what constitutes a “good” model fit, the strength of our approach lies in the relative comparisons across model variants, linking hypotheses, and ablation studies. In this way, we treat model fit not as an absolute benchmark, but as an empirical tool to adjudicate among alternative explanations and assess the mechanistic plausibility of the model’s components.

      The difference in model predictions for identity vs number relative to the empirical data seems important but isn't given sufficient weight in terms of evaluating whether the model is or is not providing a good explanation of infant behavior. What would falsification look like in this context? 

      We appreciate the reviewer’s observation regarding the discrepancy between model predictions and the empirical data for identity vs.~number violations. We were also very interested in this particular deviation and we discuss it in detail in the General Discussion, noting that RANCH is currently a purely perceptual model, whereas infants’ behavior on number violations may reflect additional conceptual factors. Moreover, because this analysis reflects an out-of-sample prediction, we emphasize the overall match between RANCH and the data (see our global fit metrics) rather than focusing on a single data point. Infant looking time data also exhibit considerable noise, so we caution against over-interpreting small discrepancies in any one condition. In principle, a more thorough “falsification” would involve systematically testing whether larger deviations persist across multiple studies or stimulus sets, which is beyond the scope of the current work. 

      For the novel image similarity analysis, it is difficult to determine whether any differences are due to differences in the way the CNN encodes images vs in the habituation model itself - there are perhaps too many free parameters to pinpoint the nature of any disparities. Would there be another way to test the model without the CNN introducing additional unknowns? 

      Thank you for raising this concern. In our framework, the CNN and the habituation model operate jointly to generate predictions, so it can be challenging to parse out whether any mismatches arise specifically from one component or the other. However, we are not worried that the specifics of our CNN procedure introduces free parameters because:

      (1) The  CNN introduces no additional free parameters in our analyses, because it is a pre‐trained model not fitted to our data. 

      (2) We tested multiple CNN embeddings and observed similar outcomes, indicating that the details of the CNN are unlikely to be driving performance (Figure 12).

      Moreover, the key contribution of our second study is precisely that the model can generalize to entirely novel stimuli without any parameter adjustments. By combining a stable, off‐the‐shelf CNN with our habituation model, we can make out‐of‐sample predictions—an achievement that, to our knowledge, no previous habituation model has demonstrated.

      Related to that, the model contains lots of parts - the CNN, the EIG approach, and the parameters, all of which may or may not match how the infant's brain operates. EIG is systematically compared to two other algorithms, with KL working similarly - does this then imply we can't tell the difference between an explanation based on those two mechanisms? Are there situations in which they would make distinct predictions where they could be pulled apart? Also in this section, there doesn't appear to be any formal testing of the fits, so it is hard to determine whether this is a meaningful difference. However, other parts of the model don't seem to be systematically varied, so it isn't always clear what the precise question addressed in the manuscript is (e.g. is it about the algorithm controlling learning? or just that this model in general when fitted in a certain way resembles the empirical data?) 

      Thank you for highlighting these points about the model’s components and the comparison of EIG- vs. KL-based mechanisms. Regarding the linking hypotheses (EIG, KL, and surprisal), our primary goal was to assess whether rational exploration via noisy perceptual sampling could account for habituation and dishabituation phenomena in a stimulus-computable fashion. Although RANCH contains multiple elements—including the CNN for perceptual embedding, the learning model, and the action policy (EIG or KL)—we did systematically vary the “linking hypothesis” (i.e., whether sampling is driven by EIG, KL, or surprisal). We found that EIG and KL gave very similar fits, while surprisal systematically underperformed.

      We agree that future experiments could be designed to produce diverging predictions between EIG and KL, but examining these subtle differences is beyond the scope of our current work. Here, we sought to establish that a rational model of habituation, driven by noisy perceptual sampling, can deliver strong quantitative predictions—even for out-of-sample stimuli—rather than to fully disentangle forward- vs. backward-looking information metrics.

      We disagree, however, that we did not evaluate or formally compare other aspects of the model. In Table 1 we report ablation studies of different aspects of the model architecture (e.g., removal of learning and noise components). Further, the RMSE and R² values reported in Table 1 and Section 4.2.3 can be treated as out-of-sample estimates of performance and used for direct comparison (because Table 1 uses cross-validation and Section 4.2.3 reports out of sample predictions). 

      Perhaps the reviewer is interested in statistical hypothesis tests, but we do not believe these are appropriate here. Cross-validation provides a metric of out-of-sample generalization and model selection based on the resulting numerical estimates. Significance testing is not typically recommended, except in a limited subset of cases (see e.g. Vanwinckelen & Blokeel, 2012 and Raschka, 2018).

      Reviewer #1 (Recommendations for the authors):

      "We treat the number of samples for each stimulus as being linearly related to looking time duration." Looking times were not log transformed? 

      Thank you for your question. The assumption of a linear relationship between the model’s predicted number of samples and looking time duration is intended as a measurement transformation, not a strict assumption about the underlying distribution of looking times. This linear mapping is used simply to establish a direct proportionality between model-generated samples and observed looking durations.

      However, in our statistical analyses, we do log-transform the empirical looking times to account for skewness and stabilize variance. This transformation is standard practice when analyzing infant looking time data but is independent of how we map model predictions to observed times. Since there is no a priori reason to assume that the number of model samples must relate to looking time in a strictly log-linear way, we retained a simple linear mapping while still applying a log transformation in our analytic models where appropriate.

      It would be nice to have figures showing the results of the grid search over the parameter values. For example, a heatmap with sigma on x and eta on y, and goodness of fit indicated by colour, would show the quality of the model fit as a function of the parameters' values, but also if the parameters estimates are correlated (they shouldn't be). 

      Thank you for the suggestion. We agree that visualizing the grid search results can provide a clearer picture of how different parameter values affect model fit. In the supplementary materials, we already present analyses where we systematically search over one parameter at a time to find the best-fitting values.

      We also explored alternative visualizations, including heatmaps where sigma and eta are mapped on the x and y axes, with goodness-of-fit indicated by color. However, we found that the goodness of fit was very similar across parameter settings, making the heatmaps difficult to interpret due to minimal variation in color. This lack of variation in fit reflects the observation that our model predictions are robust to changes in parameter settings, which allows us to report strong out of sample predictions in Section 4. Instead, we opted to use histograms to illustrate general trends, which provide a clearer and more interpretable summary of the model fit across different parameter settings. Please see the heatmaps below, if you are interested. 

      Author response image 1.

      Model fit (measured by RMSE) across a grid of prior values for Alpha, Beta, and V shows minimal variation. This indicates that the model’s performance is robust to changes in prior assumptions.

      Regarding section 5.4, paragraph 2: It might be interesting to notice that a potential way to decorrelate these factors is to look at finer timescales (see Poli et al., 2024, Trends in Cognitive Sciences), which the current combination of neural nets and Bayesian inference could potentially be adapted to do. 

      Thank you for this insightful suggestion. We agree that examining finer timescales of looking behavior could provide valuable insights into the dynamics of attention and learning. In response, we have incorporated language in Section 5.4 to highlight this as a potential future direction: 

      Another promising direction is to explore RANCH’s applicability to finer timescales of looking behavior, enabling a more detailed examination of within-trial fluctuations in attention. Recent work suggests that analyzing moment-by-moment dynamics can help disentangle distinct learning mechanisms \autocite{poli2024individual}.Since RANCH models decision-making at the level of individual perceptual samples, it is well-suited to capture these fine-grained attentional shifts.

      Previous work integrating neural networks with Bayesian (like) models could be better acknowledged: Blakeman, S., & Mareschal, D. (2022). Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning. Neural Networks, 150, 408-421. 

      Thank you for this feedback. We have now incorporated this citation into our discussion section: 

      RANCH integrates structured perceptual representations with Bayesian inference, allowing for stimulus-computable predictions of looking behavior and interpretable parameters at the same time. This integrated approach has been used to study selective attention \autocite{blakeman2022selective}.

      Unless I missed it, I could not find an OSF repository (although the authors refer to an OSF repository for a previous study that has not been included). In general, sharing the code would greatly help with reproducibility. 

      Thanks for this comment. We apologize that – although all of our code and data were available through github, we did not provide links in the manuscript. We have now added this at the end of the introduction section. 

      Reviewer #2 (Recommendations for the authors):

      Page 7 "infants clearly dishabituated on trials with longer exposures" - what are these stats comparing? Novel presentation to last familiar? 

      Thank you for pointing out this slightly confusing passage. The statistics reported are comparing looking time in looking time between the novel and familiar test trials after longer exposures. We have now added the following language: 

      Infants clearly dishabituated on trials with longer exposures, looking longer at the novel stimulus than the familiar stimulus after long exposure.

      Order effects were covaried in the model - does the RANCH model predict similar order effects to those observed in the empirical data, ie can it model more generic changes in attention as well as the stimulus-specific ones? 

      Thank you for this question. If we understand correctly, you are asking whether RANCH can capture order effects over the course of the experiment, such as general decreases in attention across blocks. Currently, RANCH does not model these block-level effects—it is designed to predict stimulus-driven looking behavior rather than more general attentional changes that occur over time such as fatigue. In our empirical analysis, block number was included as a covariate to account for these effects statistically, but RANCH itself does not have a mechanism to model block-to-block attentional drift independent of stimulus properties. This is an interesting direction for future work, where a model could integrate global attentional dynamics alongside stimulus-specific learning. To address this, we have added a sentence in the General Discussion saying:

      Similarly, RANCH does not capture more global attention dynamics, such as block-to-block attentional drift independent of stimulus properties.

      "We then computed the root mean squared error (RMSE) between the scaled model results and the looking time data." Why is this the most appropriate approach to considering model fit? Would be useful to have a brief explanation. 

      Thank you for pointing this out. We believe that we have now addressed this issue in Response to Comment #2 from Reviewer 1. 

      The title of subsection 3.3 made me think that you would be comparing RANCH to alternate hypotheses or models but this seems to be a comparison of ways of fitting parameters within RANCH - I think worth explaining that. 

      We have now added a sentence in the subsection to make the content of the comparison more explicit: 

      Here we evaluated different ways of specifying RANCH's decision-making mechanism (i.e., different "linking hypotheses" within RANCH).

      3.5 would be useful to have some statistics here - does performance significantly improve? 

      As discussed above, we systematically compared model variants using cross-validated RMSE and R² values, which provide quantitative evidence of improved performance. While these differences are substantial, we do not report statistical hypothesis tests, as significance testing is not typically appropriate for model comparison based on cross-validation (see Vanwinckelen & Blockeel, 2012; Raschka, 2018). Instead, we rely on out-of-sample predictive performance as a principled basis for evaluating model variants.

      It would be very helpful to have a formal comparison of RANCH and other models - this seems to be largely descriptive at the moment (3.6).

      We believe that we have now addressed this issue in our response to the first comment.

      Does individual infant data show any nonlinearities? Sometimes the position of the peak look is very heterogenous and so overall there appears to be no increase but on an individual level there is. 

      Thank you for your question. Given our experimental design, each exposure duration appears in separate blocks rather than in a continuous sequence for each infant. Because of this, the concept of an individual-level nonlinear trajectory over exposure durations does not directly apply. Instead, each infant contributes looking time data to multiple distinct conditions, rather than following a single increasing-exposure sequence. Any observed nonlinear trend across exposure durations would therefore be a group-level effect rather than a within-subject pattern.

      In 4.1, why 8 or 9 exposures rather than a fixed number? 

      We used slightly variable exposure durations to reduce the risk that infants develop fixed expectations about when a novel stimulus will appear. We have now clarified this point in the text.

      Why do results differ for the model vs empirical data for identity? Is this to do with semantic processing in infants that isn't embedded in the model? 

      Thank you for your comment. The discrepancy between the model and empirical data for identity violations is related to the discrepancy we discussed for number violations in the General Discussion. As noted there, RANCH relies on perceptual similarity derived from CNN embeddings, which may not fully capture distinctions that infants make.

      The model suggests the learner’s prior on noise is higher in infants than adults, so produces potentially mechanistic insights. 

      We agree! One of the key strengths of RANCH is its ability to provide mechanistic insights through interpretable parameters. The finding that infants have a higher prior on perceptual noise than adults aligns with previous research suggesting that early visual processing in infants is more variable and less precise.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This is a manuscript describing outbreaks of Pseudomonas aeruginosa ST 621 in a facility in the US using genomic data. The authors identified and analysed 254 P. aeruginosa ST 621 isolates collected from a facility from 2011 to 2020. The authors described the relatedness of the isolates across different locations, specimen types (sources), and sampling years. Two concurrently emerged subclones were identified from the 254 isolates. The authors predicted that the most recent common ancestor for the isolates can be dated back to approximately 1999 after the opening of the main building of the facility in 1996. Then the authors grouped the 254 isolates into two categories: 1) patient-to-patient; or 2) environment-to-patient using SNP thresholds and known epidemiological links. Finally, the authors described the changes in resistance gene profiles, virulence genes, cell wall biogenesis, and signaling pathway genes of the isolates over the sampling years.

      Strengths:

      The major strength of this study is the utilisation of genomic data to comprehensively describe the characteristics of a long-term Pseudomonas aeruginosa ST 621 outbreak in a facility. This fills the data gap of a clone that could be clinically important but easily missed from microbiology data alone.

      Weaknesses:

      The work would further benefit from a more detailed discussion on the limitations due to the lack of data on patient clinical information, ward movement, and swabs collected from healthcare workers to verify the transmission of Pseudomonas aeruginosa ST 621, including potential healthcare worker to patient transmission, patient-to-patient transmission, patient-to-environment transmission, and environment-to-patient transmission. For instance, the definition given in the manuscript for patient-to-patient transmission could not rule out the possibility of the existence of a shared contaminated environment. Equally, as patients were not routinely swabbed, unobserved carriers of Pseudomonas aeruginosa ST 621 could not be identified and the possibility of misclassifying the environment-to-patient transmissions could not be ruled out. Moreover, reporting of changes in rates of resistance to imipenem and cefepime could be improved by showing the exact p-values (perhaps with three decimal places) rather than dichotomising the value at 0.05. By doing so, readers could interpret the strength of the evidence of changes.

      Impact of the work:

      First, the work adds to the growing evidence implicating sinks as long-term reservoirs for important MDR pathogens, with direct infection control implications. Moreover, the work could potentially motivate investments in generating and integrating genomic data into routine surveillance. The comprehensive descriptions of the Pseudomonas aeruginosa ST 621 clones outbreak is a great example to demonstrate how genomic data can provide additional information about long-term outbreaks that otherwise could not be detected using microbiology data alone. Moreover, identifying the changes in resistance genes and virulence genes over time would not be possible without genomic data. Finally, this work provided additional evidence for the existence of long-term persistence of Pseudomonas aeruginosa ST 621 clones, which likely occur in other similar settings.

      We thank the reviewer for their thorough evaluation of our work, and for the suggested improvements. A main goal of this study was to show that integrating routine wgs in the clinic was a game changer for infection control efforts. We appreciate this aspect was highlighted as a strength by this reviewer. While some of the weaknesses identified are inherent to the data (or lack thereof) available for this study, we have revised the manuscript to include a detailed discussion on limitations (sampling, thresholds of genetic relatedness, definition and categories etc.) that could influence the genomic inferences. We also provided exact p-values for the changes in rates of resistance, as requested. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a report of a large Pseudomonas aeruginosa hospital outbreak affecting more than 80 patients with first sampling dates in 2011 that stretched over more than 10 years and was only identified through genomic surveillance in 2020. The outbreak strain was assigned to the sequence type 621, an ST that has been associated with carpabapenem resistance across the globe. Ongoing transmission coincided with both increasing resistance without acquisition of carbapenemase genes as well as the convergence of mutations towards a host-adapted lifestyle.

      Strengths:

      The convincing genomic analyses indicate spread throughout the hospital since the beginning of the century and provide important benchmark findings for future comparison.

      The sampling was based on all organisms sent to the Multidrug-resistant Organism Repository and Surveillance Network across the U.S. Military Health System.

      Using sequencing data from patient and environmental samples for phylogenetic and transmission analyses as well as determining recurring mutations in outbreak isolates allows for insights into the evolution of potentially harmful pathogens with the ultimate aim of reducing their spread in hospitals.

      Weaknesses:

      The epidemiological information was limited and the sampling methodology was inconsistent, thus complicating the inference of exact transmission routes. Epidemiological data relevant to this analysis include information on the reason for sampling, patient admission and discharge data, and underlying frequency of sampling and sampling results in relation to patient turnover.

      We thank the reviewer for their thoughtful feedback on our manuscript and for highlighting the quality of the genomic analyses. We agree that the lack of patient epi data (e.g. date of admission and discharge) and the inconsistent sampling through the years are limitations of this study. We have revised the manuscript to acknowledge these limitations and discuss how not having this data complicates the inference of exact transmission routes. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly.

      Reviewer #3 (Public Review):

      Summary:

      This paper by Stribling and colleagues sheds light on a decade-long P. aeruginosa outbreak of the high-risk lineage ST-621 in a US Military hospital. The origins of the outbreak date back to the late 90s and it was mainly caused by two distinct subclones SC1 and SC2. The data of this outbreak showed the emergence of antibiotic resistance to cephalosporin, carbapenems, and colistin over time highlighting the emerging risk of extensively resistant infections due to P. aeruginosa and the need for ongoing surveillance.

      Strengths:

      This study overall is well constructed and clearly written. Since detailed information on floor plans of the building and transfers between facilities was available, the authors were able to show that these two subclones emerged in two separate buildings of the hospital. The authors support their conclusions with prospective environmental sampling in 2021 and 2022 and link the role of persistent environmental contamination to sustaining nosocomial transmission. Information on resistance genes in repeat isolates for the same patients allowed the authors to detect the emergence of resistance within patients. The conclusions have broader implications for infection control at other facilities. In particular, the paper highlights the value of real-time surveillance and environmental sampling in slowing nosocomial transmission of P. aeruginosa.

      Weaknesses:

      My major concern is that the authors used fixed thresholds and definitions to classify the origin of an infection. As such, they were not able to give uncertainty measures around transmission routes nor quantify the relative contribution of persistent environmental contamination vs patient-to-patient transmission. The latter would allow the authors to quantify the impact of certain interventions. In addition, these results represent a specific US military facility and the transmission patterns might be specific to that facility. The study also lacked any data on antibiotic use that could have been used to relate to and discuss the temporal trends of antimicrobial resistance.

      We thank the reviewer for their evaluation of our work and for highlighting the broad implications of our findings regarding the application of real-time surveillance to suppress nosocomial transmission. We agree with the reviewer that fixed thresholds and definitions are imperfect to classify the origin of an infection. The design of this study (e.g. inconsistent sampling through time) was not conducive to provide a comprehensive/quantitative measurement of transmission routes. Thus, we decided to apply conservative thresholds of genetic relatedness and strict conditions (e.g. time between isolate collection, shared hospital location etc.) to favor specificity as our goal was simply to establish that cases of environmentto-patient transmission did happen. In the absence of a truth set, we have not performed sensitivity analysis, but we are conducting a follow-up study to compare inferences from MCMC models to our original fixed-thresholds predictions. This limitation is now discussed in the revised manuscript. Finally, we have positively answered all the specific recommendations suggested by the reviewer and modified the manuscript accordingly including the addition of Figure S3.

      Reviewer #1 (Recommendations For The Authors):

      The definitions used on lines 391-396 are necessarily somewhat arbitrary, but it would be helpful to have a little bit more justification for the choices made, particularly for the definition of environmental involving the "3x the number of years they were separated". It seems a little hard to square this with the more relaxed 10 SNP cutoff for a patient-to-patient designation. Are there reasons for thinking SNP differences associated with environmental transmission should be smaller than for patient-to-patient, or is the aim here just to set the bar higher for assuming an environmental source? Because these definitions are quite arbitrary, there could also be some value in exploring the sensitivity of the results to these assumptions.

      Thank you. We agree with the reviewers that SNP thresholds, albeit necessarily, are arbitrary and that more discussion/justification was needed to put the genomic inferences in context. We have revised the manuscript to indicate that: 1/ the 10 SNP cutoff for a patient-to-patient designation was set to account for the known evolution rate of P. aeruginosa (inferred by BEAST at 2.987E-7 subs/site/year in this study and similar to previous estimates PMID: 24039595) and the observed within host variability (now displayed in revised Fig. 1E). We note that this SNP distance was not sufficient and that an epi link (patients on the same ward at the same time) needed to be established. 2/ the environment-to-patient definition was indeed set to be most conservative (nearly identical isolates in two patients from the same ward with no known temporal overlap for > 365 days). This was indeed done to favor high specificity as this inference relied solely on clinical isolates (i.e. the identical environmental strain in the patientenvironment-patient chain was not sampled). For these clinical isolates to have acquired no/very little mutation in that much time, no/low replication is expected and, although unsampled, we propose this most likely happened on hospital surfaces.

      While the term "core genome" should be familiar to most readers, "shell genome" and "cloud genome" are less widely known, and an explanation of what these terms mean here would be helpful.

      Thank you. We have revised the manuscript to define the core, shell, and cloud genomes as genes sets found in ≥ 99%, ≥ 95% and ≥ 15% of isolates, respectively.

      In the first paragraph of the discussion, it could be added that in many cases for clinically important Gram negatives short read sequencing alone will fail to detect transmission events as outbreaks can be driven by plasmid spread with only very limited clonal spread (see, for example, https://www.nature.com/articles/s41564-021-00879-y )

      Thank you. We agree this is an important/emerging aspect of surveillance. However, the goal of this discussion point was to explain why such a large outbreak was missed prior to implementing WGS (short read) surveillance. We feel that discussing “plasmid outbreaks” (which is not at play here, and relatively rare in P. aeruginosa compared to the Enterobacteriaceae) and the need for long read will distract from the narrative. 

      line 599 What does "Mock" mean here? Would it be more accurate to say it is a simplified floor plan?

      Thank you. “Mock” was changed to “simplified”

      IPAC abbreviation is only used once - spelling it out in full would increase readability.

      Revised manuscript was edited as suggested.

      MHS is only used twice.

      Revised manuscript was edited to spell out Military Health System

      Line 364: full stop missing.

      Revised manuscript was edited as suggested.

      Line 401: Bayesian rather than bayesian.

      Revised manuscript was edited as suggested.

      Reviewer #2 (Recommendations For The Authors):

      Thank you for giving me the opportunity to review this interesting manuscript.

      The conclusions of this paper are mostly well supported by the data presented, but epidemiological information was limited and the sampling methodology was inconsistent, thus complicating inference of exact transmission routes.

      Major issues:

      What was the baseline frequency of clinical and/or screening samples of Pseudomonas aeruginosa at the hospital? Neither Figure 1D nor Table S1 allows for differentiating between clinical and screening samples. Most isolates were cultured from clinical materials, and there is no information about the patients' length of stay and their respective sampling dates. Is there any possibility of finding out whether the samples were collected for clinical or screening purposes? Would it be possible to include the patients' admission data to determine whether the strains were imported into the hospital or related to a previous stay, e.g. among known carriers? Also, the issue of sampling dates vs. patient stay on the ward should be addressed, as there may be an overlap in patients' stay on the ward but no overlap in terms of sampling dates or even missing samples (missing links).

      We have revised the manuscript to address this important point: i) 16 isolates were from surveillance swabs and are labelled “Surveillance” in Table S1. The remaining 237 were clinical isolates; ii) unfortunately, because the sampling was done under a public health surveillance framework, we do not have access to historical patient data (admission/discharge date, wards, rooms, etc.) and we can not calculate length of stay or better identify patient overlap. These limitations are now acknowledged in the discussion of the revised manuscript.

      In order to evaluate the extent of the outbreak, more epidemiological data would be useful What is the size of the hospital, what is the average patient turnover, and what is the average length of stay in ICU and non-ICU? Is there any specialization besides the military label?

      We have revised the manuscript to indicate that facility A is 425-bed medical center and is the only Level 1 trauma center in the Military Health System. Unfortunately, the data to calculate length of stay, throughout the years, in ICU and non-ICU, was not available to us. This limitation is now also acknowledged in the discussion.

      Perhaps the authors could attempwt to discuss the extent to which large outbreaks like these may be considered as part of unavoidable evolutionary processes within the hospital microbiome as opposed to accumulation and transmission of potentially harmful genes/clones, and differentiate between the putative community spread without any epidemiological links on the one hand, and hospital outbreaks that could be targeted by local infection prevention activities on the other hand.,

      We respectfully disagree with the suggestion that this large outbreak “may be considered as part of unavoidable evolutionary processes within the hospital microbiome” and should be opposed to “transmission of potentially harmful genes/clones”. As a matter of fact, our data showed that infection control staff at Facility A responded with multiple interventions, including closing sinks, replacing tubing, and using foaming detergents. This resulted in slowing the spread of the ST621 outbreak with just 3 cases identified in 2022, 0 cases in 2023 and 1 case in 2024. This is now discussed in the revised manuscript.

      Page 5, lines 88-92 lines 101-104. It seems as if the outbreak was identified only by the means of genomic surveillance. This raises questions as to the rationale for sampling and sequencing, especially prior to 2020. Considering 11 cases per year between 2011 and 2016, one could assume such an outbreak would have been noticed without sequencing data.

      The MRSN was created in 2010, in response to the outbreak of MDR Acinetobacter baumannii in US military personnel returning from Iraq and Afghanistan. Between 2011 and 2017, the MRSN collected MDR isolates (mandate for all MDR ESKAPE but compliance varied between years and facilities) from across the Military Health System and, for select isolates (e.g. high-risk isolates carrying ESBLs or carbapenemases) performed molecular typing by PFGE. In 2017 the MRSN started to perform whole genome sequencing of its entire repository. In 2020, a routine prospective sequencing service was started and first detected the ST621 outbreak. A retrospective analysis of historical isolate genomes (2011-2019) identified additional cases. The first paragraph of the discussion lists possible factors to explain why the ST621 escaped detection by traditional approaches. We believe 11 cases per year is not a strong signal when stratified by month, wards, or both, especially for a clone lacking a carbapenemase and without a remarkable antibiotic susceptibility profile. 

      Did the infection control personnel suspect transmission? If yes, was the sampling and submission of samples to the MRSN adapted based on the epidemiologic findings?

      The ST621 outbreak was unsuspected before the initial genomic detection in 2020. Until that point, MDR isolates only (Magiorakos et al PMID: 21793988) were collected but compliance was variable through time. Quickly thereafter (starting in 2021), complete sampling of all clinical P. aeruginosa (MDR or not) from Facility A was started. The manuscript was revised to clarify those details of the sampling strategy.

      Is there any information about how many environmental sites were sampled without evidence of ST621 / screening samples were cultured without evidence of Pseudomonas aeruginosa?

      For patient isolates, only 16 isolates were from surveillance swabs. The remaining 237 were clinical isolates. No denominator data was available to calculate P. aeruginosa and ST-621 positivity rate in surveillance swabs throughout the time period. For environmental isolates, a total of 159 swabs were taken from 55 distinct locations in 8 wards/units including the ER. This data is now included in the revised manuscript. However, a complete analysis of these swabs (positivity rate for ESKAPE pathogens, P. aeruginosa, per ward/floor/room, per swab type (sink drain, bed rail etc.) etc.) is beyond the scope of this study and is being performed as a follow up investigation.

      Page 5 lines 89 and 39 Figure S1B. Please describe how the allelic distance for the cluster threshold was selected.

      As indicated in the legend of Figure S1B, no thresholds were applied. All ST621 isolates ever sequenced by the MRSN were included. All except 3 isolates shared between 023 cgMLST allelic differences. The remaining 3 were distant by 88-89 allelic differences. The text was revised to clarify this point.

      Page 5 lines 99-100. Could the authors please provide some distribution measures (e.g. IQR).

      Done as requested. The revised manuscript now reads “…of just 38 single nucleotide polymorphisms (SNPs), and an IQR of 19 (Fig. 1A, Table S1).”

      Page 5 line 102. Could the authors please provide some distribution measures (e.g. IQR).

      Please see above. A chart was created and is now included as Fig. S2.

      Page 6 line 107 and page 34 figure 1c. In the text it is stated that isolates were collected in 27 wards, the figure 1C depicts 26 wards and n/a.

      Thank you for spotting this inconsistency. This has been fixed in the revised manuscript.

      Page 6 lines 117-118. Samples collected in the emergency room would imply samples collected on admission, already addressed previously. Did the authors investigate a potential import into the hospital from community reservoirs or were all these isolates collected among patients who had been previously admitted to the hospital and/or tested positive for the outbreak strain?

      We agree that samples collected in the ER imply samples collected on admission. Of the 29 ER isolates only 9 (31%) were primary isolates (first detection in a new patient) which suggests a majority were from returning patients at Facility A. Because the sampling was done under a public health surveillance framework, we do not have access to historical patient data (admission/discharge date, wards, rooms, etc.) to investigate/confirm that these 9 patients had previous visits at Facility A. This point is now discussed in the revised manuscript.

      Page 6 line 128. This could also represent increased selective pressure. However, according to Table S1, the 28 isolates collected in 2011 (the number does not match with Figure 1D) were from many different wards, thus indicating earlier spread throughout the hospital.

      Yes, we agree. Please note that table S1 lists all isolates for 2011 whereas Figure 1D focuses on primary (first isolate from each patients) only.  

      Page 7 line 133. Both Figure 2 and the discussion section, page 13 line 296 suggest the year 2005 instead of 2004?

      Thank you for catching this typographical error. This was corrected to 2004 in the revised manuscript.

      Figure 1E. The figure should also depict intra-patient diversity for comparison.

      Thank you for this great suggestion. We have revised Figure 1E accordingly.

      Page 7, lines 146-147 Could the authors attempt explaining the upper part of the bimodal peaks?

      This is an all-vs-all SNP analysis for all inter-patient isolates. For each isolates all distances to other isolates are reported, not only the smallest. The upper peaks represent comparisons to isolates from a different outbreak subclone (SC1 vs SC2).

      Page 7, line 150 This is a very small number considering the extent of the outbreak and suggests a large number of missing links. Or does this rather imply continuous import and evolution over time that does not necessarily represent transmission within the hospital?

      We believe all cases were due to transmission happening within the hospital. Based on conservative thresholds (genetic relatedness and epi link, or lack thereof) the precise origin from another patient (n=10) or a contaminated surface (n=12) can be inferred. For the remaining 60 patients, with the available sampling, the conditions we chose are not met and we simply do not conclude whether a direct patient-to-patient or an environmental origin was more likely.

      Page 8 line 155. What does the temporal overlap refer to - sampling date versus patient's stay on the ward? Please specify.

      The temporal overlap was investigated from sampling dates, as dates of patient admission/discharged were not available.

      Page 8, line 157: What does primary/serial isolate mean - first and follow-up samples of ST621 per patient?

      Yes. Primary isolate is used to designate the first isolate from a patient. Serial isolates designate follow-up samples of ST621.

      Page 8 line 165: Table S3 and Figure 3 only refer to environmental samples from three wards. Ward 20 rooms 2 and 18 as well as ward 1 rooms 1 and 6 were hotspots - is there any information on the specific infection control/disinfection measures? Addressed in discussion page 12, lines 273-275, but no information on what was actually done.

      The manuscript was revised to indicate the precise disinfection measures that were taken. A follow-up study is ongoing to assess long-term efficacy and monitor possible retrograde growth from previously contaminated sinks.

      Page 8 line 175: Evaluation of change in resistance fraction over time - There may have been a selection bias with an inconsistent number of strains sequenced per year.

      Yes, incomplete sampling and possible selection bias are now listed with other limitations of this study in the discussion of the revised manuscript.

      Page 9 line 183: The referral to Table S1 is unclear, I could not find the number and the specific isolates selected for long-read sequencing.

      Thank you. This has been added to the revised Table S1.

      Page 10 lines 217-225 and Figure 4C: Perhaps it is possible to better align what is written in the text and the caption of the figure. The caption does not clarify that only one patient develops colistin resistance (what was the reason to include the other patients?).

      Thank you. We have revised the text and the caption of the figure to clarify that only isolates from one patient developed colistin resistance. The isolates from the other patients on Fig. 4C are shown to provide context and accurately map the emergence of the PhoQE77fs mutation.  

      Page 10, lines 228-229 and Table S5: How is it possible to identify those 64 genes in Table S5?

      We have revised Table S5 to facilitate the identification of the 64 genes with ≥ 2 independently acquired mutations (excluding SYN). Specifically, we have added column E labeled “Counts independent mutations per locus (excluding SYN)”. A total of 205 rows (in this table each row is a variant) have a value ≥ 2 and these represent 64 genes (upon deduplication of locus tags).  

      Page 13, lines 280-281: Where is the information on chronic infection presented? Serial cultures would not necessarily mean chronic infection.

      Authors response: Yes, we agree this was not the appropriate characterization and this was revised to ‘long-term’ infections.

      Page 14 line 306: Emergence of colistin resistance in a single patient, correct?

      Yes. This was further clarified in the text.

      Page 14 lines 315-320: This should go to the results section. In particular disinfection, closing, and replacing of tubing should be mentioned in the results section in reference to the results presented in Table S3.

      Thank you. We have considered this suggestion and have decided to leave this discussion as the closing paragraph of this publication. A follow-up study is ongoing to assess long-term efficacy of these interventions on the ST-621 bur also other outbreak clones at Facility A.

      Methods

      Page 15 lines 330-333: Perhaps it is possible to avoid redundancy.

      Thank you. We have revised the text accordingly.

      Page 15 lines 341: Information on which isolates were subjected to long-read sequencing is missing.

      Thank you. This has been added to the revised Table S1.

      Page 16 line 345: Was there a particular reason why Newbler was chosen?

      No. At the time Newbler was the default assembler built in the MRSN bacterial genome analysis pipeline and QC processes.

      Page 16, line 357-358: What was the rationale for selecting this isolate as reference genome?

      This isolate was chosen because it was collected early in the outbreak and phylogenetic analysis revealed it had low root to tip divergence.

      Page 16 line 361: Why 310 isolates, if only 253 were assigned to the outbreak clone and only a subset of those were collected in facility A?

      This was a typographical error that has corrected (it now reads “…set of 253 isolates.”) in the revised manuscript.  

      Page 17 lines 387-395: What is the reason that intra-patient diversity was not included in the set of criteria for SNP distances?

      The observed within host variability (now displayed in revised Fig. 1E) was taken into consideration when setting SNP thresholds for categorizing patient-to-patient transmission or environment-to-patient event. This is now clarified in the revised manuscript.

      Page 17 line 392: How was the threshold of <=10 SNPs determined?

      The 10 SNP cutoff to infer a patient-to-patient transmission event was set to account for the known evolution rate of P. aeruginosa (inferred by BEAST at 2.987E-7 subs/site/year in this study, and similar to previous estimates PMID: 24039595) and the observed within host variability (now displayed in revised Fig. 1E). We note that this SNP distance was not sufficient and that an epi link (patients on the same ward within the same month) needed to be established.

      Page 17 line 395 and Figure 2: What was the assumed average mutation rate per genome per year?

      Thank you. The mean substitution rate inferred by BEAST was 2.987E-7 similar to estimate from previous studies on P. aeruginosa outbreaks (e.g. PMID: 24039595).

      Reviewer #3 (Recommendations For The Authors):

      Please find (line-by-line comments) on each section of the manuscript below:

      Introduction

      Line 86: I am wondering why the authors state ">28 facilities" instead of the exact number of facilities from which these lineages were recovered.

      Thank you. Manuscript was revised to provide the exact number of facilities. It now reads “…recovered from 37 and 28 facilities, respectively.”

      Methods

      It's not clear to me which criteria were used for collecting these isolates (both prospective and retrospective). I understand that some of the data are described in more detail in Lebreton et al but I did not find the specific criteria for the collection of the isolates and I imagine that these might differ if different facilities. Would it be possible to comment on that and add a short paragraph in the Methods section?

      Thank you. This lack of clarity was also raised by other reviewers, and we have revised the manuscript to indicate that: 1/MDR isolates only (Magiorakos et al PMID: 21793988) were collected from 2011-2020 with the same criteria for all facilities although compliance was variable through time and between facilities; and 2/ starting in 2021 all P. aeruginosa isolates, irrespective of their susceptibility profile, were collected from Facility A

      The data comes from a US Military hospital. Is this related to the US Veterans Affairs Healthcare system? Is there more detailed information about the demographics of the patient population?

      Facility A is part of the Military Health System (MHS) which provides care for active service members and their families. This is distinct from the US Veterans Affairs Healthcare system. Only limited patient data was accessible to us as this study was done as part of our public health surveillance activities. Patient age (avg. 57.2 +/- 21.0) and gender (ratio male/female 1.7) are provided in the revised manuscript. 

      Line 384ff: The origin of infection was inferred based on the SNP threshold and epidemiological links. However, recombination events can complicate the interpretation of SNP data. Have the authors attempted to account for this?

      Thank you. We agree that recombination events can complicate the interpretation of SNP data. We used Gubbins v2.3.1 to filter out recombination from the core SNP alignment, as indicated in the revised manuscript.

      The authors' definition of environment-to-patient transmission seems conservative (nearly identical strain and no known temporal overlap for > 365 days). Have the authors changed the threshold, performed sensitivity analyses, and tested how this would affect their results?

      Indeed, acknowledging that fixed thresholds have limitations in their ability to accurately predict the origin of infections, we took a conservative approach to favor specificity as our goal was simply to establish that cases of environment-to-patient transmission did happen. In the absence of a truth set, we have not performed sensitivity analysis, but we are conducting a follow-up study to compare inferences from MCMC models to our original predictions. This limitation is now discussed in the revised manuscript.

      The authors don't seem to incorporate the role of healthcare workers in the transmission process. Could they comment on this? I am assuming that environment-to-patient transmission could either be directly from the environment to the patient or via a healthcare worker. I think it's fine to make simplifying assumptions here but it would be great if this was explicitly described.

      Thank you for this suggestion. We have not sampled the hands of healthcare workers in this study. As a result, the reviewer is correct to say that we made the simplifying assumption that healthcare workers would be possible intermediates in either environment-topatient or patient-to-patient transmissions, as previously described by others (PMID: 8452949). This limitation is now discussed in the revised manuscript.

      Page 5, line 100: What does "all vs all" mean? Based on the supplement, I assume it's the pairwise distance and then averaged across all of those. It would improve the readability of the manuscript if the authors could briefly define this term and then maybe refer to Table S1.

      Thank you. We have created Fig.S2 and revised the manuscript to state that ST-621 isolates from facility A belonged to the same outbreak clone with a distance (averaged all vs all pairwise comparison) of just 38 single nucleotide polymorphisms (SNPs), and an IQR of 19 (Fig. S2, Table S1).

      Figure 1D: It would be interesting to see additional figures in the supplement on the percentage of sequenced isolates per year and whether it varies across the different sources/sites. Is there any information on which isolates were chosen for sequencing?

      Lack of clarity in the sampling/sequencing scheme was raised by multiple reviewers and we have provided a thorough response to earlier comments. We also have revised the material and methods section accordingly. Finally, we have created Fig. S3 to show the percentage of sequenced isolates per year across different sources/sites, as suggested by the reviewer. No noticeable patterns were observed. 

      It seems like only a subset of all clinical isolates were sequenced. Would it be possible that SC2 was present already earlier but not picked up until a certain date?

      Although all isolates received by the MRSN were sequenced, compliance varied through time so it is true that not all clinical isolates were sequenced between 2011-2019. As such, we fully agree with this hypothesis and discuss this possibility as BEAST analysis placed the origin of SC2 in 2004 while the first detection of an SC2 isolate was in December 2012. This limitation is now discussed in the revised manuscript.

      Could the authors elaborate on whether the isolates resulted from single-colony picks? Is it possible that the different absence of a subclone is due to the fact that they picked only a colony?

      Yes, the isolates resulted from single-colony picks except when the presence of different colony morphologies was noted. In the latter, representative isolates for each colony morphologies were processed. We have revised the methods to make that clear.

      Figure 2: It is difficult to see which nodes belong to which patient due to the small font size. I wonder if it was possible to color the nodes for each patient, to make it more readable.

      We tried coloring the nodes but with > 60 distinct patients/colors we decided it did not improve clarity. We have revised figure 2 to increase the font size.  

      Page 7-8, lines 154-155: Did the authors check whether there were isolates of the same strain (that were found in the environment) present in other patients elsewhere in the ward?

      Yes. In rare cases, we observed virtually genetically identical isolates from two patients collected in different wards. Because we only have access to clinical isolate data (collected from patient X in ward Y) and do not have access to patient data (admission/discharge date, wards, rooms, etc.), we do not know but cannot exclude that patients overlap in a room prior to the sampling of their P. aeruginosa isolates. We designed our fixed thresholds to be conservative. As a result, in this analysis, these cases are labelled as “undetermined”.  

      Page 8: Do the authors have any information on antibiotic use during this timeframe? From the discussion, it seems like there is no patient-level prescription data. Is there any data on overall trends? How were trends in antibiotic use correlated with trends in antibiotic resistance?

      Unfortunately, patient-level prescription data (or any other data not linked to the bacterial specimens) was not accessible to us as this study was done as part of our public health surveillance activities.

      To infer the origin of infection, the authors used a static method with fixed thresholds and definitions. This study does not provide any uncertainty with their estimates. Maybe the authors could add a sentence in the discussion section that MCMC methods to infer transmission trees incorporating WGS could provide these estimates. These methods have not been applied to PA a lot but two examples where MCMC methods have been used without WGS (though the definition of environmental contamination may differ between these studies and this study).

      https://doi.org/10.1186/s13756-022-01095-x

      https://doi.org/10.1371/journal.pcbi.1006697

      Thank you for this great suggestion. We have revised the manuscript to include a discussion on the limitations of fixed thresholds to infer transmission chains/origins, and to discuss existing alternatives including MCMC methods. 

      Line 322-323: This sentence is a bit vague since not all of these HAI are due to P. aeruginosa. I would suggest citing a number that is specific to PA.

      Thank you. While our paper shows a particular example of protracted P. aeruginosa outbreak, the roll-out of routine WGS surveillance in the clinic will help prevent hospital-associated drug-resistant infections for more than this species. We believe that broadening the scope in the last sentence of the manuscript is important and we decline to revise as suggested.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This report addresses a compelling topic. However, I have significant concerns, which necessitate a reassessment of the report's overall value.

      Anatomical Specificity and Stimulation Site:

      While the authors clarify that the ventral MGB (MGv) was the intended stimulation target, the electrode track (Fig. 1A) and viral spread (Fig. 2E) suggest possible involvement of the dorsal MGB (MGd) and broader area. Given that MGv-AI and MGd-AC pathways have distinct-and sometimes opposing-effects on plasticity, the reported LTP values (with unusually small standard deviations) raise concerns about the specificity of the findings. Additional anatomical verification would help resolve this issue.

      We thank the reviewer for highlighting the importance of anatomical specificity in MGv targeting. In the revised manuscript, we have taken several steps to address these issues:

      (1) Higher-magnification histology has been added to Figure 1A, clearly identifying the electrode tip localized within the MGv.

      (2) Figure 2E has been replaced with a new image showing viral expression largely confined to MGB, with minimal spread to surrounding structures.

      (3) In the Discussion, we explicitly acknowledge that although targeting was guided by stereotaxic coordinates and histological confirmation, some viral spread throughout the MGB occurred. We also discuss the possibility that both MGv-A1 and MGd-AC pathways may contribute to the recorded responses, which could influence the observed plasticity, as previously suggested by the reviewer.

      These additions and acknowledgments are now incorporated to ensure the reader can interpret the data with full consideration of anatomical targeting limitations.

      Results section:

      “Higher-magnification histology confirmed accurate MGv targeting (Figure 1A, lower-middle panel)’”

      Discussion section:

      “Although our experiment targeting the MGv was guided by stereotaxic coordinates and verified post hoc, we acknowledge potential contributions from non-lemniscal medial geniculate nucleus dorsal (MGd) projections. Anatomical and physiological evidence indicates that MGv-AC projections provide rapid, frequency‑specific, tonotopically organized excitation, whereas MGd pathways target higher‑order auditory cortex with broader tuning, less precise tonotopy, longer response latencies, and greater context‑dependence, features that can differentially shape cortical sensory integration and plasticity (Lee and Sherman, 2010; Smith et al., 2012; Ohga et al., 2018; Lee, 2015; Hu, 2003). While the co-recruitment of lemniscal and non-lemniscal inputs may enhance the generality of our CCK-dependent mechanism, the differing response characteristics of these pathways suggest subtle differences in their relative engagement in the observed plasticity. Future pathway-specific manipulations will help clarify their respective contributions”

      Lee, C.C., and Sherman, S.M. (2010). Topography and physiology of ascending streams in the auditory tectothalamic pathway. Proceedings of the National Academy of Sciences 107, 372-377. doi:10.1073/pnas.0907873107.

      Smith, P.H., Uhlrich, D.J., Manning, K.A., and Banks, M.I. (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. Journal of Comparative Neurology 520, 34-51.

      Ohga, S., Tsukano, H., Horie, M., Terashima, H., Nishio, N., Kubota, Y., Takahashi, K., Hishida, R., Takebayashi, H., and Shibuki, K. (2018). Direct Relay Pathways from Lemniscal Auditory Thalamus to Secondary Auditory Field in Mice. Cerebral Cortex 28, 4424-4439. 10.1093/cercor/bhy234.

      Lee, C.C. (2015). Exploring functions for the non-lemniscal auditory thalamus. Frontiers in Neural Circuits 9, 69.

      Hu, B. (2003). Functional organization of lemniscal and nonlemniscal auditory thalamus. Experimental Brain Research 153, 543-549. 10.1007/s00221-003-1611-5.

      Figure legend section:

      “Post-hoc histology at higher magnification (lower-middle) shows the electrode tip confined within the MGv. White lines delineate the MGv/MGd border based on cytoarchitectonic landmarks.”

      Statistical Rigor and Data Variability:

      The remarkably low standard deviations in LTP measurements are unexpected based on established variability in thalamocortical plasticity. The authors' response confirms these values are accurate, but further justification, such as methodological controls or replication-would bolster confidence in these results. Additionally, the comparison of in vivo vs. in vitro LTP variability requires more substantive support.

      We appreciate the reviewer's concern regarding the unusually small variability. We would like to clarify that the error bars in our figures represent Standard Error of the Mean (SEM) rather than Standard Deviations (SD). As SEM is derived from the SD while incorporating sample size, it is inherently smaller than SD, which may have led to the impression of unrealistically low variability. This has now been explicitly clarified in the figure legends and Methods.

      To illustrate the raw variability, we have added Supplementary Figure S1E showing unaveraged fEPSP slopes compare to SEM, corresponding to Figure S1C. This addition ensures transparency and allows readers to directly assess the quality and consistency of our recordings.

      Regarding the comparison between in vivo and in vitro LTP variability:

      We agree that clarifying the basis of our in vivo vs. in vitro variability comparison is important. For example, in Chen et al., 2019, using identical LTP induction protocols (Fig. J), the SED of in vitro slice measurements (Fig. K) was substantially larger than that of in vivo recordings (Fig. L).

      This difference likely reflects:

      (1) In vitro: neighboring data points within a single experiment are highly correlated; variability across experiments is large due to heterogeneous sensitivity to LTP induction (10–200% increasement).

      (2) In vivo: lower correlation between neighboring data points, but each is averaged from 12 recordings over 2 min, reducing cross-trial variability; sensitivity to LTP induction is less variable across experiments (5–60% changes).

      We hope that these clarifications and additional data address the reviewer’s concerns regarding statistical rigor and data variability.

      Methods section:

      “The slopes of the evoked fEPSPs were calculated and normalized using a customized MATLAB script, and the group data were plotted as mean ± Standard Error of the Mean (SEM).”

      “All data are presented as mean ± SEM. Error bars and shaded areas represent SEM. Here, n represents the number of stimulation-recording sites or and N represents the number of animals in each experiment. At each time point, fEPSPs were averaged across 12 consecutive trials (2 min) to reduce within-experiment fluctuation. Normalized time courses were then used for repeated-measures analyses.”

      Figure legend section:

      “Data are mean ± SEM; error bars indicate SEM.”

      “(E) Unaveraged fEPSP slopes are shown for each time point, with individual data points corresponding to all sites included in Fig. 1C; mean ± SEM overlays are shown in black. Note that all individual data points are displayed in this figure, whereas in Figure S1C, only the averaged values are shown.”

      Viral Targeting and Specificity:

      The manuscript does not clearly address whether cortical neurons were inadvertently infected by AAV9. Given the potential for off-target effects, explicit confirmation (e.g., microphotograph of stimulation site) would strengthen the study's conclusions.

      We appreciate the request for quantitative confirmation of off-target cortical infection. We clarify that our histological verification was conducted by systematic sampling rather than exhaustive quantification. Under the same sampling procedure, we did not detect tdTomato-positive cortical somata after AAV9‑Syn‑ChrimsonR‑tdTomato injections into the MGB, whereas we observed rare EYFP-positive cortical somata after AAV9‑EF1a‑DIO‑ChETA‑EYFP (median < 1 cell per 0.4 × 0.4 mm² section, Supplementary Figure S1E). Although these observations do not constitute a formal statistical estimate, they were consistent across sampled sections and are in line with the low-level trans-synaptic transfer reported for AAV9. We have discussed their potential implications for data interpretation in the Discussion.

      We hope these clarifications and the newly presented histological evidence address the reviewer’s concerns and further strengthen the rigor of our study.

      Discussion section:

      “Another potential limitation of our study is the trans-synaptic transfer property of AAV9 (Figure S1F). To mitigate this risk, we carefully control the injection volume, rate, and viral expression time, while also verifying expression post-hoc. Systematic sampling histological analysis detected no tdTomato-positive cortical somata in the ACx (Figure 2E lower panel), whereas rare EYFP-positive cortical somata were observed after AAV9-EF1a-DIO-ChETA-EYFP injections (median < 1 cell in 0.4 × 0.4 mm2 section, Figure S1F, corresponds to Figure 2A upper-middle panel). These construct‑dependent observations align with occasional low‑level trans‑synaptic transfer reported for AAV9 (Zingg et al., 2017) and indicate that off‑target cortical infection was negligible for ChrimsonR and exceedingly rare for ChETA under our experimental conditions.”

      Zingg, B., Chou, X.L., Zhang, Z.G., Mesik, L., Liang, F., Tao, H.W., and Zhang, L.I. (2017). AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron 93, 33-47. 10.1016/j.neuron.2016.11.045.

      Figure legend:

      “Representative histological images demonstrating low-level transsynaptic spread following AAV9-EF1a-DIO-ChETA-EYFP injection into the MGv. Rare EYFP-positive cortical neurons were observed (median < 1 cell per 0.4 × 0.4 mm² section). Scale bar: 100 µm.”

      Integration of Prior Literature:

      The discussion of existing work is adequate but could be more comprehensive. A deeper engagement with contrasting findings would provide better context for the study's contributions.

      We appreciate the reviewer’s suggestion to engage more deeply with contrasting findings. In the revised Introduction and Discussion, we have:

      (1) Refocused the historical context toward adult auditory thalamocortical plasticity and explicitly contrasted it with visual and somatosensory cortices, while adult ACx exhibits weaker and more gated NMDAR dependence.

      (2) Positioned CCK–CCKBR signaling as a permissive/gating mechanism that can complement or partially compensate for postsynaptic NMDAR signaling, potentially reconciling variability across cortical areas and life stages.

      (3) Clarified the potential differential contributions of lemniscal (MGv) and non‑lemniscal (MGd) streams to plasticity expression and variability, acknowledging pathway-specific response properties.

      These additions are now integrated in the Introduction (paragraphs 2–3) and Discussion (sections “CCK Dependence of Thalamocortical Neuroplasticity in the ACx” and “Developmental and Age‑Dependent CCK‑Mediated Plasticity”), providing a more comprehensive and balanced context for our findings.

      Introduction section:

      “However, converging evidence shows that thalamocortical inputs retain a capacity for experience-dependent modification in adulthood. Sensory enrichment or deprivation can gate or reinstate thalamocortical plasticity. In the adult ACx, pairing sounds with neuromodulatory drive can reshape cortical representations. In vivo high-frequency stimulation (HFS) of dorsal lateral geniculate nucleus (LGN) or medial geniculate body (MGB) induces LTP in sensory cortices and has been linked to perceptual learning beyond the critical period. Notably, auditory thalamocortical plasticity appears less dependent on NMDA receptors compared to other cortical regions. The mechanisms underlying thalamocortical plasticity in the mature brain remain poorly understood.

      Cholecystokinin (CCK) and its receptor CCK-B receptor (CCKBR) are well positioned to influence thalamocortical transmission: Cck mRNA is abundant in MGB neurons and CCKBR is enriched in layer IV of ACx, the principal thalamorecipient layer.”

      Discussion section:

      “These findings suggest a potential involvement of CCK in thalamocortical plasticity. Our data extend this framework by identifying CCK–CCKBR signaling as a permissive modulator of adult thalamocortical LTP.”

      “We propose that CCKBR activation may trigger intracellular calcium release and AMPAR recruitment in parallel to, or partially compensating for,independently of postsynaptic NMDAR signaling, while the complementarity of CCKBR and NMDARs may contribute to robust thalamocortical plasticity. This complementary arrangement may reconcile differences across developmental stages and cortical areas, and highlights neuropeptidergic signaling as a lever to re-enable adult thalamocortical plasticity.

      Notably, exogenous CCK alone failed to induce LTP in the absence of accompanying stimulation (Figure S2A and S2B), emphasizing that CCK function as a modulator rather than a direct initiator of LTP. Activation of the thalamocortical pathway is also essential for LTP induction. Although our experiment targeting the MGv was guided by stereotaxic coordinates and verified post hoc, we acknowledge potential contributions from non-lemniscal medial geniculate nucleus dorsal (MGd) projections. Anatomical and physiological evidence indicates that MGv-AC projections provide rapid, frequency‑specific, tonotopically organized excitation, whereas MGd pathways target higher‑order auditory cortex with broader tuning, less precise tonotopy, longer response latencies, and greater context‑dependence, features that can differentially shape cortical sensory integration and plasticity. While the co-recruitment of lemniscal and non-lemniscal inputs may enhance the generality of our CCK-dependent mechanism, the differing response characteristics of these pathways suggest subtle differences in their relative engagement in the observed plasticity. Future pathway-specific manipulations will help clarify their respective contributions. Another potential limitation of our study is the trans-synaptic transfer property of AAV9 (Figure S1F). To mitigate this, we carefully controlled the injection volume, rate, and viral expression time, and conducted post-hoc histological analyses to minimize off-target effects, thereby reducing the likelihood of trans-synaptic transfer confounding the interpretation of our findings.”

      Therapeutic Implications:

      The authors' discussion of therapeutic potential is now appropriately cautious and well-reasoned.

      Conclusion:

      While the study presents intriguing findings, the concerns outlined above must be addressed to fully establish the validity and impact of the results. I appreciate the authors' efforts thus far and hope they can provide additional data or clarification to resolve these issues. With these revisions, the manuscript could make a valuable contribution to the field.

      Reviewer #2 (Public review):

      Summary:

      This work used multiple approaches to show that CCK is critical for long-term potentiation (LTP) in the auditory thalamocortical pathway. They also showed that the CCK mediation of LTP is age-dependent and supports frequency discrimination. This work is important because is opens up a new avenue of investigation of the roles of neuropeptides in sensory plasticity.

      Strengths:

      The main strength is the multiple approaches used to comprehensively examine the role of CCK in auditory thalamocortical LTP. Thus, the authors do provide a compelling set of data that CCK mediates thalamocortical LTP in an age-dependent manner.

      Weaknesses:

      There are some details that should be addressed, primarily regarding potential baseline differences in comparison groups. The behavioral assessment is relatively limited, but may be fleshed out in future work.

      We appreciate the reviewer’s suggestion regarding potential baseline differences. In our study, all groups underwent harmonized procedures, including identical exposure, timing, and acquisition parameters. Group allocation and data collection were performed under standardized conditions. For electrophysiology, baseline fEPSP measures and stimulation intensities were calibrated per site using consistent input-output procedures, with analyses based on normalized slopes relative to each site’s own baseline. For behavior, animals from the same litter served as both experimental and control groups, matched for handling conditions; startle/PPI data were acquired using identical hardware and timing settings. While no additional post hoc re-processing was performed, we have clarified these controls in the Methods to enhance transparency.

      We agree that the behavioral assessment is intentionally focused and does not encompass broader auditory perceptual functions (e.g., temporal processing). We now explicitly state this limitation and propose future studies to examine temporal acuity and cell-type-specific manipulations. These experiments will clarify how CCK-dependent thalamocortical plasticity generalizes to other perceptual domains.

      Reviewer #3 (Public review):

      Summary:

      Cholecystokinin (CCK) is highly expressed in auditory thalamocortical (MGB) neurons and CCK has been found to shape cortical plasticity dynamics. In order to understand how CCK shapes synaptic plasticity in the auditory thalamocortical pathway, they assessed the role of CCK signaling across multiple mechanisms of LTP induction with the auditory thalamocortical (MGB - layer IV Auditory Cortex) circuit in mice. In these physiology experiments that leverage multiple mechanisms of LTP induction and a rigorous manipulation of CCK and CCK-dependent signaling, they establish an essential role of auditory thalamocortical LTP on the co-release of CCK from auditory thalamic neurons. By carefully assessing the development of this plasticity over time and CCK expression, they go on to identify a window of time that CCK is produced throughout early and middle adulthood in auditory thalamocortical neurons to establish a window for plasticity from 3 weeks to 1.5 years in mice, with limited LTP occurring outside of this window. The authors go on to show that CCK signaling and its effect on LTP in the auditory cortex is also capable of modifying frequency discrimination accuracy in an auditory PPI task. In evaluating the impact of CCK on modulating PPI task performance, it also seems that in mice <1.5 years old CCK-dependent effects on cortical plasticity is almost saturated. While exogenous CCK can modestly improve discrimination of only very similar tones, exogenous focal delivery of CCK in older mice can significantly improve learning in a PPI task to bring their discrimination ability in line with those from young adult mice.

      Strengths:

      (1) The clarity of the results, along with the rigor multi-angled approach, provide significant support for the claim that CCK is essential for auditory thalamocortical synaptic LTP. This approach uses a combination of electrical, acoustic, and optogenetic pathway stimulation alongside conditional expression approaches, germline knockout, viral RNA downregulation and pharmacological blockade. Through the combination of these experimental configures the authors demonstrate that high-frequency stimulation-induced LTP is reliant on co-release of CCK from glutamatergic MGB terminals projecting to the auditory cortex.

      (2) The careful analysis of the CCK, CCKB receptor, and LTP expression is also a strength that puts the finding into the context of mechanistic causes and potential therapies for age-dependent sensory/auditory processing changes. Similarly, not only do these data identify a fundamental biological mechanism, but they also provide support for the idea that exogenous asynchronous stimulation of the CCKBR is capable of restoring an age-dependent loss in plasticity.

      (3) Although experiments to simultaneously relate LTP and behavioral change or identify a causal relationship between LTP and frequency discrimination are not made, there is still convincing evidence that CCK signaling in the auditory cortex (known to determine synaptic LTP) is important for auditory processing/frequency discrimination. These experiments are key for establishing the relevance of this mechanism.

      Weaknesses:

      (1) Given the magnitude of the evoked responses, one expects that pyramidal neurons in layer IV are primarily those that undergo CCK-dependent plasticity, but the degree to which PV-interneurons and pyramidal neurons participate in this process differently is unclear.

      We agree with the reviewer that the relative contributions of pyramidal neurons and PV-interneurons to CCK-dependent thalamocortical plasticity remain to be determined. Our recordings primarily reflected excitatory postsynaptic activity from layer IV pyramidal neurons, given the fEPSP metrics used. As PV-interneurons are essential in shaping cortical inhibition and temporal precision, they may also be modulated by CCK release from thalamocortical inputs. We have explicitly acknowledged this limitation in the Discussion section of the manuscript and propose that future studies should employ cell-type-specific recording or manipulation approaches to dissect the respective roles of inhibitory and excitatory neuronal populations in CCK-dependent thalamocortical plasticity. We appreciate the reviewer’s suggestion and believe this is a valuable direction for ongoing research.

      (2) While these data support an important role for CCK in synaptic LTP in the auditory thalamocortical pathway, perhaps temporal processing of acoustic stimuli is as or more important than frequency discrimination. Given the enhanced responsivity of the system, it is unclear whether this mechanism would improve or reduce the fidelity of temporal processing in this circuit. Understanding this dynamic may also require consideration of cell type as raised in weakness #1.

      We acknowledge that the current study primarily examined frequency discrimination and did not directly assess temporal processing. Enhanced network responsivity could have variable effects on temporal precision, depending on the balance between excitation and inhibition. PV-interneurons, in particular, are known to support temporal fidelity in auditory processing (Nocon et al., 2023; Cai et al., 2018). We discussion that future work should investigate how CCK modulation influences temporal coding at both the circuit and single-cell level, and whether such changes align with or diverge from the mechanisms underlying frequency discrimination improvements.

      (3) In Figure 1, an example of increased spontaneous and evoked firing activity of single neurons after HFS is provided. Yet it is surprising that the group data are analyzed only for the fEPSP. It seems that single neuron data would also be useful at this point to provide insight into how CCK and HFS affect temporal processing and spontaneous activity/excitability, especially given the example in 1F.

      We appreciate the reviewer’s suggestion. While we recorded single-unit activity during HFS protocols, long-term stability over >1.5 hours was less consistent compared to fEPSP measurements, leading to higher variability in spike-based metrics. We therefore used fEPSPs as our primary quantitative measure for robustness. We agree, however, that single-neuron data could yield valuable complementary insights. In future experiments combining stable single-unit recording with synaptic measurements will be conducted to better link cellular excitability and network plasticity.

      (4) The circuitry that determines PPI requires multiple brain areas, including the auditory cortex. Given the complicated dynamics of this process, it may be helpful to consider what, if anything, is known specifically about how layer IV synaptic plasticity in the auditory cortex may shape this behavior.

      We agree that PPI involves multiple cortical and subcortical nodes. In our paradigm, layer IV neurons receive segregated MGv inputs, high-frequency activation of thalamocortical projections induces robust synaptic plasticity in layer IV. The potentiation at these synapses could amplify the cortical representation of weak prepulses, facilitating their detection and enhancing PPI performance. This interpretation is consistent with prior work showing that local CCK infusion combined with auditory stimuli can augment cortical responses (Li et al., 2014). We have expanded the Discussion to highlight that in aged animals, where baseline PPI performance is often reduced due to degraded auditory inputs (Ouagazzal et al., 2006; Young et al., 2010), restoring thalamocortical plasticity via CCK may partially compensate for sensory gating deficits. We further note that the exact contribution of layer IV to PPI circuitry warrants future investigation using pathway-specific perturbations.

      Comments on revisions:

      The manuscript is much improved and many of the issues or questions have been addressed. Ideally, evidence for the degree of transsynaptic spread for AAV9-Syn-ChrimsonR-tdTomato would also be provided in some form since in the authors' response in sounds like some was observed, as expected.

      We thank the reviewer for this important point and for the opportunity to clarify. As requested, we have carefully examined the possibility of transsynaptic spread in our experiments:

      We clarify that our histological verification was conducted by systematic sampling rather than exhaustive quantification. Under the same sampling procedure, we did not detect tdTomato-positive cortical somata after AAV9‑Syn‑ChrimsonR‑tdTomato injections into the MGB, whereas we observed rare EYFP-positive cortical somata after AAV9‑EF1a‑DIO‑ChETA‑EYFP (median < 1 cell per 0.4 × 0.4 mm² section, see Figure 2A and Figure S1F), consistent with occasional low-level transsynaptic spread reported in the literature.

      We have updated the Discussion sections to clearly report these findings, and to emphasize the potential for vector- and construct-dependent variability in transsynaptic spread. We also explicitly acknowledge this technical limitation and discuss its implications for data interpretation.

      We hope these clarifications and additions address the reviewer’s concern regarding viral specificity and transsynaptic spread.

      Discussion section:

      “Another potential limitation of our study is the trans-synaptic transfer property of AAV9 (Figure S1F). To mitigate this risk, we carefully control the injection volume, rate, and viral expression time, while also verifying expression post-hoc. Systematic sampling histological analysis detected no tdTomato-positive cortical somata in the ACx (Figure 2E lower panel), whereas rare EYFP-positive cortical somata were observed after AAV9-EF1a-DIO-ChETA-EYFP injections (median < 1 cell in 0.4 × 0.4 mm2 section, Figure S1F, corresponds to Figure 2A upper-middle panel). These construct‑dependent observations align with occasional low‑level trans‑synaptic transfer reported for AAV9 (Zingg et al., 2017) and indicate that off‑target cortical infection was negligible for ChrimsonR and exceedingly rare for ChETA under our experimental conditions.”

      Zingg, B., Chou, X.L., Zhang, Z.G., Mesik, L., Liang, F., Tao, H.W., and Zhang, L.I. (2017). AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron 93, 33-47. 10.1016/j.neuron.2016.11.045.

      Figure legend:

      " Representative histological images demonstrating low-level transsynaptic spread following AAV9-EF1a-DIO-ChETA-EYFP injection into the MGv. Rare EYFP-positive cortical neurons were observed (median < 1 cell per 0.4 × 0.4 mm² section). Scale bar: 100 µm."

      Reviewer #1 (Recommendations for the authors):

      Thank you for your efforts in revising the manuscript. While progress has been made, I have a few remaining concerns that I hope you can address to further strengthen the study.

      Focus of the Introduction:

      Auditory thalamocortical plasticity is known to be NMDA-dependent, albeit with weaker dependence during early development. Given that this work examines thalamocortical LTP in young adult and aged mice, I recommend refining the Introduction to place greater emphasis on auditory thalamocortical plasticity in the adult brain. The current discussion of somatosensory plasticity during early development, while interesting, seems less directly relevant to the present study. A sharper focus on the auditory system would better frame your research questions.

      We thank the reviewer for this constructive suggestion. We have revised the Introduction to emphasize adult auditory thalamocortical plasticity and to streamline content less directly related to our study. Specifically:

      (1) We now foreground evidence that thalamocortical inputs retain experience-dependent plasticity beyond the critical period in adult ACx, including neuromodulatory pairing, HFS-induced LTP, and experience-dependent reinstatement.

      (2) We explicitly note that adult auditory thalamocortical plasticity is more weakly NMDAR-dependent than in other cortices, thereby motivating our focus on CCK–CCKBR signaling as a permissive mechanism for adult LTP.

      (3) We have condensed the discussion of somatosensory plasticity during early development to a brief background and shifted the focus to adult auditory mechanisms and knowledge gaps that directly frame our research questions.

      These changes appear in the revised Introduction (paragraphs 2–3), which now provide a sharper rationale for investigating CCK‑dependent thalamocortical LTP in young adult and aged mice.

      Introduction section:

      “However, converging evidence shows that thalamocortical inputs retain a capacity for experience-dependent modification in adulthood. Sensory enrichment or deprivation can gate or reinstate thalamocortical plasticity. In the adult ACx, pairing sounds with neuromodulatory drive can reshape cortical representations. In vivo high-frequency stimulation (HFS) of dorsal lateral geniculate nucleus (LGN) or medial geniculate body (MGB) induces LTP in sensory cortices and has been linked to perceptual learning beyond the critical period. Notably, auditory thalamocortical plasticity appears less dependent on NMDA receptors compared to other cortical regions. The mechanisms underlying thalamocortical plasticity in the mature brain remain poorly understood.

      Cholecystokinin (CCK) and its receptor CCK-B receptor (CCKBR) are well positioned to influence thalamocortical transmission: Cck mRNA is abundant in MGB neurons and CCKBR is enriched in layer IV of ACx, the principal thalamorecipient layer.”

      Anatomical Specificity of MGv Targeting:

      The mouse MGv is a small and deep structure, and precise targeting is critical given the functional differences between MGv and MGd pathways. In the current figures:

      Fig. 1A suggests the electrode track may have approached the MGd.

      Fig. 2E indicates some viral spread beyond the MGB.

      Since MGv-AI and MGd-AC pathways exhibit distinct (and sometimes opposing) effects on plasticity, I encourage you to provide additional clarification or verification of the stimulated/infected regions. This would greatly enhance the interpretability of your LTP data.

      Please see above.

      Data Variability and Transparency:

      The reported thalamocortical LTP values exhibit remarkably small standard deviations, which is somewhat unexpected given typical experimental variability in such measurements. To address this concern, it would be helpful to include example raw traces of the recorded LTP (e.g., in a supplementary figure). This would allow readers to better evaluate the data quality and consistency.

      Please see above.

      Reviewer #2 (Recommendations for the authors):

      Overall, the authors did an excellent job of responding to our critiques, both in their direct responses and in the modified text. The modified text is also more readable than before. Two issues that the authors should consider addressing;

      (1) Unless I missed it, there is no commentary stated about the impact of using aged C57 mice, which lose their hearing, such that the effects seen in the older mice could be related to hearing loss rather than aging alone. Some discussion of this point should be made.

      We thank the reviewer for raising this important point. C57BL/6 mice are known to develop age-related hearing loss, which could potentially affect PPI performance in older animals. We note that in our internal screening we observed markedly reduced startle amplitudes and frequent negative PPI values in many mice >20 months, indicating severe auditory impairment. To minimize this confound a priori, we excluded mice older than 20 months and restricted the aged cohort to 17–19 months, which consistently exhibited robust startle responses and reliable PPI. While some degree of presbycusis may still be present in this age range in C57BL/6 mice, the improvement of PPI following CCK administration combined with acoustic exposure indicates that the auditory pathways remained sufficiently functional to support sensorimotor gating. In fact, the presence of partial hearing loss in these aged mice may have allowed us to better detect the beneficial effects of CCK, further highlighting its therapeutic potential for age-related deficits. The greater improvement in PPI observed in older mice —as compared to younger mice, whose PPI in control group is already high—likely reflect the combined effects of age-related hearing loss and CCK deficiency, with CCK-induced restoration of thalamocortical plasticity being the primary focus of our study. We have now added a discussion of this point in the revised manuscript.

      Discussion section:

      “In aged mice, PPI deficits are commonly observed due to impaired auditory processing. Notably, C57BL/6 mice exhibit age-related hearing loss (Johnson et al., 1997). Both age-associated changes in auditory function and CCK deficiency contribute to impaired sensory gating. The presence of partial hearing loss in aged mice may have facilitated the detection of CCK’s beneficial effects, further highlighting its therapeutic potential for age-related deficits. Our results suggest that enhanced thalamocortical plasticity mediated by CCK might partially compensate for these deficits by amplifying residual auditory signals in aged mice.”

      Johnson, K.R., Erway, L.C., Cook, S.A., Willott, J.F., and Zheng, Q.Y. (1997). A major gene affecting age-related hearing loss in C57BL/6J mice. Hearing Research 114, 83-92. https://doi.org/10.1016/S0378-5955(97)00155-X.

      (2) Minor point - I do not agree with the use of the term "ventral to bregma" to describe where the craniotomies were placed (e.g., line 599). The direction being described is more typically referred to as "lateral." If the authors prefer to use the term "ventral," perhaps additional clarification can be added.

      We thank the reviewer for pointing out this issue and apologize for any confusion. We agree that “ventral to bregma” is not the standard terminology and have revised the Methods section to use “below the temporal ridge”. We have also clarified that the craniotomy for accessing the auditory cortex was performed on the lateral aspect of the skull in rodents, just below the temporal ridge. We hope this revision resolves the ambiguity.

      Method section:

      “A craniotomy was performed over the temporal bone, as the auditory cortex is located on the lateral surface of the brain (coordinates: 1.5 to 3.0 mm below the temporal ridge and 2.0 to 4.0 mm posterior to bregma for mice; 2.5 to 6.5 mm below the temporal ridge and 3.0 to 5.0 mm posterior to bregma for rats) to access the auditory cortex.”

      “Six-week after CCK-sensor virus injection, a craniotomy was performed to access the auditory cortex at the temporal bone (1.5 to 3.0 mm below the temporal ridge and 2.0 to 4.0 mm posterior to bregma), and the dura mater was opened.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Strengths:

      The authors embarked on an ambitious journey to seek the answer regarding 3D genome changes predisposing to metastatic organotropism. The authors succeeded in the assembly of a comprehensive panel of breast cancer cell lines and the aggregation of the 3D genome structure data to conduct a hypothesis-driven computation analysis. The authors also achieved in including proper controls representing normal non-cancerous epithelium and the end organ of interest. The authors did well in the citation of relevant references in 3D genome organization and EMT.

      Weaknesses:

      (1) The authors should clearly indicate how they determine the patterns of spread of the breast cancer cell lines being utilized in this manuscript. How did the authors arrive at the conclusion that certain cell lines would be determined as "localized spread" and "metastatic tropism to the lung"? This definition is crucial, and I will explain why.

      It is indeed a critical point to clearly define and explain what qualifies as metastatic potential to particular organs in our system. Here, we intentionally limited our scope to metastasis that had occurred within the human system. Our cell lines are chosen based on their sites of origin and etiological history in the patients from which they were derived. For example, the cancer cell line BT474 was classified as “localized” because these cells were derived from a solid tumor in the breast itself. Meanwhile, MCF7 and T47D cell lines are considered lung metastatic because these cells were collected from the pleural effusion from the lung. We therefore model human organotropism from the breast to the lung by using cells that originated from infiltrative ductal carcinoma (human breast) but were collected from pleural effusions (human lung). We then use as a comparison a human lung cancer-derived cell line that was itself purified from a pleural effusion. In this way, we can compare the genome structure of a lung cancer cell in the lung environment to a breast cancer cell that has metastasized to the lung environment.

      In our revised version, we further clarify this definition in the text as well as in additional annotations in our supplemental table of all cell line information.

      Todd Golub's team from the Broad Institute of MIT and Harvard published "A metastasis map of human cancer cell lines" to exhaustively create a first-generation metastasis map (MetMap) that reveals organspecific patterns of metastasis. (By the way, this work was not cited in the reference in this manuscript.) The MetMap Explorer (https://depmap.org/metmap/vis-app/index.html) is a public resource that could be openly accessed to visualize the metastatic potential of each cell line as determined by the in vivo barcoding approach as described in the MetMap paper in the format of petal plots. 5 organs were tested in the MetMap paper, including brain, lung, liver, kidney, and bone. The authors would discover that some of the organ-specific metastasis patterns defined in the MetMap Explorer would be different from the authors' classification. For example, the authors defined MCF7 as a line as lung metastatic, and rightly so the MetMap charted a signal towards lung with low penetrance and low metastatic potential. The authors defined ZR751 as a line with localized spread, however, the MetMap charted a signal towards the kidney with low penetrance and low metastatic potential, the signal strength similar to the lung metastasis in MCF7. A similar argument could be made for T47D. The TNBC line MDA-MB-231 is indeed highly metastatic, however, in MetMap data, its metastasis is not only specific to the lung but towards all 5 organs with high penetrance and metastatic potential. The 2 lung cancer cell lines mentioned in this study, A549 and H460, the authors defined them as localized spread to the lung. However, the MetMap data clearly indicated that A549 and H460 are highly metastatic to all 5 organs with high penetrance and high metastatic potential.

      We acknowledge the valuable contributions of animal models in metastatic cancer studies, but we also want to avoid the potentially confounding variable of the animal microenvironment. The MetMap Explorer contains valuable information (and as part of our clarification on this point, we now cite the MetMap in the text), but the “metastatic potential of each cell line” for this tool is measured in a mouse environment. Knowing that a particular cell line, which originated from a human lung metastasis, can further metastasize to other organs in a mouse does not necessarily mean that those cells could do so in humans. The microenvironment responses to metastatic colonization recapitulate the events in wound repair, and these can differ among species (https://pubmed.ncbi.nlm.nih.gov/28916657/ https://pubmed.ncbi.nlm.nih.gov/39729995/ ). Further, the changes a cell needs to make to adapt to a new organ system in a mouse could be confounded by the changes needed to adapt to mouse conditions in general. Finally, migration from a site of ectopic injection may not mimic migration from an initial tumor site. These factors lead to well known cases where MetMap does not reflect the metastatic potential of cancers in humans. As a classic example, prostate cancer frequently metastasizes to bone in humans, and the PC3 cell line was derived from a bone metastatic prostate cancer. However, MetMap shows no evidence of PC3 being able to metastasize to bone in a mouse.

      We agree that the very best data would come from matched primary and metastatic tumors in the same human patient, but those data do not currently exist and generating them would require future work beyond the scope of this study.

      Since results will vary among different experimental models testing metastatic organotropism, (intracardiac injection was the metastasis model being adopted in the MetMap), the authors should state more clearly which experimental model system served as the basis for their definition of organ-specific metastasis. In my opinion, this is the most crucial first step for this entire study to be sound and solid.

      Taking all the above into account, in our revision, we have now included further clarification in the main text to more clearly explain how and why we chose the cell lines we did and what the advantages and limitations of this choice are.

      (2) Figure 1b: The authors found that "MDA-MB-231 cells were grouped with the lung carcinoma cells. This implies that the genome organization of this cell line is closer to that of lung cells than to other breast epithelial cell lines.". In fact, another TNBC line BT549 was also clustered under the same clade. So this clade consisted of normal-like and highly metastatic lines. Therefore, the authors should be mindful of the fact that the compartment features might not directly link to metastasis (or even metastatic organotropism).

      In figure 1b, the grouping that includes MDA-MB-231 (lung metastatic breast cancer) connected to A549, and H460 (lung cancer) occurs at a distance of about 0.2. If the clustering tree were cut at a distance of 0.26, 6 separate clusters would result: two clusters of Luminal subtypes (all labeled red), one that includes all healthy epithelial cells (both lung and breast, all labeled green), one that links two localized breast cancers, one that links MDA-MB-231 to lung carcinoma cell lines, and then BT549 by itself. So, while BT549 appears next to MDA-MB-231 along the horizontal axis, this is just coincidence of the representation: the dendrogram shows it is quite distant from all the other cell lines in this cluster according to compartment profile.

      So, it is only MDA-MB-231 that is very closely linked with the lung cancer cell types.

      It is true that the healthy lung cells (HTBE) are clustered separately and are more similar to normal/non tumorigenic breast epithelial cells (HMEC and MCF10A) than to any cancer cell type. This could suggest that there are aspects of the compartment pattern that represent any healthy epithelium as compared to cancer. What we find in the compartment profile, in both the clustering and the PCA analysis, is that compartment signatures contain information about cell properties on several overlapping levels: there is an aspect of the compartment profile that distinguishes healthy from cancerous cells, an aspect that distinguishes luminal cancers from other subtypes, a part that associates with organotropism, and an aspect that captures EMT status. The final compartment status is a composite of these numerous factors.

      We have clarified the text to indicate that we mean MDA-MB-231 clusters near lung cancer, not necessarily healthy lung cell models.

      (3) Figure 3: In the text, the authors stated, "To further investigate this result, we examined the transcription status of genes that changed compartment across the EMT spectrum and, conversely, the compartment status of genes that changed transcription (Fig. 3b, c, and d)". However, it was not apparent in the figure that the cell lines were arranged according to an EMT spectrum.

      To display these comparisons more clearly, we have now revised figure 3b, c, and d in two ways: First, we have defined the gene and cell line clustering by one set of data (for example, compartment identity in 3b) and then displayed the other data (gene expression) with all genes and cell lines in the same order. Therefore, for each column, genes and cell lines can be compared visually between top and bottom rows. Second, we have colored cell line names from purple to yellow according to their EMT scores as shown in Supplementary Figure 1a. This allows a visual indication of how the clustering separates cell lines by EMT status.

      Also, the clustering heatmaps did not provide sufficient information regarding the genes with concordant/divergent compartments vs transcription changes. It would be more informative if the authors could spend more effort in annotating these genes/pathways.

      We want to clarify that the genes plotted in the heatmaps in Figure 3 are also the genes whose functional enrichment we present in figures 1 and 2. So, the genes that segregate strongly based on A/B compartment (but not gene expression) in figure 3b are the same genes whose GO terms are annotated in Figure 1d. Likewise, the genes that segregate strongly based on gene expression, but not A/B compartment, in figure 3c and d are the same genes whose GO terms are annotated in Figure 2b. We have now made this connection clearer in the text.

      But, we also agree with the reviewer that it is important to explore a bit further the relationship between these divergent sets of genes. Our explorations have led to several observations:

      (1) In some cases, the compartment-segregated genes and the transcription-segregated genes are different members of the same pathways. In Author response image 1 below, for example, we show interactions (according to STRING) for genes from figure 3c that are highly expressed in the epithelial-like cell lines and are annotated as involved in epithelial development (green). We then added to the network genes from figure 3b that are specifically in the A compartment in the epithelial-like cell lines but not mesenchymal cell lines that are also annotated as involved in epithelial development (red). Most of these epithelial development genes that change expression are in the A compartment in all cell lines and therefore do not rely on spatial compartment changes for their regulation. But some additional epithelial development genes, which are interconnected in this same network, are changing compartments across the EMT spectrum. One example, FOXA1, is a key hub in the network and is known to be a pioneer transcription factor involved in development and differentiation. Controlling this gene at the level of spatial genome organization rather than local transcriptional control could be important in the stable cell fate changes that can happen with EMT.

      Author response image 1.

      (2) Overall, the set of genes that change compartments does not have as strong functional enrichment as the transcription change set of genes. This could indicate that some of the compartment changes that occur with EMT are not directly gene regulatory but rather enable an overall conformational change of the chromatin that is needed for the alterations in physical cell state or to accomplish long distance gene regulation changes.

      (3) Related to long distance gene regulation changes, we also see cases in which the gene that changes transcription but not compartment across EMT is adjacent to regions that switch compartments.

      A good example is TFF3 (yellow, Supplementary figure 1C). TFF3 is one of the genes that strongly segregates across EMT by transcription, being more highly expressed in epithelial-like (bottom 4 tracks) but not mesenchymal-like (top 4 tracks) cancers. Despite this differential expression, it is almost always in the A compartment across all cell lines. However, it is adjacent to regions that show strong compartment change EMT signatures. So, even though this specific gene region is not changing compartment, its regulation may be influenced by the entire region being Aassociated in epithelial-like but neighboring regions becoming B-associated in mesenchymal like cancers.

      TFF3 is expressed in normal breast epithelium and has been implicated as a biomarker for endocrine therapy response in breast cancer.

      Meanwhile, many genes that are in these compartment switching regions (BACE2, DSCAM, PDE9A) are not among the strongest expression signature genes.

      (4) Interestingly, some of the regions (such as the region shown in Supplementary figure 1C) that change compartment across the breast cancer spectrum overlap with regions that we found change compartment in the progression of prostate cancer, as shown in the string.db enrichment analysis below.

      Author response image 2.

      In our revised manuscript, we now include more of these explanations in the text and include the example offset compartment and transcription change region shown about as panel c of Supplementary Figure 1.

      (4) Figure 4: The title of the subheading of this section was 'Lung metastatic breast cancer cell lines acquire lung-like genome architecture". Echoing my comments in point 1, I am a bit hesitant to term it as "lung metastatic" but rather "metastatic' in general since cell lines such as MDA-MD-231 do metastasize to other organs as well. However, I do get the point that the definition of "lung metastasis" is derived from the common metastasis features among the cell lines here (MCF7, T47D, SKBR3, MDAMB-231). There might be another argument about whether the "lung" carcinoma cell lines can be considered "localized" since they are also capable of metastasizing to other organs.

      Rather than classifying cells on metastatic “potential” (as measured in a mouse), our cell lines are chosen based on their sites of origin and etiological history in the patients from which they were derived. Cancer cell lines called “lung metastasis” were collected from the pleural effusion from the human lung. Likewise, we call a cancer “localized” because it was taken from the tissue where the cancer originated, even if it might, if placed into a different context, be able to metastasize. We would argue that the genome structure features of the “localized” cancers reflect cancers that have not yet metastasized (even if they could in the future) while the “metastatic” cancers have already gone to a certain location (even if they could in theory have gone to a different location).

      In a way, what the authors probably were trying to leverage here is the "tissue" identity of that organ.

      Having said this, in addition to showing the "lung permissive changes", the authors should show the "breast identity conservation" as well. Because this section started to deal with the concept of "tissue/lineage identify", the authors should also clarify whether these breast cancer cell lines capable of making lung metastasis are also preserving their original tissue identity from the compartment features (which would most likely be the case).

      This is a great question. We have now more explicitly checked the proportions of genomic regions that change compartments to match lung vs. maintaining breast-specific compartment identity. The graphs in Supplementary Figure 2 begin with all genomic bins that have distinctive compartment identity between non-cancerous breast and lung epithelial cells. Then, the plots show what fraction of these tissue-specific bins change compartment to match lung vs. maintaining breast identity in each breast cancer cell line category. As we have shown in other graphs, particularly for switches to the A compartment, more bins change to match lung in the metastatic vs. primary site cell lines. In most cases, more than 50% of the tissue-specific bins shift to look more like lung.

      (5) Rest of the sections: The authors started to claim that the organ-specific metastasis permissive compartmental features mimic the destinated end organ. The authors utilized additional non-breast cancer cell lines (prostate cancer cell lines LNCaP as localized and DU145 as brain metastatic) in brain metastasis to strengthen this claim. (DU145 in MetMap again is highly metastatic to lung, brain, and kidney). However, this makes one wonder that for cell lines that are capable of metastasizing to multiple organ sites (eg. MDA-MB-231, DU145, A459, H460), does it mean that they all acquire the permissive features for all these organs? This scenario is clinically relevant in Stage 4 patients who often present with not only one metastatic lesion in one single organ but multiple metastatic lesions in more than one organ (eg. concomitant liver and lung metastasis). Do the authors think that there might be different clones having different tropism-permissive 3D genome features or there might be evolutionary trajectory in this?

      In my opinion, to further prove this point, the authors might need to consider doing in vivo experiments to collect paired primary and organ-specific metastatic samples to look at the 3D genome changes.

      We agree that an ideal experimental follow up to this study would be to collect paired metastatic and primary tumors, either in mouse xenograft or, even better, from patients. This is beyond the scope of what we can do for our current paper, but we have added a statement to the discussion of further experiments that would be required to clarify this point.

      (6) Technically, the study utilized public Hi-C data without generating new Hi-C data. The resolution of the Hi-C data for compartments was set at 250KB as the binning size indicating that the Hi-C data was at lower resolution so it might not be ideal to address other 3D genome architecture changes such as TADs or long-range loops. It is therefore unknown whether there might be permissive TAD/loop changes associated with organotropism and this is the limitation of this study.

      Our decision to focus on A/B compartmentalization rather than TAD or loop structure in this analysis was intentional and biologically motivated, rather than solely being a reflection of data resolution. Both compartments and topologically associated domains (TADs) are key parts of genome organization and disruption of these structures has the potential to alter downstream gene regulation, as shown by numerous studies. However, compartments have been found, more so than TADs, to be strongly associated with cell type and cell fate. Therefore, in this manuscript, we decided to focus only on the compartment organization changes between different healthy and cancerous cells as they are more likely to represent the stable alterations of the genome organization malignant transformations.

      (7) In the final sentence of the discussion the authors stated "Overall, our results suggest that genome spatial compartment changes can help encode a cell state that favors metastasis (EMT)". The "metastasis (EMT)" was in fact not clearly linked inside the manuscript. The authors did not provide a strong link between metastasis and EMT in their result description. It is also unclear whether the EMTassociated compartment identity would also correlate with the organotropic compartment identity.

      We agree that this statement involves too strong of an assumption. The literature on this topic is vast and complex, and while there is abundant evidence that pathways of EMT can play important roles in facilitating metastasis, there are other pathways at play in the metastatic process as well (https://journals.plos.org/Plosbiology/article?id=10.1371/journal.pbio.3002487). We have made a clearer statement about this in the text now.

      To address the question of whether the organotropic changes related to the EMT changes, we calculated the overlap between the genomic bins that strongly segregated cell lines in the compartment principal component analysis (PC1) with those that showed “organotropic” changes. As you can see in supplementary table 3, this overlap is actually very small, where only 3% of bins are important both for the EMT segregation of cell lines and organotropism.

      We have now included this overlap information as supplementary table 3 and have addressed this in the text.

      Reviewer #2 (Public review):

      Summary:

      This work addresses an important question of chromosome architecture changes associated with organotopic metastatic traits, showing important trends in genome reorganization. The most important observation is that 3D genome changes consistent with adaptations for new microenvironments, including lung metastatic breast cells exhibiting signatures of the genome architecture typical to a lung cell-like conformation and brain metastatic prostate cancer cells showing compartment shifts toward a brain-like state.

      Strengths:

      This work presents interesting original results, which will be important for future studies and biomedical implications of epigenetic regulation in norm and pathology.

      Weaknesses:

      The authors used publicly available data for 15 cell types. They should show how many different sources the data were obtained from and demonstrate that obtained results are consistent if the data from different sources were used.

      In our revised version, we have provided a clarified table of information about all the publicly available data used from all the cell lines, indicating the sources of the data. The 17 datasets used come from 8 different studies. So, indeed, the reviewer is correct that many different sources of data were used. To address the question of whether our results would be consistent if data from different sources were used, we created a comparison map of the A/B compartment profiles for data from multiple sources when it was available. You can see below that the Hi-C data from different sources for the same cell lines cluster quite closely and show high correlation and are well separated from different cell lines. So, we do not think that source batch effects play a major role in our results.

      Author response image 3.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      (1) Figure 1a: This figure could be re-formatted without the arrows. Arrows usually indicate upstreamto-downstream relationships along certain processes. Using arrows here would mislead people to think that the cell lines were derived from one another. The same could apply to the supplementary figures.

      We have now edited figure 1a to include lines linking cell lines, indicating conceptual relationships, rather than arrows, which would imply direct derivation.

      (2) Figure 1c: The PCA (PC2 axis) indeed seemed to separate the HER2 status quite well. One concern is MCF7, it is labeled as ERpos/HER2neg in MetMap but seems to be clustered as HER2pos in this study. Are they the same? (This again highlights the importance of cell line definition and annotation).

      It is a good point that MCF7, while generally considered HER2 negative (we indicate this negative status in Supplementary Table 1), falls near HER2 positive cells in PCA space. This indicates that PCA captures tendencies but is not a perfect classifier. In a high dimensional, complex system, it is expected that an unsupervised analysis such as this will not capture just one biological feature in a given principal component, and therefore something like HER2 status may not segregate perfectly. However, this analysis does suggest that MCF7 3D genome structure has features that are more similar to other HER2+ cell lines. This raises the interesting possibility that it may actually behave like HER2+ cells in some ways even while being HER2- itself. We have more clearly stated the MCF7 discrepancy in the text.

      Reviewer #2 (Recommendations for the authors):

      (1) The description of results can be shortened, to make it easier to read and understand.

      In our revision, we have tried to clarify where possible, but it was difficult to shorten without losing important caveats and context (especially to make important points emphasized by reviewer 1).

      (2) "100 most positive and negative eigenvalues for PC1" - please provide the correct description.

      We have altered this to make it clearer and more correct: “using the genes from the regions with the top 100 most positive and 100 most negative eigenvector loadings for this PC1”

    1. Author response:

      We were pleased to read the positive comments regarding our manuscript and thank the reviewers and editors for the constructive feedback which we believe will be very helpful to improve the current version of the manuscript.

      Prior to addressing all comments in a full response, we provide a response to three issues that were raised in this provisional plan for revision: validation of the tracking algorithm, biological replicates, and mosquito survival.

      (1) Validation of the tracking algorithm:

      Reviewer 2 mentions that there is "No external validation for the flight tracking algorithm using manual annotation". We will address this comment in our full response by creating a manually labelled dataset to validate our detection algorithm.

      However, we would like to point out two important points:

      i) Quantifying the accuracy of a detection algorithm using a manually annotated set is indeed common practice in deep/machine learning algorithms in which manually annotated data are used to train the algorithm, and another set of manually annotated data is used to validate it. However, our detection and tracking algorithm is based on conventional computer vision techniques (not using any deep learning) that have been in use for several decades. Given that these algorithms are completely transparent and deterministic (as opposed to deep learning algorithms that are difficult to dissect and are created using partly stochastic processes) it is not common practice to use human annotations for validation. However, to address Reviewer 2's comment we will provide validation metrics in our full response.

      ii) We furthermore would like to note that our main metrics of interest (e.g. fraction of mosquitoes flying) only depends on accurately detecting mosquitoes and quantifying movement, its accuracy is not affected by potential identity swaps (the typical bottleneck in tracking algorithms).

      (2) Replicates:

      Reviewer 3 states that "Most experiments are only done with single replicates". This statement is not accurate: In Figure 2 we used 3 independent biological replicates for 4 colonies, 2 of which are Aaa and 2 are Aaf. We indeed provide additional data for 6 more colonies using a single replicate. Combined this data set comprises 588 days of continuous recordings. For Figures 3 and 4 we have 2 replicates for each perturbation experiment. For Figure 5 we provided 3 replicates for the host-seeking experiments. As outlined, the vast majority of our experiments has multiple replicates. We realize this may not have been described clearly enough in the manuscript, we will clarify this in the revised manuscript.

      (3) Mosquito survival:

      Below we provide survival data for the data shown in Figures 1 - 4, we will include this data as supplementary material. Overall we note here that mortality for all experiments was similar to the 'baseline' mortality we observe in our standard colony maintenance procedures. After three weeks, we typically observed that 70% of mosquitoes were still alive.

      Author response image 1.

      Survival curves for the data presented in Figures 1 - 4 of the main text. Day 0 indicates the day on which the BuzzWatch experiment started

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The temporal regulation of neuronal specification and its molecular mechanisms are important problems in developmental neurobiology. This study focuses on Kenyon cells (KCs), which form the mushroom body in Drosophila melanogaster, in order to address this issue. Building on previous findings, the authors examine the role of the transcription factor Eip93F in the development of late-born KCs. The authors revealed that Eip93F controls the activity of flies at night through the expression of the calcium channel Ca-α1T. Thus, the study clarifies the molecular machinery that controls temporal neuronal specification and animal behavior.

      Strengths:

      The convincing results are based on state-of-the-art molecular genetics, imaging, and behavioral analysis.

      Weaknesses:

      Temporal mechanisms of neuronal specification are found in many nervous systems. However, the relationship between the temporal mechanisms identified in this study and those in other systems remains unclear.

      We will expand the Discussion section to highlight the temporal mechanisms between different nervous systems.

      Reviewer #2 (Public review):

      Summary:

      Understanding the mechanisms of neural specification is a central question in neurobiology. In Drosophila, the mushroom body (MB), which is the associative learning region in the brain, consists of three major cell types: γ, α'/β', and α/β kenyon cells. These classes can be further subdivided into seven subtypes, together comprising

      ~2000 KCs per hemi-brain. Remarkably, all of these neurons are derived from just four neuroblasts in each hemisphere. Therefore, a lot of endeavors are put into understanding how the neuron is specified in the fly MB.

      Over the past decade, studies have revealed that MB neuroblasts employ a temporal patterning mechanism, producing distinct neuronal types at different developmental stages. Temporal identity is conveyed through transcription factor expression in KCs. High levels of Chinmo, a BTB-zinc finger transcription factor, promote γ-cell fate (Zhu et al., Cell, 2006). Reduced Chinmo levels trigger expression of mamo, a zinc finger transcription factor that specifies α'/β' identity (Liu et al., eLife, 2019). However, the specification of α/β neurons remains poorly understood. Some evidence suggests that microRNAs regulate the transition from α'/β' to α/β fate (Wu et al., Dev Cell, 2012; Kucherenko et al., EMBO J, 2012). One hypothesis even proposes that α/β represents a "default" state of MB neurons, which could explain the difficulty in identifying dedicated regulators.

      The study by Chung et al. challenges this hypothesis. By leveraging previously published RNA-seq datasets (Shih et al., G3, 2019), they systematically screened BAC transgenic lines to selectively label MB subtypes. Using these tools, they analyzed the consequences of manipulating E93 expression and found that E93 is required for α/β specification. Furthermore, loss of E93 impairs MB-dependent behaviors, highlighting its functional importance.

      Strengths:

      The authors conducted a thorough analysis of E93 manipulation phenotypes using LexA tools generated from the Janelia Farm and Bloomington collections. They demonstrated that E93 knockdown reduces expression of Ca-α1T, a calcium channel gene identified as an α/β marker. Supporting this conclusion, one LexA line driven by a DNA fragment near EcR (R44E04) showed consistent results. Conversely, overexpression of E93 in γ and α'/β' Kenyon cells led to downregulation of their respective subtype markers.

      Another notable strength is the authors' effort to dissect the genetic epistasis between E93 and previously known regulators. Through MARCM and reporter analyses, they showed that Chinmo and Mamo suppress E93, while E93 itself suppresses Mamo. This work establishes a compelling molecular model for the regulatory network underlying MB cell-type specification.

      Weaknesses:

      The interpretation of E93's role in neuronal specification requires caution. Typically, two criteria are used to establish whether a gene directs neuronal identity:

      (1) gene manipulation shifts the neuronal transcriptome from one subtype to another, and

      (2) gene manipulation alters axonal projection patterns.

      The results presented here only partially satisfy the first criterion. Although markers are affected, it remains possible that the reporter lines and subtype markers used are direct transcriptional targets of E93 in α/β neurons, rather than reflecting broader fate changes. Future studies using single-cell transcriptomics would provide a more comprehensive assessment of neuronal identity following E93 perturbation.

      We do plan to conduct multi-omics experiments to provide a more comprehensive assessment of neuronal identity upon loss-of-function of E93. However, omics results will be summarized in a new manuscript, but not for the revised manuscript.

      With respect to the second criterion, the evidence is also incomplete. While reporter patterns were altered, the overall morphology of the α/β lobes appeared largely intact after E93 knockdown. Overexpression of E93 in γ neurons produced a small subset of cells with α/β-like projections, but this effect warrants deeper characterization before firm conclusions can be drawn. While the results might be an intrinsic nature of KC types in flies, the interpretation of the reader of the data should be more careful, and the authors should also mention this in their main text.

      We will describe and interpret this part of results in the main text in a more careful manner.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This study provides a thorough analysis of Nup107's role in Drosophila metamorphosis, demonstrating that its depletion leads to developmental arrest at the third larval instar stage due to disruptions in ecdysone biosynthesis and EcR signaling. Importantly, the authors establish a novel connection between Nup107 and Torso receptor expression, linking it to the hormonal cascade regulating pupariation.

      However, some contradictory results weaken the conclusions of the study. The authors claim that Nup107 is involved in the translocation of EcR from the cytoplasm to the nucleus. However, the evidence provided in the paper suggests it more likely regulates EcR expression positively, as EcR is undetectable in Nup107-depleted animals, even below background levels.

      We appreciate the concern raised in this public review. However, we must clarify that we do not claim that Nup107 directly regulates the translocation of EcR from the cytoplasm to nucleus, rather Nup107 regulates Ecdysone hormone (20E) synthesis which in turn affects EcR translocation. In the manuscript, we posited this hypothesis if Nup107 will regulate EcR nuclear translocation (9th line of 2nd paragraph on page 6). We have spelled this out more clearly as the 3rd subsection title of the Results section, and in the discussion (8th line of 2nd paragraph on page 11).

      20E acts through the EcR to induce the transcription of EcR responsive genes including the EcR. This creates a positive autoregulatory loop that enhances the EcR level through ecdysone signaling (1). Since Nup107 depletion leads to a reduction in ecdysone levels, it disrupts the transcription autoregulatory EcR expression loop. This can contribute to the reduced EcR levels seen in Nup107-depleted animals. 

      Additionally, the link between Nup107 and Torso is not fully substantiated. While overexpression of Torso appears to rescue the lack of 20E production in the prothoracic gland, the distinct phenotypes of Torso and Nup107 depletion-developmental delay in the former versus complete larval arrest in the latter complicate understanding of Nup107's precise role.

      We understand that there are differences in the developmental delay when Tosro and Nup107 depletion is analyzed. However, the two molecules being compared here are very different, and variability in their depletion could contribute observed phenotypic differences (2). Even if there is no variability of depletion of Torso and Nup107­­­, we believe that Nup107, being more widely expressed, and involved in the regulation of various cellular processes, induces stronger defects.

      Further, we think that RNAi-mediated depletion of Nup107 in prothoracic glands (PG) causes significant reduction in the PG size, which may exert a pronounced defect in 20E biosynthesis through the Halloween genes, inducing a stronger developmental arrest.

      To clarify these discrepancies, further investigation into whether Nup107 interacts with other critical signaling pathways related to the regulation of ecdysone biosynthesis, such as EGFR or TGF-β, would be beneficial and could strengthen the findings.

      In summary, although the study presents some intriguing observations, several conclusions are not well-supported by the experimental data.

      We agree with the reviewer’s suggestion. As noted in the literature, five RTKs-torso, InR, EGFR, Alk, and Pvr-stimulate the PI3K/Akt pathway, which plays a crucial role in the PG functioning and controlling pupariation and body size (3). We have checked the torso and EGFR signaling. We rescued Nup107 defects with the torso overexpression, however, constitutively active EGFR (BL-59843) did not rescue the phenotype (data was not shown). Nonetheless, we plan to examine the EGFR pathway activation by measuring the pERK levels in Nup107-depleted PGs.

      Reviewer #2 (Public review):

      Summary:

      The manuscript by Kawadkar et al investigates the role of Nup107 in developmental progression via the regulation of ecdysone signaling. The authors identify an interesting phenotype of Nup107 whole-body RNAi depletion in Drosophila development - developmental arrest at the late larval stage. Nup107-depleted larvae exhibit mis-localization of the Ecdysone receptor (EcR) from the nucleus to the cytoplasm and reduced expression of EcR target genes in salivary glands, indicative of compromised ecdysone signaling. This mis-localization of EcR in salivary glands was phenocopied when Nup107 was depleted only in the prothoracic gland (PG), suggesting that it is not nuclear transport of EcR but the presence of ecdysone (normally secreted from PG) that is affected. Consistently, whole-body levels of ecdysone were shown to be reduced in Nup107 KD, particularly at the late third instar stage when a spike in ecdysone normally occurs. Importantly, the authors could rescue the developmental arrest and EcR mislocalization phenotypes of Nup107 KD by adding exogenous ecdysone, supporting the notion that Nup107 depletion disrupts biosynthesis of ecdysone, which arrests normal development. Additionally, they found that rescue of the Nup107 KD phenotype can also be achieved by over-expression of the receptor tyrosine kinase torso, which is thought to be the upstream regulator of ecdysone synthesis in the PG. Transcript levels of the torso are also shown to be downregulated in the Nup107KD, as are transcript levels of multiple ecdysone biosynthesis genes. Together, these experiments reveal a new role of Nup107 or nuclear pore levels in hormone-driven developmental progression, likely via regulation of levels of torso and torso-stimulated ecdysone biosynthesis.

      Strengths:

      The developmental phenotypes of an NPC component presented in the manuscript are striking and novel, and the data appears to be of high quality. The rescue experiments are particularly significant, providing strong evidence that Nup107 functions upstream of torso and ecdysone levels in the regulation of developmental timing and progression.

      Weaknesses:

      The underlying mechanism is however not clear, and any insight into how Nup107 may regulate these pathways would greatly strengthen the manuscript. Some suggestions to address this are detailed below.

      Major questions:

      (1) Determining how specific this phenotype is to Nup107 vs. to reduced NPC levels overall would give some mechanistic insight. Does knocking down other components of the Nup107 subcomplex (the Y-complex) lead to similar phenotypes? Given the published gene regulatory function of Nup107, do other gene regulatory Nups such as Nup98 or Nup153 produce these phenotypes?

      We thank this public review for raising this concern. Working with a Nup-complex like the Nup107 complex, this concern is anticipated but difficult to address as many Nups function beyond their complex identity. Our observations with all other members of the Nup107-complex, including dELYS, suggest that except Nup107, none of the other tested Nup107-complex members could induce larval developmental arrest.

      In this study, we primarily focused on the Nup107 complex (outer ring complex) of the NPC. However, previous studies have reported that Nup98 and Nup153 interact with chromatin, with these investigations conducted in Drosophila S2 cells (4, 5, 6). We have now examined other nucleoporins outside of this complex, such as Nup153.

      We ubiquitously depleted Nup153 using the Actin5C-Gal4 driver and assessed the pupariation profile of the knockdown larvae in comparison to control larvae. In contrast to the Nup107 knockdown, when Nup153 is depleted to less than 50% levels, no impact on pupariation was observed (Auhtor response image 1)

      Author response image 1.

      Nup153 depletion does not affect the Drosophila metamorphosis. Actin5C-Gal4 is used as a ubiquitous driver. (A) Comparison of pupariation profiles of control and Nup153 knockdown organisms. (B) Quantification of Nup153 knockdown efficiency. Data are represented from at least three independent experiments. Statistical significance was derived from the Student’s t-test. Error bars represents SEM. ***p = <0.001.

      (2) In a related issue, does this level of Nup107 KD produce lower NPC levels? It is expected to, but actual quantification of nuclear pores in Nup107-depleted tissues should be added. These and the above experiments would help address a key mechanistic question - is this phenotype the result of lower numbers of nuclear pores or specifically of Nup107?

      We agree with the concern raised here, and to address the concern raised here, we stained the control and Nup107 depleted salivary glands with mAb414 antibody (exclusively FG-repeat Nup recognizing antibody). While Nup107 intensities are significantly reduced at the nuclear envelope in Nup107 depleted salivary glands, the mAb414 staining seems unperturbed (Author response image 2).

      Author response image 2.

      Nup107 depletion does not perturb overall NPC composition. Comparison of salivary gland nucleus upon control and Nup107 knockdown. The Nup107 is shown in green and mAb414, staining for other FG-repeat containing nucleoporins is shown in red. Scale bars, 5µm.

      (3) Additional experiments on how Nup107 regulates the torso would provide further insight. Does Nup107 regulate transcription of the torso or perhaps its mRNA export? Looking at nascent levels of the torso transcript and the localization of its mRNA can help answer this question. Or alternatively, does Nup107 physically bind the torso?

      While the concern regarding torso transcript level is genuine, we have already reported in the manuscript that Nup107 directly regulates torso expression. When Nup107 is depleted, torso levels go down, which in turn controls ecdysone production and subsequent EcR signaling (Figure 6B of the manuscript).

      However, the exact nature of Nup107 regulation on torso expression is still unclear. Since the Nup107 is known to interact with chromatin (7), it may affect torso transcription. The possibility of a stable and physiologically relevant interaction between Nup107 and the torso in a cellular context is unlikely largely due to their distinct subcellular localizations. If we investigate this further, it will require a significant amount of time for having reagents and experimentation, and currently stands beyond the scope of this manuscript.

      (4) The depletion level of Nup107 RNAi specifically in the salivary gland vs. the prothoracic gland should be compared by RT-qPCR or western blotting.

      Although we know that the Nup107 protein signal is reduced in SG upon knockdown (Figure 3B), we have not compared the Nup107 transcript level in these two tissues (SG and PG) upon RNAi. As suggested here, we evaluated the knockdown efficiency of Nup107 using the salivary gland-specific driver AB1-Gal4 and the prothoracic gland-specific driver Phm-Gal4. Our results indicate a significant reduction in Nup107 transcript levels upon Nup107 RNAi in both SG and PG compared to their respective controls (Author response image 3).

      Author response image 3.

      Nup107 levels are significantly reduced upon Nup107<sup>KK</sup> RNAi. Quantification of Nup107 transcript levels from control and Nup107 depleted larvae [tissue specific depletion using AB1-Gal4 (A) and Phm-Gal4 (B)]. Data are represented from at least three independent experiments. Statistical significance was derived from the Student’s t-test. Error bars represent SEM. **p = <0.004

      (5) The UAS-torso rescue experiment should also include the control of an additional UAS construct - so Nup107; UAS-control vs Nup107; UAS-torso should be compared in the context of rescue to make sure the Gal4 driver is functioning at similar levels in the rescue experiment.

      This is a very valid point, and we took this into account while planning the experiment. In such cases, often the GAL4 dilution can be critical. We have demonstrated in Figure S7, that GAL4 dilution is not blurring our observations. We used the Nup107<sup>KK</sup>; UAS-GFP as control alongside the Nup107<sup>KK</sup>; UAS-torso. We conclude that the presence of GFP signals in prothoracic glands and their reduced size indicates genes downstream to both UAS sequences are transcribed, and GAL4 dilution does not play a role here.

      Minor:

      (6) Figures and figure legends can stand to be more explicit and detailed, respectively.

      We have revisited all figures and their corresponding legends to ensure appropriate and explicit details are provided.

      Reviewer #3 (Public review):

      Summary:

      In this study by Kawadkar et al, the authors investigate the developmental role of Nup107, a nucleoporin, in regulating the larval-to-pupal transition in Drosophila through RNAi knockdown and CRISPR-Cas9-mediated gene editing. They demonstrate that Nup107, an essential component of the nuclear pore complex (NPC), is crucial for regulating ecdysone signaling during developmental transitions. The authors show that the depletion of Nup107 disrupts these processes, offering valuable insights into its role in development.

      Specifically, they find that:

      (1) Nup107 depletion impairs pupariation during the larval-to-pupal transition.

      (2) RNAi knockdown of Nup107 results in defects in EcR nuclear translocation, a key regulator of ecdysone signaling.

      (3) Exogenous 20-hydroxyecdysone (20E) rescues pupariation blocks, but rescued pupae fail to close.

      (4) Nup107 RNAi-induced defects can be rescued by activation of the MAP kinase pathway.

      Strengths:

      The manuscript provides strong evidence that Nup107, a component of the nuclear pore complex (NPC), plays a crucial role in regulating the larval-to-pupal transition in Drosophila, particularly in ecdysone signaling.

      The authors employ a combination of RNAi knockdown, CRISPR-Cas9 gene editing, and rescue experiments, offering a comprehensive approach to studying Nup107's developmental function.

      The study effectively connects Nup107 to ecdysone signaling, a key regulator of developmental transitions, offering novel insights into the molecular mechanisms controlling metamorphosis.

      The use of exogenous 20-hydroxyecdysone (20E) and activation of the MAP kinase pathway provides a strong mechanistic perspective, suggesting that Nup107 may influence EcR signaling and ecdysone biosynthesis.

      Weaknesses:

      The authors do not sufficiently address the potential off-target effects of RNAi, which could impact the validity of their findings. Alternative approaches, such as heterozygous or clonal studies, could help confirm the specificity of the observed phenotypes.

      This is a very valid point raised, and we are aware of the consequences of the off-target effects of RNAi. To assert the effects of authentic RNAi and reduce the off-target effects, we have used two RNAi lines (Nup107<sup>GD</sup> and Nup107<sup>KK</sup>) against Nup107. Both RNAi induced comparable levels of Nup107 reduction, and using these lines, ubiquitous and PG specific knockdown produced similar phenotypes. Although the Nup107<sup>GD</sup> line exhibited a relatively stronger knockdown compared to the Nup107<sup>KK</sup> line, we preferentially used the Nup107<sup>KK</sup> line because the Nup107<sup>GD</sup> line is based on the P-element insertion, and the exact landing site is unknown. Furthermore, there is an off-target predicted for the Nup107<sup>GD</sup> line, where a 19bp sequence aligns with the bifocal (bif) sequence. The bif-encoded protein is involved in axon guidance and regulation of axon extension. However, the Nup107<sup>KK</sup> line does not have a predicted off-target molecule, and we know its precise landing site on the second chromosome. Thus, the Nup107<sup>KK</sup> line was ultimately used in experimentation for its clearer and more reliable genetic background.

      We are also investigating Nup107 knockdown in the prothoracic gland, which exhibits polyteny. Additionally, the number of cells in the prothoracic gland is quite limited, approximately 50-60 cells (8). Given this, there is a possibility that a clonal study may not yield the phenotype.

      NPC Complex Specificity: While the authors focus on Nup107, it remains unclear whether the observed defects are specific to this nucleoporin or if other NPC components also contribute to similar defects. Demonstrating similar results with other NPC components would strengthen their claims.

      We thank this public review for raising this concern. Working with a Nup-complex like the Nup107 complex, this concern is anticipated but difficult to address as many Nups function beyond their complex identity. Our observations with all other members of the Nup107-complex, including dELYS, suggest that except Nup107, none of the other Nup107-complex members could induce larval developmental arrest. Since the study is primarily focused on the Nup107 complex (outer ring complex) of the NPC, we have not examined many more nucleoporins outside of this complex. But our observations with Nup153 knockdown, a nuclear basket nucleoporin, is comparable to control, with no delay in development (Author response image 1)

      Although the authors show that Nup107 depletion disrupts EcR signaling, the precise molecular mechanism by which Nup107 influences this process is not fully explored. Further investigation into how Nup107 regulates EcR nuclear translocation or ecdysone biosynthesis would improve the clarity of the findings.

      We appreciate the concern raised. Through our observation, we have proposed the upstream effect of Nup107 on the PTTH-torso-20E-EcR axis regulating developmental transitions. We know that Nup107 regulates torso levels, but we do not know if Nup107 directly interacts with torso. We would like to address whether Nup107 exerts control on PTTH levels also.

      However, we must emphasize that Nup107 does not directly regulate the translocation of EcR. On the contrary, we have demonstrated that when Nup107 is depleted only in the salivary gland, EcR translocates into the nucleus. Thus we conclude that the EcR translocation is 20E dependent and Nup107 independent. Further, we have argued that Nup107 regulates the expression of Halloween genes required for ecdysone biosynthesis. We are interested in identifying if Nup107 associates directly or through some protein to chromatin to bring about the changes in gene expression required for normal development.

      There are some typographical errors and overly strong phrases, such as "unequivocally demonstrate," which could be softened. Additionally, the presentation of redundant data in different tissues could be streamlined to enhance clarity and flow.

      Response: We thank the reviewer for this observation. We have put our best efforts to remove all typographical errors and have now made more reasonable statements based on our conclusions.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      The manuscript presents compelling evidence that Nup107 plays a role in regulating ecdysone production. However, significant concerns remain regarding the effects on EcR localization and expression, as well as the claimed link between PTTH/Torso signaling and Nup107's function, as the evidence provided is not conclusive.

      The hypothesis that Nup107 mediates EcR translocation from the cytoplasm to the nucleus appears misinterpreted by the authors. Based on the presented images, particularly for the prothoracic gland (PG) Figure 3C, Nup107 depletion seems to impact EcR protein levels rather than its localization. This conclusion is supported by data showing that EcR transcripts are autonomously downregulated in the absence of Nup107. Furthermore, the restoration of nuclear EcR levels upon exogenous 20E supplementation suggests that (1) Nup107 is dispensable for EcR activation and function, and (2) its primary role lies in regulating ecdysone production.

      We appreciate the concern raised by reviewer. However, we must clarify that we do not claim that Nup107 directly regulates the translocation of EcR from the cytoplasm, rather Nup107 regulates Ecdysone hormone (20E) synthesis which in turn affects EcR translocation. In the manuscript, we posited this hypothesis if Nup107 will regulate EcR nuclear translocation (9th line of 2nd paragraph on page 6). We have spelled this out more clearly as the 3rd subsection title of the Results section, and in the discussion (8th line of 2nd paragraph on page 11).

      20E acts through the EcR to induce the transcription of EcR responsive genes including the EcR. This creates a positive autoregulatory loop that enhances the EcR level through ecdysone signaling (1). Since Nup107 depletion leads to a reduction in ecdysone levels, it disrupts the transcription autoregulatory EcR expression loop. This can contribute to the reduced EcR levels seen in Nup107-depleted animals.

      Given that nucleoporins are known to influence mRNA transport-for instance, Nup107 has been shown to control Scn5a mRNA transport (Guan et al., 2019)-the observed effects on Halloween gene and EcR expression may stem from disruptions in mRNA transport to the cytoplasm. The downregulation of Shade further supports this hypothesis, as restricted ecdysone biosynthesis typically induces Shade upregulation in peripheral tissues. Quantifying potential mRNA accumulation in the nuclei of PG cells in Nup107-depleted animals would clarify this.

      The reviewer raised a valid point, and we fully agree with the concern that Nup107 has been shown to control Scn5a mRNA transport (Guan et al., 2019). The observed effects on Halloween gene and EcR expression could indeed stem from disruptions in efficient mRNA export to the cytoplasm. However, if Nup107 were regulating the mRNA export of Halloween genes and EcR, we should not expect a rescue of the Nup107 developmental delay phenotype with torso overexpression. But, by overexpressing the torso in the Nup107 depletion background, we are activating the torso pathway dependent Halloween gene expression, and rescuing the developmental delay phenotype of Nup107 depletion.

      With the current data, it is difficult to conclusively claim a role for Nup107 in EcR translocation or expression. Additional experiments, such as EcR overexpression in Nup107-depleted animals or Nup107 overexpression, would help determine its precise role.

      We appreciate the concern raised by reviewer. We did attempt to rescue the Nup107 depletion phenotype by overexpressing EcR (BL-6868) in the Nup107-RNAi background. However, we were unable to rescue the Nup107 depletion dependent developmental delay phenotype with this approach. This further suggests that the phenotype is not merely due to low level of EcR, but it is due to low availability of ecdysone hormone and EcR signaling.

      The second major issue is the proposed link between Nup107 and PTTH/Torso signaling. The authors suggest that Nup107 regulates ecdysone production through Torso expression based on rescue experiments. However, this is inconsistent with the distinct phenotypes observed when Nup107 or Torso signaling is disrupted. While PTTH/Torso signaling causes only a modest developmental delay (12 hours to 2 days, depending on the mutant), Nup107 depletion results in a complete developmental arrest at the larval stage. This discrepancy raises doubts about the assertion that Torso overexpression alone rescues such a severe phenotype. One possibility is that PTTH levels are upregulated in Nup107-depleted animals, leading to overactivation of the pathway when Torso is overexpressed. Quantifying PTTH levels in Nup107-depleted animals could address this.

      The reviewer raised a valid point, and we fully acknowledge this concern. While we do not completely agree with the idea of PTTH upregulation in Nup107 depleted larvae, as suggested here, we believe that quantifying PTTH levels upon Nup107 depletion can provide a useful insight. To address it, we quantified PTTH levels in Nup107-depleted larvae and found no significant change in PTTH expression compared to controls (Author response image 4).

      Author response image 4.

      Nup107 knockdown does not affect the PTTH level. Quantitation of PTTH transcript levels from control and Nup107 depleted larvae (Prothoracic specific depletion Phm-Gal4). Data are represented from at least three independent experiments. Statistical significance was derived from the Student's t-test. ns is non-significant.

      Another possibility is that the stock used for Torso overexpression, which includes a trk mutant, may introduce genetic interactions that overactivate the pathway. Using a clean UAS-Torso stock would resolve this issue.

      We appreciate the reviewer’s observation regarding the use of the Torso overexpression line (BL-92604), which carries the trk null allele on the second chromosome. The cleaved form of the trk serves as ligand for the troso receptor. Since it may serve as ligand for the torso, I am not sure how trk null allele bearing line when used along for torso overexpression studies will overactivate the pathway. 

      We realized this concern and the fly line used in this study and reported in the manuscript was generated through the following genetic strategy using the BL-92604 line.  First, a double balancer stock (Sco/CyO; MKRS/TM6.Tb) was used to generate the Sco/CyO; UAS-torso/ UAS-torso genotype. This recombinant line was subsequently combined with the Nup107<sup>KK</sup> line. Through the use of the double balancer strategy, we effectively replaced Nup107 RNAi genotype on the second chromosome, thereby ensuring that our final experimental setup is free from trk mutant contamination, if at all.

      Moreover, the rescue of Nup107 depletion phenotypes by RasV12 overexpression suggests that multiple RTKs, not just Torso, are affected. EGFR signaling, the primary regulator of ecdysone biosynthesis in the PG during the last larval stage, is notably absent from the authors' analysis. EGFR inactivation is known to arrest development, and previous studies indicate that Nup107 can reduce EGFR pathway activity (Kim et al, 2010). The authors should analyze EGFR pathway activity in the absence of Nup107. Overexpressing EGF ligands like Vein or Spitz in the PG (rather than the receptor) in a Nup107-depleted background would provide more relevant insights.

      The RasGTPase is one of the common effector molecules downstream of an activated receptor kinase. Rescue with a constitutively activated form of RasGTPase (RasV12) suggests one of the routes which is activated downstream of the torso receptor. It does not directly suggest all different RTKs are affected and are involved. Our idea of performing a rescue experiment was to see if the pathway activated downstream of the torso involves RasGTPase. 

      As noted in the literature, five RTKs—torso, InR, EGFR, Alk, and Pvr—stimulate the PI3K/Akt pathway, which plays a crucial role in the PG for controlling pupariation and body size (3). Although EGFR signaling is important, PTTH/Torso signaling is considered the primary mediator of metamorphic timing. In response to the suggestion to analyze EGFR pathway activity in the absence of Nup107, we attempted to rescue the phenotype by overexpressing constitutively active EGFR (BL-59843) in the Nup107-depleted background (data was not shown). We used constitutively active EGFR to bypass the availability of its ligands (vein and spitz). Unfortunately, we were unable to rescue the phenotype with this approach, which further suggests that EGFR is not the targeted RTK pathway in this context. By rescuing with torso, we found that Nup107 regulates torso-mediated Ras/Erk signaling to control metamorphosis.

      Additional issues require clarification:

      (1) RNAi Efficiency: In Figure 1C, the Nup107GD line shows a stronger knockdown effect than Nup107KK, yet most experiments were conducted with the weaker line. This might explain the residual Nup107 protein observed in Figure 2. Could the authors justify this choice?

      This is a very valid point raised, and we are aware of the consequences of the off-target effects of RNAi. To assert the effects of authentic RNAi and reduce the off-target effects, we have used two RNAi lines (Nup107<sup>GD</sup> and Nup107<sup>KK</sup>) against Nup107. Both RNAi induced comparable levels of Nup107 reduction, and using these lines, ubiquitous and PG specific knockdown produced similar phenotypes. Although the Nup107<sup>GD</sup> line exhibited a relatively stronger knockdown compared to the Nup107<sup>KK</sup> line, we preferentially used the Nup107<sup>KK</sup> line because the Nup107<sup>GD</sup> line is based on the P-element insertion, and the exact landing site is unknown. Furthermore, there is an off-target predicted for the Nup107<sup>GD</sup> line, where a 19bp sequence aligns with the bifocal (bif) sequence. The bif-encoded protein is involved in axon guidance and regulation of axon extension. However, the Nup107<sup>KK</sup> line does not have a predicted off-target molecule, and we know its precise landing site on the second chromosome. Thus, the Nup107<sup>KK</sup> line was ultimately used in experimentation for its clearer and more reliable genetic background.

      (2) Control Comparisons: In Figure 3, the effects of Nup107 depletion on EcR expression in salivary glands (SG) and PG are shown, but only SG controls are provided. Including PG controls would enable proper comparisons. These controls should also be added to Figures 5, 6, and S5.

      As suggested by the reviewer, we have checked the EcR localization in prothoracic gland (Author response image 5), also. As shown in figure R5, when PGs isolated from control, Nup107-RNAi and torso overexpression in Nup107 background were stained for EcR, the observations made were indistinguishable from those made in SGs of the indicated genetic combinations. This indicated that Nup107 regulates EcR signaling by regulating the 20E biosynthesis.

      Author response image 5.

      Prothoracic gland’s specific torso expression rescues EcR nuclear translocation defects. Immunofluorescence-based detection of nucleocytoplasmic distribution of EcR (EcR antibody, red) in control, prothoracic gland specific Nup107 knockdown (Phm-Gal4>Nup107<sup>KK</sup>) and torso overexpressing PG-specific Nup107 knockdown (Phm-Gal4>Nup107<sup>KK</sup>; UAS-torso) third instar larval Prothoracic gland nuclei. DNA is stained with DAPI. Scale bars, 20 μm.

      (3) Clarify the function of Torso in the text: The authors must revise their description of Torso signaling as the primary regulator of ecdysone production in both the results and discussion sections. Specifically, in the results section, the claim that Torso depletion induces developmental arrest is inaccurate. Instead, available evidence, including Rewitz et al. 2009, demonstrates that Torso depletion causes a delay of approximately five days rather than a complete developmental arrest. This discrepancy should be corrected to avoid overstating the role of Torso signaling in ecdysone regulation and to align the manuscript with established findings.

      We agree with the reviewer. We have incorporated the suggestion at the relevant place in the main manuscript.

      Reviewer #3 (Recommendations for the authors):

      These findings suggest that Nup107 is involved in regulating ecdysone signaling during developmental transitions, with depletion of Nup107 disrupting hormone-regulated processes. Moreover, the rescue experiments hint that Nup107 might directly influence EcR signaling and ecdysone biosynthesis, though the precise molecular mechanism remains unclear.

      Overall, the manuscript presents compelling data supporting Nup107's role in regulating developmental transitions. However, I have a few comments for consideration:

      Major Comments:

      RNAi Specificity: While RNAi is a powerful tool, the authors do not sufficiently address potential off-target effects, which could undermine the conclusions. Although a mutant Nup107 is described, it is lethal-are heterozygous or clonal studies possible to validate the findings more robustly?

      This is a very valid point raised, and we are aware of the consequences of the off-target effects of RNAi. To assert the effects of authentic RNAi and reduce the off-target effects, we have used two RNAi lines (Nup107<sup>GD</sup> and Nup107<sup>KK</sup>) against Nup107. Both RNAi induced comparable levels of Nup107 reduction, and using these lines, ubiquitous and PG specific knockdown produced similar phenotypes. Although the Nup107<sup>GD</sup> line exhibited a relatively stronger knockdown compared to the Nup107<sup>KK</sup> line, we preferentially used the Nup107<sup>KK</sup> line because the Nup107<sup>GD</sup> line is based on the P-element insertion, and the exact landing site is unknown. Furthermore, there is an off-target predicted for the Nup107<sup>GD</sup> line, where a 19bp sequence aligns with the bifocal (bif) sequence. The bif-encoded protein is involved in axon guidance and regulation of axon extension. However, the Nup107<sup>KK</sup> line does not have a predicted off-target molecule, and we know its precise landing site on the second chromosome. Thus, the Nup107<sup>KK</sup> line was ultimately used in experimentation for its clearer and more reliable genetic background.

      Following the suggestion from the reviewer, we considered conducting heterozygous and clonal analyses using the Nup107 mutant. We have carried out Nup107 knockdown studies in the prothoracic gland, which has a limited number of cells (50-60 cells) and is known to exhibit polyteny (8). Keeping these aspects of the Prothoracic gland in mind, the possibility that a clonal study will yield the phenotype is scarce. However, we will consider moving forward with this approach also.

      (2) NPC Complex Specificity: It remains unclear whether the observed defects are specific to Nup107 or if other NPC components also cause similar defects. If the authors are unable to use Nup107 mutants, they could demonstrate similar defects with other critical NPC members to bolster their claim.

      We thank this public review for raising this concern. Working with a Nup-complex like the Nup107 complex, this concern is anticipated but difficult to address as many Nups function beyond their complex identity. Our analysis of Nup153 depleted organisms indicates no developmental delay/defect. We have also assessed effects of knockdown of all other members of the Nup107-complex, including dELYS, but except Nup107 no other member of the Nup107-complex could induce developmental arrest in the third instar stage causing lack of pupariation. However, the null mutant of Nup133, the direct interactor of Nup107 in the Nup107-complex, induces a delay in pupariation (unpublished data).

      (3) Molecular Mechanism of EcR Signaling: The manuscript shows that Nup107 depletion affects EcR signaling and ecdysone biosynthesis, but the molecular basis of this regulation is not fully explored. Does phosphorylated ERK (p-ERK) fail to enter the nucleus? Clarifying this mechanism would strengthen the study's impact.

      We appreciate the reviewer’s insightful comment and fully agree with the concern. To address this, we examined the subcellular localization of phosphorylated ERK (p-ERK) in the prothoracic gland of control larvae, Nup107-depleted larvae, and Nup107-depleted larvae with torso overexpression. In control larvae, p-ERK was predominantly localized in the nucleus. However, in Nup107-depleted larvae, p-ERK was largely retained in the cytoplasm, indicating impaired pathway activation and nuclear translocation. Notably, overexpression of the torso in the Nup107-depleted background restored nuclear localization of p-ERK in the prothoracic gland (Author response image 6). These findings suggest that Nup107 regulates Drosophila metamorphosis, in part, through modulation of torso-mediated MAPK signaling.

      Author response image 6.

      Nup107 regulates torso activation dependent p-ERK localization. Detection of nucleocytoplasmic distribution of p-ERK (anti- p-ERK antibody, green) in the third instar larval prothoracic glands of control, PG-specific Nup107 knockdown (Phm-Gal4>Nup107<sup>KK</sup>) and PG-specific torso overexpression in Nup107 knockdown background (Phm-Gal4>Nup107<sup>KK</sup>; UAS-torso). DNA is stained with DAPI. Scale bars, 20 µm.

      Minor Comments:

      (1) The manuscript contains typographical errors that may hinder readability. Additionally, some phrases (e.g., "unequivocally demonstrate") may be overly strong. Consider adjusting language to reflect the nature of the data more accurately.

      We agree with the reviewer. We have edited the manuscript accordingly to crease out such typographical errors at relevant places in the main manuscript.

      (2) The data presentation could be improved by eliminating redundancy. Some sections repeat similar findings in different tissues, which could be consolidated to improve clarity and flow.

      While we agree with the comment, we could not help ourselves in tissue redundancy for presenting our data for EcR translocation studies. I wish we could use another tissue. However, we have put EcR localization and p-ERK translocation data in the responses to present another non-redundant tissue perspective (Figures R5 and R6).

      References:

      (1) Varghese, Jishy, and Stephen M Cohen. “microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila.” Genes & development vol. 21,18 (2007): 2277-82. doi:10.1101/gad.439807

      (2) Rewitz, Kim F et al. “The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis.” Science (New York, N.Y.) vol. 326,5958 (2009): 1403-5. doi:10.1126/science.1176450

      (3) Pan, Xueyang, and Michael B O'Connor. “Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size.” Cell reports vol. 36,9 (2021): 109644. doi:10.1016/j.celrep.2021.109644

      (4) Pascual-Garcia, Pau et al. “Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts.” Molecular cell vol. 66,1 (2017): 63-76.e6. doi:10.1016/j.molcel.2017.02.020

      (5) Pascual-Garcia, Pau et al. “Nup98-dependent transcriptional memory is established independently of transcription.” eLife vol. 11 e63404. 15 Mar. 2022, doi:10.7554/eLife.63404

      (6) Kadota, Shinichi et al. “Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding.” Nature communications vol. 11,1 2606. 25 May. 2020, doi:10.1038/s41467-020-16394-3

      (7) Gozalo, Alejandro et al. “Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression.” Molecular cell vol. 77,1 (2020): 67-81.e7. doi:10.1016/j.molcel.2019.10.017

      (8) Shimell, MaryJane, and Michael B O'Connor. “Endoreplication in the Drosophila melanogaster prothoracic gland is dispensable for the critical weight checkpoint.” microPublication biology vol. 2023 10.17912/micropub.biology.000741. 21 Feb. 2023, doi:10.17912/micropub.biology.000741

    1. Author response:

      Reviewer 1:

      We appreciate the reviewer’s positive assessment and in revision will expand the Discussion to clarify some of the mechanistic insights of this work, as well as to include expanded treatment of related studies in other model systems.

      Reviewer 2:

      We are grateful for the reviewer’s thorough and supportive comments. We will carefully revise assertions and conclusions for objectivity. Additional analysis of the Zelda experiments will be performed and experimental data tables will be updated to report these results. For the point about providing “insight into models explaining why H3K27me3 is absent prior to NC14,” we have recently submitted a related preprint that addresses this issue directly (Degen, Gonzaga-Saavedra, and Blythe, bioRxiv 2025). In summary, we find evidence that a maternal PcG imprint is indeed maintained through cleavage divisions, albeit through lower-order methylation states (maximally H3K27me2). We chose not to include these additional results in this manuscript to maintain the focus of this study on ZGA. Our revision of this manuscript will include a section in the Discussion that synthesizes the conclusions of the two studies.

      Reviewer 3:

      We thank the reviewer for recognizing the strength of our data and conclusions, and we agree that our results help settle conflicting claims in the field. We will emphasize Zelda’s context-dependent effects more clearly in the revised manuscript.

      References:

      Degen EA, Gonzaga-Saavedra N, Blythe SA. Lower-order methylation states underlie the maintenance and re-establishment of Polycomb modifications in Drosophila embryogenesis. bioRxiv [Preprint]. 2025 Jul 29:2025.07.25.666882. doi: 10.1101/2025.07.25.666882. PMID: 40766521; PMCID: PMC12324246.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors conducted a spatial analysis of dysplastic colon tissue using the Slide-seq method. Their main objective is to build a detailed spatial atlas that identifies distinct cellular programs and microenvironments within dysplastic lesions. Next, they correlated this observation with clinical outcomes in human colorectal cancer.

      Strengths:

      The work is a good example of utilising spatial methods to study different tumour models. The authors identified a unique stem cell program to understand tumours gently and improve patient stratification strategies.

      Weaknesses:

      However, the study's predominantly descriptive nature is a significant limitation. Although the spatial maps and correlations between cell states are interesting observations, the lack of functional validation-primarily through experiments in mouse models-weakens the causal inferences regarding the roles these cellular programs play in tumour progression and therapy resistance.

      We thank the reviewer for this comment. Indeed, functional validation to pin down causal dependencies and a more thorough investigation of tumor progression and therapy resistance both in mouse model as well as human patients and/or patient derived samples would broaden the insights to be gained from this work. Unfortunately, this is beyond the scope of this study.

      The authors also missed an opportunity to link the mutational status of malignant cells with the cellular neighbourhoods.

      The data reported in this study only contains spatial data for one mouse model (AV). As spatial data for the other model (AKPV) is missing, it is not possible to link the mutational type of the model with the cellular neighborhoods. We did investigate whether there is extra somatic mutational heterogeneity in the AV data, both regarding single nucleotide variations (SNVs) and copy number variations (CNVs). But at the time when the mice were sacrificed (after 3 weeks) there was no significant mutational heterogeneity discoverable.

      Overall, the study contributes to profiling the dysplastic colon landscape. The methodologies and data will benefit the research community, but further functional validation is crucial to validate the biological and clinical implications of the described cellular interactions.

      Reviewer #2 (Public review):

      In their study, Avraham-Davidi et al. combined scRNA-seq and spatial mapping studies to profile two preclinical mouse models of colorectal cancer: Apcfl/fl VilincreERT2 (AV) and Apcfl/fl LSL-KrasG12D Trp53fl/fl Rosa26LSL-tdTomato/+ VillinCreERT2 (AKPV). In the first part of the manuscript, the authors describe the analysis of the normal colon and dysplastic lesions induced in these models following tamoxifen injection. They highlight broad variations in immune and stromal cell composition within dysplastic lesions, emphasizing the infiltration of monocytes and granulocytes, the accumulation of IL-17+gdT cells, and the presence of a distinct group of endothelial cells. A major focus of the study is the remodeling of the epithelial compartment, where the most significant changes are observed. Using non-negative matrix factorization, the authors identify molecular programs of epithelial cell functions, emphasizing stemness, Wnt signaling, angiogenesis, and inflammation as major features associated with dysplastic cells. They conclude that findings from scRNA-seq analyses in mouse models are transposable to human CRC. In the second part of the manuscript, the authors aim to provide the spatial context for their scRNA-seq findings using Slide-seq and TACCO. They demonstrate that dysplastic lesions are disorganized and contain tumor-specific regions, which contextualize the spatial proximity between specific cell states and gene programs. Finally, they claim that these spatial organizations are conserved in human tumors and associate region-based gene signatures with patient outcomes in public datasets. Overall, the data were collected and analyzed using solid and validated methodology to offer a useful resource to the community.

      Main comments:

      (1) Clarity

      The manuscript would benefit from a substantial reorganization to improve clarity and accessibility for a broad readership. The text could be shortened and the number of figure panels reduced to emphasize the novel contributions of this work while minimizing extensive discussions on general and expected findings, such as tissue disorganization in dysplastic lesions. Additionally, figure panels are not consistently introduced in the correct order, and some are not discussed at all (e.g., Figure S1D; Figure 3C is introduced before Figure 3A; several panels in Figure 4 are not discussed). The annotation of scRNA-seq cell states is insufficiently explained, with no corresponding information about associated genes provided in the figures or tables. Multiple annotations are used to describe cell groups (e.g., TKN01 = γδ T and CD8 T, TKN05 = γδT_IL17+), but these are not jointly accessible in the figures, making the manuscript challenging to follow. It is also not clear what is the respective value of the two mouse models and time points of tissue collection in the analysis.

      We thank the reviewer for this suggestion. We clarified and simplified the revised manuscript, however we believe that the current discussions are an important part of the manuscript and would be useful to readers. We reordered panels in Figures S1 and 3 to align with their appearance in the manuscript. We kept the order of other panels as it is to keep both context and coherence of those figures intact. We changed the way we reference cell clusters in the manuscript to better align with the naming scheme introduced in Figure 1B. The respective value of the two mouse models as well as the time points of tissue collection are described in lines 108-120 of the manuscript.

      (2) Novelty

      While the study is of interest, it does not present major findings that significantly advance the field or motivate new directions and hypotheses. Many conclusions related to tissue composition and patient outcomes, such as the epithelial programs of Wnt signaling, angiogenesis, and stem cells, are well-established and not particularly novel. Greater exploration of the scRNA-seq data beyond cell type composition could enhance the novelty of the findings. For instance, several tumor microenvironment clusters uniquely detected in dysplastic lesions (e.g., Mono2, Mono3, Gran01, Gran02) are identified, but no further investigation is conducted to understand their biological programs, such as applying nNMF as was done for epithelial cells. Additional efforts to explore precise tissue localization and cellular interactions within tissue niches would provide deeper insights and go beyond the limited analyses currently displayed in the manuscript.

      We thank the reviewer for this comment. Our study aimed to spatially characterize the tumor microenvironment, with scRNA-seq analysis serving to support this spatial characterization.

      Due to technical limitations—such as the number of samples and the limited capture efficiency of Slide-seq—the resolution of immune cell identification in our spatial analysis is constrained. Additionally, while immune and stromal cells formed distinct clusters, epithelial cells exhibited a continuum that was better captured using nNMF.

      Lastly, our manuscript provides a general characterization of monocyte and granulocyte populations in scRNA-seq (line 144) and their spatial microenvironments (line 400). We believe that additional analyses of these populations would be beyond the scope of this study and could place an unnecessary burden on the reader. Instead, we suggest that such analyses be explored in future studies.

      We remark that we analyzed tissue localization for two entirely different spatial transcriptomics assays (Slide-seq and Cartana) at the resolution of cell types and programs, which was feasible within the constraints of the sparsity, gene panel and sample size in the experiments. A future potential path to further increase the resolution of investigation in this dataset is to include other datasets, e.g. by the emerging transformer-based spatial transcriptomics integration methods.

      We also remark that the manuscript already includes an investigation of cellular interactions within tissue niches based on COMMOT (Fig 4k, Fig S8i, Supp Item 4).

      (3) Validation

      Several statements made by the authors are insufficiently supported by the data presented in the manuscript and should be nuanced in the absence of proper validation. For example:

      (a) RNA velocity analyses: The conclusions drawn from these analyses are speculative and need further support.

      We thank the reviewer for this comment. We clarified that our conclusions from the RNA velocity analysis need further support by experimental validation (lines 223-225), which is outside the scope of the current study.

      (b) Annotations of epithelial clusters as dysplastic: These annotations could have been validated through morphological analyses and staining on FFPE slides.

      We thank the reviewer for this comment. While this could have been a possible approach, our study primarily relies on scRNA-seq, which does not preserve tissue morphology, and Slide-seq of fresh tissue, where such an analysis is particularly challenging.

      (c) Conservation of mouse epithelial programs in human tumors: The data in Figure S5B does not convincingly demonstrate the enrichment of stem cell program 16 in human samples. This should be more explicitly stated in the text, given the emphasis placed on this program by the authors.

      We thank the reviewer for pointing this out. We clarified the section about the stem cell program 16 and references to Figures S5A and S5B (lines 269-274): while we do see correlation in the definition of human programs with the mouse stem cell program (Figure S5A), we do not see a correlated expression of the stem cell program across human and mouse (Figure S5B).

      (d) Figure S6E: Cluster Epi06 is significantly overrepresented in spatial data compared to scRNA-seq, yet the authors claim that cell type composition is largely recapitulated without further discussion, which reduces confidence in other conclusions drawn.

      We thank the reviewer for this remark. Indeed, Epi06 was a cluster which drew our attention during early analyses for its mixed expression profiles with contributions of vastly different cell types. We concluded that this is best explained by doublets, but we cannot rule out (partial) non-doublet explanations (e.g. undifferentiated cells). As doublet detection with Scrublet did not flag those cells as doublets, we kept these cells in the workflow, but excluded them from further interpretation. While in the previous version of the manuscript we only shortly hinted to this in figure legend 2A ("Cluster Epi06: doublets (not called by Scrublet)"), we expanded on this in the methods section of the revised manuscript (lines 863-869). Given the doublet interpretation, the observation that this cluster is significantly overrepresented in the annotation of the spatial data is not surprising as this annotation comes from the decomposition of compositional data which contains contributions of multiple cells per Slide-seq bead which are structurally very similar to doublets. While Epi06 appears enriched in S6E when comparing Slide-Seq to scRNA-seq, there are multiple technical  cross platform differences, including different per-gene sensitivities or capture biases for certain cell types (e.g. stromal cells suffering more from dissociation in scRNA compared to Slide-Seq). We believe that comparisons between disease states within a single platform are more biologically meaningful, like the comparison between normal and premalignant tissue, which is presented in Figure S6G. To increase confidence in the analysis and to assess whether intra-platform biological conclusions are affected by the inclusion/exclusion of Epi06, we recreated Figure S6G for a Slide-Seq cell type annotation without Epi06 in the reference (see Author response image 1). Even though Epi06 is missing in that annotation, the strong enrichments are consistently preserved between the two analysis variants, while as expected some less significant enrichments with larger FDR values are not preserved.

      Author response image 1.

      Significance (FDR, color bar, two-sided Welch’s t test on CLR-transformed compositions) of enrichment (red) or depletion (blue) of cell clusters (rows) in normal (N) or AV (AV) tissues based on Slide-seq (“spatial”) data or scRNA-seq ("sc”) including (A) or excluding (B) Epi06 in the reference for annotating the Slide-Seq data (A is identical to Figure S6G in the manuscript).<br />

      Furthermore, stronger validation of key dysplastic regions (regions 6, 8, and 11) in mouse and human tissues using antibody-based imaging with markers identified in the analyses would have considerably strengthened the study. Such validation would better contextualize the distribution, composition, and relative abundance of these regions within human tumors, increasing the significance of the findings and aiding the generation of new pathophysiological hypotheses.

      We agree with the reviewer with their assessment that validation by antibody-based imaging (or other spatial proteomics data) would have been useful follow-up experiments, yet these are beyond the scope of the current study.

      Reviewer #1 (Recommendations for the authors):

      AV and AKPV have different oncogenic mutations, and their impact on spatial neighbourhoods is unclear. Can authors perform an analysis to understand the contribution of oncogenic mutations on the spatial landscape of CRC?

      The data reported in this study only contains spatial data for one mouse model (AV). As spatial data for the other model (AKPV) is missing, it is not possible to comparatively link the mutational type of the model with the spatial landscape.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Taber et al report the biochemical characterization of 7 mutations in PHD2 that induce erythrocytosis. Their goal is to provide a mechanism for how these mutations cause the disease. PHD2 hydroxylates HIF1a in the presence of oxygen at two distinct proline residues (P564 and P402) in the "oxygen degradation domain" (ODD). This leads to the ubiquitylation of HIF1a by the VHL E3 ligase and its subsequent degradation. Multiple mutations have been reported in the EGLN1 gene (coding for PHD2), which are associated with pseudohypoxic diseases that include erythrocytosis. Furthermore, 3 mutations in PHD2 also cause pheochromocytoma and paraganglioma (PPGL), a neuroendocrine tumour. These mutations likely cause elevated levels of HIF1a, but their mechanisms are unclear. Here, the authors analyze mutations from 152 case reports and map them on the crystal structure. They then focus on 7 mutations, which they clone in a plasmid and transfect into PHD2-KO to monitor HIF1a transcriptional activity via a luciferase assay. All mutants show impaired activation. Some mutants also impaired stability in pulse chase turnover assays (except A228S, P317R, and F366L). In vitro purified PHD2 mutants display a minor loss in thermal stability and some propensity to aggregate. Using MST technology, they show that P317R is strongly impaired in binding to HIF1a and HIF2a, whereas other mutants are only slightly affected. Using NMR, they show that the PHD2 P317R mutation greatly reduces hydroxylation of P402 (HIF1a NODD), as well as P562 (HIF1a CODD), but to a lesser extent. Finally, BLI shows that the P317R mutation reduces affinity for CODD by 3-fold, but not NODD.  

      Strengths: 

      (1) Simple, easy-to-follow manuscript. Generally well-written. 

      (2) Disease-relevant mutations are studied in PHD2 that provide insights into its mechanism of action. 

      (3) Good, well-researched background section. 

      Weaknesses: 

      (1) Poor use of existing structural data on the complexes of PHD2 with HIF1a peptides and various metals and substrates. A quick survey of the impact of these mutations (as well as analysis by Chowdhury et al, 2016) on the structure and interactions between PHD2 peptides of HIF1a shows that the P317R mutation interferes with peptide binding. By contrast, F366L will affect the hydrophobic core, and A228S is on the surface, and it's not obvious how it would interfere with the stability of the protein. 

      Thank you for the comment.  We have further analyzed the mutations on the available PHD2 crystal structures in complex with HIFα to discern how these substitution mutations may impact PHD2 structure and function.  This analysis has been added into the discussion.

      (2) To determine aggregation and monodispersity of the PHD2 mutants using size-exclusion chromatography (SEC), equal quantities of the protein must be loaded on the column. This is not what was done. As an aside, the colors used for the SEC are very similar and nearly indistinguishable. 

      Agreed. We have performed an additional experiment as suggested by the reviewer to further assess aggregation and hydrodynamic size.  The colors used in the graph were changed for clearer differentiation between samples.

      (3) The interpretation of some mutants remains incomplete. For A228S, what is the explanation for its reduced activity? It is not substantially less stable than WT and does not seem to affect peptide hydroxylation. 

      We agree with the reviewer that the causal mechanism for some of the tested disease-causing mutants remain unclear.  The negative findings also raise the notion, perhaps considered controversial, that there may be other substrates of PHD2 that are impacted by certain mutations, which contribute to disease pathogenesis.  A brief paragraph discussing this has been included in the discussion.

      (4) The interpretation of the NMR prolyl hydroxylation is tainted by the high concentrations used here. First of all, there is a likely a typo in the method section; the final concentration of ODD is likely 0.18 mM, and not 0.18 uM (PNAS paper by the same group in 2024 reports using a final concentration of 230 uM). Here, I will assume the concentration is 180 uM. Flashman et al (JBC 2008) showed that the affinity of the NODD site (P402; around 10 uM) for PHD2 is 10-fold weaker than CODD (P564, around 1 uM). This likely explains the much faster kinetics of hydroxylation towards the latter. Now, using the MST data, let's say the P317R mutation reduces the affinity by 40-fold; the affinity becomes 400 uM for NODD (above the protein concentration) and 40 uM for CODD (below the protein concentration). Thus, CODD would still be hydroxylated by the P317R mutant, but not NODD. 

      The HIF1α concentration was indeed an oversight, which will be corrected to 0.18 mM.  The study by Flashman et al.[1] showing PHD2 having a lower affinity to the NODD than CODD likely contributes to the differential hydroxylation rates via PHD2 WT.  We showed here via MST that PHD2 P317R had K[d] of 320 ± 20 uM for HIF1αCODD, which should have led to a severe enzymatic defect, even at the high concentrations used for NMR (180 uM).  However, we observed only a subtle reduction in hydroxylation efficiency in comparison to PHD2 WT.  Thus, we performed another binding method using BLI that showed a mild binding defect on CODD by PHD2 P317R, consistent with NMR data.  The perplexing result is the WT-like binding to the NODD by PHD2 P317R, which appears inconsistent with the severe defect in NODD hydroxylation via PHD2 P317R as measured via NMR.  These results suggest that there are supporting residues within the PHD2/NODD interface that help maintain binding to NODD but compromise the efficiency of NODD hydroxylation upon PHD2 P317R mutation. 

      (5) The discrepancy between the MST and BLI results does not make sense, especially regarding the P317R mutant. Based on the crystal structures of PHD2 in complex with the ODD peptides, the P317R mutation should have a major impact on the affinity, which is what is reported by MST. This suggests that the MST is more likely to be valid than BLI, and the latter is subject to some kind of artefact. Furthermore, the BLI results are inconsistent with previous results showing that PHD2 has a 10-fold lower affinity for NODD compared to CODD. 

      The reviewer’s structural prediction that P317R mutation should cause a major binding defect, while agreeable with our MST data, is incongruent with our NMR and the data from Chowdhury et al.[2] that showed efficient hydroxylation of CODD via PHD2 P317R.  Moreover, we have attempted to model NODD and CODD on apo PHD2 P317R structure and found that the mutation had no major impact on CODD while the mutated residue could clash with NODD, causing a shifting of peptide positioning on the protein.  However, these modeling predictions, like any in silico projections, would need experimental validation.  As mentioned in our preceding response, we also performed BLI, which showed that PHD2 P317R had a minor binding defect for CODD, consistent with the NMR results and findings by Chowdhury et al[2].  NODD binding was also measured with BLI as purified NODD peptides were not amenable for soluble-based MST assay, which showed similar K[d]’s for PHD2 WT and P317R.  Considering the absence of NODD hydroxylation via PHD2 P317R as measured by NMR and modeling on apo PHD2 P317R, we posit that P317R causes deviation of NODD from its original orientation that may not affect binding due to the other interactions from the surrounding elements but unfortunately disallows NODD from turnover.  Further study would be required to validate such notion, which we feel is beyond the scope of this manuscript.  

      (6) Overall, the study provides some insights into mutants inducing erythrocytosis, but the impact is limited. Most insights are provided on the P317R mutant, but this mutant had already been characterized by Chowdhury et al (2016). Some mutants affect the stability of the protein in cells, but then no mechanism is provided for A228S or F366L, which have stabilities similar to WT, yet have impaired HIF1a activation. 

      We thank the reviewer for raising these and other limitations.  We have expanded on the shortcomings of the present study but would like to underscore that the current work using the recently described NMR assay along with other biophysical analyses suggests a previously under-appreciated role of NODD hydroxylation in the normal oxygen-sensing pathway.  

      Reviewer #2 (Public review): 

      Summary: 

      Mutations in the prolyl hydroxylase, PHD2, cause erythrocytosis and, in some cases, can result in tumorigenesis. Taber and colleagues test the structural and functional consequences of seven patientderived missense mutations in PHD2 using cell-based reporter and stability assays, and multiple biophysical assays, and find that most mutations are destabilizing. Interestingly, they discover a PHD2 mutant that can hydroxylate the C-terminal ODD, but not the N-terminal ODD, which suggests the importance of N-terminal ODD for biology. A major strength of the manuscript is the multidisciplinary approach used by the authors to characterize the functional and structural consequences of the mutations. However, the manuscript had several major weaknesses, such as an incomplete description of how the NMR was performed, a justification for using neighboring residues as a surrogate for looking at prolyl hydroxylation directly, or a reference to the clinical case studies describing the phenotypes of patient mutations. Additionally, the experimental descriptions for several experiments are missing descriptions of controls or validation, which limits their strength in supporting the claims of the authors. 

      Strengths: 

      (1) This manuscript is well-written and clear. 

      (2) The authors use multiple assays to look at the effects of several disease-associated mutations, which support the claims. 

      (3) The identification of P317R as a mutant that loses activity specifically against NODD, which could be a useful tool for further studies in cells. 

      Weaknesses: 

      Major: 

      (1) The source data for the patient mutations (Figure 1) in PHD2 is not referenced, and it's not clear where this data came from or if it's publicly available. There is no section describing this in the methods. 

      Clinical and patient information on disease-causing PHD2 mutants was compiled from various case reports and summarized in an excel sheet found in the Supplementary Information.  The case reports are cited in this excel file.  A reference to the supplementary data has been added to the Figure 1 legend and in the introduction.

      (2) The NMR hydroxylation assay. 

      A. The description of these experiments is really confusing. The authors have published a recent paper describing a method using 13C-NMR to directly detect proly-hydroxylation over time, and they refer to this manuscript multiple times as the method used for the studies under review. However, it appears the current study is using 15N-HSQC-based experiments to track the CSP of neighboring residues to the target prolines, so not the target prolines themselves. The authors should make this clear in the text, especially on page 9, 5th line, where they describe proline cross-peaks and refer to the 15N-HSQC data in Figure 5B. 

      As the reviewer mentioned, the assay that we developed directly measures the target proline residues.  This assay is ideal when mutations near the prolines are studied, such as A403, Y565 (He et al[3]).  In this previous work, we observed that the shifting of the target proline cross-peaks due to change in electronegativity on the pyrrolidine ring of proline in turn impacted the neighboring residues[3], which meant that the neighboring residues can be used as reporter residues for certain purposes.  In this study, we focused on investigating the mutations on PHD2 while leaving the sequence of the HIF-1α unchanged by using solely 15N-HSQC-based experiments without the need for double-labeled samples.  Nonetheless, we thank the reviewer for pointing out the confusion in the text and we have corrected and clarified our description of this assay.

      B. The authors are using neighboring residues as reporters for proline hydroxylation, without validating this approach. How well do CSPs of A403 and I566 track with proline hydroxylation? Have the authors confirmed this using their 13C-NMR data or mass spec? 

      For previous studies, we performed intercalated 15N-HSQC and 13C-CON experiments for the kinetic measurements of wild-type HIF-1α and mutants.  We observed that the shifting pattern of A403 and I566 in the 15N-HSQC spectra aligned well with the ones of P402 and P564, respectively, in the 13C-CON spectra.  Representative data has been added to Supplemental Data.

      C. Peak intensities. In some cases, the peak intensities of the end point residue look weaker than the peak intensities of the starting residue (5B, PHD2 WT I566, 6 ct lines vs. 4 ct lines). Is this because of sample dilution (i.e., should happen globally)? Can the authors comment on this? 

      This is an astute observation by the reviewer.  We checked and confirmed that for all kinetic datasets, the peak intensities of the end point residue are always slightly lower than the ones of the starting.  This includes the cases for PHD2 A228S and P317R in 5B, although not as obvious as the one of PHD2 WT.  We agree with the reviewer that the sample dilution is a factor as a total volume of 16 microliters of reaction components was added to the solution to trigger the reaction after the first spectrum was acquired.  It is also likely that rate of prolyl hydroxylation becomes extremely slow with only a low amount of substrate available in the system.  Therefore, the reaction would not be 100% complete which was detected by the sensitive NMR experimentation.

      (3) Data validating the CRISPR KO HEK293A cells is missing. 

      We thank the reviewer for noting this oversight.  Western blots validating PHD2 KO in HEK293A cells have been added to the Supplementary Data file.

      (4) The interpretation of the SEC data for the PHD2 mutants is a little problematic. Subtle alterations in the elution profiles may hint at different hydrodynamic radii, but as the samples were not loaded at equal concentrations or volumes, these data seem more anecdotal, rather than definitive. Repeating this multiple times, using matched samples, followed by comparison with standards loaded under identical buffer conditions, would significantly strengthen the conclusions one could make from the data. 

      Agreed.  We have performed an additional experiment as suggested with equal volume and concentration of each PHD2 construct loaded onto the SEC column for better assessment of aggregation.  Notably, our conclusion remained unchanged.

      Minor: 

      (1) Justification for picking the seven residues is not clearly articulated. The authors say they picked 7 mutants with "distinct residue changes", but no further rationale is provided. 

      Additional justification for the selection of the mutants has been added to the ‘Mutations across the PHD2 enzyme induce erythrocytosis’ section.  Briefly, some mutants were chosen based on their frequency in the clinical data and their presence in potential mutational hot spots.  Various mutations were noted at W334 and R371, while F366L was identified in multiple individuals.  Additionally, 9 cases of PHD2-driven disease were reported to be caused from mutations located between residues 200 to 210 while 13 cases were reported between residues 369-379, so G206C and R371H were chosen to represent potential hot spots.  To examine a potential genotype-phenotype relationship, two of the mutants responsible for neuroendocrine tumor development, A228S and H374R, were also selected.  Finally, mutations located close or on catalytic core residues (P317R, R371H, and H374R) were chosen to test for suspected defects.   

      (2) A major finding of the paper is that a disease-associated mutation, P317R, can differentially affect HIF1 prolyhydroxylation, however, additional follow-up studies have not been performed to test this in cells or to validate the mutant in another method. Is it the position of the proline within the catalytic core, or the identity of the mutation that accounts for the selectivity? 

      This is the very question that we are currently addressing but as a part of a follow-up study.  Indeed, one thought is that the preferential defect observed could be the result of the loss of proline, an exceptionally rigid amino acid that makes contact with the backbone twice, or the addition of a specific amino acid, namely arginine, a flexible amino acid with an added charge at this site.  Although beyond the scope of this manuscript, we will investigate whether such and other characteristics in this region of PHD2/HIF1α interface contribute to the differential hydroxylation. 

      Reviewer #3 (Public review): 

      Summary: 

      This is an interesting and clinically relevant in vitro study by Taber et al., exploring how mutations in PHD2 contribute to erythrocytosis and/or neuroendocrine tumors. PHD2 regulates HIFα degradation through prolyl-hydroxylation, a key step in the cellular oxygen-sensing pathway. 

      Using a time-resolved NMR-based assay, the authors systematically analyze seven patient-derived PHD2 mutants and demonstrate that all exhibit structural and/or catalytic defects. Strikingly, the P317R variant retains normal activity toward the C-terminal proline but fails to hydroxylate the N-terminal site. This provides the first direct evidence that N-terminal prolyl-hydroxylation is not dispensable, as previously thought. 

      The findings offer valuable mechanistic insight into PHD2-driven effects and refine our understanding of HIF regulation in hypoxia-related diseases. 

      Strengths: 

      The manuscript has several notable strengths. By applying a novel time-resolved NMR approach, the authors directly assess hydroxylation at both HIF1α ODD sites, offering a clear functional readout. This method allows them to identify the P317R variant as uniquely defective in NODD hydroxylation, despite retaining normal activity toward CODD, thereby challenging the long-held view that the N-terminal proline is biologically dispensable. The work significantly advances our understanding of PHD2 function and its role in oxygen sensing, and might help in the future interpretation and clinical management of associated erythrocytosis. 

      Weaknesses: 

      (1) There is a lack of in vivo/ex vivo validation. This is actually required to confirm whether the observed defects in hydroxylation-especially the selective NODD impairment in P317R-are sufficient to drive disease phenotypes such as erythrocytosis.

      We thank the reviewer for this comment, and while we agree with this statement, the objective of this study per se was to elucidate the structural and/or functional defect caused by the various diseaseassociated mutations on PHD2.  The subsequent study would be to validate whether the identified defects, in particular the selective NODD impairment, would lead to erythrocytosis in vivo.  However, we feel that such study would be beyond the scope of this manuscript.

      (2) The reliance on HRE-luciferase reporter assays may not reliably reflect the PHD2 function and highlights a limitation in the assessment of downstream hypoxic signaling. 

      Agreed.  All experimental assays and systems have limitations.  The HRE-luciferase assay used in the present manuscript also has limitations such as the continuous expression of exogenous PHD2 mutants driven via CMV promoter.  Thus, we performed several additional biophysical methodologies to interrogate the disease-causing PHD2 mutants.  The limitations of the luciferase assay have been expanded in the revised manuscript. 

      (3) The study clearly documents the selective defect of the P317R mutant, but the structural basis for this selectivity is not addressed through high-resolution structural analysis (e.g., cryo-EM). 

      We thank the reviewer for the comment.  While solving the structure of PHD2 P317R in complex with HIFα substrate is beyond the scope for this study, a structure of PHD2 P317R in complex with a clinically used inhibitor has been solved (PDB:5LAT).  In analyzing this structure and that of PHD2 WT in complex with NODD, Chowdhury et al[2] stated that P317 makes hydrophobic contacts with LXXLAP motif on HIFα and R317 is predicted to interact differently with this motif.  While this analysis does not directly elucidate the reason for the preferential NODD defect, it supports the possibility that P317R substitution may be more detrimental for enzymatic activity on NODD than CODD.  We have discussed this notion in the revised manuscript. 

      (4) Given the proposed central role of HIF2α in erythrocytosis, direct assessment of HIF2α hydroxylation by the mutants would have strengthened the conclusions. 

      We thank the reviewer for this comment, but we feel that such study would be beyond the scope of the present study.  We observed that the PHD2 binding patterns to HIF1α and HIF2α were similar, and we have previously assigned >95% of the amino acids in HIF1α ODD for NMR study[3]. Thus, we first focused on the elucidation of possible defects on disease-associated PHD2 mutants using HIF1α as the substrate with the supposition that an identified deregulation on HIF1α could be extended to HIF2α paralog.  However, we agree with the reviewer that future studies should examine the impact of PHD2 mutants directly on HIF2α.  

      References:

      (1) Flashman, E. et al. Kinetic rationale for selectivity toward N- and C-terminal oxygen-dependent degradation domain substrates mediated by a loop region of hypoxia-inducible factor prolyl hydroxylases. J Biol Chem 283, 3808-3815 (2008).

      (2) Chowdhury, R. et al. Structural basis for oxygen degradation domain selectivity of the HIF prolyl hydroxylases. Nat Commun 7, 12673 (2016).

      (3) He, W., Gasmi-Seabrook, G.M.C., Ikura, M., Lee, J.E. & Ohh, M. Time-resolved NMR detection of prolyl-hydroxylation in intrinsically disordered region of HIF-1alpha. Proc Natl Acad Sci U S A 121, e2408104121 (2024).

      Reviewer #1 (Recommendations for the authors): 

      (1) To increase the impact and significance of this work, I would recommend determining the mechanism by which A228S and F366L impair PHD2. Are these mutations affecting interactions with proteins other than HIF1a? Furthermore, does the F366L mutation affect the hydroxylation rate? This should be measured. The authors should also perform a more in-depth structural analysis of these mutations and perhaps use AlphaFold to identify how these sites may be involved in other interactions. 

      We thank the reviewer for the recommendations.  A paragraph discussing the quandary of A228S and F366L has been added to the discussion as well as an in-depth structural analysis of each selected mutant.  While AlphaFold is excellent at predicting protein structures overall, its capability to predict the effect of single point mutation, such as those in this study, is limited.  Therefore, it was not utilized for this paper.

      (2) For the aggregation assay, I recommended injecting the same quantity of protein on the SEC. If the aggregation-prone mutants' yields were too low, then reduced amounts of the other mutants should be injected. 

      Agreed.  An additional experiment was performed in which similar concentrations of each mutant protein was loaded onto the SEC column and chromatograms was normalized according to the molecular concentration.  Results from this experiment have been added to replace the previously performed aggregation assay.  Notably, the data from the revised experiment did not change the outcome or conclusion of the study.

      (3) For the NMR kinetics data, the authors should discuss the impact of affinities and concentrations on the reaction rate and incorporate this analysis framework to interpret their data. 

      Done.  As discussed in depth in response to Public Reviewer 1’s fourth comment, we observed only a subtle reduction in hydroxylation efficiency of HIF1aCODD by PHD2 P317R in comparison to PHD2 WT.  Upon performing BLI, we found PHD2 P317R displays only a mild binding defect on the CODD and NODD.  The WT-like binding to the NODD by PHD2 P317R appears to be inconsistent with the severe defect in NODD hydroxylation via PHD2 P317R as measured via NMR.   These results suggest that there are supporting residues within the PHD2/NODD interface that help maintain binding to NODD but compromise the efficiency of NODD hydroxylation upon PHD2 P317R mutation.

      Reviewer #2 (Recommendations for the authors): 

      It is unclear where the source data came from describing the patient mutations, or if it is publicly available. Several minor issues were noted with several of the figures or methods: 

      (1) Figure 2C. It is not clear what data are being compared for significance. The lines don't seem to clearly distinguish this. 

      Done.  The significance lines have been adjusted in the figure to better convey which data are being compared.

      (2) Please incorporate the calculated biophysical constants (KD, TM, etc, average +/- std dev) from the tables into the figures or figure legends that show the data from which they are calculated.  

      Done.  References to the corresponding tables have been added to the appropriate figure legends.

      (3) Figure 3C, the data for F366L do not appear normalized in the same way as the other constructs. 

      CD melt values for F366L were normalized in the same way as other constructs but due to noisier data acquired between 25-37°C, the top value of the sigmoidal curve is slightly higher than the other constructs (F366L: 1.066, WT: 1.007, A228S: 1.000, P317R: 1.015, R371H: 1.005). 

      (4) For Figure 1B, it would be helpful to highlight the mutants characterized in the current study with a different color/symbol to help show the number of cases. 

      Done.  Dots representing the selected mutants have been highlighted in red in Figure 1B.

      (5) A description of the isotopic labeling of PHD2 is missing from the methods.

      Due to the nature of the NMR assay, no isotopic labeling was required for PHD2.

      Reviewer #3 (Recommendations for the authors): 

      (1) To further strengthen the manuscript, the authors could consider exploring the relevance of their in vitro findings in a more physiological context. 

      We thank the reviewer for the suggestion, and we will certainly consider furthering our investigation in a more physiological context for future studies.

      (2) If technically feasible, integrating direct analyses of HIF2α regulation by the PHD2 mutants would better reflect the clinical phenotype, given the known importance of HIF2α in erythrocytosis. 

      We agree that HIF2α is important in the context of erythrocytosis, but through MST we observed no difference in binding pattern between HIF1 and HIF2 and the selected PHD2 mutants.  As we had previously assigned >95% of residues for HIF1α ODD for NMR assay, we analyzed HIF1 with the supposition that any defects observed would likely apply to HIF2.  However, we agree that future studies on the impact of PHD2 mutants directly on HIF2 would be beneficial to supplement our understanding of pseudohypoxic disease.

      (3) Additionally, although perhaps more suitable for future work or discussion, structural modeling or highresolution structural studies of the P317R variant could offer valuable insight into the observed NODD selectivity defect. 

      We thank the reviewer for the suggestion. While solving the structure of PHD2 P317R in complex with NODD is beyond the scope of this manuscript, a crystal structure of PHD2 P317R in complex with an inhibitor has been solved and insights from this structure have been added to the discussion. 

      (4) Finally, a brief clarification or discussion of the limitations of the luciferase reporter assay-especially in the context of aggregation-prone mutants-would help readers better interpret the functional data. 

      We thank the reviewer for the suggestion.  The limitations of the luciferase reporter assay in regard to its inability to detect defects with aggregation-prone mutants have been elaborated on in the discussion.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public Review):

      Summary:

      The authors show that a combination of arginine methyltransferase inhibitors synergize with PARP inhibitors to kill ovarian and triple negative cancer cell lines in vitro and in vivo using preclinical mouse models.

      Strengths and weaknesses

      The experiments are well-performed, convincing and have the appropriate controls (using inhibitors and genetic deletions) and use statistics.

      They identify the DNA damage protein ERCC1 to be reduced in expression with PRMT inhibitors. As ERCC1 is known to be synthetic lethal with PARPi, this provides a mechanism for the synergy. They use cell lines only for their study in 2D as well as xenograph models.

      We sincerely thank Reviewer #2 for the insightful and constructive feedback, as well as for the kind recognition of the scientific quality of our work: “The experiments are well-performed, convincing and have the appropriate controls (using inhibitors and genetic deletions) and use statistics.” We sincerely thank Reviewer #2 for their thoughtful and constructive comments during both rounds of review, which have significantly improved the quality of our manuscript. In response, we have incorporated new results from additional experiments into the figures (Figures 6M and 6N) and made comprehensive revisions throughout the text, figures, and supplementary materials. Following the reviewer’s valuable suggestions, we also revised the Discussion section. In the “Recommendations for the authors” sections, we have provided detailed point-by-point responses to each comment, which were instrumental in guiding our revisions. We believe these updates have substantially strengthened the manuscript and fully addressed all reviewer concerns.

      Reviewer #2 (Recommendations for the authors): 

      Although the authors have addressed each recommendation from the reviewer, further revision of the manuscript are still necessary, as outlined below.

      Add these additional comments in the text to further enhance the comprehension and clarity of the data.

      (1) If the authors kept the tumors of various sizes in Figure 7I, it would be important to assess the protein and/or mRNA level of ERCC1 to further support their mechanism.

      Question (1): Please add the figures of new experiments (treatment diagram, curves for tumor volume and qRT-PCR data) to Figure 6.

      We thank the reviewers for their constructive suggestions. In response to the reviewers’ comments, we have added the treatment diagram and qPCR results to Figure 6. In this experiment, we shortened the treatment duration to seven days to assess early molecular responses to therapy rather than downstream effects. As expected, such short-term treatment did not result in significant differences in tumor growth among groups. The new results are now presented in Figure 6, panels M and N. The corresponding results and figure legends will also be included in the revised version of the manuscript

      (2) Figure 2G: please explain why two bands remain for sgPRMT1.

      Question (2): In the answer, the authors stated, "Upon knockdown of the major isoforms by CRISPR/Cas9, expression of this minor isoform may have increased as part of a compensatory feedback mechanism, rendering it detectable by immunoblotting." Please put the statement into the discussion section.

      We sincerely thank the reviewers for their thoughtful and constructive suggestions. In response to these comments, we have carefully revised the manuscript and incorporated the corresponding information into the Discussion section to provide greater clarity and context for our findings.

      (3) (Previously point 5) What is the link with ERCC1 splicing because reduced overall ERCC1 expression is clear?

      Question (5): Please add the explanation you provide of links between ERCC1 splicing and PRMTi into the discussion section.

      "Furthermore, as shown in Figure 4G, we observed a reduction in the total ERCC1 mRNA reads following PRMTi treatment. This decrease may be attributed, at least in part, to the instability of the alternatively spliced ERCC1 transcripts, which could be more prone to degradation. In combination with the transcriptional downregulation of ERCC1 induced by PRMT inhibition, these alternative splicing events may lead to a further reduction in functional ERCC1 protein levels. This dual impact on ERCC1 expression, through both decreased transcription and the generation of unstable or nonfunctional isoforms, likely contributes to the enhanced cellular sensitivity to PARP inhibitors observed in our study."

      We sincerely thank the reviewers for their thoughtful and constructive suggestions. In response to these comments, we have carefully revised the manuscript and incorporated the corresponding information into the Discussion section to provide greater clarity and context for our findings.

      (4) (Previously 6) Figure 7J: From the graph, it seems like Olaparib+G715 and G715+G025 have a similar effect on tumor volume (two curves overlap). Please discuss.

      Question (6): In the answer, the authors stated, "Our in vitro and in vivo findings, together with previously published data, consistently demonstrate that GSK715 is more potent than both GSK025 and Olaparib. Notably, treatment with GSK715 alone led to significantly greater inhibition of tumor growth compared to either GSK025 or Olaparib administered individually. This higher potency of GSK715 also explains the comparable levels of tumor suppression observed in the combination groups, including GSK715 plus Olaparib and GSK715 plus GSK025. These results suggest that GSK715 is likely the primary driver of efficacy in the two drug combination settings." Please put the statement in the corresponding result section for Figure 6J.

      We sincerely thank the reviewers for their thoughtful and constructive suggestions. In response to these comments, we have carefully revised the manuscript and incorporated the corresponding information into the result section for Figure 6J to provide greater clarity and context for our findings.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this manuscript entitled "Molecular dynamics of the matrisome across sea anemone life history", Bergheim and colleagues report the prediction, using an established sequence analysis pipeline, of the "matrisome" - that is, the compendium of genes encoding constituents of the extracellular matrix - of the starlet sea anemone Nematostella vectensis. Re-analysis of an existing scRNA-Seq dataset allowed the authors to identify the cell types expressing matrisome components and different developmental stages. Last, the authors apply time-resolved proteomics to provide experimental evidence of the presence of the extracellular matrix proteins at three different stages of the life cycle of the sea anemone (larva, primary polyp, adult) and show that different subsets of matrisome components are present in the ECM at different life stages with, for example, basement membrane components accompanying the transition from larva to primary polyp and elastic fiber components and matricellular proteins accompanying the transition from primary polyp to the adult stage. 

      Strengths: 

      The ECM is a structure that has evolved to support the emergence of multicellularity and different transitions that have accompanied the complexification of multicellular organisms. Understanding the molecular makeup of structures that are conserved throughout evolution is thus of paramount importance. 

      The in-silico predicted matrisome of the sea anemone has the potential to become an essential resource for the scientific community to support big data annotation efforts and understand better the evolution of the matrisome and of ECM proteins, an important endeavor to better understand structure/function relationships. This study is also an excellent example of how integrating datasets generated using different -omic modalities can shed light on various aspects of ECM metabolism, from identifying the cell types of origins of matrisome components using scRNA-Seq to studying ECM dynamics using proteomics. 

      We greatly appreciate the positive feedback regarding the design of our study and the evolutionary significance of our findings.

      Weaknesses: 

      My concerns pertain to the three following areas of the manuscript: 

      (1) In-silico definition of the anemone matrisome using sequence analysis: 

      a) While a similar computational pipeline has been applied to predict the matrisome of several model organisms, the authors fail to provide a comprehensive definition of the anemone matrisome: In the text, the authors state the anemone matrisome is composed of "551 proteins, constituting approximately 3% of its proteome (see page 6, line 14), but Figure 1 lists 829 entries as part of the "curated" matrisome, Supplementary Table S1 lists the same 829 entries and the authors state that "Here, we identified 829 ECM proteins that comprise the matrisome of the sea anemone Nematostella vectensis" (see page 17, line 10). Is the sea anemone matrisome composed of 551 or 829 genes? If we refer to the text, the additional 278 entries should not be considered as part of the matrisome, but what is confusing is that some are listed as glycoproteins and the "new_manual_annotation" proposed by the authors and that refer to the protein domains found in these additional proteins suggest that in fact, some could or should be classified as matrisome proteins. For example, shouldn't the two lectins encoded by NV2.3951 and NV2.3157 be classified as matrisome-affiliated proteins? Based on what has been done for other model organisms, receptors have typically been excluded from the "matrisome" but included as part of the "adhesome" for consistency with previously published matrisome; the reviewer is left wondering whether the components classified as "Other" / "Receptor" should not be excluded from the matrisome and moved to a separate "adhesome" list. 

      In addition to receptors, the authors identify nearly 70 glycoproteins classified as "Other". Here, does other mean "non-matrisome" or "another matrisome division" that is not core or associated? If the latter, could the authors try to propose a unifying term for these proteins? Unfortunately, since the authors do not provide the reasons for excluding these entries from the bona fide matrisome (list of excluding domains present, localization data), the reader is left wondering how to treat these entries. 

      Overall, the study would gain in strength if the authors could be more definitive and, if needed, even propose novel additional matrisome annotations to include the components for now listed as "Other" (as was done, for example, for the Drosophila or C. elegans matrisomes). 

      The reviewer is correct to point out the confusing terminology used throughout our manuscript, where both the total of 829 proteins constituting the curated list of ECM domain proteins and the actual matrisome (excluding "others") were referred to as "matrisomes". In general, we followed the example set by Naba & Hynes in their 2012 paper (Mol Cell Proteomics. 2012 Apr;11(4):M111.014647. doi: 10.1074/mcp.M111.014647), where they define the "matrisome" as encompassing all components of the extracellular matrix ("core matrisome") and those associated with it ("matrisome-associated" proteins). This corresponds to our group of 551 proteins, comprising both core matrisome and matrisomeassociated proteins. The Naba & Hynes paper also contains the inclusive and exclusive domain lists for the matrisome that we applied for our dataset. In the revised manuscript, we have now labelled the group of 829 proteins as "curated ECM domain proteins/genes", which includes all proteins positively selected for containing a bona fide ECM domain. After excluding non-matrisomal proteins such as receptors, we arrive at the 551 proteins that constitute the "Nematostella matrisome". We have maintained this terminology throughout the revised manuscript and have revised Figures 1B and 4B accordingly.

      Regarding the category of "other" proteins, which by definition are not part of the matrisome although containing ECM domains, we have taken the reviewer's advice and classified these in more detail. We categorized all receptors as "adhesome" (202 proteins).  The remaining group of “other” secreted ECM domain proteins were then further subcategorized. Those exhibiting significant matches in the ToxProt database were subclassified as "putative venoms" (15 proteins). This group also includes the two lectins (NV2.3951 and NV2.3157), which had been originally shifted to the “other” category due to their classification as venoms. We categorized as “adhesive proteins” (28 proteins) factors such as coadhesins that due to their domain architecture resemble bioadhesive proteins described in proteomic studies of other invertebrate species, such as corals or sponges (see also https://doi.org/10.1016/j.jprot.2022.104506). Further sub-categories are stress/injury response proteins (9 proteins) and ion channels (6 proteins). The remaining 17 proteins were categorized as “uncharacterized ECM domain proteins”. These include highly diverse proteins possessing either single ECM domains or novel domain combinations. We decided to retain those in our dataset as candidates for future functional characterization.

      b) It is surprising that the authors are not providing the full currently accepted protein names to the entries listed in Supplementary Table S1 and have used instead "new_manual_annotation" that resembles formal protein names. This liberty is misleading. In fact, the "new_manual_annotation" seems biased toward describing the reason the proteins were positively screened for through sequence analysis, but many are misleading because there is, in fact, more known about them, including evidence that they are not ECM proteins. The authors should at least provide the current protein names in addition to their "new_manual_annotations". 

      c) To truly serve as a resource, the Table should provide links to each gene entry in the Stowers Institute for Medical Research genome database used and some sort of versioning (this could be added to columns A, B, or D). Such enhancements would facilitate the assessment of the rigor of the list beyond the manual QC of just a few entries. 

      d) Since UniProt is the reference protein knowledge database, providing the UniProt IDs associated with the predicted matrisome entries would also be helpful, giving easy access to information on protein domains, protein structures, orthology information, etc. 

      e) In conclusion, at present, the study only provides a preliminary draft that should be more rigorously curated and enriched with more comprehensive and authoritative annotations if the authors aspire the list to become the reference anemone matrisome and serve the community. 

      Table S1 has been updated to include links to the respective Stowers Institute IDs (first two columns), as well as SwissProt IDs and current descriptions from both the Stowers Institute (SI) and Swissprot.

      In our manual annotations, we prioritized these over automated ones due to the considerable effort invested in examining each sequence individually. The cnidaria-specific minicollagens and NOWA proteins might serve as an example. According to the SI descriptions, the minicollagens are annotated as “keratin-associated protein, predicted or hypothetical protein, collagen-like protein and pericardin”. We classified these as minicollagens on the basis of overall domain architecture and of signature domains and sequence motifs, such as minicollagen cysteine-rich domains (CRDs) and polyproline stretches (doi: 10.1016/j.tig.2008.07.001). NOWA is a CTLD/CRD-containing protein that is part of nematocyst tubules (doi:10.1016/j.isci.2023.106291). The first two NOWA isoforms, according to Si descriptions, were annotated as aggrecan and brevican core proteins, which is very misleading. We therefore feel that our manual annotations better serve the cnidarian research community in classifying these proteins.

      Automated annotations of ECM proteins often rely on similarities between individual domains, neglecting overall domain composition. For example, Swissprot descriptions annotate 31 TSP1 domain-containing proteins in our list as "Hemicentin-1", but closer inspection reveals that only one sequence (NV2.24790) qualifies as Hemicentin-1 due to its characteristic vWFA, Ig-like, TSP1, G2 nidogen, and EGF-like domain architecture. Regarding novel protein annotations, NV2.650 might serve as an example. While SI descriptions annotate this protein as "epidermal growth factor" based on the presence of several EGF-like domains, our analysis reveals two integrin alpha N-terminal domains that classify this sequence as integrin-related. We have therefore assigned a description (Secreted integrin-N-related protein) that references this defining domain and avoids misclassification within the EGF family.

      In cases where the automated annotation (including those in Genbank) matched our own findings, we adopted the existing description, as seen with netrin-1 (NV2.7734). We acknowledge that our manual annotations are not flawless and will be refined by future research. Nonetheless, we offer them as an approximation to a more accurate definition of the identified protein list.

      (2) Proteomic analysis of the composition of the mesoglea during the sea anemone life cycle: 

      a) The product of 287 of the 829 genes proposed to encode matrisome components was detected by proteomics. What about the other ~550 matrisome genes? When and where are they expressed? The wording employed by the authors (see line 11, page 13) implies that only these 287 components are "validated" matrisome components. Is that to say that the other ~550 predicted genes do not encode components of the ECM? This should be discussed. 

      Obviously, our wording was not sufficiently accurate here. In the revised Fig. 1B we indicated that 210 of the 551 matrisome (core and associated) proteins were confirmed by mass spectrometry. In total, 287 proteins were identified by mass spectrometry, meaning that 77 of those are non-matrisomal proteins belonging to the “adhesome” (47) and “other” (30) groups. The fact that the remaining 542 proteins of the matrisome predicted by our in silico analysis could not be identified has two major reasons: (1) Our study was focussed on the molecular dynamics of the mesoglea. Therefore, only mesogleas were isolated for the mass spectrometry analysis and nematocysts were mostly excluded by extensive washing steps. As nematocysts contribute significantly to the predicted matrisome, this group of proteins is underrepresented in the mass spectrometry analysis. (2) A significant fraction of the predicted ECM proteins constitutes soluble factors and transmembrane receptors. These might not be necessarily part of the mesoglea isolates. In addition, the isolation and solubilization method we applied might have technical limitations. Although we used harsh conditions for solubilizing the mesoglea samples (90°C and high DTT concentrations), we cannot exclude that we missed proteins which resisted solubilization and thus trypsinization. We confirmed that all genes predicted by the in silico analysis have transcriptomic profiles as demonstrated in supplementary table S4. We have clarified these points in the revised results part (p.6) and also revised the statement in line 16, page 13.

      b) Can the authors comment on how they have treated zero TMT values or proteins for which a TMT ratio could not be calculated because unique to one life stage, for example? 

      We did not include these proteins in the analysis of the respective statistical comparison. This involved only very few proteins (about 10).  

      c) Could the authors provide a plot showing the distribution of protein abundances for each matrisome category in the main figure 4? In mammals, the bulk of the ECM is composed of collagens, followed by fibrillar ECM glycoproteins, the other matrisome components being more minor. Is a similar distribution observed in the sea anemone mesoglea? 

      We have included such a plot showing protein abundances across life stages and protein categories (Fig. 4A). Collagens and basement membrane proteoglycans (perlecan) are the most abundant protein categories in the core matrisome while secreted factors dominate in the matrisome-associated group.

      d) Prior proteomic studies on the ECM of vertebrate organisms have shown the importance of allowing certain post-translational modifications during database search to ensure maximizing peptide-to-spectrum matching. Such PTMs include the hydroxylation of lysines and prolines that are collagen-specific PTMs. Multiple reports have shown that omitting these PTMs while analyzing LC-MS/MS data would lead to underestimating the abundance of collagens and the misidentification of certain collagens. The authors may want to reanalyze their dataset and include these PTMs as part of their search criteria to ensure capturing all collagen-derived peptides. 

      Thank you for this suggestion. We have re-analyzed our dataset including lysine and proline hydroxylation as PTM. While we obtained in total 70 more proteins using this approach, this additional group did not contain any large collagen or minicollagen we had not detected before. We only obtained two additional collagen-like proteins with very short triple helical domains (V2t013973001.1, NV2t024002001.1), one being a fragment. We don’t feel this justifies implementing a re-analysis of the proteome in our study.

      e) The authors should ensure that reviewers are provided with access to the private PRIDE repository so the data deposited can also be evaluated. They should also ensure that sufficient meta-data is provided using the SRDF format to allow the re-use of their LCMS/MS datasets. 

      We apologize for not providing the reviewer access in our initial submission and have asked the editorial office to forward the PRIDE repository link to all reviewers immediately after receiving the reviews. We did upload a metadata.csv file with the proteomics dataset. This file contains an annotation of all TMT labels to the samples and conditions and replicates used in the manuscript. It contains similar information as an SRDF format file. In addition, the search output files on protein and psm level have been provided. So, from our point of view, we provided all necessary information to reproduce the analysis.

      (3) Supplementary tables: 

      The supplementary tables are very difficult to navigate. They would become more accessible to readers and non-specialists if they were accompanied by brief legends or "README" tabs and if the headers were more detailed (see, for example, Table S2, what does "ctrl.ratio_Larvae_rep2" exactly refer to? Or Table S6 whose column headers using extensive abbreviations are quite obscure). Similarly, what do columns K to BX in Supplementary Table S1 correspond to? Without more substantial explanations, readers have no way of assessing these data points. 

      We have revised the tables and removed any redundant data columns. We also included detailed explanations of the used abbreviations, both in the headers and in a separate README file. Some of the information was apparently lost during the conversion to pdf files. We will therefore upload the original .xls files when submitting the revised manuscript.

      Reviewer #2 (Public review): 

      This work set out to identify all extracellular matrix proteins and associated factors present within the starlet sea anemone Nematostella vectensis at different life stages. Combining existing genomic and transcriptomic datasets, alongside new mass spectometry data, the authors provide a comprehensive description of the Nematostella matrisome. In addition, immunohistochemistry and electron microscopy were used to image whole mount and decellularized mesoglea from all life stages. This served to validate the de-cellularization methods used for proteomic analyses, but also resulted in a very nice description of mesoglea structure at different life stages. A previously published developmental cell type atlas was used to identify the cell type specificity of the matrisome, indicating that the core matrisome is predominantly expressed in the gastrodermis, as well as cnidocytes. The analyses performed were rigorous and the results were clear, supporting the conclusions made by the authors. 

      Thank you. We greatly appreciate the positive assessment of our study.

      Reviewer #3 (Public review): 

      Summary: 

      This manuscript by Bergheim et al investigates the molecular and developmental dynamics of the matrisome, a set of gene products that comprise the extracellular matrix, in the sea anemone Nematostella vectensis using transcriptomic and proteomic approaches. Previous work has examined the matrisome of the hydra, a medusozoan, but this is the first study to characterize the matrisome in an anthozoan. The major finding of this work is a description of the components of the matrisome in Nematostella, which turns out to be more complex than that previously observed in hydra. The authors also describe the remodeling of the extracellular matrix that occurs in the transition from larva to primary polyp, and from primary polyp to adult. The authors interpret these data to support previously proposed (Steinmetz et al. 2017) homology between the cnidarian endoderm with the bilaterian mesoderm. 

      Strengths: 

      The data described in this work are robust, combining both transcriptome and proteomic interrogation of key stages in the life history of Nematostella, and are of value to the community. 

      Thank you for your positive assessment of our dataset. 

      Weaknesses: 

      The authors offer numerous evolutionary interpretations of their results that I believe are unfounded. The main problem with extending these results, together with previous results from hydra, into an evolutionary synthesis that aims to reconstruct the matrisome of the ancestral cnidarian is that we are considering data from only two species. I agree with the authors' depiction of hydra as "derived" relative to other medusozoans and see it as potentially misleading to consider the hydra matrisome as an exemplar for the medusozoan matrisome. Given the organismal and morphological diversity of the phylum, a more thorough comparative study that compares matrisome components across a selection of anthozoan and medusozoan species using formal comparative methods to examine hypotheses is required. 

      Specifically, I question the author's interpretation of the evolutionary events depicted in this statement: 

      "The observation that in Hydra both germ layers contribute to the synthesis of core matrisome proteins (Epp et al. 1986; Zhang et al. 2007) might be related to a secondary loss of the anthozoan-specific mesenteries, which represent extensions of the mesoglea into the body cavity sandwiched by two endodermal layers." 

      Anthozoans and medusozoans are evolutionary sisters. Therefore, the secondary loss of "anthozoan-like mesenteries" in hydrozoans is at least as likely as the gain of this character state in anthozoans. By extension, there is no reason to prefer the hypothesis that the state observed in Nematostella, where gastroderm is responsible for the synthesis of the core matrisome components, is the ancestral state of the phylum. Moreover, the fossil evidence provided in support of this hypothesis (Ou et al. 2022) is not relevant here because the material described in that work is of a crown group anthozoan, which diversified well after the origin of Anthozoa. The phylogenetic structure of Cnidaria has been extensively studied using phylogenomic approaches and is generally well supported (Kayal et al. 2018; DeBiasse et al. 2024). Based on these analyses, anthozoans are not on a "basal" branch, as the authors suggest. The structure of cnidarian phylogeny bifurcates with Anthozoa forming one clade and Medusozoa forming the other. From the data reported by Bergheim and coworkers, it is not possible to infer the evolutionary events that gave rise to the different matrisome states observed in Nematostella (an anthozoan) and hydra (a medusozoan). Furthermore, I take the observation in Fig 5 that anthozoan matrisomes generally exhibit a higher complexity than other cnidarian species to be more supportive of a lineage-specific expansion of matrisome components in the Anthozoa, rather than those components being representative of an ancestral state for Cnidaria. Whatever the implication, I take strong issue with the statement that "the acquisition of complex life cycles in medusozoa, that are distinguished by the pelagic medusa stage, led to a secondary reduction in the matrisome repertoire." There is no causal link in any of the data or analyses reported by Bergheim and co-workers to support this statement and, as stated above, while we are dealing with limited data, insufficient to address this question, it seems more likely to me that the matrisome expanded in anthozoans, contrasting with the authors' conclusions. While the discussion raises many interesting evolutionary hypotheses related to the origin of the cnidarian matrisome, which is of vital interest if we are to understand the origin of the bilaterian matrisome, a more thorough comparative analysis, inclusive of a much greater cnidarian species diversity, is required if we are to evaluate these hypotheses. 

      DeBiasse MB, Buckenmeyer A, Macrander J, Babonis LS, Bentlage B, Cartwright P, Prada C, Reitzel AM, Stampar SN, Collins A, et al. 2024. A Cnidarian Phylogenomic Tree Fitted With Hundreds of 18S Leaves. Bulletin of the Society of Systematic Biologists [Internet] 3. Available from: https://ssbbulletin.org/index.php/bssb/article/view/9267

      Epp L, Smid I, Tardent P. 1986. Synthesis of the mesoglea by ectoderm and endoderm in reassembled hydra. J Morphol [Internet] 189:271-279. Available from: https://pubmed.ncbi.nlm.nih.gov/29954165/ 

      Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF. 2018. Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol [Internet] 18:1-18. Available from: https://bmcecolevol.biomedcentral.com/articles/10.1186/s12862-018-1142-0

      Ou Q, Shu D, Zhang Z, Han J, Van Iten H, Cheng M, Sun J, Yao X, Wang R, Mayer G. 2022. Dawn of complex animal food webs: A new predatory anthozoan (Cnidaria) from Cambrian. The Innovation 3:100195 

      Steinmetz PRH, Aman A, Kraus JEM, Technau U. 2017. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nature Ecology & Evolution 2017 1:10 [Internet] 1:1535-1542. Available from: https://www.nature.com/articles/s41559-017-0285-5

      Zhang X, Boot-Handford RP, Huxley-Jones J, Forse LN, Mould AP, Robertson DL, Li L, Athiyal M, Sarras MP. 2007. The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem [Internet] 282:6792-6802. Available from: https://pubmed.ncbi.nlm.nih.gov/17204477/ 

      We agree with the reviewer that only the analysis of several additional anthozoan and medusozoan representatives will yield a valid basis for a reconstruction of the ancestral cnidarian matrisome and allow statements about ancestral or novel features within the phylum. We have therefore revised our statements in the discussion part of the manuscript by implementing the cited literature and also findings from medusozoan genome analysis (e.g. Gold et al., 2018) demonstrating that changes in gene content are as common in the anthozoans as in medusozoans, which questioned the previously stated “basal” state of Nematostella or of anthozoans in general.

      Reviewer #1 (Recommendations for the authors): 

      (1) In Figure 2A, an "o" is missing in the labeling of the "developing cnidcytes" population. 

      Thank you, we have corrected the typo.

      (2) It would be helpful to have the different life stages indicated as headers of the heat maps presented in Figure 4. 

      We have included symbolic representations for the different life stages on top of the heat maps in addition to the respective labels at the bottom.

      Reviewer #2 (Recommendations for the authors): 

      Important changes: 

      (1) Figure 2B The x-axis tissue names should be changed to something more easily readable/understandable - some are clear, but others are not. Perhaps abbreviations could be expanded in the legend. 

      We have expanded the legend in Fig. 2B to render it more easily readable. We have also rotated the maps in A to have them aligned with the ones in Fig.3B.

      (2) Figure 3B This figure would be improved by the inclusion of cluster names, to understand better the mapping. 

      We have added relevant cluster names to Fig. 3B and as stated above aligned the orientation of the maps in Fig. 2B and Fig. 3B.

      (3) Figure 3C As with 2B, I find the y-axis cnidocyte cell state names to be unclear at times. Perhaps abbreviations could be expanded in the legend. 

      All abbreviations were expanded in Fig.3C axis labels.

      (4) Many of the supplementary tables are not well exported or easily readable as is (gene names are truncated, headers truncated, etc), which means that they may not be easily usable by researchers in the field interested in following up on this work in other contexts. Indeed, to be more usable, please consider sharing these supplementary data as .csv files, for example, instead of as .pdfs. 

      We are sorry for this inconvenience, which was obviously caused by the conversion to pdf files. We will upload the original csv files when submitting the revised manuscript.

      Smaller nitpicky comments: 

      (5) Page 2 line 4 & page 3 line 7: Please consider a term other than "pre-bilaterian". The drawing/ordering of a phylogeny of extant species is not meaningful in terms of more or less ancestral. e.g. if the tips are flipped in the drawing of the tree, can we say that bilaterians are pre-cnidarians? What does that mean? 

      We have used that term on the basis that cnidarians existed before the appearance of bilaterians according to the fossil record and molecular phylogenies (McFadden et al., 2021; Adoutte et al., 2000;Cavalier-Smith et al., 1996; Collins, 1998; Kim et al., 1999; Medina et al., 2001; Wainright et al., 1993). To acknowledge remaining uncertainties in the timing of origin of animals, we will use the term “early-diverging metazoans” instead, which is widely accepted in the cnidarian community. 

      (6) Page 3 line 9 I was confused by the use of "gastrula-shaped body" to describe cnidarians, which are on the whole very morphologically diverse and don't all resemble gastrulae (that can also be quite diverse). 

      This term is sometimes used to refer to the diploblastic cnidarian body plan (outer ectoderm, inner endoderm) with a mouth that corresponds to the blastopore. To avoid misunderstandings, we changed it in the revised manuscript to “Cnidarians, the sister group to bilaterians, are characterized by a simple body plan with a central body cavity and a mouth opening surrounded by tentacles.”

      Reviewer #3 (Recommendations for the authors): 

      (1) In general, I felt there was a lot of discussion about protein structure and diversity that is difficult to follow without a figure. I think some of the information in Supplementary Figures S5, S9, and S11 should be in the main figures. 

      Following the reviewer’s suggestion, we have integrated Fig. S5 (collagens) into the main Fig. 2 and Fig. S9 (polydoms) into Fig. 4. As metalloproteases are not extensively discussed in the manuscript (and also due to the large size of the figure) we have kept Fig. S11 as a supplementary figure.

      (2) Page 3, Line 7: The use of the term "pre-bilaterian" is inappropriate. Cnidarians and bilaterians are evolutionary sisters. Therefore, each lineage derives from the same split and is the same age. The cnidarian lineage is not older than the bilaterian lineage. 

      Following a similar request by reviewer 2 we have replaced this term by “early diverging metazoans”.

      (3) Page 5, Line 10. How were in silico matrisomes from early-branching metazoan species predicted? 

      We applied the same bioinformatic pipeline as for the Nematostella matrisome. We clarified this in the respective methods part.

      (4) Page 16, Line 8: This should be Thus. 

      Obviously, the wording of this sentence was ambiguous. We changed it to ”In contrast, the adult mesoglea is significantly enriched in elastic fiber components, such as fibrillins and fibulin. This compositional shift likely adds to the visco-elastic properties (Gosline 1971a, b) of the growing body column (Fig. 4B,D, supplementary table S7).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      The study examines how pyruvate, a key product of glycolysis that influences TCA metabolism and gluconeogenesis, impacts cellular metabolism and cell size. It primarily utilizes the Drosophila liver-like fat body, which is composed of large post-mitotic cells that are metabolically very active. The study focuses on the key observations that overexpression of the pyruvate importer MPC complex (which imports pyruvate from the cytoplasm into mitochondria) can reduce cell size in a cell-autonomous manner. They find this is by metabolic rewiring that shunts pyruvate away from TCA metabolism and into gluconeogenesis. Surprisingly, mTORC and Myc pathways are also hyper-active in this background, despite the decreased cell size, suggesting a non-canonical cell size regulation signaling pathway. They also show a similar cell size reduction in HepG2 organoids. Metabolic analysis reveals that enhanced gluconeogenesis suppresses protein synthesis. Their working model is that elevated pyruvate mitochondrial import drives oxaloacetate production and fuels gluconeogenesis during late larval development, thus reducing amino acid production and thus reducing protein synthesis. 

      Strengths: 

      The study is significant because stem cells and many cancers exhibit metabolic rewiring of pyruvate metabolism. It provides new insights into how the fate of pyruvate can be tuned to influence Drosophila biomass accrual, and how pyruvate pools can influence the balance between carbohydrate and protein biosynthesis. Strengths include its rigorous dissection of metabolic rewiring and use of Drosophila and mammalian cell systems to dissect carbohydrate:protein crosstalk. 

      Weaknesses: 

      However, questions on how these two pathways crosstalk, and how this interfaces with canonical Myc and mTORC machinery remain. There are also questions related to how this protein:carbohydrate crosstalk interfaces with lipid biosynthesis. Addressing these will increase the overall impact of the study. 

      We thank the reviewer for recognizing the significance of our work and for providing constructive feedback. Our findings indicate that elevated pyruvate transport into mitochondria acts independently of canonical pathways, such as mTORC1 or Myc signaling, to regulate cell size. To investigate these pathways, we utilized immunofluorescence with well-validated surrogate measures (p-S6 and p-4EBP1) in clonal analyses of MPC expression, as well as RNAseq analyses in whole fat body tissues expressing MPC. These methods revealed surprising hyperactivation of mTORC1 and Myc signaling in Drosophila fat body cells expressing MPC, which are dramatically smaller than control cells. One explanation of these seemingly contradictory observations could be an excess of nutrients that activate mTORC1 or Myc pathways. However, our data is inconsistent with a nutrient surplus that could explain this hyperactivation. Instead, we observed reduced amino acid abundance upon MPC expression, which is very surprising given the observed hyperactivation of mTORC1. This led us to hypothesize the existence of a feedback mechanism that senses an inappropriate reduction in cell size and activates signaling pathways to promote cell growth. The best-characterized “sizer” pathway for mammalian cells is the Cyclin D/CDK4 complex, which has been well studied in the context of cell size regulation of the cell cycle (PMID 10970848, 34022133). However, the mechanisms that sense cell size in post-mitotic cells, such as fat body cells and hepatocytes, remain poorly understood. Investigating the hypothesized size-sensing mechanisms at play here is a fascinating direction for future research.

      For the current study, we conducted epistatic analyses with mTORC1 pathway members by overexpressing PI3K and knocking down the TORC1 inhibitor Tuberous Sclerosis Complex 1 (Tsc1). These manipulations increased the size of control fat body cells but not those overexpressing the MPC (Supplementary Fig. 3c, 3d). Regarding Myc, its overexpression increased the size of both control and MPC+ clones (Supplementary Fig. 3e), but Myc knockdown had no additional effect on cell size in MPC+ clones (Supplementary Fig. 3f). These results suggest that neither mTORC1, PI3K, nor Myc is epistatic to the cell size effects of MPC expression. Consequently, we shifted our focus to metabolic mechanisms regulating biomass production and cell size.

      When analyzing cellular biomolecules contributing to biomass, we observed a significant impact on protein levels in Drosophila fat body cells and mammalian MPC-expressing HepG2 spheroids. Triglyceride abundance in MPC-expressing HepG2 spheroids and whole fat body cells showed a statistically insignificant decrease compared to controls. Furthermore, lipid droplets in fat body cells were comparable in MPC-expressing clones when normalized to cell size.

      Interestingly, RNA-seq analysis revealed modestly increased expression of fatty acid and cholesterol biosynthesis pathways in MPC-expressing fat body cells. Upregulated genes included major SREBP targets, such as ATPCL (2.08-fold), FASN1 (1.15-fold), FASN2 (1.07-fold), and ACC (1.26-fold). Since mTORC1 promotes SREBP activation and MPC-expressing cells showed elevated mTOR activity and upregulation of SREBP targets, we hypothesize that SREBP is modestly activated in these cells. Nonetheless, our data on amino acid abundance and its impact on protein synthesis activity suggest that protein abundance is likely to play a prominent causal role in regulating cell size in response to increased pyruvate transport into mitochondria.

      Reviewer #2 (Public review): 

      In this manuscript, the authors leverage multiple cellular models including the drosophila fat body and cultured hepatocytes to investigate the metabolic programs governing cell size. By profiling gene programs in the larval fat body during the third instar stage - in which cells cease proliferation and initiate a period of cell growth - the authors uncover a coordinated downregulation of genes involved in mitochondrial pyruvate import and metabolism. Enforced expression of the mitochondrial pyruvate carrier restrains cell size, despite active signaling of mTORC1 and other pathways viewed as traditional determinants of cell size. Mechanistically, the authors find that mitochondrial pyruvate import restrains cell size by fueling gluconeogenesis through the combined action of pyruvate carboxylase and phosphoenolpyruvate carboxykinase. Pyruvate conversion to oxaloacetate and use as a gluconeogenic substrate restrains cell growth by siphoning oxaloacetate away from aspartate and other amino acid biosynthesis, revealing a tradeoff between gluconeogenesis and provision of amino acids required to sustain protein biosynthesis. Overall, this manuscript is extremely rigorous, with each point interrogated through a variety of genetic and pharmacologic assays. The major conceptual advance is uncovering the regulation of cell size as a consequence of compartmentalized metabolism, which is dominant even over traditional signaling inputs. The work has implications for understanding cell size control in cell types that engage in gluconeogenesis but more broadly raise the possibility that metabolic tradeoffs determine cell size control in a variety of contexts. 

      We thank the reviewer for their thoughtful recognition of our efforts, and we are honored by the enthusiasm the reviewer expressed for the findings and the significance of our research. We share the reviewer’s opinion that our work might help to unravel metabolic mechanisms that regulate biomass gain independent of the well-known signaling pathways.

      Reviewer #3 (Public review): 

      Summary: 

      In this article, Toshniwal et al. investigate the role of pyruvate metabolism in controlling cell growth. They find that elevated expression of the mitochondrial pyruvate carrier (MPC) leads to decreased cell size in the Drosophila fat body, a transformed human hepatocyte cell line (HepG2), and primary rat hepatocytes. Using genetic approaches and metabolic assays, the authors find that elevated pyruvate import into cells with forced expression of MPC increases the cellular NADH/NAD+ ratio, which drives the production of oxaloacetate via pyruvate carboxylase. Genetic, pharmacological, and metabolic approaches suggest that oxaloacetate is used to support gluconeogenesis rather than amino acid synthesis in cells over-expressing MPC. The reduction in cellular amino acids impairs protein synthesis, leading to impaired cell growth. 

      Strengths: 

      This study shows that the metabolic program of a cell, and especially its NADH/NAD+ ratio, can play a dominant role in regulating cell growth.

      The combination of complementary approaches, ranging from Drosophila genetics to metabolic flux measurements in mammalian cells, strengthens the findings of the paper and shows a conservation of MPC effects across evolution.

      Weaknesses: 

      In general, the strengths of this paper outweigh its weaknesses. However, some areas of inconsistency and rigor deserve further attention. 

      Thank you for reviewing our manuscript and offering constructive feedback. We appreciate your recognition of the significance of our work and your acknowledgment of the compelling evidence we have presented. We have carefully revised the manuscript in line with the reviewers' recommendations.

      The authors comment that MPC overrides hormonal controls on gluconeogenesis and cell size (Discussion, paragraph 3). Such a claim cannot be made for mammalian experiments that are conducted with immortalized cell lines or primary hepatocytes. 

      We appreciate the reviewer’s insightful comment. Pyruvate is a primary substrate for gluconeogenesis, and our findings suggest that increased pyruvate transport into mitochondria increases the NADH-to-NAD+ ratio, and thereby elevates gluconeogenesis. Notably, we did not observe any changes in the expression of key glucagon targets, such as PC, PEPCK2, and G6PC, suggesting that the glucagon response is not activated upon MPC expression. By the statement referenced by the reviewer, we intended to highlight that excess pyruvate import into mitochondria drives gluconeogenesis independently of hormonal and physiological regulation. 

      It seems the reviewer might also have been expressing the sentiment that our in vitro models may not fully reflect the in vivo situation, and we completely agree.  Moving forward, we plan to perform similar analyses in mammalian models to test the in vivo relevance of this mechanism. For now, we will refine the language in the manuscript to clarify this point.

      Nuclear size looks to be decreased in fat body cells with elevated MPC levels, consistent with reduced endoreplication, a process that drives growth in these cells. However, acute, ex vivo EdU labeling and measures of tissue DNA content are equivalent in wild-type and MPC+ fat body cells. This is surprising - how do the authors interpret these apparently contradictory phenotypes? 

      We thank the reviewer for raising this important issue. The size of the nucleus is regulated by DNA content and various factors, including the physical properties of DNA, chromatin condensation, the nuclear lamina, and other structural components (PMID 32997613). Additionally, cytoplasmic and cellular volume also impact nuclear size, as extensively documented during development (PMID 17998401, PMID 32473090).

      In MPC-expressing cells, it is plausible that the reduced cellular volume impacts chromatin condensation or the nuclear lamina in a way that slightly decreases nuclear size without altering DNA content. Specifically, in our whole-fat body experiments using CG-Gal4 (as shown in Supplementary Figure 2a-c), we noted that after 12 hours of MPC expression, cell size was significantly reduced (Supplementary Figure 2c and Author Response Figure 1A). However, the reduction in nuclear size is modestly different at 24 hours and significantly different at 36 hours (Author Response Figure 1B), suggesting that the reduction in cell size is a more acute response to MPC expression, followed only later by effects on nuclear size.

      In clonal analyses, this relationship was further clarified. MPC-expressing cells with a size greater than 1000 µm² displayed nuclear sizes comparable to control cells, whereas those with a drastic reduction in cell size (less than 1000 µm²) exhibited smaller nuclei (Author Response Figure 1C and 1D). These observations collectively suggest that changes in nuclear size are more likely to be downstream rather than upstream of cell size reduction. Given that DNA content remains unaffected, we focused on investigating the rate of protein synthesis. Our findings suggest that protein synthesis might play a causal role in regulating cell size, thereby reinforcing the connection between cellular and nuclear size in this context.

      Author response image 1.<br />

      Cell Size vs. Nuclear Size in MPC-Expressing Fat Body Cells A. Cell size comparison between control (blue, ay-GFP) and MPC+ (red, ay-MPC) fat body cells over time, measured in hours after MPC expression induction. B. Nuclear area measurements from the same fat body cells in ay-GFP and ay-MPC groups. C. Scatter plot of nuclear area vs. cell area for control (ay-GFP) cells, including the corresponding R<sup>2</sup> value. D. Scatter plot of nuclear area vs. cell area for MPC-expressing (ay-MPC) cells, with the respective R² value.

      This figure highlights the relationship between nuclear and cell size in MPC-expressing fat body cells, emphasizing the distinct cellular responses observed following MPC induction.

      In Figure 4d, oxygen consumption rates are measured in control cells and those overexpressing MPC. Values are normalized to protein levels, but protein is reduced in MPC+ cells. Is oxygen consumption changed by MPC expression on a per-cell basis? 

      As described in the manuscript, MPC-expressing cells are smaller in size. In this context, we felt that it was most appropriate to normalize oxygen consumption rates (OCR) to cellular mass to enable an accurate interpretation of metabolic activity. Therefore, we normalized OCR with protein content to account for variations in cellular size and (probably) mitochondrial mass. 

      Trehalose is the main circulating sugar in Drosophila and should be measured in addition to hemolymph glucose. Additionally, the units in Figure 4h should be related to hemolymph volume - it is not clear that they are. 

      We appreciate this valuable suggestion. In the revised manuscript, we have quantified trehalose abundance in circulation and within fat bodies. As described in the Methods section and following the approach outlined in Ugrankar-Banerjee et al. (2023, we bled 10 larvae (either control or MPC-expressing) using forceps onto parafilm. From this, 2 microliters of hemolymph were collected for glucose measurement. The hemolymph was treated with trehalase overnight, and the resulting glucose derived from trehalose was measured. We have observed that trehalose levels were also elevated in hemolymph of fat body-specific MPC-expressing larvae, further supporting our conclusion that MPC expression in fat body induces a hyperglycemic state. These data are now included in Figure 4h of the revised manuscript, and the details are further mentioned in the revised materials and methods.  

      Measurements of NADH/NAD ratios in conditions where these are manipulated genetically and pharmacologically (Figure 5) would strengthen the findings of the paper. Along the same lines, expression of manipulated genes - whether by RT-qPCR or Western blotting - would be helpful to assess the degree of knockdown/knockout in a cell population (for example, Got2 manipulations in Figures 6 and S8). 

      We appreciate this suggestion, which will provide additional rigor to our study. We have already quantified NADH/NAD+ ratios in HepG2 cells under UK5099, NMN, and Asp supplementation, as presented in Figure 6k. As suggested, we have quantified the expression of Got2 manipulations mentioned in Figure 6j using RT-qPCR, this data is presented in revised Supplementary Figure 8f-h. In addition, Supplementary Figure 8i has been updated with western blot analysis of Got2 expression in knock-out cells used to perform the size analysis in HepG2 cells.

      Additionally, we have also analysed the efficiency of pcb (Supplementary Figure 6a-c), pdha (Supplementary Figure 6f-h), dlat (Supplementary Figure 6f, g and i), pepck2 (Supplementary Figure 6n-p), fbp  (Supplementary Figure 6n, m, q)  manipulations used to modulate the expression of these genes. These validations will ensure the robustness of our findings and strengthen the conclusions of our study.

      Reviewer #1 (Recommendations for the authors): 

      General questions: 

      (1) MPC over-expression in HepG2 cells altered the redox balance and the NADH/NAD+ ratio. This is suggested to help drive the metabolic rewiring from protein to carbohydrate biosynthesis. In line with this overexpression of Nmnat (which makes NAD+) or NDX rescues cell size and elevates protein biosynthesis. However, mechanistically it is unclear exactly how these redox NAD+ changes directly impact protein biosynthesis. Some additional explanations will strengthen this portion of the study. 

      Our data indicate that the altered redox state of the cell, particularly elevated NADH levels, affects the rate of protein synthesis. A similar relationship between redox balance and protein synthesis has been observed during embryonic development (PMID: 39879975), although the underlying mechanism remains uncharacterized. Our study suggests that increased NADH levels reprogram cellular carbohydrate metabolism, shifting it from glycolysis toward gluconeogenesis. This metabolic shift necessitates the use of oxaloacetate by PEPCK2, instead of its diversion toward GTP-mediated aspartate synthesis. Aspartate, which can be anaplerotically converted into glutamate and proline, plays a critical role in protein biosynthesis. Thus, the conversion of oxaloacetate to phosphoenolpyruvate represents a key metabolic node influencing protein synthesis under altered redox conditions. Additionally, since aspartate serves as a precursor for NAD biosynthesis, this may suggest a feedforward loop reinforcing the metabolic rewiring. Nonetheless, the precise relationship between NADH concentration and redox status and the regulation of protein synthesis warrants further investigation in future studies.

      (2) In the MPC1/2 (MPC+) over-expression background, can blocking of gluconeogenesis downstream in the carbohydrate synthesis pathway rescue the phenotype? 

      We knocked down FBPase (Drosophila fbp) using an RNAi construct, achieving approximately 60% reduction in FBPase expression in Drosophila. Notably, FBPase knockdown in fat body cells overexpressing MPC rescued the reduced cell size phenotype. These findings are presented in Figure 4o and Supplementary Figures 6n–q.

      (3) Biomass accrual and cell size are also influenced by lipogenesis. The study suggests mTORC and Myc are uncoupled to cell size determination per se, but how lipogenesis regulatory pathways like SREBP are impacted by MPC overexpression is not really explored. How lipid membrane synthesis inter-relates to this protein/carbohydrate crosstalk would add to the understanding of the system. 

      As mentioned above - When analyzing cellular biomolecules contributing to biomass, we observed a significant impact on protein levels in Drosophila fat body cells and mammalian MPC-expressing HepG2 spheroids. Triglyceride abundance in MPC-expressing HepG2 spheroids and whole fat body cells showed a statistically insignificant decrease compared to controls. Furthermore, lipid droplets in fat body cells were comparable in MPC-expressing clones when normalized to cell size.

      Interestingly, RNA-seq analysis revealed increased expression of fatty acid and cholesterol biosynthesis pathways in MPC-expressing fat body cells. Upregulated genes included major SREBP targets, such as ATPCL (2.08-fold), FASN1 (1.15-fold), FASN2 (1.07-fold), and ACC (1.26-fold). Since mTOR promotes SREBP activation and MPC-expressing cells showed elevated mTOR activity and upregulation of SREBP targets, we hypothesize that SREBP is modestly activated in these cells. Nonetheless, our data on amino acid abundance and its impact on protein synthesis activity suggest that protein abundance, rather than lipids, is likely to play a larger causal role in regulating cell size in response to increased pyruvate transport into mitochondria.

      Reviewer #2 (Recommendations for the authors): 

      I have only minor suggestions for the authors to consider. 

      Minor points 

      (1) Wherever possible, scale bars should be labeled with units or indicated comparisons (e.x. Supplementary Fig. 1). To make the data as accessible as possible, it would be helpful for the authors to include the data presented in Supplementary Figure 1 as an associated table as well. 

      We have corrected this in the revised manuscript and included the table. 

      (2) To support the conclusions about TCA cycle flux (lines 280-284), it will be helpful for the authors to consider relative metabolite pool sizes (which they should have on hand) in addition to labeling rate and fraction. 

      We thank the reviewer for this suggestion. We have included the metabolite counts with fractional abundance changes side by side in Supplementary Figure 5. 

      (3) believe (?) there is a typo in lines 326-328; PEPCK KO increases (not decreases) the size of spheroids/cells. 

      We thank the reviewer for pointing out this error. We have corrected this in the revised manuscript.

      (4) Supplementary Figure 7b: PHD has 3 phospho sites that have independent regulation; the specific phosphosite queried should be listed on the figure and unless all 3 sites are probed the claims about lack of change in phosphorylation (line 337) should be removed. 

      We thank the reviewer for bringing this to our attention. We have included this in the revised manuscript.

      (5) (Optional) I appreciate the effort the authors undertook to acquire cytoplasmic and mitochondrial ratios of NADH/NAD. While I recognize that many labs perform this assay, it is difficult for this reviewer to envision how accurately these values reflects the ratios present in the intact cell given how quickly these redox couples interconvert and significant post-harvest metabolic flux (see for ex PMID: 31767181), even with the extremely rapid fractionation protocol described in the methods. The present data certainly support the notion that MPC+ cells are more reduced, but these ratios may reflect a capacity for reductive metabolism rather than a bona fide NADH/NAD ratio; for example, Figure 7f shows almost identical NADH/NAD ratios in the cytoplasm and mitochondria, even though these compartments are frequently considered to have (sometimes vastly) different redox states. If the authors are willing, I would support them by including a brief discussion of the caveat of this method for new readers in the field. 

      We agree with this important note from the reviewers. This is an important caveat of the technique that we used for these analyses. We have included a description of this caveat in the manuscript (Revised Manuscripts lines 393 to 395).

      Reviewer #3 (Recommendations for the authors): 

      Minor points: 

      (1) Line 327 - "smaller" should be "bigger". 

      We thank the reviewer for pointing out this error. We have corrected this in the revised manuscript.

      (2) For Figure 7 - references to panels e and f in the text, and descriptions of e and f in the Figure Legend are switched with regard to the Figure itself. 

      We thank the reviewer for pointing out this error. We have corrected this in the revised manuscript.

      (3) Line 449 - "reduced" is missing its R 

      We thank the reviewer for pointing out this error. We have corrected this in the revised manuscript.

      (4) Some additional, careful proofreading is needed - several other punctuation errors were found. 

      We thank the reviewer for pointing out these errors. 

      We thank the reviewer for bringing this to our attention. We have conducted very careful proofreading and corrected errors.

    1. Author response:

      We thank the editors and reviewers for their encouraging comments and constructive feedback. We will revise the text to enhance clarity as suggested. New experiments are planned to address questions raised regarding the time course of responses to the hit compounds. We also intend to examine additional endogenous readouts of the integrated stress response, including effects on translation. The effects of lead compound 20 will be examined in a wider range of cells, including primary cells.

    1. Author response:

      We are going to modify the text following Reviewer’s comments and perform embryo direct labelling experiments to experimentally address the contraction of the two “belts” proposed in our model. We feel that this aspect is feasible in a reasonable time and important for the model proposed. We appreciate the relevance of using this framework to identify molecular drivers of the regionalized tissue behaviours uncovered and how these might be altered in mutant models, but feel that these aspects demand efforts beyond the the reasonable revision periods.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      The manuscript by Senn and colleagues presents a comprehensive study on the developing synthetic gene circuits targeting mutant RAS-expressing cells. This study aims to exploit these RAS-targeting circuits as cancer cell classifiers, enabling the selective expression of an output protein in correlation with RAS activity. The system is based on the bacterial two-component system NarX/NarL. A RAS-binding domain, the RBDCRD domain of the RAS effector protein CRAF, is fused to the histidine kinase domain, which carries an inactivating amino acid exchange either in its ATP-binding site (N509A) or in its phosphorylation site (H399Q). Dimerization or nanocluster formation of RAS-GTP reconstitutes an active histidine kinase sensor dimer that phosphorylates the response regulator NarL. The phosphorylated DNA-binding protein NarL, fused to the transcription activator domain VP48, binds its responsive element and induces the expression of the output protein. In comparison to mutated RAS, the effect of the RAS activator SOS-1 and the RAS inhibitor NF1 on the sensing ability as well as the tunability of the RAS sensor were examined. A RAS targeting circuit with an AND gate was designed by expressing the RAS sensor proteins under the control of defined MAPK response elements, resulting in a large increase in the dynamic range between mutant and wild-type RAS. Finally, the RAS targeting circuits were evaluated in detail in a set of twelve cancer cell lines expressing endogenous levels of mutant or wild-type RAS or oncogenes affecting RAS signaling upstream or downstream. 

      Strengths: 

      This proof-of-concept study convincingly demonstrates the potential of synthetic gene circuits to target oncogenic RAS in tumor cell lines and to function, at least in part, as an RAS mutant cell classifier. 

      Weaknesses: 

      The use of an appropriate "therapeutic gene" might revert the oncogenic properties of RAS mutant cell lines. However, a therapeutic strategy based on this four-plasmid-based system might be difficult to implement in RAS-driven solid cancers. 

      Thank you for the insightful comments. We agree that the delivery of a four-plasmid system represents a major challenge for translating RAS-targeting circuits into therapeutic applications. Reducing the number of plasmids –ideally consolidating all components onto a single vector– will be critical for clinical implementation.

      Viral delivery is generally the most efficient strategy for DNA-based therapies, but viral vectors have limited packaging capacities, which differ by virus type[1]. The RAS_sensor_F.L.T. circuit under the EF1α promoter requires ~7.7 kb for the sensing components alone, excluding the output gene. This exceeds the packaging limit of adeno-associated virus (AAV) and is at the upper boundary for lentiviral vectors but could potentially be accommodated by larger vectors such as γ-retroviruses, poxviruses, or herpesviruses¹. Co-transduction with dual AAVs [2] or ongoing engineering to expand packaging capacity [3] may also offer future solutions. An additional route to reduce construct size could be alternative splicing, especially given redundancy between the two NarX fusion proteins[4]. 

      An advantage of our current architecture is that synthetic response elements replace constitutive promoters, reducing construct size. For example, the MAPK-driven PY2_NarX&NarL circuits range between 4.9 and 5.2 kb depending on the transactivation domain, bringing them within AAV packaging limits for the sensor module[5], though co-delivery of the output gene would still be necessary. For lentiviruses, this is within the packaging capacity of 8 kb<sup>1</sup> and would allow for inclusion of ~3 kb output genes.

      Still, assembling multiple modules onto a single vector introduces new challenges, including possible crosstalk or interference between neighboring promoters [6]. For example, placing the output gene too close to MAPK response elements may trigger unwanted MAPKdependent expression, potentially bypassing the intended AND-gate logic. Moreover, expressing three genes under separate response elements may shift expression ratios and reduce circuit functionality. Nonetheless, the absence of constitutive promoters and the RAS-dependence of MAPK response elements could provide partial robustness, since even unintended activation would still reflect RAS signaling to some extent. Further, our data (Fig. 1d) show that some deviation in component levels can be tolerated, provided all parts are sufficiently expressed. Nonetheless, assembling the circuit on a single vector will require careful design and rigorous validation to ensure optimal performance. 

      While addressing this is beyond the scope of the current study, we agree that future efforts should focus on vector consolidation and delivery strategies. We now include a paragraph discussing these challenges in the revised manuscript.

      Reviewer #2 (Public review): 

      The manuscript describes an interesting approach towards designing genetic circuits to sense different RAS mutants in the context of cancer therapeutics. The authors created sensors for mutant RAS and incorporated feed-forward control that leverages endogenous RAS/MAPK signaling pathways in order to dramatically increase the circuits' dynamic range. The modularity of the system is explored through the individual screening of several RAS binding domains, transmembrane domains, and MAPK response elements, and the author further extensively screened different combinations of circuit components. This is an impressive synthetic biology demonstration that took it all the way to cancer cell lines. However, given the sole demonstrated output in the form of fluorescent proteins, the authors' claims related to therapeutic implications require additional empirical evidence or, otherwise, expository revision. 

      Thank you very much for the thoughtful evaluation, precise critique, and constructive suggestions.

      As correctly noted, our study initially focused on developing and optimizing input sensors and processing units for synthetic gene circuits targeting mutated RAS. To address the concern regarding therapeutic relevance, we have now incorporated functional validation using a clinically relevant output protein: herpes simplex virus thymidine kinase (HSV-TK), which converts ganciclovir into a cytotoxic compound. We replaced the mCerulean reporter with HSV-TK and tested the resulting RAS-targeting circuits in both RAS-mutant and wild-type cancer cell lines. The results, now presented in a new chapter (Figure 8 and Supplementary Fig. 14), demonstrate robust killing of RAS-mutant cells and support the potential therapeutic utility of these circuits.

      Major comments: 

      "These therapies are limited to cancers with KRASG12C mutations" is technically accurate. However, in this fast-moving field, there are examples such as MRTX1133 which holds the promise to target the very G12D mutation that is the focus of this paper. There are broader efforts too. It would help the readers better appreciate the background if the authors could update the intro to reflect the most recent landscape of RAS-targeting drugs. 

      Thank you for this helpful suggestion. We have updated the introduction to reflect the rapidly evolving landscape of RAS-targeting therapies, including the development of inhibitors for nonG12C mutations such as KRASG12D (e.g., MRTX1133). Given the pace and breadth of these advances, we also refer readers to a recent comprehensive review that provides an in-depth overview of current RAS-targeting strategies.

      Only KRASG12D was used as a model in the design and optimization work of the genetic circuits. Other mutations should be quite experimentally feasible and comparisons of the circuits' performances across different KRAS mutations would allow for stronger claims on the circuits' generalizability. Particularly, the cancer cell line used for circuit validation harbored a KRASG13D mutation. While the data presented do indeed support the circuit's "generalizability," the model systems would not have been consistent in the current set of data presented. 

      To further support the generalizability of our RAS sensor, we titrated plasmid doses for a panel of oncogenic RAS variants, including multiple KRAS mutants as well as HRAS<sup>G12D</sup and NRAS<sup>G12D</sup. Across all tested variants, we observed concentration-dependent activation of the RAS sensor. At 1.67 ng/well, the sensor output for all oncogenic RAS variants was at least as high as that for KRAS<sup>G12D</sup>, suggesting that the behavior observed in our initial design and optimization is representative of a broader set of RAS mutations.

      We also noted that high overexpression of wildtype HRAS and NRAS can lead to substantial activation of the sensor, exceeding that observed with wildtype KRAS. This underscores the importance of considering all RAS isoforms when assessing circuit specificity and avoiding potential off-target activation in healthy cells.

      In Figure 2a, the text claims that "inactivation of endogenous RAS with NF1 resulted in a lower YFP/RBDCRD-NarX expression," but Figure 2a does not show a statistically significant reduction in expression of SYFP (measured by "membrane-to-total signal ratio [RU]). 

      Thank you for pointing this out. We repeated the experiment to reassess the effect of NF1 on RBDCRD-NarX-SYFP2 expression and were able to confirm statistical significance. Accordingly, we have replaced Figure 2a with updated data. To facilitate better visual comparison across conditions, we also standardized the y-axis range across all relevant flow cytometry plots.

      The therapeutic index of the authors' systems would be better characterized by a functional payload, other than florescent proteins, that for example induce cell death, immune responses, etc. 

      Thank you for this insightful comment. We agree that fluorescent reporters are limited to approximating expression levels, and that a functional output protein is more appropriate for assessing therapeutic potential. To address this, we replaced mCerulean with the therapeutic suicide-gene, HSV-TK, and tested the circuits in RAS-mutant and wild-type cancer cell lines. These experiments demonstrate that our circuits can express functional proteins and induce cell death in two RAS-mutant cell lines while showing low toxicity in a RAS wild type cell line (new chapter including Fig. 8 and Supplementary Fig.14). 

      Comparing confluence of cells transfected with the RAS-targeting circuits to cells transfected with non-toxic GFP-output negative control or the constitutively expressed EF1αHSV-TK positive control allowed us to estimate the killing-strength of the circuits in each cell line. In RAS-mutant HCT-116 the confluence curves were similar to the positive control, indicating effective killing (Fig. 8b). At lower DNA dose in HCT-116, or in SW620 with lower transfection efficiency, the killing of transfected RAS-driven cancer cells was less pronounced, falling approximately midway between the controls (Fig. 8g&j). In the RAS wild type cell line, Igrov-1, the RAS circuits showed continued growth similar to the non-toxic negative control (Fig. 8d), suggesting low toxicity. 

      While this may indicate low circuit activation in Igrov-1, an alternative explanation for the low toxicity could also be insufficient transfection efficiency. Testing in SW620 –which had similar transfection efficiency as Igrov-1 (Supplementary Fig. 14a)– showed that this moderate transfection efficiency was sufficient for RAS-circuit-dependent killing (Fig. 8d & 8g), supporting the notion of low activation in Igrov-1 and selective cytotoxicity in RAS-driven cancer cells.

      Nonetheless, it is important to note that comparisons between the cell lines need to be interpreted cautiously because of inter-cell line differences in transfection, growth, and HSV-TK/ganciclovir (GCV)-sensitivity (Supplementary Fig. 14) and further validation will be essential. 

      A conclusive assessment will require more efficient delivery strategies, such as viral vectors (as discussed above). Efficient delivery would allow to investigate selectivity in a more realistic setting with patient-derived RAS-mutant cancer and healthy cells as well as testing in an vivo model. While beyond the scope of the current study, we view it as a critical direction for future work and have therefore added a paragraph about this to our discussion.

      Regarding data presented in "Mechanism of action" (Figure 2), the observations are interesting and consistent across different fluorescent reporters. However, with regard to interpretations of the underlying molecular mechanisms, it is not clear whether the different output levels in 2b, 2c, and 2d are due to the pathway as described by the authors or simply from varied expression levels of RBDCRD-NarX itself (2a) that is nonlinearly amplified by the rest of the circuit. From a practical standpoint, this caveat is not critical with respect to the signal-to-noise ratios in later parts of the paper. From a mechanistic interpretation standpoint, claims made forth in this section are not clearly substantiated. Some additional controls would be nice. For example, if the authors express NarXs that constitutively dimerize on the membrane, what would the RasG12Dresponsiveness look like? Does RasG12D alter the input-output curve of NarL-RE? How would Figure 4f compare to a NaxR constitutively dimerized control that only relies on transcriptional amplification of the Ras-dependent promoters? 

      This is a great point. We agree that the observed differences in output levels (Fig. 2) could arise from non-linear amplification due to increased expression of RBDCRD-NarX, rather than RAS binding or dimerization alone. To further investigate this possibility, we performed titrations of KRAS<sup>G12D</sup> in combination with the functional RAS sensor and a series of constitutively active and inactive control constructs (Supplementary Fig. 4).

      Inactive controls lacking NarX dimerization showed only a modest increase in output expression, similar to direct mCerulean expression under the EF1α promoter. Transfection of the output plasmid alone, with NarL, or with NarL and non-RAS-binding RBD<sup>R89L</sup> CRD<sup>C168S</sup> -NarX, resulted in minimal RAS-dependent increases (Supplementary Fig. 4a). Importantly, after normalization using the EF1α-driven mCherry transfection control, these effects were fully or even slightly over-compensated (Supplementary Fig. 4b), showing that we don’t include the effect of EF1α-dependent increased leakiness in the data presented throughout the manuscript, but also that –due to the normalization– we potentially underestimate the dynamic range of the RAS-targeting circuits.

      In contrast, constitutively dimerizing NarX controls (both membrane-bound and cytosolic dimerized via the FKBP–FRB system) exhibited a more pronounced RAS-dependent increase in output –even after normalization– confirming the presence of non-linear amplification (up to 3–4fold). However, this effect was still lower than that achieved with the functional RAS-binding sensor (8-fold at 1.67 ng/well KRAS<sup>G12D</sup>; 14-fold at 5–15 ng/well), indicating that the increase in expression of the sensor parts is not the full explanation of the effect we see. Instead, RAS binding and dimerization further amplify the response and are necessary for full activation (Supplementary Fig. 4b).

      We also addressed the reviewer’s suggestion by testing the MAPK response elements used in Fig. 4f with constitutively dimerizing NarX. These controls generally showed lower fold changes between KRAS<sup>G12D</sup>; and KRAS<sup>WT</sup> than the corresponding RAS-binding circuits  (Supplementary Fig. 7), with one exception: the combination of SRE_NarX and PY2_NarL-VP48. 

      Together, these data show that non-linear amplification via increased expression and dimerization contributes to output activation. However, RAS binding and induced dimerization of the NarX sensor are required for full functionality and enhanced signal strength. This underscores that integrating the MAPK response elements with the binding-based RAS sensor into RAS-targeting circuits generally improves the distinction between cells with KRAS<sup>G12D</sup>;  and KRAS<sup>WT</sup> and that it was the combination that allowed to reach maximal fold changes.

      It's also possible that these Ras could affect protein production at the post-transcriptional or even post-translational levels, which were not adequately considered. 

      Thank you for this comment. We now mention in the manuscript the potential mechanisms by which (over-)activated RAS or MAPK signaling can increase protein synthesis. We cite relevant reports of the mechanisms we found, including upregulation of translational initiation and machinery[10]  and ribosomal biogenesis[11].

      The text claims that "in contrast to what we saw in HEK293 overexpressing RAS (Figure 5d), the "AND-gate" RAS-targeting circuits do not generate higher output than the EF1a-driven, bindingtriggered RAS sensor in HCT-116. Instead, the improved dynamic range results from decreased leakiness in HCT- 116k.o." Comparing the experiment from Figure 5d, which looks at activation in KRASG12D and KRASWT, to the experiments in Figure 6b-d, which looks at activation in HCT-116WT and HCT-116KO is misleading. In Fig 5d., cells are transfected with KRASG12D and KRASWT to emulate high levels of mutant RAS and high levels of wild-type RAS. In Figures 6b-d, HCT-116WT has endogenous levels of mutant RAS, while the KCT-116KO is a knock-out cell line, and does not have mutant or WT RAS. Therefore, the improved dynamic range or "decreased leakiness in HCT-116KO" in comparison to Figure 5d. is more comparable to the NF1 condition from Figure 2, which deactivates endogenous RAS. While this may not be feasible, the most accurate comparison would have been an HCT-116KO line with KRASWT stably integrated. 

      Thank you for this input. We understand that comparing the results from HEK293 cells transfected with KRAS<sup>G12D</sup>;  or KRAS<sup>WT</sup> (Fig. 5d) to those from HCT-116<sup>WT</sup>    and HCT-116<sup>k.o</sup>. cells (Fig. 6b–d) may be misleading if interpreted as a direct comparison of RAS signaling levels. Our intent was not to compare HEK293 with KRAS<sup>WT</sup> directly to HCT-116<sup>k.o</sup>.., but rather to contrast the behavior of the EF1α-driven RAS sensor and the MAPK-responsive RAS-targeting circuits within each cell line context.

      Specifically, we observed that in HEK293 cells expressing KRAS<sup>G12D</sup>, the MAPK-based RAS-targeting circuits produced higher output than the EF1α-expressed RAS sensor. In contrast, in HCT-116<sup>WT</sup> cells, the EF1α-expressed RAS sensor resulted in higher output levels than the RAS-targeting circuits. Despite this, the MAPK-driven circuits showed an improved dynamic range compared to the EF1α-expressed RAS sensor in HCT-116, due to the reduced background expression in the HCT-116<sup>k.o</sup>.. cells. We have revised the manuscript text to clarify this distinction.

      We agree that an HCT-116<sup>k.o</sup> cell line with stable integration of KRAS<sup>WT</sup> would provide a more direct comparison. Nonetheless, HCT-116<sup>k.o</sup>.. cells still express endogenous NRAS and HRAS, both of which are capable of activating the RAS sensor (as shown in Fig. 1g). Therefore, we believe that HCT-116<sup>k.o</sup>. cells are more comparable to HEK293 with KRAS<sup>WT</sup> than to the NF1 condition in Fig. 2, in which all endogenous RAS isoforms are inactivated.

      We couldn't locate the citation or discussion of Figure 4d in the text. Conversely, based on the text description, Figure 6g would contain exciting results. But we couldn't find Figure 6g anywhere ... unless it was a typo and the authors meant Figure 6f, in which case the cool results in Figure S8 could use more elaboration in the main text. 

      Thank you for this helpful observation. The figure references were indeed incorrect due to a typo. The results discussed in the text refer to Figure 6f (not 6g), which is now Figure 7a in the revised version. To further highlight these findings, we have added a new Figure 7b that better illustrates how different MAPK response elements enabled us to identify, for each RAS-mutant cell line, a RAS-targeting circuit that showed stronger activation than in all RAS wild-type lines. We have also expanded the corresponding section in the main text to elaborate on these results and their significance.

      Reviewer #3 (Public review): 

      Summary: 

      Mutations that result in consistent RAS activation constitute a major driver of cancer. Therefore, RAS is a favorable target for cancer therapy. However, since normal RAS activity is essential for the function of normal cells, a mechanism that differentiates aberrant RAS activity from normal one is required to avoid severe adverse effects. To this end, the authors designed and optimized a synthetic gene circuit that is induced by active RAS-GTP. The circuit components, such as RAS-GTP sensors, dimerization domains, and linkers. To enhance the circuit selectivity and dynamic range, the authors designed a synthetic promoter comprised of MAPK-responsive elements to regulate the expression of the RAS sensors, thus generating a feed-forward loop regulating the circuit components. Circuit outputs with respect to circuit design modification were characterized in standard model cell lines using basal RAS activity, active RAS mutants, and RAS inactivation. 

      This approach is interesting. The design is novel and could be implemented for other RASmediated applications. The data support the claims, and while this circuit may require further optimization for clinical application, it is an interesting proof of concept for targeting aberrant RAS activity. 

      Strengths: 

      Novel circuit design, through optimization and characterization of the circuit components, solid data. 

      Weaknesses: 

      This manuscript could significantly benefit from testing the circuit performance in more realistic cell lines, such as patient-derived cells driven by RAS mutations, as well as in corresponding non-cancer cell lines with normal RAS activity. Furthermore, testing with therapeutic output proteins in vitro, and especially in vivo, would significantly strengthen the findings and claims. 

      Thank you very much for the thoughtful and supportive comments. We fully agree with the reviewer’s suggestions for improving the translational potential of the RAS-targeting circuits.

      As a first step toward therapeutic relevance, we replaced the fluorescent reporter with HSV-TK, a clinically validated suicide gene, and demonstrated killing in RAS-mutant cancer cell lines. This is described above and in the new section of the manuscript (Figure 8).

      We also agree that testing in patient-derived cancer cells and especially healthy cells with wild-type RAS activity will be essential. However, testing in primary or patient-derived cells presents delivery challenges: transient transfection of our current four-plasmid system is unlikely to achieve sufficient expression. As discussed in our response to Reviewer #1, development of a more efficient delivery strategy –such as viral vector-based delivery– is a necessary next step.

      Once a delivery system is established, identifying relevant off-target tissues throughout the body with high physiological RAS signaling will be key to assessing selectivity. While comparative data on RAS activation across healthy tissues are scarce[12,13], recent atlases of transcription factor activity[14,15] provide insights to identify off-target cells with high activation of RAS-dependent transcription factors and may even approximate RAS activity across healthy tissue. Alternatively, our single-input sensors for RAS and MAPK pathway activity could be used in vivo to identify off-target cells based on endogenous activity.

      Once relevant target and off-target cells have been identified, patient-derived cancer and healthy cells can help select and adapt cancer-specific RAS-targeting circuits and nominate therapeutic candidates for further safety and efficacy assessment[6,8].

      Reviewer #1 (Recommendations for the authors): 

      For the most part, the data in this study are very convincing and very well presented. The cartoons make it easier to understand the complex experimental setups. 

      (1) Did the authors use wild-type Sos-1 or a constitutively active membrane-bound catalytic domain in their studies? How is SOS-1 activated when in case Sos-1 wild-type was used? 

      Thank you for this feedback. We used the constitutively active catalytic domain of Sos-1 (AA5641049; PDB ID 2II0). 

      (2) Figure 1f: In case of KRAS-G12D, it looks like the output expression does not really correlate with the RAS-GTP level. Can the authors give an explanation? 

      Thank you for this interesting question. We believe the observed discrepancy arises primarily from differences in the sensitivity and readout dynamics of the two assays. The RAS-GTP pulldown ELISA appears insufficiently sensitive to detect small changes in RAS-GTP levels at lower KRAS<sup>G12D</sup> plasmid doses (0.19, 0.56, or 1.67 ng). Only at 5 ng and 15 ng do we observe clear increases in RAS-GTP signal (25% and 700%, respectively). In contrast, the RAS sensor shows strong activation already in the 0.56–5 ng range but begins to saturate at higher doses (see Figure 1f and Figure 1e).

      Beyond the differing technical sensitivities of the ELISA (plate reader) and flow cytometry, an important conceptual distinction may further explain this behavior: the RAS sensor likely integrates RAS signaling over time. Once NarX binds RAS-GTP and dimerizes, it activates NarL, triggering mCerulean expression. If the rate of mCerulean production exceeds its degradation, signal accumulates throughout the assay duration. Thus, the flow cytometry readout reflects time-integrated signaling, allowing small differences in RAS-GTP to be amplified into measurable differences in output—especially at low input levels. This may explain why flow cytometry detects circuit activation earlier and more steeply than the pulldown assay, which provides a snapshot of RAS-GTP abundance at a single time point and saturates less readily at high input levels.

      Together, these factors likely explain the observed differences in signal dynamics: the RAS sensor exhibits steep activation followed by saturation at high plasmid doses (flow cytometry), while the ELISA shows limited sensitivity at low doses but a broader linear range at higher doses.

      (3) Figure 2b: It appears that even in the case of KRAS-G12D and Sos-1, only a few cells are positive. Does this result depend on low cell density, low transfection efficiency, or a wide range of the expression level? As a control, nuclear staining could be shown. 

      Thank you for this question. In the experiment shown in Figure 2b, our goal was to assess the membrane localization of the RBD^CRD-NarX-SYFP2 construct, which serves as a proxy for RAS-bound sensor. To enable accurate computational segmentation and separation of membrane signal from adjacent cells, we intentionally reseeded cells at low density in glassbottom plates for confocal imaging.

      The observed variability in signal likely reflects a combination of transient transfection and heterogeneous expression levels. While the overall transfection efficiency was approximately 70%, expression varied between individual cells. To account for this, we analyzed the membrane-to-total signal ratio per cell, which internally normalizes the membrane signal to the total cellular expression of SYFP2 and controls for differences in transfection efficiency.

      In response to the reviewer’s suggestion, we have updated the figure to include nuclear staining to aid interpretation. We would like to emphasize, however, that the images are intended to illustrate subcellular localization per cell, not expression frequency or intensity across the population.

      Minor points 

      (1) Figure 1b: "The third plasmid expresses NarL, .." should be changed to "The third plasmid expresses NarL-VP48, .." 

      Done

      (2) Figure 1c, right part: The orange arrow should be labeled NarX-H399Q (not N509A). 

      Done

      (3) Supplementary Table 6 and 7: [cells/wells] - should probably be [cells 10*3/well]. 

      Thank you for these points, we updated the manuscript accordingly

      Reviewer #2 (Recommendations for the authors): 

      Minor comments: 

      (1) N509A seems mislabeled in Figure 1b. 

      (2) It would help the readers if the authors could elaborate a bit on what is known about the RBD and CRD mutations used here. 

      Thank you for the input, we added a paragraph in the paper to expand on the effect of these commonly used mutations.

      (3) The KRASWT&Sos1 condition is not explained within the text for Figure 1f, which is the first figure with the KRASWT&Sos1 condition, but rather later on for Figure 2a. Adding a description of this condition to the discussion of Figure 1f would add clarity to this figure. 

      Thank you, we corrected this.

      (4) Citing AlphaFold2 structural predictions as having "revealed that longer linkers between the sensor's RBDCRD and NarX-derived domains could bring the NarX domains into closer proximity" is probably an overstatement. AlphaFold2 generally has low confidence in the placement of long flexible linkers, and the longer linkers in the illustration could facilitate NarX and NarL being even farther apart than they are in the original design. 

      Thank you for this input. We agree that AlphaFold2 predictions generally have low confidence in the placement of long, flexible linkers, and we did not intend to imply that the structural models were predictive of actual linker conformations. Rather, the models were used heuristically to generate the hypothesis that longer linkers might facilitate better positioning of the NarX domains for dimerization.

      As described in the Methods, we manually rotated the flexible linker regions to explore plausible conformations. These exploratory models showed that with a short (1x GGGGS) linker, it was more challenging to bring the NarX domains into close proximity, whereas longer linkers allowed greater positional flexibility. This modeling exercise provided a structural rationale for experimentally testing longer linkers. We have revised the manuscript text to clarify that the structural predictions were used to motivate linker design –not to validate or predict structural outcomes.

      (5) Figure 3b shows that the fold change (KRASG12D/KRASWT) is higher at shorter linker lengths and lower at longer linker lengths, and that the output expression of mCerulean is lower at shorter linker lengths and higher at longer linker lengths. Having a bar plot with the output expression mCerulean levels comparing KRASG12D and KRASWT next to each other would be a significantly more informative representation of this data. In particular, the readers might be interested in understanding the effect of linker length on off-target activation from the sensor, which is not clear from this figure. 

      Thank you for the suggestion. We adapted Figure 3b to better present this. 

      (6) While it is implied that the sentence "Among the tested binding domains, the Ras association domain (RA) of the natural RAS effector Rassf5, the RAS association domain 2 (RA2) of the phospholipase C epsilon (PLCe)33, and the synthetic RAS binder K5534 showed a slightly higher or similar dynamic range." is comparing these RAS binding domains to RBDCRD, for clarity it should be noted what the point of reference is for this "slightly higher or similar dynamic range." 

      (7) Claims are made throughout the text that require supporting data, and thus require a reference to a figure, but there are a few instances where the reference is several sentences after the discussion of data and findings begins. For example, the discussion of Figure 3c begins with the claim "Among the tested binding domains, the Ras association domain (RA) of the natural RAS effector Rassf5, the RAS association domain 2 (RA2) of the phospholipase C epsilon (PLCe)33, and the synthetic RAS binder K5534 showed a slightly higher or similar dynamic range," but there is no reference to the data or figure being discussed until the end of the discussion of Figure 3c. This formatting is also present in Figure 3d and Figure 6f. 

      Thank you for mentioning these imprecisions and inconsistencies, we addressed them in the manuscript. 

      (8) In Figures 5d and 5e, the formatting of underscores and dashes is occasionally inconsistent within the text. (ex. "PY2_NarX_FLT or PY2_NarL-FLT" on page 13.). 

      Thank you for this precise observation. The formatting differences were intentional and reflect distinct design principles. Specifically:

      An underscore (e.g., PY2_NarX_FLT) denotes that two separate proteins are expressed –here, PY2-driven RBDCRD-NarX and EF1α-driven NarL-F.L.T.

      A dash (e.g., PY2_NarL-F.L.T.) indicates a fusion protein –i.e., PY2-driven NarL-F.L.T. combined with EF1α-driven RBDCRD-NarX.

      This notation is used to distinguish expression sources and fusion constructs while avoiding redundancy with the base circuit (EF1α_NarX + EF1α_NarL-VP48). We hope the included schematic diagrams in each relevant figure helps the reader interpret these combinations.

      (9) The text claims that "loss-of-function mutations in RBDCRD decreased activation. However, the dynamic range was only 3-fold" and attributes this claim to Figure 6a. For a claim about specific fold-change activation, one would expect a corresponding figure with quantitative measurements of this fluorescence to be referenced. 

      Thank you for this remark. We made a supplementary figure (Supplementary Fig. 11) to show the quantitative measurement of the 3-fold dynamic range between HCT-116<sup>WT</sup> and HCT-116<sup>k.o</sup>. when using the EF1a-expressed RAS sensor with NarL-VP48.

      (10) The claim of this Figure 2d is that the effect of RAS-GTP levels on mCerulean output is amplified in comparison to Figures 2a, 2b, and 3c, representing expression, RAS binding, and dimerization respectively. While visually this might be true from the figure, the readers might be confused by the lack of significance between the control and the NF1 condition, alongside the variation between the triplicates. Could this experiment be repeated to gain clearer data and to support their claim more effectively? 

      Thank you for this important observation. To address the concern regarding variability and statistical significance in Figure 2d, we repeated the experiment using 24-well plates to increase the number of cells analyzed per condition. This improved the consistency of the data and allowed us to reduce variability across replicates. As a result, we now observe a statistically significant difference between the control and the NF1 condition. The updated results are shown in the revised Figure 2.

      (11) The readers might be less familiar with the concept of "composability" than "modularity" and it would be good to explain it if the authors did intend to use the former. 

      Thank you for this comment. We changed it to modularity to avoid confusion. 

      References

      (1) Shahryari, A., Burtscher, I., Nazari, Z. & Lickert, H. Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics vol. 4 Preprint at https://doi.org/10.1002/adtp.202100040 (2021).

      (2) Mcclements, M. E. & Maclaren, R. E. Adeno-Associated Virus (AAV) Dual Vector Strategies for Gene Therapy Encoding Large Transgenes. YALE JOURNAL OF BIOLOGY AND MEDICINE vol. 90 (2017).

      (3) Wagner, H. J., Weber, W. & Fussenegger, M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. Advanced Science vol. 8 Preprint at https://doi.org/10.1002/advs.202004018 (2021).

      (4) Doshi, J., Willis, K., Madurga, A., Stelzer, C. & Benenson, Y. Multiple Alternative Promoters and Alternative Splicing Enable Universal Transcription-Based Logic Computation in Mammalian Cells. Cell Rep 33, 108437 (2020).

      (5) Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Molecular Therapy 18, 80–86 (2010).

      (6) Dastor, M. et al. A Workflow for in Vivo Evaluation of Candidate Inputs and Outputs for Cell Classifier Gene Circuits. ACS Synth Biol 7, 474–489 (2018).

      (7) Preuß, E. et al. TK.007: A novel, codon-optimized HSVtk(A168H) mutant for suicide gene therapy. Hum Gene Ther 21, 929–941 (2010).

      (8) Angelici, B., Shen, L., Schreiber, J., Abraham, A. & Benenson, Y. An AAV gene therapy computes over multiple cellular inputs to enable precise targeting of multifocal hepatocellular carcinoma in mice. Sci Transl Med 13, (2021).

      (9) Mesnil, M. & Yamasaki, H. Bystander Effect in Herpes Simplex Virus-Thymidine Kinase/Ganciclovir Cancer Gene Therapy: Role of Gap-Junctional Intercellular Communication 1. CANCER RESEARCH vol. 60 http://aacrjournals.org/cancerres/articlepdf/60/15/3989/2478218/ch150003989.pdf (2000).

      (10) Proud, C. G. Ras, PI3-kinase and mTOR signaling in cardiac hypertrophy. Cardiovascular Research vol. 63 403–413 Preprint at https://doi.org/10.1016/j.cardiores.2004.02.003 (2004).

      (11) Azman, M. S. et al. An ERK1/2driven RNAbinding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene. EMBO J 42, (2023).

      (12) von Lintig, F. C. et al. Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res 6, 1804–10 (2000).

      (13) Guha, A., Feldkamp, M. M., Lau, N., Boss, G. & Pawson, A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15, 2755–2765 (1997).

      (14) Pan, L. et al. HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Res 51, D1019–D1028 (2023).

      (15) Pan, L. et al. Single Cell Atlas: a single-cell multi-omics human cell encyclopedia. Genome Biol 25, (2024).

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer 1:

      While BAP1 mutant UM cell lines were included for some of the experiments, it seems the in-vivo data mentioned in the response to the reviewers comment is missing? The authors stated that "MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor." But the CDX model data shown in Figure 4 is from 92.1 cells. If this data is available, then the manuscript would benefit from its addition.

      We thank the reviewer for bringing this to our attention. As the reviewer mentioned, we show 92-1 CDX model in our manuscript. Additionally, strong tumor growth inhibition in MP-46  CDX model treated with our BAF ATPase inhibitor can be found in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      Reviewer 3:<br /> Supplementary Figure 2C<br /> Is the T910M mutation in the parental MP41 cells heterozygous? If so, the authors should indicate this in the figure legend. If this is a homozygous mutation, the authors should explain how the inhibitors suppress SMARCA4 activity in cells that have a LOF mutation.

      We thank the reviewer for bringing this to our attention. We updated the figure legend accordingly to reflect the genotype of the mutations highlighted in the table.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The presented study by Centore and colleagues investigates the inhibition of BAF chromatin remodeling complexes. The study is well-written, and includes comprehensive datasets, including compound screens, gene expression analysis, epigenetics, as well as animal studies. This is an important piece of work for the uveal melanoma research field, and sheds light on a new inhibitor class, as well as a mechanism that might be exploited to target this deadly cancer for which no good treatment options exist.

      Strengths:

      This is a comprehensive and well-written study.

      Weaknesses:

      There are minimal weaknesses.

      We thank the reviewer for the positive comments.

      Reviewer #2 (Public Review):

      Summary:

      The authors generate an optimized small molecule inhibitor of SMARCA2/4 and test it in a panel of cell lines. All uveal melanoma (UM) cell lines in the panel are growth-inhibited by the inhibitor making the focus of the paper. This inhibition is correlated with the loss of promoter occupancy of key melanocyte transcription factors e.g. SOX10. SOX10 overexpression and a point mutation in SMARCA4 can rescue growth inhibition exerted by the SMARCA2/4 inhibitor. Treatment of a UM xenograft model results in growth inhibition and regression which correlates with reduced expression of SOX10 but not discernible toxicity in the mice. Collectively the data suggest a novel treatment of uveal melanoma.

      Strengths:

      There are many strengths of the study including the strong challenge of the on-target effect, the assays used, and the mechanistic data. The results are compelling as are the effects of the inhibitor. The in vivo data is dose-dependent and doses are low enough to be meaningful and associated with evidence of target engagement.

      Weaknesses:

      The authors introduce the field stating that SMARCA4 inhibitors are more effective in SMARCA2 deficient cancers and the converse. Since the desirable outcome of cancer therapy would be synthetic lethality it is not clear why a dual inhibitor is desirable. Wouldn't this be associated with more side effects? It is not known how the inhibitor developed here impacts normal cells, in particular T cells which are essential for any durable response to cancer therapies in patients. Another weakness is that the UM cell lines used do not molecularly resemble metastatic UM. These UM most frequently have mutations in the BAP1 tumor suppressor gene. It is not clear if the described SMARCA2/4 inhibitor is efficacious in BAP1 mutant UM cell lines in vitro or BAP1 mutant patient-derived xenografts in vivo.

      We thank the reviewer for their insightful and constructive comments. As we demonstrate in Fig. 1d, uveal melanoma cells are selectively and deeply sensitive to BAF ATPase inhibition, and provides a therapeutic window. This is confirmed in Fig. 4a-c, as we demonstrated robust tumor growth inhibition, achieved at a dose well-tolerated in xenograft study. FHD-286, a dual BRM/BRG1 inhibitor similar to FHT-1015 with optimized physical properties, has been evaluated in a Phase I trial in patients with metastatic uveal melanoma (NCT04879017) and manuscript describing results of this clinical trial is currently in preparation.

      As the reviewer mentioned, BAP1 loss is a signature of metastatic uveal melanoma. MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript reports the discovery of new compounds that selectively inhibit SMARCA4/SMARCA2 ATPase activity that work through a different mode as previously developed SMARCA4/SMARCA2 inhibitors. They also demonstrate the anti-tumor effects of the compounds on uveal melanoma cell proliferation and tumor growth. The findings indicate that the drugs exert their effects by altering chromatin accessibility at binding sites for lineage-specific transcription factors within gene enhancer regions. In uveal melanoma, altered expression of the transcription factor, SOX10, and SOX10 target gene underlies the anti-proliferative effects of the compounds. This study is significant because the discovery of new SMARCA4/SMARCA2 inhibitory compounds that can abrogate uveal melanoma tumorigenicity has therapeutic value. In addition, the findings provide evidence for the therapeutic use of these compounds in other transcription factor-dependent cancers.

      Strengths:

      The strengths of this manuscript include biochemical evidence that the new compounds are selective for SMARCA4/SMARCA2 over other ATPases and that the mode of action is distinct from a previously developed compound, BRM014, which binds the RecA lobe of SMARCA2. There is also strong evidence that FHT1015 suppresses uveal melanoma proliferation by inducing apoptosis. The in vivo suppression of tumor growth without toxicity validates the potential therapeutic utility of one of the new drugs. The conclusion that FHT1015 primarily inhibits SMARCA4 activity and thereby suppresses chromatin accessibility at lineage-specific enhancers is substantiated by ATAC-seq and ChIP-seq studies.

      Weaknesses:

      The weaknesses include a lack of more precise information on which SMARCA4/SMARCA2 residues the drugs bind. Although the I1173M/I1143M mutations are evidence that the critical residues for binding reside outside the RecA lobe, this site is conserved in CHD4, which is not affected by the compounds. Hence, this site may be necessary but not sufficient for drug binding or specifying selectivity. A more precise evaluation of the region specifying the effect of the new compounds would strengthen the evidence that they work through a novel mode and that they are selective. Another concern is that the mechanisms by which FHT1015 promotes apoptosis rather than simply cell cycle arrest are not clear. Does SOX10 or another lineage-specific transcription factor underlie the apoptotic effects of the compounds?

      We thank the reviewer for the valuable comments.

      We believe that our dual ATPase inhibitor is selective and additional insights into binding specificity and selectivity for earlier stage compounds of this series were recently published in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      The reviewer also poses a great question regarding the mechanism of apoptosis. The mechanism of apoptosis is extremely complex, but we observed a decrease in pro-survival BCL-2 protein expression in response to FHT-1015, in the experiment corresponding to Supplementary Fig. 5e. In the experiment described in Fig. 3k, we also monitored caspase 3/7 activity over time, and SOX10 overexpression rescued 92-1 cells from FHT-1015 induced apoptosis. This suggests the role of SOX10 as an important mediator of response to BAF ATPase inhibition, including apoptosis induced by FHT-1015.

      Additional Reviews:

      The referees would like to draw the authors' attention to the following issues that would best benefit from additional revision. 

      The clinical relevance of the study would be strengthened by the use of uveal melanoma cell lines with BAP1 mutations that better represent metastatic uveal melanoma. The use of patient-derived xenografts would also be pertinent and would be a useful addition. Similarly, attention to the effects of the inhibitor on non-cancerous proliferative cells such as blood/T/immune cells would also strengthen the manuscript. As the study reports the administration of one of the inhibitors in mice for the xenograft experiments, it would be important to assess any potential effects on blood cell counts and better discuss the eventual toxicity or lack of toxicity and how it was assessed. 

      The authors should better explain how SOX10 over expression can rescue viability in the presence of the inhibitor. Similarly given the critical roles of BRG1, SOX10, and MITF in cutaneous melanoma some specific discussion on the sensitivity of cutaneous melanoma cells to the inhibitor should be considered, and potential differences with uveal melanoma highlighted. 

      Aside from these issues, the authors are urged to consider the other points mentioned below. 

      Reviewer #1 (Recommendations For The Authors): 

      Figure 1d, as well as the text in the manuscript referring to this figure, would benefit from indicating specific cell lines used for UM. The same for the sentence in line 153. 

      We thank the reviewer for bringing this to our attention. We have added the cell line names and updated the manuscript accordingly.

      For any of the studies conducted, is there any link with the genetics of UM? E.g. BAP1 wildtype/BAP1 mutant? 

      As addressed above in the public review section, MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Row 191 - How were peaks classified as enhancer-occupied? 

      We used annotatePeaks function of HOMER package to annotate genomic locations, as well as H3K27ac ChIP-seq to annotate peaks as enhancer-occupied. We thank the reviewer to pointing it out and have updated the manuscript accordingly to include this information.

      Row 259, the two cell lines should be named, also in Figure 3i. 

      We have added the cell line names and updated the manuscript accordingly.

      Reviewer #2 (Recommendations For The Authors): 

      As a proof of concept, this study is truly excellent and the authors should be commended. However, it is desirable that new knowledge in cancer is translated to the clinic. To this end there are a few things needed to strengthen the study. 

      I am rephrasing my statements from the public review to say that I would recommend testing the inhibitor in T cells (side effects) and BAP1 mutant cell lines (for clinical relevance). 

      As addressed in the public review section, MP38 is a BAP1 mutant uveal melanoma cell line, and we demonstrated growth inhibition and robust caspase 3/7 activity in response to FHT-1015 (Supplementary Fig. 3a and 3f). MP46 (Supplementary Fig. 3a) is BAP1-null uveal melanoma cell line with no detectable protein expression (Amirouchene-Angelozzi et al., Mol Oncol 2014), and we have observed strong tumor growth inhibition in this CDX model with our BAF ATPase inhibitor.

      Regarding concerns for any potential side effect on T cells, we observed an increase in both CD4 and CD8 T-cell populations in the peripheral blood and the spleen, when naïve, non-tumor bearing CD-1 mice were dosed with SMARCA2/4 dual ATPase inhibitor FHD-286 once daily for 14 days. FHD-286 is a compound similar to FHT-1015 described in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/). In addition, FHD-286 has been tested in tumor bearing syngeneic models. When B16F10 tumor bearing C57BL/6 were dosed with FHD-286 for 10 days, we observed an increase in CD69+ activated CD8 T-cell infiltration in the tumor microenvironment (doi:10.1136/jitc-2022-SITC2022.0888).

      Reviewer #3 (Recommendations For The Authors): 

      (1) Determine drug binding by crystal structure or generate additional SMARCA4 or SMARCA2 mutations in the region near I1173/I1143 that are not conserved in CHD4 and test them in an ATPase assay for effects on drug inhibition. For example, Q1166 in SMARCA4 and Q1136 in SMARCA4 could be changed to Alanine as in CHD4. Would this abrogate drug inhibition? 

      We believe that our dual ATPase inhibitor is selective and additional insights into binding specificity and selectivity for earlier stage compounds of this series were recently published in Vaswani et al., 2025 (PMID:39801091, https://pubmed.ncbi.nlm.nih.gov/39801091/).

      (2) The finding that SOX10 can rescue the antiproliferative effects of FHT1015 suggests that SMARCA4 is primarily needed for SOX10 expression. However, the co-occupancy of SMARCA4 and SOX10 at enhancers suggests that they cooperate to promote chromatin accessibility. It is unclear how over-expression of SOX10 can promote chromatin accessibility in drug-inhibited cells since SOX10 does not have chromatin remodeling activity. ATAC-seq in cells over-expressing SOX10 and treated with the drug could identify SOX10-dependent targets that do not require SMARCA4 activity and clarify the mechanism. It would also be informative to determine if SOX10 over-expression abrogates the effects of FHT1015 on both cell cycle and apoptosis, helping to resolve whether it is a partial or complete rescue of proliferation. 

      We agree that running ATAC-seq in cells overexpressing SOX10 would clarify this mechanism. However, shifts in corporate strategy deprioritized any further experiments for this project. One potential mechanism that SOX10 overexpression can partially rescue BAF inhibition phenotype is through overexpressed SOX10 localizing to open chromatin regions (mostly promoters) across the genome. We know from our ATAC-seq data (Fig. 2) that BAF inhibition leads to loss of chromatin accessibility at SOX10 enhancer sites, while promoter regions are only partially affected. Therefore, we think that overexpression of SOX10 would allow upregulation of its target genes via binding to the promoter regions. In this model, the enhancer-driven SOX10 target genes are likely to remain silenced.  

      (3) Although the in vivo studies indicate that the drugs are well-tolerated, additional in vitro studies to determine the effects of the drug on the proliferation/survival of non-cancerous cells would further validate their therapeutic utility.

      Author Response: The reviewer raises a critical question. FHD-286, a dual BRM/BRG1 inhibitor similar to FHT-1015 with optimized physical properties, has been evaluated in a Phase I trial in patients with metastatic uveal melanoma (NCT04879017), and it was well tolerated at continuous daily dose of up to 7.5 mg QD and at intermittent dose of up to 17.5 mg QD.  Manuscript describing results of this clinical trial is currently in preparation.

    1. Author response:

      Reviewer #1 (Public review):

      It appears obvious that with no or a little fitness penalty, it becomes beneficial to have MHC-coding genes specific to each pathogen. A more thorough study that takes into account a realistic (most probably non-linear in gene number) fitness penalty, various numbers of pathogens that could grossly exceed the self-consistent fitness limit on the number of MHC genes, etc, could be more informative.

      The reviewer seems to be referring to the cost of excessively high presentation breadth.  Such a cost is irrelevant to the inferior fitness of a polymorphic population with heterozygote advantage compared to a monomorphic population with merely doubled gene copy number.  It is relevant to the possibility of a fitness valley separating these two states, but this issue is addressed explicitly in the manuscript.

      An addition or removal of one of the pathogens is reported to affect "the maximum condition", a key ecological characteristic of the model, by an enormous factor 10^43, naturally breaking down all the estimates and conclusions made in [RS]. This observation is not substantiated by any formulas, recipes for how to compute this number numerically, or other details, and is presented just as a self-standing number in the text.

      It is encouraging that the reviewer agrees that this observation, if correct, would cast doubt on the conclusions of Siljestam and Rueffler.  I would add that it is not the enormity of this factor per se that invalidates those conclusions, but the fact that the automatic compensatory adjustment of c<sub>max</sub> conceals the true effects of removing a pathogen, which are quite large.

      I am not sure why the reviewer doubts that this observation is correct.  The factor of 2.7∙10<sup>43</sup> was determined in a straightforward manner in the course of simulating the symmetric Gaussian model of Siljestam and Rueffler with the specified parameter values.  A simple way to determine this number is to have the simulation code print the value to which c<sub>max</sub>  is set, or would be set, by the procedure of Siljestam and Rueffler for different parameter values.  In another section of this response I will describe how to do this with the simulation code written and used by Siljestam and Rueffler; doing so confirms the value that I obtained with my own code.  Furthermore, I will now give a theoretical derivation of this factor.

      As specified by Siljestam and Rueffler, the positions of the m pathogens in (m-1)-dimensional antigenic space correspond to the vertices of a regular simplex centered at the origin, with distance between vertices equal to 1.  The squared distance from the origin to each of the m vertices of such a simplex is (m-1)/2m (https://polytope.miraheze.org/wiki/Simplex).  Thus, the sum of the m squared distances is (m-1)/2.  For the (0, 0) homozygote, condition is multiplied by a factor of exp(-(vr)<sup>2</sup>/2) for each pathogen, where r is the distance from the origin.  It follows that, with v=20, all the pathogens together decrease condition by a factor of exp(20<sup>2</sup>∙(m-1)/4) = exp(100∙(m-1)).  Thus, increasing or decreasing m by 1 changes this value by a factor of exp(100) = 2.7∙10<sup>43</sup>.

      This begs the conclusion that the branching remains robust to changes in c_max that span 4 decades as well.

      That shows only that the results are not extremely sensitive to c<sub>max</sub> or K.  They are, nonetheless, exquisitely sensitive to m and v.  This difference in sensitivities is the reason that a relatively small change to m leads to such a large compensatory change in c<sub>max</sub> a change large enough to have a major effect on the results.

      As I wrote above, there is no explanation behind this number, so I can only guess that such a number is created by the removal or addition of a pathogen that is very far away from the other pathogens. Very far in this context means being separated in the x-space by a much greater distance than 1/\nu, the width of the pathogens' gaussians. Once again, I am not totally sure if this was the case, but if it were, some basic notions of how models are set up were broken. It appears very strange that nothing is said in the manuscript about the spatial distribution of the pathogens, which is crucial to their effects on the condition c.

      I did not explicitly describe the distribution of pathogens in antigenic space because it is exactly the same as in Siljestam and Rueffler, Fig. 4: the vertices of a regular simplex, centered at the origin, with unity edge length.

      The number in question (2.7∙10<sup>43</sup>) pertains to the Gaussian model with v=20.  As specified by Siljestam and Rueffler, each pathogen lies at a distance of 1 from every other pathogen, so the distance of any pathogen from the others is indeed much greater than 1/v.  This condition holds, however, for most of the parameter space explored by Siljestam and Rueffler (their Fig. 4), and for all of the parameter space that seemingly supports their conclusions.  Thus, if this condition indicates that “basic notions of how models are set up were broken”, they must have been broken by Siljestam and Rueffler.

      Overall, I strongly suspect that an unfortunately poor setup of the model reported in the manuscript has led to the conclusions that dispute the much better-substantiated claims made in [SD].

      The reviewer seems to be suggesting that my simulations are somehow flawed and my conclusions unreliable.  I will therefore describe how my conclusions about sensitivity to parameter values can be verified using the simulation code provided by Siljestam and Rueffler themselves, with only small, easily understood modifications.  I will consider adding this description as a supplement when I revise the manuscript.

      The starting point is the Matlab file MHC_sim_Dryad.m, available at https://doi.org/10.5061/dryad.69p8cz98j.  First, we can add a line that prints the value of the variable logcmax, which represents the natural logarithm of cmax determined and used by the code.  Below line 116 (‘prework’), add the line ‘logcmax’ (with no semicolon).

      Now, at the Matlab prompt, execute MHC_sim_Dryad(false, 8, 20, 1) to run the simulation for the Gaussian model with m=8, v=20, and K=1.  The output will indicate that logcmax=700, in accord with the theoretical factor exp(100*(m-1)) derived above.  The allelic diversity, n<sub>e</sub>, will rise to a steady state-level of about 140, as in the red curve of my Fig. 2.

      Now lower m to 7, i.e,  run MHC_sim_Dryad(false, 7, 20, 1).  The output will indicate that logcmax=600.  This confirms that lowering m by 1 causes the code to lower the value of c<sub>max</sub> by a factor exp(100)=2.7∙10<sup>43</sup>, which must also be the factor by which the condition of the most fit homozygote would increase without this adjustment.

      With the change of m to 7 and the compensatory change in c<sub>max</sub>, steady-state allelic diversity remains high.  But what if m changes but c<sub>max</sub> remains the same, as it would in reality?

      To find out, we can fix the value of c<sub>max</sub> to the value used with m=8 by adding the following line below the line previously added: ‘logcmax = 700’.  With this additional modification in place, executing MHC_sim_Dryad(false, 7, 20, 1) confirms that without a compensatory change to c<sub>max</sub>, lowering m from 8 to 7 mostly eliminates allelic diversity, in accord with the corresponding curve in my Fig. 2.  Similarly, raising m from 8 to 9, or changing v from 20 to 19.5 or 20.5 (executing MHC_sim_Dryad(false, 8, 19.5, 1) or MHC_sim_Dryad(false, 8, 20.5, 1)), largely eliminates diversity, confirming the other results in my Fig. 2.  Results for the bitstring model can also be confirmed, though this requires additional changes to the code.

      Thus, the extreme sensitivity of the results of Siljestam and Rueffler to parameter values can be verified with the code that they used for their simulations, indicating that my conclusions are not consequences of my having done a “poor setup of the model”.

      Response to Reviewer #2 (Public review):

      (1) The statement that the model outcome of Siljestam and Rueffler is very sensitive to parameter values is, in this form, not correct. The sensitivity is only visible once a strong assumption by Siljestam and Rueffler is removed. This assumption is questionable, and it is well explained in the manuscript by J. Cherry why it should not be used. This may be seen as a subtle difference, but I think it is important to pin done the exact nature of the problem (see, for example, the abstract, where this is presented in a misleading way).

      I appreciate the distinction, and the importance of clearly specifying the nature of the problem.  However, Siljestam and Rueffler do not invoke the implausible assumption that changes to the number of pathogens or their virulence will be accompanied by compensatory changes to c<sub>max</sub>.  Rather, they describe the adjustment of c<sub>max</sub> (Appendix 7) as a “helpful” standardization that applies “without loss of generality”.  Indeed, my low-diversity results could be obtained, despite such adjustment, by combining the small change to m or v with a very large change to K (e.g., a factor of 2.7∙10<sup>43</sup>).  In this sense there is no loss of generality, but the automatic adjustment of c<sub>max</sub> obscures the extreme sensitivity of the results to m and v.

      (2) The title of the study is very catchy, but it needs to be explained better in the text.

      I had hoped that the final paragraph of the Discussion would make the basis for the title clear.  I will consider whether this can be clarified in a revision.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Comments on revised version: 

      I have reviewed the revised manuscript and read the rebuttal. The authors have carefully addressed my concerns. There is however one point that needs further work: 

      This follows up on my major point #1 in my initial review. I had I asked the authors to demonstrate that FOLFIRI + AZD are less toxic to untransformed colorectal cells than colorectal cancer cell lines.  It is good to see that the authors took my advice and show effects of the drug treatments on the untransformed colorectal cell line CCD841. It seems to be less sensitive to AZD and FOLFIRI in the figure in the rebuttal. What surprises me is that I cannot find these new figures anywhere in the revised manuscript. Also, the data seem preliminary, because I do not see any standard errors in the graphs, and I cannot find a description of the time of drug incubation. I ask the authors to make sure that the CCD841 data are reproducible, and make sure they incorporate the data in the revised manuscript. 

      We thank the reviewer for this insightful comment. In the initial revised version of the manuscript, we did not include results from the untransformed colorectal cell line CCD841, as those experiments had only been performed once and were considered preliminary. However, we fully agree with the reviewer on the importance of including these data.

      To address this, we have repeated the experiments in CCD841 cells to ensure reproducibility. We now report the results from three independent experiments testing the combination of AZD2858 and FOLFIRI on healthy epithelial colon cells. These results are shown in Supplementary Figure S7, where blue matrices represent cell viability and black matrices reflect the level of synergy between AZD2858 and FOLFIRI.

      Our results confirm that, individually, each drug has little to no effect on healthy cells, and no consistent synergistic interaction was observed, except in Experiment 1, which could not be reproduced. Importantly, the drug concentrations used were identical to those applied in the cancer cell experiments, allowing for direct comparison between normal and malignant cell responses.

      Reviewer #2:

      Comments on latest version: 

      Morano et al. have revised their manuscript in response to the points raised by reviewer #3 as follows.

      (1) Fig. 2E: Correcting the previously erroneous labelling of this Fig. makes it match the textual description. 

      (2) Figs 3A and B: The revised textual description of the flow cytometry BrdU incorporation is now precise. 

      (3) Fig. 3E: Removing the suspect WB images is a pragmatic decision that does not significantly affect the overall conclusions of the paper. 

      (4) Fig. 3D: Despite its puzzling appearance this data is now described accurately in the text as "DSBs remained elevated after the combined treatment" rather than "increased after the combined treatment. A more convincing increase in the presumed damaged DNA band is evident in Fig. 4D when AZD2858 is combined with a much lower concentration of SN38 (1.5nM) which could mean that the concentration used in Fig. 3D (300nM) induced maximal damage that could not be further enhanced. 

      We thank the reviewer for their thoughtful comments and constructive feedback, which have helped us improve the clarity and rigor of the manuscript.

      Reviewer #3:

      Comments on latest version: 

      The authors have addressed most of the concerns that I raised in the first round of revision and I have no further questions. I appreciate the authors's efforts in carrying out an preliminary in vivo work, although as the authors pointed out the compound seems to be not effective in vivo. Future work is desired to address this to clarify the significance of the work. 

      We thank the reviewer for acknowledging our efforts in addressing the previous concerns. We also appreciate the recognition of our preliminary in vivo work. While these results suggest limited in vivo efficacy of the compound at this stage, we agree that additional studies will be necessary to fully evaluate its therapeutic relevance. We consider this an important next step and are committed to pursuing it in future work.

    1. Author response:

      General Statements

      In this paper we demonstrate that the lipid packing of the plasma membrane has a huge impact on the stability of caveolae. By using interdisciplinary techniques, we show that the widely used dynamin inhibitor Dyngo-4a adsorbs and inserts to lipid bilayers leading to a decreased lipid packing and hence reduced caveolae dynamics and internalization even in cells lacking dynamin. We have added experiments that validates that Dyngo-4a treatment does not result in fragmentation or disassembly of the caveolae.  A FRAP assay of cytosolic caveolae has been employed to address questions concerning scission. Moreover, as suggested by the reviewers, we have also included new simulation data that show and expand on the fact that Dyngo-4a positions in the lipid leaflet similar to cholesterol and preferentially associates with cholesterol clusters, affecting the spatial distribution of cholesterol in the membrane. We believe that these added data have greatly improved the paper and strengthened our conclusions that the lipid packing is a critical determinant in the balance between internalization and stable plasma membrane association of membrane vesicles.

      As requested, we have expanded the introduction to provide more detailed information about previous findings in the field. Changes and addition to the text has been highlighted in red for easier tracking.

      Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity):

      The authors use Dyngo-4a, a known Dynami inhibitor to test its influence on caveolar assembly and surface mobility. They investigate, whether it incorporates into membranes with Quartz-Crystal Microbalance, they investigate how it is organized in membranes using simulations. Finally, they use lipid-packing sensitive dyes to investigate lipid packing in the presence of Dyngo-4a, membrane stiffness using AFM and membrane undulation using fluorescence microscopy. They also use a measure they call "caveola duration time" to claim that something happens to caveolae after Dyngo-4a addition and using this parameter, they do indeed see an increase in it in response to Dyngo-4a, which is reduced back to the baseline after addition of cholesterol.

      Overall, the authors claim: 1) Dyngo-4a inserts into the membrane and this 2) results in "a dramatic dynamin-independent inhibition of caveola scission". 3) Dyngo-4a was inserted and positioned at the level of cholesterol in the bilayer and 4) Dyngo-4a-treatment resulted in decreased lipid packing in the outer leaflet of the plasma membrane 5) but Dyngo-4a did not affect caveola morphology, caveolae-associated proteins, or the overall membrane stiffness 6) acute addition of cholesterol counteracts the block in caveola scission caused by Dyngo-4a.

      Overall, in this reviewers opinion, claims 1, 3, 4, 5 are well-supported by the presented data from electron and live cell microscopy, QCM-D and AFM.

      However, there is no convincing assay for caveolar endocytosis presented besides the "caveola duration" which although unclearly described seems to be the time it takes in imaging until a caveolae is not picked up by the tracking software anymore in TIRF microscopy.

      Since the main claim of the paper is a mechanism of caveolar endocytosis being blocked by Dyngo-4a, a true caveolar internalization assays is required to make this claim. This means either the intracellular detection of not surface connected caveolar cargo or the quantification of caveolar movement from TIRF into epifluorescence detection in the fluorescence microscope. Otherwise, the authors could remove the claim and just claim that caveolar mobility is influenced.

      We thank the reviewer for the nice constructive comments, and we very much appreciate the positive critique. We have now included a FRAP experiment of endocytic Cav1-GFP supporting the effect on internalization. In addition, we are currently preforming CTxB HRP experiments to quantify the number of caveolae at PM using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Reviewer #1 (Significance):

      A number of small molecule inhibitors for the GTPase dynamics exist, that are commonly used tools in the investigation of endocytosis. This goes as far that the use of some of these inhibitors alone is considered in some publications as sufficient to declare a process to be dynamin-dependent. However, this is not correct, as there are considerable off-target effects, including the inhibition of caveolar internalization by a dynamin-independent mechanism. This is important, as for example the influence of dynamin small molecule inhibitors on chemotherapy resistance is currently investigated (see for example Tremblay et al., Nature Communications, 2020).

      The investigation of the true effect of small molecules discovered as and used as specific inhibitors and their offside effects is extremely important and this reviewer applauds the effort. It is important that inhibitors are not used alone, but other means of targeting a mechanism are exploited as well in functional studies. The audience here thus is besides membrane biophysicists interested in the immediate effect of the small molecule Dyngo-4a also cell biologists and everyone using dynamic inhibitors to investigate cellular function.

      Reviewer #2 (Evidence, reproducibility and clarity):

      This manuscript uses the small molecule dynamin inhibitors dynasore and dyngo to show that in dynamin triple knockout cells that these inhibitors impact lipid packing and organization in the plasma membrane. Data showing that dyngo affects caveolin dynamics using tirf microscopy is also shown and is interpreted to reflect inhibition of caveolae scission from the membrane.

      This data showing that dyngo and dynasore target membrane order is quite compelling and argues that the effects of these inhibitors is not dynamin specific and that inhibition of endocytosis by these small molecule inhibitors is dynamin-independent. The in vitro and in vivo data they provide is convincing.

      Similarly, the data showing that dynasore and dyngo affect caveolin dynamics and clathrin endocytosis (transferrin) is quite convincing and argues that altered lipid packing is impacting membrane dynamics at the plasma membrane.

      What is less convincing is the conclusion that dyngo is preventing caveolae scission from the membrane. Study of caveolae endocytosis is based on a TIRF assay that has inherent limitations:

      - Caveolae are defined as bright cav1-positive spots in diffraction limited TIRF and their disappearance presumed to be endocytic events. Cav1 spots are presumed to be caveolae but the authors do not consider that they may be flat non-caveolar oligomers. The diffraction limited TIRF approach interprets the large structures as caveolae but evidence to that effect is lacking.

      This is a valid comment and to address this we have now included data showing colocalization of cavin1 and EHD2 to the Cav1-GFP spots. We can however not determine if they are flat or invaginated. We do have extensive experience imaging caveolae using TIRF microscopy and carefully chose cells that display low expression of fluorescently labelled caveolin to avoid non-caveolar structures.

      - The analysis (and the diagram presented in figure 4) considers that caveolae can either diffuse laterally in the membrane or internalize and does not consider that caveolae can flatten and possibly fragment in the membrane. Is it not possible that loss of Cav1 spots is a fragmentation event and not necessarily a scission event?

      This is a good question, yet, fragmentation and disassembly would result in shorter track durations and this is not what is observed in data. We have now also included data showing that cavin1 is persistently associated with the Cav1 spots identified as caveolae during Dyngo-4a treatment indicating that these are caveolae. Furthermore, IF stainings showing colocalization of Cav1GFP with cavin1 or EHD2 after Dyngo-4a treatment have also been added. We have now also expanded on the different interpretations of the data in the results section.

      - The analysis is based on overexpression of Cav1-GFP that may alter the stoichiometry between Cav1 and cavin1 such that while caveolae may be expressed, larger non-caveolar structures may accumulate.

      Yes, this is correct, we have specifically imaged cell expressing low levels of Cav1-GFP to avoid accumulated non-caveolar structures that can be spotted in cells with high expression.

      - Cav1 has been shown to be internalized via the CLIC pathway (Chaudary et al, 2014) and if dyngo is impacting clathrin then maybe it is also impacting CLIC endocytosis and thereby Cav1 endocytosis via this pathway?

      Dyngo-4a has been shown to not affect CLIC endocytosis (McCluskey et al., 2013) and in our data we do not see internalization following Dyngo-4a treatment.

      - The longer Cav1 TIRF track time and shorter displacement with dyngo is consistent with inhibition of caveolae scission. However, as the authors discuss, could not reduced membrane undulations due to dyngo's impact on membrane order be responsible for the longer tracks? Alternatively, perhaps the altered lipid packing is corralling Cav1 movement and reducing non-caveolar Cav1 endocytosis, resulting in shorter tracks of longer duration? The proposed interaction of dyngo with cholesterol could prevent scission but also stabilize large (flat?) Cav1 oligomers in the membrane, perhaps reducing Cav1 oligomer fragmentation.

      We completely agree that membrane undulations contribute to instability of the TIRF-field and therefore disruption of cav1-GFP tracks as we discuss in the results section and have been described in previous work (Larsson et al., 2023). Yet, we have also shown that internalization of caveolae results in shorter tracks (Hubert et al., 2020; Larsson et al., 2023; Mohan et al., 2015). Furthermore, the tracked Cav1-GFP spots are persistently positive for cavin1 both with and without Dyngo-4a treatment showing that the majority do not disassemble become internalized by other pathways. Additionally, the added IF stainings after 30 min Dyngo-4a treatment also show that the Cav1-GFP spots remain positive for cavin1 and EHD2 just as ctrl-treated cells.

      My point here is not to discredit the data but only to suggest that the TIRF approach used is an indirect measure of caveolae scission from the membrane that requires substantiation using other approaches.

      We appreciate these comments and have tried to address these by adding new data and discussions on the interpretation of the tracking data in the results section.

      Dyngo is certainly generally affecting lipid packing via cholesterol and thereby affecting Cav1 dynamics in the plasma membrane. The claim of caveolae scission should be qualified and alternative possibilities considered and discussed. If the authors persist in arguing that dyngo is affecting caveolae scission then the effect should be substantiated by accumulation of caveolae by quantitative EM and high spatial and temporal resolution imaging of Cav1 and cavin1 to define the endocytic events. As the latter represents a new, and potentially very challenging, line of experimentation, I would suggest that it is beyond the scope of the current study. As indicated above the additional experiments are not necessary and qualification of the claims would be sufficient.

      We have now included a FRAP experiment of endocytic Cav1-GFP supporting the effect on internalization. We are also currently preforming CTxB HRP experiments to quantify the number of caveolae at the PM using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Other points

      Figure 1C - Cav1 positive spots cannot be interpreted to be caveolae from diffraction limited confocal images. Same comment applies to Fig 4G - caveola? duration.

      We completely agree with this and that the claims should be qualified. We have added IF stainings showing that the Cav1-GFP structures are also positive for cavin1. We have now clarified that we cannot distinguish between flat or different curved states of caveolae using this methodology. We have also changed the labelling of Fig. 4G.

      Figure 4C - it is not clear why this EM data is not quantified - for both the number of caveolae and clathrin coated pits - as this would help clarify the interpretation of the effect reported.

      We are currently preforming CTxB HRP experiments to quantify the number of caveolae using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long.

      Figure 4D - the AFM experiments should perhaps be repeated as the non-significant effect of dyngo on the Young's modulus may be a result of insufficient n values.

      We would like to clarify that to ensure the robustness of our AFM measurements, we performed the experiments with sufficient biological and technical replicates. Specifically, each data point shown in Figure 4D represents a Young’s modulus value averaged from approximately sixty force-distance curves per cell. For each condition, we collected force-distance maps on eight to nine individual cells, obtained from two separate petri dishes per day. We repeated this process on two independent days. In total, we analysed thirty-one cells for the DMSO control and thirty-three cells for the Dyngo-4a treatment. We performed the “student’s t-test with Welch’s correction” to access the statistical significance between the two conditions, as described in the main text. We believe that the sample size and statistical approach are sufficient to support the conclusions presented. Furthermore, we also analysed cell stiffness by calculating the slope of the linear portion of the force-distance curves. This analysis also did not reveal any statistically significant differences between the conditions (data not shown), further supporting our conclusion that Dyngo-4a treatment does not significantly alter the Young’s modulus under our experimental setup (or conditions).

      Reviewer #2 (Significance):

      This data showing that dyngo and dynasore target membrane order is quite compelling and argues that the effects of these inhibitors is not dynamin specific and that inhibition of endocytosis by these small molecule inhibitors is dynamin-independent. The in vitro and in vivo data they provide is convincing.

      Similarly, the data showing that dynasore and dyngo affect caveolin dynamics and clathrin endocytosis (transferrin) is quite convincing and argues that altered lipid packing is impacting membrane dynamics at the plasma membrane.

      What is less convincing is the conclusion is that dyngo is preventing caveolae scission from the membrane.

      Reviewer #3 (Evidence, reproducibility and clarity):

      Larsson et al present experimental and computational data on the role of Dyngo4a (a compound that was developed to inhibit dynamin) on the dynamics of caveolae. The manuscript mostly documents effects of Dyngo on caveolae, with one experiment to suggest a mechanism for this result. This one rather unconvincing result forms the focus of the manuscript contributing to a disconnect between the data and the presentation. Additionally, there are concerns with data interpretation. The writing could also benefit from revision to address grammar mistakes, strengthen referencing, and increase precision. Overall, the manuscript requires substantial revisions before being considered for publication. The central claim, in particular, needs stronger evidence to support the proposed mechanism.

      We thank the reviewer for the thorough review and for experimental suggestions that we believe has strengthened our data further.

      Significant issues (in approximate order of importance):

      (1) The data supporting the central mechanistic explanation appears limited. There is no evidence that Dyngo remains in one leaflet

      The simulations show that the energy barrier for moving in between bilayers is very high. Furthermore, simulations of C-Laurdan has shown that it does not readily flip in between membrane leaflets (Barucha-Kraszewska et al., 2013) supporting that it reports on the outer lipid leaflet when added to cells. We have however now changed this and state that Dyngo-4a decreased the lipid order in the plasma membrane.

      - the GP of the PM is very low compared to previous measurements,

      The absolute GP-values will vary between setups depending on what filters are used so they are not comparable between laboratories. What is of importance is that we found a significant change in the relative GP-values in cells treated with Dyngo-4a and control cells. It is this change that we report. We have not performed any GP-measurements on this cell type earlier so it is unclear what previous measurements reviewer #3 are referring to.

      - effects on other membranes are not explored,

      The order of the intracellular membranes is as expected lower than that of the plasma membrane. Differentiating different intracellular membranes of interest like endocytotic vesicles from other intracellular membranes would be very difficult but, more importantly, our study is focused on what is happening in the plasma membrane where caveolae reside and would be of minor interest for plasma membrane dynamics.

      - dynamin-directed effects of Dyngo are not considered,

      In the discussion section we discuss the difficulties with disentangling dynamin-direct and indirect effects.

      (2) The QCM-D measurements and claims require explanation as several aspects remains unclear. In Fig S2, the 'softness' (what does this mean?) changes by 4-fold with DMSO alone (what does this mean?), then fractionally more with Dyngo. Then fractionally more again when Dyngo is removed (why?). Then it remains somewhat higher when both Dyngo and DMSO are removed, which is somehow interpreted as Dyngo remaining in the bilayer, but not DMSO.

      We understand the confusion of the reviewer and hope our explanations provide clarity. QCM-D measurements are based on an oscillating quartz crystal sensor. Specifically, alterations in oscillation frequency (ΔF) and the rate of energy dissipation from the sensor surface (ΔD) are what is measured. Allowing the measurement of: 1) materials adsorbing to the sensor surface, 2) changes in the viscoelastic properties of a solution in contact with the sensor surface, 3) changes in the material adsorbed to the sensor surface upone exposure to different solutions. The ratio of ΔD/-ΔF reports the mechanical softness or rigidity of an adsorbed material, in this case the SLB.

      A “buffer shift” is the term used when there is not an adsorption to the sensor surface, but rather an effect from altering the solution above the sensor surface. One reason is because different solutions can have different densities (e.g., a DMSO-buffer mixture vs buffer alone), which impacts the oscillations of the sensor. It was observed that the DMSO-buffer mixture alone gave a large buffer shift in comparison to the adsorption of the Dyngo-4a into the SLB, thereby muddling the data interpretation. Thus, in Fig. S2 the system was first equilibrated with the DMSO-buffer mixture prior to addition of the Dyngo-4a solution to allow for clearer visualization of the two events. In QCMD to assess if something has made a permeant change to the system you change back to the solutions used before the addition, thus first we washed with a DMSO-Buffer mixture followed by buffer alone. Control experiments were carried out in which no Dyngo-4a was added (also shown in Fig. S2). The control shows the same “buffer shift” from the DMSO-buffer mixture occurs in both systems and that upon returning to a buffer only condition there is no permanent change to the system caused from exposure to the DMSO. In contrast, once the system that received Dyngo-4a is changes back to a buffer only system we see that mass has been added to the system (ΔF) with little change to the dissipation (ΔD), thereby resulting in a lower ratio of ΔD/-ΔF, which is to say that the SLB after the adsorption of Dyngo-4a was more rigid that the SLB without Dyngo-4a.

      These interpretations are difficult to grasp, as the authors seem to be implying simple amphiphilic partitioning into the membrane, which should all be removable by efficient washing.

      Amphiphilic partitioning is not fully reversible by “efficient washing” it depends on partitioning coefficients.

      I do not doubt that this compound interacts with membranes, but the quantifications appear ambiguous. A bilayer with 16 mol% (or worse, 30% if all in one leaflet) Dyngo is very unlikely (to remain a bilayer). Even if such a bilayer was conceivable, the authors are claiming an ADDITION of Dyngo that would INCREASE the area of one leaflet by 30%, which needs explanation as it appears unlikely.

      We understand that in our attempt provide numbers in the results section for the amount of binding observed in QCM-D, this can easily be interpreted as this is what is observed to insert into the PM. However, as discussed in the discussion, we also see aggregations of Dyngo-4a that associate with the membrane in the simulations which likely could contribute to the binding observed in QCM-D prior to washing. The precise amount of membrane inserted Dyngo-4a is difficult to measure as we discuss in the text. In order to make this clearer, we have now moved all these details to the discussion section where we elaborate on this. Furthermore, since Dyngo-4a, like cholesterol, is intercalating in between the head groups of the lipids the area would not increase in direct proportion to the mol%.

      Also, there are no replicates shown, so unclear how reproducible these effects are?

      For clarity, only single experiments are shown. However, multiple experiments were performed and the range in measured values for 3 technical repeats can be observed in the standard deviations found in the main text (e.g., 6 ± 2 mol%).

      (3) The simulations are insufficiently described and difficult to interpret. How big are these systems? Why do the figures show the aqueous system with lateral boundaries?

      There are no explicit boundaries used in the simulations, periodic boundary conditions are applied in all three dimensions. The lateral boundaries observed in the figures correspond to the simulation box edges and are a visual artifact of 2D projections with QuickSurf representation. No artificial wall or constraints were introduced laterally. Additional technical details, including the system size and periodic boundary conditions have now been added to the methods section.

      It seems quite important that multiple Dyngo molecules aggregate rather than partition into membranes - is this likely to occur in experiment?

      Yes, this is important and with the additional simulation experiments suggested by Reviewer #3 it has been clarified that they contribute a great deal to the change in lipid packing of lipid bilayers containing cholesterol.  However, it is hard to test aggregation is the cellular system, but we believe that this happens and contribute to the effect on membranes. We have now emphasized the effect of the aggregates in the text.

      PMF simulations are strongly suggesting that Dyngo does not spontaneously cross membranes, which is inconsistent with its drug-like amphiphilicity (cLogP~2.5 is optimally suited for membrane permeation) and known effects on intracellular proteins. This suggests an artefact in these PMFs.

      As stated in the submitted version of the manuscript, logP was used to validate the topology and the observed value was in a very good agreement with cLogP. Moreover, this validation complemented the standard procedure of CHARMM-GUI ligand modelling, that provided a reasonable penalty score (around 20) for the Dyngo-4a topology. POPC and cholesterol molecules are standard in the force field and validated by numerous studies. The parameters used for the membrane simulations and AWH in particular are very common for this type of studies. Thus, we do not see what may cause any artifacts in the free energy profile construction. In fact, amphiphilicity of the molecule may be one of the key reasons that Dyngo-4a molecule remains at the aqueous interface of the membrane and does not cross the membrane spontaneously. Also, we believe that the energy barrier of 40-60 kJ/mol is not prohibitively high and Dyngo-4a molecules may still overcome the barrier eventually, though we expect majority to reside in the upper leaflet.

      The authors should experimentally measure the permeation of Dyngo through bilayers (or lack thereof), to more robustly support their finding that Dyngo does not cross membranes spontaneously.

      We thank the reviewer for the suggestion, however this if very technically challenging and would require establishment of precise systems which is beyond the scope of this manuscript.

      (4) Why not measure effect of Dyngo on lipid packing directly and more broadly in model membranes?

      With the added modelling experiments supporting the previous simulations and the calculated GP values from the C-Laurdan experiments on cellular plasma membrane, we do not find it necessary to include more model membranes experiments than the already existing ones on lipid monolayers and supported lipid bilayers.

      (5) Statistics should not be done on individual cells (n>26), but rather on independent experiment (N=3?)

      We have performed the statistics on live cell particle tracking according to previous literature on similar systems (Boucrot et al., 2011; Larsson et al., 2023; Shvets et al., 2015; Stoeber et al., 2012).

      (6) Fig 1G is important but rather unclear. Firstly, these kymographs are an odd way to show that the caveolae are not moving. More importantly, caveolae in normal cells have been shown to be quite stable and immobile (eg doi: 10.1074/jbc.M117.791400), yet here they are claimed to be very mobile.

      Although this might be an odd and unconventional way to depict dynamic processes, we believe that this is a very illustrative way to show track stability over time in bulk rather than just a kymograph over a few structures in a cell. Furthermore, we are not claiming that caveolae are very mobile but rather the opposite very stable in agreement with previous work (Boucrot et al., 2011; Larsson et al., 2023; Mohan et al., 2015). We have now edited the text to make this even clearer.

      Also, if Dyngo prevents caveolae scission, there should be more of them at the membrane - why no quantification like Fig 1C to show accumulation of caveolae upon Dyngo treatment? Or directly counting caveolae via EM, as in Fig 4C?

      We are currently preforming CTxB HRP experiments using EM but due to reasons out of our control we have not managed to finish these on time, they will be included in the manuscript once they are ready in hopefully not too long. However, Dynasore has previously been shown, by EM, to increase the number of caveolae at the PM (Moren et al., 2012; Sinha et al., 2011).

      (7) The writing can be made more precise and referencing could be strengthened.

      The introduction was written in a short format, and we have now extended this and made it more precise.

      Some examples:

      (a) 'scissoned' is not a word in English,

      Thanks, we have now changed this.

      (b) what is meant by "Cav1 assembly is driven by high chol content"? There are many types of caveolin assemblies.

      We agree that this can be made more precise and have now clarified this in the introduction.

      (c) "This generates a unique membrane domain with distinct lipid packing and a very high curvature." Unclear what 'this' refers to and there is no reference here, so what is the evidence for either of these claims? Caveolin-8S oligomers are not curved. Perhaps 'this' is caveolae, but they are relatively large and also not very highly curved and I am unaware of measurements of lipid packing therein.

      Caveolae are around 50 nm which in biology is a very high curvature of a membrane. It has been extensively proven that caveolae have a distinct lipid composition highly enriched in cholesterol and sphingolipids, which thereby also will generate a unique lipid packing as compared to the surrounding membrane. Yet, the reviewer is correct that lipid packing has not been measured in a caveola for obvious technical challenges. Thus, we have now changed the text to “special lipid composition”.

      The sentence following that one again makes a specific, but unreferenced, claim.

      (d) intro claims that lipid packing is critical for fission, but it is unclear quite what is meant by this claim. The references do not help, as they are often about the basic biophysics of lipids, rather than how packing affects fission.

      We have now edited the text.  

      (e) intro strongly implies that caveolae remain membrane attached because of stalled scission. How strong is the evidence for this? The fact that EHD2 is at the neck is not definitive,

      We used the term stalled scission to describe that all omega shaped membrane invaginations do not scission in the same automatic way as clathrin coated vesicles. We have now changed this in the text. Caveolae are shown to be released (undergo scission) and be detected as internal caveolae if the protein EHD2 is removed. Hence this must be interpreted as if EHD2 stalls scission. The evidence includes data compiled over the last 12 years from others and us which include for example: 1) Caveolae with EHD2 have a longer duration time (Larsson et al., 2023; Mohan et al., 2015; Moren et al., 2012; Stoeber et al., 2012), Knock down of EHD2 results in more internalized caveolae as measured by CTxB HRP using EM (Moren et al., 2012) and shorter duration time at the PM (Hubert et al., 2020; Larsson et al., 2023; Mohan et al., 2015; Stoeber et al., 2012). 2) EHD2 overexpression results in less internalized caveolae as measured by CTxB HRP using EM (Stoeber et al., 2012). Furthermore, 3) overexpression or acute addition of purified EHD2 via microinjection counteracts lipid induced scission of caveolae and hence result in caveolae stabilization at the PM (Hubert et al., 2020). It is very hard to see that the release and internalization of caveolae could result from anything else than that these have undergone scission. EHD2 has been found around the rim of caveolae (Matthaeus et al., 2022) and overexpression of EHD2 oligomerizing mutants have been shown to expand the caveola neck (Hoernke et al., 2017; Larsson et al., 2023).

      (f) unclear what is meant by 'lipid packing frustration' and how Dyngo supposedly induces it.

      Lipid packing frustration refers to what is usually referred to as lipid packing defect, but since lipid membranes are describe as a fluid system it should not have defects whereby, we believe that lipid packing frustration is more accurate. However, we have now changed the text and use “decreased lipid packing” or “decreased lipid order” more thoroughly to describe the effect on the plasma membrane.

      (8) IF of Cav1 is insufficient to claim puncta as caveolae. Co-stained puncta of caveolin with cavin are much stronger evidence. Same issue for Cav1-GFP puncta.

      We agree and have now provided IF showing cavin1 and EHD2 colocalization to Cav1GFP in non and Dyngo-4a-treated cells.

      (9) Fig 3E claims that "preferred position of Dyngo-4a was closer to the head groups" but the minimum looks to be in similar place as Fig 3B without cholesterol. Response:

      We appreciate the reviewer’s observation. The PMF minima in the POPC and POPC:Chol membranes are indeed close in absolute position (~1.1–1.2 nm from the bilayer center). However, as clarified in the revised text, the presence of cholesterol leads to a slight shift of Dyngo-4a closer to the headgroup region and broadens the positional distribution. This is also evident from the added density profiles (Fig. S3A) and is now described more precisely in the manuscript.

      Critically, these results do not support the notion that Dyngo affects lipid packing sufficiently, which is not measured in the simulations (though could be).

      We thank the reviewer for the excellent suggestion. In response, we have now included a detailed analysis of Dyngo-4a’s effect on lipid packing in the simulations. As described in the revised manuscript, we measured deuterium order parameters, area per lipid (APL), and lipid–Dyngo–cholesterol spatial distributions (Figs. 3-H, S3C-E). The results demonstrate that Dyngo-4a decreases lipid order in POPC:Chol membranes. Both single molecules and clusters reduce the order parameter by up to 0.04 units, particularly in the upper leaflet, where Dyngo-4a reside.The reduction is most pronounced in the midchain region of the sn1 tail and around the double bond of the sn2 tail. These effects were accompanied by increased APL in POPC:Chol membranes and by colocalization of Dyngo-4a near cholesterol-rich regions. Together, these data confirm that Dyngo-4a perturbs membrane organization and lipid packing in a composition-dependent manner. We believe these additions directly address the concern and demonstrate that the simulations indeed support the conclusion that Dyngo-4a modulates lipid packing.

      Finally, the simulation data do not show "that Dyngo-4a is competing with cholesterol"; it is unclear what 'competition' means in this context, but regardless, the data only shows that Dyngo sits at a similar location as cholesterol.

      We agree with the reviewer that “competition” was an imprecise term. We have rephrased the relevant sections to clarify that Dyngo-4a and cholesterol localize to overlapping regions and exhibit spatial coordination. As now stated in the manuscript, cholesterol appears to partially displace Dyngo-4a from its preferred depth seen in pure POPC, broadens its membrane distribution, and alters lipid packing. According to the order parameters there is an interplay between chol and Dyngo-4a and the heatmaps show that the distribution of chol in the membrane gets less uniform in the presence of Dyngo-4a. These interactions suggest that Dyngo-4a perturbs cholesterol-rich domains.

      As new analysis routines were added to the study, we have now also added the details on those to the Methods section of the text.

      (10) AFM measures the stiffness of the cell (as correctly explained in Results section) not "overall stiffness of the PM" as stated in the Discussion.

      We thank the reviewer for pointing this out, we have now altered this in the discussion section.

      (11) Fig2A: what was the starting lipid surface pressure? How does Dyngo insertion depend on initial lipid packing?

      The starting pressure lipid pressure was 20 mN m<sup>-1</sup which we now have incorporated in the figure legend. We performed several such experiments with a starting pressure ranging from 20-23 mN m<sup>-1</sup> showing consistent results which we described in the materials and methods section. Given that we also performed QCMD analysis and simulations on bilayers showing that Dyngo-4a adsorbed and inserted respectively, we have not performed a titration of starting pressures resulting in a MIP of Dygo-4a.

      (12) Fig 4B is a strange approach to measure membrane motion. Why not RMSD or some other displacement based method? As its shown, it implies that the area of the cell changes.

      The method that we used to quantify the area of the cell which is attached (or close to) the glass and thereby is visible in TIRF microscopy. This is area indeed changes over time which has been frequently observed and used to describe and quantify the mobility, lamellipodia and filopodia formation among other things. We agree that RMSD can also be used to analyze the data before and after treatments and we have now included RMSD­­­­ analysis in the manuscript.

      Reviewer #3 (Significance):

      The title, abstract, and introduction of the manuscript are largely framed around lipid packing, but most of the data investigate other unexpected effects of treating cells with Dyngo4a. The only measurement for lipid packing (or any other membrane properties) is Fig 4E-F. Therefore, this paper is effectively an investigation of an artefact of a common reagent, which itself could be a valuable contribution. However, the mechanism to explain its effect requires stronger evidence, and its broad biological significance needs further exploration.

      Overall, the impact of documenting the effects of Dyngo4a on membranes appears modest but may be valuable to the membrane trafficking community.

      Barucha-Kraszewska, J., S. Kraszewski, and C. Ramseyer. 2013. Will C-Laurdan dethrone Laurdan in fluorescent solvent relaxation techniques for lipid membrane studies? Langmuir. 29:1174-1182.

      Boucrot, E., M.T. Howes, T. Kirchhausen, and R.G. Parton. 2011. Redistribution of caveolae during mitosis. J Cell Sci. 124:1965-1972.

      Hoernke, M., J. Mohan, E. Larsson, J. Blomberg, D. Kahra, S. Westenhoff, C. Schwieger, and R. Lundmark. 2017. EHD2 restrains dynamics of caveolae by an ATP-dependent, membrane-bound, open conformation. Proc Natl Acad Sci U S A. 114:E4360-E4369.

      Hubert, M., E. Larsson, N.V.G. Vegesna, M. Ahnlund, A.I. Johansson, L.W. Moodie, and R. Lundmark. 2020. Lipid accumulation controls the balance between surface connection and scission of caveolae. Elife. 9.

      Larsson, E., B. Moren, K.A. McMahon, R.G. Parton, and R. Lundmark. 2023. Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. J Cell Biol. 222.

      Matthaeus, C., K.A. Sochacki, A.M. Dickey, D. Puchkov, V. Haucke, M. Lehmann, and J.W. Taraska. 2022. The molecular organization of differentially curved caveolae indicates bendable structural units at the plasma membrane. Nat Commun. 13:7234.

      McCluskey, A., J.A. Daniel, G. Hadzic, N. Chau, E.L. Clayton, A. Mariana, A. Whiting, N.N. Gorgani, J. Lloyd, A. Quan, L. Moshkanbaryans, S. Krishnan, S. Perera, M. Chircop, L. von Kleist, A.B. McGeachie, M.T. Howes, R.G. Parton, M. Campbell, J.A. Sakoff, X. Wang, J.Y. Sun, M.J. Robertson, F.M. Deane, T.H. Nguyen, F.A. Meunier, M.A. Cousin, and P.J. Robinson. 2013. Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic. 14:1272-1289.

      Mohan, J., B. Moren, E. Larsson, M.R. Holst, and R. Lundmark. 2015. Cavin3 interacts with cavin1 and caveolin1 to increase surface dynamics of caveolae. J Cell Sci. 128:979-991.

      Moren, B., C. Shah, M.T. Howes, N.L. Schieber, H.T. McMahon, R.G. Parton, O. Daumke, and R. Lundmark. 2012. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol Biol Cell. 23:1316-1329.

      Shvets, E., V. Bitsikas, G. Howard, C.G. Hansen, and B.J. Nichols. 2015. Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids. Nat Commun. 6:6867.

      Sinha, B., D. Koster, R. Ruez, P. Gonnord, M. Bastiani, D. Abankwa, R.V. Stan, G. Butler-Browne, B. Vedie, L. Johannes, N. Morone, R.G. Parton, G. Raposo, P. Sens, C. Lamaze, and P. Nassoy. 2011. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 144:402-413.

      Stoeber, M., I.K. Stoeck, C. Hanni, C.K. Bleck, G. Balistreri, and A. Helenius. 2012. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J. 31:2350-2364.

    1. Author response:

      Reviewer #1 (Public review):

      We greatly appreciate Reviewer #1’s accurate public review of our study on the kinesin motor using the DNA origami nanospring (NS). With respect to the strengths, we fully agree with Reviewer #1’s comments. Regarding the weakness, we would like to respond as follows.

      It is true that, unlike optical tweezers, our method does not provide real-time data display. Optical tweezers enable real-time observation and manipulation of kinesin molecules at arbitrary time points. Achieving real-time observation and manipulation is indeed an important challenge for the future development of the NS technique. On the other hand, Iwaki et al. (our co-corresponding author) has already investigated dynamic properties of motor proteins under load, such as step size and force–velocity relationship of myosin VI using NS. We are now preparing high spatiotemporal resolution microscopy experiments on the KIF1A system to measure its step size and force–velocity relationship, which inherently require such resolution.

      Reviewer #2 (Public review):

      We would like to thank Reviewer #2 for providing a highly accurate assessment of the strengths of our experiments. Regarding the weaknesses, we would like to respond as follows.

      First, Iwaki et al. (our co-corresponding author) have already succeeded in observing the stepping motion of myosin VI using the nanospring (NS) in their previous work. We are also currently preparing high spatiotemporal resolution microscopy experiments to observe the stepping motion of KIF1A in our system. Second, while it is true that the NS does not follow Hooke’s law, it is possible to design and construct NSs with an appropriate dynamic range by tuning the spring constant to match the forces exerted by protein molecules. Finally, we agree that our first observation of the stall plateau in KIF1A using the NS is a meaningful achievement. However, with respect to the suggestion that “increasing validity requires also studying kinesin-1,” we have a somewhat different perspective. The validity of the NS method has already been thoroughly examined in the previous work on myosin VI by Iwaki et al., where results were compared with those obtained using optical tweezers. Moreover, the focus of this manuscript is on KAND caused by KIF1A mutations. From this perspective, although we appreciate the suggestion, we consider it important to keep the present study focused on KIF1A and its implications for KAND.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):  

      (1) To distinguish autophagosomes from autolysosomes, the authors used vps16 RNAi cells, which are supposed to be fusion deficient. However, the extent to which fusion is actually inhibited by knockdown of Vps16A is not shown. The co-localization rate of Atg8 and Lamp1 should be shown (as in Figure 8). Then, after identifying pre-fusion autophagosomes and lysosomes, the localization of each should be analyzed.

      Thank you for this insightful comment. We analyzed the colocalization of 3xmCherry-Atg8a and GFP-Lamp1, which label autophagic structures and lysosomes, respectively, in Vps16A RNAi fat body cells. As expected, Vps16A silencing markedly reduced the overlap between these two signals, indicating a strong block in autophagosome–lysosome fusion. Moreover, both 3xmCherry-Atg8a and GFP-Lamp1 became more perinuclearly localized compared to the control (luciferase RNAi) cells.

      It is also possible that autophagosomes and lysosomes are tethered by factors other than HOPS (even if they are not fused). If this is the case, autophagosomal trafficking would be affected by the movement of lysosomes.  

      Thank you for raising this possibility. While we cannot fully exclude that autophagosomes might be indirectly transported via tethering to lysosomes, we consider this unlikely. We believe that in Drosophila fat cells, autophagosomes and lysosomes rapidly fuse once in close proximity. Therefore, even if alternative tethering mechanisms exist, they are unlikely to permit prolonged joint trafficking without fusion.

      (2) The authors analyze autolysosomes in Figures 6 and 7. This is based on the assumption that autophagosome-lysosome fusion takes place in cells without vps16A RNAi. However, even in the presence of Vps16A, both pre-fusion autophagosomes and autolysosomes should exist. This is also true in Figure 8H, where the fusion of autophagosomes and lysosomes is partially suppressed in knockdown cells of dynein, dynactin, Rab7, and Epg5. If the effect of fusion is to be examined, it is reasonable to distinguish between autophagosomes and autolysosomes and analyze only autolysosomes.  

      Thank you for this careful observation. The 3xmCherry-Atg8a reporter is well suited to identify both autophagosomes and autolysosomes, as the mCherry fluorophore is resistant to degradation in the acidic environment of autolysosomes. Notably, mCherry-Atg8a–positive autolysosomes appear larger and brighter than pre-fusion autophagosomes, which are typically smaller and dimmer, especially under fusion-deficient conditions (e.g., Figure 4). Therefore, we use these morphological differences as a proxy to distinguish between the two.

      To improve structural assignment, we incorporated endogenous Lamp1 staining (Figure 10) and a Lamp1-GFP reporter (Figure 10—figure supplement 1). Vesicles positive for mCherryAtg8a but negative for Lamp1 are considered pre-fusion autophagosomes. Structures double-positive for mCherry-Atg8a and Lamp1 represent autolysosomes, while Lamp1positive, Atg8a-negative vesicles correspond to non-autophagic lysosomes. To clarify these interpretations, we revised the Results section and explained these reporters in more detail.

      (3) In this study, only vps16a RNAi cells were used to inhibit autophagosome-lysosome fusion. However, since HOPS has many roles besides autophagosome-lysosome fusion, it would be better to confirm the conclusion by knockdown of other factors (e.g., Stx17 RNAi).  

      Thank you for this valuable suggestion. We initially considered using Syntaxin17 RNAi; however, our recent findings indicate that loss of Syx17 results in a HOPS-dependent tethering lock between autophagosomes and lysosomes (DOI: 10.1126/sciadv.adu9605). In this case, tethered vesicles would likely move together, confounding the interpretation of autophagosome-specific trafficking.

      Therefore, we turned to other SNAREs such as Vamp7 and Snap29. One Snap29 RNAi was located on the appropriate chromosome needed for our genetic experiments. We generated a transgenic fly line expressing both Snap29 RNAi and the mCherry-Atg8a reporter under a fat body-specific R4 promoter. When we tested our key trafficking hits in this background, we observed similar autophagosome localization phenotypes as in Vps16A RNAi cells. These results, now included in the revised manuscript (see Figure 6), confirm that the observed transport phenotypes are not specific to Vps16A or HOPS complex loss.

      (4) Figure 8: Rab7 and Epg5 are also known to be directly involved in autophagosomelysosome tethering/fusion. Even if the fusion rate is reduced in the absence of Rab7 and Epg5, it may not be the result of defective autophagosome movement, but may simply indicate that these molecules are required for fusion itself. How do the authors distinguish between the two possibilities?

      Thank you for this important point. While Rab7 and Epg5 indeed participate in autophagosome–lysosome tethering and fusion, our data suggest they also contribute to autophagosome movement. This is evident from the distinct phenotypes observed upon Rab7 or Epg5 RNAi compared to Vps16A or SNARE RNAi. Depletion of Vps16A, Syx17, Vamp7, or Snap29 (factors involved specifically in fusion) results in perinuclear accumulation of autophagosomes. In contrast, Rab7 or Epg5 RNAi leads to a dispersed autophagosome pattern throughout the cytoplasm.

      These differences suggest that Rab7 and Epg5 play additional roles in positioning autophagosomes. Supporting this, our co-immunoprecipitation experiments show that Epg5 interacts with dynein motors. Therefore, we propose that Rab7 and Epg5 influence both autophagosome fusion and their microtubule-based transport.

      Reviewer #2 (Public review):  

      One limitation of the study is the genetic background that serves as the basis for the screening. In addition to preventing autophagosome-lysosome fusion, disruption of Vps16A has been shown to inhibit endosomal maturation and block the trafficking of components to the lysosome from both the endosome and Golgi apparatus. Additional effects previously reported by the authors include increased autophagosome production and reduced mTOR signaling. Thus Vps16A-depleted cells have a number of endosome, lysosome, and autophagosome-related defects, with unknown downstream consequences. Additionally, the cause and significance of the perinuclear localization of autophagosomes in this background is unclear. Thus, interpretations of the observed reversal of this phenotype are difficult, and have the caveat that they may apply only to this condition, rather than to normal autophagosomes. Additional experiments to observe autophagosome movement or positioning in a more normal environment would improve the manuscript.  

      Thank you for highlighting this limitation. We have tried to conduct time-lapse imaging of live fat body cells expressing 3xmCherry-Atg8a and GFP-Lamp1 to visualize the movement and fusion events of pre-fusion autophagosomes (3xmCherry-Atg8a positive and GFP-Lamp1 negative) and lysosomes (GFP-Lamp1 positive). Despite different experimental setups and durations of starvation, no vesicle movement was observed at all, so live imaging of larval Drosophila fat tissue will require time-consuming optimizations of in vitro culture conditions. Consistent with this, we did not find any literature data where organelle motility in fat body cells was successfully observed. Nuclear positioning in fat body cells was investigated in detail in an excellent study, however the authors were able to observe only very little movement of the nuclei by live imaging (Zheng et al. Nat Cell Biol. 2020 Mar;22(3):297-309. doi: 10.1038/s41556-020-0470-7), further highlighting the technical difficulties of live or timelapse imaging in this tissue type.

      Specific comments  

      (1) Several genes have been described that when depleted lead to perinuclear accumulation of Atg8-labeled vesicles. There seems to be a correlation of this phenotype with genes required for autophagosome-lysosome fusion; however, some genes required for lysosomal fusion such as Rab2 and Arl8 apparently did not affect autophagosome positioning as reported here. Thus, it is unclear whether the perinuclear positioning of autophagosomes is truly a general response to disruption of autophagosome-lysosome fusion, or may reflect additional aspects of Vps16A/HOPS function. A few things here would help. One would be an analysis of Atg8a vesicle localization in response to the depletion of a larger set of fusionrelated genes. Another would be to repeat some of the key findings of this study (effects of specific dynein, dynactin, rabs, effectors) on Atg8a localization when Syx17 is depleted, rather than Vps16A. This should generate a more autophagosome-specific fusion defect.  

      Thank you for this insightful suggestion. We recently discovered that Syx17 depletion induces a HOPS-dependent tethering lock between autophagosomes and lysosomes (DOI: 10.1126/sciadv.adu9605), making it unsuitable for modeling autophagosome-specific fusion defects. In contrast, Vamp7 and Snap29 knockdowns do not appear to cause such tethering lock. We were able to generate a suitable Drosophila line using a Snap29 RNAi transgene located on a compatible chromosome. Upon testing key hits from our screen in this background, we found that autophagosomes redistributed similarly, supporting our conclusions. These new results have been included in the revised manuscript (see Figure 6)

      Third, it would greatly strengthen the findings to monitor pre-fusion autophagosome localization without disrupting fusion. Such vesicles could be identified as Atg8a-positive Lamp-negative structures. The effects of dynein and rab depletion on the tracking of these structures in a post-induction time course would serve as an important validation of the authors' findings.  

      Thank you for this helpful suggestion. As described above, we attempted time-lapse imaging of 3xmCherry-Atg8a and GFP-Lamp1-expressing fat body cells under various conditions to identify motile pre-fusion autophagosomes. However, we did not observe any vesicle movement, regardless of the starvation duration or experimental setup. As this likely reflects technical limitations of ex vivo fat body imaging, we were unable to achieve live tracking of autophagosome dynamics without introducing perturbations. This limitation is now discussed in the revised manuscript.

      (2) The authors nicely show that depletion of Shot leads to relocalization of Atg8a to ectopic foci in Vps16A-depleted cells; they should confirm that this is a mislocalized ncMTOC by colabeling Atg8a with an MTOC component such as MSP300. The effect of Shot depletion on Atg8a localization should also be analyzed in the absence of Vps16A depletion.  

      Thank you for this positive comment. We co-labeled Atg8a with the minus-end microtubule marker Khc-nod-LacZ in both shot single knockdown and shot; vps16A double knockdown cells. Ectopic Khc-nod-LacZ-positive MTOC foci were clearly visible in both conditions, and Atg8a-positive autophagosomes accumulated around these structures. These findings confirm that Shot depletion induces ectopic MTOC formation, which correlates with autophagosome relocalization. The new data have been incorporated into the revised manuscript (see Figure 1O-S).

      (3) The authors report that depletion of Dynein subunits, either alone (Figure 6) or codepleted with Vps16A (Figure 2), leads to redistribution of mCherry-Atg8a punctae to the "cell periphery". However, only cell clones that contact an edge of the fat body tissue are shown in these figures. Furthermore, in these cells, mCherry-Atg8a punctae appear to localize only to contact-free regions of these cells, and not to internal regions of clones that share a border with adjacent cells. Thus, these vesicles would seem to be redistributed to the periphery of the fat body itself, not to the periphery of individual cells. Microtubules emanating from the perinuclear ncMTOC have been described as having a radial organization, and thus it is unclear that this redistribution of mCherry-Atg8a punctae to the fat body edge would reflect a kinesin-dependent process as suggested by the authors.  

      Thank you for this detailed observation. We frequently observe autophagosomes accumulating in contact-free peripheral regions of dynein-depleted cells, resulting in an asymmetric distribution. While previous studies describe a radial microtubule organization in fat body cells, none of them directly label MT plus ends, the direction of kinesin-based transport.

      To further explore this, we overexpressed a HA-tagged kinesin, Klp98A-3xHA, in both control and Vps16A RNAi backgrounds. Immunolabeling revealed that Klp98A localizes to the contact-free peripheral regions in both conditions, consistent with the distribution of autophagosomes in dynein knockdown cells. This supports our interpretation that kinesindependent transport drives autophagosome redistribution in the absence of dynein, and that fat body cells exhibit subtle asymmetries in MT polarity that influence this transport. These new results have been included in the revised manuscript (see Figure 3G, H).

      (4) To validate whether the mCherry-Atg8a structures in Vps16A-depleted cells were of autophagic origin, the authors depleted Atg8a and observed a loss of mCherry- Atg8a signal from the mosaic cells (Figure S1D, J). A more rigorous experiment would be to deplete other Atg genes (not Atg8a) and examine whether these structures persist.  

      Thank you for the suggestion to further validate our reporter. We depleted Atg1, a key kinase required for phagophore initiation, in the Vps16A RNAi background. This completely abolished the punctate mCherry-Atg8a distribution in knockdown cells (see Figure 1—figure supplement 1E, K), confirming that the labeled structures are indeed of autophagic origin.

      (5) The authors found that only a subset of dynein, dynactin, rab, and rab effector depletions affected mCherry-Atg8a localization, leading to their suggestion that the most important factors involved in autophagosome motility have been identified here. However, this conclusion has the caveat that depletion efficiency was not examined in this study, and thus any conclusions about negative results should be more conservative.  

      Thank you for this constructive feedback. We agree that negative results must be interpreted conservatively due to potential differences in knockdown efficiency. We have revised our conclusions accordingly, clarifying that the factors identified are key for autophagosome motility, while acknowledging the possibility of false negatives.

      Reviewer #3 (Public review):  

      Major concerns:

      (1) The localization of EPG5 should be determined. The authors showed that EPG5 colocalizes with endogenous Rab7. Rab7 labels late endosomes and lysosomes. Previous studies in mammalian cells have shown that EPG5 is targeted to late endosomes/lysosomes by interacting with Rab7. EPG5 promotes the fusion of autophagosomes with late endosomes/lysosomes by directly recognizing LC3 on autophagosomes and also by facilitating the assembly of the SNARE complex for fusion. In Figure 5I, the EPG5/Rab7colocalized vesicles are large and they are likely to be lysosomes/autolysosomes.

      Thank you for suggesting to improve our Epg5 localization data. We performed triple immunostaining for Atg8a, Lamp1-3xmCherry, and Epg5-9xHA in S2R+ cells. In addition to triple-positive structures—likely representing autolysosomes—we observed Atg8a and Epg59xHA double-positive vesicles that lacked Lamp1-3xmCherry signal, which likely correspond to pre-fusion autophagosomes. Based on these results, we propose that in addition to arriving via the endocytic route, Epg5 may also reach lysosomes through autophagosomes. These findings have been included in the revised manuscript (see Figure 5K).

      (2) The experiments were performed in Vps16A RNAi KD cells. Vps16A knockdown blocks fusion of vesicles derived from the endolysosomal compartments such as fusion between lysosomes. The pleiotropic effect of Vps16A RNAi may complicate the interpretation. The authors need to verify their findings in Stx17 KO cells, as it has a relatively specific effect on the fusion of autophagosomes with late endosomes/lysosomes.  

      Thank you for this valuable suggestion. We initially considered Syntaxin17 for validation; however, we recently found that loss of Syx17 leads to a HOPS-dependent tethering lock between autophagosomes and lysosomes, which would confound interpretation, as autophagosomes remain tethered to lysosomes (DOI: 10.1126/sciadv.adu9605). Therefore, Syntaxin17 loss is not suitable for our purpose. Among the remaining fusion SNAREs, one RNAi line targeting Snap29 was available on a compatible chromosome for generating Drosophila lines equivalent to those used in the screen. We established this Snap29 RNAicontaining tester line and crossed it with our top hits. We observed that autophagosome motility was comparable to that in the Vps16A RNAi background, further supporting our conclusions. These results have been incorporated into the revised manuscript (see Figure 6)

      (3) Quantification should be performed in many places such as in Figure S4D for the number of FYVE-GFP labeled endosomes and in Figures S4H and S4I for the number and size of lysosomes.  

      Thank you for pointing this out. We performed the suggested quantifications and statistical analyses for FYVE-GFP labeled endosomes, as well as for the number and size of lysosomes. The updated data are now presented in the revised Figure 5—figure supplement 1.

      (4) In this study, the transport of autophagosomes is investigated in fly fat cells. In fat cells, a large number of large lipid droplets accumulate and the endomembrane systems are distinct from that in other cell types. The knowledge gained from this study may not apply to other cell types. This needs to be discussed.

      Thank you for raising this important point. We agree that our findings may not be fully generalizable to all cell types. Given that the organization of the microtubule network depends on both cell function and developmental stage, it is plausible that the molecular machinery described here operates differently elsewhere. We now mention this limitation in the Discussion.

      Minor concerns:  

      (5) Data in some panels are of low quality. For example, the mCherry-Atg8a signal in Figure 5C is hard to see; the input bands of Dhc64c in Figure 5L are smeared.  

      Thank you for pointing this out. We repeated the experiment shown in Figure 5C and replaced the panel with a clearer image. The smeared Dhc64C input bands in Figure 5L result from the unusually large size of this protein, which affects its electrophoretic migration. We mentioned this point in the corresponding figure legend.

      (6) In this study, both 3xmCherry-Atg8a and mCherry-Atg8a were used. Different reporters make it difficult to compare the results presented in different figures.  

      Thank you for this comment. Both 3xmCherry-Atg8a and mCherry-Atg8a are well-established reporters that behave similarly as autophagic markers. Nevertheless, to avoid confusion, we ensured that each figure uses only one type of reporter consistently, which is now clearly indicated in the revised manuscript.

      (7) The small autophagosomes presented in Figures such as in Figure 1D and 1E are not clear. Enlarged images should be presented.  

      Thank you for your suggestion. We repeated these experiments and replaced the relevant panels with higher-quality images, including enlarged insets to better visualize small autophagosomes. These updated figures are now included in the revised manuscript.

      (8) The authors showed that Epg5-9xHA coprecipitates with the endogenous dynein motor Dhc64C. Is Rab7 required for the interaction?  

      Thank you for this insightful question. We tested this by co-transfecting S2R+ cells with Epg5-9xHA and different forms of Rab7: wild-type, GTP-locked (constitutively active), and GDP-locked (dominant-negative). Our results indicate that the strength of Epg5-Dhc interaction does not change in the presence of either GTP-locked or GDP-locked Rab7. However, we believe that Epg5 and dynein are recruited to the vesicle membranes via Rab7 in vivo, so we did not include these results in the revised manuscript.

      (9) The perinuclear lysosome localization in Epg5 KD cells has no indication that Epg5 is an autophagosome-specific adaptor.

      Thank you for this important comment. Accordingly, we have toned down our statements about Epg5 functions throughout the revised manuscript.

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 6: What do "autolysosome maturation" and "small autolysosomes" mean? Do different numbers of lysosomes fuse to a single autophagosome?

      Thank you for highlighting this point. We concluded that the formation of smaller autolysosomes—compared to controls—is likely due to a defect in autolysosome maturation, as is often the case. We had not explicitly considered whether a different number of lysosomes fuse with each autophagosome during this process. We clarified this issue in the revised manuscript.

      (2) Figure 5A shows that the localization of endogenous Atg8 requires Epg5, but the data is not as clear as for mCherry-Atg8 (Figure 4B). Why the difference?  

      Thank you for this question. The difference arises because the mCherry-Atg8a reporter strongly labels autolysosomes, as the mCherry fluorophore remains stable in acidic compartments. As a result, mCherry-Atg8a labels both autophagosomes and autolysosomes, but the strong autolysosomal signal originating from the surrounding GFP negative, nonRNAi cells can make accumulated autophagosomes appear fainter in fusion-defective cells (as in Figure 4). In contrast, endogenous Atg8a is degraded in lysosomes, and therefore labels only autophagosomes. This means that the appearance of these two experiments can be slightly different, but since in both cases autophagosomes no longer accumulate in the perinuclear region of Vps16A,Epg5 double RNAi cells we can conclude that Epg5 is required for autophagosome positioning. We explained this difference of the two methods in the revised manuscript where it first appears (Figure 1B and Figure 1—figure supplement 1A).

      (3) Blue letters on the black micrographs are hard to see. Some of the other letters are also small and hard to read.  

      Thank you for this suggestion. We improved the visibility and readability of the labels in the revised figures.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      In this manuscript, the authors employ a combined proteomic and genetic approach to identify the glycoprotein QC factor malectin as an important protein involved in promoting coronavirus infection. Using proteomic approaches, they show that the non-structural protein NSP2 and malectin interact in the absence of viral infection, but not in the presence of viral infection. However, both NSP2 and malectin engage the OST complex during viral infection, with malectin also showing reduced interactions with other glycoprotein QC proteins. Malectin KD reduce replication of coronaviruses, including SARS-COV2. Collectively, these results identify Malectin as a glycoprotein QC protein involved in regulating coronavirus replication that could potentially be targeted to mitigate coronavirus replication.

      Overall, the experiments described appear well performed and the interpretations generally reflect the results. Moreover, this work identifies Malectin as an important pro-viral protein whose activity could potentially be therapeutically targeted for the broad treatment of coronavirus infection. However, there are some weaknesses in the work that, if addressed, would improve the impact of the manuscript.

      Notably, the mechanism by which malectin regulates viral replication is not well described. It is clear from the work that malectin is a pro-viral protein in the work presented, but the mechanistic basis of this activity is not pursued. Some potential mechanisms are proposed in the discussion, but the manuscript would be strengthened if additional insight was included. For example, does the UPR activated to higher levels in infected cells depleted of malectin? Do glycosylation patterns of viral (or non-viral) proteins change in malectindepleted cells? Additional insight into this specific question would significantly improve the manuscript.

      We concur with the reviewer that the mechanism by which Malectin regulates viral replication is an important point to elucidate further. Our proteomics data were able to offer additional insight into the questions posed here. We examined the upregulation of protein markers of the UPR and other stress response pathways in cells depleted of MLEC (Fig. S15D). We find that the UPR pathways are moderately but insignificantly upregulated, while the Heat Shock Factor 1 (HSF1) pathway is moderately and significantly upregulated. The fold change increase of these marker proteins are relatively small, so while upregulation of this pathway may contribute to the suppression of CoV replication, it may not fully explain the phenotype.

      In addition, to address the second question, we compared the glycosylation patterns of endogenous proteins in MLEC-KD cells (Fig. S15E-G). We found that there is a small increase in abundance of glycopeptides associated with LAMP2, SERPHINH1, RDX, RPL3/5, CADM4, and ITGB1, however these fold changes are small and tested to be insignificant. These results indicate there is relatively little modification of endogenous glycoproteins upon MLEC-depletion. These findings support a more direct role for MLEC in regulating viral replication.

      We added the following section to the manuscript text to discuss these results:

      “In uninfected cells, MLEC KD leads to relatively little proteome-wide changes, with MLEC being the only protein significantly downregulated and no other proteins significantly upregulated, supporting the specificity of MLEC KD in MHV suppression (Fig.  S15C). To determine whether MLEC KD alters general host proteostasis, we further examined the levels of protein markers of stress pathways based on previous gene pathway definitions(Davies et al., 2023; Grandjean et al., 2019; Shoulders et al., 2013) (Fig. S15D). We find that there are modest but significant increases in protein levels associated with the Heat Shock Factor 1 (HSF1) pathway, while the Unfolded Protein Response (UPR) pathways are largely unmodified. 

      We also probed the effect of MLEC KD on endogenous protein glycosylation. We find that there is only a small increase in abundance of glycopeptides, including those associated with the ribosome (Rpl3, Rpl5), a cytoskeletal protein (Rdx), the integrin Itgb1, and the ER-resident chaperone Serphinh1 (Fig. S15E-G).”

      “Our proteomics data reveals that there is only a modest increase in the Heat Shock Factor 1 (HSF1) pathway, while the Unfolded Protein Response is relatively unchanged (Fig. S15D). In addition, there are only minor increases in endogenous glycopeptide levels (Fig. S15E-G). Together, these results indicate that while MLEC KD leads to some alterations in ER proteostasis and host glycosylation, these changes are modest and may not be the primary mechanism by which MLEC KD hinders CoV replication.”

      Further, the evidence for increased interactions between OST and malectin during viral infection is fairly weak, despite being a major talking point throughout the manuscript. The reduced interactions between malectin and other glycoproteostasis QC factors is evident, but the increased interactions with OST are not well supported. I'd recommend backing off on this point throughout the text, instead, continuing to highlight the reduced interactions.

      We agree that the fold change increase of OST interactions with malectin are small compared to the fold change decrease of other glycoproteostasis factors We have modified the text to less emphasize this point and instead highlight the reduced interactions:

      “Further, MHV infection retains the association of MLEC with the OST complex while titrating off other interactors, potentially leading to more efficient glycoprotein biogenesis.”

      I was also curious as to why non-structural proteins, nsp2 and nsp4, showed robust interactions with host proteins localized to both the ER and mitochondria? Do these proteins localize to different organelles or do these interactions reflect some other type of dysregulation? It would be useful to provide a bit of speculation on this point.

      We also find these ER and mitochondrial protein interactions curious, which we initially reported on (Davies, Almasy et al. 2020 ACS Infectious Diseases). In this prior report, we found that when expressed in HEK293T cells, SARS-CoV-2 nsp2 and nsp4 have partial localization to mitochondrial-associated ER membranes (MAMs), as determined by subcellular fractionation. Given that malectin has also been shown to have MAMs localization (Carreras-Sureda, et al. 2019 Nature Cell Biology), we have added additional text in the Discussion to speculate on this point:

      “Additionally, MLEC has also been shown to localize to ER-mitochondria contact sites (MAMs)(Carreras-Sureda et al., 2019), which regulate mitochondrial bioenergetics. We have previously shown that SARS-CoV-2 nsp2 and nsp4 can partially localize to MAMs(Davies et al., 2020), so these viral proteins may also dysregulate MLEC and MAMs activity to promote infection.”

      Again, the overall identification of malectin as a pro-viral protein involved in the replication of multiple different coronaviruses is interesting and important, but additional insights into the mechanism of this activity would strengthen the overall impact of this work.

      Thank you for this endorsement. We hope the additional analyses and discussion points in the revised manuscript further homed in on a direct mechanistic function for MLEC in modulating viral replication.

      Reviewer #2 (Public Review):

      Summary:

      A strong case is presented to establish that the endoplasmic reticulum carbohydrate binding protein malectin is an important factor for coronavirus propagation. Malectin was identified as a coronavirus nsp2 protein interactor using quantitative proteomics and its importance in the viral life cycle was supported by using a functional genetic screen and viral assays. Malectin binds diglucosylated proteins, an early glycoform thought to transiently exist on nascent chains shortly after translation and translocation; yet a role for malectin has previously been proposed in later quality control decisions and degradation targeting. These two observations have been difficult to reconcile temporally. In agreement with results from the Locher lab, the malectininteractome shown here includes a number of subunits of the oligosaccharyltransferase complex (OST). These results place malectin in close proximity to both the co-translational (STT3A or OST-A) and post-translational (STT3B or OST-B) complexes. It follows that malectin knockdown was associated with coronavirus Spike protein hypoglycosylation.

      Strengths:

      Strengths include using multiple viruses to identify interactors of nsp2 and quantitative proteomics along with multiple viral assays to monitor the viral life cycle.

      Weaknesses:

      Malectin knockdown was shown to be associated with Spike protein hypoglycosylation. This was further supported by malectin interactions with the OSTs. However, no specific role of malectin in glycosylation was discussed or proposed.

      We have emphasized our hypotheses on this point in the discussion and added a summary figure to highlight the specific role of malectin.

      Given the likelihood that malectin plays a role in the glycosylation of heavily glycosylated proteins like Spike, it is unfortunate that only 5 glycosites on Spike were identified using the MS deamidation assay when Spike has a large number of glycans (~22 sites). The mass spec data set would also include endogenous proteins. Were any heavily glycosylated endogenous proteins hypoglycosylated in the MS analysis in Fig 5D?

      Thank you for this suggestion. We compared the glycosylation patterns of endogenous proteins in MLEC-KD cells (Fig. S15E-G). We found that there is a small increase in abundance of glycopeptides associated with LAMP2, SERPHINH1, RDX, RPL3/5, CADM4, and ITGB1, however these fold changes are small and tested insignificant. These results indicate there is relatively little modification of endogenous glycoproteins upon MLEC-depletion. We added the following sections:

      “We also probed the effect of MLEC KD on endogenous protein glycosylation. We find that there is only a small increase in abundance of glycopeptides, including those associated with the ribosome (Rpl3, Rpl5), a cytoskeletal protein (Rdx), the integrin Itgb1, and the ER-resident chaperone Serphinh1 (Fig. S15E-G).”

      “Our proteomics data reveals that there is only a modest increase in the Heat Shock Factor 1 (HSF1) pathway, while the Unfolded Protein Response is relatively unchanged (Fig. S15D). In addition, there are only minor increases in endogenous glycopeptide levels (Fig. S15E-G). Together, these results indicate that while MLEC KD leads to some alterations in ER proteostasis and host glycosylation, these changes are modest and may not be the primary mechanism by which MLEC KD hinders CoV replication.”

      The inclusion of the nsp4 interactome and its partial characterization is a distraction from the storyline that focuses on malectin and nsp2.

      We believe the nsp4 comparative interactome and functional genomics data offers a rich resource for further functional investigation by others, if made public. While we found the malectin and nsp2 storyline the most compelling to pursue, we believe the inclusion of the nsp4 data strengthens the overall approach, in agreement with Reviewer #3’s comments.

      Reviewer #3 (Public Review):

      Summary:

      In this study, Davies and Plate set out to discover conserved host interactors of coronavirus non-structural proteins (Nsp). They used 293T cells to ectopically express flag-tagged Nsp2 and Nsp4 from five human and mouse coronaviruses, including SARS-CoV-1 and 2, and analyzed their interaction with host proteins by affinity purification mass-spectrometry (AP-MS). To confirm whether such interactors play a role in coronavirus infection, the authors measured the effects of individual knockdowns on replication of murine hepatitis virus (MHV) in mouse Delayed Brain Tumor cells. Using this approach, they identified a previously undescribed interactor of Nsp2, Malectin (Mlec), which is involved in glycoprotein processing and shows a potent pro-viral function in both MHV and SARS-CoV-2. Although the authors were unable to confirm this interaction in MHVinfected cells, they show that infection remodels many other Mlec interactions, recruiting it to the ER complex that catalyzes protein glycosylation (OST). Mlec knockdown reduced viral RNA and protein levels during MHV infection, although such effects were not limited to specific viral proteins. However, knockdown reduced the levels of five viral glycopeptides that map to Spike protein, suggesting it may be affected by Mlec.

      Strengths:

      This is an elegant study that uses a state-of-the-art quantitative proteomic approach to identify host proteins that play critical roles in viral infection. Instead of focusing on a single protein from a single virus, it compares the interactomes of two viral proteins from five related viruses, generating a high confidence dataset. The functional follow-ups using multiple live and reporter viruses, including MHV and CoV2 variants, convincingly depict a pro-viral role for Mlec, a protein not previously implicated in coronavirus biology.

      Weaknesses:

      Although a commonly used approach, AP-MS of ectopically expressed viral proteins may not accurately capture infection-related interactions. The authors observed Mlec-Nsp2 interactions in transfected 293T cells (1C) but were unable to reproduce those in mouse cells infected with MHV (3C). EIF4E2/GIGYF2, two bonafide interactors of CoV2 Nsp2 from previous studies, are listed as depleted compared to negative controls (S1D). Most other CoV2 Nsp2 interactors are also depleted by the same analysis (S1D). Previously reported MERS Nsp2 interactors, including ASCC1 and TCF25, are also not detected (S1D). Furthermore, although GIGYF2 was not identified as an interactor of MHV Nsp2/4 in human cells (S1D), its knockdown in mouse cells reduced MHV titers about 1000 fold (S4). The authors should attempt to explain these discrepancies.

      We acknowledge these limitations in AP-MS from ectopically expressed viral proteins and have addressed these discrepancies with further elaboration in the text:

      “A limitation of our study is the initial overexpression of individual proteins for AP-MS, in which we find some variation between our data with other AP-MS studies. We sought to overcome these variations by focusing on conserved interactors and testing interactions in a live infection context.”

      “We also found GIGYF2-KD strongly suppressed MHV infection, despite GIGYF2 not interacting with MHV nsp2 (Fig. S1D), highlighting the importance of proteostasis factors in infection regardless of direct PPIs.”

      More importantly, the authors were unable to establish a direct link between Mlec and the biogenesis of any viral or host proteins, by mass-spectrometry or otherwise. Although it is clear that Mlec promotes coronavirus infection, the mechanism remains unclear. Its knockdown does not affect the proteome composition of uninfected cells (S15B), suggesting it is not required for proteome maintenance under normal conditions. The only viral glycopeptides detected during MHV infection originated from Spike (5D), although other viral proteins are also known to be glycosylated. Cells depleted for Mlec produce ~4-fold less Spike protein (4E) but no more than 2-fold less glycosylated spike peptides (5D), compounding the interpretation of Mlec effects on viral protein biogenesis. Furthermore, Spike is not essential for the pro-viral role of Mlec, given that Mlec knockdown reduces replication of SARS-CoV-2 replicons that express all viral proteins except for Spike (6A/B).

      Thank you, these are all important points. We have acknowledged these compounding factors in the Discussion:

      “Concurrently, knockdown of MLEC leads to impediment of nsp production and aberrant glycosylation of other viral proteins like Spike, though it should be noted that the decrease in Spike glycopeptides is compounded by the overall decrease in Spike protein. Given that MLEC is pro-viral in a SARS-CoV-2 replicon model lacking Spike (Fig. 6), MLEC can promote CoV replication independent of Spike production.”

      Any of the observed effects on viral protein levels could be secondary to multiple other processes.Interventions that delay infection for any reason could lead to an imbalance of viral protein levels because Spike and other structural proteins are produced at a much higher rate than non-structural proteins due to the higher abundance of their cognate subgenomic RNAs. Similarly, the observation that Mlec depletion attenuates MHV-mediated changes to the host proteome (S15C/D) can also be attributed to indirect effects on viral replication, regardless of glycoprotein processing. In the discussion, the authors acknowledge that Mlec may indirectly affect infection through modulation of replication complex formation or ER stress, but do not offer any supporting evidence. Interestingly, plant homologs of Mlec are implicated in innate immunity, favoring a more global role for Mlec in mammalian coronavirus infections.

      We examined the upregulation of protein markers of the UPR and other stress response pathways in cells depleted of MLEC (Fig. S15D). We find that the UPR pathways are moderately but insignificantly upregulated, while the Heat Shock Factor 1 (HSF1) pathway is moderately and significantly upregulated. The fold change increase of these marker proteins are relatively small, so while upregulation of this pathway may contribute to the suppression of CoV replication, it may not fully explain the phenotype. Please all see similar points brought up by reviewer 1 (comment 1). We added the following section to the manuscript text to discuss these results:

      “In uninfected cells, MLEC KD leads to relatively little proteome-wide changes, with MLEC being the only protein significantly downregulated and no other proteins significantly upregulated, supporting the specificity of MLEC KD in MHV suppression (Fig.  S15C). To determine whether MLEC KD alters general host proteostasis, we further examined the levels of protein markers of stress pathways based on previous gene pathway definitions(Davies et al., 2023; Grandjean et al., 2019; Shoulders et al., 2013) (Fig. S15D). We find that there are modest but significant increases in protein levels associated with the Heat Shock Factor 1 (HSF1) pathway, while the Unfolded Protein Response (UPR) pathways are largely unmodified. 

      “Our proteomics data reveals that there is only a modest increase in the Heat Shock Factor 1 (HSF1) pathway, while the Unfolded Protein Response is relatively unchanged (Fig. S15D). […] Together, these results indicate that while MLEC KD leads to some alterations in ER proteostasis and host glycosylation, these changes are modest and may not be the primary mechanism by which MLEC KD hinders CoV replication.”

      Finally, the observation that both Nsp2 (3C) and Mlec (3E/F) are recruited to the OST complex during MHV infection neither support nor refute any of these alternate hypotheses, given that Mlec is known to interact with OST in uninfected cells and that Nsp2 may interact with OST as part of the full length unprocessed Orf1a, as it co-translationally translocates into the ER. Therefore, the main claims about the role of Mlec in coronavirus protein biogenesis are only partially supported.

      We have acknowledged this point in the Discussion. 

      “We find that nsp2 interacts with several OST complex members, including DDOST, STT3A, and RPN1, though whether this is as part of the uncleaved Orf1a polyprotein during co-translational ER translocation or as an individual protein is unclear.”

      Reviewer #2 (Recommendations For The Authors):

      What is the proof that MLEC is a type I membrane protein? If it is strictly sequence analysis, this conclusion should be tapered in the text.

      Our response: We have added appropriate evidence on the biochemical characterization of MLEC topology from Galli et al., 2011, and cryo-EM structural characterization by Ramírez et al., 2019.

      “As it was surprising that nsp2, a non-glycosylated, cytoplasmic protein, would interact with MLEC, an integral ER membrane protein with a short two amino acid cytoplasmic tail(Galli et al., 2011; Ramírez et al., 2019), we assessed a broader genetic interaction between nsp2 and MLEC.”

      Validation of some of the nsp2 and malectin interactome components by pulldowns should be included.

      Our response: The interactions between nsp2 and Ddost, Stt3A, and Rpn1 passed a stringent confidence filter in our AP-MS experiment (Fig. 3C) based on several replication. For this reason, we do not believe additional validation by Western blotting will offer much useful information.

      NGI-1 inhibition of glycosylation looks to be very weak in Fig. 5B and Fig. S14B.

      Our response: It is important to note that the NGI-1 inhibition assay used a suboptimal NGI-1 concentration to prevent full suppression of MHV infection, which we have found previously. We have added this justification in the Methods section and associated figure legend (Fig. S14A).

      “The 5 uM NGI-1 dosage was chosen as it resulted in partial inhibition of glycosylation while not completely blocking MHV infection.”

      “This dosage and timing were chosen to partially inhibit the OST complex without fully ablating viral infection, as NGI-1 has been shown previously to be a potent positive-sense RNA virus inhibitor(Puschnik et al., 2017)  (Fig. S14)”

      Summary model figure at the end would help to communicate the conclusions.

      Our response: Thank you for this suggestion. We agree and have added a summary model figure at the end as suggested.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Given that there are different mutations identified at different CDK12 sites as illustrated in Figure 1B it would be nice to know which ones have been functionally classified as pathogenic and for which ones that the pathogenicity has not been determined. This would be especially interesting to perform in light of the differences in the LOH scores and WES data presented - specifically, are the pathogenic mutations vs the mutations for which true pathogenicity is unknown more likely to display LOH or TD?

      Alterations were classified as pathogenic when resulting in frameshift, nonsense, or cause an aminoacid change likely to alter function (according to ANNOVAR).  Four patients were called CDK12<sup>BAL</sup> but were negative for TDP signatures. Three of these had CDK12 mutations downstream of the kinase domain, which may be less likely to ablate protein activity. Most functionally validated pathogenic mutations include disruption of the kinase domain (PMID: 25712099). We added a sentence to the Results section (under “Identification of genomic characteristics that associate with CDK12 loss in prostate cancer”) to highlight this caveat on pathogenic mutation calls.

      For the cell inhibition studies with the CDK12/13 inhibitor, more details characterizing the specificity of this molecule to these targets would be useful. Additionally, could the authors perform short-term depletion studies with a PROTAC to the target or short shRNA or non-selected pool CRISPR deletion studies of CDK12 in these same cell lines to complement their pharmacological studies with genetic depletion studies? Also perhaps performing these same inhibitor studies in CDK12/13 deleted cells to test the specificity of the molecule would be useful.

      We are not aware of a CDK12-specific PROTAC, and generate such as reagent is beyond the scope of the present study. Regarding the specificity of the CDK12/13 inhibitor molecules, additional information on the specificity and in vivo dose selection were added to the Results section (under “CDK13 is synthetic lethal in cells with biallelic CDK12 loss”). Cells with CDK12-KO did not tolerate CDK13-KO, so we were unable to generate double knockouts to test for CDK12/13 inhibitor non-specific effects. 

      Additionally, expanding these studies to additional prostate cancer cell lines or organdies models would strengthen the conclusions being made. More information should be provided about the dose and schedule chosen and the rationale for choosing those doses and schedules for the in vivo studies proposed should be presented and discussed. Was there evidence for maximal evidence of inhibition of the target CDK12/13 at the dose tested given the very modest tumor growth inhibition noted in these studies.

      With respect to additional acute CDK12 loss models, our Tet-inducible shCDK12 models show only minor growth slowdown and do not appear to phenocopy the strong arrest or apoptosis seen with CDK12 KO or inhibition, respectively. Future work is ongoing to generate CDK12-degron regulated cell lines. We added a new immunoblot panel showing that acute CRISPR/sgRNA targeting of CDK12 does indeed lead to BRCA2 and ATM protein decrease (Fig. S4g), providing some orthogonal genomic targeting evidence of the acute HR gene effect.  We are continuing efforts to collect and generate additional CDK12<sup>BAL</sup> cell models, in both 2D and 3D culture systems, but none are presently available. We added a 3D culture drug dose curve with LuCaP189.4 exposed to THZ531 (Fig. S7m), which confirms heightened sensitivity vs two CDK12-intact lines. 

      Regarding assessments of CDK12 targets; as we are not aware of any unique CDK12 substrates, it is fair to ask but difficult to measure precise CDK12 inhibition by the compounds in tumors. We dosed mice using the same protocol as detailed in the original report testing SR4835 in mice (PMID: 31668947). We performed immunoblots on lysates from 3 and 28 day treated PDX tumors and did not see any consistent decreases in pRBP1(Ser2) or ATM or increases in γH2A.X (data not shown). However, we did see increases in APA usage and downregulation of DNA repair transcripts with three day treatment (Fig. 6k-l), as would be expected from on target acute effects.

      Reviewer #2 (Public review)

      One caveat that continues to be unclear as presented, is the uncoupling of cell cycle/essentiality of CDK12/13 from HR-directed mechanisms. Is this purely a cell cycle arrest phenotype acutely with associated down-regulation of many genes?

      In regard to untangling the effects of cell arrest on HR gene expression, this is a difficult question given that many HR genes, including BRCA2, are S/G2 linked. We attempted to account for those effects in the acute CDK12 inhibition experiment by including a palbociclib (CDK4/6i) control, which caused cell arrest and decreased BRCA1/2 RNA expression with no apparent 5/3’ transcript imbalance determined by qPCR (Fig. 4e,g). Though overall BRCA1 and BRCA2 mRNA levels are lower in the stable 22Rv1-CDK12-KO2 and KO5 lines, they do not show selective 3’ loss (Fig. 5c), suggesting the downregulation in these lines is mostly due to their slower growth (Fig. S4k) and not intronic polyA usage.

      While the RAD51 loading ssRNA experiments are informative, the Tet-inducible knockdown of BRCA2 and CDK12 is confusing as presented in Figure 5, shBRCA2 + and -dox are clearly shown. However, were the CDK12_K02 and K05 also knocked down using inducible shRNA or a stable knockout? The importance of this statement is the difference between acute and chronic deletion of CDK12. Previously, the authors showed that acute knockdown of CDK12 led to an HR phenotype, but here it is unclear whether CDK12K02/05 are acute knockdowns of CDK12 or have been chronically adapted after single cell cloning from CRISPR-knockout. 

      As a clarification, the 22Rv1-CDK12-KO2 and 22Rv1-CDK12-KO5 are stable CRISPR knockout clonal lines that were expanded from single cells. We added a new figure to include more validation of these lines (Fig. S5). We tried multiple times to reproduce the HRd phenotype and PARPi sensitivity with siRNA and inducible shRNA lines but were unable to see clear sensitivity differences, despite seeing the expected shifts with shBRCA2 controls (data not shown). It is possible the degree of knockdown (~80%), timing (8 days), or specific cell lines used in our experiments were not sufficient to expose the acute phenotype by this method.

      However, we were able to see acute HR gene decreases by inhibitor treatment (Fig. 4) or acute CRISPR (Fig. S4g).

      Given the multitude of lines, including some single-cell clones with growth inhibitory phenotypes and ex-vivo derived xenografts, the variability of effects with SR4835, ATM, ATR, and WEE1 inhibitors in different models can be confusing to follow. Overall, the authors suggest that the cell lines differ in therapeutic susceptibility as they may have alternate and diverse susceptibilities. It may be possible that the team could present this more succinctly and move extraneous data to the supplement.  

      We appreciate the complexity of the data and attempted to use multiple models to report consistency and variability. We are not able to ascertain what data would be extraneous, and elected to present data we view as relevant in the main figures while moving supporting data in the supplement.

      The in-vitro data suggests that SR4835 causes growth inhibition acutely in parental lines such as 22RV1. However, in vivo, tumor attenuation appears to be observed in both CDK12 intact and deficient xenografts, LuCAP136 and LuCaP 189.4 (albeit the latter is only nominally significant). Is there an effect of PARPi inhibition specifically in either model? What about the 22RV1-K02/05? Do these engraft? Given the role of CDK12/13 in RNAP II, these data might suggest that the window of susceptibility in CDK12 (mutant) tumors may not be that different from CDK12 intact tumors (or intact tissue) when using dual CDK12/13 inhibitors but rather represent more general canonical essential functions of CDK12 and CDK13 in transcription. From a therapeutic development strategy, the authors may want to comment in the discussion on the ability to target CDK13 specifically.

      Though the response of the CDK12<sup>BAL</sup> models to some compounds is variable, we believe those mixed results are important and future studies may be able to better explain why some show shifts in sensitivity while others do not. We hope future studies with additional models will help determine which sensitivities are more consistently true, and perhaps provide explanations for differences between models.

      Regarding SR4835, we find, and others have reported, a toxic (i.e. apoptotic) effect for in vitro treatment with dual CDK12/13 inhibitors (Fig. 4f, S4e,f); in fact, that may be why previous studies have used short timepoints in cell culture assays with these dual inhibitors. In mice, SR4835 was tolerated well but only LuCaP 189.4 showed statistically significant decreases in tumor volume and weight (Fig. 6j). We did not test PARPi responses in the PDX models, nor did we attempt engrafting the 22Rv1-CDK12-KO cell lines, but both would be worthwhile experiments in the future. Beyond CDK12<sup>BAL</sup> tumors, we agree that CDK12/13 inhibitors could be effective in cancer therapies more generally (e.g. triggering acute HRd, loss of RNAP2 phosphorylation). We added a line to the discussion section about ongoing efforts to combine PARPi and CDK12/13i, which we expect to be synergistic in CDK12-intact tumors due to the acute loss phenotype. We certainly agree that development of a specific CDK13 inhibitor would be the ideal therapeutic option for CDK12<sup>BAL</sup> tumors. However, CDK12 and CDK13 are 43% conserved at the protein level (PMID: 26748711), with 92% conservation in the active site (PMID: 30319007), and there are no available pharmacologic inhibitors that discriminate between CDK12 and CDK13.

      Reviewer #3 (Public review):

      It is generally assumed that CDK12 alterations are inactivating, but it is noteworthy that homozygous deletions are comparatively uncommon (Figure 1a). Instead many tumors show missense mutations on either one or both alleles, and many of these mutations are outside of the kinase domain (Figure 1b). It remains possible that the CDK12 alterations that occur in some tumors may retain residual CDK12 function, or may confer some other neomorphic function, and therefore may not be accurately modeled by CDK12 knockout or knockdown in vitro. This would also reconcile the observation that knockout of CDK12 is cell-essential while the human genetic data suggest that CDK12 functions as a tumor suppressor gene.

      Thank you for the feedback. It is a keen observation that homozygous deletions of CDK12 are not typical, though many mutations are upstream frameshifts that are expected to lead to loss of functional protein and mRNA via nonsense mediated decay. LuCaP189.4, our only natural mutant model, has two upstream frameshifts leading to complete protein loss (Fig 5b, S4h-i). We also added a caveat previously mentioned (in response to Reviewer 1) that mutations downstream of the kinase domain may be less likely to be fully pathogenic. For upstream missense mutations, the possibility of neuromorphic function remains an intriguing possibility that cannot be ruled out and would not be captured in our current models. Hopefully additional models can be developed, both natural and engineered, to help dissect that question in future studies.  

      It is not entirely clear whether CDK12 altered tumors may require a co-occurring mutation to prevent loss of fitness, either in vitro or in vivo (e.g. perhaps one or more of the alterations that occur as a result of the TDP may mitigate against the essentiality of CDK12 loss).

      We concur. Another caveat with the CRISPR models, beyond reliance on upstream frameshift mutations, is the simultaneous loss of alleles. In human tumors, there may be a period of single copy loss before the second hit that may provide a window for adaptation. It is possible that sequential loss is far easier for a cell to tolerate than acute bi-allelic inactivation. We agree that the question of what (if any) cooperating genetic alterations are required to tolerate CDK12 loss is an important one that we plant to further explore in future work.

      Recommendations for Authors:

      Reviewer #1 (Recommendations for Authors):

      The authors have thoroughly addressed all issues of data availability, reagents, in vivo protocols, and animal approvals associated with the studies presented in this manuscript. Specific comments and experimental suggestions that in my opinion would strengthen the conclusions of this interesting and compelling manuscript are included above

      Reviewer #2 (Recommendations for the authors):

      The authors were thorough in their studies. As a general note, switching between the cell lines is often overwhelming in interpreting the data given cell-to-cell variability in response. If possible, consolidating the text/conclusions in results would improve the readability of the manuscript.

      The variety of cell lines and models is perhaps expansive at times, but we hope the inclusion of these different models helps support the conclusions. 

      Is it possible to knockout CDK12 acutely using a degron-based approach, instead of utilizing an inhibitor that targets both CDK12/13?

      There is a HeLa cell line made with analog-sensitive CDK12 (Bartkowiak, Yan, and Greenleaf 2016) but we were unaware of any such prostate lines at the time of this work. We are attempting to develop engineered prostate lines with specific CDK12 degradation but do not yet have them available.

      How do the authors address a lower BRCA1/2 level in for example 22RV1-K05, does this cell line have increased sensitivity to PARPi over its parental 22RV1 line? Could this be added to Figure 5h/i?

      The lower BRCA2 levels in 22Rv1CDK12-KO5 is likely due to the slower growth rate (Fig. S4k), as BRCA2 expression is S/G2 linked. While the mRNA level of BRCA2 overall is lower in the KO5 line, we do not observe the 5’/3’ transcript imbalance (Fig. 5c). The 22Rv1-CDK12-KO lines did not show increased sensitivity to carboplatin, while inducible shBRCA2 did (Fig. S7a), so we do not believe this lower BRCA2 confers functional HRd. We did test the KO lines with olaparib (Fig. S7d) and saw a modest increased sensitivity compared to parental 22Rv1, but not to the extent measured in the BRCA1 mutant line UWB1.289.

      What is the clonality of the LuCAP 189.4 lines upon derivation? Is biallelic CDK12 loss seen in all cells?

      We do not know the exact clonality of the LuCAP 189.4 PDX or CL model, but we do see highly uniform CDK12 protein loss in these cells (quantified by IHC staining, data not shown).

      The authors state that 22RV1-K02/05 has an increased growth arrest to CDK13 inhibition. However, in Figure 6h, it appears the viability is not significantly different compared to the parental 22RV1 line. Similar aspects noted in 189.4-vec/CDK12?

      We found that 22Rv1 KO2/KO5 have growth arrest with sgCDK13 and cell death with CDK12/13 inhibitor. We did notice that SR4835 did not show the differential effects we anticipated (Fig. 6h), as was seen with THZ531 (Fig. 6i). SR4835 is a non-covalent inhibitor, while THZ531 is a covalent binder, so there are some functional differences between these compounds that might explain the lack of differential effects in the isogenic lines in a 4 day in vitro assay. We included the SR4835 in vitro data because it was used for the in vivo experiment. THZ531 is not suited for animal use.

      Could the authors comment on SR4835 response in vivo as a function of tumor growth rate?

      The in vivo SR4835 treated LuCaP189.4 did show signs of reduced proliferation with decreased Cell Cycle and DNA Replication in the RNA-seq signatures, but a more detailed investigation into cell cycle arrest vs apoptotic response has yet to be fully explored. We plan to conduct additional PDX experiments if we can obtain a selective CDK13 inhibitor. 

      Do the authors explore TDPs in their isogenic cell lines?

      We performed low coverage WGS on the 22Rv1 KO clones and added that to the paper (Fig. S5c). We did not see any obvious signs of TDP. We suspect the phenotype takes longer to accumulate and is not apparent within the ~20 passages our clones underwent in culture. This would be consistent with the tumor analysis (Fig. 2b) showing increase in TDs from primary to metastatic tumors, suggesting TDs accumulate over time.

      A future study may allow for screening synthetic lethals in the context of CDK12 loss in the presence or absence of SR4835 inhibition.

      We are actively pursuing experiments to identify new synthetic lethal targets by CRISPR and drug screens in CDK12 loss models and hope to report those in a future study.

      Reviewer #3 (Recommendations for the authors):

      As discussed above, the authors may wish to adjust their terminology to "CDK12-altered" rather than "CDK12 lost" or "CDK12-inactivated" to leave open the possibility that some tumors may retain residual CDK12 function or adopt neomorphic functions.

      Thank you for the additional comments and feedback. The possibility of neomorphic CDK12 allele function is important. As our models were all complete protein loss mutations, we decided to retain “biallelic loss” as our preferred nomenclature, but the note is well taken.

      The plots in Figures 1f-h are interesting and suggest that certain cancer genes (especially oncogenes) are recurrently gained in CDK12-altered tumors. It may be interesting to look at this on the individual level rather than the cohort level to see whether any groups of oncogenes tend to be gained together in an individual patient - this could inform whether certain combinations of cancer drivers cooperate with CDK12 alteration to drive oncogenesis.

      Thank you for the idea of looking at the patient-level for TDP-enriched oncogenes. A preliminary assessment did not identify recurrent co-gained oncogenes. We will continue these analyses as additional patient tumors with CDK12 alterations are identified. 

      The finding that AR gene or enhancer are recurrently gained with TDP is interesting and I am curious whether the authors have thoughts on whether these alterations can also be seen in the 1-2% of CDK12altered primary prostate cancers that are treatment naïve, and where AR pathway alterations are not as frequently seen.

      We did not focus on CDK12 altered primary prostate cancers, but we did check if there is AR amplification enrichment in the 6 CDK12<sup>BAL</sup> cases of the TCGA-PRAD dataset and did not identify enrichment. However, with such small numbers we would hesitate to draw any hard conclusions. 

      It could be interesting to more comprehensively characterize some of the CDK12 KO-adapted lines in Figure 5 (e.g. by WES or WGS) to determine whether they exhibit the TDP and/or whether they have acquired any secondary mutations that allow them to adapt to CDK12 loss.

      We are planning to do further genomics characterization of the CDK12-KO lines and will hopefully include that in a future study. Genomic analyses of the 22Rv1 clones (see copy number plots in Fig. S5c) did not identify a TDP. We plan to repeat the genomic assessments over additional cell passages and we have planned additional experiments designed to understand why some cells tolerate CDK12 loss and others do not.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Hurtado et al. show that Sox9 is essential for retinal integrity, and its null mutation causes the loss of the outer nuclear layer (ONL). The authors then show that this absence of the ONL is due to apoptosis of photoreceptors and a reduction in the numbers of other retinal cell types such as ganglion cells, amacrine cells, and horizontal cells. They also describe that Müller Glia undergoes reactive gliosis by upregulating the Glial Fibrillary Acidic Protein. The authors then show that Sox9+ progenitors proliferate and differentiate to generate the corneal cells through Sox9 lineage-tracing experiments. They validate Sox9 expression and characterize its dynamics in limbal stem cells using an existing single-cell RNA sequencing dataset. Finally, the authors argue that Sox9 deletion causes progenitor cells to lose their clonogenic capacity by comparing the sizes of control and Sox9-null clones. Overall, Hurtado et al. underline the importance of Sox9 function in retinal and corneal cells.

      Strengths:

      The authors have characterized a myriad of striking phenotypes due to Sox9 deletion in the retina and limbal stem cells which will serve as a basis for future studies.

      Weaknesses:

      Hurtado et al. investigate the importance of Sox9 in the retina and limbal stem cells. However, the overall experimental narrative appears dispersed.

      (1) The authors begin by characterizing the phenotype of Sox9 deletion in the retina and show that the absence of the ON layer is due to photoreceptor apoptosis and a reduction in other retinal cell types. The authors also note that Müller glia undergoes gliosis in the Sox9 deletion condition. These striking observations are never investigated further, and instead, the authors switch to lineage-tracing experiments in the limbus that seem disconnected from the first three figures of the paper. Another example of this disconnect is the comparison of Sox9 high and Sox9 low populations using an existing scRNA-seq dataset and the subsequent GO term analysis, which does not directly tie in with the lineage-tracing data of the succeeding Sox9∆/∆ experiments.

      We thank the reviewer for their thoughtful observations. We would like to clarify the rationale behind the structure of our study and how the different parts are conceptually connected.

      Our central aim was to investigate the role of Sox9 in the adult eye. Given that Sox9 has been extensively studied during embryonic development, we specifically chose to use an inducible conditional knockout strategy (CAG-CreERTM) in order to assess its function postnatally, in the adult eye. This approach revealed a severe retinal phenotype, whereas the cornea showed no overt phenotype. A major strength of our experimental design is that it allowed us to examine the role of Sox9 specifically in the adult eye, avoiding confounding effects from embryonic development. Nevertheless, this approach entails an inherent limitation: the mosaic nature of the CAG-CreERTM system leads to substantial variability in both the extent and distribution of Sox9 inactivation among individual animals. We invested considerable effort over extended periods to obtain reliable and biologically meaningful data despite this variability. We did not proceed further because this mosaicism poses a significant limitation when attempting to dissect downstream mechanisms in a consistent and reproducible manner, making it extremely challenging to perform in-depth mechanistic studies.

      Regarding the cornea, given the absence of a clear phenotype upon Sox9 deletion, we expanded our investigation by adding lineage-tracing and transcriptomic analyses to better understand Sox9’s potential role in adult limbal epithelial stem cells. These additional experiments provided valuable insight into Sox9 function in the adult cornea, even in the absence of gross morphological changes. Thus, while the retinal and corneal data stem from different experimental approaches, they are unified by a shared goal: understanding the celltype-specific and tissue-specific functions of Sox9 in the adult eye.

      To ensure that other readers do not perceive this apparent disconnect, and overstate our conclusions, we have modified the manuscript.  In the Introduction section, we have included the main findings from studies conducted to date on the role of Sox9 in the cornea and retina, and we have removed the corresponding section from the Discussion. We believe it is now clear that our study focuses on the role of Sox9 in the adult eye, in contrast to previous studies, which focused on the developing eye.

      In the Discussion section, we have added a new paragraph at the beginning and end that explicitly addresses the relationship between the retinal and limbal findings, illustrating how a single transcription factor can play distinct roles in different tissues within the same organ.

      Regarding the reviewer’s comment that the scRNA-seq analyses appear disconnected from the lineage-tracing data, we respectfully disagree. These analyses provide independent transcriptional confirmation that Sox9 is a marker of limbal stem cells, reinforcing the conclusions drawn from our in vivo experiments. These approaches are complementary and they converge on the same biological insight: Sox9 marks a population with stem-like properties in the adult limbus. Nevertheless, we acknowledge the reviewer’s concern and have moderated the tone of our statements in the revised version of the manuscript to better reflect the supporting nature of the scRNA-seq data, without overstating its functional implications.

      (2) A major concern is that a single Sox9∆/∆ limbal clone has a sufficiently large size, comparable to wild-type clones, as seen in Figure 6D. This singular result is contrary to their conclusion, which states that Sox9-deficient stem cells minimally contribute to the maintenance of the cornea.

      We thank the reviewer for this important observation.

      Ligand-independent activity of Cre-ER fusion proteins has been repeatedly reported in various mouse models (Vooijs et al., 2001; Kemp et al., 2004; Haldar et al., 2009). This basal recombinase activity is thought to arise from inappropriate nuclear translocation or proteolysis of the Cre-ER fusion protein, leading to low-level recombination even in the absence of tamoxifen. Consistent with this, prior studies using the same CAGG-CreERTM; R26R-LacZ system for clonal analysis in the cornea have observed sparse reporter expression before tamoxifen administration (Dorà et al., 2015).

      In line with these findings, we also detected minimal background LacZ staining in Sox9Δ/ΔLacZ corneas (mean surface area: 0.85%; n = 8 eyes). This low-level staining likely reflects recombination events in transient amplifying or more differentiated cells, which are not expected to generate long-lived clones. However, in the rare instance of a large clone, as shown in Figure 6D, we believe that a spontaneous recombination event may have occurred in a bona fide limbal stem cell, giving rise to a sustained contribution. To rigorously address this potential artefact and assess the true contribution of Sox9-deficient stem cells, we conducted a comparative analysis of 8 control (Sox9Δ/+-LacZ) and 5 mutant (Sox9Δ/ΔLacZ) corneas. This analysis revealed a highly significant 8-fold reduction in the LacZpositive surface area in mutant samples (Sox9Δ/+-LacZ: 6.65 ± 1.77%; Sox9Δ/Δ-LacZ: 0.85 ± 0.85%; paired t-test, p = 0.00017; Figs. 6E and F; Table S12).

      We chose to include the image of the large clone in the main figure precisely because it does not align with our working hypothesis. We believe that showing such exceptions transparently is scientifically important and may be valuable for other researchers using similar inducible systems. Nonetheless, based on previous literature, the number of samples analyzed, and the statistically significant reduction in clonal contribution, we maintain that the observed phenotype reflects a true biological effect of Sox9 loss, supporting our conclusion that Sox9-deficient stem cells contribute minimally to corneal maintenance. To make that point clearer, we have introduced the following sentence in lines 462-464 of the revised version of the manuscript.

      “A possible explanation for this clone may be that spontaneous ligand-independent activity of Cre-ER fusion may have occurred in a bona fide limbal stem cell, as previously reported (Vooijs et al., 2001; Kemp et al., 2004; Haldar et al., 2009, Dorà et al., 2015).”

      Reviewer #2(Public revciew):

      Sox9 is a transcription factor crucial for development and tissue homeostasis, and its expression continues in various adult eye cell types, including retinal pigmented epithelium cells, Müller glial cells, and limbal and corneal basal epithelia. To investigate its functional roles in the adult eye, this study employed inducible mouse mutagenesis. Adult-specific Sox9 depletion led to severe retinal degeneration, including the loss of Müller glial cells and photoreceptors. Further, lineage tracing revealed that Sox9 is expressed in a basal limbal stem cell population that supports stem cell maintenance and homeostasis. Mosaic analysis confirmed that Sox9 is essential for the differentiation of limbal stem cells. Overall, the study highlights that Sox9 is critical for both retinal integrity and the differentiation of limbal stem cells in the adult mouse eye.

      Strengths:

      In general, inducible genetic approaches in the adult mouse nervous system are rare and difficult to carry out. Here, the authors employ tamoxifen-inducible mouse mutagenesis to uncover the functional roles of Sox9 in the adult mouse eye.

      Careful analysis suggests that two degeneration phenotypes (mild and severe) are detected in the adult mouse eye upon tamoxifen-dependent Sox9 depletion. Phenotype severity nicely correlates with the efficiency of Cre-mediated Sox9 depletion.

      Molecular marker analysis provides strong evidence of Mueller cell loss and photoreceptor degeneration.

      A clever genetic tracing strategy uncovers a critical role for Sox9 in limbal stem cell differentiation.

      Weaknesses:

      (1) The Introduction can be improved by explaining clearly what was previously known about Sox9 in the eye. A lot of this info is mentioned in a single, 3-page long paragraph in the Discussion. However, the current study's significance and novelty would become clearer if the authors articulated in more detail in the Introduction what was already known about Sox9 in retina cell types (in vitro and in vivo).

      We appreciate this insightful comment. Following the reviewer`s suggestion, we have reorganized the manuscript to provide a clearer scientific context in the Introduction. Specifically, we have moved the relevant background information on Sox9 in different retinal cell types—previously included in a single, extended paragraph in the Discussion—into the Introduction. This helps to better frame our study within the context of existing knowledge.

      Additionally, we have emphasized more explicitly that our work does not focus on embryonic development, as most previous studies on Sox9 have done, but instead investigates its role in the adult mouse retina and limbus/cornea. We believe this represents an important and novel aspect of our study, as the mechanisms of retinal maintenance and limbal stem cell differentiation in the adult have been less extensively studied.

      (2) Because a ubiquitous tamoxifen-inducible CreER line is employed, non-cell autonomous mechanisms possibly contribute to the observed retina degeneration. There is precedence for this in the literature. For example, RPE-specific ablation of Otx2 results in photoreceptor degeneration (PMID: 23761884). Have the authors considered the possibility of non-cell autonomous effects upon ubiquitous Sox9 deletion?

      Given the similar phenotypes between animals lacking Otx2 and Sox9 in specific cell types of the eye, the authors are encouraged to evaluate Otx2 expression in the tamoxifen-induced Sox9 adult retina.

      We appreciate the insightful comment of the reviewer regarding the potential contribution of non-cell autonomous mechanisms to the retinal degeneration observed upon ubiquitous Sox9 deletion. We agree that this is an important consideration, particularly in the context of findings showing that RPE-specific deletion of Otx2 results in secondary photoreceptor degeneration.

      However, we would like to emphasize that RPE-specific deletion of Sox9 does not lead to photoreceptor loss or retinal degeneration, as previously shown (Masuda et al., 2014; Goto et al., 2018; Cohen-Tayar et al., 2018) [PMID: 24634209; PMID: 29609731; PMID: 29986868]. In addition, it was shown that Sox9 deletion in the RPE caused downregulation of visual cycle genes but did not compromise photoreceptor integrity or survival. Interestingly, Otx2 expression was found to be upregulated in the absence of Sox9, further supporting the view that Sox9 is not a simple upstream regulator of Otx2 in the adult RPE (Matsuda, 2014). These findings suggest that RPE dysfunction alone cannot account for the severe retinal phenotype we observe in our model.

      In our study, we observed that photoreceptor degeneration correlates strongly with the depletion of Sox9 Müller glial cells. Given the well-established supportive and neuroprotective roles of Müller glia, we interpret the retinal degeneration in our model to be primarily a consequence of Müller cell dysfunction (confirmed by the loss of Müller glia markers, such as SOX8 and S100). This interpretation is further supported by previous studies showing that selective ablation of Müller glia can lead to photoreceptor degeneration through cell-autonomous mechanisms (Shen et al., 2012) [PMID: 23136411].

      Nevertheless, we agree that this possibility deserves further investigation, and we have acknowledged it in the following paragraph that has been added to the Discussion section (lines 511-523 of the revised ms):

      “An important consideration in our model is the potential contribution of non-cell autonomous mechanisms to photoreceptor degeneration. Sox9 is expressed in both MG and RPE cells, and both cell types are known to support photoreceptor viability (Poché et al., 2008; Masuda et al., 2014). Notably, Sox9 and Otx2 cooperate to regulate visual cycle gene expression in the RPE (Masuda et al., 2014), and loss of Otx2 specifically in the adult RPE leads to secondary photoreceptor degeneration through non-cell autonomous mechanisms (Housset et al., 2013). However, RPE-specific deletion of Sox9 does not induce retinal degeneration and in fact results in Otx2 upregulation (Masuda et al., 2014; Goto et al., 2018; Cohen-Tayar et al., 2018), suggesting that Sox9 is not an upstream regulator of Otx2 in this context. Further investigation into the molecular and cellular interactions between MG, RPE, and photoreceptors may help to clarify the indirect pathways contributing to degeneration in the absence of Sox9.”

      Consistent with the above, a new citation has been included:

      Housset M, Samuel A, Ettaiche M, Bemelmans A, Béby F, Billon N, Lamonerie T. 2013. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J Neurosci 33:9890–904. doi:10.1523/JNEUROSCI.1099-13.2013.

      (3) The most parsimonious explanation for the dual role of Sox9 in retinal cell types and limbal stem cells is that the cell context is different. For example, Sox9 may cooperate with TF1 in photoreceptors, TF2, in Mueller cells, and TF3 in limbal stem cells, and such cell typespecific cooperation may result in different outcomes (retinal integrity, stem cell differentiation). The authors are encouraged to add a paragraph to the discussion and share their thoughts on the dual role of Sox9.

      We thank the reviewer for this thoughtful and constructive suggestion. In , we have added a paragraph at the end of the Discussion addressing the potential dual role of Sox9 in the cornea and retina. In this new section, we discuss how Sox9 might exert distinct functions depending on the cellular context, possibly through interactions with different transcriptional partners in specific cell types. This may help explain the contrasting roles of Sox9 in maintaining retinal integrity versus regulating stem cell differentiation in the limbal epithelium.

      (4) One more molecular marker for Mueller glial cells would strengthen the conclusion that these cells are lost upon Sox9 deletion.

      We thank the reviewer for this constructive suggestion. To reinforce our conclusion that most Müller glial cells are lost following Sox9 deletion, we analysed the expression of S100, a well-established cytoplasmic marker of Müller glia. As S100 is primarily localized to the innermost Müller cell processes and not restricted to cell bodies, direct cell counting was not feasible. Instead, we quantified the S100+ signal intensity across defined retinal surface areas. This analysis revealed a statistically significant reduction in S100 signal in Sox9<sup>Δ/Δ</sup> retinas compared to controls. These new data, included in the revised Figure 1 (panels F and G), support and extend our previous observations using SOX8, further confirming the loss of Müller glial cells in Sox9-deficient retinas.

      We have also modified the manuscript based on this new evidences as follows:

      In the Results section, lines 168-177 of the revised ms, we have added the following paragraph: “To independently validate the loss of MG cells in Sox9-deficient retinas, we examined the expression of S100, a cytoplasmic marker that labels the processes of adult Müller cells. In control retinas, strong S100 immunoreactivity was observed across the inner retina, outlining the typical radial projections of Müller glia (Fig. 1F). In contrast, Sox9Δ/Δ retinas with an extreme phenotype exhibited a marked reduction in S100 signal (Fig. 1G). Given the diffuse cytoplasmic localization of S100, we quantified its expression by measuring the fluorescence signal within a defined surface area of the retina. This analysis revealed a statistically significant reduction in S100 signal intensity in mutant samples (including both mild and extreme phenotypes) compared to controls (Fig. 1G; Table S4), further supporting the loss of MG cells upon Sox9 deletion.”

      In Methods, line 684 of the revised ms, the anti-S100 antibody reference and its working dilution have been added.

      (5) Using opsins as markers, the authors conclude that the photoreceptors are lost upon Sox9 deletion. However, an alternate possibility is that the photoreceptors are still present and that Sox9 is required for the transcription of opsin genes. In that case, Sox9 (like Otx2) may act as a terminal selector in photoreceptor cells. This point is particularly important because vertebrate terminal selectors (e.g., Nurr1, Otx2, Brn3a) initially affect neuron type identity and eventually lead to cell loss.

      We perfectly understand the reviewer’s point. However, we believe that the possibility that Sox9 regulates opsin gene expression without affecting photoreceptor survival is very unlikely in our model. The primary evidence comes from the histological analysis shown in Figure 1B, where hematoxylin and eosin staining clearly demonstrates the complete loss of the ONL in Sox9<sup>Δ/Δ</sup> retinas exhibiting the extreme phenotype. Similarly, DAPI counterstain also evidences the lack of the ONL in many of our immunofluorescence images of these samples.  This morphological disappearance of the ONL strongly supports the conclusion that photoreceptor cells are not merely transcriptionally silent but are physically absent.

      Furthermore, TUNEL assays in two retinas with a mild phenotype revealed extensive apoptosis within the ONL, suggesting a progressive degeneration process rather than a selective transcriptional effect. While we acknowledge that transcriptional regulation of opsin genes by Sox9 cannot be entirely ruled out, the observed phenotype is more consistent with a structural loss of photoreceptors rather than a change in their molecular identity alone. Therefore, our data support the interpretation that Sox9 is required for photoreceptor survival, likely through non-cell autonomous mechanisms related to Müller glia dysfunction, rather than acting as a terminal selector within photoreceptor cells themselves.

      (6) Quantification is needed for the TUNEL and GFAP analysis in Figure 3.

      We have quantified the GFAP immunofluorescence signal across defined surface areas of the retina and found a statistically significant increase in GFAP expression in Sox9<sup>Δ/Δ</sup> mutants compared to controls (Mann-Whitney U test, P = 0.0240; n = 4 controls, 10 mutants). These quantification data are now included in the revised Figure 3.

      Regarding the TUNEL assay, although extensive apoptosis was clearly observed in two Sox9<<sup>Δ/Δ</sup> retinas with a mild phenotype (as shown in Figure 3A), this pattern was not consistent across the full study mouse cohort. Out of 15 mutant samples analyzed (5 of them previously analyzed and 10 additional ones that have been newly analyzed), only two exhibited this pronounced apoptotic pattern. However, in the remaining 13 mutants, we did observe a small but statistically significant increase in the number of TUNEL+ cells compared to controls (zero-inflated Poisson test, P = 0.028, n = 5 controls, 13 mutants). These results are now included in Figure 3 and in Tables S7 and S8.

      This pattern likely reflects the transient nature of apoptosis in the degenerative process, which may occur rapidly and thus be difficult to capture consistently at a single time point. Nevertheless, the quantification supports our conclusion that Sox9 loss is associated with increased photoreceptor cell death.

      Based on the above, we have included the following paragraphs in the Results section of the manuscript:

      In lines 224-252 of the revised ms, the final version of the paragraph is as follows: “Since photoreceptors are absent in severely affected Sox9-mutant retinas, we conducted TUNEL assays to study the role of cell death in the process of retinal degeneration. In control samples (n=5), almost no TUNEL signal was observed in the retina. In contrast, Sox9<sup>Δ/Δ</sup> mice (n=15) showed numerous TUNEL+ cells, mainly located in the persisting ONL, indicating that photoreceptor cells were dying (Fig. 3A). Although extensive TUNEL staining in the ONL was clearly observed in two Sox9<sup>Δ/Δ</sup> retinas with mild phenotypes, this pattern was not consistently present across the full cohort. In the remaining 13 mutant retinas, we observed a modest but noticeable increase in the number of apoptotic cells compared to controls (Fig. 3B; Table S7). Despite a high frequency of zero counts (particularly among controls), the difference between groups reached statistical significance when analyzed using a zeroinflated Poisson model (P = 0.028; n = 5 controls, 13 mutants). These findings suggest that photoreceptor apoptosis following Sox9 deletion may occur acutely and within a narrow temporal window, making it challenging to capture the full degenerative process at a single time point”.

      Lines 263-269 of the revised ms: “To support these observations quantitatively, we measured GFAP fluorescence intensity across defined retinal surface areas in control and Sox9<sup>Δ/Δ</sup> mice (Fig. 3D; Table S8). This analysis revealed a statistically significant increase in GFAP signal in mutant retinas compared to controls (Mann-Whitney U test, P = 0.0240; n = 4 controls, 10 mutants). These results are consistent with a progressive gliotic  following Sox9 deletion and provide further evidence that MG cells become reactive in the absence of Sox9”.

      Similarly, the section “Estimation of the percentage of tamoxifen-induced, Cre-mediated recombination” has been expanded as follows:

      Lines 660-665 of the revised ms: “In parallel, to quantify GFAP expression as a measure of MG reactivity, we analyzed GFAP immunofluorescence intensity across defined retinal surface areas. Given the cytoplasmic distribution of GFAP within glial processes, direct cell counting was not feasible. Instead, fluorescence intensity was measured using ImageJ, within full-thickness retinal regions in 20x microphotographs of a retinal sections stained for GAFP. The total GFAP signal was normalized to the measured area for each section”.

      (7) Line 269-320: The authors examined available scRNA-Seq data on adult retina. This data provides evidence for Sox9 expression in distinct cell types. However, the dataset does not inform about the functional role of Sox9 because Sox9 mutant cells were not analyzed with RNA-Seq. Hence, all the data that claim that this experiment provides insights into possible Sox9 functional roles must be removed. This includes panels F, G, and H in Figure 5. In general, this section of the paper (Lines 269-320) needs a major revision. Similarly, lines 442-454 in the Discussion should be removed.

      We thank the reviewer for this important observation. We agree that the scRNA-Seq dataset used in this section does not include Sox9 mutant cells and therefore does not allow us to assess the consequences of Sox9 loss-of-function. However, we believe that this analysis still provides valuable complementary information. Specifically, it confirms that Sox9 is expressed in a distinct population of limbal stem cells, and that its expression dynamically changes along differentiation trajectories. Although we do not infer causality or phenotypic consequences, the ability to observe how gene expression programs shift as Sox9 is downregulated offers insights into potential transcriptional programs associated with Sox9 activity.

      We have carefully revised Lines 269–320 to remove any overinterpretations, and eliminated the corresponding lines in the Discussion (Lines 442–454). However, we have retained Panels G, and H in Figure 5 with updated text that reflect the descriptive nature of these findings, specifically to illustrate that the Sox9-positive cell signature is consistent with a stem cell genetic program, and that when Sox9 is downregulated some gene pathways involved in stem cell differentiation are upregulated.

      Reviewer #1 (Recommendations for the authors):

      Major points

      (1) Figure 1C shows the proportions of Sox9+cells that express Sox8 in control, mild and extreme phenotypes. However, as no quantitative classification of mild and extreme phenotypes is reported along with Figure 1A, the large standard deviation for Sox9∆/∆ mild retina might be due to a misclassification of the sample. Therefore, the authors must ascribe each sample to "mild" or "extreme" based on a quantitative metric.

      We appreciate the reviewer’s suggestion to clarify the classification criteria used to distinguish “mild” and “extreme” phenotypes in Sox9<sup>Δ/Δ</sup> retinas. As noted, our classification was based on a qualitative, phenotypic assessment of retinal morphology in hematoxylin/eosin-stained sections. Specifically, retinas were classified as “extreme” when the outer nuclear layer (ONL) was completely absent, and as “mild” when the ONL was present, although often reduced in thickness. This classification reflects the observable structural depletion of the ONL and aligns well with the extent of Sox9 loss in Müller glial cells, as shown in Figure 1. We acknowledge that some variability exists within the “mild” group, likely due to differences in recombination efficiency and the mosaic nature of tamoxifen-induced deletion.

      The phenotypic classification of each individual sample is explicitly provided in Supplementary Table S1. We have also added a statement in the Results section clarifying that this classification was based on qualitative histological criteria rather than a numerical threshold.

      Lines 104-113 of the revised ms: “We categorized Sox9<sup>Δ/Δ</sup> retinas into “mild” and “extreme” phenotypes in order to facilitate interpretation of our data. Clasification was based on a qualitative assessment of ONL integrity in histological sections. Specifically, samples were classified as “extreme” when the ONL was completely depleted, and as “mild” when the ONL persisted, albeit variably reduced in thickness. This phenotypic classification reflects observable structural differences rather than a fixed quantitative threshold. Some variability exists within the “mild” group, likely due to differences in recombination efficiency and the mosaic nature of tamoxifen-induced Cre-mediated Sox9 deletion”

      (2) The authors infer Sox9 high and Sox9 low groups of limbal stem cells using an existing scRNA-seq dataset. However, an immunohistology-based validation of this difference is missing. Given that limbal stem cells express Sox9, the authors must examine the heterogeneity in Sox9 levels within the Sox8+ population to demonstrate their claim: "...Sox9 expression decreases as transiently amplifying progenitors undergo progressive differentiation from limbal to peripheral corneal cells." in Line 292. Ideally, this must be further validated using differentiation markers corresponding to CB and ILB populations that show lower Sox9 expression according to the pseudotime graph.

      To validate the Sox9 expression results obtained with scRNA-seq, we performed double immunofluorescence for Sox9 and P63, the latter expressed by the basal cells of the limbal epithelium, but not by transient amplifying cells covering the corneal surface (Pellegrini et al., 2001, https://www.pnas.org/doi/abs/10.1073/ pnas.061032098). These results can be observed in the new panel 5F. Accordingly we have included a new paragraph in lines 369-396 of the revised version of the ms:

      “To validate these results, we decided to closely examine Sox9 expression in the limbus using immunofluorescence. Previous analyses revealed that the outer limbus is approximately 100 μm wide, while the inner limbus is wider, around 240 μm (Altshuler 2021). We observed that in the region corresponding to the OLB, most cells showed strong Sox9 expression. In the area corresponding to the ILB, this immunoreactivity appeared weaker in the basal layer (corresponding to the ILB proper), and no expression was detected in the suprabasal layers (flattened cells; Fig 5F left). Double immunofluorescence for SOX9 and P63, which is expressed in basal cells of the limbal epithelium, but not by transient amplifying cells covering the corneal surface (Pellegrini et al., 2001) revealed that Sox9 expression was restricted to P63-positive cells (Fig 5F right). These observations confirm that Sox9 is expressed in a basal cell population within both the OLB and ILB, and that its expression decreases in differentiated transient amplifying cells. ”

      We also have deleted  “This expression pattern is consistent with our immunofluorescence observations" from line 356 of the revised ms.

      (3) The authors' claim of "...Sox9-null cells cannot survive or proliferate as well as their wildtype neighbors, and are hence outcompeted over time, leading to an essentially wild-type cornea" does not seem very convincing in the light of Fig.6D and S3B where Sox9 deletion can still allow for a large LacZ+ clone. Their claim of wild-type cornea due to out-competing neighbors must be validated by increasing the number of Sox9-null progenitors, which can be tested by administering tamoxifen for a significantly longer duration, leading to a majority Sox9 deficient progenitor population, and then examining limbal and corneal defects.

      As previously discussed, we observed only one instance of a large LacZ+ clone across 8 Sox9<sup>Δ/Δ</sup>-LacZ eyes. Based on prior reports of ligand-independent Cre activity (Vooijs et al., 2001; Kemp et al., 2004; Haldar et al., 2009; Dorà et al., 2015), we believe this rare event likely resulted from spontaneous recombination in a bona fide limbal stem cell, independent of tamoxifen administration. For this reason, we do not expect that increasing the dose or duration of tamoxifen would eliminate such rare events. Furthermore, due to the mosaic and highly variable recombination efficiency of the CAGG-CreERTM system in the adult eye (see McMahon et al., 2008), attempting to increase the TX dosage would likely lead to systemic toxicity or lethality, without guaranteeing full inactivation of the gene in the limbus. Thus, this system is not well-suited for generating a fully Sox9-deficient limbal epithelium. To overcome this limitation, we crossed our mice with the R26R-LacZ reporter line to track the clonal behavior of Sox9-deficient cells. In control animals (Sox9Δ/+-LacZ), LacZ+ stripes originating from limbal stem cells are readily observed. In contrast, in Sox9Δ/Δ-LacZ mutants, these clones are either absent or drastically reduced. This suggests that Sox9-null cells have a severely impaired ability to form and sustain clones. To rigorously quantify this effect, we compared 8 control and 5 mutant corneas, revealing a highly significant 8-fold reduction in LacZ-positive area in the mutants (6.65 ± 1.77% vs. 0.85 ± 0.85%; p = 0.00017; Fig. 6F; Table S12; Supp. Fig. X???), supporting our claim that Sox9null cells cannot survive or proliferate as well as their wild-type neighbors, and are hence outcompeted over time, leading to an essentially wild-type cornea.

      Minor points

      (1) Quantification for Figure 2C and 2D is missing.

      We have now included quantification of BRN3A+ retinal ganglion cells (Figure 2E) across control and Sox9<sup>Δ/Δ</sup> retinas. Cell counts were performed on matched retinal sections, and the difference between groups was found to be statistically significant through Mann–Whitney U test (Table S5).

      Regarding PAX6/AP2a, we quantified inner retinal neurons by analyzing AP2α+ amacrine cells and PAX6+/AP2α- horizontal cells as distinct subpopulations, rather than simply comparing total PAX6 or AP2α immunoreactivity. This approach allowed us to better resolve specific neuronal subtype changes. Both populations showed a statistically significant reduction in Sox9-deficient retinas relative to controls. The quantification for these analyses has now been incorporated into the revised Figure 2F and G (Table S6).

      Consequently with the above, the following paragraph of the Results section (line 210 of the revised ms:

      “We also studied the status of other retinal cell types. The transcription factor BRN3A was used to identify ganglion cells (Nadal-Nicolás et al., 2009), which were shown to decrease in number in the mutant retinas, compared to control ones (Fig. 2C). Similarly, double immunodetection of the transcription factors PAX6 and AP2A was used to identify both amacrine and horizontal cells, as previously described (Marquardt et al., 2001; Barnstable et al., 1985; Edqvist and Hallböök, 2004), showing a similar reduction in both cell types in degenerated retinas (Fig. 2D).”

      Has been modified as follows:

      “We also studied the status of other retinal cell types. The transcription factor BRN3A was used to identify ganglion cells (Nadal-Nicolás et al., 2009), which were shown to decrease in number in the mutant retinas, compared to control ones (Figs. 2C and 2D and Table S5; n = 5 controls, n = 12 mutants; Mann-Whitney U test, P = 3 × 10<sup>-4</sup>). Similarly, double immunodetection of the transcription factors PAX6 and AP2A was used to identify both amacrine and horizontal cells (Fig. 2E), as previously described (Marquardt et al., 2001; Barnstable et al., 1985; Edqvist and Hallböök, 2004), showing a similar reduction in both cell types in degenerated retinas (Figs. 2F and 2G and Table S6; AP2α+ amacrine cells: n = 3 controls, n = 8 mutants;  2-sample T-tests P = 0.029; PAX6+/AP2α− horizontal cells: n = 3 controls, n = 8 mutants; Mann-Whitney U test P = 0.021). These findings indicate that the loss of Sox9 in the adult retina ultimately leads to the degeneration of multiple inner retinal neuronal populations, beyond the previously described effects on photoreceptors and Müller glia.

      (2) Figure 4G & H: The authors must mention that the dashed lines enclose the limbal area.

      Done

      (3) The authors infer from an existing scRNA-seq dataset that OLB cells have high Sox9 expression as compared to ILB and corneal populations. However, Figures 4A and B do not indicate the anatomical positions of these cell types. The authors must label these for the reader's reference as they state that "[Sox9] expression pattern is consistent with our immunofluorescence observations" in Line 280.

      As previously indicated, we have generated a new panel 5F and a corresponding paragraph to illustrate Sox9 expression pattern in the limbus. Accordingly, we have removed the sentence from line 280.

      (4) Quantification for Figures 6A and 6B is missing.

      We have quantified the number of Sox9 and P63 positive cells in the limbus between mutant and control corneas and found no difference in the number of positive cells. We have included these data in new panel 6C and Table S11.

      Reviewer #2 (Recommendations for the authors):

      Line 24: "synapsis" should be "synapses".

      Done

      (1) Consider starting a new paragraph after line 30.

      Done

      (2) Lines 42-48: make clear that this paragraph provides information only for HUMAN SOX9.

      We now distinguish which studies were conducted in humans and which in mice.

      (3) Line 55: explain to the non-expert reader what the "visual cycle" is.

      Done (lines 64-65 of the revised ms)

      (4) Line 66: consider "inactivate" instead of "suppress".

      We substituted “suppress” with “inactivate”

      (5) Line 90-92: ONLY PCR for the cGMP will provide formal evidence that this is not present in the mouse line.

      We agree with the reviewer that PCR genotyping is the most straightforward method to exclude the presence of the Pde6<sup>brd</sup>1 allele. Although retinal degeneration was never observed in untreated or control animals in our study, we have now removed the term “formal possibility” from the text to better reflect this limitation.

      We have modified the following paragraph (page 116 in the revised version of the manuscript): “Retinal degeneration was never observed in mice that had not been tamoxifen-treated, nor any other controls, eliminating the formal possibility that the retinal degeneration allele of photoreceptor cGMP phosphodiesterase 6b (Pde6brd1) was present in our mice (Bowes et al., 1990).”

      As follows: “Retinal degeneration was never observed in mice that had not been tamoxifentreated, nor any other control groups, making the presence of the retinal degeneration allele of photoreceptor cGMP phosphodiesterase 6b (Pde6<sup>brd1</sup>) unlikely in our mice (Bowes et al., 1990). However, we acknowledge that definitive exclusion of this possibility would require PCR-based genotyping.”

      (6) Line 160-166: This paragraph needs a conclusion.

      We agree with the reviewer and have added the following sentence at the end of the paragraph:

      “These findings indicate that the loss of Sox9 in the adult retina ultimately leads to the degeneration of multiple inner retinal neuronal populations, beyond the previously described effects on photoreceptors and Müller glia”

      (7) Line: 240-265: This paragraph ends without a conclusion.

      We have include the following conclusion:

      “Thus, Sox9 is expressed in a basal limbal stem cell population with the ability to form two types of long-lived cell clones involved in stem cell maintenance and homeostasis.”

      (8) In Results, it needs to be specified when exactly in adulthood the tamoxifen treatment started. This information is only provided in the Methods.

      We have specified the age of the mice at the onset of tamoxifen treatment (two months)  and included it in the schemes of Figs 1A, 4C, 4H, 6E.

      (9) Line 250: Because live imaging is not conducted, the word "dynamics" is not suitable.

      We substituted “dynamics” with “contribution”

      (10) Panel C in Figure 6 is nice and helpful. Consider adding a similar panel in Figure 1.

      Done.

      (11) Line 420: is this the human Sox9 enhancer?

      Yes. It is a human enhancer. We have indicated it in the text.

      (12) Line 459: typo "detected tissue".

      Corrected

      (13) Line 448 and 468: citations are needed.

      Line 448 is deleted in the revised version of the ms.

      (14) 479: typo "clones clones'.

      Corrected.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This work computationally characterized the threat-reward learning behavior of mice in a  recent study (Akiti et al.), which had prominent individual differences. The authors  constructed a Bayes-adaptive Markov decision process model and fitted the behavioral data  by the model. The model assumed (i) hazard function starting from a prior (with free mean  and SD parameters) and updated in a Bayesian manner through experience (actually no real  threat or reward was given in the experiment), (ii) risk-sensitive evaluation of future  outcomes (calculating lower 𝛼 quantile of outcomes with free 𝛼 parameter), and (iii) heuristic  exploration bonus. The authors found that (i) brave animals had more widespread hazard  priors than timid animals and thereby quickly learned that there was in fact little real threat,  (ii) brave animals may also be less risk-aversive than timid animals in future outcome  evaluation, and (iii) the exploration bonus could explain the observed behavioral features,  including the transition of behavior from the peak to steady-state frequency of bout. Overall,  this work is a novel interesting analysis of threat-reward learning, and provides useful  insights for future experimental and theoretical work. However, there are several issues that I  think need to be addressed.

      Strengths:

      (1) This work provides a normative Bayesian account for individual differences in  braveness/timidity in reward-threat learning behavior, which complements the analysis by  Akiti et al. based on model-free threat reinforcement learning.

      (2) Specifically, the individual differences were characterized by (i) the difference in the  variance of hazard prior and potentially also (ii) the difference in the risk-sensitivity in the  evaluation of future returns.

      Weakness:

      (1) Theoretically the effect of prior is diluted over experience whereas the effect of biased  (risk-aversive) evaluation persists, but these two effects could not be teased apart in the  fitting analysis of the current data.

      (2) It is currently unclear how (whether) the proposed model corresponds to neurobiological ( rather than behavioral) findings, different from the analysis by Akiti et al.

      We thank reviewer #1 for their useful feedback which we’ve used to improve the discussion,  formatting and clarity of the paper, and for highlighting important questions for future  extensions of our work.

      Major points:

      (1) Line 219

      It was assumed that the exploration bonus was replenished at a steady rate when the animal  was at the nest. An alternative way would be assuming that the exploration bonus slowly  degraded over time or experience, and if doing so, there appears to be a possibility that the  transition of the bout rate from peak to steady-state could be at least partially explained by  such a decrease in the exploration bonus.

      Section 2.2.3 explains the mechanism of the exploration bonus which motivates approach.  We think that the mechanism suggested by the reviewer is, in essence, what is happening in  the model. The exploration pool is indeed depleted over time or bouts of experience at the  object. In the peak confident phase for brave animals and the peak cautious phase for timid  animals, the rate of depletion exceeds the rate of regeneration, since the agent spends only  a single turn at the nest between bouts. In the steady-state phase, the exploration pool has  depleted so much previously that the agent must wait multiple turns at the nest for the pool  to regenerate to a sufficiently high value to justify approaching the object again.

      We have updated section 2.2.3 to explain that agents spend one turn at the nest during peak  phase but multiple turns during steady-state phase. Hopefully, this makes our mechanism  clear:

      “In simulations, when 𝐺(𝑡) is high, the agent has a high motivation to explore the object,  spending only a single turn in the nest state between bouts. In other words, the depletion  from 𝐺0 substantially influences the time point at which approach makes a transition from  peak to steady-state; the steady-state time then depends on the dynamics of depletion  (when at the object) and replenishment (when at the nest). In particular, in the steady-state  phases, the agent must wait multiple turns at the nest for 𝐺(𝑡)  to regenerate so that  informational reward once again exceeds the potential cost of hazard.“

      (2) Line 237- (Section 2.2.6, 2.2.7, Figures 7, 9)

      I was confused by the descriptions about nCVaR. I looked at the cited original literature  Gagne & Dayan 2022, and understood that nCVaR is a risk-sensitive version of expected  future returns (equation 4) with parameter α (α-bar) (ranging from 0 to 1) representing risk  preference. Line 269-271 and Section 4.2 of the present manuscript described (in my  understanding) that α was a parameter of the model. Then, isn't it more natural to report  estimated values of α, rather than nCVaR, for individual animals in Section 2.2.6, 2.2.7,  Figures 7, 9 (even though nCVaR monotonically depends on α)? In Figures 7 and 9, nCVaR  appears to be upper-bounded to 1. The upper limit of α is 1 by definition, but I have no idea why nCVaR was also bounded by 1. So I would like to ask the authors to add more detailed  explanations on nCVaR. Currently, CVaR is explained in Lines 237-243, but actually, there is  no explanation about nCVaR rather than its formal name 'nested conditional value at risk' in  Line 237.

      Thank you for pointing out this error. We have corrected the paper to use nCVaR to refer to  the objective and nCVaR's α, or sometimes just α, to refer to the risk sensitivity parameter  and thus the degree of risk sensitivity.

      (3) Line 333 (and Abstract)

      Given that animals' behaviors could be equally well fitted by the model having both nCVaR ( free α) and hazard prior and the alternative model having only hazard prior (with α = 1), may  it be difficult to confidently claim that brave (/timid) animals had risk-neutral (/risk-aversive)  preference in addition to widespread (/low-variance) hazard prior? Then, it might be good to  somewhat weaken the corresponding expression in the Abstract (e.g., add 'potentially also'  to the result for risk sensitivity) or mention the inseparability of risk sensitivity and prior belief  pessimism (e.g., "... although risk sensitivity and prior belief pessimism could not be teased  apart").

      Thank you for this suggestion, we have duly weakened the wording in the Abstract to say  “potentially more risk neutral”:

      “Some animals begin with cautious exploration, and quickly transition to confident approach  to maximize exploration for reward; we classify them as potentially more risk neutral, and  enjoying a flexible hazard prior. By contrast, other animals only ever approach in a cautious  manner and display a form of  self-censoring; they are characterized by potential risk  aversion and high and inflexible hazard priors.”

      Reviewer #2 (Public Review):

      Shen and Dayan build a Bayes adaptive Markov decision process model with three key  components: an adaptive hazard function capturing potential predation, an intrinsic reward  function providing the urge to explore, and a conditional value at risk (CvaR, closely related  to probability distortion explanations of risk traits). The model itself is very interesting and  has many strengths including considering different sources of risk preference in generating  behavior under uncertainty. I think this model will be useful to consider for those studying  approach/avoid behaviors in dynamic contexts.

      The authors argue that the model explains behavior in a very simple and unconstrained  behavioral task in which animals are shown novel objects and retreat from them in various  manners (different body postures and patterns of motor chunks/syllables). The model itself  does capture lots of the key mouse behavioral variability (at least on average on a  mouse-by-mouse basis) which is interesting and potentially useful. However, the variables in  the model - and the internal states it implies the mice have during the behavior - are  relatively unconstrained given the wide range of explanations one can offer for the mouse  behavior in the original study (Akiti et al). This reviewer commends the authors on an original  and innovative expansion of existing models of animal behaviour, but recommends that the  authors  revise their study to reflect the obvious  challenges . I would also recommend a  reduction in claiming that this exercise gives a normative-like or at least quantitative account  of mental disorders.

      We thank reviewer #2 for highlighting some of the strengths of our paper as well as pointing  out important limitations of Akiti et al’s original study which we’ve inherited as well as some  limitations of our own method. We address their concerns below.

      We have added a paragraph to the discussion discussing the limitations of the state  representation we adopted from Akiti’s study.

      (Reviewer #1 had the same concern, see above) “Motivated by tail-behind versus  tail-exposed in Akiti et al. (2022), we model approach using a dichotomy between cautious  and confident approach states [...]”

      We have reduced the suggestion that our model provides an account of mental disorders in  the abstract.

      Before:

      “On the other hand, “timid” animals, characterized by risk aversion and high and inflexible  hazard priors, display self-censoring that leads to the sort of asymptotic maladaptive  behavior that is often associated with psychiatric illnesses such as anxiety and depression.”

      After:

      “By contrast, other animals only ever approach in a cautious manner and display a form of  self-censoring; they are characterized by potential risk aversion and high and inflexible  hazard priors. “

      My main comment is that this paper is a very nice model creation that can characterize the  heterogeneity rodent behavior in a very simple approach/avoid context (Akiti et al; when a  novel object is placed in an arena) that itself can be interpreted in a multitude of ways. The  use of terms like "exploration", "brave", etc in this context is tricky because the task does not  allow the original authors (Akiti et al) to quantify these "internal states" or "traits" with the  appropriate level of quantitative detail to say whether this model is correct or not in capturing  the internal states that result in the rodent behavior. That said, the original behavioral setup  is so simple that one could imagine capturing the behavioral variability in multiple ways ( potentially without evoking complex computations that the original authors never showed  the mouse brain performs). I would recommend reframing the paper as a new model that  proposes a set of internal states that could give rise to the behavioral heterogeneity  observed in Akiti et al, but nonetheless is at this time only a hypothesis. Furthermore, an  explanation of what would be really required to test this would be appreciated to make the  point clearer.

      We thought very hard about using terms that might be considered to be anthropomorphic  such as ‘timid’ and ‘brave’. We are, of course, aware, of the concerns articulated by  investigators such as LeDoux about this. However, we think that, provided that we are clear  on the first appearance (using ‘scare’ quotes) that we are using them as indeed labels for  latent characteristics that capture correlations in various aspects of behaviour, they are more  helpful than harmful in making our descriptions understandable.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript presents computational modelling of the behaviour of mice during  encounters with novel and familiar objects, originally reported by Akiti et al. (Neuron 110, 2022)          . Mice typically perform short bouts of approach followed by a retreat to a safe  distance, presumably to balance exploration to discover possible rewards with the potential  risk of predation. However, there is considerable heterogeneity in this exploratory behaviour,  both across time as an individual subject becomes more confident in approaching the object,  and across subjects; with some mice rapidly becoming confident to closely explore the  object, while other timid mice never become fully confident that the object is safe. The  current work aims to explain both the dynamics of adaptation of individual animals over time,  and the quantitative and qualitative differences in behaviour between subjects, by modelling  their behaviour as arising from model-based planning in a Bayes adaptive Markov Decision  Process (BAMDP) framework, in which the subjects maintain and update probabilistic  estimates of the uncertain hazard presented by the object, and rationally balance the  potential reward from exploring the object with the potential risk of predation it presents.

      In order to fit these complex models to the behaviour the authors necessarily make  substantial simplifying assumptions, including coarse-graining the exploratory behaviour into  phases quantified by a set of summary statistics related to the approach bouts of the animal.  Inter-individual variation between subjects is modelled both by differences in their prior  beliefs about the possible hazard presented by the object and by differences in their risk  preference, modelled using a conditional value at risk (CVaR) objective, which focuses the  subject's evaluation on different quantiles of the expected distribution of outcomes.  Interestingly these two conceptually different possible sources of inter-subject variation in  brave vs timid exploratory behaviour turn out not to be dissociable in the current dataset as  they can largely compensate for each other in their effects on the measured behaviour.  Nonetheless, the modelling captures a wide range of quantitative and qualitative differences  between subjects in the dynamics of how they explore the object, essentially through  differences in how subject's beliefs about the potential risk and reward presented by the  object evolve over the course of exploration, and are combined to drive behaviour.

      Exploration in the face of risk is a ubiquitous feature of the decision-making problem faced  by organisms, with strong clinical relevance, yet remains poorly understood and  under-studied, making this work a timely and welcome addition to the literature.

      Strengths:

      (1) Individual differences in exploratory behaviour are an interesting, important, and  under-studied topic.

      (2) Application of cutting-edge modelling methods to a rich behavioural dataset, successfully  accounting for diverse qualitative and qualitative features of the data in a normative  framework.

      (3) Thoughtful discussion of the results in the context of prior literature.

      Limitations:

      (1) The model-fitting approach used of coarse-graining the behaviour into phases and fitting  to their summary statistics may not be applicable to exploratory behaviours in more complex  environments where coarse-graining is less straightforward.

      (2) Some aspects of the work could be more usefully clarified within the manuscript.

      We thank reviewer #3 for their positive feedback and helping us to improve the clarity of our  paper. We have added discussion they thought was missing.

      Reviewer #1 (Recommendations for the authors):

      (1) Line 25-28

      This part of the Abstract might give an impression that timidity (but not braveness) is  potentially associated with psychiatric illness and even that timidity is thus inferior to  braveness. However, even though extreme timidity might indeed be associated with anxiety  or depression, extreme braveness could also be associated with other psychiatric or  behavioral problems. Moreover, as a population, the existence of both timid and brave  individuals could be advantageous, and it could be a reason why both types of individuals  evolutionarily survived in the case of wild animals (although Akiti et al. used mice, which may  have no or very limited genetic varieties, and so things may be different). So I would like to  encourage the authors to elaborate on the expression of this part of the Abstract and/or  enrich the related discussion in the Discussion.

      This is an important point. We note on line 38 that excessive novelty seeking (potentially  caused by excessive braveness) could also be maladaptive.

      Additionally, we have added a paragraph to the discussion discussing heterogeneity in risk  sensitivity within a population.

      “Our data show that there is substantial variation in the degrees of risk sensitivity across the  mice.  Previous works have reported substantial interpopulation and intrapopulation  differences in risk-sensitivity in humans which depend on gender, age, socioeconomic  status, personality characteristics, wealth and culture (Rieger et al., 2015; Frey et al., 2017).  Despite the normative appeal of 𝛼 = 1, it is possible that a population may benefit from  including individuals with $\alpha$ different from 1.0 or highly negative priors. For example,  more cautious individuals could learn from merely observing the risky behavior of less  cautious individuals. Furthermore, we have only considered risk-sensitivity under epistemic  uncertainty in our work. Risk averse individuals, for instance with 𝛼 < 1 may be more  successful than risk-neutral agents in environments where there are unexpected dangers ( unknown unknowns). Risk-aversion is thus a temperament of ecological and evolutionary  significance (Réale et al., 2007).”

      (2) Line 149

      Section 2.2 consists of eight subsections. I think this organization may not be very  appealing, because there are a bit too many subsections, and their relations are not  immediately clear to readers. So I would like to encourage the authors to make an  elaboration. For example, since 2.2.1 - 2.2.5 describes a summary of model construction  and model fitting whereas 2.2.6-2.2.8 shows the results, it could be good to divide these into  separate sections (2.2.1 - 2.2.5 and 2.3.1 - 2.3.3).

      Thank you for pointing this out. We’ve renumbered the sections as you’ve suggested.

      (3) Line 347-8

      Theoretically, the effect of prior is diluted over experience whereas the effect of biased  (risk-aversive) evaluation persists, as the authors mentioned in Lines 393-394. Then isn't it  possible to consider environments/conditions in which the two effects can be separated?

      We appreciate this suggestion. Indeed, our original thought in modeling this experiment was  that this would be exactly the case here - with epistemic uncertainty reducing as the object  became more familiar. However, proving to an animal that a single environment is  completely stationary/fixed is hard - reflected in our conclusion here that the exploration  bonus pool replenishes. Thus, we argued in the discussion that a series of environments  would be necessary to separate risk sensitivity from priors.

      (4) Line 407

      It would be nice to add a brief phrase explaining how (in what sense) this model's  assumption was consistent with the reported behavior. Also, should the assumption of  having two discrete approach states (cautious and confident) itself be regarded as a  limitation of the model? If the tail-behind and tail-exposure approaches were not merely  operationally categorized but were indicated to be two qualitatively distinct behaviors in the  experiment by Akiti et al., it is reasonable to model them as two discrete states, but  otherwise, the assumption of two discrete states would need to be mentioned as a  simplification/limitation.

      We have now removed line 407, and now have an additional  paragraph in the discussion  discussing the limitations of the tail-behind and tail-exposure state representation: “Motivated by tail-behind versus tail-exposed in Akiti et al. (2022), we model approach using  a dichotomy between cautious and confident approach states. This is likely a crude  approximation to the continuous and multifaceted nature of animal approach behavior. For  example, during approach animals likely adjust their levels of vigilance continuously (or  discretely; Lloyd and Dayan (2018)) to  monitor threat, and choose different velocities for  movement, and different attentional strategies for inspecting the novel object. We hope  future works will model these additional behavioral complexities, perhaps with additional  internal states, and corroborate these states with neurobiological data.”

      (5) Line 418

      The authors contrasted their model-based analyses with the model-free analyses of Akiti et  al. Another aspect of differences between the authors' model and the model of Akiti et al. is  whether it is normative or mechanistic: while how the model of Akiti et al. can be biologically  implemented appears to be clear (TS dopamine represents threat TD error, and TS  dopamine-dependent cortico-striatal plasticity implements TD error-based update of  model-free threat prediction), biological implementation of the authors' model seems more  elusive. Given this, it might be a fruitful direction to explore how these two models can be  integrated in the future.

      We enthusiastically agree that it would be most interesting in the future to explore the  integration of the two models - and, in the discussion ( Lines 537-548, 454-461) , point to  some first steps that might be fruitful along these lines. There are two separate  considerations here: one is that our account is mostly computational and algorithmic,  whereas Akiti’s model is mostly algorithmic and implementational; the second is, as noted by  the reviewer, that our account is model-based, whereas Akiti’s model is model-free (in the  sense of reinforcement learning; RL). These are related - thanks in no small part to the work  from the group including Akiti, we know a lot more about the implementation of model-free  than model-based RL. However, our model-based account does reach additional features of  behavior not captured in Akiti et al.’s model such as bout duration, frequency, and approach  type. Thus, the temptation of unification.

      (6) Line 426

      Related to the previous point, it would be nice to more specifically describe what variable TS  dopamine can represent in the authors' model if possible.

      In the discussion  (Lines 454-461) , we speculate that  TS dopamine could still respond to the  physical salience of the novel object and affect choices by determining the potential cost of  the encountered threat or the prior on the hazard function. For example, perhaps ablating TS  dopamine reduces the hazard priors which leads to faster transition from cautious to  confident approach and longer bout durations, consistent with the optogenetics behavioral  data reported in Akiti et al.

      Reviewer #2 (Recommendations for the authors):

      My guess is simpler versions of the model would not fit the data well. But this does not mean  for example that the mice have probability distortions (CvaR) or that even probabilistic  reasoning and the internal models necessary to support them are acting in the behavioral  context studied by Akiti. So related to the above, I would ask what other models would fit and  would not fit the data? And what does this mean?

      These are good points. Our model provides an approximately normative account of the  animals’ behavior  in terms of what it achieves relative to a utility function. In practice, the  animals could deploy a precompiled model-free policy (which does not rely on probabilistic  computations) that is exactly equivalent to our model-based policy. With the current  experiment, we cannot conclude whether or not the animals are performing the prospective  calculations in an online manner. Of course, the extent to which animals or humans are  performing probabilistic computations online and have internal models are on-going  questions of study.

      Model comparison is difficult because currently we do not know of any other risk-sensitive  exploration models. We cannot directly compare to the model in Akiti et al. since our model  explains additional features of behavior: bout duration, frequency, and approach type.  Indeed, our model is as simple as it can be in the sense with the exception of nCVaR,  removing any of the other parameters makes it difficult to fit some animals in our dataset. In the future, our model could be used to fit other datasets of risk-sensitive exploration and,  ideally,  be compared to other models.

      Explaining why animals avoid the novel object in what the offers call benign environment is a  very tricky issue. In Akiti et al, the readers are not yet convinced that the mice know that this  environment is benign. Being placed in an arena with a novel object presents mice with a  great uncertainty and we do not know whether they treat this as benign. Therefore, the  alternative explanations in this study need to be carefully discussed in lieu of the limitations  of the initial study.

      It is certainly true that it is unclear if the arena is  completely  benign to the animals. However,  the amount of time the animal spends in the center of the arena decreases significantly from  habituation to novelty days. This suggests that the animals avoid the novel object largely  because of the object itself, rather than the potential danger associated with the arena.  Furthermore, the animals are not reported as exhibiting more extreme behaviours such as  freezing. In any case, our account is relative in the sense that we are comparing the time the  animal spends at the object versus elsewhere in the environment, driven by the relative  novelty and relative risk of the environment versus the object. Trying to get more absolute  measures of these quantities would require a richer experimental set-up, for instance with  different degree of habituation or experience of the occurrence of (other) novel objects, in  general.

      We added a short note to the discussion to explain this:

      “Fourth, we modeled the relative amount of time the animal spends at the object versus  elsewhere in the environment which depends on the differential risk in the two states.  However, it is likely the animals avoid the novel object largely because of the object itself,  rather than the potential danger associated with the arena since they spend much less time  at the center of the arena during novelty than habituation days.”

      Figure 2 - how confident are the authors that each mouse differs from y=1? Related to this,  the behavior in Akiti is very noisy and changes across time. I am not sure if the authors fully  describe at what levels their model captures the behavior vs not in a detailed enough  fashion.

      We have performed a random permutation test on the minute-to-minute data. We have  updated Figure 2 so that brave animals that pass the Benjamini–Hochberg procedure y>1 at  level q=0.05 are represented with solid green dots and animals that don’t pass are  represented with hollow dots. 8 out of 11 brave animals passed Benjamini–Hochberg.

      Reviewer #3 (Recommendations for the authors):

      (1) I could not find information in the preprint about code availability. Please consider making  the code public to help others apply these modelling methods.

      We have released code and included the url in the paper in the Methods section.

      (2) Though the manuscript was generally clearly written, there were a number of places  where some additional information or clarification would be useful:

      a) Please define and explain the terms 'tail-behind' and 'tail-exposed' (used to describe  approach bout types) when first used.

      We have added definitions when we first mention these terms:

      “[...] 'tail-behind' (bouts where the animal's nose was closer to the object than the tail for the  entire bout) and 'tail-exposed' (bouts where the animal's tail is closer to the object than the  nose at some point during the bout), associated respectively with cautious risk-assessment  and engagement”

      b) At lines 57-58 when contrasting the 'model-free' account of Akiti et al with the 'model-based' account of the current work, it would be worth clarifying that these terms are  being used in the RL sense rather than e.g. a model-based analysis of the data.  

      We have updated the relevant lines to say “model-free/based reinforcement learning”.

      c) Line 61, the phrase 'the significant long-run approach of timid animals despite having  reached the "avoid" state' is unclear as the 'avoid' state has not been defined.

      We updated the terminology to “avoidance behavior” to be consistent with Akiti et al.  Avoidance refers to the animal routinely avoiding the object and therefore being unable to  learn whether it is safe.

      d) It was not completely clear to me how the coarse-graining of the behaviour was  implemented. Specifically, how were animals assigned to the brave, intermediate, or timid  group, and how were the parameters of the resulting behavioural phases fit?

      Sorry that this was not clear. Section 2.1 explains how the minute-to-minute behavioral data  was coarse-grained and how animal groups were assigned. We have added further  explanation of Figure 2 to the main text:

      “Fig 2 summarizes our categorization of the animals into the three groups: brave,  intermediate, and timid based on the phases identified in the animal's exploratory  trajectories. Timid animals spend no time in confident approach and are plotted in orange at  the origin of Fig 2. Brave animals differ from intermediate animals in that their approach time  during the first ten minutes of the confident phase is greater than the last ten minutes ( steady-state phase). Brave animals are plotted in green above and intermediate animals  are plotted in black below the y=1 line in Fig 2.”

      We also added extra information to outline the goal, and methodology of coarse-graining and  animal grouping:

      “We sought to capture  these qualitative differences (cautious versus confident) as well as  aspects of the quantitative changes in bout durations and frequencies as the animal learns  about their environment. To make this readily possible, we abstracted the data in two ways:

      averaging  bout statistics over time, and clustering the animals into three groups with  operationally distinct behaviors.”

      e) What purpose does the 'retreat' state serve in the BAMDP model (as opposed to  transitioning directly from 'object' to 'nest' states), and why do subjects not pass through it  following 'detect' states?

      Thank you for pointing this out. We have updated Figure 3 to note that the two “detected  states” also point to the “retreat” state. The reviewer is correct that there could be alternative  versions of the state diagram, and the ‘retreat’ state could indeed have been eliminated.  However, we thought that it was helpful to structure the animal’s progress through state  space.

      f) Why was the hazard function parameterised via the mean and SD at each time step rather  than with a parametric form of the mean and SD as a function of time?

      Since the agent can only spend 2, 3, or 4 turns at the object states, we didn’t see a need to  parameterize the mean and SD as a function of time. Doing so is a good solution to scaling  up the hazard function to more time-steps.

      (3) There were also a couple of points that could potentially be usefully touched on in the  discussion:

      a) What, if any, is the relationship between the CVaR objective and distributional RL? They  seem potentially related due to both focussing on quantiles of the outcome distribution.

      We have added a paragraph to the discussion discussing the connection between  distributional RL and CVaR:

      “CVaR is known to come in different flavors in the case of temporally-extended behavior.  Gagne and Dayan (2021) introduces two alternative time-consistent formulations of CVaR:  nested CVaR (nCVaR) and precommitted CVaR (pCVaR). nCVaR and pCVaR both enjoy  Bellman equations which make it possible to compute approximately optimal policies without  directly computing whole distributions of the outcomes. We use nCVaR in this study for its  computational efficiency. There is, of course, great current interest in distributional  reinforcement learning (Bellemare et al., 2023b) which does acquire such whole  distributions, not the least because of prominent observations linking non-linearities in the  response functions of dopamine neurons to methods for learning distributions of outcomes ( Dabney et al., 2020; Masset et al., 2023; Sousa et al., 2023). One functional motivation for  considering entire outcome distributions is the possibility of using them to determine  risk-sensitive policies (Gagne and Dayan, 2021).

      While it is possible to compute CVaR directly from return distributions, Gagne and Dayan  (2021) showed that this can lead to temporally inconsistent policies where the agent  deviates from its original plans (the authors called this the fixed CVaR or fCVaR measure).

      Rather further removed from our model-based methods is work from Antonov and Dayan  (2023), who consider a model-free exploration strategy which exploits full return distributions  to compute the value of perfect information which is used as a heuristic for trying actions  with uncertain consequences. Future works can examine risk-sensitive versions of Antonov  and Dayan (2023)'s computationally efficient model-free algorithm as one solution to the  burdensome computations in our model-based method.”

      b) Why normatively might subjects have non-neutral risk preference as captured by the  CvaR?

      We also added a paragraph to the discussion discussing the advantage of heterogeneity in  risk sensitivity within a population:

      (Reviewer #1 had the same question, see above) “Our data show that there is substantial  variation in the degrees of risk sensitivity across the mice.  Previous works have reported  substantial interpopulation and intrapopulation differences in risk-sensitivity in humans which  depend on gender, age, socioeconomic status, personality characteristics, wealth and culture [...]”

      c) Relevance of the current modelling work to clinical conditions characterised by  dysregulation of risk assesment (e.g. anxiety or PTSD).

      We’ve added a paragraph to the discussion:

      “Inter-individual differences in risk sensitivity are also of critical importance in psychiatry,  reflected in a panoply of anxiety disorders (Butler and Mathews, 1983; Giorgetta et al., 2012;  Maner et al., 2007; Charpentier et al., 2017), along with worry and rumination (Gagne and  Dayan, 2022). Understanding the spectrum of   extreme priors and extreme values of 𝛼  could have therapeutic implications, adding significance to the search for tasks that can  more cleanly separate them.”

      d) Is it surprising to see differences in risk preference (nCVaR) between the familiar object  and novel object condition, given that risk preference might be conceptualised as a trait  rather than a state variable?

      Thank you for raising this point. You are right that we expected risk sensitivity (nCVaR alpha)  to be the same between FONC and UONC animals on average. It is difficult to know if alpha  is higher for FONC than UONC animals due to the non-identifiability between alpha and  hazard priors. We have added this discussion to the paper:

      “This is surprising if we interpret 𝛼 as a trait that is stable through time. Unfortunately, due to  the non-identifiability between 𝛼 and hazard priors, we cannot verify whether 𝛼 is actually  higher for FONC animals than UONC animals.”

    1. Author response:

      The following is the authors’ response to the current reviews.

      Response to Reviewer #3:

      We thank reviewer 3 for spending their valuable time on commenting on our revised paper.

      We would like to reiterate the central conclusion of this work, which appears to have been missed by Reviewer 3. Using a BFP-expressing lineage tracer hPSC line for tracking LMX1A+ midbrain-patterned neural progenitors and their differentiated progeny, we discovered a loss of the LMX1A lineage during pluripotent stem cell differentiation into astrocytes, despite BFP+ neural progenitors were the dominant population at the onset of astrocyte induction.

      Hence, the take-home message of this study is, as summarized in the abstract, ‘ the lineage composition of iPSC-derived astrocytes may not accurately recapitulate the founder progenitor population’ and that one should not take for granted that in vitro/stem cell-derived astrocytes are the descendants of the dominant starting neural progenitors (which is a general assumption in PSC publications as described in the paper and our response to reviewers).

      Please find below our point-by-point response to reviewer comments. We have re-ordered the points according to their relative importance to our main conclusions.

      ‘ the lineage composition of iPSC-derived astrocytes may not accurately recapitulate the founder progenitor population’ and that one should not take for granted that in vitro/stem cell derived astrocytes are the descendants of the dominant starting neural progenitors (which is a general assumption in PSC publications as described in the paper and our response to reviewers).

      Please find below our point-by-point response to their comments. We have re-ordered the points according to their relative importance to our main conclusions.

      …. They used lineage tracing with a LMX1A-Cre/AAVS1-BFP iPSCs line, where the initial expression of LMX1A and Cre allows the long-lasting expression of BFP, yielding BFP+ and BFP- populations, that were sorted when in the astrocytic progenitor expansion. BFP+ showed significantly higher number of cells positive to NFIA and SOX9 than BFP- cells …

      This is a misunderstanding by reviewer 3. As indicated in the first sentence of the second section, BFP- populations used for functional and transcriptomic analysis was not sorted BFP<sup>-</sup> cells, but those derived from unsorted, BFP<sup>+</sup> enriched populations. Our scRNAseq analysis indicated that they were transcriptomically aligned to human midbrain astrocytes. This finding is consistent with the fact that they are derived from midbrain-patterned neural progenitors, presumably minority LMX1A- progenitors.

      Reviewer 3’s comments indicate that they misunderstood the primary aims of our study as a mere functional and transcriptomic comparison of the two astrocyte populations.

      (9) BFP+ cells did not show higher levels of transcripts for LMX1A nor FOXA2. This fact jeopardizes the claim that these cells are still patterned. In the same line, there are not significant differences with cortical astrocytes, indicating a wider repertoire of the initially patterned cells, that seems to lose the midbrain phenotype. Furthermore, common DGE shared by BFP- and BFP+ cells when compared to non-patterned cells indicate that after culture, the pre-pattern in BFP+ cells is somehow lost, and coincides with the progression of BFP- cells.

      The reviewer seems to assume that astrocytes derived from LMX1A+ ventral midbrain progenitors must retain LMX1A expression. We do not take this view and do not claim this in this study. Moreover, we have discussed in the paper that due to a lack of transcriptomic studies of in vivo track regional progenitors (such as LMX1A), it remains unknown whether and to what extent patterning gene expression is maintained in astrocytes of different brain regions.

      Our findings on the lack of LMX1A and FOXA2 in BFP+ astrocytes are supported by several published single-cell transcriptomic studies of human midbrain astrocytes (La Manno et al. 2016; Agarwal et al. 2020; Kamath et al. 2022). We have a paragraph of discussion on this topic in both the original and updated versions of the paper with the relevant publications cited.

      Other points raised by reviewer 3

      (1) It is very intriguing that GFAP is not expressed in late BFP- nor in BFP+ cultures, when authors designated them as mature astrocytes.

      We did not designate our cells as ‘mature’ astrocytes but ‘astrocytes’ based on their global gene expression with the human fetal and adult brain astrocytes as references.

      Moreover, ‘mature’ only appeared once in the paper indicating that our cells lie in between the fetal and adult astrocytes in maturity.

      (2) In Fig. 2D, authors need to change the designation "% of positive nuclei".

      To be corrected in the version of record.

      (3) In Fig. 2E, the text describes a decrease caused by 2APB on the rise elicited by ATP, but the graph shows an increase with ATP+2APB. However, in Fig. 2F, the peak amplitude for BFP+ cells is higher in ATP than in ATP+2APD, which is mentioned in the text, but this is inconsistent with the graph in 2E.

      To be corrected in the version of record.

      (4) The description of Results in the single-cell section is confusing, particularly in the sorted CD49 and unsorted cultures. Where do these cells come from? Are they BFP-, BFP+, unsorted for BFP, or non-patterned? Which are the "all three astrocyte populations"? A more complete description of the "iPSC-derived neurons" is required in this section to allow the reader to understand the type and maturation stage of neurons, and if they are patterned or not.

      As previously reported in the reference cited, CD49 is a novel human astrocyte marker. This is independent of BFP expression. For all three astrocyte populations studied here (BFP+, BFP-, and non-patterned astrocytes), we included both CD49f+ sorted and unsorted samples to account for selection bias caused by FACS. iPSC-derived neurons were included in the sequencing study to provide a reference for cell-type annotation. They were generated following a GABAergic neuron differentiation protocol. However, their maturation stages and/or regional characteristics are not relevant to astrocytes.

      (5) A puzzling fact is that both BFP- and BFP- cells have similar levels of LMX1A, as shown in Fig. S6F. How do authors explain this observation?

      This figure panel shows that LMX1A, LMX1B and FOXA2 are essentially NOT expressed in these astrocytes.

      (6) In Fig. 3B, the non-patterned cells cluster away from the BFP+ and BFP-; on the other hand, early and late BFP- are close and the same is true for early and late BFP+. A possible interpretation of these results is that patterned astrocytes have different paths for differentiation, compared to non-patterned cells. If that can be implied from these data, authors should discuss the alternative ways for astrocytes to differentiate.

      Both BFP+ and BFP- astrocyte are from ventral midbrain patterned neural progenitors, while non-patterned neural progenitors are more akin to that of forebrain. Figure 3B is expected and confirms the patterning effect.

      (7) Fig. 3D shows that cluster 9 is the only one with detectable and coincident expression of both S100B and GFAP expression. Please discuss why these widely-accepted astrocyte transcripts are not found in the other astrocytes clusters. Also, Sox9 is expressed in neurons, astrocyte precursors and astrocytes. Why is that?

      S100B and GFAP are classic astrocyte markers in certain states. We are not relying only on two markers but the genome-wide expression profile as the criteria for astrocytes. As shown in the unbiased reference mapping to multiple human brain astrocyte scRNA-seq datasets, all our astrocyte clusters were mapped with high confidence to human astrocytes.

      SOX9 is an important regulator for astrogenesis, so its expression is expected in precursors (doi.org/10.1016/j.neuron.2012.01.024). In addition, recent studies have uncovered that SOX9 expression is also reported in foetal striatal projection neurons and early postnatal cortical neurons, where SOX9 regulates neuronal synaptogenesis and morphogenesis (dois:10.1016/j.fmre.2024.02.019; 10.1016/j.neuron.2018.10.008). Therefore, the expression of SOX9 in multiple cell types was expected. Instead of using a few selected markers for cell-type annotation, we employed a genomic approach relying on an unbiased reference mapping approach and a combination of various markers to ascertain our annotation results.

      (8) Line 337, Why authors selected a log2 change of 0.25? Typically, 1 or a higher number is used to ensure at least a 2-fold increase, or a 50% decrease. A volcano plot generated by the comparison of BFP+ with BFP- cells would be appropriate. The validation of differences by immunocytochemistry, between BFP+ and BFP-, is inconclusive. The staining is blur in the images presented in Fig. S8C. Quantification of the positive cells, without significant background signal, in both populations is required.

      We used a lenient threshold owing to the following considerations: 1) High FC does not necessarily mean biological relevance, as gene expression does not necessarily translate to protein expression. Therefore, a smaller FC value could also be biologically meaningful. 2) Balance between noise and biological differences. Any threshold was chosen arbitrarily. 3) We are identifying a trend rather than pinpointing a specific set of

      The quality was unfortunately reduced due to restrictions on file size upon submission. A high resolution Fig. S8C is available.

      (10) For the GO analyses, How did authors select 1153 genes? The previous section mentioned 287 genes unique for BFP+ cells. The Results section should include a rationale for performing a wider search for the enriched processes.

      GO enrichment using unique DEGS may not capture the wider landscape of the transcriptomic characteristics of BFP<sup>+</sup> astrocytes. The 287 unique genes were only differentially expressed in BFP<sup>+</sup> astrocytes. However, apart from these 287 genes, other genes among the 1187 DEGs were differentially expressed in BFP<sup>+</sup> astrocytes and in one other population.

      (11) For Fig. 4C and 4D, both p values and the number of genes should be indicated in the graph. I would advise to select the 10 or 15 most significant categories, these panels are very difficult to read. Whereas the listed processes for BFP+ have a relation to Parkinson disease, the ones detected for BFP- cells are related to extracellular matrix and tissue development. Does it mean that BFP+ cells have impaired formation of this matrix, or defective tissue development? This is in contradiction of enhanced calcium responses of BFP+ cells compared to BFP- cells.

      Information on all DEGs, including p values and numbers, is provided in Supplementary data 1-5.

      BFP+ astrocytes do have enrichment for GO terms related to extracellular matrix and tissue development, although not as obvious as BFP- astrocytes. Previous work have shown that both in vitro and in vivo derived astrocytes are functionally heterogeneous, containing functionally distinct subtypes exhibiting different GO enrichment profiles (doi: 10.1016/j.ygeno.2021.01.008; 10.1038/s41598-024-74732-7).

      (12) Both the comparison between midbrain and cortical astrocytes in Fig. S8A, and the volcano plot in S8B do not show consistent changes. For example, RCAN2 in Fig. S8A has the same intensity for cortical and midbrain cells, but is marked as an enriched gene in midbrain in the p vs log2FC graph in Fig. S8B.

      These are integrated analyses of published human datasets. S8A and S8B show the same data in different formats. The differences are better shown in the volcano plot/easier detected by the human eye.

      These are integrated analysis of published human datasets. S8A and S8B are the same data shown in different format. Differences are better shown in volcano plot /easier detected by the human eye. RCAN2 had a higher average expression in the midbrain than in the telencephalon, albeit small, and the difference was statistically significant (as shown in the volcano plot).


      The following is the authors’ response to the original reviews

      Reviewer 1:

      In vitro nature of this work being the fundamental weakness of this paper

      We disagree with this statement. As explained in the provisional response, the aim of this study was to test the validity of a general concept applied in pluripotent stem cell research that pluripotent stem cell-derived astrocytes faithfully represent the lineage heterogeneity of their ancestral neural progenitors and hence preserve the regionality of such progenitors. Our genetic lineage study is justified for addressing this in vitro-driven question. However, we have highlighted the rationale where appropriate in the revised paper.

      If regional identity is not maintained, so what? Don't we already know that this can happen? The authors acknowledge that this is known in the discussion.

      Importance of regional identity: Growing evidence demonstrates the functional heterogeneity of brain astrocytes in health and disease. Therefore, for in vitro disease modeling, it is believed that one should use astrocytes represent the anatomy of disease pathology; for example, midbrain astrocytes for studying dopamine neurodegeneration and Parkinson’s disease. Understanding the dynamics of stem cell-derived astrocytes and identifying astrocyte subtypes is important for their biomedical applications.

      Regional identity change/Discussion: It seems that the reviewer misunderstood the context in which the ‘identity change’ was discussed. The literature referred to (in the Discussion) concerns shifts in regional gene expression in bulk-cultured cells. In the days of pre-single-cell analysis/lineage tracking, one cannot distinguish whether this was due to a change in the transcriptomic landscape in progenies of the same lineage or alterations in lineage heterogeneity, but to interpret at face value as regional identity was not maintained. In the revised paper, we have made an effort to indicate that ‘regional identity’ is used broadly to refer to lineage relationships and/or traits rather than static gene expressioin.

      validation of the markers/additional work

      The scNAseq analysis performed in this study compared the profiles of astrocytes derived from LMX1A+ and LMX1A- ventral midbrain-patterned neural progenitors. Since it is not possible to perform genetic lineage tracking in humans and an analogous mouse lineage tracer line is not available, in vivo validation of these markers with respect to their lineage relationship is not currently feasible. However, we took advantage of abundant single-cell human astrocyte transcriptomic datasets and validated our genes in silico. We also validated the differential expression of selected markers in late BFP+ and BFP- astrocytes using immunocytochemistry, where reliable antibodies are available. The results of the additional analyses are presented in Figure S8 and Supplemental Data 5.

      Knowledge gaps concerning astrocyte development

      Reviewer 1 pointed out a number of knowledge gaps concerning astrocyte development, such as the transcriptomic landscape trajectories of midbrain floor plate cells as they progress towards astrocytes. Indeed, the limited knowledge on regional astrocyte molecule heterogeneity restricts the objective validation of in vitro-derived astrocyte subtypes and the development of novel approaches for their generation in vitro. We agree with the need for in-depth in vivo studies using model organisms, although these are beyond the scope of the current work.

      Reviewer 2:

      (1) The authors argue that the depletion of BFP seen in the unsorted population immediately after the onset of astrogenic induction is due to the growth advantage of the derivatives of the residual LMX1A- population. However, no objective data supporting this idea is provided, and one could also hypothesize that the residual LMX1A- cells could affect the overall LMX1A expression in the culture through negative paracrine regulation.

      We acknowledge the lack of evidence-based explanation for the depletion of BFP+ cells in mixed cultures. We were unable to perform additional experiments because of resource limitations. The design of the LMX1A-Cre/AAVS1-BFP lineage tracer line determines that BFP is expressed irreversibly in LMX1A-expressing cells or their derivatives regardless of their LMX1A expression status. Therefore, the potential negative paracrine regulation of LMX1A by residual LMX1A- cells should not affect cells that have already turned on BFP. We have highlighted the working principles of the LMX1A tracer line in the revised manuscript.

      (2) Furthermore, on line 124 it is stated that: "Interestingly, the sorted BFP+ cells exhibited similar population growth rate to that of unsorted cultures...". In the face of the suggested growth disadvantage of those cells, this statement needs clarification.

      To avoid confusion, we have removed the statement.

      (3) Regarding the fidelity of the model system, it is not clear to me how the TagBFP expression was detected in the BFP+ population supposedly in d87 and d136 pooled astrocytes (Fig S6C) while no LMX1A expression was observed in the same cells (Fig S6F).

      The TagBFP tracer is expressed in the progenies of LMX1A+ cells, regardless of their LMX1A expression status. We have gone through the MS text to ensure that this information has been provided.

      (4) The generated single-cell RNASeq dataset is extremely valuable. However, given the number of conditions included in this study (i.e. early vs late astrocytes, BFP+ vs BFP-, sorted vs unsorted, plus non-patterned and neuronal samples) the resulting analysis lacks detail. For instance, from a developmental perspective and to better grasp the functional significance of astrocytic heterogeneity, it would be interesting to map the identified clusters to early vs late populations and to the BFP status.

      We performed additional bioinformatics analysis, which provided independent support for the relative developmental maturity suggested by functional assays. The additional data are now provided in the revised Figure 3B, C, E.

      Moreover, although comprehensive, Figure S7 is complex to understand given that citations rather than the reference populations are depicted.

      The information provided in the revised Figure S7.

      (5) Do the authors have any consideration regarding the morphology of the astrocytes obtained in this study? None of the late astrocyte images depict a prototypical stellate morphology, which is reported in many other studies involving the generation of iPSC-derived astrocytes and which is associated with the maturity status of the cell.

      The morphology of our astrocytes was not unique to the present study. Many factors may influence the morphology of astrocytes, such as the culture media and supplements used, and maturity status. Based on the functional assays and limited GFAP expression, our astrocytes were relatively immature.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      The study is methodologically solid and introduces a compelling regulatory model. However, several mechanistic aspects and interpretations require clarification or additional experimental support to strengthen the conclusions.

      Strengths:

      (1) The manuscript presents a compelling structural and biochemical analysis of human glutamine synthetase, offering novel insights into product-induced filamentation.

      (2) The combination of cryo-EM, mutational analysis, and molecular dynamics provides a multifaceted view of filament assembly and enzyme regulation.

      (3) The contrast between human and E. coli GS filamentation mechanisms highlights a potentially unique mode of metabolic feedback in higher organisms.

      Weaknesses:

      (1) The mechanism underlying spontaneous di-decamer formation in the absence of glutamine is insufficiently explored and lacks quantitative biophysical validation.

      (2) Claims of decamer-only behavior in mutants rely solely on negative-stain EM and are not supported by orthogonal solution-based methods.

      We thank the reviewer for the summary and noting of the strengths. We agree that the evolutionary divergence of metabolic feedback in GS homologs is a fruitful avenue for future studies. With regard to the weaknesses, the di-decamer in the absence of glutamine only forms under high (higher than physiological) concentrations of enzyme. Our primary evidence for the mutant behavior was the lack of crosslinking (Figure 1E), with supplementary support from the negative stain. In the revised version we will soften the language to say “reduced” rather than “did not support” filament formation.

      Reviewer #2 (Public review):

      The authors set out to resolve the high-resolution structure of a glutamine synthetase (GS) decamer using cryo-EM, investigate glutamine binding at the decamer interface, and validate structural observations through biochemical assays of ATP hydrolysis linked to enzyme activity. Their work sits at the intersection of structural and functional biology, aiming to bridge atomic-level details with biological mechanisms - a goal with clear relevance to researchers studying enzyme catalysis and metabolic regulation.

      Strengths and weaknesses of methods and results:

      A key strength of the study lies in its use of cryo-EM, a technique well-suited for resolving large, dynamic macromolecular complexes like the GS decamer. The reported resolutions (down to 2.15 Å) initially suggest the potential for detailed structural insights, such as side-chain interactions and ligand density. However, several methodological limitations significantly undermine the reliability of the results:

      (1) Cryo-EM data processing: The absence of critical details about B-factor sharpening - a standard step to enhance map interpretability - is a major concern. For high-resolution maps (<3 Å), sharpening is typically applied to resolve side-chain features, yet the submitted maps (e.g., those in Figures 1D, 2D, and supplementary figures) appear unprocessed, with density quality inconsistent with the claimed resolutions. This makes it difficult to evaluate whether observed features (e.g., glutamine binding) are genuine or artifacts of unsharpened data.

      (2) Modeling and density consistency: The structural models, particularly for glutamine binding at the decamer interface, do not align with the reported resolution. The maps shown in Figure 2D and Supplementary Figure S7 lack sufficient density to confidently place glutamine or even surrounding residues, conflicting with claims of 2.15 Å resolution. Additionally, fitting a non-symmetric ligand (glutamine) into a symmetry-refined map requires justification, as symmetry constraints may distort ligand placement.

      (3) Biochemical assay controls: While the enzyme activity assays aim to link structure to function, they lack essential controls (e.g., blank reactions without GS or substrates, substrate omission tests) to confirm that ATP hydrolysis is GS-dependent. The use of TCEP, a reducing agent, is also not paired with experiments to rule out unintended effects on the PK/LDH system, further limiting confidence in activity measurements.

      Achievement of aims and support for conclusions:

      The study falls short of convincingly achieving its goals. The claimed high-resolution structural details (e.g., side-chain densities, ligand binding) are not supported by the provided maps, which lack sharpening and show inconsistencies in density quality. Similarly, the biochemical data do not robustly validate the structural claims due to missing controls. As a result, the evidence is insufficient to confirm glutamine binding at the decamer interface or the functional relevance of the observed structural features.

      Likely impact and utility:

      If these methodological gaps are addressed, the work could make a meaningful contribution to the field. A well-resolved GS decamer structure would advance understanding of enzyme assembly and ligand recognition, while validated biochemical assays would strengthen the link between structure and function. Improved data processing and clearer reporting of validation steps would also make the structural data more reliable for the community, providing a resource for future studies on GS or related enzymes.

      We disagree with the reviewer’s overall assessment.

      With regard to sharpening and resolution: we examined sharpened maps and in a revised version will present additional supplementary figures showing these maps side by side. We note that the resolutions reported are global and that the most interesting features are, of course, in the periphery and subject to conformational and compositional heterogeneity. We will include supplementary figures of core side chain densities that are more like what are expected by the reviewer in the revision. 

      With regard to modeling: the apo filament and turnover filament datasets were handled nearly identically. The additional density is therefore likely not artefactual to the symmetry operator - however, the lower resolution in this region noted by the reviewer is worthy of further exploration. The maps are public and we think this is the most plausible interpretation of the density, which we based primarily on the biochemical data and will include more speculation in the version.

      With regard to the biochemical controls: we point the reviewer to Figure S1, which shows that omission of ammonia or glutamate in the wild-type (tagless) system removes any coupling of the reactions. We will perform the additional controls to publication quality in the revised version along with the TCEP control. We note that the reducing agent is present across all experiments, ruling out an effect on any specific result. The inclusion of TCEP is also very standard in other published uses of the Coupled ATPase assay (e.g. PMID: 31778111 and PMID: 32483380 by our first author)

      Additional context:

      Cryo-EM has transformed structural biology by enabling high-resolution analysis of large complexes, but its success hinges on rigorous data processing and validation steps that are critical to ensuring reproducibility. The challenges highlighted here are not unique to this study; they reflect broader issues in the field where incomplete reporting of methods can obscure the reliability of results. By addressing these points, the authors would not only strengthen their current work but also set a positive example for transparent and rigorous structural biology research.

      All the data is public and the reviewer or anyone is free to reinterpret the maps and models - and we encourage that rather than just an interpretation of our static figures. In addition, we will upload the raw micrograph data for the apo filament and turnover filament datasets to EMPIAR prior to submitting the revision.

      Reviewer #3 (Public review):

      In this manuscript, the authors propose a product-dependent negative-feedback mechanism of human glutamine synthetase, whereby the product glutamine facilitates filament formation, leading to reduced catalytic specificity for ammonia. Using time-resolved cryo-EM, the authors demonstrate filament formation under product-rich conditions. Multiple high-quality structures, including decameric and di-decameric assemblies, were resolved under different biochemical states and combined with MD simulations, revealing that the conformational space of the active site loop is critical for the GS catalysis. The study also includes extensive steady-state kinetic assays, supporting the view that glutamine regulates GS assembly and its catalytic activity. Overall, this is a detailed and comprehensive study. However, I would advise that a few points be addressed and clarified.

      (1) In Figure 2D and Supplementary Figure 7, the extra density observed between the two decamers does not appear to have the defining features of a glutamine. A less defined density may be expected given the nature of the complex, but even though mutagenesis assays were performed to support this assignment, none of these results constitutes direct and conclusive evidence for glutamine binding at this site. I would thus suggest showing the density maps at multiple contour thresholds to allow readers to also better evaluate the various small molecules under turnover conditions that cannot be well fitted based on this density map, helping to provide a more balanced interpretation of the results.

      (2) On the same point regarding the density for the enzyme under turnover conditions, more details should be provided about the symmetry expansion and classification performed, and also show the approximate ratio of reconstructions that include this density. Did you try symmetry expansion followed by focused classification, especially on the interface region?

      (3) The interface between the two decamers of the model needs to be double-checked and reassigned, especially for the residues surrounding the fitted glutamine. For example, the side chain of the Lys residue shown in the attached figure is most likely modeled incorrectly.

      We thank the reviewer for the feedback. As noted above, we will include supplemental figures that show maps at multiple thresholds and sharpening schemes. We noted in the manuscript and above that our interpretation here is based on integrating biochemical evidence alongside the density and will make that even more clear in the revised manuscript. The filaments +/- the putative glutamine density were processed nearly identically, but we will attempt various schemes of focused classification/symmetry expansion in the revision as well. However, we point out that there is extensive averaging there that makes modeling a bit trickier than expected given the global resolution.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer 1:

      We thank Reviewer 1 for the discussion on the possible causes of ERPs and their relevance for the interpretation of changes in aperiodic activity. We have changed the relevant paragraph to read as follows: For example, ERPs may reflect changes in periodic activity, such as phase resets (Makeig et al., 2002), or baseline shifts (Nikulin et al., 2007). ERPs may also capture aperiodic activity, either in the form of evoked transients triggered by an event (Shah et al., 2004) or induced changes in the ongoing background signal. This has important implications: evoked transients can alter the broadband spectrum without implying shifts in ongoing background activity, whereas induced aperiodic changes may signal different neural mechanisms, such as shifts in the excitation-inhibition balance (Gao et al., 2017).

      Reviewer 1 argued that a time point-by-time point comparison between ERPs and aperiodic parameters may not be the most appropriate approach, since aperiodic time series have lower temporal resolution than ERPs. Reviewer suggested comparing their topographies instead. We had already done this in the first version of the paper (see Fig. S7: https://elifesciences.org/reviewedpreprints/101071v1#s10). However, in the second version, we opted to use linear mixed models for each channel-time point in order to maintain consistency with the other analyses in the paper (e.g. the comparison between FOOOF parameters and baseline-corrected power).

      Nevertheless, we repeated the topographic correlations as in the first version, and the results are shown below. Correlations were computed for each time point, subject and condition, and then averaged across these dimensions for visualisation. The pattern differs from that of the linear mixedmodel results (see Fig. S14), with notable correlations appearing after ~0.5 s for the exponent and after ~1.0 s for the offset. Still, the correlations remain low, suggesting that aperiodic parameters and ERPs encode different information (at least in this dataset).

      Author response image 1.<br />

      Additionally, to control for the effect of smearing we have performed the same linear mixed model analysis as in Fig. S14 on low-pass filtered ERPs (with cut-off 10 Hz), and the results were largely similar as in Fig. S14.

      Reviewer 1 discussed two possible explanations for the observed correlations between baselinecorrected power and FOOOF parameters (Figure 4): “The correlation between the exponent and lowfrequency activity could be of either direction: low frequency power changes could reflect 1/f shifts, or exponent estimates might be biased by undetected delta/theta activity. I think that one other piece of evidence /…/ to intuitively highlight why the latter is more likely is the /…/ decrease at high ("transbeta") frequencies, which suggests a rotational shift /../.” We agree with the interpretation that lowfrequency power changes in our data primarily reflect 1/f shifts. However, we are uncertain about the reviewer’s statement that the “latter” explanation (i.e., bias in exponent estimates due to delta/theta activity) is more likely. Given the context, we believe the reviewer may have intended to say the “former” explanation is more likely.

      We agree with the reviewers' observation that rhythmicity, as estimated using the pACF, can be independent of power (Myrov et al., 2024, Fig. 1). However, it seems that in real (non-simulated) datasets, the pACF and power spectral density (PSD) are often moderately correlated (e.g. Myrov et al., 2024, Fig. 5).

      Reviewer 1 asked whether we had examined aperiodic changes in the data before and after subtracting the response-locked ERPs. We did not carry out this extra analysis as, as the reviewer suggests, it would have been excessive – the current version of the paper already contains more than 60 figures. As mentioned in the manuscript, we acknowledge the possibility that response-locked ERPs contribute to the second aperiodic component. However, due to the weak correlation between reaction times and aperiodic activity, the presence of both components throughout the entire epoch (in at least the first and third datasets) and the distinct differences between the ERPs and the aperiodic activity in the different conditions (see Fig. 8 vs. Fig. S13), we cannot conclusively determine whether the second aperiodic component is directly related to motor responses. Finally, we agree with the reviewer that the distribution of the response-locked ERP more closely resembles the frontocentral (earlier) aperiodic component than the later post-response component. We have amended the relevant paragraph in the Discussion to include these observations. ”While it is possible that response-related ERPs contributed to the second aperiodic component, several observations suggest otherwise: both aperiodic components were present throughout the entire epoch, differences between conditions diverged between ERPs and aperiodic activity (compare Figure 8 and Figure S16), and the associations with reaction times were weak. Moreover, the distribution of the response-locked ERP qualitatively resembled the earlier frontocentral aperiodic component more than the later post-response component. Taken together, these findings suggest that ERPs and aperiodic activity capture distinct aspects of neural processing, rather than reflecting the same underlying phenomenon.”

      We agree with Reviewer 1 that our introduction of aperiodic activity was abrupt, and that the term 'aperiodic exponent' required definition. We have now defined it as the spectral steepness in log–log space (i.e. the slope), and have added a brief explanatory sentence to the introduction.

      Reviewer 1 noted that the phrase 'task-related changes in overall power' could be misinterpreted as referring to total (broadband) power, and recommended that we specify a frequency range. We agree, so we have replaced 'overall power' with 'spectral power within a defined frequency range'.

      We agree with Reviewer 1 that the way we worded things in the Discussion section regarding alpha activity and inhibitory processes was awkward and could easily be misread. We have rephrased the sentences and added a brief explanation to avoid implying a direct link between alpha attenuation and neural inhibition.

      Furthermore, based on the reviewer’s suggestion, we added a brief comment in the Discussion section (Theoretical and methodological implications) on theoretical perspectives regarding the interaction between age and aperiodic activity.

      Reviewer 1 suggested including condition as a fixed effect in order to examine whether the relationship between FOOOF parameters and baseline-corrected power is modulated by condition. Specifically, the reviewer proposed changing our model from

      baseline_corrected_power ~ 1 + fooof_parameter + (1|modality) + (1|nback) + (1|stimulus) + (1|subject)

      to

      baseline_corrected_power ~ 1 + fooof_parameter + modality*nback *stimulus + (1|subject)

      While we appreciate this suggestion, we believe that including design variables as fixed effects would confound the interpretation of (marginal) R² as a measure of the association between FOOOF parameters and baseline-corrected power. Our primary question in this analysis was about the fundamental relationship between these measures, not how experimental conditions moderate this relationship.

      To address the reviewer's concern regarding condition-specific effects, we conducted separate analyses for each condition using a simpler model:

      baseline_corrected_power ~ 1 + fooof_parameter + (1|subject)

      The results (now included in the Supplement, Fig. S4–S6) show generally smaller effect sizes compared to our original random-effects model, with notable differences between conditions. The 2-back conditions, particularly the non-target trials, exhibited the weakest associations. Despite these differences, the overall patterns remained consistent with our original findings: exponent and offset exhibited positive associations at low frequencies (delta, theta) and negative associations at higher frequencies (beta, low gamma), while periodic activity correlated substantially with baselinecorrected power in the alpha, beta, and gamma ranges.

      However, this condition-specific approach has important limitations. With only 47 subjects per condition, the statistical power is insufficient for stable correlation estimates (Schönbrodt & Perugini, 2013; https://doi.org/10.1016/j.jrp.2013.05.009). This likely explains why the effects are smaller and less stable effects than in our original model, which uses the full dataset's power while appropriately accounting for condition-related variance through random effects. Since these additional analyses do not alter our primary conclusions, we have included them in the Supplement for completeness and made a minor change in the Discussion section.

      Reviewer 1 asked what channels are lines on Figure 9 based on. As stated in the Methods section, “We fitted models in a mass univariate manner, that is for each channel, frequency (where applicable), and time point separately. /…/ For the purposes of visualisation, p-values were averaged across channels (for heatmaps or lines) or across time (for topographies).” Therefore, the lines and heatmaps apply to all channels.

      Reviewer 2:

      We would like to thank reviewer 2 for their detailed explanation of the expected behaviour of the specparam algorithm. We have added the following explanation to the Methods section:

      Importantly, as noted by the reviewer, this behaviour reflects an explicit design choice of the algorithm: to avoid overfitting ambiguous peaks at the edges of the spectrum, FOOOF excludes peaks that are too close to the boundaries. This exclusion is controlled by the _bw_std_edge parameter, which defines the distance that a peak must be from the edge in order to be retained (in units of standard deviation; set to 1.0 by default). Therefore, although the algorithm is functioning as intended, users should be careful when interpreting aperiodic parameters in datasets where lowfrequency oscillatory activity might be expected.

      In line with the reviewer’s suggestion we have added a version of specparam to the paper.

      We thank reviewer 2 for pointing out two studies that used a time-resolved approach to spectral parameterisation. We have updated the text accordingly:

      Although a similar approach has been used to track temporal dynamics in sleep and resting state (e.g., Wilson et al., 2022; Ameen et al., 2024), as well as in task-based contexts (e.g., Barrie et al., 1996; Preston et al., 2025), its specific application to working memory paradigms remains underexplored.

      Reviewer 3:

      Reviewer 3 notes that the revised manuscript feels less intriguing than the original version. While we understand this concern, we believe this difference arises from a misalignment in expectations regarding the scope and purpose of our study. We think the reviewer is interpreting our work as focusing on whether theta activity is elicited in a paradigm that reliably produces theta oscillations. In contrast, our study is framed around a working memory task in which, based on prior literature, we expected to observe theta activity but instead found an absence of theta spectral peaks in almost all participants. Note that the absence of theta is already noteworthy in itself, given that theta oscillations are believed to play a crucial role in working memory.

      Importantly, Van Engen et al. (2024) have recently reported similar findings:

      ”While we did not observe load-dependent aperiodic changes over the frontal midline, we did reveal the possibility that previous frontal midline theta results that do not correct for aperiodic activity likely do not reflect theta oscillations. /…/ While our results do not invalidate previous research into extracranial theta oscillations in relation to WM, they challenge popular and widely held beliefs regarding the mechanistic role for theta oscillations to group or segregate channels of information”.

      From this perspective, we maintain that the following statements are still justified:

      “substantial portion of the changes often attributed to theta oscillations in working memory tasks may be influenced by shifts in the spectral slope of aperiodic activity”

      "Note that although no prominent oscillatory peak in the theta range was observed at the group level, and some of this activity could potentially fall within the delta range, similar lowfrequency patterns have often been referred to as 'theta' in previous work, even in the absence of a clear spectral peak"

      These formulations are intended to emphasize existing interpretations of changes in low-frequency power as theta oscillations in related research.

      Next, Reviewer 3 pointed out that “spectral reflection (peak?) in spectral power plot does not imply that an event is repeating (i..e. oscillatory).” We agree with the reviewer that not every spectral peak implies a true oscillation. To address this, we complemented the power analyses with a measure of rhythmicity (phase autocorrelation function, pACF) after the first round of reviews, and the pACF results were largely similar to those for periodic activity. These results suggest that, in our case, periodic activity is indeed largely oscillatory.

      However, we do agree with the reviewer that the term “oscillatory” is not interchangeable with “periodic”. To address this, we reviewed the paper for all appearances of “oscillations”, “oscillatory” and related terms, and replaced them with “power”, “spectral” or “periodic activity” where appropriate (all changes are marked in red in the latest version of the manuscript).

      Examples of corrections:

      Changes in aperiodic activity appear as low-frequency oscillations in baseline-corrected time-frequency plots à low-frequency power

      “The periodic component includes only the parameterised oscillatory peak” à spectral peak

      “FOOOF decomposition may miss low-frequency oscillations near the edges of the spectrum” à low-frequency peaks

      We disagree with the reviewer’s assertion that the subtitle “Aperiodic parameters are largely independent of oscillatory activity” is misleading for a methods oriented paper. Namely, the full subtitle is “Rhythmicity analysis reveals aperiodic parameters are largely independent of oscillatory activity”. Since rhythmicity is a phase-based measure that requires repeating dynamics and is therefore indicative of oscillations, we believe this phrasing is technically accurate.

      Finally, we would like to emphasise our contribution once again. Our analyses of rhythmicity, spectrally parameterised power, and baseline-corrected power offer different perspectives on the data. Each of these analyses may lead to different interpretations, but performing all of them on the same data provides a more comprehensive insight into what is actually going on in the data.

      Our findings demonstrate that conclusions drawn from a single analytical approach may be incomplete or misleading. For example, as we discuss in the paper, many studies examine thetagamma coupling in scalp EEG during n-back tasks without first establishing whether theta activity genuinely oscillates (e.g. Rajji et al., 2016). The absence of true theta oscillations would undermine the validity of such analyses. Our multifaceted approach provides researchers with a systematic framework for validating oscillatory assumptions before proceeding with more complex analyses.

    1. Author response:

      Reviewer #1 (Public review):

      The authors tried to quantify the difference between human complex traits by calculating genetic overlap scores between a pair of traits. Sherlock-II was devised to integrate GWAS with eQTL signals. The authors claim that Sherlock-II is superior to the previous version (robustness, accuracy, etc). It appears that their framework provides a reasonable solution to this important question, although the study needs further clarification and improvements.

      (1) Sherlock-II incorporates GWAS and eQTL signals to better quantify genetic signals for a given complex trait. However, this approach is based on the hypothesis that "all GWAS signals confer association to complex trait via eQTL", which is not true (PMID: 37857933). This should be acknowledged (through mentioning in the text) and incorporated into the current setup (through differential analysis - for example, with or without eQTL signals, or with strong colocalization only). 

      The reviewer is correct that in this version of the tool, we focused on SNPs with effect on gene expression, as the majority of the SNPs identified by GWASs are non-coding SNPs. In the future improvement, we should also include coding SNPs that change the amino acid sequence of genes. We will discuss this point more in the revised manuscript.

      (2) When incorporating eQTL, why did the authors use the top p-value tissues for eQTL? This approach seems simpler and probably more robust. But many eQTLs are tissue-specific. Therefore, it would also be important to know if eQTLS from appropriate tissues were incorporated instead. 

      This is a simple scheme to incorporate eQTL data from multiple tissues, assuming that the tissue that gives the strongest association is most relevant, or mainly mediates the effect from the SNP to the phenotype. This is a reasonable approach given that the tissues of origin for most of the phenotypes are unknown. In the future improvement, we should incorporate eQTL data from the appropriate tissue(s) if that is known.

      (3) One of the main examples is the novel association between Alzheimer's disease and breast cancer. Although the authors provided a molecular clue underlying the association, it is still hard to comprehend the association easily, as the two diseases are generally known to be exclusive to each other. This is probably because breast cancer GWAS is performed for germline variants and does not consider the contribution of somatic variants. 

      This is due to one of the limitations of the current algorithm: no direction of association is predicted explicitly. It could be that increasing the expression of a gene reduced the risk of one disease but increase the risk of another. Currently we have to analyze the details of the SNPs to infer direction once overlapping genes are found. This needs improvement in the future.  

      (4) It would help readers understand the story better if a summary figure of the entire process were provided. The current Figure 1 does not fulfil that role. 

      We plan to incorporate reviewer's suggestion in the revised manuscript.

      (5) Figure 2 is not very informative. The readers would want to know more quantitative information rather than a heatmap-style display. Is there directionality to the relationship, or is it always unidirectional? 

      We will consider a different presentation in the revised manuscript.

      (6) In Figure 3, readers may want to know more specific information. For example, what gene signals are really driving the hypoxia signal in Alzheimer's disease vs breast cancer? And what SNP signals are driving these gene-level signals? 

      We will add these information in the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      The authors introduce a gene-level framework to detect shared genetic architecture between complex traits by integrating GWAS summary statistics with eQTL data via a new algorithm, Sherlock-II, which aggregates signals from multiple (cis/trans) eSNPs to produce gene-phenotype p-values. Shared pathways are identified with Partial-Pearson-Correlation Analysis (PPCA).

      Strengths:

      The authors show the gene-based approach is complementary and often more sensitive than SNP-level methods, and discuss limitations (in terms of no directionality, dependence on eQTL coverage).

      Weaknesses:

      (1) How do the authors explain data where missing tissues or sparse eQTL mapping are available? Would that bias as to which genes/traits can be linked and may produce false negatives or tissue-specific false positives?

      Missing tissues or sparse eQTL certainly can produce false negatives as the signals linking the two phenotypes are simply not captured in the data. It is less likely to produce false positives as long as the statistical test is well controlled.   

      (2) Aggregating SNP-level signals into gene scores can be confounded by LD; for example, a nearby causal variant for a different gene or non-expression mechanism may drive a gene's score, producing spurious gene-trait links. How do the authors prevent this? 

      When there are multiple SNPs in LD with multiple genes nearby, it is generally difficult to map the causal SNP and the causal gene it affected, and thus there will be spurious gene-trait links. When we calculate the global similarity based on the gene-trait association profiles,  we tried to control this by simulating with random GWASs that have the same power as the real GWAS and preserve the LD structure, as the spurious links will also be present in the simulated data (but may appear in different loci) that are used to calibrate the statistical significance. 

      (3) How the SNPs are assigned to genes would affect results, this is because different choices can change which genes appear shared between traits. The authors can expand on these. 

      We assign SNPs to genes based on their strongest eQTL association from the available data. Improvement can be made if the relevant tissues for a trait are known (see response to Reviewer 1 above).

      (4) Many reported novel trait links remain speculative without functional or orthogonal validation (e.g., colocalization, perturbation data). Thus, the manuscript's claims are inconclusive and speculative. 

      We agree with the reviewer that the reported trait links are speculative, and they should be treated as hypotheses generated from the computational analyses. To truly validate some of these proposed relationships, deeper functional analyses and experimental tests are needed.

      (5) It would be best to run LD-aware colocalization and power-matched simulations to check for robustness. 

      We agree more control on LD and power-matched simulations will be important for testing the robustness of the predictions.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this review, the author covered several aspects of the inflammation response, mainly focusing on the mechanisms controlling leukocyte extravasation and inflammation resolution.

      Strengths:

      This review is based on an impressive number of sources, trying to comprehensively present a very broad and complex topic.

      Weaknesses:

      (1) This reviewer feels that, despite the title, this review is quite broad and not centred on the role of the extracellular matrix.

      (2) The review will benefit from a stronger focus on the specific roles of matrix components and dynamics, with more informative subheadings.

      (3) The macrophage phenotype section doesn't seem well integrated with the rest of the review (and is not linked to the ECM).

      (4) Table 1 is difficult to follow. It could be reformatted to facilitate reading and understanding

      (5) Figure 2 appears very complex and broad.

      (6) Spelling and grammar should be thoroughly checked to improve the readability.

      This review focuses on the whole extravasation journey of leukocyte and highlights involvement of extracellular matrix (ECM) in multiple phases of the process. ECM may exert their roles either as a collective structure or as individual components. In the revision, for those functions involving specific matrix components, we will emphasize the matrix components and incorporate this information to subheadings as suggested. The parts of macrophage phenotype (Section 10-11) are included for its pivotal roles on deciding the tissue fate following inflammation (ie. to resolve / to regenerate damages incurred or to sustain inflammation), which is an important aspect of this review. ECM could modify macrophage phenotypes either directly (section 10) or indirectly via modulations of tissue stiffness or other cell types like fibroblasts (section 9). However, as pointed out by other reviewers as well, we acknowledge that Section 11 does not integrate well enough to the rest of the review. We plan to reorganize this part and to emphasize its link to ECM during the revision for better integration. We will reformat Table 1 for easier comprehension. We will consider restructuring Figure 2, which outlines various events influencing tissue decision of resolution/inflammation, perhaps by breaking up into two separate figures, to better focus the message. We will also check the language to improve readability.

      Reviewer #2 (Public review):

      Summary:

      The manuscript is a timely and comprehensive review of how the extracellular matrix (ECM), particularly the vascular basement membrane, regulates leukocyte extravasation, migration, and downstream immune function. It integrates molecular, mechanical, and spatial aspects of ECM biology in the context of inflammation, drawing from recent advances. The framing of ECM as an active instructor of immune cell fate is a conceptual strength.

      Strengths:

      (1) Comprehensive synthesis of ECM functions across leukocyte extravasation and post-transmigration activity.

      (2) Incorporation of recent high-impact findings alongside classical literature.

      (3) Conceptually novel framing of ECM as an active regulator of immune function.

      (4) Effective integration of molecular, mechanical, and spatial perspectives.

      Weaknesses:

      (1) Insufficient narrative linkage between the vascular phase (Sections 2-6) and the in-tissue phase (Sections 7-10).

      (2) Underrepresentation of lymphocyte biology despite mention in early sections.

      (3) The MIKA macrophage identity framework is only loosely tied to ECM mechanisms.

      (4) Limited discussion of translational implications and therapeutic strategies.

      (5) Overly dense figure insets and underdeveloped links between ECM carryover and downstream immune phenotypes.

      (6) Acronyms and some mechanistic details may limit accessibility for a broader readership.

      We will add a transition paragraph between Section 6 and Section 7 to provide a narrative that the extravasation processes affect downstream leukocyte functions. While lymphocytes follow a similar extravasation principle, their in-tissue activities differ from innate leukocytes. We will thus include discussion of lymphocyte-ECM crosstalk to Section 8 and/or 9 in the revision. We will restructure Section 11 and Figure 3 to better integrate to the rest of the review: In the current manuscript, we merely describe the capability of the MIKA framework to describe identity of any tissue macrophages and thus the framework could serve as a roadmap to facilitate identity normalization of pathological macrophages. We plan, in the revision, by employing the MIKA framework, to discuss and demonstrate linkage between macrophage identities and expression/production of modulators to functional ECM effectors described in Section 8-9. Regarding the comment of limited discussion of translational implications / therapeutic strategies, we will try to enrich this aspect throughout the manuscript where appropriate, in addition to the existing ones (eg. line 293-297; 388-391; 460-463; 512-517) We will also revise figure structure in general to avoid too dense information and to improve clarity. We will consider to provide a glossary explaining specialized terms to expand readership accessibility.

      Reviewer #3 (Public review):

      Summary & Strengths:

      This review by Yu-Tung Li sheds new light on the processes involved in leukocyte extravasation, with a focus on the interaction between leukocytes and the extracellular matrix. In doing so, it presents a fresh perspective on the topic of leukocyte extravasation, which has been extensively covered in numerous excellent reviews. Notably, the role of the extracellular matrix in leukocyte extravasation has received relatively little attention until recently, with a few exceptions, such as a study focusing on the central nervous system (J Inflamm 21, 53 (2024) doi.org/10.1186/s12950-024-00426-6) and another on transmigration hotspots (J Cell Sci (2025) 138 (11): jcs263862 doi.org/10.1242/jcs.263862). This review synthesizes the substantial knowledge accumulated over the past two decades in a novel and compelling manner.

      The author dedicates two sections to discussing the relevant barriers, namely, endothelial cell-cell junctions and the basement membrane. The following three paragraphs address how leukocytes interact with and transmigrate through endothelial junctions, the mechanisms supporting extravasation, and how minimal plasma leakage is achieved during this process. The subsequent question of whether the extravasation process affects leukocyte differentiation and properties is original and thought-provoking, having received limited consideration thus far. The consequences of the interaction between leukocytes and the extracellular matrix, particularly regarding efferocytosis, macrophage polarization, and the outcome of inflammation, are explored in the subsequent three chapters. The review concludes by examining tissue-specific states of macrophage identity.

      Weaknesses:

      Firstly, the first ten sections provide a comprehensive overview of the topic, presenting logical and well-formulated arguments that are easily accessible to a general audience. In stark contrast, the final section (Chapter 11) fails to connect coherently with the preceding review and is nearly incomprehensible without prior knowledge of the author's recent publication in Cell. Mol. Life Sci. CMLS 772 82, 14 (2024). This chapter requires significantly more background information for the general reader, including an introduction to the Macrophage Identity Kinetics Archive (MIKA), which is not even introduced in this review, its basis (meta-analysis of published scRNA-seq data), its significance (identification of major populations), and the reasons behind the revision of the proposed macrophage states and their further development. Secondly, while the attempt to integrate a vast amount of information into fewer figures is commendable, it results in figures that resemble a complex puzzle. The author may consider increasing the number of figures and providing additional, larger "zoom-in" panels, particularly for the topics of clot formation at transmigration hotspots and the interaction between ECM/ECM fragments and integrins. Specifically, the color coding (purple for leukocyte α6-integrins, blue for interacting laminins, also blue for EC α6 integrins, and red for interacting 5-1-1 laminins) is confusing, and the structures are small and difficult to recognize.

      We agree with and appreciate the specific and helpful suggestions by the reviewer. During the revision, we will provide the requested background description of MIKA to enhance accessibility of general readership. As pointed out by other reviewers, since this part (Section 11) is less well-integrated to the rest of the review, we will restructure this part by linking tissue macrophage identities under MIKA framework to modulation of functional ECM effectors described in previous sections (Section 8-9). We acknowledge the current figure organization might be overly information-dense and will consider breaking down the contents to multiple figures. The size and color-coding issues will also be addressed.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work aims to elucidate the molecular mechanisms affected in hypoxic conditions, causing reduced cortical interneuron migration. They use human assembloids as a migratory assay of subpallial interneurons into cortical organoids and show substantially reduced migration upon 24 hours of hypoxia. Bulk and scRNA-seq show adrenomedullin (ADM) up-regulation, as well as its receptor RAMP2, confirmed atthe protein level. Adding ADM to the culture medium after hypoxic conditions rescues the migration deficits, even though the subtype of interneurons affected is not examined. However, the authors demonstrate very clearly that ineffective ADM does not rescue the phenotype, and blocking RAMP2 also interferes with the rescue. The authors are also applauded for using 4 different cell lines and using human fetal cortex slices as an independent method to explore the DLXi1/2GFP-labelled iPSC-derived interneuron migration in this substrate with and without ADM addition (after confirming that also in this system ADM is up-regulated). Finally, the authors demonstrate PKA-CREB signalling mediating the effect of ADM addition, which also leads to up-regulation of GABAreceptors. Taken together, this is a very carefully done study on an important subject - how hypoxia affects cortical interneuron migration. In my view, the study is of great interest.

      Strengths:

      The strengths of the study are the novelty and the thorough work using several culture methods and 4 independent lines.

      Weaknesses:

      The main weakness is that other genes regulated upon hypoxia are not confirmed, such that readers will not know until which fold change/stats cut-off data are reliable.

      Reviewer #2 (Public review):

      Summary

      The manuscript by Puno and colleagues investigates the impact of hypoxia on cortical interneuron migration and downstream signaling pathways. They establish two models to test hypoxia, cortical forebrain assembloids, and primary human fetal brain tissue. Both of these models provide a robust assay for interneuron migration. In addition, they find that ADM signaling mediates the migration deficits and rescue using exogenous ADM.

      Strengths:

      The findings are novel and very interesting to the neurodevelopmental field, revealing new insights into how cortical interneurons migrate and as well, establishing exciting models for future studies. The authors use sufficient iPSC lines including both XX and XY, so the analysis is robust. In addition, the RNAseq data with re-oxygenation is a nice control to see what genes are changed specifically due to hypoxia. Further, the overall level of validation of the sequencing data and involvement of ADM signaling is convincing, including the validation of ADM at the protein level. Overall, this is a very nice manuscript.

      Weaknesses:

      I have a few comments and suggestions for the authors. See below.

      Reviewer #3 (Public review):

      Summary:

      The authors aimed to test whether hypoxia disrupts the migration of human cortical interneurons, a process long suspected to underlie brain injury in preterm infants but previously inaccessible for direct study. Using human forebrain assembloids and ex vivo developing brain tissue, they visualized and quantified interneuron migration under hypoxic conditions, identified molecular components of the response, and explored the effect of pharmacological intervention (specifically ADM) on restoring the migration deficits.

      Strengths:

      The major strength of this study lies in its use of human forebrain assembloids and ex vivo prenatal brain tissue, which provide a direct system to study interneuron migration under hypoxic conditions. The authors combine multiple approaches: long-term live imaging to directly visualize interneuron migration, bulk and single-cell transcriptomics to identify hypoxia-induced molecular responses, pharmacological rescue experiments with ADM to establish therapeutic potential, and mechanistic assays implicating the cAMP/PKA/pCREB pathway and GABA receptor expression in mediating the effect. Together, this rigorous and multifaceted strategy convincingly demonstrates that hypoxia disrupts interneuron migration and that ADM can restore this defect through defined molecular mechanisms.

      Overall, the authors achieve their stated aims, and the results strongly support their  conclusions. The work has a significant impact by providing the first direct evidence of hypoxia-induced interneuron migration deficits in the human context, while also nominating a candidate therapeutic avenue. Beyond the specific findings, the methodological platform - particularly the combination of assembloids and live imaging - will be broadly useful to the community for probing neurodevelopmental processes in health and disease.

      Weaknesses:

      The main weakness of the study lies in the extent to which forebrain assembloids

      recapitulate in vivo conditions, as the migration of interneurons from hSO to hCO does not fully reflect the native environment or migratory context of these cells. Nevertheless, this limitation is tempered by the fact that the work provides the first direct observation of human interneuron migration under hypoxia, representing a major advance for the field. In addition, while the transcriptomic analyses are valuable and highlight promising candidates, more in-depth exploration will be needed to fully elucidate the molecular mechanisms governing neuronal migration and maturation under hypoxic conditions.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should examine if all cortical interneurons are affected by ADM or only subtypes (Parvalbumin/Somatostatin).

      We thank the reviewer for raising this important question. In our study, we utilized the Dlx1/2b::eGFP reporter to broadly label cortical interneurons; however, this system does not distinguish specific interneuron subtypes. To address this, in the revised version of the manuscript we will use the single-cell RNA sequencing data and immunostainings to provide this information. Based on previous analyses from Birey et al (Cell Stem Cell, 2022), we expect interneurons within assembloids to express mostly calbindin (CALB2) and somatostatin (SST) at this in vitro stage of development; parvalbumin subtype appears later based on data from Birey et al (Nature, 2017) and more recently from Varela et al, (bioRxiv, 2025).

      In parallel, we will analyze available scRNA-seq data from developing human primary brain tissue a similar age as the one used in the manuscript, and check whether these subtypes of interneurons are similar to the ones within assembloids.

      (2) The authors should test more candidates from their bulk RNA-seq data with different fold changes for regulation after hypoxia, to allow the reader to judge at which cut-off the DEGs may be reproducible. This would make this database much more valuable for the field of hypoxia research.

      We appreciate the reviewers’ thoughtful suggestion. In addition to the bulk RNA-seq analysis, we did validate several upregulated hypoxia-responsive genes with varying fold changes by qPCR; these include PDK1, PFKP, VEGFA (Figure S1). 

      We go agree that in-depth investigation of specific cut-offs would be interesting, however, this could be the focus of a different manuscript.

      Reviewer #2 (Recommendations for the authors):

      (1) Can the authors comment on the possibility of inflammatory response pathways being activated by hypoxia? Has this been shown before? While not the focus of the manuscript, it could be discussed in the Discussion as an interesting finding and potential involvement of other cells in the Hypoxic response.

      We thank the reviewer this important comment about inflammation. Indeed, hypoxia has been shown to activate the inflammatory response pathways. In various studies, it was found that HIF-1a can interact with NF-κB signaling, leading to the upregulation of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α (Rius et al., Cell, 2008; Hagberg et al., Nat Rev Neurol, 2015).

      In our transcriptomics data (Figure 2D), and to the reviewers’ point, we identified enrichment of inflammatory signaling response following the hypoxic exposure. Since hSO at the time of analyses do contain astrocytes, we think these glia contribute to the observed pro-inflammatory changes. Based on these results and because ADM is known to have strong anti-inflammatory properties, the effects of ADM on hypoxic astrocytes should be investigated in future studies focused on hypoxia-induced inflammation. In the revision, we will address this comment in the discussion section and cite the appropriate papers.

      (2) Could the authors comment on the mechanism at play here with respect to ADM and binding to RAMP2 receptors - is this a potential autocrine loop, or is the source of ADM from other cell types besides inhibitory neurons? Given the scRNA-seq data, what cell-to-cell mechanisms can be at play? Since different cells express ADM, there could be different mechanisms in place in ventral vs dorsal areas.

      Based on our scRNA-seq data in hSOs showing significant upregulation of ADM expression in astrocytes and progenitors, we speculate that the primary mechanism is likely to involve paracrine interactions. However, we cannot exclude autocrine mechanisms with the included experiments. Dissecting these interactions in a cell-type specific manner could be an important focus for future ADM-related studies.

      To address the question about the possible different mechanisms in ventral versus dorsal areas, in the revision we will plot and include in the figures the data about the cell-type expression of ADM and its receptors in hCOs.

      (3) For data from Figure 6 - while the ELISA assays are informative to determine which pathways (PKA, AKT, ERK) are active, there is no positive control to indicate these assays are "working" - therefore, if possible, western blot analysis from assembloid tissue could be used (perhaps using the same lysates from Figure 3) as an alternative to validate changes at the protein level (however, this might prove difficult); further to this, is P-CREB activated at the protein level using WB?

      We thank the reviewer for this comment and the observation. Although we did not include a traditional positive control in these ELISA assays, several lines of evidence indicate that the measurements are reliable. First, the standard curves behaved as expected, and all sample values fell within the assay’s dynamic range. Second, technical replicates showed low variability, and the observed changes across experimental conditions (e.g., hypoxia vs. control) were consistent with the expected biological responses based on previous literature. We agree that including western blot validation would strengthen the findings, and we will note this for our future studies focused on CREB and ADM.

      (4) Could the authors comment further on the mechanism and what biological pathways and potential events are downstream of ADM binding to RAMP2 in inhibitory neurons? What functional impact would this have linked to the CREB pathway proposed? While the link to GABA receptors is proposed, CREB has many targets beyond this.

      We appreciate the reviewers’ insightful question. Currently, not much is known about the molecular pathways and downstream cellular events triggered by ADM binding to RAMP2 in inhibitory neurons, and in general in brain cells. The data from our study brings the first information about the cell-type specific expression of ADM in baseline and hypoxic conditions and is one of the key novelties of our study.

      While the signaling landscape of ADM in interneurons is largely unexplored, several studies in other (non-brain) cell types have demonstrated that ADM binding to RAMP2 can activate downstream cascades such as the cAMP/PKA/CREB pathway, PI3K/AKT, and ERK/MAPK, all of which are also known to be critical regulators of neuronal development and survival. These previously published data along with our CREB-targeted findings in hypoxic interneurons, suggest ADM–RAMP2 signaling could influence multiple aspects of interneuron biology, but these remain to be evaluated in future studies.

      We agree with the reviewer that CREB has a wide range of transcriptional targets. We decided to focus on GABA as a target of CREB for two main reasons, including: (i) GABA signaling has been previously shown to play an important role in the migration of cortical interneurons, and (ii) a previous study by Birey et al. (Cell Stem Cell, 2022) demonstrated that CREB pathway activity is essential for regulating interneuron migration in assembloid models of Timothy Syndrom, thus further providing evidence that dysregulation of CREB activity disrupts migration dynamics.

      While our study provides a first step toward uncovering the mechanisms of interneuron migration protection by ADM, we fully acknowledge that future work will be needed to delineate the full spectrum of ADM–RAMP2 downstream signaling events in inhibitory neurons and other brain cells.

      (5) Does hypoxia cause any changes to inhibitory neurogenesis (earlier stages than migration?) - this might always be known, but was not discussed.

      We appreciate this question from the reviewer; however, this was not something that we focused on in this manuscript due to the already large amount of data included. A separate study focusing on neurogenesis defects and the molecular mechanisms of injury for that specific developmental process would be an important next step.

      (6) In the Discussion section, it might be worth detailing to the readers what the functional impact of delayed/reduced migration of inhibitory neurons into the cortex might result in, in terms of functional consequences for neural circuit development.

      We thank the Reviewer for the suggestion of detailing the functional impact of reduced inhibitory neuron migration. We will revise the manuscript by incorporating a paragraph about this in the Discussion section.

      Reviewer #3 (Recommendations for the authors):

      Most of the evidence presented is convincing in supporting the conclusions, and I have only minor suggestions for improvement:

      (1) The bulk RNA-seq was performed in hSOs only, which may not fully capture the phenotypes of migrating or migrated interneurons. It would be valuable, if feasible, to sort migrated cells from hSO-hCO assembloids and specifically examine their molecular mediators.

      We thank the reviewer for this suggestion. While it is likely that the cellular environment will have some influence on a subset of the molecular changes, based on all the data from the manuscript and our specific target, the RNA-sequencing on hCOs was sufficient to capture essential changes like ADM upregulation. The in-depth exploration on differential responses of migrated versus non-migrated interneurons to hypoxia could be the focus of a different project.

      (2) In Figure 3, it is striking that cell-type heterogeneity dominates over hypoxia vs. control conditions. A joint embedding of hSO and hCO cells could provide further insight into molecular differences between migrated and non-migrated interneurons.

      We thank the reviewer for this observation and opportunity to clarify. Since we manually separated the assembloids before the analyses, we processed these samples separately. That is why they separate like this. In the revision, we will add data about ADM expression and its receptors’ expression in the hCOs.

      (3) It would be helpful to expand the discussion on how closely the migration observed in hSO-hCO assembloids reflects in vivo conditions, and what environmental aspects are absent from this model. This would better frame the interpretation and translational relevance of the findings.

      We thank the Reviewer for bringing up this important point. Although the assembloid model offers the unique advantage of allowing the direct investigation of migration patterns of hypoxic interneurons, we fully agree it does not fully recapitulate the in vivo environment. While there are multiple aspects that cannot be recapitulated in vitro at this time (e.g. cellular complexity, vasculature, immune response, etc), we are encouraged by the validation of our main findings in ex vivo developing human brain tissue, which strongly supports the validity of our findings for in vivo conditions.

      We will expand our discussion to include more details and the need to validate these findings using in vivo models, while also acknowledging that different species (e.g. rodents versus non-human primates versus humans) might have different responses to hypoxia.

      (4) The authors suggest that hypoxia is also associated with delayed interneuron maturation, yet the bulk RNA-seq data primarily reveal stress and hypoxia-related genes. A more detailed discussion of why genes linked to interneuron maturation and function were not strongly affected would clarify this point.

      We thank the Reviewer for the opportunity to clarify.

      The RNAseq data was performed during the acute stages of hypoxia/reoxygenation and we think a maturation phenotype might be difficult to capture at this point and would require analysis at later in vitro assembloid maturation stages.

      Our speculation about a possible maturation defect is based on data from previous studies from developmental biology that showed failure of interneurons to reach their final cortical location within a specified developmental window will impair their integration within the neuronal network, and thus lead to maturation defects and possible elimination by apoptosis.

      Since preterm infants suffer from countless hypoxic events over multiple months, we suggest these repetitive events are likely to induce cumulative delays in migration, inability of interneurons to reach their target in time, followed by abnormal integration within the excitatory network, and eventual elimination of some of these interneurons through apoptosis. However, the direct demonstration of this effect following a hypoxic insult would require prolonged in vivo experiments in rodents to follow the migration, network integration and apoptosis of interneurons; to our knowledge this experimental design is not technically feasible at this time.

      (5) Relatedly, while the focus on interneuron migration is well justified, acknowledging how hypoxia might also impact other aspects of cortical development (e.g., progenitor proliferation, neuronal maturation, or circuit integration) would place the findings in a broader developmental framework and strengthen their relevance.

      We appreciate the Reviewer’s suggestion to discuss the role of hypoxia on other processes during cortical development. In the revised manuscript, we will include citations about the effects of hypoxia on interneuron proliferation, maturation and circuit integration as available, and also expand to other cell types known to be affected.

      (6) Very minor: in Figure S3C and D, it was not stated what the colors mean (grey: control, yellow: hypoxia)

      Thank you for pointing out this error and we will correct it in our revision.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Overall, the conclusions of the paper are mostly supported by the data but may be overstated in some cases, and some details are also missing or not easily recognizable within the figures. The provision of additional information and analyses would be valuable to the reader and may even benefit the authors' interpretation of the data. 

      We thank the reviewer for the thoughtful and constructive feedback. We are pleased that the reviewer found the overall conclusions of our paper to be well supported by the data, and we appreciate the suggestions for improving figure clarity and interpretive accuracy. Below, we address each point with corresponding revisions.

      The conclusion that DREADD expression gradually decreases after 1.5-2 years is only based on a select few of the subjects assessed; in Figure 2, it appears that only 3 hM4Di cases and 2 hM3Dq cases are assessed after the 2-year timepoint. The observed decline appears consistent within the hM4Di cases, but not for the hM3Dq cases (see Figure 2C: the AAV2.1-hSyn-hM3Dq-IRES-AcGFP line is increasing after 2 years.) 

      We agree that our interpretation should be stated more cautiously, given the limited number of cases assessed beyond the two-year timepoint. In the revised manuscript, we have clarified in the Results that the observed decline is based on a subset of animals. We have also included a text stating that while a consistent decline was observed in hM4Di-expressing monkeys, the trajectory for hM3Dq expression was more variable with at least one case showing an increased signal beyond two years.

      Revised Results section:

      Lines 140, “hM4Di expression levels remained stable at peak levels for approximately 1.5 years, followed by a gradual decline observed in one case after 2.5 years, and after approximately 3 years in the other two cases (Figure 2B, a and e/d, respectively). Compared with hM4Di expression, hM3Dq expression exhibited greater post-peak fluctuations. Nevertheless, it remained at ~70% of peak levels after about 1 year. This post-peak fluctuation was not significantly associated with the cumulative number of DREADD agonist injections (repeated-measures two-way ANOVA, main effect of activation times, F<sub>(1,6)</sub> = 5.745, P = 0.054). Beyond 2 years post-injection, expression declined to ~50% in one case, whereas another case showed an apparent increase (Figure 2C, c and m, respectively).”

      Given that individual differences may affect expression levels, it would be helpful to see additional labels on the graphs (or in the legends) indicating which subject and which region are being represented for each line and/or data point in Figure 1C, 2B, 2C, 5A, and 5B. Alternatively, for Figures 5A and B, an accompanying table listing this information would be sufficient. 

      We thank the reviewer for these helpful suggestions. In response, we have revised the relevant figures (Fig. 1C, 2B, 2C, and 5) as noted in the “Recommendations for the authors”, including simplifying visual encodings and improving labeling. We have also updated Table 2 to explicitly indicate the animal ID and brain regions associated with each data point shown in the figures.

      While the authors comment on several factors that may influence peak expression levels, including serotype, promoter, titer, tag, and DREADD type, they do not comment on the volume of injection. The range in volume used per region in this study is between 2 and 54 microliters, with larger volumes typically (but not always) being used for cortical regions like the OFC and dlPFC, and smaller volumes for subcortical regions like the amygdala and putamen. This may weaken the claim that there is no significant relationship between peak expression level and brain region, as volume may be considered a confounding variable. Additionally, because of the possibility that larger volumes of viral vectors may be more likely to induce an immune response, which the authors suggest as a potential influence on transgene expression, not including volume as a factor of interest seems to be an oversight. 

      We thank the reviewer for raising this important issue. We agree that injection volume could act as a confounding variable, particularly since larger volumes were used in only handheld cortical injections. This overlap makes it difficult to disentangle the effect of volume from those of brain region or injection method. Moreover, data points associated with these larger volumes also deviated when volume was included in the model.

      To address this, we performed a separate analysis restricted to injections delivered via microinjector, where a comparable volume range was used across cases. In this subset, we included injection volume as additional factor in the model and found that volume did not significantly impact peak expression levels. Instead, the presence of co-expressed protein tags remained a significant predictor, while viral titer no longer showed a significant effect. These updated results have replaced the originals in the revised Results section and in the new Figure 5. We have also revised the Discussion to reflect these updated findings.

      The authors conclude that vectors encoding co-expressed protein tags (such as HA) led to reduced peak expression levels, relative to vectors with an IRES-GFP sequence or with no such element at all. While interesting, this finding does not necessarily seem relevant for the efficacy of long-term expression and function, given that the authors show in Figures 1 and 2 that peak expression (as indicated by a change in binding potential relative to non-displaced radioligand, or ΔBPND) appears to taper off in all or most of the constructs assessed. The authors should take care to point out that the decline in peak expression should not be confused with the decline in longitudinal expression, as this is not clear in the discussion; i.e. the subheading, "Factors influencing DREADD expression," might be better written as, "Factors influencing peak DREADD expression," and subsequent wording in this section should specify that these particular data concern peak expression only. 

      We appreciate this important clarification. In response, we have revised the title to "Protein tags reduce peak DREADD expression levels" in the Results section and “Factors influencing peak DREADD expression levels” in the Discussion section. Additionally, we specified that our analysis focused on peak ΔBP<sub>ND</sub> values around 60 days post-injection. We have also explicitly distinguished these findings from the later-stage changes in expression seen in the longitudinal PET data in both the Results and Discussion sections.

      Reviewer #1 (Recommendations for the authors):

      (1) Will any of these datasets be made available to other researchers upon request?

      All data used to generate the figures have been made publicly available via our GitHub repository (https://github.com/minamimoto-lab/2024-Nagai-LongitudinalPET.git). This has been stated in the "Data availability" section in the revised manuscript.

      (2) Suggested modifications to figures:

      a) In Figures 2B and C, the inclusion of "serotype" as a separate legend with individual shapes seems superfluous, as the serotype is also listed as part of the colour-coded vector

      We agree that the serotype legend was redundant since this information is already included in the color-coded vector labels. In response, we have removed the serotype shape indicators and now represent the data using only vector-construct-based color coding for clarity in Figure 2B and C.

      b) In Figures 3A and B, it would be nice to see tics (representing agonist administration) for all subjects, not just the two that are exemplified in panels C-D and F-H. Perhaps grey tics for the non-exemplified subjects could be used.

      In response, we have included black and white ticks to indicate all agonist administration across all subjects in Figure 3A and B, with the type of agonist clearly specified. 

      c) In Figure 4C, a Nissl- stained section is said to demonstrate the absence of neuronal loss at the vector injection sites. However, if the neuronal loss is subtle or widespread, this might not be easily visualized by Nissl. I would suggest including an additional image from the same section, in a non-injected cortical area, to show there is no significant difference between the injected and non-injected region.

      To better demonstrate the absence of neuronal loss at the injection site, we have included an image from the contralateral, non-injected region of the same section for comparison (Fig. 4C).

      d) In Figure 5A: is it possible that the hM3Dq construct with a titer of 5×10^13 gc/ml is an outlier, relative to the other hM3Dq constructs used?

      We thank the reviewer for raising this important observation. To evaluate whether the high-titer constructs represented a statistical outlier that might artifactually influence the observed trends, we performed a permutation-based outlier analysis. This assessment identified this point in question, as well as one additional case (titer 4.6 x 10e13 gc/ml, #255, L_Put), as significant outlier relative to the distribution of the dataset.

      Accordingly, we excluded these two data points from the analysis. Importantly, this exclusion did not meaningfully alter the overall trend or the statistical conclusions—specifically, the significant effect of co-expressed protein tags on peak expression levels remain robust. We have updated the Methods section to describe this outlier handling and added a corresponding note in the figure legend.

      Reviewer #2 (Public review): 

      Weaknesses 

      This study is a meta-analysis of several experiments performed in one lab. The good side is that it combined a large amount of data that might not have been published individually; the downside is that all things were not planned and equated, creating a lot of unexplained variances in the data. This was yet judiciously used by the authors, but one might think that planned and organized multicentric experiments would provide more information and help test more parameters, including some related to inter-individual variability, and particular genetic constructs. 

      We thank the reviewer for bringing this important point to our attention. We fully acknowledge that the retrospective nature of our dataset—compiled from multiple studies conducted within a single laboratory—introduces variability related to differences in injection parameters and scanning timelines. While this reflects the practical realities and constraints of long-term NHP research, we agree that more standardized and prospectively designed studies would better control such source of variances. To address this, we have added the following statement to the "Technical consideration" section in Discussion:

      Lines 297, "This study included a retrospective analysis of datasets pooled from multiple studies conducted within a single laboratory, which inherently introduced variability across injection parameters and scan intervals. While such an approach reflects real-world practices in long-term NHP research, future studies, including multicenter efforts using harmonized protocols, will be valuable for systematically assessing inter-individual differences and optimizing key experimental parameters."

      Reviewer #2 (Recommendations for the authors):

      I just have a few minor points that might help improve the paper:

      (1) Figure 1C y-axis label: should add deltaBPnd in parentheses for clarity.

      We have added “ΔBP<sub>ND</sub>” to the y-axis label for clarity.

      The choice of a sigmoid curve is the simplest clear fit, but it doesn't really consider the presence of the peak described in the paper. Would there be a way to fit the dynamic including fitting the peak?

      We agree that using a simple sigmoid curve for modeling expression dynamics is a limitation. In response to this and a similar comment from Reviewer #3, we tested a double logistic function (as suggested) to see if it better represented the rise and decline pattern. However, as described below, the original simple sigmoid curve was a better fit for the data. We have included a discussion regarding this limitation of this analysis. See Reviewer #3 recommendations (2) for details.

      The colour scheme in Figure 1C should be changed to make things clearer, and maybe use another dimension (like dotted lines) to separate hM4Di from hM3Dq.

      We have improved the visual clarity of Figure 1C by modifying the color scheme to represent vector construct and using distinct line types (dashed for hM4Di and solid for hM3Dq data) to separate DREADD type.

      (2) Figure 2

      I don't understand how the referencing to 100 was made: was it by selecting the overall peak value or the peak value observed between 40 and 80 days? If the former then I can't see how some values are higher than the peak. If the second then it means some peak values occurred after 80 days and data are not completely re-aligned.

      We thank the reviewer for the opportunity to clarify this point. The normalization was based on the peak value observed between 40–80 days post-injection, as this window typically captured the peak expression phase in our dataset (see Figure 1). However, in some long-term cases where PET scans were limited during this period—e.g., with one scan performing at day 40—it is possible that the actual peak occurred later. Therefore, instances where ΔBP<sub>ND</sub> values slightly exceeded the reference peak at later time points likely reflect this sampling limitation. We have clarified this methodological detail in the revised Results section to improve transparency.

      The methods section mentions the use of CNO but this is not in the main paper which seems to state that only DCZ was used: the authors should clarify this

      Although DCZ was the primary agonist used, CNO and C21 were also used in a few animals (e.g., monkeys #153, #221, and #207) for behavioral assessments. We have clarified this in the Results section and revised Figure 3 to indicate the specific agonist used for each subject. Additionally, we have updated the Methods section to clearly specify the use and dosage of DCZ, CNO, and C21, to avoid any confusion regarding the experimental design.

      Reviewer #3 (Public review): 

      Minor weaknesses are related to a few instances of suboptimal phrasing, and some room for improvement in time course visualization and quantification. These would be easily addressed in a revision. <br /> These findings will undoubtedly have a very significant impact on the rapidly growing but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

      We thank the reviewer for the positive assessment of our manuscript and for the constructive suggestions. We address each comment in the following point-by-point responses and have revised the manuscript accordingly.

      Reviewer #3 (Recommendations for the authors):

      (1) Please clarify the reasoning was, behind restricting the analysis in Figure 1 only to 7 monkeys with subcortical AAV injection?

      We focused the analysis shown in Figure 1 on 7 monkeys with subcortical AAV injections who received comparative injection volumes. These data were primary part of vector test studies, allowing for repeated PET scans within 150 days post-injection. In contrast, monkeys with cortical injections—including larger volumes—were allocated to behavioral studies and therefore were not scanned as frequently during the early phase. We will clarify this rationale in the Results section.

      (2) Figure 1: Not sure if a simple sigmoid is the best model for these, mostly peaking and then descending somewhat, curves. I suggest testing a more complex model, for instance, double logistic function of a type f(t) = a + b/(1+exp(-c*(t-d))) - e/(1+exp(-g*(t-h))), with the first logistic term modeling the rise to peak, and the second term for partial decline and stabilization

      We appreciate the reviewer’s thoughtful suggestion to use a double logistic function to better model both the rising and declining phases of the expression curve. In response to this and similar comments from Reviewer #1, we tested the proposed model and found that, while it could capture the peak and subsequent decline, the resulting fit appeared less biologically plausible (See below). Moreover, model comparison using BIC favored the original simple sigmoid model (BIC = 61.1 vs. 62.9 for the simple and double logistic model, respectively). This information has been included in the revised figure legend for clarity.

      Given these results, we retained the original simple sigmoid function in the revised manuscript, as it provides a sufficient and interpretable approximation of the early expression trajectory—particularly the peak expression-time estimation, which was the main purpose of this analysis. We have updated the Methods section to clarify our modeling and rationale as follows:

      Lines 530, "To model the time course of DREADD expression, we used a single sigmoid function, referencing past in vivo fluorescent measurements (Diester et al., 2011). Curve fitting was performed using least squares minimization. For comparison, a double logistic function was also tested and evaluated using the Bayesian Information Criterion (BIC) to assess model fit."

      We also acknowledge that a more detailed understanding of post-peak expression changes will require additional PET measurements, particularly between 60- and 120-days post-injection, across a larger number of animals. We have included this point in the revised Discussion to highlight the need for future work focused on finer-grained modeling of expression decline:

      Lines 317, “Although we modeled the time course of DREADD expression using a single sigmoid function, PET data from several monkeys showed a modest decline following the peak. While the sigmoid model captured the early-phase dynamics and offered a reliable estimate of peak timing, additional PET scans—particularly between 60- and 120-days post-injection—will be essential to fully characterize the biological basis of the post-peak expression trajectories.”

      Author response image 1.<br />

      (3) Figure 2: It seems that the individual curves are for different monkeys, I counted 7 in B and 8 in C, why "across 11 monkeys"? Were there several monkeys both with hM4Diand hM3Dq? Does not look like that from Table 1. Generally, I would suggest associating specific animals from Tables 1 and 2 to the panels in Figures 1 and 2.

      Some animals received multiple vector types, leading to more curves than individual subjects. We have revised the figure legends and updated Table 2 to explicitly relate each curve with the specific animal and brain region.

      (4) I also propose plotting the average of (interpolated) curves across animals, to convey the main message of the figure more effectively.

      We agree that plotting the mean of the interpolated expression curves would help convey the group trend. We added averaged curves to Figure 2BC.

      (5) Similarly, in line 155 "We assessed data from 17 monkeys to evaluate ... Monkeys expressing hM4Di were assessed through behavioral testing (N = 11) and alterations in neuronal activity using electrophysiology (N = 2)..." - please explain how 17 is derived from 11, 2, 5 and 1. It is possible to glean from Table 1 that it is the calculation is 11 (including 2 with ephys) + 5 + 1 = 17, but it might appear as a mistake if one does not go deep into Table 1.

      We have clarified in both the text and Table 1 that some monkeys (e.g., #201 and #207) underwent both behavioral and electrophysiological assessments, resulting in the overlapping counts. Specifically, the dataset includes 11 monkeys for hM4Di-related behavior testing (two of which underwent electrophysiology testing), 5 monkeys assessed for hM3Dq with FDG-PET, and 1 monkey assessed for hM3Dq with electrophysiology, totaling 19 assessments across 17 monkeys. We have revised the Results section to make this distinction more explicit to avoid confusion, as follows:

      Lines 164, "Monkeys expressing hM4Di (N = 11) were assessed through behavioral testing, two of which also underwent electrophysiological assessment. Monkeys expressing hM3Dq (N = 6) were assessed for changes in glucose metabolism via [<sup>18</sup>F]FDG-PET (N = 5) or alterations in neuronal activity using electrophysiology (N = 1).”

      (6) Line 473: "These stock solutions were then diluted in saline to a final volume of 0.1 ml (2.5% DMSO in saline), achieving a dose of 0.1 ml/kg and 3 mg/kg for DCZ and CNO, respectively." Please clarify: the injection volume was always 0.1 ml? then it is not clear how the dose can be 0.1 ml/kg (for a several kg monkey), and why DCZ and CNO doses are described in ml/kg vs mg/kg?

      We thank the reviewer for pointing out this ambiguity. We apologize for the oversight and also acknowledge that we omitted mention of C21, which was used in a small number of cases. To address this, we have revised the “Administration of DREADD agonist” section of the Methods to clearly describe the preparation, the volume, and dosage for each agonist (DCZ, CNO, and C21) as follows:

      Lines 493, “Deschloroclozapine (DCZ; HY-42110, MedChemExpress) was the primary agonist used. DCZ was first dissolved in dimethyl sulfoxide (DMSO; FUJIFILM Wako Pure Chemical Corp.) and then diluted in saline to a final volume of 1 mL, with the final DMSO concentration adjusted to 2.5% or less. DCZ was administered intramuscularly at a dose of 0.1 mg/kg for hM4Di activation, and at 1–3 µg/kg for hM3Dq activation. For behavioral testing, DCZ was injected approximately 15 min before the start of the experiment unless otherwise noted. Fresh DCZ solutions were prepared daily.

      In a limited number of cases, clozapine-N-oxide (CNO; Toronto Research Chemicals) or Compound 21 (C21; Tocris) was used as an alternative DREADD agonist for some hM4Di experiments. Both compounds were dissolved in DMSO and then diluted in saline to a final volume of 2–3 mL, also maintaining DMSO concentrations below 2.5%. CNO and C21 were administered intravenously at doses of 3 mg/kg and 0.3 mg/kg, respectively.”

      (7) Figure 5A: What do regression lines represent? Do they show a simple linear regression (then please report statistics such as R-squared and p-values), or is it related to the linear model described in Table 3 (but then I am not sure how separate DREADDs can be plotted if they are one of the factors)?

      We thank the reviewer for the insightful question. In the original version of Figure 5A, the regression lines represented simple linear fits used to illustrate the relationship between viral titer and peak expression levels, based on our initial analysis in which titer appeared to have a significant effect without any notable interaction with other factors (such as DREADD type).

      However, after conducting a more detailed analysis that incorporated injection volume as an additional factor and excluded cortical injections and statistical outliers (as suggested by Reviewer #1), viral titer was no longer found to significantly predict peak expression levels. Consequently, we revised the figure to focus on the effect of reporter tag, which remained the most consistent and robust predictor in our model.

      In the updated Figure 5, we have removed the relationship between viral titer and expression level with regression lines.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2 (Public review):

      The only aspect that would benefit from further clarification is a more detailed discussion of aging-associated ECM changes in the context of prior literature. 

      Thank you. Please refer to the new section (Lines 604-617)

      Reviewer #3 (Public review):

      (1) It would be useful to explain why GATA4 was chosen over HIF1a, which was the most differentially expressed. 

      Thank you. Please refer to Lines 530-537.  

      “Of note, Hypoxia-Inducible Factor 1α (HIF1 α) was the most differentially expressed gene predicted to regulate chondrocyte aging. The connection between HIF1 α and aging has been previously reported.[32] Furthermore, additional studies have investigated HIF1 in association with OA and assessed its use as a therapeutic target.[33,34] Therefore, we decided to focus on GATA4, which was less studied in chondrocytes but highly associated with cellular senescence, an aging hallmark. However, our selection did not dampen the importance of HIF1α and other molecules listed in Figure 1D in chondrocyte aging. They can be further studied in the future using the same strategy employed in the current work.”

      (2) In Figure 5, it would be useful to demonstrate the non-surgical or naive limbs to help contextualize OARSI scores and knee hyperalgesia changes. 

      In the current study, we focused on the DMM control and DMM Gata4 virus groups so we did not include a sham control group. We recognized this was a limitation of this study.  

      (3) While there appear to be GATA4 small-molecule inhibitors in various stages of development that could be used to assess the effects in age-related OA, those experiments are out of scope for the current study.  

      We agree with this comment that the results are still preliminary, which was the reason that we put it in the supplementary materials. However, we felt like the result is informative, which will support the potential of GATA4 as a therapeutic target and inspire the development of more specific inhibitors. Therefore, we would still keep the results in the current study.

    1. Author response:

      The following is the authors’ response to the current reviews

      Reviewer #1 (Public review):

      In this work, Rios-Jimenez and Zomer et al have developed a 'zero-code' accessible computational framework (BEHAV3D-Tumour Profiler) designed to facilitate unbiased analysis of Intravital imaging (IVM) data to investigate tumour cell dynamics (via the tool's central 'heterogeneity module' ) and their interactions with the tumour microenvironment (via the 'large-scale phenotyping' and 'small-scale phenotyping' modules). A key strength is that it is designed as an open-source modular Jupyter Notebook with a user-friendly graphical user interface and can be implemented with Google Colab, facilitating efficient, cloud-based computational analysis at no cost. In addition, demo datasets are available on the authors GitHub repository to aid user training and enhance the usability of the developed pipeline.

      To demonstrate the utility of BEHAV3D-TP, they apply the pipeline to timelapse IVM imaging datasets to investigate the in vivo migratory behaviour of fluorescently labelled DMG cells in tumour bearing mice. Using the tool's 'heterogeneity module' they were able to identify distinct single-cell behavioural patterns (based on multiple parameters such as directionality, speed, displacement, distance from tumour edge) which was used to group cells into distinct categories (e.g. retreating, invasive, static, erratic). They next applied the framework's 'large-scale phenotyping' and 'small-scale phenotyping' modules to investigate whether the tumour microenvironment (TME) may influence the distinct migratory behaviours identified. To achieve this, they combine TME visualisation in vivo during IVM (using fluorescent probes to label distinct TME components) or ex vivo after IVM (by large-scale imaging of harvested, immunostained tumours) to correlate different tumour behavioural patterns with the composition of the TME. They conclude that this tool has helped reveal links between TME composition (e.g. degree of vascularisation, presence of tumour-associated macrophages) and the invasiveness and directionality of tumour cells, which would have been challenging to identify when analysing single kinetic parameters in isolation.

      While the analysis provides only preliminary evidence in support of the authors conclusions on DMG cell migratory behaviours and their relationship with components of the tumour microenvironment, conclusions are appropriately tempered in the absence of additional experiments and controls.

      The authors also evaluated the BEHAV3D TP heterogeneity module using available IVM datasets of distinct breast cancer cell lines transplanted in vivo, as well as healthy mammary epithelial cells to test its usability in non-tumour contexts where the migratory phenotypes of cells may be more subtle. This generated data is consistent with that produced during the original studies, as well as providing some additional (albeit preliminary) insights above that previously reported. Collectively, this provides some confidence in BEHAV3D TP's ability to uncover complex, multi-parametric cellular behaviours that may be missed using traditional approaches.

      While the tool does not facilitate the extraction of quantitative kinetic cellular parameters (e.g. speed, directionality, persistence and displacement) from intravital images, the authors have developed their tool to facilitate the integration of other data formats generated by open-source Fiji plugins (e.g. TrackMate, MTrackJ, ManualTracking) which will help ensure its accessibility to a broader range of researchers. Overall, this computational framework appears to represent a useful and comparatively user-friendly tool to analyse dynamic multi-parametric data to help identify patterns in cell migratory behaviours, and to assess whether these behaviours might be influenced by neighbouring cells and structures in their microenvironment.

      When combined with other methods, it therefore has the potential to be a valuable addition to a researcher's IVM analysis 'tool-box'.

      We thank the reviewer for carefully considering our manuscript and providing constructive comments. We appreciate the recognition of BEHAV3D-TP’s user-friendliness, modular design, and ability to link cell behavior with the tumor microenvironment. In the future, we plan to extend the tool to incorporate segmentation and tracking modules, once we have approaches that are broadly applicable or allow for personalized model training, further enhancing its utility for the community.

      Reviewer #2 (Public review):

      Summary:

      The authors produce a new tool, BEHAV3D to analyse tracking data and to integrate these analyses with large and small scale architectural features of the tissue. This is similar to several other published methods to analyse spatio-temporal data, however, the connection to tissue features is a nice addition, as is the lack of requirement for coding. The tool is then used to analyse tracking data of tumour cells in diffuse midline glioma. They suggest 7 clusters exist within these tracks and that they differ spatially. They ultimately suggest that these behaviours occur in distinct spatial areas as determined by CytoMAP.

      Strengths:

      - The tool appears relatively user-friendly and is open source. The combination with CytoMAP represents a nice option for researchers.

      - The identification of associations between cell track phenotype and spatial features is exciting and the diffuse midline glioma data nicely demonstrates how this could be used.

      We thank the reviewer for their careful reading and thoughtful comments. Feedback from all revision rounds has helped us clarify key points and improve the manuscript, and we are grateful for the positive remarks regarding our application to diffuse midline glioma and the potential of the tool to enable new biological insights.

      Reviewer #3 (Public review):

      The manuscript by Rios-Jimenez developed a software tool, BEHAV3D Tumor Profiler, to analyze 3D intravital imaging data and identify distinctive tumor cell migratory phenotypes based on the quantified 3D image data. Moreover, the heterogeneity module in this software tool can correlate the different cell migration phenotypes with variable features of the tumor microenvironment. Overall, this is a useful tool for intravital imaging data analysis and its open-source nature makes it accessible to all interested users.

      Strengths:

      An open-source software tool that can quantify cell migratory dynamics from intravital imaging data and identify distinctive migratory phenotypes that correlate with variable features of the tumor microenvironment.

      Weaknesses:

      Motility is the main tumor cell feature analyzed in the study together with some other tumor-intrinsic features, such as morphology. However, these features are insufficient to characterize and identify the heterogeneity of the tumor cell population that impacts their behaviors in the complex tumor microenvironment (TME). For instance, there are important non-tumor cell types in the TME, and the interaction dynamics of tumor cells with other cell types, e.g., fibroblasts and distinct immune cells, play a crucial role in regulating tumor behaviors. BEHAV3D-TP focuses on analysis of tumor-alone features, and cannot be applied to analyze important cell-cell interaction dynamics in 3D.

      We thank the reviewer for their careful assessment and encouraging remarks regarding BEHAV3D-TP.

      Regarding the concern about the tool’s current focus on motility features, we would like to clarify again that BEHAV3D-TP is designed to be highly flexible and extensible. Users can incorporate a wide range of features—including dynamic, morphological, and spatial parameters—into their analyses. In the latest revision, we have make this even more explicit by explaining that the feature selection interface allows users to either (i) directly select them for clustering or (ii) select features for correlation with clusters (See Small scale phenotyping module section in Methods).

      Importantly, while our current analysis emphasizes clustering based on dynamic behaviors, Figure 4 demonstrates that these behavioral clusters are associated at the single-cell level with distinct proximities to key TME components, such as TAMMs and blood vessels. These spatial interaction features could also have been included in the clustering itself—creating dynamic-spatial clusters—but we deliberately chose not to do so. This decision was guided by established principles of feature selection: including features with unknown or potentially irrelevant variability can introduce noise and obscure biologically meaningful patterns, ultimately reducing the clarity and interpretability of the resulting clusters. Instead, we adopted a two-step approach—first identifying clusters based on core dynamic features, then examining their relationships with spatial and interaction metrics. This allowed us to reveal meaningful associations of particular cell behavior such as the invading cluster in proximity of TAMMs without overfitting or complicating the clustering model.

      To address the reviewer’s point in the latest revision round, we have updated the Small-scale phenotyping module  to highlight the possibility of including spatial interaction features with various TME cell types. We also revised the manuscript text and Figure 1 to clarify that these environmental features can be used both upstream as clustering input (Option 1) and for downstream analysis (Option 2), depending on the user’s experimental goals. Attached to this rebuttal letter, we also provide an additional figure illustrating these options in the feature selection panels of the Colab notebook.

      In summary, while the clustering presented in this study is based on dynamic parameters, BEHAV3D-TP fully supports the integration of interaction features and other non-motility descriptors. This modularity enables users to customize their analysis pipelines according to specific biological questions, including those involving cell–cell interactions and spatial dynamics within the TME.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Intravital microscopy (IVM) is a powerful tool that facilitates live imaging of individual cells over time in vivo in their native 3D tissue environment. Extracting and analysing multi-parametric data from IVM images however is challenging, particularly for researchers with limited programming and image analysis skills. In this work, RiosJimenez and Zomer et al have developed a 'zero-code' accessible computational framework (BEHAV3D-Tumour Profiler) designed to facilitate unbiased analysis of IVM data to investigate tumour cell dynamics (via the tool's central 'heterogeneity module' ) and their interactions with the tumour microenvironment (via the 'large-scale phenotyping' and 'small-scale phenotyping' modules). It is designed as an open-source modular Jupyter Notebook with a user-friendly graphical user interface and can be implemented with Google Colab, facilitating efficient, cloud-based computational analysis at no cost. Demo datasets are also available on the authors GitHub repository to aid user training and enhance the usability of the developed pipeline. 

      To demonstrate the utility of BEHAV3D-TP, they apply the pipeline to timelapse IVM imaging datasets to investigate the in vivo migratory behaviour of fluorescently labelled DMG cells in tumour bearing mice. Using the tool's 'heterogeneity module' they were able to identify distinct single-cell behavioural patterns (based on multiple parameters such as directionality, speed, displacement, distance from tumour edge) which was used to group cells into distinct categories (e.g. retreating, invasive, static, erratic). They next applied the framework's 'large-scale phenotyping' and 'small-scale phenotyping' modules to investigate whether the tumour microenvironment (TME) may influence the distinct migratory behaviours identified. To achieve this, they combine TME visualisation in vivo during IVM (using fluorescent probes to label distinct TME components) or ex vivo after IVM (by large-scale imaging of harvested, immunostained tumours) to correlate different tumour behavioural patterns with the composition of the TME. They conclude that this tool has helped reveal links between TME composition (e.g. degree of vascularisation, presence of tumour-associated macrophages) and the invasiveness and directionality of tumour cells, which would have been challenging to identify when analysing single kinetic parameters in isolation. 

      The authors also evaluated the BEHAV3D TP heterogeneity module using available IVM datasets of distinct breast cancer cell lines transplanted in vivo, as well as healthy mammary epithelial cells to test its usability in non-tumour contexts where the migratory phenotypes of cells may be more subtle. This generated data is consistent with that produced during the original studies, as well as providing some additional (albeit preliminary) insights above that previously reported. Collectively, this provides some confidence in BEHAV3D TP's ability to uncover complex, multi-parametric cellular behaviours that may be missed using traditional approaches. 

      Overall, this computational framework appears to represent a useful and comparatively user-friendly tool to analyse dynamic multi-parametric data to help identify patterns in cell migratory behaviours, and to assess whether these behaviours might be influenced by neighbouring cells and structures in their microenvironment. When combined with other methods, it therefore has the potential to be a valuable addition to a researcher's IVM analysis 'tool-box'. 

      Strengths: 

      •  Figures are clearly presented, and the manuscript is easy to follow. 

      •  The pipeline appears to be intuitive and user-friendly for researchers with limited computational expertise. A detailed step-by-step video and demo datasets are also included to support its uptake. 

      •  The different computational modules have been tested using relevant datasets, including imaging data of normal and tumour cells in vivo. 

      •  All code is open source, and the pipeline can be implemented with Google Colab. 

      •  The tool combines multiple dynamic parameters extracted from timelapse IVM images to identify single-cell behavioural patterns and to cluster cells into distinct groups sharing similar behaviours, and provides avenues to map these onto in vivo or ex vivo imaging data of the tumour microenvironment 

      Weaknesses: 

      •  The tool does not facilitate the extraction of quantitative kinetic cellular parameters (e.g. speed, directionality, persistence and displacement) from intravital images. To use the tool researchers must first extract dynamic cellular parameters from their IVM datasets using other software including Imaris, which is expensive and therefore not available to all. Nonetheless, the authors have developed their tool to facilitate the integration of other data formats generated by open-source Fiji plugins (e.g. TrackMate, MTrackJ, ManualTracking) which will help ensure its accessibility to a broader range of researchers. 

      •  The analysis provides only preliminary evidence in support of the authors conclusions on DMG cell migratory behaviours and their relationship with components of the tumour microenvironment. The authors acknowledge this however, and conclusions are appropriately tempered in the absence of additional experiments and controls. 

      We thank the reviewer for their thorough and constructive assessment of our work and are pleased that the accessibility, functionality, and potential impact of BEHAV3DTumour Profiler were well received. We particularly appreciate the acknowledgment of the tool’s ease of use for researchers with limited computational expertise, the clarity of the manuscript, and the relevance of our approach for identifying multi-parametric migratory behaviours and their correlation with the tumour microenvironment.

      Regarding the weaknesses raised:

      (1) Lack of built-in tracking and kinetic parameter extraction – As noted in our initial revision, while we agree that integrating open-source tracking and segmentation functionality could be valuable, it is beyond the scope of the current work. Our tool is designed to focus specifically on downstream analysis of already extracted kinetic data, addressing a gap in post-processing tools for exploring complex migratory behaviour and spatial correlations. Since different experimental systems often require tailored imaging and segmentation pipelines, we believe that decoupling tracking from the downstream analysis can actually be a strength, offering greater versatility. Researchers can use their preferred or most appropriate tracking software—whether proprietary or opensource—and then analyze the resulting data with BEHAV3D-TP. To support this, we ensured compatibility with widely used tools including open-source Fiji plugins (e.g., TrackMate, MTrackJ, ManualTracking), and we also cited several relevant studies and that address the upstream processing steps. Importantly, the main aim of our tool is to fill the gap in post-tracking analysis, enabling quantitative interpretation and pattern recognition that has until now required substantial coding effort or custom solutions.

      (2) Preliminary nature of the biological conclusions – We fully agree with this assessment and have explicitly acknowledged this limitation in the manuscript. Our aim was to demonstrate the utility of BEHAV3D-TP in uncovering heterogeneity and spatial associations in vivo, while encouraging further hypothesis-driven studies using complementary biological approaches. We are grateful that the reviewer recognizes the cautious interpretation of our results and their added value beyond single-parameter analysis.

      Reviewer #2 (Public review): 

      Summary: 

      The authors produce a new tool, BEHAV3D to analyse tracking data and to integrate these analyses with large and small scale architectural features of the tissue. This is similar to several other published methods to analyse spatio-temporal data, however, the connection to tissue features is a nice addition, as is the lack of requirement for coding. The tool is then used to analyse tracking data of tumour cells in diffuse midline glioma. They suggest 7 clusters exist within these tracks and that they differ spatially. They ultimately suggest that there these behaviours occur in distinct spatial areas as determined by CytoMAP. 

      Strengths: 

      - The tool appears relatively user-friendly and is open source. The combination with CytoMAP represents a nice option for researchers. 

      - The identification of associations between cell track phenotype and spatial features is exciting and the diffuse midline glioma data nicely demonstrates how this could be used. 

      Weaknesses: 

      The revision has dealt with many concerns, however, the statistics generated by the process are still flawed. While the statistics have been clarified within the legends and this is a great improvement in terms of clarity the underlying assumptions of the tests used are violated. The problem is that individual imaging positions or tracks are treated as independent and then analysed by ANOVA. As separate imaging positions within the same mouse are not independent, nor are individual cells within a single mouse, this makes the statistical analyses inappropriate. For a deeper analysis of this that is feasible within a review please see Lord, Samuel J., et al. "SuperPlots: Communicating reproducibility and variability in cell biology." The Journal of cell biology 219.6 (2020): e202001064. Ultimately, while this is a neat piece of software facilitating the analysis of complex data, the fact that it will produce flawed statistical analysis is a major problem. This problem is compounded by the fact that much imaging analysis has been analysed in this inappropriate manner in the past, leading to issues of interpretation and ultimately reproducibility. 

      We thank the reviewer for their careful reading and thoughtful feedback. We are encouraged by the recognition of BEHAV3D-TP’s ease of use, open-source accessibility, and the value of integrating cell behaviour with spatial features of the tissue. We appreciate the positive remarks regarding our application to diffuse midline glioma (DMG) and the potential for the tool to enable new biological insights.

      We also appreciate the reviewer’s continued concern regarding the statistical treatment of the data. While we agree with the broader principle that care must be taken to avoid violating assumptions of independence, we respectfully disagree that all instances where individual tracks or imaging positions are used constitute flawed analysis. Importantly, our work is centered on characterizing heterogeneity at the single-cell level in distinct TME regions. Therefore, in certain cases—especially when comparing distinct behavioral subtypes across varying TME environments and multiple mice—it is appropriate to treat individual imaging positions as independent units. This approach is particularly relevant given our findings that large-scale TME regions differ across positions. When analyzing features such as the percentage of DMG cells in proximity to TAMMs, averaging per mouse would obscure these regional differences and reduce the resolution of biologically meaningful variation.

      To address this concern further, we have revised the figure legends, main text, and documentation, carefully considering the appropriate statistical unit for each analysis. As detailed below, we used mouse-level aggregation where the experimental question required inter-mouse reproducibility, and a position-based approach where the aim was to explore intra-tumoral heterogeneity.

      Figure 3d and Supplementary Figure 5d: In this analysis, we treated imaging positions as independent units because our data specifically demonstrate that, within individual mice, different positions correspond to distinct large-scale tumor microenvironment phenotypes. Therefore, averaging across the whole mouse would obscure these important spatial differences and not accurately reflect the heterogeneity we aim to characterize.

      Figure 4c-e; Supplementary Figure 6d: While our initial aim was to highlight single-cell variability, we acknowledge that the original presentation may have been misleading. In the revised manuscript, we have updated the graphs for greater clarity. To quantify how often tumor cells of each behavioral type are located near TAMMs (Fig. 4c) or blood vessels (Fig. 4e), we now calculate the percentage of tumor cells "close" to environmental feature per behavioral cluster within each imaging position. This classification is based on the distance to the TME feature of interest and is detailed in the “Large-scale phenotyping” section of the Methods. For the number of SR101 objects in a 30um radius we averaged per position.

      We treated individual imaging positions as the units of analysis rather than averaging per mouse, as our data (see Figure 2) show that positions vary in their TME phenotypes—such as Void, TAMM/Oligo, and TAMM/Vascularized—as well as in the number of TAMMs, SR101 cells or blood vessels per position. These differences are biologically meaningful and relevant to the quantification that we performed – percentage of tumor cell in close proximity to distinct TME features.

      To account for inter-mouse and TME region variability, we applied a linear mixedeffects model with both mouse and TME class included as random effects.

      Supplementary Figure 3d: Following the reviewer’s suggestion, we have averaged the distance to the 3 closest GBM neighbours per mouse, treating each mouse as an independent unit for comparison across distinct GBM morphodynamic clusters. To account for inter-mouse variability when assessing statistical significance, we employed a linear mixed model with mouse included as a random effect. 

      Distance to 3 neighbours is a feature not used in the clustering, thus variability between mice can be more pronounced—for example, due to differences in tumor compactness or microenvironment structure across individual mice. To appropriately account for this, mouse was included as a random effect in the model.

      Supplementary Figure 4c: Following the reviewer’s suggestion, we averaged cell speed per mouse, treating each mouse as an independent unit for comparison across distinct DMG behavioral clusters. Statistical significance was assessed using ANOVA followed by Tukey’s post hoc test. When comparing cell speed, which is a feature used in the clustering process, inter-mouse variability was already addressed during clustering itself. Therefore, in the downstream analysis of this cluster-derived feature, it is appropriate to treat each mouse as an independent unit without including mouse as a random effect.

      Supplementary Figure 5e-g: Following the reviewer’s suggestion, we averaged cell speed per mouse, treating each mouse as an independent unit for comparison across distinct DMG behavioral clusters. Statistical significance was assessed using ANOVA followed by Tukey’s post hoc test.

      Supplementary Figure 6c: Following the reviewer’s suggestion, we averaged cell distance to the 10 closest DMG neighbours per mouse, treating each mouse as an independent unit for comparison across distinct DMG behavioral clusters. To account for inter-mouse variability, we used a linear mixed model with mouse included as a random effect.

      Reviewer #3 (Public review): 

      The manuscript by Rios-Jimenez developed a software tool, BEHAV3D Tumor Profiler, to analyze 3D intravital imaging data and identify distinctive tumor cell migratory phenotypes based on the quantified 3D image data. Moreover, the heterogeneity module in this software tool can correlate the different cell migration phenotypes with variable features of the tumor microenvironment. Overall, this is a useful tool for intravital imaging data analysis and its open-source nature makes it accessible to all interested users. 

      Strengths: 

      An open-source software tool that can quantify cell migratory dynamics from intravital imaging data and identify distinctive migratory phenotypes that correlate with variable features of the tumor microenvironment. 

      Weaknesses: 

      Motility is only one tumor cell feature and is probably not sufficient to characterize and identify the heterogeneity of the tumor cell population that impacts their behaviors in the complex tumor microenvironment (TME). For instance, there are important nontumor cell types in the TME, and the interaction dynamics of tumor cells with other cell types, e.g., fibroblasts and distinct immune cells, play a crucial role in regulating tumor behaviors. BEHAV3D-TP focuses on only motility feature analysis, and cannot be applied to analyze other tumor cell dynamic features or cell-cell interaction dynamics. 

      Regarding the concern about the tool’s current focus on motility features, we would like to clarify that BEHAV3D-TP is designed to be highly flexible and extensible. As described in our first revision, users can incorporate a wide range of features—including dynamic, morphological, and spatial parameters—into their analyses. In the current revision, we have make this even more explicit by explaining that the feature selection interface allows users to either (i) directly select them for clustering or (ii) select features for correlation with clusters (See Small scale phenotyping module section in Methods and Rebuttal Figure).

      Importantly, while our current analysis emphasizes clustering based on dynamic behaviors, Figure 4 demonstrates that these behavioral clusters are associated at the single-cell level with distinct proximities to key TME components, such as TAMMs and blood vessels. These spatial interaction features could also have been included in the clustering itself—creating dynamic-spatial clusters—but we deliberately chose not to do so. This decision was guided by established principles of feature selection: including features with unknown or potentially irrelevant variability can introduce noise and obscure biologically meaningful patterns, ultimately reducing the clarity and interpretability of the resulting clusters. Instead, we adopted a two-step approach—first identifying clusters based on core dynamic features, then examining their relationships with spatial and interaction metrics. This allowed us to reveal meaningful associations of particular cell behavior such as the invading cluster in proximity of TAMMs without overfitting or complicating the clustering model.

      To further address the reviewer’s point, we have updated the Small-scale phenotyping module  to highlight the possibility of including spatial interaction features with various TME cell types. We also revised the manuscript text and Figure 1 to clarify that these environmental features can be used both upstream as clustering input (Option 1) and for downstream analysis (Option 2), depending on the user’s experimental goals. Author response image 1 illustrates these options in the feature selection panels of the Colab notebook.

      Author response image 1.

      (a) In the small-scale phenotyping module, microenvironmental factors (MEFs) detected in the segmented IVM movies are identified and their coordinates imported. From here, there are two options: (b) include the relationship to these MEFs as a feature for clustering, or (c) exclude this relationship and instead correlate MEFs with cell behavior to assess potential spatial associations.<br />

      In summary, while the clustering presented in this study is based on dynamic parameters, BEHAV3D-TP fully supports the integration of interaction features and other non-motility descriptors. This modularity enables users to customize their analysis pipelines according to specific biological questions, including those involving cell–cell interactions and spatial dynamics within the TME.

      Reviewer #2 (Recommendations for the authors): 

      If the software were adjusted to produce analyses following best practices in the field as outlined in Lord, Samuel J., et al. "SuperPlots: Communicating reproducibility and variability in cell biology." The Journal of cell biology 219.6 (2020): e202001064. this could be a helpful piece of software. The major current issue would be that it democratises the ability to analyse complex imaging data, allowing non-experts to carry out these analyses but misleads them and encourages poor statistical practice. 

      We appreciate the reviewer’s suggestion and the reference to best practices outlined in Lord et al., 2020. As discussed in detail in our point-by-point response to Reviewer #2, we have revised several figures to enhance clarity and statistical rigor, including Figure 4c,e; Supplementary Figures 3d, 4c, 5e–g, and 6c–d. Specifically, we adjusted how data are summarized and displayed—averaging per mouse where appropriate and clarifying the statistical methods used. Where imaging positions were retained as the unit of analysis, this decision was grounded in the biological relevance of intra-mouse spatial heterogeneity (as demonstrated in Figure 2). Additionally, we applied linear mixed-effects models in cases where inter-mouse or inter-Large scale TME regions variability needed to be accounted for. We believe these changes address the core concern about reproducibility and statistical interpretation while preserving the biological insights captured by our approach.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      This manuscript uses molecular dynamics simulations to understand how forces felt by the intracellular domain are coupled to the opening of the mechanosensitive ion channel NOMPC. The concept is interesting - as the only clearly defined example of an ion channel that opens due to forces on a tethered domain, the mechanism by which this occurs is yet to be fully elucidated. The main finding is that twisting of the transmembrane portion of the protein - specifically via the TRP domain that is conserved within the broad family of channels- is required to open the pore. That this could be a common mechanism utilised by a wide range of channels in the family, not just mechanically gated ones, makes the result significant. It is intriguing to consider how different activating stimuli can produce a similar activating motion within this family. However, the support for the finding can be strengthened as the authors cannot yet exclude that other forces could open the channel if given longer or at different magnitudes. In addition, they do not see the full opening of the channel, only an initial dilation. Even if we accept that twist is essential for this, it may be that it is not sufficient for full opening, and other stimuli are required.

      Strengths:

      Demonstrating that rotation of the TRP domain is the essential requirement for channel opening would have significant implications for other members of this channel family.

      Thank you for your positive summary and comments.

      Weaknesses:

      The manuscript centres around 3 main computational experiments. In the first, a compression force is applied on a truncated intracellular domain and it is shown that this creates both a membrane normal (compression) and membrane parallel (twisting) force on the TRP domain. This is a point that was demonstrated in the authors’ prior eLife paper - so the point here is to quantify these forces for the second experiment.

      The second experiment is the most important in the manuscript. In this, forces are applied directly to two residues on the TRP domain with either a membrane normal (compression) or membrane parallel (twisting) direction, with the magnitude and directions chosen to match that found in the first experiment. Only the twisting force is seen to widen the pore in the triplicate simulations, suggesting that twisting, but not compression can open the pore. This result is intriguing and there appears to be a significant difference between the dilation of pore with the two force directions.

      However, there are two caveats to this conclusion. Firstly, is the magnitude of the forces - the twist force is larger than the applied normal force to match the result of experiment 1. However, it is possible that compression could also open the pore at the same magnitude or if given longer. It may be that twist acts faster or more easily, but I feel it is not yet possible to say it is the key and exclude the possibility that compression could do something similar.

      Thank you for your insightful comment. As you pointed out, the membranenormal pushing forces exerted at residues E1571 and R1581 are approximately onethird and two-thirds, respectively, of the membrane-parallel twisting forces. These magnitudes were derived from a previous simulation (Wang et al., 2021), in which we decomposed the resultant force into its membrane-parallel and membrane-normal components upon applying a compressive force to the intracellular AR end. Our results indicated that, upon reaching the TRP helix, the induced twisting force is indeed greater, which partially reflects actual physiological conditions. Therefore, considering the magnitudes of the resultant forces alone, the twisting force is predominantly greater than the pushing force when the AR domain is subjected to compression.

      Then the question became, if forces of the same magnitude are applied in either the membrane-normal or membrane-parallel directions, what would the outcome be? To address this, we conducted additional simulations. Considering the situations discussed above, we applied a smaller membrane-parallel force instead of a larger membranenormal force that may disrupt the integrity of protein and membrane structure. As shown in the new Figure S6, we adjusted the applied membrane-parallel force to either half or one-third of the original value. When we applied half of the force used in the original setup, the channel opened in two out of three trajectories. When applying onethird of the force, the channel opened in one out of three trajectories. Together with our previous results, these findings suggest that if forces of equal magnitude are applied in the membrane-normal and membrane-parallel directions, the membrane-parallel force has a higher probability of inducing channel opening.

      Still, one cannot completely exclude the possibility that the pushing force on the TRP helix can open the channel if given a very long time. This becomes unfeasible to examine with MD simulations, so we investigated the likely conformational changes of multiple TRP family proteins upon opening, and found that the TRP rotation is a universal conformational change, while the TRP tilt is much less consistent (Figure 6). These findings gives us more confidence that the twist force plays a more crucial role in channel gating than the pushing force. We have added a new table (Table 1) and a new figure (Figure 6) to present this analysis.

      In addition, we did not intend to imply that compression is incapable of contributing to channel opening. In fact, our aim was to highlight that compression can generate both a twisting force and a pushing force, with the twisting force appearing to be the more critical component for facilitating channel opening. We concur that we cannot completely dismiss the possibility that the pushing component may also assist in channel opening. Consequently, we have revised our discussion on pages 4,6 to enhance clarity.

      I also note that when force was applied to the AR domain in experiment 1, the pore widened more quickly than with the twisting force alone, suggesting that compression is doing something to assist with opening.

      You are correct that the trajectory corresponding to Experiment 1 (Figure S1(b)) indicates pore opening around 300-400 ns, while the trajectory for Experiment 2 (800 ns) shows pore opening around 600 ns. This observation may suggest that the pore opens more rapidly in Experiment 1, assuming that the simulation conditions were identical for both experiments. However, it is important to note that in Experiment 1, an external force was applied to AR29. In contrast, in Experiment 2, the force was applied exclusively to two selected residues on the TRP domain, while other TRP residues also experienced mechanical forces, albeit to a lesser extent. The differing methods of force application in the two experiments complicate the comparison of pore opening speeds under these conditions.

      We acknowledge that the compression of the AR spring can facilitate pore opening. This compression generates both a twisting component and a pushing component on the TRP domain. Our simulations and structural analyses of multiple TRP channels suggest that the twisting component plays a predominant role in gating. However, we cannot entirely rule out the possibility that the pushing component may also contribute to this process. We have carefully revised our Result (page 6), Discussion (pages 10–12) and Methods (pages 14–17) sections to enhance clarity.

      Given that the forces are likely to be smaller in physiological conditions it could still be critical to have both twist and compression present. As this is the central aspect of the study, I believe that examining how the channel responds to different force magnitudes could strengthen the conclusions and recommend additional simulations be done to examine this.

      Thank you for your valuable comments. We agree that the force applied in Experiment 2 is possible to be larger than the physiological conditions. Therefore, we performed additional simulations to investigate the possibility of opening the pore using smaller torsional forces.

      As shown in the new Figure S6, we applied half and one-third of the original force and performed three replicate simulations for each condition. With half the force, the pore opened in two out of the three simulations. And with one-third of the applied force, the pore opened in one out of the three replicate simulations. The probability of pore opening within the same simulation time decreased as the applied force was reduced, consistent with our expectations. These new results are provided as supplementary figures (Figure S6) in the revised manuscript.

      We anticipate that further reductions in the forces will result in additional delays in the opening process; however, this would lead to prohibitive computational costs. Consequently, we have decided to conclude our analysis at this stage and have discussed this matter on page 6 of the revised manuscript.

      The second important consideration is that the study never sees a full pore opening, but rather a widening that is less than that seen in open state structures of other TRP channels and insufficient for rapid ion currents. This is something the authors acknowledge in their prior manuscript in eLife 2021. Although this may simply be due to the limited timescale of the simulations, it needs to be clearly stated as a caveat to the conclusions. Twist may be the key to getting this dilation, but we do not know if it is the key to full pore opening. To demonstrate that the observed dilation is a first step in the opening of pores, a structural comparison to open-state TRP channels would be beneficial in providing evidence that this motion is along the expected pathway of channel gating.

      We are grateful for this insightful comment. We acknowledge that our simulations do not capture a fully open state, but rather a dilation that is smaller than the open-state structures of other TRP channels. In our simulations, a pore radius exceeding 2 Å is considered as a partially open state, as this is generally sufficient for the permeation of water molecules or even small cations such as K<sup>+</sup> and Na<sup>+</sup> However, the passage of larger molecules and ions, such as Ca<sup>2+</sup> and clusters of hydrated ions, remains challenging. As you noted, this partial opening may be attributed to the limited timescale of the simulations.

      Furthermore, in accordance with your suggestion, we analyzed numerous TRP proteins for which multiple open or intermediate states have been resolved, and we have included a new figure (Figure 6). A clockwise rotation of the TRP domain is observed in the majority of these proteins upon gating. For instance, in the case of RnTRPV1, our analysis revealed that during TRPV1 activation, when different ligands are bound (RTX, DkTX), the pore undergoes gradual dilation, which involves a progressive clockwise rotation of the TRP domain. This analysis provides evidence that the observed motion aligns with expected gating transitions, supporting the notion that twist-induced TRP rotation and pore dilation may represent an initial step in the pore opening process.

      Nonetheless, we concur that further studies, including extended simulations, which are currently unfeasible, or experimental validation, will be necessary to ascertain whether our proposed mechanism is adequate for the complete opening of the pore. We have carefully discussed this on pages 10–12.

      Experiment three considers the intracellular domain and determines the link between compression and twisting of the intracellular AR domain. In this case, the end of the domain is twisted and it is shown that the domain compresses, the converse to the similar study previously done by the authors in which compression of the domain was shown to generate torque. While some additional analysis is provided on the inter-residue links that help generate this, this is less significant than the critical second experiment.

      Although experiment three is less significant in revealing the underlying gating mechanism, it provides quantitative measurements of the mechanical properties of the intriguing AR spring structure, which are currently challenging to obtain experimentally. These provide computational predictions for future experiments to validate.

      Reviewer #2 (Public review):

      This study uses all-atom MD simulation to explore the mechanics of channel opening for the NOMPC mechanosensitive channel. Previously the authors used MD to show that external forces directed along the long axis of the protein (normal to the membrane) result in AR domain compression and channel opening. This force causes two changes to the key TRP domains adjacent to the channel gate: 1) a compressive force pushes the TRP domain along the membrane normal, while 2) a twisting torque induces a clock-wise rotation on the TRP domain helix when viewing the bottom of the channel from the cytoplasm. Here, the authors wanted to understand which of those two changes is responsible for increasing the inner pore radius, and they show that it is the torque. The simulations in Figure 2 probe this question with different forces, and we can see the pore open with parallel forces in the membrane, but not with the membrane-normal forces. I believe this result as it is reproducible, the timescales are reaching 1 microsecond, and the gate is clearly increasing diameter to about 4 Å. This seems to be the most important finding in the paper, but the impact is limited since the authors already show how forces lead to channel opening, and this is further teasing apart the forces and motions that are actually the ones that cause the opening.

      Thank you for your insightful comments. We appreciate your recognition of our key finding that torque is responsible for increasing the inner pore radius. Indeed, our simulations illustrated in Figure 2 systematically explore the effects of different forces on pore opening. These results demonstrate that membrane-parallel forces are effective, while membrane-normal forces are not within the simulation time. We acknowledge that this study builds upon previous findings regarding force-induced channel opening. However, we believe that further decomposition of the specific forces and motions responsible for this process provides valuable mechanistic insights. By distinguishing the role of torque from the membrane-normal forces of the TRP helix, which is highly conserved across the TRP channel family, our work contributes to a more precise understanding of TRP channel gating. Moreover, in the revised manuscript, we conducted a systematic analysis of the structures of TRP family proteins and discovered that the clockwise rotation of the TRP domain is likely a universal gating mechanism among the TRP family, which significantly enhances and strengthens our original findings (Figure 6).

      Reviewer #3 (Public review):

      Summary:

      This manuscript by Duan and Song interrogates the gating mechanisms and specifically force transmission in mechanosensitive NOMPC channels using steered molecular dynamics simulations. They propose that the ankyrin spring can transmit force to the gate through torsional forces adding molecular detail to the force transduction pathways in this channel.

      Strengths:

      Detailed, rigorous simulations coupled with a novel model for force transduction.

      Thank you for your positive comments.

      Weaknesses:

      Experimental validation of reduced mechanosensitivity through mutagenesis of proposed ankyrin/TRP domain coupling interactions would greatly enhance the manuscript. I have some additional questions documented below:

      We attempted to measure the mechanical properties of the AR domain and conduct mutagenesis experiments in collaboration with Prof. Jie Yan’s laboratory at the Mechanobiology Institute, National University of Singapore; however, this proved to be a significant challenge at this time. Given the urgency of the publication, we have decided to first publish the computational results and reserve further experimental studies for future investigations.

      (1) The membrane-parallel torsion force can open NOMPC

      How does the TRP domain interact with the S4-S5 linker? In the original structural studies, the coordination of lipids in this region seems important for gating. In this manner does the TRP domain and S4-S5 linker combined act like an amphipathic helix as suggested first for MscL (Bavi et al., 2016 Nature Communications) and later identified in many MS channels (Kefauver et al., 2020 Nature).

      In our analysis of the compression trajectories (trajectory: CI-1, Figure S4), we identified stable interactions between the TRP domain and the S4-S5 linker. These interactions primarily involve the residues S1421 and F1422 of the S4-S5 linker, as indicated by the large pink data points in Figure S4. Therefore, we agree that the TRP helix and the S4–S5 linker can be considered an amphipathic helical unit, analogous to the amphipathic helix observed in MscL and other mechanosensitive channels. Moreover, the pocket adjacent to the S4-S5 linker has been recognized as a binding site for small molecules in other ligand-activated TRP channels, such as the vanilloid-binding TRPV1. We hypothesize that this unit is likely to play a critical role in the polymodal gating of the TRP channel family, including ligand-induced activation. In the revised manuscript, we have included an analysis of the interaction between the TRP domain and the transmembrane (TM) domain on page 4 (Figure S4), and we have briefly discussed its implications on pages 10 and 12.

      (2) Torsional forces on shorter ankyrin repeats of mammalian TRP channels

      Is it possible torsional forces applied to the shorter ankyrin repeats of mammalian TRPs may also convey force in a similar manner?

      This is an intriguing question.

      To answer your question, we studied the full-length squirrel TRPV1 (PDB: 7LQY, Nadezhdin et al. (2021)) using all-atom steered MD simulations. We applied pushing or torsional forces to the intracellular AR1-2 region of TRPV1, separately (Figure S10(a)). Similar to NOMPC, rotation of the TRP domain was observed under both types of mechanical stimulation (Figure S10(b-e)). The conformational change induced by the torsional force on the TRP domain resembles the change observed in NOMPC. This suggests that a torsional force applied to the shorter ankyrin repeats of mammalian TRPs may yield similar effects on channel gating. However, given that these ankyrin repeats do not act like tether elements, the implications of these results in the context of biological functions remain unclear. Additionally, in NOMPC, the AR domain is connected to the TRP domain through a linker helix (LH) domain, composed of multiple stacked helices that form a relatively compact structure (Figure 1(a)). In contrast, TRPV1 does not possess a similarly compact LH domain connecting the AR domain to the TRP domain (Figure S10(a)). These structural differences render our conclusions regarding NOMPC not directly applicable to TRPV1. We have included an additional discussion about this on page 12 (Figure S10).

      (3) Constant velocity or constant force

      For the SMD the authors write "and a constant velocity or constant force". It’s unclear from this reviewer’s perspective which is used to generate the simulation data.

      Thank you for pointing out this ambiguity. In our simulations, we first applied constant-velocity pulling to achieve specific force magnitudes, followed by constantforce pulling. This protocol allowed us to initiate the motion of the protein in a controlled manner and observe the response of the system under sustained forces. We have now clarified this in the revised Methods section.

      Reviewer #1 (Recommendations for the authors):

      The language in the paper requires some editing - particularly in the introduction. For example, what is meant by ion channels ’coalescing to form mechanical receptors’? Are the authors implying it requires multiple channels to form a receptor? It is stated that mechanically gated ion channels are only found in nerve endings when in fact they are found in almost every cell type. Another example is the statement ’In the meantime’ the TRP domain was observed to rotate when this observation came prior to the others mentioned before. While these sound like minor edits, they significantly change the meaning of the introduction. I recommend careful editing of the manuscript to avoid accidental inaccuracies like this.

      Thank you for your feedback on the clarity and accuracy of the introduction. We have carefully revised the manuscript, particularly the abstract and instroduction sections, to address these concerns:

      (1) We have reworded the original sentence ’These mechanosensitive ion channels, coalescing to form mechanical receptors, are strategically positioned within the sensory neuron terminals intricately nestled within the epidermal layer.’ into ’In both vertebrates and invertebrates, mechanosensitive ion channels are widely expressed in peripheral sensory neurons located near or within the surface tissues responsible for detecting mechanical stimuli.’

      (2) We have replaced the phrase "In the meantime" with "Interestingly" to introduce the conformational change of the TRP domain that we believe is crucial.

      (3) We have carefully reviewed the entire manuscript and used a language editing tool, Writefull integrated within Overleaf, to proof-check the language problems.

      Reviewer #2 (Recommendations for the authors):

      How do the energy values in Figure 3b, compare with the continuum energy values reported by Argudo et al. JGP (2019)? I wonder what value the authors would get with a new replicate run slower - say 200 ns total aggregate simulation? This would probe the convergence of this energy value. It seems important to determine whether the loading velocity of the experiments performed here with the steered MD is slow enough to allow the protein to relax and adopt lower energy configurations during the transition. The true loading is likely to occur on the millisecond timescale, not the nanosecond to low microsecond timescale. That said, I don’t mean to detract from the result in Figure 2, as this is likely quite solid in my opinion given the nearly 1 microsecond simulations and the replicates showing the same results.

      Thank you for your valuable suggestions. It is important to note that we calculated different physical quantities compared to those reported in Argudo’s study. In Figure 3b, we calculated the torque ( instead of the energy, although they share the same dimensional units) of the long AR bundle (AR9-29 of the four filaments combined) and subsequently determined its torsion coefficient. Argudo’s study calculated the torsional spring constant (𝑘<sub>ɵ</sub>) of three 6-AR-unit stretches of one filament, which were designated as ANK1 (AR 12-17), ANK2 (AR 17-22) and ANK3 (AR 22–27). As the four filaments are coupled within the bundled structure and the torsional axes differ between an individual filament and the four-filament bundle, a direct comparison of the torsional spring constants reported in the two studies is not meaningful.

      We agree that extending the simulation time may provide deeper insights into the convergence of energy values. In accordance with your suggestion, we conducted additional simulations to further investigate convergence and compare the results with our existing data, thereby ensuring robustness and consistency. Specifically, we slowed down the original operation of twisting from 10 degrees over 100 ns to 10 degrees over 200 ns, and extended the holding time for selected frames (sampled every 2.5 degrees) from 100 ns to 200 ns. We have updated Figure 3 and relevant main text accordingly (page 7). The results of the new simulations are similar to those of the previous ones, with the fitted torsion coefficient revised from (2.31 ± 0.44) × 10<sup>3</sup>kJ mol<sup>−1</sup>  ra<sup>−1</sup> 1 to (2.30 ± 0.31) × 10<sup>3</sup> kJmol<sup>−1</sup> rad<sup>−1</sup>  This close agreement indicates that our simulations are well-converged. Additionally, we updated the compression–twist coupling coefficient, , from (1.67 ± 0.14) nmrad<sup>−1</sup> to (1.32 ± 0.11) nmrad<sup>−1</sup>

      As you suggested, we conducted an additioanl analysis to determine whether the loading velocity/force with the steered MD is sufficiently slow to facilitate the relaxation of the protein and its adoption of lower-energy configurations during the transition. For simulations involving the application of membrane-normal or membrane-parallel force on the TRP domain, we utilized DSSP (Define Secondary Structure of Proteins) analysis to assess the stability of the secondary structure of the TRP domain. The results indicated that, during the application of external forces, the secondary structure of the TRP domain maintained good stability, as illustrated in Figure S11. For simulations involving the rotation of the AR domain, we also analyzed the DSSP of the AR9 to AR11 units, which are positioned directly above the AR8 domain where the twisting force is applied. The secondary structure of the AR domain also exhibited good stability (Figure S12). These are briefly discussed in the Methods section of the revised manuscript (page 17).

      It is unclear to me that the force transmission analysis in Figure 4 provides much insight into the mechanics of opening. Perhaps the argument was made, but I did not appreciate it. Related to this the authors state that the transfer velocity is 1.8 nm/ps based on their previous study. Is this value profound or is it simply the velocity of sound in the protein?

      The analysis of force transmission presented in Figure 4 offers detailed insights into the transfer of force along the AR domain. While this may appear straightforward, the information elucidates how a pushing force can induce a twisting force during its transmission through the AR spring structure, as well as the primary contributions that stabilize this transmission pathway. To enhance clarity, we have included an additional discussion on page 9.

      The force transfer velocity is expected to align with the velocity of sound within the protein. The value of 1.8 nm/ps, however, is specific to the unique structure of the AR spring, which is quite interesting to report in our opinion. Additionally, this rapid transfer speed suggests that the simulation timescale is sufficient for enabling the transfer of compression force from the bottom of the AR domain to the TRP domain in our simulations, given that the simulation timescale is considerably longer than the force propagation timescale within the protein.

      The methods description is largely complete, but is missing some details on the MD simulations (barostat, thermostat, piston constants, etc.).

      Thank you for pointing out the missing details; we have added the additional information in the revised Methods section.

      References

      Nadezhdin, K. D., A. Neuberger, Y. A. Nikolaev, L. A. Murphy, E. O. Gracheva, S. N. Bagriantsev, and A. I. Sobolevsky (2021). Extracellular cap domain is an essential component of the trpv1 gating mechanism. Nature communications 12(1), 2154.

      Wang, Y., Y. Guo, G. Li, C. Liu, L. Wang, A. Zhang, Z. Yan, and C. Song (2021). The pushto-open mechanism of the tethered mechanosensitive ion channel nompc. Elife 10, e58388.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer 1 (Public review):

      Summary:

      This paper attempts to measure the complex changes of consciousness in the human brain as a whole. Inspired by the perturbational complexity index (PCI) from classic research, authors introduce simulation PCI (_s_PCI) of a time series of brain activity as a measure of consciousness. They first use large-scale brain network modeling to explore its relationship with the network coupling and input noise. Then the authors verify the measure with empirical data collected in previous research.

      Strengths:

      The conceptual idea of the work is novel. The authors measure the complexity of brain activity from the perspective of dynamical systems. They provide a comparison of the proposed measure with four other indexes. The text of this paper is very concise, supported by experimental data and theoretical model analysis.

      We would like to thank the reviewer for evaluation of our work and the positive feedback. In what follows we would like to clarify the ambiguities in our initial submission, and the respective changes to the manuscript.

      (1) Consciousness is a network phenomenon. The measure defined by the authors is to consider the maximal sPCI across the nodes stimulated. This measure is based on the time series of one node. The measure may be less effective in quantifying the ill relationship between nodes. This may contribute to the less predictive power of anesthesia (Figure 4b).

      Thank you for this comment, consciousness is indeed a network phenomenon. sPCI is in fact measured across the whole network: to compute sPCI we apply PCI to simulated activity of the whole network. The perturbation is applied to individual nodes of network (different node for each trial) and each time, the response to the stimulus is measured through sPCI in the whole network. To make this explicit, the relevant section now reads:

      “In line with the PCI experimental protocol, we sampled from multiple initial conditions and stimulated regions, presenting the maximum sPCI for each regime (i.e., each {G,σ}). For each simulation, we measured the complexity of the activity of the whole network over a 10-second period post-stimulus.”

      (2) One of the focuses of the work is the use of a dynamic model of brain networks. The explanation of the model needs to be in more detail.

      Thank you for your feedback. We expanded the method section.

      (3) The equations should be checked. For example, there should be no max on the left side of the first equation on page 13.

      We thank the reviewer for spotting this typo, and we removed the max on the left side of this equation, and also checked all the other equations for correctness. The equation now reads:

      (4) The quality of the figures should be improved.

      Thank you for your comment. We have made adjustments to several figures and we hope that they are clearer now...

      (5) Figure 4 should be discussed and analyzed more in the text.

      Thank you for pointing this out. We added the following paragraph discussing the figure (now number 5) in the results section:

      “Classification results using a linear SVM are reported in Fig. 5. We report the crossplots of PCI and each of the resting-state metrics for all subjects and conditions in Fig. 5a. Each point corresponds to the calculation of the given metric over the whole recording normalized by its duration. We find that for fluidity (Fig. 5a, third panel), there is a perfect linear separation between Propofol and Xenon anesthesia on the left side and Wakefulness and Ketamine anesthesia on the right side. This corresponds to the classification accuracy result of 100% for the consciousness class in Fig. 5b, which is the same for PCI. As expected, PCI and fluidity behave poorly at classifying the presence of an anesthetic agent due to the confusion induced by Ketamine. However, the size of the functional repertoire performs an almost perfect classification for this grouping. Only one subject under Ketamine has a high functional repertoire (Fig. 5a, left panel), but all other subjects in the anesthesia condition have a size of functional repertoire roughly under 100. Classification accuracies for complexity and GAP at the group level are less performant but are shown for completeness.”

      (6) The usage of the terms PCI and sPCI should be distinguished.

      We would like to thank the reviewer for pointing out this ambiguity. The PCI metric had to be adapted for the synthetic data. We have now further emphasized this in the methods sections – “Perturbational Complexity”.

      Reviewer 2 (Public review):

      Summary:

      Breyton and colleagues analysed the emergent dynamics from a neural mass model, characterised the resultant complexity of the dynamics, and then related these signatures of complexity to datasets in which individuals had been anaesthetised with different pharmacological agents. The results provide a coherent explanation for observations associated with different time series metrics, and further help to reinforce the importance of modelling when integrating across scientific studies.

      Strengths:

      (1) The modelling approach was clear, well-reasoned, and explicit, allowing for direct comparison to other work and potential elaboration in future studies through the augmentation with richer neurobiological detail.

      (2) The results serve to provide a potential mechanistic basis for the observation that the Perturbational Complexity Index changes as a function of the consciousness state.

      We would like to thank the reviewer for assessing our work, and the valuable feedback.

      Weaknesses:

      (3) Coactivation cascades were visually identified, rather than observed through an algorithmic lens. Given that there are numerous tools for quantifying the presence/absence of cascades from neuroimaging data, the authors may benefit from formalising this notion.

      Thank you for bringing this to our attention. We added a quantification of the cascades in Fig 2 and 3. We computed the absolute value of the mean signal across sources (following z-scoring) to obtain a cascade profile and calculated the area under the curve as quantification of the overall presence of cascades. As it can be seen in the two figures, the presence of cascades is the highest around the working point. We have also added the precise definition to the methods section, which now reads:

      “Coactivation Cascades

      The profile of cascades over time was computed, first by z-scoring each source activity, and second by averaging the absolute value of the activity across all sources. The quantification of cascades was then obtained by calculating numerically the Area Under the Curve (AUC) of the profile of cascades.”

      (4) It was difficult to tell, graphically, where the model’s operating regime lay. Visual clarity here will greatly benefit the reader.

      Thank you for pointing out this ambiguity, we have marked the working point explicitly in the Figure 3.

      Recommendations For The Authors

      Reviewer 1 (Recommendations for the authors):

      (1) In the method section, the technical details of the other four indexes should be elaborated.

      Thank you for your recommendation, we agree that the description in the submitted manuscript was too brief. We expanded the method section about the functional repertoire and the bursting potential.

      Reviewer 2 (Recommendations for the authors):

      (1) The authors could more clearly label the ”working point” of their parameter space. Perhaps a label/arrow on Figure 2c that directs the readers’ eyes towards the location in state-space that you define as the working point?

      Thank you for pointing out this ambiguity, we updated the figure 3 to mark the working point precisely.

      (2) While ’fluidity’ is quite an evocative term and does a great job of suggesting to the uninitiated reader the character of the time series in question, I wonder whether a more descriptive term might be better suited for this variable, even if as an adjunct to the term, fluidity. In the past, we (and others) have used the term dynamic functional connectivity variability (Mu¨ller et al., 2020 NeuroImage) to refer to this feature, as it links the measure directly to the technique from which it was estimated.

      Thank you for your feedback. You are correct, dynamic functional connectivity variability could have been a wording of choice for some of our results. However the term “fluidity” was chosen to convey a broader theoretical concept linked to dynamical systems but not exclusive to the brain. Here, dynamic functional connectivity variability is merely a measure of the fluidity of the system. We added the following in the method section describing the metrics:

      “[...] Fluidity is related to previously defined metrics such as functional connectivity variability [10] that relied on a non-overlapping windowing procedure. We chose the term fluidity to convey a cocept linked to dynamical systems in general and states exploration. [...]”

      (3) The term ”bursting potential” is also potentially problematic, as ”bursting” refers to a different concept at the cellular level (i.e., multiple action potentials in a short window of time) than it does in the context that the authors are presumably using it here (i.e., the capacity for the dynamics of the population to ”burst” into the fat-tail of their activity distribution). To avoid ambiguity, it could be worth considering altering this terminology, perhaps again by using a term that is descriptive of the technique used to estimate it, rather than the concept that it evokes.

      Thank you for pointing out this ambiguity in the naming of the bursting potential. We have renamed it to “Global Activation Potential (GAP)” as we believe this term is a better description of the metric. We have switched to this term across the whole manuscript.

      (4) There is a range of other modelling studies that have compared brain dynamics in the awake vs. anaesthetised patient. In my opinion, the reader would benefit from the ability to place this work into the broader context created by the literature, particularly as there are subtle (yet potentially important) differences in the models used in each case. Note - as this is a subjective opinion, I don’t view this as a crucial addition to the paper’s potential strength of evidence, though I do believe that it would have a positive effect on its potential impact.

      We thank you for the suggestion. We have modified the before-to-last paragraph of the discussion to bring more context from the literature models of anethesia and wakefulness:

      “Several studies have employed computational modeling approaches to investigate the differences in brain dynamics across states of consciousness. These studies present varying degrees of physiological detail and focus on complementary aspects of unconsciousness. They start from simple abstract models (Ising model) addressing for example the increased correlation between stuctural and functional connectivity in aneshesia [15], or oscillator-based models (Hopf model) capturing a brain state dependent response to simulated perturbation [4]. More neurobiologically realistic models (Dynamic Mean Field) have also been used to combine multimodal imaging data together with receptor density maps to address the macroscopic effects of general aneshesia and their relationship to spatially heterogeneous properties of the neuronal populations [8]. Similarly, using anatomically constrained parameters for brain regions has already been shown to increase the predictive value of brain network models [6, 18]. Furthermore, employing biophysically grounded mean-field and spiking neuron models (AdEx) allows addressing phenomena propagating in effect across multiple scales of description such as the molecular effects of anesthetics targeting specific receptor types [12]. Related work has shown that adaptation successfully reproduces dynamical regimes coherent with NREM and wakefulness [3] with corresponding realistic PCI values Goldman2021comprehensive. Here, we don’t address these biological questions but rather give a proof of concept that large-scale brain models can help understand the dynamics related to brain function. We used a model derived from QIF neurons Montbrio2015Macroscopic that lacks biological parameters such as ion concentration or synaptic adaptation. Nevertheless, we demonstrate that even the symmetry breaking caused by the connectome is sufficient for setting the global working point of the brain, which then links the brain’s capacity for generating complex behavior in the different paradigms, that is, rest and stimulation.”

      (5) I saw the label ”digital brain twin” in the abstract but then did not find a location in the main text/methods wherein this aspect of the modelling was explained.

      Thank you for pointing out this discrepancy, we have removed the term “digital brain twin” and replaced it by “whole-brain model” everywhere.

      References

      John M. Beggs and Dietmar Plenz. Neuronal Avalanches in Neocortical Circuits. The Journal of Neuroscience, 23(35):11167–11177, dec 3 2003.

      A. G. Casali, O. Gosseries, M. Rosanova, M. Boly, S. Sarasso, K. R. Casali, S. Casarotto, M.-A. Bruno, S. Laureys, G. Tononi, and M. Massimini. A Theoretically Based Index of Consciousness Independent of Sensory Processing and Behavior. Science Translational Medicine, 5(198):198ra105–198ra105, aug 14 2013.

      Anna Cattani, Andrea Galluzzi, Matteo Fecchio, Andrea Pigorini, Maurizio Mattia, and Marcello Massimini. Adaptation shapes local cortical reactivity: From bifurcation diagram and simulations to human physiological and pathological responses. eneuro, 10(7):ENEURO.0435– 22.2023, July 2023.

      Gustavo Deco, Joana Cabral, Victor M. Saenger, Melanie Boly, Enzo Tagliazucchi, Helmut Laufs, Eus Van Someren, Beatrice Jobst, Angus Stevner, and Morten L. Kringelbach. Perturbation of whole-brain dynamics in silico reveals mechanistic differences between brain states. NeuroImage, 169:46–56, April 2018.

      Rahul S. Desikan, Florent S´egonne, Bruce Fischl, Brian T. Quinn, Bradford C. Dickerson, Deborah Blacker, Randy L. Buckner, Anders M. Dale, R. Paul Maguire, Bradley T. Hyman, Marilyn S. Albert, and Ronald J. Killiany. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3):968–980, 7 2006.

      Xiaolu Kong, Ru Kong, Csaba Orban, Peng Wang, Shaoshi Zhang, Kevin Anderson, Avram Holmes, John D. Murray, Gustavo Deco, Martijn van den Heuvel, and B. T. Thomas Yeo. Sensory-motor cortices shape functional connectivity dynamics in the human brain. Nature Communications, 12(1), November 2021.

      A. Lempel and J. Ziv. On the Complexity of Finite Sequences. IEEE Transactions on Information Theory, 22(1):75–81, 1 1976. event-title: IEEE Transactions on Information Theory.

      Andrea I. Luppi, Pedro A. M. Mediano, Fernando E. Rosas, Judith Allanson, John D. Pickard, Guy B. Williams, Michael M. Craig, Paola Finoia, Alexander R. D. Peattie, Peter Coppola, Adrian M. Owen, Lorina Naci, David K. Menon, Daniel Bor, and Emmanuel A. Stamatakis. Whole-brain modelling identifies distinct but convergent paths to unconsciousness in anaesthesia and disorders of consciousness. Communications Biology, 5(1), April 2022.

      Ernest Montbri´o, Diego Paz´o, and Alex Roxin. Macroscopic Description for Networks of Spiking Neurons. Physical Review X, 5(2):021028, jun 19 2015.

      Eli J. Mu¨ller, Brandon Munn, Luke J. Hearne, Jared B. Smith, Ben Fulcher, Aurina Arnatkeviˇciu¯te˙, Daniel J. Lurie, Luca Cocchi, and James M. Shine. Core and matrix thalamic sub-populations relate to spatio-temporal cortical connectivity gradients. NeuroImage, 222:117224, November 2020.

      J. Matias Palva, Alexander Zhigalov, Jonni Hirvonen, Onerva Korhonen, Klaus LinkenkaerHansen, and Satu Palva. Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proceedings of the National Academy of Sciences, 110(9):3585–3590, feb 26 2013. publisher: Proceedings of the National Academy of Sciences.

      Maria Sacha, Federico Tesler, Rodrigo Cofre, and Alain Destexhe. A computational approach to evaluate how molecular mechanisms impact large-scale brain activity. Nature Computational Science, 5(5):405–417, May 2025.

      Simone Sarasso, Melanie Boly, Martino Napolitani, Olivia Gosseries, Vanessa Charland-Verville, Silvia Casarotto, Mario Rosanova, Adenauer Girardi Casali, Jean-Francois Brichant, Pierre Boveroux, Steffen Rex, Giulio Tononi, Steven Laureys, and Marcello Massimini. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine. Current Biology, 25(23):3099–3105, 12 2015.

      Pierpaolo Sorrentino, Rosaria Rucco, Fabio Baselice, Rosa De Micco, Alessandro Tessitore, Arjan Hillebrand, Laura Mandolesi, Michael Breakspear, Leonardo L. Gollo, and Giuseppe Sorrentino. Flexible brain dynamics underpins complex behaviours as observed in Parkinson’s disease. Scientific Reports, 11(1):4051, feb 18 2021. number: 1 publisher: Nature Publishing Group.

      S. Stramaglia, M. Pellicoro, L. Angelini, E. Amico, H. Aerts, J. M. Cort´es, S. Laureys, and D. Marinazzo. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(4), April 2017.

      Enzo Tagliazucchi, Pablo Balenzuela, Daniel Fraiman, and Dante Chialvo. Criticality in LargeScale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis. Frontiers in Physiology, 3, 2012. [Online; accessed 2022-12-23].

      David C. Van Essen, Stephen M. Smith, Deanna M. Barch, Timothy E.J. Behrens, Essa Yacoub, and Kamil Ugurbil. The WU-Minn Human Connectome Project: An Overview. NeuroImage, 80:62–79, oct 15 2013. PMID: 23684880 PMCID: PMC3724347.

      Peng Wang, Ru Kong, Xiaolu Kong, Rapha¨el Li´egeois, Csaba Orban, Gustavo Deco, Martijn P. van den Heuvel, and B.T. Thomas Yeo. Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Science Advances, 5(1), January 2019.

      Farnaz Zamani Esfahlani, Youngheun Jo, Joshua Faskowitz, Lisa Byrge, Daniel P. Kennedy, Olaf Sporns, and Richard F. Betzel. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 117(45):28393–28401, November 2020.

    1. Author response:

      Reviewer #1 (Public review):

      (1) The strength of the relationship between the different transcriptional parameters and the mean expression output is displayed visually in Figures 5 and 7, but is not formally quantified. Given that the tau_off times seem more correlated to mean activity for some enhancers (e.g., rho) than others (e.g., sna SE), the quantification might be useful.

      We re-plot Figure 5 and Figure 7 to present the correlation between the studied burst parameters. As the reviewer suggested, after quantifying the correlation we can better study the correlation between the cells averaged tau-off and the cell-averaged fluorescence signal in some of the selected enhancers. As a result of these findings we decide to change our message and instead of claiming that the burst statistics are homogeneous over the embryo domain, to claim that these statistics have weak but significant correlations with the cell-averaged mean gene fluorescence.  

      (2) There are some mechanistic details that are not discussed in depth. For example, the authors observe that the accumulation and degradation of the MS2 signal have similar slopes. However, given that the accumulation represents the transcription of MS2 loops, while the degradation represents diffusion of nascent transcripts away from the site of transcription, there is no mechanistic expectation for this. The degradation of signal seems likely to be a property of the mRNA itself, which shouldn't vary between cells or enhancer reporters, but the accumulation rate may be cell- or enhancer-specific. Similarly, the activity time depends both on the time of transcription onset and the time of transcription cessation. These two processes may be controlled by different transcription factor properties or levels and may be interesting to disentangle.

      The accumulation slope represents the rate of nascent transcript production, which depends on transcription initiation frequency and RNA polymerase elongation rate. While transcription initiation rates can vary between enhancers, our results show that the loading rates are relatively comparable across different enhancer sequences (Figure 5D). Instead, the primary difference observed was in activity time and burst frequency, consistent with previous findings that enhancers predominantly modulate burst frequency (Fukaya et al., 2016). The degradation slope represents the diffusion of completed transcripts away from the transcription site, which should be an intrinsic property of the mRNA molecule and therefore independent of the regulatory sequences driving transcription.

      (3) There are previous analyses of the eve stripe dynamics, which the authors cite, but do not compare the results of their work to the previous work in depth.

      The goal of this manuscript is to compare transcriptional bursting properties across different enhancers, rather than to provide an in-depth analysis of eve stripe dynamics specifically. We analyzed four transgenic constructs with different enhancers alongside an endogenous eve construct, focusing on comparative bursting parameters rather than detailed eve expression patterns. Additionally, the previously published eve stripe dynamics data came from BAC constructs, whereas our data comes from the endogenous eve locus. This methodological difference makes direct comparison of stripe dynamics less straightforward and less relevant to our central research question about enhancer-driven bursting variability.

      Reviewer #2 (Public review):

      (1) The manuscript does not clearly delineate how this analysis extends beyond the prior landmark study (citation #40: Fukaya et al., 2016). While the current manuscript offers new modeling and statistics, more explicit clarification of what is novel in terms of biological conclusions and methodological advancement would help position the work.

      The prior study (Fukaya et al., 2016) characterized transcriptional bursting qualitatively, focusing on average burst properties per nucleus without systematic mathematical modeling or statistical analysis of burst-to-burst variability. While they demonstrated that enhancer strength correlates with burst frequency, no quantitative framework was developed to dissect the molecular mechanisms underlying these differences or to connect burst dynamics to spatial gene expression patterns.

      (1) We developed an explicit mathematical model with rigorous inference algorithms to quantify transcriptional states from fluorescence trajectories; (2) We performed comprehensive statistical analysis of burst timing distributions, revealing that inter-burst intervals follow exponential distributions while burst durations are hypo-exponentially distributed; (3) Most importantly, we discovered that burst kinetics (τON, τOFF) remain remarkably consistent across different genes and spatial locations, while spatial expression gradients arise primarily through modulation of activity time - the temporal window during which bursting occurs. This mechanistic insight reveals that enhancers regulate spatial patterning not by changing intrinsic burst properties, but by controlling the duration of transcriptionally permissive periods.

      (2) While the methods are explained in detail in the Supplementary Information, the manuscript would benefit from including a diagrammatic model and explicitly clarifying whether the model is descriptive or predictive in scope.

      We plan to prepare the diagrammatic model in the formal response. 

      (3) The interpretation that fluorescence decay reflects RNA degradation could be confounded by polymerase runoff or transcript diffusion from the transcription site. These potential limitations are not thoroughly discussed. (Write few lines in the discussion)

      This concern, related to the interpretation of the predictive model will be addressed in a future work. The decay in the fluorescence signal can be biologically related to the transcription termination, polymerase detachment, and diffusion. A key limitation of the approach is that the model is phenomenological and does not these capture processes that can be addressed with a more mechanistic model.

      (4) The so-called loading rate is used as an empirical parameter in fitting fluorescence traces, but is not convincingly linked to distinct biological processes. The manuscript would benefit from a more precise definition or reframing of this term.

      We modify the language of our definition of loading rate as follows: Loading rate is defined as the rate of increase of fluorescence signal following promoter activation. This quantity is a proxy measurement for the rate of RNA Polymerase II transcription initiation.” The full transcription process has multiple mechanisms including chromatin dynamics, 3D enhancer-promoter interactions, transcription factor binding, mRNA polymerase pausing, and interactions between developmental promoter motifs and associated proteins. We did not have access to specific measurements of these mechanisms and therefore cannot provide a solid biological meaning of the model behind the inference algorithm. However, the fact that we have reproducible results in biological replicas can support the robustness of our method at predicting the promoter state in the studied datasets. In the formal response we will compare the performance of our method with other available ones.

      Reviewer #3 (Public review):

      (1)The algorithm is not benchmarked against previously used algorithms in the field to infer ON and OFF times, for example, those based on Hidden Markov models. A comparison would help strengthen the support for this algorithm (if it really works well) or show at which point one must be careful when interpreting this data.

      We are implementing a benchmarking protocol to compare our results with the proposed and already published models. We expect to present this comparison in the formal response.

      (2) More broadly, the novelty of the findings and how those fit within the knowledge of the field is not super clear. A better account of previous findings that have already quantified ON, OFF times and so on, and how the current findings fit within those, would help better appreciate the significance of the work.

      To have a better clarity of the new findings we modified the title from “Regulation of Transcriptional Bursting and Spatial Patterning in Early Drosophila Embryo Development” to “Temporal Duration of Gene Activity is the main Regulator of Spatial Expression Patterns in Early Drosophila Embryos”.

      In short, (1) We developed an explicit mathematical model with rigorous inference algorithms to quantify transcriptional states from fluorescence trajectories; (2) We performed comprehensive statistical analysis of burst timing distributions, revealing that inter-burst intervals follow exponential distributions while burst durations are hypo-exponentially distributed; (3) Most importantly, we discovered that burst kinetics (τON, τOFF) remain remarkably consistent across different genes and spatial locations, while spatial expression gradients arise primarily through modulation of activity time - the temporal window during which bursting occurs. This mechanistic insight reveals that enhancers regulate spatial patterning not by changing intrinsic burst properties, but by controlling the duration of transcriptionally permissive periods.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public review):  

      Summary:  

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths:  

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as: (1) a large set of behavioral attributes, (2) with inter-individual variability, that are (3) stable over time. A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings and extends the experiments from temporal stability to examining correlation of locomotion features between different contexts.  

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of high-throughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      Weaknesses:  

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. Why were five or so parameters selected from the full set? How were these selected? Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset?  

      The correlation analysis is used to establish stability between assays. For temporal re-testing, "stability" is certainly the appropriate word, but between contexts it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency".  

      The parameters are considered one-by-one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability', along with the analyses of single-parameter variability stability.

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      The authors describe a dissociation between inter-group differences and inter-individual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general, and with regard to these specific parameters? Is increased walking speed at higher temperature necessarily due to increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      Using the current single-correlation analysis approach, the aims would benefit from re-wording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The study presents a bounty of new technology to study visually guided behaviors. The Github link to the software was not available. To verify successful transfer or open-hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.

      The study discusses a number of interesting, stimulating ideas about interindividual variability and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of interindividual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms.  

      Comments on revisions:  

      I want to express my appreciation for the authors' responsiveness to the reviewer feedback. They appear to have addressed my previous concerns through various modifications including GLM analysis, however, some areas still require clarification for the benefit of an audience that includes geneticists.  

      (1) GLM Analysis Explanation (Figure 9)  

      While the authors state that their new GLM results support their original conclusions, the explanation of these results in the text is insufficient. Specifically:

      The interpretation of coefficients and their statistical significance needs more detailed explanation. The audience includes geneticists and other nonstatistical people, so the GLM should be explained in terms of the criteria or quantities used to assess how well the results conform with the hypothesis, and to what extent they diverge.

      The criteria used to judge how well the GLM results support their hypothesis are not clearly stated.

      The relationship between the GLM findings and their original correlationbased conclusions needs better integration and connection, leading the reader through your reasoning.

      We thank the reviewer for highlighting this important point. We have revised the Results section in the reviseed manuscript to include a more detailed explanation of the GLM analysis. Specifically, we now clarify the interpretation of the model coefficients, including the direction and statistical significance, in relation to the hypothesized effects. We also outline the criteria we used to assess how well the GLM supports our original correlation-based conclusions—namely, whether the sign and significance of the coefficients align with the expected relationships derived from our prior analysis. Finally, we explicitly describe how the GLM results confirm or extend the patterns observed in the correlation-based analysis, to guide readers through our reasoning and the integration of both approaches.

      (2) Documentation of Changes  

      One struggle with the revised manuscript is that no "tracked changes" version was included, so it is hard to know exactly what was done. Without access to the previous version of the manuscript, it is difficult to fully assess the extent of revisions made. The authors should provide a more comprehensive summary of the specific changes implemented, particularly regarding:

      We thank the reviewer for bringing this to our attention. We were equally confused to learn that the tracked-changes version was not visible, despite having submitted one to eLife as part of our revision. 

      Upon contacting the editorial office, they confirmed that we did submit a trackedchanges version, but clarified that it did not contain embedded figures (as they were added manually to the clean version).  The editorial response said in detail: “Regarding the tracked-changes file: it appears the version with markup lacked figures, while the figure-complete PDF had markup removed, which likely caused the confusion mentioned by the reviewers.” We hope this answer from eLife clarifies the reviewers’ concern.

      (2)  Statistical Method Selection  

      The authors mention using "ridge regression to mitigate collinearity among predictors" but do not adequately justify this choice over other approaches. They should explain:

      Why ridge regression was selected as the optimal method  

      How the regularization parameter (λ) was determined  

      How this choice affects the interpretation of environmental parameters' influence on individuality

      We appreciate the reviewer’s thoughtful question regarding our choice of statistical method. In response, we have expanded the Methods section in the revised manuscript to provide a more detailed justification for the use of a GLM, including ridge regression. Specifically, we explain that ridge regression was selected to address collinearity and to control for overfitting.

      We now also describe how the regularization parameter (λ) was selected: we used 5-fold cross-validation over a log-spaced grid (10<sup>⁻⁶</sup> - 10<sup>⁶</sup) to identify the optimal value that minimized the mean squared error (MSE).

      Finally, we clarify in both the Methods and Results sections how this modeling choice affects the interpretation of our findings. 

      Reviewer #2 (Public review):  

      Summary:  

      The authors repeatedly measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths:  

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great, and I'm sure other folks will be interested in using and adapting to their own needs.

      Weaknesses/Limitations:  

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting, temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, or a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank-order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context.  

      I think the authors are missing an opportunity to use much more robust statistical methods It appears as though the authors used pearson correlations across time/situations to estimate individual variation; however far more sophisticated and elegant methods exist. The problem is that pearson correlation coefficients can be anti-conservative and additionally, the authors have thus had to perform many many tests to correlate behaviors across the different trials/scenarios. I don't see any evidence that the authors are controlling for multiple testing which I think would also help. Alternatively, though, the paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data, which are the standard analytical tools in the study of individual behavioral variation. In this way, the authors could partition the behavioral variance into its among- and within-individual components and quantify repeatability of different behaviors across trials/scenarios simultaneously. This would remove the need to estimate 3 different correlations for day 1 & day 2, day 1 & 3, day 2 & 3 (or stripe 0 & stripe 1, etc) and instead just report a single repeatability for e.g. the time spent walking among the different strip patterns (eg. figure 3). Additionally, the authors could then use multivariate models where the response variables are all the behaviors combined and the authors could estimate the among-individual covariance in these behaviors. I see that the authors state they include generalized linear mixed models in their updated MS, but I struggled a bit to understand exactly how these models were fit? What exactly was the response? what exactly were the predictors (I just don't understand what Line404 means "a GLM was trained using the environmental parameters as predictors (0 when the parameter was not changed, 1 if it was) and the resulting individual rank differences as the response"). So were different models run for each scenario? for different behaviors? Across scenarios? What exactly? I just harp on this because I'm actually really interested in these data and think that updating these methods can really help clarify the results and make the main messages much clearer!

      I appreciate that the authors now included their sample sizes in the main body of text (as opposed to the supplement) but I think that it would still help if the authors included a brief overview of their design at the start of the methods. It is still unclear to me how many rigs each individual fly was run through? Were the same individuals measured in multiple different rigs/scenarios? Or just one?

      I really think a variance partitioning modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation. I also genuinely think that this will improve the impact and reach of this paper as they'll be using methods that are standard in the study of individual behavioral variation

      Reviewer #3 (Public review):  

      This manuscript is a continuation of past work by the last author where they looked at stochasticity in developmental processes leading to inter-individual behavioural differences. In that work, the focus was on a specific behaviour under specific conditions while probing the neural basis of the variability. In this work, the authors set out to describe in detail how stable individuality of animal behaviours is in the context of various external and internal influences. They identify a few behaviours to monitor (read outs of attention, exploration, and 'anxiety'); some external stimuli (temperature, contrast, nature of visual cues, and spatial environment); and two internal states (walking and flying).

      They then use high-throughput behavioural arenas - most of which they have built and made plans available for others to replicate - to quantify and compare combinations of these behaviours, stimuli, and internal states. This detailed analysis reveals that:

      (1) Many individualistic behaviours remain stable over the course of many days.  

      (2) That some of these (walking speed) remain stable over changing visual cues. Others (walking speed and centrophobicity) remain stable at different temperatures.

      (3) All the behaviours they tested fail to remain stable over spatially varying environment (arena shape).

      (4) and only angular velocity (a read out of attention) remains stable across varying internal states (walking and flying)

      Thus, the authors conclude that there is a hierarchy in the influence of external stimuli and internal states on the stability of individual behaviours.

      The manuscript is a technical feat with the authors having built many new high-throughput assays. The number of animals are large and many variables have been tested - different types of behavioural paradigms, flying vs walking, varying visual stimuli, different temperature among others.  

      Comments on revisions:'  

      The authors have addressed my previous concerns.  

      We thank the reviewer for the positive feedback and are glad our revisions have satisfactorily addressed the previous concerns. We appreciate the thoughtful input that helped us improve the clarity and rigor of the manuscript.

      Reviewer #1 (Recommendations for the authors):  

      Comment on Revised Manuscript  

      Recommendations for Improvement  

      (1) Expand the Results section for Figure 9 with a more detailed interpretation of the GLM coefficients and their biological significance

      (2) Provide explicit criteria (or at least explain in detail) for how the GLM results confirm or undermine their original hypothesis about environmental context hierarchy

      While the claims are interesting, the additional statistical analysis appears promising. However, clearer explanation of these new results would strengthen the paper and ensure that readers from diverse backgrounds can fully understand how the evidence supports the authors' conclusions about individuality across environmental contexts. 

      We thank the reviewer for these constructive suggestions. In response to these suggestions, we have expanded both the Methods and Results sections to provide a more detailed explanation of the GLM coefficients, including their interpretation and how they relate to our original correlation-based findings.

      We now clarify how the direction, magnitude, and statistical significance of specific coefficients reflect the influence of different environmental factors on the persistence of individual behavioral traits. To make this accessible to readers from diverse backgrounds, we explicitly outline the criteria we used to evaluate whether the GLM results support our hypothesis about the hierarchical influence of environmental context, namely, whether the structure and strength of effects align with the patterns predicted from our prior correlation analysis.

      These additions improve clarity and help readers understand how the new statistical results reinforce our conclusions about the context-dependence of behavioral individuality.

      Reviewer #2 (Recommendations for the authors):  

      Thanks for the revision of the paper! I updated my review to try and provide a little more guidance by what I mean about updating your analyses. I really think this is a super cool data set and I genuinely wish this were MY dataset so that way I could really dig into it to partition the variance. These variance partitioning methods are standard in my particular subfield (study of individual behavioral variation in ecology and evolution) and so I think employing them is 1) going to offer a MUCH more elegant and holistic view of the behavioral variation (e.g. you can report a single repeatability estimate for each behavior rather than 3 different correlations) and 2) improve the impact and readership for your paper as now you'll be using methods that a whole community of researchers are very familiar with. It's just a suggestion, but I hope you consider it!

      We sincerely thank the reviewer for the insightful and encouraging feedback and for introducing us to this modeling approach. In response to this suggestion, we have incorporated a hierarchical linear mixed-effects model into our analysis (now presented in Figure 10), accompanied by a new supplementary table (Table T3). We also updated the Methods, Results, and Discussion sections to describe the rationale, implementation, and implications of the mixed-model analysis.

      We agree with the reviewer that this approach provides a more elegant way to quantify behavioral variation and individual consistency across contexts. In particular, the ability to estimate repeatability directly aligns well with the core questions of our study. It facilitates improved communication of our findings to ecology, evolution, and behavior researchers. We greatly appreciate the suggestion; it has significantly strengthened both the analytical framework and the interpretability of the manuscript.

    1. Author response:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Mahajan et. al. introduce two innovative macroscopic measures-intrachromosomal gene correlation length (𝓁∗) and transition energy barrier-to investigate chromatin structural dynamics associated with aging and age-related syndromes such as Hutchinson-Gilford Progeria Syndrome (HGPS) and Werner Syndrome (WRN). The authors propose a compelling systems-level approach that complements traditional biomarker-driven analyses, offering a more holistic and quantitative framework to assess genome-wide dysregulation. The concept of 𝓁∗ as a spatial correlation metric to capture chromatin disorganization is novel and well-motivated. The use of autocorrelation on distance-binned gene expression adds depth to the interpretation of chromatin state shifts. The energy landscape framework for gene state transitions is an elegant abstraction, with the notion of "irreversibility" providing a thermodynamic interpretation of transcriptional dysregulation. The application to multiple datasets (Fleischer, Line-1) and pathological states adds robustness to the analysis. The consistency of chromosome 6 (and to some extent chromosomes 16 and X) emerging as hotspots aligns well with known histone cluster localization and disease-relevant pathways. The manuscript does an excellent job of integrating transcriptomic trends with known epigenetic hallmarks of aging, and the proposed metrics can be used in place of traditional techniques like PCA in capturing structural transcriptome features. However, a direct correlation with ATACseq/HiC data with the present analysis will be more informative.

      (1) In the manuscript, the authors mention "While it may be intuitive to assume that highly expressed genes originate from euchromatin, this cannot be conclusively stated as a complete representation of euchromatin genes, nor can LAT be definitively linked to heterochromatin". What percentage of LAT can be linked to heterochromatin? What is the distribution of LAT and HAT in the euchromatin?

      Thank you for this insightful question. In the revision we will add chromatin state annotations using ChromHMM to identify overlap between HAT/LAT and corresponding chromatin state. This should provide the specific percentages and distributions you requested.

      We would like to take this opportunity to clarify that based on the plots Fig S1, and differential gene expressions, HAT is most likely a subset of euchromatin and LAT may contain both euchromatin and heterochromatin. The HAT/LAT cutoff occurs around the knee point in the log-log plot (Figure S1), where the linear portion indicates scale-invariant behavior with similar relative changes across expression ranks. The non-linear portion represents departure from power-law scaling, where low-expression genes exhibit sharper decline than expected. This suggests potential biological mechanisms such as chromatin silencing, detection limits, or technical artifacts related to sequencing depth.

      We will provide detailed chromatin state analysis in the revision. For reference, HAT gene lists per chromosome are available in our GitHub repository at: https://github.com/altoslabs/papers-2025-rnaseq-chrom-aging/tree/main/data/Preprocessed_dat a under /<dataset>/chromosome_{}/data_hi.

      (2) In Figure 2, the authors observe "that the signal from the HAT class is the stronger between two and the signal from the LAT class, being mostly uniform, can be constituted as background noise." Is this biologically relevant? Are low-abundance transcripts constitutively expressed? The authors should discuss this in the Results section.

      We apologize for the confusion arising from the usage of the term “background noise”. We agree that the distinction between high-abundance transcripts (HATs) and low-abundance transcripts (LATs) deserves more explicit discussion in the Results.

      Our intention is to say that HAT has a higher signal-to-noise ratio (SNR) compared to LAT. This is coming from the power law graph of FigS1.  Our intention is to state that the HAT class provides a strong, robust signal, consistent across chromosomes and the LAT class exhibits lower SNR and a more uniform background-like distribution in the context of the problem we are solving and not rather a generic biological statement. The experiment result that led to this statement is presented in FigS3. This does not imply that low-abundance transcripts lack biological relevance, but rather that they contribute less to the spatial organization patterns we measure.

      (3) The authors make a very interesting observation from Figure 3: that ASO-treated LINE-1 appears to be more effective in restoring HGPS cell lines closer to wild-type compared to WRN.. This can be explained by the difference in the basal activity of L1 elements in the HGPS vs WRN cell types. The authors should comment on this.

      We thank the reviewer for this incisive biological observation. While the differential effectiveness of ASO-treated LINE-1 in HGPS versus WRN cell lines is indeed an interesting phenomenon that may relate to basal L1 activity differences, this biological mechanism falls outside the scope of our current study.

      Our paper focuses on demonstrating that the 𝓁∗ metric can sensitively detect chromatin structural changes that have been independently validated. We utilize the Della Valle et al. (2022) dataset specifically because it provides experimentally confirmed chromatin structural differences (Progeroid vs wild-type vs ASO-treated Progeriod), allowing us to validate that 𝓁∗ correlates with these established changes.

      For detailed discussion of the biological mechanisms underlying differential LINE-1 ASO effectiveness between progeroid syndromes, we would direct readers to Della Valle et al. (2022) and related LINE-1 biology literature. Our contribution lies in demonstrating that 𝓁∗ can capture these chromatin organizational changes with enhanced sensitivity compared to traditional expression-based approaches. We are reluctant, without further experimentation, to venture into over-interpreting these results from a biology perspective.  

      (4) The authors report that "from the results on Fleischer dataset is the magnitude of the difference in similarity distance is more pronounced in 𝓁∗ than in gene expression." Does this mean that the alterations in gene distance and chromatin organization do not result in gene expression change during aging?

      Thank you for this important clarification request. This observation, illustrated in Figure 3, highlights two key points: (1) 𝓁∗ shows similar trends to PCA analysis, and (2) 𝓁∗ demonstrates higher sensitivity than traditional gene expression analysis.

      This enhanced sensitivity enables better discrimination between aging states, particularly in the Fleischer dataset representing natural aging where changes are more gradual. The higher sensitivity stems from 𝓁∗'s ability to capture transcriptional spatial organization through spatial autocorrelation, which can detect subtle organizational changes that may precede or accompany expression changes rather than replacing them.

      We will clarify in the revision that chromatin organizational changes and gene expression changes are complementary rather than mutually exclusive phenomena during aging.

      (5) "In Fleischer dataset, as evident in Figure 4a, although changes in the heterochromatin are not identical for all chromosomes shown by the different degrees of variation of 𝓁∗ in each age group." The authors should present a comprehensive map of each chromosome change in gene distance to better explain the above statement.

      Thank you for the feedback. If we understand your comment correctly, we need to provide a chromosome-wise distribution for Fig3c. We will update the paper and the supplementary.

      (6) While trends in 𝓁∗ are discussed at both global and chromosome-specific levels, stronger statistical testing (e.g., permutation tests, bootstrapping) would lend greater confidence, especially when differences between age groups or treatment states are modest.

      Thank you for the helpful suggestion. In the revision, we will incorporate permutation-based significance testing by shuffling the gene annotation and count table to generate a null distribution for our 𝓁∗ calculation. This will allow us to more rigorously assess whether the observed differences across age groups or treatment states deviate from chance expectations and thereby lend greater statistical confidence to our findings.

      (7) While the transition energy barrier is an insightful conceptual addition, further clarification on the mathematical formulation and its physical assumptions (e.g., energy normalization, symmetry conditions) would improve interpretability. Also, in between Figures 7 and 8, the authors first compare the energy barrier of Chromosome 1 and then for all other chromosomes.

      What is the rationale for only analyzing chromosome 1? How many HAT or LAT are present there?

      Regarding chromosome 1 focus: we initially presented chromosome 1 as a representative example, but we will include energy landscape analysis for all chromosomes in the supplementary materials

      We use the same HATs that were extracted during 𝓁∗ for the energy landscape as well. The HAT details are present in the github repo, the link provided in response to 1st feedback.

      The normalization of the energy barrier ensures comparability across chromosomes of different sizes and across samples with different absolute expression scales. Specifically, we normalize with respect to the total area under the two-dimensional energy landscape while using the thermal energy (k_B T) as a scaling factor to place transition energy barriers on the scale of thermal fluctuations. This is formally expressed as in Eq. (1). 

      The physical consequences of symmetry in the energy landscape are discussed in lines 472-491 of the manuscript, where we also introduce the concept of irreversibility. In brief, the chromatin energy landscape (Figure 8) is constructed by quantifying the energy contributions of genes that are upregulated (lower triangular matrix) and downregulated (upper triangular matrix) between two states. If the integrated energy contributions of upregulated and downregulated genes are equal, the landscape is symmetric, representing a thermodynamically reversible process, for example, nucleosome repositioning between euchromatic and heterochromatic regions without net gain or loss of nucleosomes. However, in cases where epigenetic modifications alter nucleosome density (e.g., disease states that reduce nucleosome numbers), the integrated energies are unequal, reflecting an irreversible energy cost. In this case, restoring chromatin requires additional energy input (e.g., to replace “missing” nucleosomes), which manifests as asymmetry in the landscape.

      Reviewer #2 (Public review):

      The authors report that intra-chromosomal gene correlation length (spatial correlations in gene expressions along the chromosome) serves as a proxy of chromatin structure and hence gene expression. They further explore changes in these metrics with aging. These are interesting and important findings. However, there are fundamental problems at this time.

      (1) The basic method lacks validation. There is no validation of the method by approaches that directly measure chromatin structure, for example ATAC-seq, ChIP-seq, or CUT n RUN.

      We appreciate the reviewer’s point that direct measurements such as ATAC-seq and ChIP-seq remain the gold standard for characterizing chromatin structure. Our method is designed to complement, not replace, these approaches by leveraging RNA-seq data to detect large-scale transcriptional patterns that correlate with chromatin dynamics.

      We agree that integrating datasets with paired RNA-seq and chromatin accessibility assays would strengthen the manuscript and plan to include one such dataset in the revision.

      Based on this feedback, we will also take the opportunity during revision to clarify and soften certain statements. Specifically, we will reposition ℓ∗ as a sensitive, computational proxy for detecting transcriptional signatures that are suggestive of chromatin structural changes. In other words, ℓ∗ provides an indirect window into chromatin dynamics through transcriptional spatial organization, allowing detection of patterns that may precede or accompany structural changes. Direct assays such as ATAC-seq or ChIP-seq remain essential for confirming the underlying physical modifications. To make this scope clear, we will revise the title to: “Macroscopic RNA-seq Analysis to Detect Transcriptional Patterns Associated with Chromatin State Changes,” and adjust the main text.  

      We would like to take this opportunity to clarify why our initial version focused on the Della Valle and Fleischer datasets rather than including new paired datasets with direct chromatin measurements. The primary objective of our paper is to introduce two macroscopic RNA-seq–based measures, ℓ∗ and the energy landscape, that are designed to detect transcriptional signatures suggestive of chromatin structural changes in the context of aging and age-related diseases. These measures explicitly model transcriptional spatial organization and provide a sensitive, scalable way to analyze RNA-seq data in domains where direct chromatin assays may not be readily available.

      The datasets we used (Della Valle et al., Fleischer et al.) have been rigorously validated and independently demonstrated differences in chromatin structure between conditions. Our goal was to show that ℓ∗ and the energy landscape align with and extend these established findings, offering a more sensitive measure of transcriptional spatial organization. Specifically, in the Della Valle dataset, chromatin structural differences between progeroid and healthy donors — and their partial rescue by LINE-1 ASO treatment — were experimentally confirmed, providing a strong foundation for testing whether our metrics reflect these known changes. Similarly, the Fleischer dataset captures natural, in vivo aging, which has also been linked to chromatin alterations in prior studies.

      Thus, our approach builds on this well-established biological context rather than attempting to re-demonstrate these chromatin differences from scratch. Finally, we emphasize that our current focus is aging and age-related diseases. While the framework could potentially be applied to other chromatin modification contexts, we have not tested it outside this domain and do not claim general applicability at this stage.

      (2) There is no validation by interventions that directly probe chromatin structure, such as HDAC inhibitors. The authors employ datasets with knockdown of LINE-1 for validation. However, this is not a specific chromatin intervention.

      We request the reviewer to refer to our response to (1) as it includes the rationale behind the selection of LINE-1 and Fleischer dataset. We would also like to state that while the focus of Della Valle et al. was LINE-1 treated ASO to show rescue of progeroid samples, it also contains data for non-treated as well as healthy samples. Importantly, untreated progeroid samples show distinctly different chromatin structure compared to healthy samples, with substantial differences detectable by both PCA and our 𝓁∗ metric.

      Our 𝓁∗ method provides additional interpretability by capturing transcriptional spatial organization, resulting in shorter correlation lengths for healthy patients and longer lengths for progeroid patients.

      But as mentioned in our response to (1) we will try to add an additional dataset with paired rna-seq and one of ATAC, ChIP-seq or CUT n RUN in the revision

      (3) There is no statistical analysis, e.g., in Figures 4 and 5.

      We have provided statistical analysis for Fig 4 (lines 237-241). We will do a similar analysis for Fig. 5. 

      (4) The authors state, "in Figure 4a changes in the heterochromatin are not identical for all chromosomes shown...." I do not see the data for individual chromosomes.

      The data for individual chromosomes is available in supplementary Fig. S11 – references at line 425. We will make this cross-reference clearer in the main text and consider whether some of this chromosome-specific information should be elevated to the main figures for better accessibility.

      (5) In comparisons of WT vs HGPS NT or HGPS SCR (Figure S6), is this a fair comparison? The WT and HGPS are presumably from different human donors, so they have genetic and epigenetic differences unrelated to HGPS.

      Figure S6 demonstrates that 𝓁∗ analysis identifies chromosome 6 as most affected, consistent with differential gene expression patterns.

      Regarding donor differences in WT vs HGPS comparisons, we defer to the experimental design of Della Valle et al., which follows standard practices in progeroid research. Our review of the literature indicates that progeroid studies typically use either parent/child samples or different donor comparisons (as individuals cannot simultaneously represent both WT and HGPS states).

      Importantly, the LINE-1 ASO treatment comparisons use the same cell lines, eliminating donor variability concerns. This experimental design allows us to validate that 𝓁∗ can detect rescue effects within genetically identical samples, supporting the method's sensitivity to chromatin structural changes  

      Reviewing Editor Comments:

      You'll note that both reviewers were very thoughtful in their comments, and in principle are supportive and excited by the work. However, their evaluation of the strength of evidence diverged substantially. I'm inclined to suggest that finding a way to support the novel method with an alternative approach would greatly improve the impact of this work. I encourage you to consider a revision that provides such data, in the context of technology currently available to the field.

      We sincerely thank the editor for their thoughtful and encouraging assessment of our work. We are grateful for their recognition of the novelty of our macroscopic measures (ℓ∗ and the transition energy barrier) and their potential to provide a systems-level understanding of chromatin structural dynamics in aging and age-related syndromes. In response to the editor’s suggestion for direct validation with chromatin accessibility data, we plan to integrate an additional dataset containing paired RNA-seq and ATAC-seq or related measurements in our revision. This will help strengthen the link between our RNA-seq–based metrics and direct chromatin assays. We have also clarified and softened the manuscript text to ensure it is clear that ℓ∗ serves as a complementary, computational proxy, not a replacement, for direct experimental approaches. Very specifically, to make this scope clear, we will revise the title to: “Macroscopic RNA-seq Analysis to Detect Transcriptional Patterns Associated with Chromatin State Changes,” and adjust the main text. We thank the editor for the feedback. We have provided additional details in response to specific comments made by the reviewers.

    1. Author response:

      We thank the reviewers for their valuable feedback. We will prepare a revision of the manuscript based on these suggestions and comments. We are sure these revisions will improve the paper.

      The only major point we wish to clarify is that this is the first and only manuscript describing the toolbox; it is not a version update. Although it shares a similar name with its 2015 MATLAB predecessor (Nili et al., PLoS Comput Biol), rsatoolbox was designed from scratch. Also, they have no code or structural overlap beyond implementing some similar methods.

      Developed publicly since 2019, rsatoolbox reflects a decade of research in RSA methodology across multiple labs and incorporates new dissimilarity metrics, RDM comparators, inferential procedures, and visualization methods. Importantly, although we cite several papers describing methods implemented in the toolbox, this is the first manuscript to present the toolbox as a whole, its design principles, and the unified analytical framework it offers.

      We are sorry about the forgotten placeholder and the links not working. The links work for us in the pdf at least and we will certainly fix the placeholder as soon as possible.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      This is an interesting and timely computational study using molecular dynamics simulation as well as quantum mechanical calculation to address why tyrosine (Y), as part of an intrinsically disordered protein (IDP) sequence, has been observed experimentally to be stronger than phenylalanine (F) as a promoter for biomolecular phase separation. Notably, the authors identified the aqueous nature of the condensate environment and the corresponding dielectric and hydrogen bonding effects as a key to understanding the experimentally observed difference. This principle is illustrated by the difference in computed transfer free energy of Y- and F-containing pentapeptides into a solvent with various degrees of polarity. The elucidation offered by this work is important. The computation appears to be carefully executed, the results are valuable, and the discussion is generally insightful. However, there is room for improvement in some parts of the presentation in terms of accuracy and clarity, including, e.g., the logic of the narrative should be clarified with additional information (and possibly additional computation), and the current effort should be better placed in the context of prior relevant theoretical and experimental works on cation-π interactions in biomolecules and dielectric properties of biomolecular condensates. Accordingly, this manuscript should be revised to address the following, with added discussion as well as inclusion of references mentioned below.

      We are grateful for the referee’s assessment of our work and insightful suggestions, which we address point by point below.

      (1) Page 2, line 61: "Coarse-grained simulation models have failed to account for the greater propensity of arginine to promote phase separation in Ddx4 variants with Arg to Lys mutations (Das et al., 2020)". As it stands, this statement is not accurate, because the cited reference to Das et al. showed that although some coarse-grained models, namely the HPS model of Dignon et al., 2018 PLoS Comput did not capture the Arg to Lys trend, the KH model described in the same Dignon et al. paper was demonstrated by Das et al. (2020) to be capable of mimicking the greater propensity of Arg to promote phase separation than Lys. Accordingly, a possible minimal change that would correct the inaccuracy of this statement in the manuscript would be to add the word "Some" in front of "coarse-grained simulation models ...", i.e., it should read "Some coarse-grained simulation models have failed ...". In fact, a subsequent work [Wessén et al., J Phys Chem B 126: 9222-9245 (2022)] that applied the Mpipi interaction parameters (Joseph et al., 2021, already cited in the manuscript) showed that Mpipi is capable of capturing the rank ordering of phase separation propensity of Ddx4 variants, including a charge scrambled variant as well as both the Arg to Lys and the Phe to Ala variants (see Figure 11a of the above-cited Wessén et al. 2022 reference). The authors may wish to qualify their statements in the introduction to take note of these prior results. For example, they may consider adding a note immediately after the next sentence in the manuscript "However, by replacing the hydrophobicity scales ... (Das et al., 2020)" to refer to these subsequent findings in 2021-2022.

      We agree with the referee that the wording used in the original version was inaccurate. We did not want to expand too much on the previous results on Lys/Arg, to avoid overwhelming our readers with background information that was not directly relevant to the aromatic residues Phe and Tyr. We have now introduced some of the missing details in the hope that this will provide a more accurate account of what has been achieved with different versions of coarse-grained models. In the revised version, we say the following:

      Das and co-workers attempted to explain arginine’s greater propensity to phase separate in Ddx4 variants using coarse-grained simulations with two different energy functions (Das et al., 2020). The model was first parametrized using a hydrophobicity scale, aimed to capture the “stickiness” of different amino acids (Dignon et al., 2018), but this did not recapitulate the correct rank order in the stability of the simulated condensates (Das et al., 2020). By replacing the hydrophobicity scale with interaction energies from amino acid contact matrices —derived from a statistical analysis of the PDB (Dignon et al., 2018; Miyazawa and Jernigan, 1996; Kim and Hummer, 2008)— they recovered the correct trends (Das et al., 2020). A key to the greater propensity for LLPS in the case of Arg may derive from the pseudo-aromaticity of this residue, which results in a greater stabilization relative to the more purely cationic character of Lys (Gobbi and Frenking, 1993; Wang et al., 2018; Hong et al., 2022).

      (2) Page 8, lines 285-290 (as well as the preceding discussion under the same subheading & Figure 4): "These findings suggest that ... is not primarily driven by differences in protein-protein interaction patterns ..." The authors' logic in terms of physical explanation is somewhat problematic here. In this regard, "Protein-protein interaction patterns" appear to be a straw man, so to speak. Indeed, who (reference?) has argued that the difference in the capability of Y and F in promoting phase separation should be reflected in the pairwise amino acid interaction pattern in a condensate that contains either only Y (and G, S) and only F (and G, S) but not both Y and F? Also, this paragraph in the manuscript seems to suggest that the authors' observation of similar contact patterns in the GSY and GSF condensates is "counterintuitive" given the difference in Y-Y and F-F potentials of mean force (Joseph et al., 2021); but there is nothing particularly counterintuitive about that. The two sets of observations are not mutually exclusive. For instance, consider two different homopolymers, one with a significantly stronger monomer-monomer attraction than the other. The condensates for the two different homopolymers will have essentially the same contact pattern but very different stabilities (different critical temperatures), and there is nothing surprising about it. In other words, phase separation propensity is not "driven" by contact pattern in general, it's driven by interaction (free) energy. The relevant issue here is total interaction energy or the critical point of the phase separation. If it is computationally feasible, the authors should attempt to determine the critical temperatures for the GSY condensate versus the GSF condensate to verify that the GSY condensate has a higher critical temperature than the GSF condensate. That would be the most relevant piece of information for the question at hand.

      We are grateful for this very insightful comment by the referee. We have followed this suggestion to address whether, despite similar interaction patterns in GSY and GSF condensates, their stabilities are different. As in our previous work (De Sancho, 2022), we have run replica exchange MD simulations for both condensates and derived their phase diagrams. Our results, shown in the new Figure 5 and supplementary Figs. S6-S7, clearly indicate that the GSY condensate has a lower saturation density than the GSF condensate. This result is consistent with the trends observed in experiments on mutants of the low-complexity domain of hnRNPA1, where the relative amounts of F and Y determine the saturation concentration (Bremer et al., 2022).

      (3) Page 9, lines 315-316: "...Our ε [relative permittivity] values ... are surprisingly close to that derived from experiment on Ddx4 condensates (45{plus minus}13) (Nott et al., 2015)".  For accuracy, it should be noted here that the relative permittivity provided in the supplementary information of Nott et al. was not a direct experimental measurement but based on a fit using Flory-Huggins (FH), but FH is not the most appropriate theory for a polymer with long-spatial-range Coulomb interactions. To this reviewer's knowledge, no direct measurement of relative permittivity in biomolecular condensates has been made to date. Explicit-water simulation suggests that the relative permittivity of Ddx4 condensate with protein volume fraction ≈ 0.4 can have a relative permittivity ≈ 35-50 (Das et al., PNAS 2020, Fig.7A), which happens to agree with the ε = 45{plus minus}13 estimate. This information should be useful to include in the authors' manuscript.

      We thank the referee for this useful comment. We are aware that the estimate we mentioned is not direct. We have now clarified this point and added the additional estimate from Das et al. In the new version of the manuscript, we say:

      Our 𝜀 values for the condensates (39 ± 5 for GSY and 47 ± 3 for GSF) are surprisingly close to that derived from experiments on Ddx condensates using Flory-Huggins theory (45±13) (Nott et al., 2015) and from atomistic simulations of Ddx4 (∼35−50 at a volume fraction of 𝜙 = 0.4) (Das et al., 2020).

      (4) As for the dielectric environment within biomolecular condensates, coarse-grained simulation has suggested that whereas condensates formed by essentially electric neutral polymers (as in the authors' model systems) have relative permittivities intermediate between that of bulk water and that of pure protein (ε=2-4, or at most 15), condensates formed by highly charged polymers can have relative permittivity higher than that of bulk water [Wessén et al., J Phys Chem B 125:4337-4358 (2021), Fig.14 of this reference]. In view of the role of aromatic residues (mainly Y and F) in the phase separation of IDPs such as A1-LCD and LAF-1 that contain positively and negatively charged residues (Martin et al., 2020; Schuster et al., 2020, already cited in the manuscript), it should be useful to address briefly how the relationship between the relative phase-separation promotion strength of Y vs F and dielectric environment of the condensate may or may not be change with higher relative permittivities.

      We thank the referee for their comment regarding highly charged polymers. However, we have chosen not to address these systems in our manuscript, as they are significantly different from the GSY/GSF peptide condensates under investigation. In polyelectrolyte systems, condensate formation is primarily driven by electrostatic interactions and counterion release, while we highlight the role of transfer free energies. At high dielectric constants (and dielectrics even higher than that of water), the strength of electrostatic interactions will be greatly reduced. In our approach to estimate differences between Y and F, the transfer free energy should plateau at a value of ΔΔG=0 in water. At greater values of ε>80, it becomes difficult to predict whether additional effects might become relevant. As this lies beyond the scope of our current study, we prefer not to speculate further.

      (5) The authors applied the dipole moment fluctuation formula (Eq.2 in the manuscript) to calculate relative permittivity in their model condensates. Does this formula apply only to an isotropic environment? The authors' model condensates were obtained from a "slab" approach (page 4 and thus the simulation box has a rectangular geometry. Did the authors apply Equation 2 to the entire simulation box or only to the central part of the box with the condensate (see, e.g., Figure 3C in the manuscript). If the latter is the case, is it necessary to use a different dipole moment formula that distinguishes between the "parallel" and "perpendicular" components of the dipole moment (see, e.g., Equation 16 in the above-cited Wessén et al. 2021 paper). A brief added comment will be useful.

      We have calculated the relative permittivity from dense phases only. These dense phases were sliced from the slab geometry and then re-equilibrated. Long simulations were then run to converge the calculation of the dielectric constant. We have clarified this in the Methods section of the paper. We say:

      For the calculation of the dielectric constant of condensates, we used the simulations of isolated dense phases mentioned above.

      (6) Concerning the general role of Y and F in the phase separation of biomolecules containing positively charged Arg and Lys residues, the relative strength of cation-π interactions (cation-Y vs cation-F) should be addressed (in view of the generality implied by the title of the manuscript), or at least discussed briefly in the authors' manuscript if a detailed study is beyond the scope of their current effort. It has long been known that in the biomolecular context, cation-Y is slightly stronger than cation-F, whereas cation-tryptophan (W) is significantly stronger than either cation-Y and cation-F [Wu & McMahon, JACS 130:12554-12555 (2008)]. Experimental data from a study of EWS (Ewing sarcoma) transactivation domains indicated that Y is a slightly stronger promoter than F for transcription, whereas W is significantly stronger than either Y or F [Song et al., PLoS Comput Biol 9:e1003239 (2013)]. In view of the subsequent general recognition that "transcription factors activate genes through the phase-separation capacity of their activation domain" [Boija et al., Cell 175:1842-1855.e16 (2018)] which is applicable to EWS in particular [Johnson et al., JACS 146:8071-8085 (2024)], the experimental data in Song et al. 2013 (see Figure 3A of this reference) suggests that cation-Y interactions are stronger than cation-F interactions in promoting phase separation, thus generalizing the authors' observations (which focus primarily on Y-Y, Y-F and F-F interactions) to most situations in which cation-Y and cation-F interactions are relevant to biomolecular condensation.

      We thank our referee for this insightful comment. While we restrict our analysis to aromatic pairs in this work, the observed crossover will certainly affect other pairs where tyrosine or phenylalanine are involved. We now comment on this point in the discussions section of the revised manuscript. This topic will be explored in detail in a follow-up manuscript we are currently completing. We say:

      We note that, although we have not included in our analysis positively charged residues that form cation-π interactions with aromatics, the observed crossover will also be relevant to Arg/Lys contacts with Phe and Tyr. Following the rationale of our findings, within condensates, cation-Tyr interactions are expected to promote phase separation more strongly than cation-Phe pairs.

      (7) Page 9: The observation of weaker effective F-F (and a few other nonpolar-nonpolar) interactions in a largely aqueous environment (as in an IDP condensate) than in a nonpolar environment (as in the core of a folded protein) is intimately related to (and expected from) the long-recognized distinction between "bulk" and "pair" as well as size dependence of hydrophobic effects that have been addressed in the context of protein folding [Wood & Thompson, PNAS 87:8921-8927 (1990); Shimizu & Chan, JACS 123:2083-2084 (2001); Proteins 49:560-566 (2002)]. It will be useful to add a brief pointer in the current manuscript to this body of relevant resources in protein science.

      We thank the referee for bringing this body of work to our attention. In the revised version of our work, we briefly mention how it relates to our results. We also note that the suggested references have pointed to another of the limitations of our study, that of chain connectivity, addressed in the work by Shimizu and Chan. While we were well aware of these limitations, we had not mentioned them in our manuscript. Concerning the distinction between pair and bulk hydrophobicities, we include the following in the concluding lines of our work:

      The observed context dependence has deep roots in the concepts of “pair” and “bulk” hydrophobicity (Wood and Thompson, 1990; Shimizu and Chan, 2002). While pair hydrophobicity is connected to dimerisation equilibria (i.e. the second step in Figure 2B), bulk hydrophobicity is related to transfer processes (the first step). Our work stresses the importance of considering both the pair contribution that dominates at high solvation, and the transfer free energy contribution, which overwhelms the interaction strength at low dielectrics.

      Reviewer #2 (Public review):

      Summary:

      In this preprint, De Sancho and López use alchemical molecular dynamics simulations and quantum mechanical calculations to elucidate the origin of the observed preference of Tyr over Phe in phase separation. The paper is well written, and the simulations conducted are rigorous and provide good insight into the origin of the differences between the two aromatic amino acids considered.

      We thank the referee for his/her positive assessment of our work. Below, we address all the questions raised one by one.

      Strengths:

      The study addresses a fundamental discrepancy in the field of phase separation where the predicted ranking of aromatic amino acids observed experimentally is different from their anticipated rankings when considering contact statistics of folded proteins. While the hypothesis that the difference in the microenvironment of the condensed phase and hydrophobic core of folded proteins underlies the different observations, this study provides a quantification of this effect. Further, the demonstration of the crossover between Phe and Tyr as a function of the dielectric is interesting and provides further support for the hypothesis that the differing microenvironments within the condensed phase and the core of folded proteins is the origin of the difference between contact statistics and experimental observations in phase separation literature. The simulations performed in this work systematically investigate several possible explanations and therefore provide depth to the paper.

      Weaknesses:

      While the study is quite comprehensive and the paper well written, there are a few instances that would benefit from additional details. In the methods section, it is unclear as to whether the GGXGG peptides upon which the alchemical transforms are conducted are positioned restrained within the condensed/dilute phase or not. If they are not, how would the position of the peptides within the condensate alter the calculated free energies reported? 

      The peptides are not restrained in our simulations and can therefore diffuse out of the condensate given sufficient time. Although the GGXGG peptide can, given sufficient time, leave the peptide condensate, we did not observe any escape event in the trajectories we used to generate starting points for switching. Hence, the peptide environment captured in our calculations reflects, on average, the protein-protein and protein-solvent interactions inside the model condensate. We believe this is the right way of performing the calculation of transfer free energy differences into the condensate. We have clarified this point when we describe the equilibrium simulation results in the revised manuscript. We say:

      Also, the peptide that experiences the transformation, which is not restrained, must remain buried within the condensate for all the snapshots that we use as initial frames, to avoid averaging the work in the dilute and dense phases.

      On the referee’s second point of whether there would be differences if the peptide visited the dilute phase, the answer is that, indeed, we would. We expect that the behaviour of the peptide would approach ΔΔG=0, considering the low protein concentration in the dilute phase. For mixed trajectories with sampling in both dilute and dense phases, our expectation would be a bimodal distribution in the free energy estimates from switching (see e.g. Fig. 8 in DOI:10.1021/acs.jpcb.0c10263). Because we are exclusively interested in the transfer free energies into the condensate, we do not pursue such calculations in this work.

      It would also be interesting to see what the variation in the transfer of free energy is across multiple independent replicates of the transform to assess the convergence of the simulations. 

      Upon submission of our manuscript, we were confident that the results we had obtained would pass the test of statistical significance. We had, after all, done many more simulations than those reported, plus the comparable values of ΔΔG<sub>Transfer</sub> for both GSY and GSF pointed in the right direction. However, we acknowledge that the more thorough test of running replicates recommended by the referee is important, considering the slow diffusion within the Tyr peptide condensates due to its stickiness. Also, the non-equilibrium switching method had not been tested before for dense phases like the ones considered here.

      We have hence followed our referee's suggestion and done three different replicates, 1 μs each, of the equilibrium runs starting from independent slab configurations, for both the GSY and GSF condensates (see the new supporting figures Fig. S1, S2 and S5). We now report the errors from the three replicates as the standard error of the mean (bootstrapping errors remain for the rest of the solvents). Our results are entirely consistent with the values reported originally, confirming the validity of our estimates.

      Additionally, since the authors use a slab for the calculation of these free energies, are the transfer free energies from the dilute phase to the interface significantly different from those calculated from the dilute phase to the interior of the condensate? 

      We thank the referee for this valuable comment, as it has pointed us in the direction of a rapidly increasing body of work on condensate interfaces, for example, as mediators of aggregation, that we may consider for future study with the same methodology. However, as discussed above, we have not considered this possibility in our work, as we decided to focus on the condensate environment, rather than its interface.

      The authors mention that the contact statistics of Phe and Tyr do not show significant difference and thereby conclude that the more favorable transfer of Tyr primarily originates from the dielectric of the condensate. However, the calculation of contacts neglects the differences in the strength of interactions involving Phe vs. Tyr. Though the authors consider the calculation of energy contact formation later in the manuscript, the scope of these interactions are quite limited (Phe-Phe, Tyr-Tyr, Tyr-Amide, Phe-Amide) which is not sufficient to make a universal conclusion regarding the underlying driving forces. A more appropriate statement would be that in the context of the minimal peptide investigated the driving force seems to be the difference in dielectric. However, it is worth mentioning that the authors do a good job of mentioning some of these caveats in the discussion section.

      We thank the referee for this important comment. Indeed, the similar contact statistics and interaction patterns that we reported originally do not necessarily imply identical interaction energies. In other words, similar statistics and patterns can still result in different stabilities for the Phe and Tyr condensates if the energetics are different. Hence, we cannot conclude that the GSF and GSY condensate environments are equivalent.

      To address this point, we have run new simulations for the revised version of our paper, using the temperature-replica exchange method, as before. From the new datasets, we derive the phase diagrams for both the GSF and GSY condensates (see the new Fig. 5). We find that the tyrosine-containing condensate is more stable than that of phenylalanine, as can be inferred from the lower saturation density in the low-density branch of the phase diagram. In consequence, despite the similar contact statistics, the energetics differ, making the saturation density of the GSY slightly lower than that of GSF. This result is consistent with experimental data by Bremer et al (Nat. Chem. 2022). 

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors address the paradox of how tyrosine can act as a stronger sticker for phase separation than phenylalanine, despite phenylalanine being higher on the hydrophobicity scale and exhibiting more prominent pairwise contact statistics in folded protein structures compared to tyrosine.

      We are grateful for the referee’s favourable opinion on the paper. Below, we address all of the issues raised.

      Strengths:

      This is a fascinating problem for the protein science community with special relevance for the biophysical condensate community. Using atomistic simulations of simple model peptides and condensates as well as quantum calculations, the authors provide an explanation that relies on the dielectric constant of the medium and the hydration level that either tyrosine or phenylalanine can achieve in highly hydrophobic vs. hydrophilic media. The authors find that as the dielectric constant decreases, phenylalanine becomes a stronger sticker than tyrosine. The conclusions of the paper seem to be solid, it is well-written and it also recognises the limitations of the study. Overall, the paper represents an important contribution to the field.

      Weaknesses:

      How can the authors ensure that a condensate of GSY or GSF peptides is a representative environment of a protein condensate? First, the composition in terms of amino acids is highly limited, second the effect of peptide/protein length compared to real protein sequences is also an issue, and third, the water concentration within these condensates is really low as compared to real experimental condensates. Hence, how can we rely on the extracted conclusions from these condensates to be representative for real protein sequences with a much more complex composition and structural behaviour?

      We agree with the main weakness identified by the referee. In fact, all these limitations had already been stated in our original submission. Our ternary peptide condensates are just a minimal model system that bears reasonable analogies with condensates, but definitely is not identical to true LCR condensates. The analogies between peptide and protein condensates are, however, worth restating: 

      (1) The limited composition of the peptide condensates is inspired by LCR sequences (see Fig. 4 in Martin & Mittag, 2018).

      (2) The equilibrium phase diagram, showing a UCST, is consistent with that of LCRs from Ddx4 or hnRNPA1.

      (3) The dynamical behaviour is intermediate between liquid and solid (De Sancho, 2022). 

      (4) The contact patterns are comparable to those observed for FUS and LAF1 (Zheng et al, 2020).

      The third issue pointed out by the referee requires particular attention. Indeed, the water content in the model condensates is low (~200 mg/mL for GSY) relative to the experiment (e.g. ~600 mg/mL for FUS and LAF-1 from simulations). Considering that both interaction patterns and solvation contribute to the favorability of Tyr relative to Phe, we speculate that a greater degree of solvation in the true protein condensates will further reinforce the trends we observe.

      In any case, in the revised version of the manuscript, we have made an effort to insist on the limitations of our results, some of which we plan to address in future work.

      Reviewer #3 (Recommendations for the authors):

      (1) The fact that protein density is so high within GSY or GSF peptide condensates may significantly alter the conclusions of the paper. Can the authors show that for condensates in which the protein density is ~0.2-0.3 g/cm3, the same conclusions hold? Could the authors use a different peptide sequence that establishes a more realistic protein concentration/density inside the condensate?

      Unfortunately, recent work with a variety of peptide sequences suggests that finding peptides in the density range proposed by the referee may be very challenging. For example, Pettit and his co-workers have extensively studied the behaviour of GGXGG peptides. In a recent work, using the CHARMM36m force field and TIP3P water, they report densities of ~1.2-1.3 g/mL for capped pentapeptide condensates (Workman et al, Biophys. J. 2024; DOI: 10.1016/j.bpj.2024.05.009). Brown and Potoyan have recently run simulations of zwitterionic GXG tripeptides with the Amber99sb-ILDNQ force field and TIP3P water, starting with a homogenous distribution in cubic simulation boxes (Biophys. J. 2024, DOI: 10.1016/j.bpj.2023.12.027). In a box with an initial concentration of 0.25 g/mL, upon phase separation, the peptide ends up occupying what would seem to be ~1/3 of the box, although we could not find exact numbers. This would imply densities of ~0.75 g/mL in the dense phase, with the additional problem of many charges. Finally, Joseph and her co-workers have recently simulated a set of hexapeptide condensates with varied compositions using a combination of atomistic and coarse-grained simulations. For the atomistic simulations, the Amber03ws force field and TIP4P water were used (see BioRxiv reference 10.1101/2025.03.04.641530). They have found values of the protein density in the dense phase ranging between 0.8 and 1.2 g/mL.  The consistency in the range of densities reported in these studies suggests that short peptides, at least up to 7-residues long, tend to form quite dense condensates, akin to those investigated in our work. While the examples mentioned do not comprehensively span the full range of peptide lengths, sequences, and force fields, they nonetheless support the general behaviour we observe. A systematic exploration of all these variables would require an extensive search in parameter space, which we believe falls outside the scope of the present study.

      (2) Do the conclusions hold for phase-separating systems that mostly rely on electrostatic interactions to undergo LLPS, like protein-RNA complex coacervates? In other words, could the authors try the same calculations for a binary mixture composed of polyR-polyE, or polyK-polyE?

      This is an excellent idea that we may attempt in future work, but the remit of the current work is aromatic amino acids Phe and Tyr only. Hence, we do not include calculations or discussion on polyR-polyE systems in our revised manuscript.

      (3) One of the major approximations made by the authors is the length of the peptides within the condensates, which is not realistic, or their density. Specifically, could they double or triple the length of these peptides while maintaining their composition so it can be quantified the impact of sequence length in the transfer of free energies?

      We thank the referee for this comment and agree with the main point, which was stated as a limitation in our original submission. The suggested calculations anticipate research that we are planning but will not include in the current work. One of the advantages of our model systems is that the small size of the peptides allows for small simulation boxes and relatively rapid sampling. Longer peptide sequences would require conformational sampling beyond our current capabilities, if done systematically. An example of these limitations is the amount of data that we had to discard from the new simulations we report, which amounts to up to 200 ns of our replica exchange runs in smaller simulation boxes (i.e. >19 μs in total for the 48 replicas of the two condensates!). As stated in the answer to point 1, we have found in the literature work on peptides in the range of 1-7 residues with consistent densities. Additionally, a recent report using alchemical transformations using equilibrium techniques with tetrapeptide condensates, pointing to the role of transfer free energy as driving force for condensate formation, further supports the observations from our work.

      Minor issues:

      (1) The caption of Figure 3B is not clear. It can only be understood what is depicted there once you read the main text a couple of times. I encourage the authors to clarify the caption.

      We have rewritten the caption for greater clarity. Now it reads as follows:

      Time evolution of the density profiles calculated across the longest dimension of the simulation box (L) in the coexistence simulations. In blue we show the density of all the peptides, and in dark red that of the F/Y residue in the GGXGG peptide.

      (2) Why was the RDF from Figure 5A cut at such a short distance? Can the authors expand the figure to clearly show that it has converged?

      In the updated Figure 5 (now Fig. 6), we have extended the g(r) up to r=1.75 nm so that it clearly plateaus at a value of 1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Thank you very much for your recognition of our work and for pointing out the shortcomings. We have made revisions one by one and provided corresponding explanations regarding the issues you raised.

      Weaknesses:

      One of the main EEG results is based on the weighted phase lag index (wPLI) between oscillations in the alpha and theta bands. In my opinion, this is problematic, as wPLI measures the locking of oscillations at the same frequency. It quantifies how reliably the phase difference stays the same over time. If these oscillations have different frequencies, the phase difference cannot remain consistent. Even worse, modeling data show that even very small fluctuations in frequency between signals make wPLI artificially small (Cohen, 2015).

      thank you for raising the question regarding the application of wPLI between the alpha and theta bands, which indeed deserves further explanation. In our study, we referred to some relevant previous literatures and adopted their approach of using wPLI to measure cross-frequency coupling strength, as this index itself can reflect the stability of phase differences. We have also considered the point you mentioned that the phase differences of oscillations with different frequencies are difficult to remain consistent. However, in this study, the presentation times of the two memory items are the same, which is fair to both from this perspective. Moreover, the study observed that the wPLI values of these two items alternately dominate over time, and this changing pattern is consistent with the regularity of behavioral data. It seems hard to explain this as a mere coincidence. 

      The corresponding discussion has been added to the revised part of the paper:“the present study referenced previous research by using the wPLI index as a measure of cross-frequency coupling strength31,64-66 (this index quantifies the stability of phase differences), yet the phases of different oscillations inherently change over time. However, this is fair to the two memory items in the present study, as their presentation times were balanced. The study found that the wPLI values of the two items alternately dominated over time, consistent with the pattern of behavioral data, which is hardly explicable by coincidence”

      Another result from the electrophysiology data shows that the attentional capture effect is positively correlated with the mean amplitude of alpha power. In the presented scatter plot, it seems that this result is driven by one outlier. Unfortunately, Pearson correlation is very sensitive to outliers, and the entire analysis can be driven by an extreme case. I extracted data from the plot and obtained a Pearson correlation of 0.4, similar to what the authors report. However, the Spearman correlation, which is robust against outliers, was only 0.13 (p = 0.57), indicating a non-significant relationship.

      you mentioned that the correlation between the attentional capture effect and the mean amplitude of alpha power in the electrophysiological data might be influenced by an outlier, and you also compared the results of Pearson and Spearman correlation coefficients, which we fully agree with.

      It is true that the small sample size of the current study makes the results vulnerable to interference from extreme data. Regarding this point, I have already explained it in the limitations section of the discussion in the revised manuscript:“the sample size of the current study is small, which may render the results vulnerable to interference from extreme cases”

      The behavioral data are interesting, but in my opinion, they closely replicate Peters and colleagues (2020) using a different paradigm. In that study, participants memorized four spatial positions that formed the endpoints of two objects, and one object was cued. Similarly, reaction times fluctuated at theta frequency, and there was an anti-phase relationship between the two objects. The main novelty of the present study is that this bias can be transferred to an unrelated task. While the current study extends Peters and colleagues' findings to a different task context, the lack of a thorough, direct comparison with Peters et al. limits the clarity of the novel insights provided.

      thank you very much for your attention to the behavioral data and its relevance to the study by Peters et al. (2020). We have noticed that there are similarities in some results between the two studies, which also indicates the stability of the relevant phenomena from one aspect.

      However, we would also like to further explain the differences between this study and the study by Peters et al. In the study by Peters et al., participants memorized four spatial positions that formed the endpoints of two objects (one of which was cued), and their results showed that after the two objects disappeared, attention fluctuated at the theta rhythm between their original positions with an inverse correlation. In contrast, the present study explores the manner of memory maintenance indirectly by leveraging the guiding effect of working memory on attention, effectively avoiding the influence of spatial positions.

      The study by Peters et al. directly examined differences in probe positions, clearly demonstrating that attention undergoes rhythmic changes at the two spatial locations and persists after the objects vanish, but it hardly clarifies the rhythmicity of working memory performance. Whereas the present study directly investigates such performance using the attention-capture effect of working memory, revealing that when maintaining multiple memory items, their attention-capturing capabilities alternate in dominance, i.e., multiple working memory items alternately become priority templates in a rhythmic manner. This is also some new attempts in the research perspective and method of this study.

      The corresponding discussion has been added to the revised part of the paper

      “Similar to the present study, Peters et al. had participants memorize four spatial positions forming the endpoints of two objects (one cued), and their results showed that after the two objects disappeared, attention fluctuated at the theta rhythm between their original positions with an inverse correlation; in contrast, the present study explores the manner of memory maintenance indirectly by leveraging the guiding effect of working memory on attention, effectively avoiding the influence of spatial positions—while Peters et al.’s study, which directly examined differences in probe positions, clearly demonstrates that attention undergoes rhythmic changes at the two spatial locations and persists after the objects vanish, it hardly clarifies the rhythmicity of working memory performance, whereas the present study directly investigates such performance using the attention-capture effect of working memory, revealing that when maintaining multiple memory items, their attention-capturing capabilities alternate in dominance, i.e., multiple working memory items alternately become priority templates in a rhythmic manner.”

      Reviewer #2 (Public review):

      The information provided in the current version of the manuscript is not sufficient to assess the scientific significance of the study.

      thank you very much for pointing out the multiple issues in our manuscript. Due to several revisions of this work, including experimental adjustments, there have been some inconsistencies in details. We appreciate you identifying them one by one.  We have made corresponding revisions based on your comments:

      (1) In many cases, the details of the experiments or behavioral tasks described in the main text are not consistent with those provided in the Materials and Methods section. Below, I list only a few of these discrepancies as examples:

      a) For Experiment 1, the Methods section states that the detection stimulus was presented for 2000 ms (lines 494 and 498), but Figure 1 in the main text indicates a duration of 1500 ms.

      we greatly appreciate you catching this inconsistency. We have made unified revisions by referring to the final implemented experimental procedures.  Corresponding revisions have been made in the paper:

      b) For Experiment 2, not only is the range of SOAs mentioned in the Methods section inconsistent with that shown in the main text and the corresponding figure, but the task design also differs between sections.

      Thank you for bringing this discrepancy to our attention. We have made unified revisions by referring to the final implemented experimental procedures. The correct SOAs are 233:33:867 ms.

      Corresponding revisions have been made in the paper:

      c) For Experiment 3, the main text indicates that EEG recordings were conducted, but in the Methods section, the EEG recording appears to have been part of Experiment 2 (lines 538-540).

      we’re grateful for you noticing this mix-up. In fact, only Experiment 3 is an EEG experiment, and we have made corresponding corrections in the "Methods" section. Corresponding revisions have been made in the paper: “The remaining components after this process were then projected back into the channel space. We extracted data from -500 ms to 2000 ms relative to cue stimulus presentation in Experiment 3.”  

      (2) The results described in the text often do not match what is shown in the corresponding figure. For example:

      a) In lines 171-178, the SOAs at which a significant difference was found between the two conditions do not appear to match those shown in Figure 2A.

      Many thanks for spotting this error. The previous results missed one SOA time, namely 33 ms, leading to a 33 ms difference in time. We have corrected it in the revised manuscript.

      Corresponding revisions have been made in the paper:“Specifically, the capture effect of cued items was significantly greater than that of uncued items at SOAs of 267ms (t(24) = 2.72, p = 0.03, Cohen's d = 1.11), 667ms (t(24) = 2.37, p = 0.03, Cohen's d= 0.97) and 833ms (t(24) = 3.53, p = 0.002, Cohen's d = 1.44), while the capture effect of uncued items was significantly greater than that of cued items at SOAs of 333ms (t(24) = 2.97, p = 0.007, Cohen's d = 1.21), 367ms (t(24) = 2.14, p = 0.04, Cohen's d = 0.87), 433ms (t(24 )= 2.49, p = 0.02, Cohen's d = 1.02), 467ms (t(24)=2.37, p = 0.03, Cohen's d = 0.97) and 567ms (t(24)=2.72, p = 0.02, Cohen's d = 1.11). ”

      (b) In Figure 4, the figure legend (lines 225-228) does not correspond to the content shown in the figure.

      we appreciate you pointing out this oversight. When adjusting the color scheme during the revision of the manuscript, we neglected to revise the legend, which has now been corrected in the revised manuscript.

      Corresponding revisions have been made in the paper:“Figure 4. The red line represents the average across all participants of the Fourier transforms of the differences in capture effects between left and right memory items at the individual level. The gray area represents values below the group average of medians derived from 1000 permutations, with each permutation involving Fourier transforms for each participant. *: p < 0.05.”

      (c) In Figure 9, not sufficient information is provided within the figure or in the text, making it difficult to understand. Consequently, the results described in the text cannot be clearly linked to the figure.

      Thank you for drawing our attention to this issue. We have revised Figure 9 and its legend in the revised manuscript to make them clearer and easier to understand.

      Corresponding revisions have been made in the paper

      (3) Insufficient information is provided regarding the data analysis procedures, particularly the permutation tests used for the data presented in Figures 2B, 4, and 10. The results shown in these figures are critical for the main conclusions drawn in the manuscript.

      we’re thankful for you highlighting this gap. In the revised manuscript, we have provided a more detailed explanation in the "Methods" section, especially regarding the content related to frequency analysis, to make the expression clearer.

      Corresponding revisions have been made in the paper:“As shown in Figure 8, the alpha power (8-14 Hz) induced by cued and uncued items alternated in dominance during the memory retention phase. To quantify this rhythmic alternation, we conducted a spectral analysis following these steps: First, we computed the power difference between cued and uncued items within the 8-14 Hz range during the retention phase. These differences were then downsampled to 100 Hz using a 10 ms window for averaging, generating a one-dimensional time series spanning the 0-2000 ms retention period. This time series was subsequently subjected to amplitude spectrum analysis across frequencies from 1 Hz to 50 Hz using Fourier transformation.

      To assess the statistical significance of the observed spectral features, we employed a permutation test. Specifically, we randomly shuffled the temporal order of the time series of power differences between cued and uncued items—thereby preserving the amplitude distribution of the data while eliminating temporal correlations in the original sequence—and repeated the Fourier transform and spectral analysis for each shuffled time series. This permutation process was replicated 1000 times to generate a null distribution of spectral power values. A frequency component in the original data was considered statistically significant if its power ranked within the top 5% of the corresponding null distribution (p < 0.05).

      We applied the same analytical pipeline to investigate differences in the weighted phase-lag index (wPLI) between the contralateral regions of the two items and the prefrontal cortex during the retention phase. Specifically, wPLI differences (i.e., the difference between the two conditions) were computed, downsampled to 100 Hz using a 10 ms window for averaging to generate a time series spanning 0-2000 ms, and then subjected to amplitude spectrum analysis (1-50 Hz) using Fourier transformation. Significance was assessed via the identical permutation test procedure described above (randomly shuffling the temporal order of the difference time series).”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “Can the authors offer a hypothesis as to how decreased coactivity promotes increased movement velocity.” 

      In our revision we have added an additional metric measuring how spatial coactivity changes during movement onset, the spatial correlation index, which replicates a previous finding that co-activity among proximal neurons is statistically greater surrounding movement onset. We did not find, as outlined in the revision, that mGluR5 manipulations significantly altered this relationship. Our data therefore shows, consistent with that shown previously, that ensembles of dSPNs that are co-active during movement onset, in particular ambulatory movement, are more likely to contain neurons that are closer together and the neurons are highly active. In contrast, rest ensembles contain neurons that are less active but have more highly correlated activity, across all pairwise distances. Additionally, mGluR5 inhibition, genetic or pharmacological, promotes the activation of rest ensembles but does not affect the properties of movement ensembles. Previous studies (e.g. Klaus A. et al., 2017) have shown that neurons in rest ensembles are, in general, unlikely to also be members of movement ensembles, We therefore hypothesize that corticostriatal synapses onto SPNs of rest ensembles are more likely, during spontaneous behavior, to have reduced synaptic weight due to mGluR5 signaling, potentially due to eCB mediated inhibition of neurotransmitter release. Therefore, when we inhibit mGluR5 at these synapses, we increase synaptic weight and increase the probability of activation of this coordinated rest ensemble, which suppresses movement. If, on the other hand, the synapses that govern activation of neurons in movement ensembles have a higher weight, they may be unaffected by mGluR5 inhibition. 

      The use of the Jaccard similarity index in this study is not intuitive and not fully explained by the methods or the diagram in Figure 1. 

      We have added more detail to the paper to explain the methodology of the jaccard similarity measure. The advantage of this method is that is specifically captures cells that are jointly active, as opposed to jointly inactive and is therefore useful for capturing co-activity in our sparsely active Ca<sup>2+</sup> imaging data. 

      The analysis of a possible 2-AG role in the mGlu5 mediated processes is incomplete. 

      We agree that, as an experiment to outline which endocannabinoids are involved in modulating synaptic strength through mGluR5, this experiment alone is not sufficient.

      However, our main focus in this paper is how manipulations of mGluR5 affect the spatiotemporal dynamics of dSPNs and we chose not to focus on specific mechanisms of endocannabinoid signaling, though these would certainly be interesting to investigate further in vivo.

      It would seem to be a simple experiment to examine effects of the mGlu5 NAM in the dSPN mGlu5 cKO mice. If effects of the two manipulations occluded one another this would certainly support the hypothesis that the drug effects are mediated by receptors expressed in dSPNs. A similar argument can be made for examining effects of the JNJ PAM in the cKO mice. 

      We agree that this experiment would be valuable and extend our findings presented in the paper, however, it has practically been outside the scope of the current work. 

      Reviewer #2 (Public review):

      Pharmacological and genetic manipulations of mGluR5 do not differentially/preferentially modulate the activity of proximal vs distal dSPNs, therefore, it could also be interpreted that mGluR5 is blanketly boosting/suppressing all dSPN activity as opposed to differential proximal/distal spatial relationships. 

      As in the response to reviewer 1 above, we have added additional clarification to the text explaining that our manipulations do not differentially affect the co-activity of proximal vs distal dSPNs, this is also quantified throughout the text using the spatial coordination index. However, we disagree that “it could also be interpreted that mGluR5 is blanketly boosting/suppressing all dSPN activity” as we do not observe statistically significant changes in the event rate following either pharmacological or genetic manipulations of mGluR5. Rather, we consistently observe statistically significant changes in co-activity among neurons, the extent to which activity of active neurons during either rest or movement are correlated with each other. This is the central finding of our manuscript, inhibiting or potentiating mGluR5 signaling alters behavior, not by blanket suppression or enhancement of the activity as measured using the event rate, of dSPNs, but by affecting their ensemble dynamic properties.  Co-activity during rest versus ambulatory movement is statistically greater in both proximal and distal cells and inhibiting mGluR5 increases this co-activity and decreases movement. 

      For these analyses of prox vs distal and all others, please include the detail of how many proximal vs distal cells were involved and per subject. 

      We have added a supplemental table that details the number of cells included per subject in all analyses

      Ln. 151-152: Please provide data concerning how volumes of infectivity differ between injecting AAV vs. coating the lens? If these numbers are very different, this could impact the number of Jaccard pairings and bias results. 

      While viral injection may lead to a larger volume of expression, with this one photon imaging method only those cells within ~200 microns of the edge of the lens will be able to be resolved, therefore practically, if there is an additional volume of infected tissue outside of the field of view of the lens, it would not affect the results as these neurons will not be resolved by the endoscope camera. Accordingly, the average number of cells detected per session is very similar following each approach (mean # of cells per session with coating 90.93 ± 23.69 cells, with viral injection 90.03 ± 29.29 cells)

      Is mGluR5 affecting dSPN activity in other measures beyond co-activity and rate? Does the amplitude of events change?

      We have added supplemental data for figures 2, 3, and 5 demonstrating that manipulations of mGluR5 do not affect the amplitude or length of Ca<sup>2+</sup> events included in the analysis. 

      What is the model of mGluR5 signaling in a resting state vs. movement? What other behaviors are occurring when the mouse is in a low velocity "resting state" (0-0.5 cm/s). If this includes other forms of movement (i.e. rearing, grooming) then the animal really isn't in a resting state. This is not mentioned in the open field behavior section of the methods and should be described (Ln. 486) in addition to greater explanation of what behavior measures were obtained from the video tracking software (only locomotion?)

      It would be very interesting to determine if during “rest,” when the animals is not engaged in ambulatory behavior, it may be engaged in some fine motor behavior. However, the resolution of the cameras used to measure locomotor activity in this dataset does not allow us to do this. 

      There is large variability in co-activity in proximal dSPNs when animals are "resting" (2j). Could this be explained by different behavior states within your definition of "rest"?

      We agree that if the animal is engaging in fine motor behavior that we cannot resolve with our behavior setup, this could produce some variability in coactivity. However, as shown previously (e.g. Klaus A. et al., 2017), ensembles active when the animal is not moving (our definition of “resting”), regardless of additional fine motor behaviors the animal may be engaged in when not moving, are substantially different that those ensembles that are active when the animal is moving. We therefore expect that this may limit, although potentially not eliminate, variability due to different behavioral states we may have grouped into our “resting” category. Unfortunately, as mentioned above, we are not able resolve variations in fine motor output in this behavioral data. 

      Have you performed IHC, ISH or another measure to validate D1 cell specific cKO?

      The mGluR5<sup>loxP/loxP</sup> mice used in this study were characterized previously by our lab (Xu et al., 2009), we used the same mice here with a different, but also published and characterized Cre-driver line, Drd1a-Cre Ey262 (Gerfen et al., 2013).

      Why are the "Mean Norm Co-activity" values in 5e so high in this experiment relative to figures 2-4?  

      In experiments where we treated the same animal with vehicle and a drug (i.e., experiments in Figure 2 and 3), we normalized the values for each animal in the drug treatment group to the distal bin of that animal following vehicle treatment. This allowed us to more clearly resolve the changes within each animal due to drug treatment. As comparisons in the data in figure 5 d–f are between different animals (rather than different treatments of the same animal) we could not perform this normalization procedure.  

      Reviewer #3 (Public review):

      Some D1 Cre lines have expression in the cortex. Which specific Cre line was used in this study? 

      We used, Drd1a-Cre Ey262. This is included in methods. 

      The text says JNJ treatment .... increased locomotor speed (Figure 3b) and increased the duration but not frequency of movement bouts (Figure 3c, d). However, the statistics of the figure legends say: however the change in mean velocity (3b) is not significant (p=0.060, U=3, Mann-Whitney U test), nor is the mean bout length during vehicle and JNJ (p=0.060, U=3, Mann-Whitney U test) (3d) Comparison of mean number of bouts of each animal during vehicle and JNJ (p=0.403, U=8, Mann-Whitney U test). 

      This has been corrected to indicate only the change in time spend at rest is statistically significant.

      This effect was most pronounced during periods of rest (Figure 3i, j). The decrease was only in rest? Are the colors in Figure 3J inverted? Therefore, JNJ treatment had effects that were qualitatively the inverse to the effects of fenobam on locomotion and dSPN activity. 

      We have corrected the text to state that, overall, and during periods of rest but not movement, JNJ had effects that were qualitatively the opposite of fenobam.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating. Prior social isolation is known to increase aggression in males, manifesting as increased lunging, which is suppressed by group housing (GH). However, it is also known that single housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., develop a modified aggression assay to address this issue by recording aggression in Drosophila males for 2 hours, with a virgin female immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons in promoting high frequency lunging, similar to earlier studies, whereas Or47b neurons promote low frequency but higher intensity tussling. Optogenetic activation revealed that three pairs of pC1SS2 neurons increase tussling. Cell-type-specific DsxM manipulations combined with morphological analysis of pC1SS2 neurons and side-by-side tussling quantification link the developmental role of DsxM to the functional output of these aggression-promoting cells. In contrast, although optogenetic activation of P1a neurons in the dark did not increase tussling, thermogenetic activation under visible light drove aggressive tussling. Using a further modified aggression assay, GH males exhibit increased tussling and maintain territorial control, which could contribute to a mating advantage over SH males, although direct measures of reproductive success are still needed.

      Strengths:

      Through a series of clever neurogenetic and behavioral approaches, the authors implicate specific subsets of ORNs and pC1 neurons in promoting distinct forms of aggressive behavior, particularly tussling. They have devised a refined territorial control paradigm, which appears more robust than earlier assays using a food cup (Chen et al., 2002). This new setup is relatively clutter-free and could be amenable to future automation using computer vision approaches. The updated Figure 5, which combines cell-type-specific developmental manipulation of pC1SS2 neurons with behavioral output, provides a link between developmental mechanisms and functional aggression circuits. The manuscript is generally well written, and the claims are largely supported by the data.

      Thank you for the precise summary of the manuscript and acknowledgment of the novelty and significance of the study.

      Weakness:

      Although most concerns have been addressed, the manuscript still lacks a rigorous, objective method for quantifying lunging and tussling. Because scoring appears to have been done manually and a single lunge in a 30 fps video spans only 2-3 frames, the 0.2 s cutoff seems arbitrary, and there are no objective criteria distinguishing reciprocal lunging from tussling. Despite this, the study offers valuable insights into the neural and behavioral mechanisms of Drosophila aggression.

      Thank you for this comment. The duration of each lunge was measured by analyzing the videos frame by frame—from the frame before the initiation of the lunge to the frame after its completion—resulting in an average span of 3–5 frames. Given a frame rate of 30 fps, this corresponds to approximately 0.1–0.17 seconds. We acknowledge that there are certain limitations for manually quantifying the two types of aggressive behaviors, which has now been stated in the newly added “Limitations of the Study” section in the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      Gao et al. investigated the change of aggression strategies by the social experience and its biological significance by using Drosophila. Two modes of inter-male aggression in Drosophila are known: lunging, high-frequency but weak mode, and tussling, low-frequency but more vigorous mode. Previous studies have mainly focused on the lunging. In this paper, the authors developed a new behavioral experiment system for observing tussling behavior and found that tussling is enhanced by group rearing, while lunging is suppressed. They then searched for neurons involved in the generation of tussling. Although olfactory receptors named Or67d and Or65a have previously been reported to function in the control of lunging, the authors found that these neurons do not function in the execution of tussling and another olfactory receptor, Or47b, is required for tussling, as shown by the inhibition of neuronal activity and the gene knockdown experiments. Further optogenetic experiments identified a small number of central neurons pC1[SS2] that induce the tussling specifically. These neurons express doublesex (dsx), a sex-determination factor, and knockdown of dsx strongly suppresses the induction of tussling. In order to further explore the ecological significance of the aggression mode change in group-rearing, a new behavioral experiment was performed to examine the territorial control and the mating competition. And finally, the authors found that differences in the social experience (group vs. solitary rearing) and the associated change in aggression strategy are important in these biologically significant competitions. These results add a new perspective to the study of aggression behavior in Drosophila. Furthermore, this study proposes an interesting general model in which the social experience modified behavioral changes play a role in reproductive success.

      Strengths:

      A behavioral experiment system that allows stable observation of tussling, which could not be easily analyzed due to its low-frequency, would be very useful. The experimental setup itself is relatively simple, just the addition of a female to the platform, so it should be applicable to future research. The finding about the relationship between the social experience and the aggression mode change is quite novel. Although the intensity of aggression changes with the social experience was already reported in several papers (Liu et al., 2011 etc), the fact that the behavioral mode itself changes significantly has rarely been addressed, and is extremely interesting. The identification of sensory and central neurons required for the tussling makes appropriate use of the genetic tools and the results are clear. A major strength of this study in neurobiology is the finding that another group of neurons (Or47b-expressing olfactory neurons and pC1[SS2] neurons), distinct from the group of neurons previously thought to be involved in low-intensity aggression (i.e. lunging), function in the tussling behavior. Furthermore, the results showing that the regulation of aggression by pC1[SS2] neurons is based on the function of the dsx gene will bring a new perspective to the field. Further investigation of the detailed circuit analysis is expected to elucidate the neural substrate of the conflict between the two aggression modes. The experimental systems examining the territory control and the reproductive competition in Fig. 6 are novel and have advantages in exploring their biological significance. It is important to note that in addition to showing the effects of age and social experience on territorial and mating behaviors, the authors experimentally demonstrated that altered fighting strategy has effects with respect to these behaviors.

      Thank you for your precise summary of our study and being very positive on the novelty and significance of the study.

      Reviewer #3 (Public review):

      In this revised manuscript, Gao et al. presented a series of well-controlled behavioral data showing that tussling, a form of high-intensity fighting among male fruit flies (Drosophila melanogaster) is enhanced specifically among socially experienced and relatively old males. Moreover, results of behavioral assays led authors to suggest that increased tussling among socially experienced males may increase mating success. They also concluded that tussling is controlled by a class of olfactory sensory neurons and sexually dimorphic central neurons that are distinct from pathways known to control lunges, a common male-type attack behavior.

      A major strength of this work is that it is the first attempt to characterize behavioral function and neural circuit associated with Drosophila tussling. Many animal species use both low-intensity and high-intensity tactics to resolve conflicts. High-intensity tactics are mostly reserved for escalated fights, which are relatively rare. Because of this, tussling in the flies, like high-intensity fights in other animal species, have not been systematically investigated. Previous studies on fly aggressive behavior have often used socially isolated, relatively young flies within a short observation duration. Their discovery that 1) older (14-days old) flies tend to tussle more often than younger (2 to 7-days-old) flies, 2) group-reared flies tend to tussle more often than socially isolated flies, and 3) flies tend to tussle at later stage (mostly ~15 minutes after the onset of fighting), are the result of their creativity to look outside of conventional experimental settings. These new findings are key for quantitatively characterizing this interesting yet under-studied behavior.

      Newly presented data have made several conclusions convincing. Detailed descriptions of methods to quantify behaviors help understand the basis of their claims by improving transparency. However, I remain concerned about authors' persistent attempt to link the high intensity aggression to reproductive success. The authors' effort to "tone down" the link between the two phenomena remains insufficient. There are purely correlational. I reiterate this issue because the overall value of the manuscript would not change with or without this claim.

      Thank you for acknowledging the novelty and significance of the study. Regarding the relationship you mentioned between high-intensity aggression and reproductive success, we further toned down the statement between them throughout the manuscript in the revised manuscript. We also modified the title to “Social Experience Shapes Fighting Strategies in Drosophila”. In addition, we now added a ‘Limitations of the Study’ section to clearly state the correlation between tussling and reproductive success.

      Reviewer #1 (Recommendations for the authors):

      If possible, mention the EM-connectome data showing the minimal interneuronal path from Or47b ORNs to pC1SS2 neurons (even if derived from the female connectome), which can strengthen the model of parallel sensory-central pathways.

      Thank you for this comment. According to data from the EM connectome, connecting Or47b ORNs to pC1d neurons requires at least two intermediate neurons. An example minimal pathway is: ORN_VA1v (L) → AL-AST1 (L) → PLP245 (L) → pC1d (R). We have added this point in the Discussion section of the revised manuscript.

      I'm not convinced that labeling lunges as "gentle" combat behavior works, either in the abstract or elsewhere. While lunging is indeed a lower-intensity form of aggression compared to tussling, applying anthropomorphic descriptors risks misleading readers.

      Thank you for this comment. We now use “low-intensity” instead of “gentle” to describe lunging.

      In Materials & Methods, please cross-check all figure-panel references after the recent re-numbering (e.g. "Figure 5A6A" etc.).

      Thank you for this comment. We have thoroughly verified the figure panel references in the Materials & Methods section.

      Ensure that Table S1 is clearly cited in the main text where you first describe fly genotypes.

      Thank you for this comment. We have now cited Table S1 in the main text.

      There are multiple grammatical errors and typos throughout the manuscript. Please correct them. Some examples are below, but this is not an exhaustive list:

      Line 98-102 requires rephrasing as the results are already published and not being observed by the authors.

      Thank you for this comment. We have revised the manuscript to “we occasionally observed the high-intensity boxing and tussling behavior in male flies as previously reported (Chen et al., 2002; Nilsen et al., 2004), which….”

      line 116- lower not 'lowed'.

      Corrected.

      line 942 & 945- knock-down males not 'knocking down males'.

      Corrected. Thank you very much for these comments.

      Reviewer #2 (Recommendations for the authors):

      The authors have almost completely answered the major comments I have noted on the ver.1 manuscript: (1) They clearly show changes in fighting strategy in the territory control behavior experiment in Fig. 6-figure supplements. (2) A detailed description of how aggressive behavior is measured. Thus, I am convinced by this revision.

      Thank you for these comments that make the manuscript a better version.

      Furthermore, in Fig. 5, which examined the relationship of pC1[SS2] characteristics with the function of dsx, is a novel data and very interesting. I look forward to further developments.

      Thank you. We will continue to explore this part in our future study.

      However, one point still concerns me.

      Line 192: Although the authors describe it as "usage-dependent," the trans-Tango technique is essentially a postsynaptic cell-labeling technique. It is possible that the labeling intensity in postsynaptic cells increases from the change in expression levels of the Or47b gene due to GH. However, there is no difference in the expression level of the Or47b gene labeled by GFP between SH and GH. Therefore, we cannot conclude that the expression of the Or47b gene is increased by rearing conditions.

      The original paper on trans-TANGO (Talay et al., 2017) does not discuss the usage-dependency. A review of trans-synaptic labeling techniques (Ni, Front Neural Circuits. 2021) discusses that the increase in trans-TANGO signaling with aging may be related to synaptic strength, but there is no experimental evidence for this. In my opinion, the results in Figure 3-figure supplement 2 only weakly suggest that the increase in trans-TANGO signaling may be explained by an increase in synaptic strength due to group rearing.

      We appreciate the reviewer’s insightful comment regarding the interpretation of the trans-Tango signal. Indeed, the original trans-Tango study (Talay et al., 2017) does not claim that the method is usage-dependent. The observed increase in trans-Tango labeling with age, as reported in their supplemental figures, may reflect accumulation over time, potentially influenced by synaptic maturation or increased component expression. To avoid overstating our results, we have revised the relevant statement in the manuscript to remove the term "usage-dependent" and now describe the change in trans-Tango signal more cautiously.  

      Reviewer #3 (Recommendations for the authors):

      Below are the cases where their professed attempts to "tone down the statement" appear ignored:

      Lines 27-29:

      "Our findings... suggest how social experience shapes fighting strategies to optimize reproductive success".

      We have now revised the manuscript to “Our findings… suggest that social experience may shape fighting strategies to optimize reproductive success.”

      Lines 85-86:

      "... discover that this infrequent yet intense form of combat is... crucial for territory dominance and mating competition".

      We have now revised the manuscript to “…discover that this infrequent yet intense form of combat is enhanced by social enrichment, while the low-intensity lunging is suppressed by social enrichment.” 

      Lines 335-339:

      "Here, we found that... GH males tend to... increase the high-intensity tussling, which enhances their territorial and mating competition."

      We have removed “which enhances their territorial and mating competition” in the revised manuscript.

      Lines 343-344:

      "... presenting a paradox between social experience, aggression and reproductive success. Our result resolved this paradox..."

      We have now revised the manuscript to “...Our results provide an explanation for this paradox…”

      Lines 355-358:

      "Interestingly, we found that the mating advantage gained through social enrichment can even offset the mating disadvantage associated with aging, further supporting the vital role of shifting fighting strategies in experienced, aged males."

      We have removed “further supporting the vital role of shifting fighting strategies in experienced, aged males” in the revised manuscript.

      Lines 361-362:

      "These results separate the function of the two fighting forms and rectify out understanding of how social experiences regulate aggression and reproductive success."

      We have removed this sentence in the revised manuscript.

      Some may say that a speculative statement is harmless, but I think it indeed is harmful unless it is clearly indicated as a speculation. It is regrettable that authors remain reluctant to change their claim without providing any new supporting evidence. All three reviewers raised the same concern in the first round of review.

      We apologize for not making the speculative nature of the statement clearer in the previous version. In the revised manuscript, we have now explicitly rephrased sentences to only suggest a correlation but not a causal link between tussling and reproductive success.

      I have no choice but to keep my evaluation of the manuscript as "Incomplete" unless the authors thoroughly eliminate any attempt to link these two. This must go beyond changing a few words in the lines listed above.

      Thank you for this comment. In addition to the lines listed above, we carefully checked all statements regarding the correlation between fighting strategies and reproductive success throughout the full text. Furthermore, we have also added a “Limitations of the Study” section to address the shortcomings of this study in the revised manuscript.

      I do not have the same level of concern over the interpretation of Fig. 6A-C, because this is directly linked to aggressive interactions. Even if the socially isolated males do not engage in tussling, it is not a leap to assume that a different fighting tactic of socially experienced males can give them an advantage in defending a territory. To me, this is a sufficient ethological link with the observed behavioral change.

      Thank you for this insightful comment.

      The following are relatively minor, although important, concerns.

      I beg to differ over the authors' definition of "tussling". Supplemental movies S1 and S2 appear to include "tussling" bouts in which 2 flies lunging at each other in rapid succession, and supplemental movie S3 appears to include bouts of "holding", in which one fly holds the opponent's wings and shakes vigorously. These cases suggest that the definition of "tussling" as opposed to "lunging" has a subjective element. However, I would not delve on this matter further because it is impossible to be completely objective over behavioral classification, even by using a computational method. An important point is that the definition is applied consistently within the publication. I have no reason to doubt that this was not the case.

      Thank you for this comment. Since the analysis of tussling behavior was conducted manually, it is challenging to achieve complete objectivity. However, we made every effort to apply consistent criteria throughout the analysis. We have added a “Limitations of the Study” section in the revised manuscript to clearly state this caveat. We appreciate your understanding.

      Authors now state that "all tester flies were loaded by cold anesthesia" (lines 432-433). I would like to draw attention to the well-known fact that anesthesia, whether by ice or by CO2, are long known to affect fly's subsequent behaviors (for aggression, see Trannoy S. et al., Learn. Mem. 2015. 22: 64-68). It will be prudent to acknowledge the possibility that this handling method could have contributed to unusually high levels of spontaneous tussling, which has not been reported elsewhere before.

      Thank you for this comment. The increased tussling behavior observed in our study is unlikely due to cold anesthesia, as noted by Trannoy S. et al. (2015), cold anesthesia profoundly reduces locomotion and general aggressiveness in flies. We acknowledge that the use of cold anesthesia in behavioral experiments may have potential effects on aggression. To minimize this influence, we allowed the flies to recover and adapt for at least 30 minutes before behavioral recording. Moreover, both control and experimental groups were treated in exactly the same manner to ensure consistency.

      It is intriguing that pC1SS2 neurons are dsx+ but fru-. Authors convincingly demonstrated that these neurons are clearly distinct from the P1a neurons, a well-characterized hub for male social behaviors. It is possible that pC1SS2 neurons overlap with previously characterized dsx+ neurons that are important for male aggressions (measured by lunges), such as in Koganezawa et al., Curr. Biol. 2016 and Chiu et al., Cell 2020, a point authors could have explicitly raised.

      Thank you for this comment. We have added this point into the Discussion section of the revised manuscript, as follows: “That tussling-promoting… aggression (Koganezawa et al., 2016). Moreover, the anatomical features of pC1<sup>SS2</sup> neurons are highly similar to the male-specific aggression-promoting (MAP) neurons identified by another previous study (Chiu et al., 2021).

      I acknowledge the authors' courage to initiate an investigation to a less characterized, high intensity fighting behavior. Tussling requires the simultaneous engagement of two flies. Even if there are confusion over the distinction between lunges and tussling, authors' conclusion that socially experienced flies and socially isolated flies employ distinct fighting strategy is convincing. The concern I raised above is about the interpretation of the data, not about the quality of data.

      Thank you for your constructive comments to make this manuscript better.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary: 

      This study provides compelling evidence suggesting that ghrelin, a molecule released in the surroundings of the major adult brain neurogenic niche (V-SVZ) by blood vessels with high blood flow, controls the migration of newborn interneurons towards the olfactory bulbs. 

      Strengths:

      This study is a tour de force as it provides a solid set of data obtained by time-lapse recordings in vivo. The data demonstrate that the migration and guidance of newborn neurons rely on factors released by selective types of blood vessels. 

      Weaknesses:

      Some intermediate conclusions are weak and may be reinforced by additional experiments. 

      We thank the reviewer for the thoughtful evaluation and constructive comments outlined in the “Recommendations for The Authors”. In response, we have incorporated additional data, revised relevant figures, and clarified explanations in the revised manuscript.

      Reviewer #2 (Public review)

      Summary: 

      The authors establish a close spatial relationship between RMS neurons and blood vessels. They demonstrated that high blood flow was correlated with migratory speed. In vitro, they demonstrate that Ghrelin functions as a motogen that increases migratory speed through augmentation of actin cup formation. The authors proceed to demonstrate through the knockdown of the Ghrelin receptor that fewer RMS neurons reach the OB.

      They show the opposite is true when the animal is fasted. 

      Strengths: 

      Compelling evidence of close association of RMS neurons with blood vessels (tissue clearing 3D), preferentially arterioles. Good use of 2-photon imaging to demonstrate migratory speed and its correlation with blood flow. In vitro analysis of Ghrelin administration to cultured RMS neurons, actin visualization, Ghsr1KD, is solid and compelling. 

      We sincerely thank the reviewer for the encouraging comments and helpful suggestions. As noted, our original manuscript lacked sufficient in vivo evidence connecting blood flow with ghrelin signaling. To address this, we have added new data and revised the explanations throughout the manuscript as described below.

      Weaknesses: 

      (1) Novelty of findings attenuated due to prior work, especially Li et al., Experimental Neurology 2014. Here, the authors demonstrated that Ghrelin enhances migration in adultborn neurons in the SVZ and RMS. 

      We agree with the reviewer that the idea that ghrelin enhances migration of new neurons is not entirely novel. The study by Li et al. (2014) provided critical insights that guided our investigation into ghrelin as a blood-derived factor promoting neuronal migration. However, our study expands on this by demonstrating that ghrelin directly stimulates migration via GHSR1a in cultured new neurons, and we further identified the cellular and cytoskeletal mechanisms involved. Specifically, we showed that ghrelin enhances somal translocation by activating actin dynamics at the rear of the cell soma. We have revised the Results and Discussion sections accordingly to emphasize these novel aspects as follows:

      “A previous study demonstrated that the migration of V-SVZ-derived new neurons was attenuated in ghrelin knockout mice (Li et al., 2014). In our study, we found that the migration of cultured new neurons was enhanced by the application of ghrelin to the culture medium, and this effect was abolished by Ghsr1a knockdown (KD). These findings suggest that ghrelin directly stimulates neuronal migration through its receptor, GHSR1a, on new neurons. A previous study showed that GHSR1a is expressed in various regions of the brain (Zigman et al., 2006). In our experiments, new neuron-specific KD of Ghsr1a indicated that ghrelin signaling acts in a cell-autonomous manner to regulate neuronal migration.” (Discussion, page 13, lines 10–18)

      “Furthermore, we identified the cellular and cytoskeletal mechanisms underlying this effect on migration. The results indicate that ghrelin enhances somal translocation during migration by activating actin cytoskeletal dynamics at the rear of the neuronal soma.” (Discussion, page 13, lines 24–26)

      (2) The evidence for blood delivery of Ghrelin is not very convincing. Fluorescently-labeled Ghrelin appears to be found throughout the brain parenchyma, irrespective of the distance from vessels. It is also not clear from the data whether there is a link between increased blood flow and Ghrelin delivery. 

      We agree that the correlation between blood flow and ghrelin transcytosis is not very convincing in our study. As the reviewer pointed out, Figure 3A gives the impression that fluorescent-labeled ghrelin is uniformly distributed throughout the brain parenchyma. However, high-magnification images newly added in Figure 3 show that some, but not all, vessels have particularly strong fluorescent signals in the parenchymal area adjacent to the abluminal side of vascular endothelial cells, visualized by CD31 immunostaining (Feng et al., 2004) (Figure 3A′, A′′). To quantify these observations, we defined two regions: Area I (perivascular area), within 10 μm of the abluminal surface of CD31-positive endothelium; and Area II (distant area), located 10–20 μm away (Figure 3E). Of note, Area I corresponds to the perivascular region where new neurons are frequently observed (Figure 1).

      Importantly, we found strong ghrelin signals in vascular endothelial cells of endomucin-negative high-flow vessels (Figure 3C, D). This suggests that transcytosis of blood-derived ghrelin may occur more frequently in high-flow vessels due to increased endocytosis at the endothelium. To test this, we quantified signal gradients in the extra-vessel regions as fold changes (Area I / Area II), as illustrated in Figure 3E. The proportion of vessel segments with >1.5-fold increases was significantly higher in endomucin-negative vessels than in endomucin-positive ones (Figure 3F). Furthermore, vessels with >2-fold increases were observed exclusively in the endomucinnegative group (6.48% ± 1.18%). 

      These data suggest that, in high-flow vessels, blood-derived ghrelin accumulates more in the immediate perivascular region than in areas further away. This supports the possibility that elevated blood flow delivers a larger amount of ghrelin to the vascular endothelium, enhancing its transcytosis into adjacent brain parenchyma. This mechanism may underlie the preferential migration of new neurons along perivascular regions with high blood flow, as shown in Figure 1.  We have incorporated this new data in Figure 3 and corresponding explanations into the Results, Figure legend and Methods

      (3) The in vivo link between Ghsr1KD and migratory speed is not established. Given the strong work to open the study on blood flow and migratory speed and the in vitro evidence that migratory speed is augmented by Ghrelin, the paper would be much stronger with direct measurement of migration speed upon Ghsr1KD. Indeed, blood flow should also be measured in this experiment since it would address concerns in 2. If blood flow and ghrelin delivery are linked, one would expect that Ghsr1KD neurons would not exhibit increased migratory speed when associated with slow or fast blood flow vessels. 

      In Figure 3, we showed that ghrelin transcytosis occurs preferentially in high-flow vessels, suggesting a role for ghrelin in mediating the effects of blood flow on neuronal migration. However, whether this dependence is solely attributable to ghrelin signaling remains unclear. 

      To address this, we tested whether Ghsr1a-KD modifies the impact of reduced blood  flow on neuronal migration by combining Ghsr1a-KD with bilateral common carotid artery stenosis (BCAS), a chronic cerebral hypoperfusion model (Figure S9A). We found that BCAS decreased the percentage of Ghsr1a-KD new neurons reaching the OB, similar to the effect seen in control neurons (Figure S9B, see also Figure 2A–C). This suggests that blood flow influences neuronal migration even under Ghsr1a-KD conditions. 

      Furthermore, we analyzed the distribution of Ghsr1a-KD neurons with respect to vessel flow characteristics. Even under Ghsr1a-KD, a higher proportion of new neurons were located in the area of endomucin-negative (high-flow) vessels compared with endomucin-positive (low-flow) vessels (Figure S9C), indicating that Ghsr1a-KD does not abolish the preferential association of migrating neurons with high flow vessels. These findings suggest that although ghrelin signaling contributes to blood flow-dependent migration, it is not the sole factor. Other blood-derived signals may also mediate this effect. We have included these new data in Figure S9 and updated the corresponding sections in the Results

      Reviewer #1 (Recommendations for the authors) :

      Major 

      Page 6, Line 13. Please provide in the result section some explanation about how photothrombic clot is induced.  

      We added the following explanation to the Results section to clarify the method used to induce photothrombotic clot formation.

      “For clot formation, a restricted area of selected vessels was irradiated by a two-photon laser immediately after intravenous injection of rose bengal.” (Results, Page 7, lines 27–28)

      Page 6, Line 18. The authors use the marmoset as an additional experimental model. Here, V-SVZ-derived newborn neurons migrate in other brain regions as compared to rodents. Please provide a clear rationale for moving from rodents to "common marmosets" as an experiment model. And why use marmosets only for this set of experiments? 

      We clarified the rationale for using common marmosets in addition to mice as follows:

      “Because blood vessel-guided neuronal migration in the adult brain is a conserved phenomenon across species (Kishimoto et al., 2011; Akter et al., 2021; Shvedov et al., 2024), we hypothesized that blood flow may also influence neuronal migration in other brain regions of primates. The neocortex, which supports higher-order brain functions and has undergone evolutionary expansion in primates, was selected as a target region. In common marmosets, but not in mice, V-SVZ-derived new neurons migrate toward the neocortex and ventral striatum (Akter et al., 2021) (Supplemental Movies S4 and S5).” (Results, Page 6, lines 19–25)

      Figure 2B. The experimental setup is possibly problematic as the lentiviral tracing measurement does not take into consideration the rate of neurogenesis or newborn neuron survival. Can authors assess the rate of proliferation and survival in the VSVZ/RMS upon BCAS to decipher whether the reduced number of cells observed in the OB only results from migration changes? (comparable remark stands for Figure 5) 

      To evaluate whether the reduction in the number of new neurons observed in the OB after BCAS (Figure 2B, C) is due solely to impaired migration, we assessed cell proliferation and survival in the V-SVZ and RMS. Specifically, we quantified the density of Ki67+ proliferating cells and cleaved caspase-3+ apoptotic cells in the sham and BCAS groups. BCAS significantly decreased cell proliferation and increased cell death in both the V-SVZ and RMS (Figure S4), suggesting that reduced neurogenesis and/or survival may contribute to the decreased neuronal distribution in the OB. 

      Although we cannot exclude the possibility that changes in cell proliferation or survival contributed to this effect, our photothrombotic clot formation experiments are better suited to directly examine how acute reduction in blood flow affects neuronal migration. These experiments allowed us to measure the migration speed of new neurons shortly after inducing localized blood flow inhibition. We found that clot formation significantly reduced the migration speed of new neurons (Figure 2E, H), indicating that blood flow changes directly impair neuronal migration in the adult brain. 

      We have included these new data in Figure S4 and updated the corresponding text in the Results, Discussion, Figure legend, and Methods as follows:

      Figure 3. About ghrelin signaling. It is unclear whether its transcytosis occurs in endomucin-negative because of the high bloodstream flow. How can this be explained? What happens upon BCAS, is there still a close relation between ghrelin transcytosis, blood flow, and neuron migration? 

      As correctly noted, our initial explanation and data did not provide sufficient evidence that higher blood flow delivers a larger amount of ghrelin into the brain parenchyma. We found that some vessels had particularly strong fluorescent signals in the parenchymal area adjacent to the abluminal surface of vascular endothelial cells, as visualized by CD31 immunostaining (Feng et al., 2004) (Figure 3A′, A′′). On the basis of our observation that strong fluorescent signals were detected in vascular endothelial cells of endomucin-negative (high-flow) vessels (Figure 3C, D), we hypothesized that ghrelin transcytosis may occur more frequently in high-flow vessels due to increased endocytosis at the vessel endothelium. 

      To test this hypothesis, we quantified signal gradients in the extra-vessel regions by calculating fold changes in fluorescent intensity between two zones: Area I (0–10 μm from the abluminal surface of the endothelium) and Area II (10–20 μm away), as illustrated in Figure 3E. Area I corresponds to the perivascular region where new neurons are frequently found (Figure 1). We found that the proportion of vessel segments with >1.5-fold signal increase in Area I relative to Area II was significantly higher in endomucin-negative vessels than endomucin-positive ones (Figure 3F). Furthermore, vessel segments with >2-fold increases were observed exclusively in the endomucin-negative group (6.48% ± 1.18%). These results support the idea that higher blood flow increases the amount of ghrelin that reaches the luminal surface of vascular endothelial cells, thereby increasing the possibility of ghrelin transcytosis into the brain parenchyma.

      We also examined whether blood flow inhibition–induced by BCAS or photothrombotic clot formation–affects the relationship between ghrelin transcytosis, blood flow, and neuronal migration. The above results suggest that blood flow reduction may decrease ghrelin transcytosis, thereby contributing to impaired neuronal migration. To further explore this, we analyzed the distribution of new neurons around high- versus low-flow vessels under BCAS conditions. In the BCAS group, we still observed a higher density of new neurons in the region of high-flow (endomucin-negative) vessels compared with in low-flow (endomucin-positive) ones (Figure S9C). This suggests that even under reduced blood flow, neuronal migration preferentially occurs near high-flow vessels. Taken together, these results suggest that ghrelin transcytosis, blood flow and neuronal migration are connected, and that this relationship persists under conditions of blood flow reduction.

      Figure 4. Is ghrelin controlling both individual Dcx+ neuron migration as well as chain migration (cells moving more together)? This should be assessed and clarified. 

      How is ghrelin controlling actin dynamics in newborn migrating neurons? Since somal translocation speed and somal stride length are both modulated by ghrelin, this factor may also control MT remodeling, could that be checked? 

      We have revised the manuscript to better explain the role of ghrelin in both modes of neuronal migration–chain and individual. Initially, we demonstrated that ghrelin enhances the migration of new neurons in V-SVZ culture (Figure 4A, B), where these neurons migrate outward as chains, indicating that ghrelin facilitates chain migration. In subsequent in vitro experiments (Figure 4C–M), we showed that ghrelin also enhances the migration of individual neurons. To examine this in vivo, we injected Ghsr1a-KD and control lentiviruses into two different anatomical regions: the V-SVZ, where chain migration originates, and the OB core, where new neurons migrate individually. These experiments enabled us to assess the role of ghrelin signaling in each mode of migration independently. We found that ghrelin enhanced both chain migration in the RMS and individual migration in the OB. These results indicate that ghrelin signaling facilitates both forms of neuronal migration. We added the following text in the Results section:

      “To assess the direct effect of ghrelin on neuronal migration, we applied recombinant ghrelin to V-SVZ cultures, in which new neurons emerge and migrate as chains (Figure 4A). Ghrelin significantly increased the migration distance of these neurons (Figure 4B), indicating enhanced chain migration. We then used super-resolution time-lapse imaging to examine individually migrating neurons with or without knockdown (KD) of growth hormone secretagogue receptor 1a (GHSR1a), a ghrelin receptor expressed in V-SVZ-derived new neurons (Li et al., 2014) (Figure 4C). Ghrelin enhanced the migration speed of control cells (lacZ-KD) cells, indicating that it also facilitates individual migration (Figure 4D).” (Results, Page 9, lines 5–12)

      “Of the total labeled Dcx+ cells, the percentage of Dcx+ cells reaching the GL was significantly lower in the Ghsr1a-KD group than in the control group (Figure 5B, C), suggesting that ghrelin enhances individual radial migration of new neurons in the OB.” (Results, Page 10, lines 5–8) “These data indicate that ghrelin signaling facilitates both individual migration in the OB and chain migration in the RMS.” (Results, Page 10, lines 17–18)

      We also added discussion on how ghrelin may regulate cytoskeletal dynamics in migrating neurons. Ghrelin signaling has been reported to control actin cytoskeletal remodeling in astrocytoma cells (Dixit et al., 2006), which led us to investigate similar effects in migrating neurons. Rac, a member of the Rho GTPase family, was shown to mediate this actin remodeling in astrocytoma migration, suggesting it may also be involved in ghrelin-induced actin cup formation in new neurons. Furthermore, because somal translocation depends not only on actin but also on microtubule dynamics (Kaneko et al., 2017), it is possible that ghrelin influences both systems. Supporting this idea, ghrelin signaling was shown to modulate microtubule behavior via SFK-dependent phosphorylation of α-tubulin (Slomiany and Slomiany, 2017). These findings suggest that ghrelin may enhance somal translocation through coordinated regulation of both the actin and microtubule systems. We added following text in the Results and Discussion sections:

      “Ghrelin signaling has been reported to regulate actin cytoskeletal dynamics in astrocytoma cells (Dixit et al., 2006), which led us to examine whether a similar mechanism operates in migrating neurons.”(Results, Page 9, lines 23–25)

      “Further studies are needed to elucidate how ghrelin promotes actin cup formation in migrating neurons. Given that Rac, a Rho family GTPase, mediates actin remodeling downstream of ghrelin in astrocytoma cells (Dixit et al., 2006), it is possible that Rac may also be involved in ghrelininduced cytoskeletal regulation in new neurons.” (Discussion, Page 13, lines 28–31)

      “In addition to actin remodeling, ghrelin may regulate microtubule dynamics. Ghrelin signaling was shown to modulate microtubules via SFK-dependent phosphorylation of α-tubulin (Slomiany and Slomiany, 2017), raising the possibility that ghrelin promotes somal translocation of new neurons through coordinated regulation of both actin and microtubule networks (Kaneko et al., 2017).” (Discussion, Page 13, line 31–Page 14, line 2)

      It would also be informative to provide immunolabeling of Ghsr1 in the V-SVZ / RMS/ OB to have a clear picture of the expression pattern of this receptor. Newborn neurons migrate along blood vessels, which are surrounded by astrocytes that have also been reported to express Ghsr1, thus could newborn neuron migration change may also arise from activation of Ghsr1 in their surrounding astrocytes? 

      A previous study reported that GHSR1a is expressed in DCX+ new neurons in the RMS and OB, and in V-SVZ neural progenitor cells (Li et al., 2014). To visualize the spatial expression pattern of Ghsr1a, we performed RNAscope in situ hybridization because specific anti-GHSR1a antibodies suitable for immunohistochemistry were not available. Consistent with the previous report, we detected Ghsr1a mRNA in DCX+ new neurons in the VSVZ, RMS, and OB (Figure S5A), indicating that new neurons directly receive ghrelin signaling. 

      Moreover, our KD experiments demonstrated that ghrelin enhanced the migration of new neurons in a cell-autonomous manner via GHSR1a (Figure 4, 5). Nevertheless, a recent study (Stark et al., 2024) showed that GHSR1a was expressed in various cell types, including glutamatergic and GABAergic neurons, suggesting that ghrelin may also exert non-cellautonomous effects on neuronal migration. Given the presence of diverse cell types, including neurons, microglia, pericytes, and astrocytes, along the migratory route, it remains possible that GHSR1a activation in these neighboring cells contributes to the overall regulation of neuronal migration. 

      Figure 5. About the in vivo knockdown of Ghsr1a. The results section (page 9, line 3) mentioned that mice were either injected with one or the other construct but Figure 5 shows coincidence of GFP and dsRed positive cells. Were control and Ghsr1a shRNAs injected together into the same mouse? Could you quantify the number of cells in green (control), red (Ghsr1a KD), and yellow (both)? Won't they mostly be yellow? Have you tried injecting control and Ghsr1a separately? If yes, do you get the same result? Such analysis would be important to separate cell autonomous from noncell autonomous effects. 

      To minimize variability in injection conditions, we initially coinjected control and Ghsr1a-KD lentiviruses into the same mice and analyzed their migration using a paired design. As the reviewer correctly noted, some cells were coinfected and expressed both EmGFP and DsRed (18.7% ± 2.86% of EmGFP+ cells and 10.8% ± 0.533% of DsRed+ cells). To ensure that this overlap did not affect our analysis, we excluded EmGFP+/DsRed+ double-positive cells and focused solely on EmGFP+/DsRed− (control) and EmGFP−/DsRed+ (Ghsr1a-KD) single-positive cells. 

      We agree with the reviewer that coinjection could lead to reciprocal interactions between control and Ghsr1a-KD cells, potentially masking cell-autonomous effects. To address this, we performed an independent experiment in which control and Ghsr1a-KD lentiviruses were injected separately into different mice (Figure S7A), as suggested. Consistent with the results of the coinjection experiment, we found that the Ghsr1a-KD cells showed significantly reduced distribution in the GL compared with that in control cells (Figure S7B). Although we cannot exclude the possibility of a non-cell-autonomous effect of ghrelin, this result supports the conclusion that ghrelin signaling enhances neuronal migration in a cell-autonomous manner. 

      Who is expressing Ghsr1a, newborn neurons, and or their progenitors? The production and survival of newborn V-ZVS cells should be assessed upon knockdown of the ghrelin receptor too. 

      To determine whether the altered distribution of new neurons observed upon Ghsr1aKD is due to impaired migration rather than decreased cell production or survival, we examined the effects of Ghsr1a-KD on the proliferation and survival of new neurons and their progenitors, which express GHSR1a (Li et al., 2014). 

      We compared the proportion of cleaved caspase-3+ cells and Ki67+ cells from the total labeled cells in the V-SVZ and RMS between the control and Ghsr1a-KD groups. There was no significant difference in the proportion of cleaved caspase-3+ cells between the groups (Control: 874 cells from 5 mice; Ghsr1a-KD: 678 cells from 7 mice), suggesting that ghrelin signaling does not affect the survival of new neurons and their progenitors. 

      Similarly, the proportion of Ki67+ cells in the RMS did not differ significantly between the two groups (Figure S8), indicating that Ghsr1a-KD does not impair cell proliferation in the RMS. However, it remains technically difficult to evaluate whether Ghsr1a-KD affects proliferation in the VSVZ, because lentivirus injection into the VSVZ may interfere with GHSR1a expression not only in new neurons and neural progenitors, but also in other cell types known to express GHSR1a (Zigman et al., 2006). A previous study reported that ghrelin signaling promoted cell proliferation in the V-SVZ (Li et al., 2014), thus we cannot exclude the possibility that Ghsr1a-KD may affect V-SVZ proliferation.

      To overcome this limitation, we assessed the effects of Ghsr1a-KD on neuronal migration using in vitro KD experiments (Figure 4C–J) and in vivo OB-core lentivirus injections (Figure 5A–C), both of which did not interfere with proliferation in the V-SVZ. These complementary approaches consistently demonstrated that Ghsr1a-KD reduces the migration speed of new neurons. 

      “To determine whether the altered distribution of new neurons after Ghsr1a-KD is due to impaired migration rather than changes in cell production or survival, we assessed the effects of Ghsr1aKD on the proliferation and survival of new neurons and their progenitors, which express GHSR1a (Li et al., 2014). We quantified the proportion of cleaved caspase-3+ cells and Ki67+ cells from the total labeled cells in the V-SVZ and RMS in both control and Ghsr1a-KD groups. We found no significant difference in cleaved caspase-3+ cell proportions between the groups (Control: 874 cells from 5 mice; Ghsr1a-KD: 678 cells from 7 mice), suggesting that ghrelin signaling does not influence the survival of new neurons and their progenitors. Similarly, the percentage of Ki67+ cells in the RMS was similar between the two groups (Figure S8), indicating that Ghsr1a-KD does not impair cell proliferation in the RMS. However, technical limitations prevented a reliable evaluation of proliferation in the V-SVZ, as lentivirus injection into this region may interfere with GHSR1a expression in not only neural progenitors and new neurons, but also other GHSR1aexpressing cell types (Zigman et al., 2006). Although ghrelin signaling has been reported to promote cell proliferation in the V-SVZ (Li et al., 2014), our complementary in vitro KD experiments (Figure 4C–J) and in vivo OB-core lentivirus injections (Figure 5A–C), which did not affect the V-SVZ, consistently demonstrated that Ghsr1a-KD reduces neuronal migration. Taken together, our results suggest that blood-derived ghrelin enhances neuronal migration in the RMS and OB by stimulating actin cytoskeleton contraction in the cell soma, rather than by altering cell proliferation or survival.” (Results, Page 10, line 19–Page 11, line 4)

      “rat anti-Ki67 (1:500, #14-5698-82, eBioscience); and rabbit anti-cleaved caspase-3 (1:200, #9661, Cell Signaling Technology)” (Methods, Page 48, lines 14–16)

      How much is ghrelin/Ghsr1 signaling conserved in marmosets? 

      How ghrelin signaling is conserved between mice and common marmosets is important to clarify. A previous study reported the existence of a ghrelin homolog in common marmoset, which shares high sequence similarity with that in mice (Takemi et al., 2016). Moreover, the GHSR1a homolog in the common marmoset (https://www.ncbi.nlm.nih.gov/protein/380748978) shares 95.36% amino acid identity with its mouse counterpart. These findings suggest that blood-derived ghrelin may similarly promote neuronal migration in the marmoset brain, as observed in mice. 

      We have added the following text in the Discussion section:

      “Our data showed that new neurons preferentially migrate along arteriole-side vessels rather than venule-side vessels in both mouse and common marmoset brains, suggesting that the mechanism of blood flow-dependent neuronal migration is conserved across rodent and primate species, as well as across brain regions. A previous study identified a ghrelin homolog in the common marmoset with high sequence similarity to the murine version (Takemi et al., 2016). In addition, the marmoset GHSR1a homolog shares 95.36% amino acid identity with that of the mouse (https://www.ncbi.nlm.nih.gov/protein/380748978). These findings suggest that bloodderived ghrelin promotes neuronal migration in the common marmoset brain in a manner similar to that in mice.” (Discussion, Page 15, lines 8–16)

      Page 9. Starvation has been shown to boost ghrelin blood levels. What is the exact protocol used in this experiment and is this indeed increasing Ghrelin release from blood vessels in the V-SVZ? What about Ghsr1 expression level in newborn neurons? 

      We have clarified the calorie restriction (CR) protocol used in our experiments. We adopted a 70% CR protocol, which was previously shown to enhance hippocampal neurogenesis when administered for 14 days (Hornsby et al., 2016). In our study, the daily food intake under ad libitum (AL) conditions was first measured, and CR mice were then fed 70% of that amount for 5 consecutive days (see Figure 5I and Figure S10A). 

      To assess whether CR enhances ghrelin transcytosis into the brain parenchyma, we performed ELISA to quantify ghrelin levels in the OB and RMS. However, ghrelin concentrations were below the detection limit in both groups, precluding a direct comparison.

      We also considered whether CR modulates the expression level of the ghrelin receptor GHSR1a. A recent study reported that fasting increased GHSR1a expression in the OB (Stark et al., 2024), raising the possibility that CR may exert a similar effect. To test this, we performed in situ hybridization and quantified Ghsr1a mRNA puncta in Dcx+ cells in the OB. No significant difference was found between the AL and CR groups (Figure S5B), suggesting that CR does not alter GHSR1a expression levels in new neurons. 

      Although we cannot exclude the possibility that CR increases GHSR1a expression in other OB cell types, our combined CR and Ghsr1a-KD experiments strongly support a cellautonomous contribution of ghrelin signaling to the enhanced neuronal migration observed under CR conditions. Corresponding data and text have been added to Figure S5 and the Results, Discussion, and the Figure legend sections as follows:

      Minor 

      Page 4 

      Line 19 In Supplemental movies 1 and 2, it is unclear where to see the GFP+ new neurons interact with BV. Can you add arrows as an indication for the readers? It will be better to add the anatomy term for orientation, caudal, or rostral in the video. (The same for Supplemental movies 3, 4, and 5).  

      To clarify the regions of interest in Supplemental Movies 1 and 2, where neuron–vessel interactions in the RMS are highlighted, we added dotted lines indicating the RMS boundaries. In addition, we created a new movie (Supplemental Movie S1′) showing a high-magnification view of Supplemental Movie S1, in which arrows mark EGFP+ new neurons interacting with blood vessels. We also added orientation indicators (e.g., caudal and rostral) and arrows to highlight new neuron–vessel interactions in Supplemental Movies S1–S5. 

      The following descriptions have been added to the Figure legends:

      “Supplemental Movie S1′ 

      High-magnification view extracted from Supplemental Movie S1. Arrows indicate EGFP+ cells interacting with blood vessels.” (Figure legend, Page 46, lines 6–8)

      “Arrows indicate EGFP+ cells interacting with blood vessels.” (Figure legend, Supplemental Movie S3, Page 46, lines 16–17)

      “Arrows indicate Dcx+ cells interacting with blood vessels.” (Figure legend, Supplemental Movies S4 and S5, Page 46, lines 21–22, 26–27)

      Blood vessels are labeled in the Supplemental movies 2 and 3 by employing Flt1DsRed transgenic mice instead of RITC-Dex-GMA. However, Flt1-DsRed transgenic mice are not mentioned in the results section. 

      We have now included an explanation regarding the use of Flt1-DsRed mice, in which vascular endothelial cells were labeled with DsRed.

      “To visualize blood vessels, we also used Flt1-DsRed transgenic mice, in which vascular endothelial cells were specifically labeled with DsRed (Matsumoto et al., 2012). Using DcxEGFP/Flt1-DsRed double transgenic mice, we observed close spatial relationships between new neurons and blood vessels (Supplemental Movies S2 and S3).” (Results, Page 4, lines 22– 26)

      Figure 5. Can you indicate (in the figure legend and the result section) the stage of the adult brain used for this experiment? 

      We used 6- to 12-week-old adult male mice in all experiments in this study. To specify this, we have added the age of animals to both the Results and the relevant Figure legends as follows:

      “Therefore, we first studied blood vessel-guided neuronal migration in the RMS and OB using three-dimensional imaging in 6- to 12-week-old adult mice, which enabled analysis of the in vivo spatial relationship between new neurons and blood vessels.” (Results, Page 4, lines 14–16)

      “Figure 1 New neurons migrate along blood vessels with abundant flow in the adult brain.” (Figure legend, Page 25, line 4)

      “(B, C) Three-dimensional reconstructed images of a new neuron (green) and blood vessels (red) in the rostral migratory stream (RMS) (B) and glomerular layer (GL) (C) of 6- to 12-weekold adult mice.” (Figure legend, Page 25, lines 6–8)

      “(E) Transmission electron microscopy image of a new neuron (green) in close contact with a blood vessel (red) in the GL of a 6- to 12-week-old adult mouse.” (Figure legend, Page 26, lines 4–5)

      “(F) Time-lapse images of a migrating neuron (indicated by asterisks) in the GL of a 6- to 12week-old Dcx-EGFP mouse.” (Figure legend, Page 26, lines 6–7)

      “Figure 3 Ghrelin is delivered from the bloodstream to the RMS and OB in the adult brain (A) Representative images of the OB and cortex of a fluorescent ghrelin-infused mouse (6 to 12 weeks old).” (Figure legend, Page 30, lines 1–3)

      “Lentivirus injection into the OB core (A) and the VSVZ (D) was performed in 6- to 12-week-old adult mice.” (Figure legend, Page 33, lines 3–4)

      Reviewer #2 (Recommendations for author):

      Major:

      Ghsr1KD and blood flow 2-photon experiments to directly measure migratory speed. Could also do the same with fasting with or without Ghsr1KD.  

      We thank the reviewer for the valuable suggestion to strengthen our study. As pointed out in the Public Review, we agree that direct in vivo measurement of neuronal migration speed under Ghsr1a-KD conditions is important to clarify the link between ghrelin signaling and blood flow. 

      Two-photon imaging is the most suitable method for this purpose. Although we attempted two-photon imaging of Ghsr1a-KD new neurons, the number of virus-infected cells observed in vivo was too low to yield reliable data. Therefore, we chose an alternative strategy, combining Ghsr1a-KD with blood flow reduction using the BCAS model (Figure S9A), in which migration speed can be quantified based on the percentage of labeled cells reaching the OB. As stated in the Public Review response, BCAS significantly decreased the migration speed of Ghsr1a-KD new neurons (Figure S9B), indicating that Ghsr1a-KD does not abolish the influence of blood flow reduction. These findings suggest that ghrelin signaling is involved, but is not essential, for blood flow-dependent neuronal migration. 

      As suggested by the reviewer, direct observation of migration dynamics (e.g., somal translocation, leading process extension, stationary and migratory phases) is needed, especially in calorie restriction experiments. Although our data indicate that ghrelin signaling is required for fasting-induced increases in migration speed of new neurons, calorie restriction could also change concentrations of other factors in blood (Bonnet et al., 2020; Wu et al., 2024; Alogaiel et al., 2025), which may independently affect behavior of migrating neurons. Given that ghrelin is not the sole factor contributing to blood flow-dependent neuronal migration, other circulating factors could affect behavior of migrating neurons in a different manner during fasting. In vivo twophoton imaging would be a powerful approach to determine whether fasting-induced neuronal migration is caused by upregulated somal translocation speed, which would further support a role for ghrelin in this process.

      We have added the following text in the Discussion:

      “Although our data indicate that ghrelin signaling is essential for fasting-induced acceleration of neuronal migration, calorie restriction may also alter the concentrations of other circulating factors (Bonnet et al., 2020; Wu et al., 2024; Alogaiel et al., 2025), which could independently influence the behavior of migrating neurons.” (Discussion, Page 14, lines 25–29)

      Minor: 

      (1) Show fluorescent Ghreliin in Figure 3 for all brain areas measured in Figure 1 (GL, EPL, GCL, and RMS) for direct comparison.  

      To allow for direct comparison across brain regions, we added a new Supplemental figure showing the distribution of fluorescently labeled ghrelin in the OB, including the GL, EPL, GCL and RMS. This comprehensive view highlights ghrelin localization relative to vasculature and migrating neurons in the regions analyzed in Figure 1.

      (1) Figure 1, panel I is presented in a confusing manner. High blood flow points to 0 degrees, low blood flow to 180 degrees. It implies (unintentionally, I am sure) that low blood flow results in migration away from OB. Maybe plot separately?

      We agree that the original presentation of Figure 1I could be misinterpreted as referring to anatomical orientation (i.e., toward or away from the OB). To avoid confusion, we revised the figure to categorize new neuron–vessel interactions into four groups according to (1) the angle between the migration direction and vessel axis (small or large), and (2) whether the new neuron is migrating toward or away from the direction of higher blood flow. This new presentation avoids implying a fixed anatomical direction and better reflects the relationship between local blood flow and neuronal migration behavior. The revised figure is presented as Supplemental Figure S1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review): 

      Summary: 

      LRRK2 protein is familially linked to Parkinson's disease by the presence of several gene variants that all confer a gain-of-function effect on LRRK2 kinase activity. 

      The authors examine the effects of BDNF stimulation in immortalized neuron-like cells, cultured mouse primary neurons, hIPSC-derived neurons, and synaptosome preparations from the brain. They examine an LRRK2 regulatory phosphorylation residue, LRRK2 binding relationships, and measures of synaptic structure and function. 

      Strengths: 

      The study addresses an important research question: how does a PD-linked protein interact with other proteins, and contribute to responses to a well-characterized neuronal signalling pathway involved in the regulation of synaptic function and cell health? 

      They employ a range of good models and techniques to fairly convincingly demonstrate that BDNF stimulation alters LRRK2 phosphorylation and binding to many proteins. Some effects of BDNF stimulation appear impaired in (some of the) LRRK2 knock-out scenarios (but not all). A phosphoproteomic analysis of PD mutant Knock-in mouse brain synaptosomes is included. 

      We thank this Reviewer for pointing out the strengths of our work. 

      Weaknesses: 

      The data sets are disjointed, conclusions are sweeping, and not always in line with what the data is showing. Validation of 'omics' data is very light. Some inconsistencies with the major conclusions are ignored. Several of the assays employed (western blotting especially) are likely underpowered, findings key to their interpretation are addressed in only one or other of the several models employed, and supporting observations are lacking. 

      We appreciate the Reviewer’s overall evaluaVon. In this revised version, we have provided several novel results that strengthen the omics data and the mechanisVc experiments and make the conclusions in line with the data.

      As examples to aid reader interpretation: (a) pS935 LRRK2 seems to go up at 5 minutes but goes down below pre-stimulation levels after (at times when BDNF-induced phosphorylation of other known targets remains very high). This is ignored in favour of discussion/investigation of initial increases, and the fact that BDNF does many things (which might indirectly contribute to initial but unsustained changes to pLRRK2) is not addressed.  

      We thank the Reviewer for raising this important point, which we agree deserves additional investigation. Although phosphorylation does decrease below pre-stimulation levels, a reduction is also observed for ERK/AKT upon sustained exposure to BDNF in our experimental paradigm (figure 1F-G). This phenomenon is well known in response to a number of extracellular stimuli and can be explained by mechanisms related to cellular negative feedback regulation, receptor desensitization (e.g. phosphorylation or internalization), or cellular adaptation. The effect on pSer935, however, is peculiar as phosphorylation goes below the unstimulated level, as pointed by the reviewer. In contrast to ERK and AKT whose phosphorylation is almost absent under unstimulated conditions (Figure 1F-G), the stoichiometry of Ser935 phosphorylation under unstimulated conditions is high. This observation is consistent with MS determination of relative abundance of pSer935 (e.g. in whole brain LRRK2 is nearly 100% phosphorylated at Ser935, see Nirujogi et al., Biochem J 2021).  Thus we hypothesized that the modest increase in phosphorylation driven by BDNF likely reflects a saturation or ceiling effect, indicating that the phosphorylation level is already near its maximum under resting conditions. Prolonged BDNF stimulation would bring phosphorylation down below pre-stimulation levels, through negative feedback mechanisms (e.g. phosphatase activity) explained above. To test this hypothesis, we conducted an experiment in conditions where LRRK2 is pretreated for 90 minutes with MLi-2 inhibitor, to reduce basal phosphorylation of S935. After MLi-2 washout, we stimulated with BDNF at different time points. We used GFP-LRRK2 stable lines for this experiment, since the ceiling effect was particularly evident (Figure S1A) and this model has been used for the interactomic study. As shown below (and incorporated in Fig. S1B in the manuscript), LRRK2 responds robustly to BDNF stimulation both in terms of pSer935 and pRABs. Phosphorylation peaks at 5-15 mins, while it decreases to unstimulated levels at 60 and 180 minutes. Notably, while the peak of pSer935 at 5-15 mins is similar to the untreated condition (supporting that Ser935 is nearly saturated in unstimulated conditions), the phosphorylation of RABs during this time period exceeds unstimulated levels. These findings support the notion that, under basal conditions, RAB phosphorylation is far from saturation. The antibodies used to detect RAB phosphorylation are the following: RAB10 Abcam # ab230261 e RAB8 (pan RABs) Abcam # ab230260.

      Given the robust response of RAB10 phosphorylation upon BDNF stimulation, we further investigated RAB10 phosphorylation during BDNF stimulation in naïve SH-SY5Y cells. We confirmed that the increase in pSer935 is coupled to increase in pT73-RAB10. Also in this case, RAB10 phosphorylation does not go below the unstimulated level, which aligns with the  low pRAB10 stoichiometry in brain (Nirujogi et al., Biochem J 2021). This experiment adds the novel and exciting finding that BDNF stimulation increases LRRK2 kinase activity (RAB phosphorylation) in neuronal cells. 

      Note that new supplemental figure 1 now includes: A) a comparison of LRRK2 pS935 and total protein levels before and after RA differentiation; B) differentiated GFP-LRRK2 SH-SY5Y (unstimulated, BDNF, MLi-2, BDNF+MLi-2); C) the kinetic of BDNF response in differentiated GFP-LRRK2 SH-SY5Y.

      (b) Drebrin coIP itself looks like a very strong result, as does the increase after BDNF, but this was only demonstrated with a GFP over-expression construct despite several mouse and neuron models being employed elsewhere and available for copIP of endogenous LRRK2. Also, the coIP is only demonstrated in one direction. Similarly, the decrease in drebrin levels in mice is not assessed in the other model systems, coIP wasn't done, and mRNA transcripts are not quantified (even though others were). Drebrin phosphorylation state is not examined.  

      We appreciate the Reviewer suggestions and provided additional experimental evidence supporting the functional relevance of LRRK2-drebrin interaction.

      (1) As suggested, we performed qPCR and observed that 1 month-old KO midbrain and cortex express lower levels of Dbn1 as compared to WT brains (Figure 5G). This result is in agreement with the western blot data (Figure 5H). 

      (2)To further validate the physiological relevance of LRRK2-drebrin interaction we performed two experiments:

      i) Western blots looking at pSer935 and pRab8 (pan Rab) in Dbn1 WT and knockout brains. As reported and quantified in Figure 2I, we observed a significant decrease in pSer935 and a trend decrease in pRab8 in Dbn1 KO brains. This finding supports the notion that Drebrin forms a complex with LRRK2 that is important for its activity, e.g. upon BDNF stimulation. 

      ii) Reverse co-immunoprecipitation of YFP-drebrin full-length, N-terminal domain (1-256 aa) and C-terminal domain (256-649 aa) (plasmids kindly received from Professor Phillip R. Gordon-Weeks, Worth et al., J Cell Biol, 2013) with Flag-LRRK2 co-expressed in HEK293T cells. As shown in supplementary Fig. S2C, we confirm that YFP-drebrin binds LRRK2, with the Nterminal region of drebrin appearing to be the major contributor to this interaction. This result is important as the N-terminal region contains the ADF-H (actin-depolymerising factor homology) domain and a coil-coil region known to directly bind actin (Shirao et al., J Neurochem 2017; Koganezawa et al., Mol Cell Neurosci. 2017). Interestingly, both full-length Drebrin and its truncated C-terminal construct cause the same morphological changes in Factin, indicating that Drebrin-induced morphological changes in F-actin are mediated by its N-terminal domains rather than its intrinsically disordered C-terminal region (Shirao et al., J Neurochem, 2017; Koganezawa et al., Mol Cell Neurosci. 2017). Given the role of LRRK2 in actin-cytoskeletal dynamics and its binding with multiple actin-related protein binding (Fig. 2 and Meixner et al., Mol Cell Proteomics. 2011; Parisiadou and Cai, Commun Integr Biol 2010), these results suggest the possibility that LRRK2 controls actin dynamics by competing with drebrin binding to actin and open new avenues for futures studies.

      (3) To address the request for examining drebrin phosphorylation state, we decided to perform another phophoproteomic experiment, leveraging a parallel analysis incorporated in our latest manuscript (Chen et al., Mol Theraphy 2025). In this experiment, we isolated total striatal proteins from WT and G2019S KI mice and enriched the phospho-peptides. Unlike the experiment presented in Fig. 7, phosphopeptides were enriched from total striatal lysates rather than synaptosomal fractions, and phosphorylation levels were normalized to the corresponding total protein abundance. This approach was intended to avoid bias toward synaptic proteins, allowing for the analysis of a broader pool of proteins derived from a heterogeneous ensemble of cell types (neurons, glia, endothelial cells, pericytes etc.). We were pleased to find that this new experiment confirmed drebrin S339 as a differentially phosphorylated site, with a 3.7 fold higher abundance in G2019S Lrrk2 KI mice. The fact that this experiment evidenced an increased phosphorylation stoichiometry in G2019S mice rather than a decreased is likely due to the normalization of each peptide by its corresponding total protein. Gene ontology analysis of differentially phosphorylated proteins using stringent term size (<200 genes) showed post-synaptic spines and presynaptic active zones as enriched categories (Fig. 3F). A SynGO analysis confirms both pre and postsynaptic categories, with high significance for terms related to postsynaptic cytoskeleton (Fig. 3G). As pointed, this is particularly interesting as the starting material was whole striatal tissue – not synaptosomes as previously – indicating that most significant phosphorylation differences occur in synaptic compartments. This once again reinforces our hypothesis that LRRK2 has a prominent role in the synapse. Overall, we confirmed with an independent phosphoproteomic analysis that LRRK2 kinase activity influences the phosphorylation state of proteins related to synaptic function, particularly postsynaptic cytoskeleton. For clarity in data presentation, as mentioned by the Reviewers, we removed Figure 7 and incorporated this new analysis in figure 3, alongside the synaptic cluster analysis. 

      Altogether, three independent OMICs approaches – (i) experimental LRRK2 interactomics in neuronal cells, (ii) a literature-based LRRK2 synaptic/cytoskeletal interactor cluster, and (iii) a phospho-proteomic analysis of striatal proteins from G2019S KI mice (to model LRRK2 hyperactivity) – converge to synaptic actin-cytoskeleton as a key hub of LRRK2 neuronal function.

      (c) The large differences in the CRISPR KO cells in terms of BDNF responses are not seen in the primary neurons of KO mice, suggesting that other differences between the two might be responsible, rather than the lack of LRRK2 protein. 

      Considering that some variability is expected for these type of cultures and across different species, any difference in response magnitude and kinetics could be attributed to the levels of TrKB  and downstream components expressed by the two cell types. 

      We are confident that differentiated SH-SY5Y cells provide a reliable model for our study as we could translate the results obtained in SH-SY5Y cells in other models. However, to rule out the possibility that the more pronounced effect observed in SH-SY5Y KO cells as respect to Lrrk2 KO primary neurons was due to CRISPR off-target effect, we performed an off-target analysis. Specifically, we selected the first 8 putative off targets exhibiting a CDF (Cutting Frequency Determination) off-target-score >0.2. 

      As shown in supplemental file 1, sequence disruption was observed only in the LRRK2 ontarget site in LRRK2 KO SH-SY5Y cells, while the 8 off-target regions remained unchanged across the genotypes and relative to the reference sequence. 

      (d) No validation of hits in the G2019S mutant phosphoproteomics, and no other assays related to the rest of the paper/conclusions. Drebrin phosphorylation is different but unvalidated, or related to previous data sets beyond some discussion. The fact that LRRK2 binding occurs, and increases with BDNF stimulation, should be compared to its phosphorylation status and the effects of the G2019S mutation. 

      As illustrated in the response to point (b), we performed a new phosphoproteomics investigation – with total striatal lysates instead of striatal synaptosomes and normalization phospho-peptides over total proteins – and found that S339 phosphorylation increases when LRRK2 kinase activity increases (G2019S). To address the request of validating drebrin phosphorylation, the main limitation is that there are no available antibodies against Ser339. While we tried phos-Tag gels in striatal lysates, we could not detect any reliable and specific signal with the same drebrin antibody used for western blot (Thermo Fisher Scientific: MA120377) due to technical limitations of the phosTag method. We are confident that phosphorylation at S339 has a physiological relevance, as it was identified 67 times across multiple proteomic discovery studies and they are placed among the most frequently phosphorylated sites in drebrin (https://www.phosphosite.org/proteinAction.action?id=2675&showAllSites=true).

      To infer a possible role of this phosphorylation, we looked at the predicted pathogenicity of using AlphaMissense (Cheng et al., Science 2023). included as supplementary figure (Fig. S3), aminoacid substitutions within this site are predicted not to be pathogenic, also due to the low confidence of the AlphaFold structure. 

      Ser339 in human drebrin is located just before the proline-rich region (PP domain) of the protein. This region is situated between the actin-binding domains and the C-terminal Homerbinding sequences and plays a role in protein-protein interactions and cytoskeletal regulation (Worth et al., J Cell Biol, 2013). Of interest, this region was previously shown to be the interaction site of adafin (ADFN), a protein involved in multiple cytoskeletal-related processes, including synapse formation and function by regulating puncta adherentia junctions, presynaptic differentiation, and cadherin complex assembly, which are essential for hippocampal excitatory synapses, spine formation, and learning and memory processes (Beaudoin, G. M., 3rd et al., J Neurosci, 2013). Of note, adafin is in the list of LRRK2 interacting proteins (https://www.ebi.ac.uk/intact/home), supporting a possible functional relevance of LRRK2-mediated drebrin phosphorylation in adafin-drebrin complex formation. This has been discussed in the discussion section.

      The aim of this MS analysis in G2019S KI mice – now included in figure 3 – was to further validate the crucial role of LRRK2 kinase activity in the context of synaptic regulation, rather than to discover and characterize novel substrates. Consequently, Figure 7 has been eliminated. 

      Reviewer #2 (Public Review):  

      Taken as a whole, the data in the manuscript show that BDNF can regulate PD-associated kinase LRRK2 and that LRRK2 modifies the BDNF response. The chief strength is that the data provide a potential focal point for multiple observations across many labs. Since LRRK2 has emerged as a protein that is likely to be part of the pathology in both sporadic and LRRK2 PD, the findings will be of broad interest. At the same time, the data used to imply a causal throughline from BDNF to LRRK2 to synaptic function and actin cytoskeleton (as in the title) are mostly correlative and the presentation often extends beyond the data. This introduces unnecessary confusion. There are also many methodological details that are lacking or difficult to find. These issues can be addressed. 

      We appreciate the Reviewer’s positive feedback on our study. We also value the suggestion to present the data in a more streamlined and coherent way. In response, we have updated the title to better reflect our overall findings: “LRRK2 Regulates Synaptic Function through Modulation of Actin Cytoskeletal Dynamics.” Additionally, we have included several experiments that we believe enhance and unify the study.

      (1) The writing/interpretation gets ahead of the data in places and this was confusing. For example, the abstract highlights prior work showing that Ser935 LRRK2 phosphorylation changes LRRK2 localization, and Figure 1 shows that BDNF rapidly increases LRRK2 phosphorylation at this site. Subsequent figures highlight effects at synapses or with synaptic proteins. So is the assumption that LRRK2 is recruited to (or away from) synapses in response to BDNF? Figure 2H shows that LRRK2-drebrin interactions are enhanced in response to BDNF in retinoic acid-treated SH-SY5Y cells, but are synapses generated in these preps? How similar are these preps to the mouse and human cortical or mouse striatal neurons discussed in other parts of the paper (would it be anticipated that BDNF act similarly?) and how valid are SHSY5Y cells as a model for identifying synaptic proteins? Is drebrin localization to synapses (or its presence in synaptosomes) modified by BDNF treatment +/- LRRK2? Or do LRRK2 levels in synaptosomes change in response to BDNF? The presentation requires re-writing to stay within the constraints of the data or additional data should be added to more completely back up the logic. 

      We thank the Reviewer for the thorough suggestions and comments. We have extensively revised the text to accurately reflect our findings without overinterpreting. In particular, we agree with the Reviewer that differentiated SH-SY5Y cells are not  identical to primary mouse or human neurons; however both neuronal models respond to BDNF. Supporting our observations, it is known that SH-SY5Y cells respond to BDNF.  In fact, a common protocol for differentiating SH-SY5Y cells involve BDNF in combination with retinoic acid (Martin et al., Front Pharmacol, 2022; Kovalevich et al., Methods in mol bio, 2013). Additionally, it has been reported that SH-SY5Y cells can form functional synapses (Martin et al., Front Pharmacol, 2022). While we are aware that BDNF, drebrin or LRRK2 can also affect non-synaptic pathways, we focused on synapses when moved to mouse models since: (i) MS and phosphoMS identified several cytoskeletal proteins enriched at the synapse, (ii) we and others have previously reported a role for LRRK2 in governing synaptic and cytoskeletal related processes; (iii) the synapse is a critical site that becomes dysfunctional in the early  stages of PD. We have now clarified and adjusted the text as needed. We have also performed additional experiments to address the Reviewer’s concern:

      (1) “Is the assumption that LRRK2 is recruited to (or away from) synapses in response to BDNF”? This is a very important point. There is consensus in the field that detecting endogenous LRRK2 in brain slices or in primary neurons via immunofluorescence is very challenging with the commercially available  antibodies (Fernandez et al., J Parkinsons Dis, 2022). We established a method in our previous studies to detect LRRK2 biochemically in synaptosomes (Cirnaru et al., Front Mol Neurosci, 2014; Belluzzi et al., Mol Neurodegener., 2016). While these data indicate LRRK2 is present in the synaptic compartments, it would be quite challenging to apply this method to the present study. In fact, applying acute BDNF stimulation in vivo and then isolate synaptosomes is a complex experiment beyond the timeframe of the revision due to the need of mouse ethical approvals. However, this is definitely an intriguing angle to explore in the future.

      (2)“Is drebrin localization to synapses (or its presence in synaptosomes) modified by BDNF treatment +/- LRRK2?” To try and address this question, we adapted a previously published assay to measure drebrin exodus from dendritic spines. During calcium entry and LTP, drebrin exits dendritic spines and accumulates in the dendritic shafts and cell body (Koganezawa et al., 2017). This facilitates the reorganization of the actin cytoskeleton (Shirao et al., 2017). Given the known role of drebrin and its interaction with LRRK2, we hypothesized that LRRK2 loss might affect drebrin relocalization during spine maturation.

      To test this, we treated DIV14 primary cortical neurons from Lrrk2 WT and KO mice with BDNF for 5, 15, and 24 hours, then performed confocal imaging of drebrin localization (Author response image 1). Neurons were transfected at DIV4 with GFP (cell filler) and PSD95 (dendritic spines) for visualization, and endogenous drebrin was stained with an anti-drebrin antibody. We then measured drebrin's overlap with PSD95-positive puncta to track its localization at the spine.

      In Lrrk2 WT neurons, drebrin relocalized from spines after BDNF stimulation, peaking at 15 minutes and showing higher co-localization with PSD95 at 24 hours, indicating the spine remodeling occurred. In contrast, Lrrk2 KO neurons showed no drebrin exodus. These findings support the notion that LRRK2's interaction with drebrin is important for spine remodeling via BDNF. However, additional experiments with larger sample sizes are needed, which were not feasible within the revision timeframe (here n=2 experiments with independent neuronal preparations, n=4-7 neurons analyzed per experiment). Thus, we included the relevant figure as Author response image 1 but chose not to add it in the manuscript (figure 3).

      Author response image 1.

      Lrrk2 affects drebrin exodus from dendritic spines. After the exposure to BDNF for different times (5 minutes, 15 minutes and 24 hours), primary neurons from Lrrk2 WT and KO mice have been transfected with GFP and PSD95 and stained for endogenous drebrin at DIV4. The amount of drebrin localizing in dentritic spines outlined by PSD95 has been assessed at DIV14. The graph shows a pronounced decrease in drebrin content in WT neurons during short time treatments and an increase after 24 hours. KO neurons present no evident variations in drebrin localization upon BDNF stimulation. Scale bar: 4 μm.<br />

      (2) The experiments make use of multiple different kinds of preps. This makes it difficult at times to follow and interpret some of the experiments, and it would be of great benefit to more assertively insert "mouse" or "human" and cell type (cortical, glutamatergic, striatal, gabaergic) etc. 

      We thank the Reviewer for pointing this out. We have now more clearly specified the cell type and species identity throughout the text to improve clarity and interpretation.

      (3) Although BDNF induces quantitatively lower levels of ERK or Akt phosphorylation in LRRK2KO preps based on the graphs (Figure 4B, D), the western blot data in Figure 4C make clear that BDNF does not need LRRK2 to mediate either ERK or Akt activation in mouse cortical neurons and in 4A, ERK in SH-SY5Y cells. The presentation of the data in the results (and echoed in the discussion) writes of a "remarkably weaker response". The data in the blots demand more nuance. It seems that LRRK2 may potentiate a response to BDNF that in neurons is independent of LRRK2 kinase activity (as noted). This is more of a point of interpretation, but the words do not match the images.  

      We thank the Reviewer for pointing this out. We have rephrased our data  presentation to better convey  our findings. We were not surprised to find that loss of LRRK2 causes only a reduction of ERK and AKT activation upon BDNF rather than a complete loss. This is because these pathways are complex and redundant and are activated by a number of cellular effectors. The fact that LRRK2 is one among many players whose function can be compensated by other signaling molecules is also supported by the phenotype of Lrrk2 KO mice that is measurable at 1 month but disappears with adulthood (4 and 18 months) (figure 5).

      Moreover, we removed the sentence “Of note, 90 mins of Lrrk2 inhibition (MLi-2) prior to BDNF stimulation did not prevent phosphorylation of Akt and Erk1/2, suggesting that LRRK2 participates in BDNF-induced phosphorylation of Akt and Erk1/2 independently from its kinase activity but dependently from its ability to be phosphorylated at Ser935 (Fig. 4C-D and Fig. 1B-C)” since the MLi-2 treatment prior to BDNF stimulation was not quantified and our new data point to an involvement of LRRK2 kinase activity upon BDNF stimulation.

      (4) Figure 4F/G shows an increase in PSD95 puncta per unit length in response to BDNF in mouse cortical neurons. The data do not show spine induction/dendritic spine density/or spine morphogenesis as suggested in the accompanying text (page 8). Since the neurons are filled/express gfp, spine density could be added or spines having PSD95 puncta. However, the data as reported would be expected to reflect spine and shaft PSDs and could also include some nonsynaptic sites. 

      The Reviewer is right. We have rephrased the text to reflect an increase in postsynaptic density (PSD) sites, which may include both spine and shaft PSDs, as well as potential nonsynaptic sites.

      (5) Experimental details are missing that are needed to fully interpret the data. There are no electron microscopy methods outside of the figure legend. And for this and most other microscopy-based data, there are few to no descriptions of what cells/sites were sampled, how many sites were sampled, and how regions/cells were chosen. For some experiments (like Figure 5D), some detail is provided in the legend (20 segments from each mouse), but it is not clear how many neurons this represents, where in the striatum these neurons reside, etc. For confocal z-stacks, how thick are the optical sections and how thick is the stack? The methods suggest that data were analyzed as collapsed projections, but they cite Imaris, which usually uses volumes, so this is confusing. The guide (sgRNA) sequences that were used should be included. There is no mention of sex as a biological variable. 

      We thank the Reviewer for pointing out this missing information. We have now included:

      (1) EM methods (page 24)

      (2) Methods for ICC and confocal microscopy now incorporates the Z-stack thickness (0.5 μm x 6 = 3 μm) on page 23.

      (3) Methods for Golgi-Cox staining now incorporates the Z-stack thickness and number of neurons and segments per neuron analyzed. 

      (4) The sex of mice is mentioned in the material and methods (page 17): “Approximately equal numbers of males and females were used for every experiment”.

      (6) For Figures 1F, G, and E, how many experimental replicates are represented by blots that are shown? Graphs/statistics could be added to the supplement. For 1C and 1I, the ANOVA p-value should be added in the legend (in addition to the post hoc value provided). 

      The blots relative to figure 1F,G and E are representative of several blots (at least n=5). The same redouts are part of figure 4 where quantifications are provided. We added the ANOVA p-value in the legend for figure 1C, 1I and 1K.

      (7) Why choose 15 minutes of BDNF exposure for the mass spec experiments when the kinetics in Figure 1 show a peak at 5 mins?  

      This is an important point. We repeated the experiment in GFP-LRRK2 SH-SY5Y cells (figure S1C) and included the 15 min time point. In addition to confirming that pSer935 increases similarly at 5 and 15 minutes, we also observed an increase in RAB phosphorylation at these time points. As mentioned in our response to Reviewer’s 1, we pretreated with MLi-2 for 90 minutes in this experiment to reduce the high basal phosphorylation stoichiometry of pSer935. 

      (8) The schematic in Figure 6A suggests that iPSCs were plated, differentiated, and cultured until about day 70 when they were used for recordings. But the methods suggest they were differentiated and then cryopreserved at day 30, and then replated and cultured for 40 more days. Please clarify if day 70 reflects time after re-plating (30+70) or total time in culture (70). If the latter, please add some notes about re-differentiation, etc. 

      We thank the reviewer for providing further clarity on the iPSC methodology. In the submitted manuscript 70DIV represents the total time in vitro and the process involved a cryostorage event at 30DIV, with a thaw of the cells and a further 40 days of maturation before measurement.  We have adjusted the methods in both the text and figure (new schematic) to clarify this.  The cryopreservation step has been used in other iPSC methods to great effect (Drummond et al., Front Cell Dev Biol, 2020). Due to the complexity and length of the iPSC neuronal differentiation process, cryopreservation represents a useful method with which to shorten and enhance the ability to repeat experiments and reduce considerable variation between differentiations. User defined differences in culture conditions for each batch of neurons thawed can usefully be treated as a new and separate N compared to the next batch of neurons.

      (9) When Figures 6B and 6C are compared it appears that mEPSC frequency may increase earlier in the LRRK2KO preps than in the WT preps since the values appear to be similar to WT + BDNF. In this light, BDNF treatment may have reached a ceiling in the LRRK2KO neurons.

      We thank the reviewer for his/her comment and observations about the ceiling effects. It is indeed possible that the loss of LRRK2 and the application of BDNF could cause the same elevation in synaptic neurotransmission. In such a situation, the increased activity as a result of BDNF treatment would be masked by the increased activity  observed as a result of LRRK2 KO. To better visualize the difference between WT and KO cultures and the possible ceiling effect, we merged the data in one single graph.  

      (10) Schematic data in Figures 5A and C and Figures 5B and E are too small to read/see the data. 

      We thank the Reviewer for this suggestion. We have now enlarged figure 5A and moved the graph of figure 5D in supplemental figure S5, since this analysis of spine morphology is secondary to the one shown in figure 5C.

      Reviewer #1 (Recommendations For The Authors): 

      Please forgive any redundancy in the comments, I wanted to provide the authors with as much information as I had to explain my opinion. 

      Primary mouse cortical neurons at div14, 20% transient increase in S935 pLRRK2 5min after BDNF, which then declines by 30 minutes (below pre-stim levels, and maybe LRRK2 protein levels do also). 

      In differentiated SHSY5Y cells there is a large expected increase in pERK and pAKT that is sustained way above pre-stim for 60 minutes. There is a 50% initial increase in pLRRK2 (but the blot is not very clear and no double band in these cells), which then looks like reduced well below pre-stim by 30 & 60 minutes. 

      We thank the Reviewer for bring up this important point. We have extensively addressed this issue in the public review rebuttal. In essence, the phosphorylation of Ser935 is near saturation under unstimulated conditions, as evidenced by its high basal stoichiometry, whereas Rab phosphorylation is far from saturation, showing an increase upon BDNF stimulation before returning to baseline levels. This distinction highlights that while pSer935 exhibits a ceiling effect due to its near-maximal phosphorylation at rest, pRab responds dynamically to BDNF, indicating low basal phosphorylation and a significant capacity for increase. Figure 1 in the rebuttal summarizes the new data collected. 

      GFP-fused overexpressed LRRK2 coIPs with drebrin, and this is double following 15 min BDNF. Strong result.

      We thank the Reviewer.

      BDNF-induced pAKT signaling is greatly impaired, and pERK is somewhat impaired, in CRISPR LKO SHSY5Y cells. In mouse primaries, both AKT and Erk phosph is robustly increased and sustained over 60 minutes in WT and LKO. This might be initially less in LKO for Akt (hard to argue on a WB n of 3 with huge WT variability), regardless they are all roughly the same by 60 minutes and even look higher in LKO at 60. This seems like a big disconnect and suggests the impairment in the SHSy5Y cells might have more to do with the CRISPR process than the LRRK2. Were the cells sequenced for off-target CRISPR-induced modifications?  

      Following the Reviewer suggestion – and as discussed in the public review section - we performed an off-target analysis. Specifically, we selected the first 8 putative off targets exhibiting a CDF (Cutting Frequency Determination) off-target-score >0.2. As shown in supplemental file 1, sequence disruption was observed only in the LRRK2 on-target site in LRRK2 KO SH-SY5Y cells, while the 8 off-target regions remained unchanged across the genotypes and relative to the reference sequence.  

      No difference in the density of large PSD-95 puncta in dendrites of LKO primary relative to WT, and the small (10%) increase seen in WT after BDNF might be absent in LKO (it is not clear to me that this is absent in every culture rep, and the data is not highly convincing). This is also referred to as spinogenesis, which has not been quantified. Why not is confusing as they did use a GFP fill... 

      The Reviewer is right that spinogenesis is not the appropriate term for the process analyzed. We replaced “spinogenesis” with “morphological alternation of dendritic protrusions” or “synapse maturation” which is correlated with the number of PSD95 positive puncta (ElHusseini et al., Science, 2000) . 

      There is a difference in the percentage of dendritic protrusions classified as filopodia to more being classified as thin spines in LKO striatal neurons at 1 month, which is not seen at any other age, The WT filopodia seems to drop and thin spine percent rise to be similar to LKO at 4 months. This is taken as evidence for delayed maturation in LKO, but the data suggest the opposite. These authors previously published decreased spine and increased filopodia density at P15 in LKO. Now they show that filopodia density is decreased and thin spine density increased at one month. How is that shift from increased to decreased filopodia density in LKO (faster than WT from a larger initial point) evidence of impaired maturation? Again this seems accelerated? 

      We agree with the Reviewer that the initial interpretation was indeed confusing. To adhere closely to our data and avoid overinterpretation – as also suggested by Reviewer 2 – we revised  the text and moved figure 5D to supplementary materials. In essence, our data point out to alterations in the structural properties of dendritic protrusions in young KO mice, specifically a reduction in  their size (head width and neck height) and a decrease in postsynaptic density (PSD) length, as observed with TEM. These findings suggest that LRRK2 is involved in morphological processes during spine development. 

      Shank3 and PSD95 mRNA transcript levels were reduced in the LKO midbrain, only shank3 was reduced in the striatum and only PSD was reduced in the cortex. No changes to mRNA of BDNF-related transcripts. None of these mRNA changes protein-validated. Drebrin protein (where is drebrin mRNA?) levels are reduced in LKO at 1&4 but not clearly at 18 months (seems the most robust result but doesn't correlate with other measures, which here is basically a transient increase (1m) in thin striatal spines).  

      As illustrated before, we performed qPCR for Dbn1 and found that its expression is significantly reduced in the cortex and midbrain and non-significantly reduced in the striatum (1 months old mice, a different cohort as those used for the other analysis in figure 5).  

      24h BDNF increases the frequency of mEPSCs on hIPSC-derived cortical-like neurons, but not LKO, which is already high. There are no details of synapse number or anything for these cultures and compares 24h treatment. BDNF increases mEPSC frequency within minutes PMC3397209, and acute application while recording on cells may be much more informative (effects of BDNF directly, and no issues with cell-cell / culture variability). Calling mEPSC "spontaneous electrical activity" is not standard.  

      We thank the reviewer for this point. We provided information about synapse number (Bassoon/Homer colocalization) in supplementary figure S7. The lack of response of LRRK2 KO cultures in terms of mEPSC is likely due to increase release probability as the number of synapses does not change between the two genotypes. 

      The pattern of LRRK2 activation is very disconnected from that of BDNF signalling onto other kinases. Regarding pLRRK2, s935 is a non-autophosph site said to be required for LRRK2 enzymatic activity, that is mostly used in the field as a readout of successful LRRK2 inhibition, with some evidence that this site regulates LRRK2 subcellular localization (which might be more to do with whether or not it is p at 935 and therefor able to act as a kinase). 

      The authors imply BDNF is activating LRRK2, but really should have looked at other sites, such as the autophospho site 1292 and 'known' LRRK2 substrates like T73 pRab10 (or other e.g., pRab12) as evidence of LRRK2 activation. One can easily argue that the initial increase in pLRRK2 at this site is less consequential than the observation that BDNF silences LRRK2 activity based on p935 being sustained to being reduced after 5 minutes, and well below the prestim levels... not that BDNF activates LRRK2. 

      As described above, we have collected new data showing that BDNF stimulation increases LRRK2 kinase activity toward its physiological substrates Rab10 and Rab8 (using a panphospho-Rab antibody) (Figure 1 and Figure S1). Additionally, we have also extensively commented the ceiling effect of pS935.

      BDNF does a LOT. What happens to network activity in the neural cultures with BDNF application? Should go up immediately. Would increasing neural activity (i.e., through depolarization, forskolin, disinhibition, or something else without BDNF) give a similar 20% increase in pS935 LRRK2? Can this be additive, or occluded? This would have major implications for the conclusions that BDNF and pLRRK2 are tightly linked (as the title suggests).  

      These are very valuable observations; however, they fall outside the scope and timeframe of this study. We agree that future research should focus on gaining a deeper mechanistic understanding of how LRRK2 regulates synaptic activity, including vesicle release probability and postsynaptic spine maturation, independently of BDNF.

      Figures 1A & H "Western blot analysis revealed a rapid (5 mins) and transient increase of Ser935 phosphorylation after BDNF treatment (Fig. 1B and 1C). Of interest, BDNF failed to stimulate Ser935 phosphorylation when neurons were pretreated with the LRRK2 inhibitor MLi-2" . The first thing that stands out is that the pLRRK2 in WB is not very clear at all (although we appreciate it is 'a pig' to work with, I'd hope some replicates are clearer); besides that, the 20% increase only at 5min post-BDNF stimulation seems like a much less profound change than the reduction from base at 60 and more at 180 minutes (where total LRRK2 protein is also going down?). That the blot at 60 minutes in H is representative of a 30% reduction seems off... makes me wonder about the background subtraction in quantification (for this there is much less pLRRK2 and more total LRRK2 than at 0 or 5). LRRK2 (especially) and pLRRK2 seem very sketchy in H. Also, total LRRK2 appears to increase in the SHSY5Y cell not the neurons, and this seems even clearer in 2 H. 

      To better visualize the dynamics of pS935 variation relative to time=0, we presented the data as the difference between t=0 and t=x. It clearly shows that pSe935 goes below prestimulation levels, whereas pRab10 does not. The large difference in the initial stoichiometry of these two phosphorylation is extensively discussed above.

      That MLi2 eliminates pLRRK2 (and seems to reduce LRRK2 protein?) isn't surprising, but a 90min pretreatment with MLi-2 should be compared to MLi-2's vehicle alone (MLi-2 is notoriously insoluble and the majority of diluents have bioactive effects like changing activity)... especially if concluding increased pLRRK2 in response to BDNF is a crucial point (when comparing against effects on other protein modifications such as pAKT). This highlights a second point... the changes to pERK and pAKT are huge following BDNF (nothing to massive quantities), whereas pLRRK2 increases are 20-50% at best. This suggests a very modest effect of BDNF on LRRK in neurons, compared to the other kinases. I worry this might be less consequential than claimed. Change in S1 is also unlikely to be significant... 

      These comments have been thoroughly addressed in the previous responses. Regarding fig. S1, we added an additional experiment (Figure S1C) in GFP-LRRK2 cells showing robust activation of LRRK2 (pS935, pRabs) at the timepoint of MS (15 min).

      "As the yields of endogenous LRRK2 purification were insufficient for AP-MS/MS analysis, we generated polyclonal SH-SY5Y cells stably expressing GFP-LRRK2 wild-type or GFP control (Supplementary Fig. 1)" . I am concerned that much is being assumed regarding 'synaptic function' from SHSY5Y cells... also overexpressing GFP-LRRK2 and looking at its binding after BDNF isn't synaptic function.  

      We appreciate the reviewer’s comment. We would like to clarify that the interactors enriched upon BDNF stimulation predominantly fall into semantic categories related to the synapse and actin cytoskeleton. While this does not imply that these interactors are exclusively synaptic, it suggests that this tightly interconnected network likely plays a role in synaptic function. This interpretation is supported by several lines of evidence: (1) previous studies have demonstrated the relevance of this compartment to LRRK2 function; (2) our new phosphoproteomics data from striatal lysate highlight enrichment of synaptic categories; and (3) analysis of the latest GWAS gene list (134 genes) also indicates significant enrichment of synapse-related categories. Taken together, these findings justify further investigation into the role of LRRK2 in synaptic biology, as discussed extensively in the manuscript’s discussion section.

      Figure 2A isn't alluded to in text and supplemental table 1 isn't about LRRK2 binding, but mEPSCs. 

      We have added Figure 2A and added supplementary .xls table 1, which refers to the excel list of genes with modulated interaction upon BDNF (uploaded in the supplemental material).

      We added the extension .xls also for supplementary table 2 and 3. 

      Figure 2A is useless without some hits being named, and the donut plots in B add nothing beyond a statement that "35% of 'genes' (shouldn't this be proteins?) among the total 207 LRRK2 interactors were SynGO annotated" might as well [just] be the sentence in the text. 

      We have now included the names of the most significant hits, including cytoskeletal and translation-related proteins, as well as known LRRK2 interactors. We decided to retain the donut plots, as we believe they simplify data interpretation for the reader, reducing the need to jump back and forth between the figures and the text.

      Validation of drebrin binding in 2H is great... although only one of 8 named hits; could be increased to include some of the others. A concern alludes to my previous point... there is no appreciable LRRK2 in these cells until GFP-LRRK2 is overexpressed; is this addressed in the MS? Conclusions would be much stronger if bidirectional coIP of these binding candidates were shown with endogenous (GFP-ve) LRRK2 (primaries or hIPSCs, brain tissue?) 

      To address the Reviewer’s concerns to the best of our abilities, we have added a blot in Supplemental figure S1A showing how the expression levels of LRRK2 increase after RA differentiation. Moreover, we have included several new data further strengthening the functional link between LRRK2 and drebrin, including qPCR of Dbn1 in one-month old Lrrk2 KO brains, western blots of Lrrk2 and Rab in Dbn1 KO brains, and co-IP with drebrin N- and Cterm domains. 

      Figures 3 A-C are not informative beyond the text and D could be useful if proteins were annotated. 

      To avoid overcrowding, proteins were annotated in A and the same network structure reported for synaptic and actin-related interactors. 

      Figure 4. Is this now endogenous LRRK2 in the SHSY5Y cells? Again not much LRRK2 though, and no pLRRK shown. 

      We confirm that these are naïve SH-SY5Y cells differentiated with RA and LRRK2 is endogenous. We did not assess pS935 in this experiment, as the primary goal was to evaluate pAKT and pERK1/2 levels. To avoid signal saturation, we loaded less total protein (30 µg instead of the 80 µg typically required to detect pS935). pS935 levels were extensively assessed in Figure 1. This experimental detail has now been added in the material and methods section (page 18).

      In C (primary neurons) There is very little increase in pLRRK2 / LRRK2 at 5 mins, and any is much less profound a change than the reduction at 30 & 60 mins. I think this is interesting and may be a more substantial consequence of BDNF treatment than the small early increase. Any 5 min increase is gone by 30 and pLRRK2 is reduced after. This is a disconnect from the timing of all the other pProteins in this assay, yet pLRRK2 is supposed to be regulating the 'synaptic effects'? 

      The first part of the question has already been extensively addressed. Regarding the timing, one possibility is that LRRK2 is activated upstream of AKT and ERK1/2, a hypothesis supported by the reduced activation of AKT and ERK1/2 observed in LRRK2 KO cells, as discussed in the manuscript, and in MLi-2 treated cells (Author response image 2). Concerning the synaptic effects, it is well established that synaptic structural and functional plasticity occurs downstream of receptor activation and kinase signaling cascades. These changes can be mediated by both rapid mechanisms (e.g., mobilization of receptor-containing endosomes via the actin cytoskeleton) and slower processes involving gene transcription of immediate early genes (IEGs). Since structural and functional changes at the synapse generally manifest several hours after stimulation, we typically assessed synaptic activity and structure 24 hours post-stimulation.

      Akt Erk1&2 both go up rapidly after BDNF in WT, although Akt seems to come down with pLRRK2. If they aren't all the same Akt is probably the most different between LKO and WT but I am very concerned about an n=3 for wb, wb is semi-quantitative at best, and many more than three replicates should be assessed, especially if the argument is that the increases are quantitively different between WT v KO (huge variability in WT makes me think if this were done 10x it would all look same). Moreover, this isn't similar to the LKO primaries  "pulled pups" pooled presumably. 

      Despite some variability in the magnitude of the pAKT/pERK response in naïve SH-SY5Y cells, all three independent replicates consistently showed a reduced response in LRRK2 KO cells, yielding a highly significant result in the two-way ANOVA test. In contrast, the difference in response magnitude between WT and LRRK2 KO primary cultures was less pronounced, which justified repeating the experiments with n=9 replicates. We hope the Reviewer acknowledges the inherent variability often observed in western blot experiments, particularly when performed in a fully independent manner (different cultures and stimulations, independent blots).

      To further strengthen the conclusion that this effect is reproducible and dependent on LRRK2 kinase activity upstream of AKT and ERK, we probed the membranes in figure 1H with pAKT/total AKT and pERK/total ERK. All things considered and consistent with our hypothesis, MLi-2 significantly reduced BDNF-mediated AKT and ERK1/2 phosphorylation levels (Author response image 2). 

      Author response image 2.

      Western blot (same experiments as in figure 1) was performed using antibodies against phospho-Thr202/185 ERK1/2, total ERK1/2 and phospho-Ser473 AKT, total AKT protein levels Retinoic acid-differentiated SH-SY5Y cells stimulated with 100 ng/mL BDNF for 0, 5, 30, 60 mins. MLi-2 was used at 500 nM for 90 mins to inhibit LRRK2 kinase activity.

      G lack of KO effect seems to be skewed from one culture in the plot (grey). The scatter makes it hard to read, perhaps display the culture mean +/- BDNF with paired bars. The fact that one replicate may be changing things is suggested by the weirdly significant treatment effect and no genotype effect. Also, these are GFP-filled cells, the dendritic masks should be shown/explained, and I'm very surprised no one counted the number (or type?) of protrusions, especially as the text describes this assay (incorrectly) as spinogenesis... 

      As suggested by the Reviewer we have replotted the results as bar graphs. Regarding the number of protrusions, we initially counted the number of GFP+ puncta in the WT and did not find any difference (Author response image 3). Due to our imaging setup (confocal microscopy rather than super-resolution imaging and Imaris 3D reconstruction), we were unable to perform a fine morphometric analysis. However, this was not entirely unexpected, as BDNF is known to promote both the formation and maturation of dendritic spines. Therefore, we focused on quantifying PSD95+ puncta as a readout of mature postsynaptic compartments. While we acknowledge that we cannot definitively conclude that each PSD95+ punctum is synaptically connected to a presynaptic terminal, the data do indicate an increase in the number of PSD95+ structures following BDNF stimulation.

      Author response image 3.

      GFP+ puncta per unit of neurite length (µm) in DIV14 WT primary neurons untreated or upon 24 hour of BDNF treatment (100 ng/ml). No significant difference were observed (n=3).

      Figure 5. "Dendritic spine maturation is delayed in Lrrk2 knockout mice". The only significant change is at 1 month in KO which shows fewer filopodia and increased thin spines (50% vs wt). At 4 months the % of thin spines is increased to 60% in both... Filopodia also look like 4m in KO at 1m... How is that evidence for delayed maturation? If anything it suggests the KO spines are maturing faster. "the average neck height was 15% shorter and the average head width was 27% smaller, meaning that spines are smaller in Lrrk2 KO brains" - it seems odd to say this before saying that actually there are just MORE thin spines, the number of mature "mushroom' is same throughout, and the different percentage of thin comes from fewer filopodia. This central argument that maturation is delayed is not supported and could be backwards, at least according to this data. Similarly, the average PSD length is likely impacted by a preponderance of thin spines in KO... which if mature were fewer would make sense to say delayed KO maturation, but this isn't the case, it is the fewer filopodia (with no PSD) that change the numbers. See previous comments of the preceding manuscript. 

      We agree that thin spines, while often considered more immature, represent an intermediate stage in spine development. The data showing an increase in thin spines at 1 month in the KO mice, along with fewer filopodia, could suggest a faster stabilization of these spines, which might indeed be indicative of premature maturation rather than delayed maturation. This change in spine morphology may indicate that the dynamics of synaptic plasticity are affected. Regarding the PSD length, as the Reviewer pointed out, the increased presence of thin spines in KO might account for the observed changes in PSD measurements, as thin spines typically have smaller PSDs. This further reinforces the idea that the overall maturation process may be altered in the KO, but not necessarily delayed. 

      We rephrase the interpretation of these data, and moved figure 5D as supplemental figure S4.

      "To establish whether loss of Lrrk2 in young mice causes a reduction in dendritic spines size by influencing BDNF-TrkB expression" - there is no evidence of this.  

      We agree and reorganized the text, removing this sentence.  

      Shank and PSD95 mRNA changes being shown without protein adds very little. Why is drebrin RNA not shown? Also should be several housekeeping RNAs, not one (RPL27)? 

      We measured Dbn1 mRNA, which shows a significant reduction in midbrain and cortex. Moreover we have now normalized the transcript levels against the geometrical means of three housekeeping genes (RPL27, actin, and GAPDH) relative abundance.

      Drebrin levels being lower in KO seems to be the strongest result of the paper so far (shame no pLRRK2 or coIP of drebrin to back up the argument). DrebrinA KO mice have normal spines, what about haploinsufficient drebrin mice (LKO seem to have half derbrin, but only as youngsters?)  

      As extensively explained in the public review, we used Dbn1 KO mouse brains and were able to show reduced Lrrk2 activity.

      Figure 6. hIPSC-derived cortical neurons. The WT 'cortical' neurons have a very low mEPSC frequency at 0.2Hz relative to KO. Is this because they are more or less mature? What is the EPSC frequency of these cells at 30 and 90 days for comparison? Also, it is very very hard to infer anything about mEPSC frequency in the absence of estimates of cell number and more importantly synapse number. Furthermore, where are the details of cell measures such as capacitance, resistance, and quality control e.g., Ra? Table s1 seems redundant here, besides suggesting that the amplitude is higher in KO at base. 

      We agree that the developmental trajectory of iPSC-derived neurons is critical to accurately interpreting synaptic function and plasticity. In response, we have included additional data now presented in the supplementary figure S7 and summarize key findings below:

      At DIV50, both WT and LRRK2 KO neurons exhibit low basal mEPSC activity (~0.5 Hz) and no response to 24 h BDNF stimulation (50 ng/mL).

      At DIV70 WT neurons show very low basal activity (~0.2 Hz), which increases ~7.5-fold upon BDNF treatment (1.5 Hz; p < 0.001), and no change in synapse number. KO neurons display elevated basal activity (~1 Hz) similar to BDNF-treated WT neurons, with no further increase upon BDNF exposure (~1.3 Hz) and no change in synapse number.

      At DIV90, no significant effect of BDNF in both WT and KO, indicating a possible saturation of plastic responses. The lack of BDNF response at DIV90 may be due to endogenous BDNF production or culture-based saturation effects. While these factors warrant further investigation (e.g., ELISA, co-culture systems), they do not confound the key conclusions regarding the role of LRRK2 in synaptic development and plasticity:

      LRRK2 Enables BDNF-Responsive Synaptic Plasticity. In WT neurons, BDNF induces a significant increase in neurotransmitter release (mEPSC frequency) with no reduction in synapse number. This dissociation suggests BDNF promotes presynaptic functional potentiation. KO neurons fail to show changes in either synaptic function or structure in response to BDNF, indicating that LRRK2 is required for activity-dependent remodeling.

      LRRK2 Loss Accelerates Synaptic Maturation. At DIV70, KO neurons already exhibit high spontaneous synaptic activity equivalent to BDNF-stimulated WT neurons. This suggests that LRRK2 may act to suppress premature maturation and temporally gate BDNF responsiveness, aligning with the differences in maturation dynamics observed in KO mice (Figure 5).  

      As suggested by the reviewer we reported the measurement of resistance and capacitance for all DIV (Table 1, supplemental material). A reduction in capacitance was observed in WT neurons at DIV90, which may reflect changes in membrane complexity. However, this did not correlate with differences in synapse number and is unlikely to account for the observed differences in mEPSC frequency. To control for cell number between groups, cell count prior to plating was performed (80k/cm2; see also methods) on the non-dividing cells to keep cell number consistent.

      The presence of BDNF in WT seems to make them look like LKO, in the rest of the paper the suggestion is that the LKO lack a response to BDNF. Here it looks like it could be that BDNF signalling is saturated in LKO, or they are just very different at base and lack a response.

      Knowing which is important to the conclusions, and acute application (recording and BDNF wash-in) would be much more convincing.

      We agree with the Reviewer’s point that saturation of BDNF could influence the interpretation of the data if it were to occur. However, it is important to note that no BDNF exists in the media in base control and KO neuronal culture conditions. This is  different from other culture conditions and allows us to investigate the effects of  BDNF treatment. Thus, the increased mEPSC frequency observed in KO neurons compared to WT neurons is defined only by the deletion of the gene and not by other extrinsic factors which were kept consistent between the groups. The lack of response or change in mEPSC frequency in KO is proposed to be a compensatory mechanism due to the loss of LRRK2. Of Note, LRRK2 as a “synaptic break” has already been described (Beccano-Kelly et al., Hum Mol Gen, 2015). However, a comprehensive analysis of the underlying molecular mechanisms will  require future studies beyond  with the scope of this paper.

      "The LRRK2 kinase substrates Rabs are not present in the list of significant phosphopeptides, likely due to the low stoichiometry and/or abundance" Likely due to the fact mass spec does not get anywhere near everything. 

      We removed this sentence in light of the new phosphoproteomic analysis.

      Figure 7 is pretty stand-alone, and not validated in any way, hard to justify its inclusion?  

      As extensively explained we removed figure 7 and included the new phospho-MS as part of figure. 3

      Writing throughout shows a very selective and shallow use of the literature.  

      We extensively reviewed the citations.

      "while Lrrk1 transcript in this region is relatively stable during development" The authors reference a very old paper that barely shows any LRRK1 mRNA, and no protein. Others have shown that LRRK1 is essentially not present postnatally PMC2233633. This isn't even an argument the authors need to make. 

      We thank the reviewer and included this more appropriate citation. 

      Reviewer #2 (Recommendations For The Authors): 

      Cyfip1 (Fig 3A) is part of the WAVE complex (page 13). 

      We thank the reviewer and specified it.

      The discussion could be more focused. 

      We extensively revised the discussion to keep it more focused.

      Note that we updated the GO ontology analyses to reflect the updated information present in g:Profiler.

      References.

      Nirujogi, R. S., Tonelli, F., Taylor, M., Lis, P., Zimprich, A., Sammler, E., & Alessi, D. R. (2021). Development of a multiplexed targeted mass spectrometry assay for LRRK2phosphorylated Rabs and Ser910/Ser935 biomarker sites. The Biochemical journal, 478(2), 299–326. https://doi.org/10.1042/BCJ20200930

      Worth, D. C., Daly, C. N., Geraldo, S., Oozeer, F., & Gordon-Weeks, P. R. (2013). Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. The Journal of cell biology, 202(5), 793–806. https://doi.org/10.1083/jcb.201303005

      Shirao, T., Hanamura, K., Koganezawa, N., Ishizuka, Y., Yamazaki, H., & Sekino, Y. (2017). The role of drebrin in neurons. Journal of neurochemistry, 141(6), 819–834. https://doi.org/10.1111/jnc.13988

      Koganezawa, N., Hanamura, K., Sekino, Y., & Shirao, T. (2017). The role of drebrin in dendritic spines. Molecular and cellular neurosciences, 84, 85–92. https://doi.org/10.1016/j.mcn.2017.01.004

      Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., Gloeckner, C. J., Bauer, M., Marto, J. A., Ampe, C., Kinkl, N., & Ueffing, M. (2011). A QUICK screen for Lrrk2 interaction partners--leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Molecular & cellular proteomics: MCP, 10(1), M110.001172. https://doi.org/10.1074/mcp.M110.001172

      Parisiadou, L., & Cai, H. (2010). LRRK2 function on actin and microtubule dynamics in Parkinson disease. Communicative & integrative biology, 3(5), 396–400. https://doi.org/10.4161/cib.3.5.12286

      Chen, C., Masotti, M., Shepard, N., Promes, V., Tombesi, G., Arango, D., Manzoni, C., Greggio, E., Hilfiker, S., Kozorovitskiy, Y., & Parisiadou, L. (2024). LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. bioRxiv : the preprint server for biology, 2024.06.06.597594. https://doi.org/10.1101/2024.06.06.597594

      Cheng, J., Novati, G., Pan, J., Bycroft, C., Žemgulytė, A., Applebaum, T., Pritzel, A.,Wong, L. H., Zielinski, M., Sargeant, T., Schneider, R. G., Senior, A. W., Jumper, J., Hassabis, D., Kohli, P., & Avsec, Ž. (2023). Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science (New York, N.Y.), 381(6664), eadg7492. https://doi.org/10.1126/science.adg7492

      Beaudoin, G. M., 3rd, Schofield, C. M., Nuwal, T., Zang, K., Ullian, E. M., Huang, B., & Reichardt, L. F. (2012). Afadin, a Ras/Rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(1), 99–110. https://doi.org/10.1523/JNEUROSCI.4565-11.2012

      Fernández, B., Chittoor-Vinod, V. G., Kluss, J. H., Kelly, K., Bryant, N., Nguyen, A. P. T., Bukhari, S. A., Smith, N., Lara Ordóñez, A. J., Fdez, E., Chartier-Harlin, M. C., Montine, T. J., Wilson, M. A., Moore, D. J., West, A. B., Cookson, M. R., Nichols, R. J., & Hilfiker, S. (2022). Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's disease, 12(5), 1423–1447. https://doi.org/10.3233/JPD-213128

      Cirnaru, M. D., Marte, A., Belluzzi, E., Russo, I., Gabrielli, M., Longo, F., Arcuri, L., Murru, L., Bubacco, L., Matteoli, M., Fedele, E., Sala, C., Passafaro, M., Morari, M., Greggio, E., Onofri, F., & Piccoli, G. (2014). LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macromolecular complex. Frontiers in molecular neuroscience, 7, 49. https://doi.org/10.3389/fnmol.2014.00049

      Belluzzi, E., Gonnelli, A., Cirnaru, M. D., Marte, A., Plotegher, N., Russo, I., Civiero, L., Cogo, S., Carrion, M. P., Franchin, C., Arrigoni, G., Beltramini, M., Bubacco, L., Onofri, F., Piccoli, G., & Greggio, E. (2016). LRRK2 phosphorylates pre-synaptic Nethylmaleimide sensitive fusion (NSF) protein enhancing its ATPase activity and SNARE complex disassembling rate. Molecular neurodegeneration, 11, 1. https://doi.org/10.1186/s13024-015-0066-z

      Martin, E. R., Gandawijaya, J., & Oguro-Ando, A. (2022). A novel method for generating glutamatergic SH-SY5Y neuron-like cells utilizing B-27 supplement. Frontiers in pharmacology, 13, 943627. https://doi.org/10.3389/fphar.2022.943627

      Kovalevich, J., & Langford, D. (2013). Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods in molecular biology (Clifton, N.J.), 1078, 9–21. https://doi.org/10.1007/978-1-62703-640-5_2

      Drummond, N. J., Singh Dolt, K., Canham, M. A., Kilbride, P., Morris, G. J., & Kunath, T. (2020). Cryopreservation of Human Midbrain Dopaminergic Neural Progenitor Cells Poised for Neuronal Differentiation. Frontiers in cell and developmental biology, 8, 578907. https://doi.org/10.3389/fcell.2020.578907

      Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., & Greenberg, M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 20(4), 709–726. https://doi.org/10.1016/s0896-6273(00)810107

      El-Husseini, A. E., Schnell, E., Chetkovich, D. M., Nicoll, R. A., & Bredt, D. S. (2000). PSD95 involvement in maturation of excitatory synapses. Science (New York, N.Y.), 290(5495), 1364–1368.

      Glebov OO, Cox S, Humphreys L, Burrone J. Neuronal activity controls transsynaptic geometry. Sci Rep. 2016 Mar 8;6:22703. doi: 10.1038/srep22703. Erratum in: Sci Rep. 2016 May 31;6:26422. doi: 10.1038/srep26422. PMID: 26951792; PMCID: PMC4782104.

      Beccano-Kelly DA, Volta M, Munsie LN, Paschall SA, Tatarnikov I, Co K, Chou P, Cao LP, Bergeron S, Mitchell E, Han H, Melrose HL, Tapia L, Raymond LA, Farrer MJ, Milnerwood AJ. LRRK2 overexpression alters glutamatergic presynaptic plasticity, striatal dopamine tone, postsynaptic signal transduction, motor activity and memory. Hum Mol Genet. 2015 Mar 1;24(5):1336-49. doi: 10.1093/hmg/ddu543. Epub 2014 Oct 24. PMID: 25343991.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1(Public review):

      We deeply appreciate the reviewer comments on our manuscript. Following up the revisions, our manuscript has been improved thanks to their insightful remarks. We have proceeded with all the required changes.  

      Weaknesses:

      The authors have still not addressed the inconsistent/missing description for sample size, the appropriate number of * for each figure panel, and the statistical tests used.

      Description of sample size, specific P value and statistical test used has been added it both in the main text, figures and figure legends.

      The authors assign 5% oxygen as hypoxia. This is not the case as the in vivo environment is close to this value. 5% is normoxia. Clinical IVF/embryo culture occurs at 5% O2. Please adjust your narrative around this.

      We define in our manuscript “normoxia” as the standard atmospheric oxygen levels in tissue culture incubators, which range from about 20–21% oxygen. Our definition of hypoxia is 5% concentration of oxygen, taking into consideration the standard levels of oxygen in the IVF clinics. Physiological oxygen in mouse varies from ~1.5% to 8% (Alva et al 2022). Considering that these levels of oxygen are the standard levels in tissue culture practices, a paragraph has been added to the discussion and materials and methods for further clarification   

      Reviewer #2 (Public review):

      Weakness:

      Given that this is a study on the induction of aneuploidy, it would be meaningful to assess aneuploidy immediately after induction, and then again before implantation. This is also applicable to the competition experiments on page 7/8. What is shown is the competitiveness of treated cells. Because the publication centers around aneuploidy, inclusion of such data in the main figure at all relevant points would strengthen it. There is some evaluation of karyotypes only in the supplemental - why? Would be good not to rely on a single assay that the authors appear to not give much importance.

      This is an excellent point. However, due to the stochasticity of the arising of aneuploidies when embryos are treated with AZ3146 and reversine (Bolton et al 2016), every treatment is likely to generate different levels of aneuploidy. Due to this, and to the technical limitations of generating single-cell genomic DNA sequencing at the blastocyst stage, we were unable to determine the karyotype of all cells after different conditions. Nevertheless, Regin et al 2024 (eLife) showed similar results on the overall transcriptome changes of different dosages of aneuploidy: high dosage embryos overexpress p53, like reversine-treated embryos; meanwhile, low dosage embryos overexpress the hypoxic pathway, including HIF1A, similar to embryos treated with AZ3146.  

      Reviewer #1 (Recommendations for the authors):

      Corrections required before final publishing:

      Please ensure that the number of asterisks is in alignment with standard convention (* <0.05; ** <0.01; *** <0.001; **** <0.0001). If you want to describe an exact P -vale it should be presented as P = 0.0004. line 108 *** is <0.0004. line 263 * P<0.0044

      Same issue appears in lines 697, 711, 722, 753, 685

      Specific values have been added in the figures and modified in the text. 

      Line 199: "...viable E9.5 embryos" missing "Figure S1D"

      Modified in manuscript

      Line 120: "...decidua" please add "Figure S1C"

      Modified in manuscript

      Line 126-127: Please add a description for the results (morula) in Fig 1D, e.g., It appears that YH2Ax persists from 8-cell to morula when treated with Reversine but not AZ3146"

      At the morula stage, the levels of γH2A.X in reversine- and AZ3146-treated embryos are similar (Fig. 1E). However, at the blastocyst stage, high levels of γH2A.X are maintained in reversine-treated embryos and reduced in AZ3146-treated embryos, suggesting some level of DNA repair between the morula-to-blastocyst stages (Fig. S2A). In contrast, in hypoxia, the levels of γH2A.X are low in the three treatments at the morula stages, suggesting that DNA repair can be enhanced under hypoxic conditions. Similar results have been reported in somatic cells (Marti et al., 2021; Pietrzak et al., 2018).

      Line 213: PARP1 levels were also similar under all conditions; but Fig3E, top right shows PARP1 was significantly lower with Reversine treatment; also please correct me if i am wrong, but does the phrase "all conditions" cross reference yH2AX and PARP1 between Fig 3 and Fig 1 to show the impact of hypoxia? Because from my understanding Fig 1 was done in 20% oxygen, but Fig 3 was done in 5% oxygen – hypoxia.

      This is correct. Modification in the manuscript has been performed for clarification

      Line 264: extra forward dash? "Reversine/AZ3146/ aggregation"

      Modified in manuscript

      Line 644: you don't have a control for IDF treatment, so how did you differentiate between impact of aneuploid drugs vs IDF treatment alone? Would the impact observed be due to compounding effect of aneuploidy drugs + IDF?

      This is a great observation. We previously demonstrated that IDF-1174 treatments in embryos do not affect pre-implantation development (Fig. S3).

      Line 681: change their behaviour is a vague statement. Be specific.

      Modified in manuscript

      Line 676 missing bracket "E)"

      Modified in manuscript

      Line 680: "...significantly on" should be "for"

      Modified in manuscript

      Line 682-685: "...hypoxia favours the survival of reversine-induced aneuploid cells." does it? the statement before this says in Rev/AZ chimeras, AZ blastomeres contribute similarly to reversine-blastomeres to the TE and PE but significantly increase contributions to the EPI.Wouldn't this mean hypoxia favours survival of AZ aneuploid cells in EPI?

      In normoxic conditions, AZ3146 treated cells in Rev/AZ chimeras contributed mostly to the EPI and TE but not PE. In contrast, in normoxic conditions, Rev-treated cells contributed similarly to all the lineages. This result seems to be due to a better survival of Rev-treated cells under normoxic conditions (Fig. 4D-E)

      Line 720: (b) shows blastocyst staining from what group? DMSO? Rev/AZ? Or are the 3 blastocysts shown here, 3 separate examples of Reversine-treated blastocysts? Would require labelling Fig S2B, and adding a short description in the corresponding figure legend

      Figure (B) shows the expression pattern of PARP1 at the blastocyst stage. Modified in manuscript

      Figure 2, Figure S3 and Figure S6: were these experiments performed at 5% or 20% O2, please add detail.

      Modified in manuscript

      Reviewer #2 (Recommendations for the authors):

      Lines 45-46 understanding of reduction of aneuploidy should mention/discuss the paper of attrition/selection, of the kind by the Brivanlou lab for instance, or others. As well as allocation to specific lineages, including the authors' work.

      A section in the discussion has been added in response to this recommendation. Comparison between models is debatable.

      The response does not clarify whether other papers were cited instead, or the authors own work that has shown preferential allocation to TE.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Summary:

      The authors note that it is challenging to perform diffusion MRI tractography consistently in both humans and macaques, particularly when deep subcortical structures are involved. The scientific advance described in this paper is effectively an update to the tracts that the XTRACT software supports. The claims of robustness are based on a very small selection of subjects from a very atypical dMRI acquisition (n=50 from HCP-Adult) and an even smaller selection of subjects from a more typical study (n=10 from ON-Harmony).

      Strengths:

      The changes to XTRACT are soundly motivated in theory (based on anatomical tracer studies) and practice (changes in seeding/masking for tractography), and I think the value added by these changes to XTRACT should be shared with the field. While other bundle segmentation software typically includes these types of changes in release notes, I think papers are more appropriate.

      We would like to thank the reviewer for their assessment and we appreciate the comments for improving our manuscript. We have added new results, sampling from a larger cohort with a typical dMRI protocol (N=50 from UK Biobank), as well as showcasing examples from individual subject reconstructions (Supplementary figures S6, S7). We also demonstrate comparisons against another approach that has been proposed for extracting parts of the cortico-striatal bundle in a bundle segmentation fashion, as the reviewer suggests (see comment and Author response image 1 below). 

      We would also like to take the opportunity to summarise the novelty of our contribuIons, as detailed in the Introduction, which we believe extend beyond a mere software update; this is a byproduct of this work rather than the aim. 

      i) We devise for the first Ime standard-space protocols for 21 challenging cortico-subcortical bundles for both human and macaque and we interrogate them in a comprehensive manner.

      ii) We demonstrate robustness of these protocols using criteria grounded on neuroanatomy, showing that tractography reconstructions follow topographical principles known from tracers both in WM and GM and for both species. We also show that these protocols capture individual variability as assessed by respecting family structure in data from the HCP twins.

      iii) We use high-resolution dMRI data (HCP and post-mortem macaque) to showcase feasibility of these reconstructions, and we show that reconstructions are also plausible with more conventional data, such as the ones from the UK Biobank.

      iv) We further showcase robustness and the value of cross-species mapping by using these tractography reconstructions to predict known homologous grey matter (GM) regions across the two species, both in cortex and subcortex, on the basis of similarity of grey matter areal connection patterns to the set of proposed white matter bundles.

      Weaknesses

      (2) The demonstration of the new tracts does not include a large number of carefully selected scans and is only compared to the prior methods in XTRACT. The small n and limited statistical comparisons are insufficient to claim that they are better than an alternative. Qualitatively, this method looks sound.

      We appreciate the suggestion for larger sample size, so we performed the same analysis using 50 randomly drawn UK Biobank subjects, instead of ON-Harmony, matching the N=50 randomly drawn HCP subjects (detailed explanation in the comment below, Main text Figure 4A; Supplementary Figures S4). We also generated results using the full set of N=339 HCP unrelated subjects (Supplementary Figure S5 compares 10, 50 and 339 unrelated HCP subjects). We provide further details in the relevant point (3) below. 

      With regards to comparisons to other methods, there are not really many analogous approaches that we can compare against. In our knowledge there are no previous cross-species, standard space tractography protocols for the tracts we considered in this study (including Muratoff, amygdalofugal, different parts of extreme an external capsules, along with their neighbouring tracts). We therefore i) directly compared against independent neuroanatomical knowledge and patterns (Figures 2, 3, 5), ii) confirmed that patterns against data quality and individual variability that the new tracts demonstrate are similar to patterns observed for the more established cortical tracts (Figure 4), iii) indirectly assessed efficacy by performing a demanding task, such as homologue identification on the basis of the tracts we reconstruct (Figures 6, 7). 

      We need to point out that our approach is not “bundle segmentation”, in the sense of “datadriven” approaches that cluster streamlines into bundles following full-brain tractography. The latter is different in spirit and assigns a label to each generated streamline; as full-brain tractography is challenging (Maier-Hein, Nature Comms 2017), we follow instead the approach of imposing anatomical constraints to miIgate for some of these challenges as suggested in (MaierHein, 2017).

      Nevertheless, we used TractSeg (one of the few alternatives that considers corticostriatal bundles) to perform some comparisons. The Author response image below shows average path distributions across 10 HCP subjects for a few bundles that we also reconstruct in our paper (no temporal part of striatal bundle is generated by Tractseg). We can observe that the output for each tract is highly overlapping across subjects, indicating that there is not much individual variability captured. We also see the reduced specificity in the connectivity end-points of the bundles. 

      Author response image 1.

      Comparison between 10-subject average for example subcortical tracts using TractSeg and XTRACT. We chose example bundles shared between our set and TractSeg. Per subject TractSeg produces a binary mask rather than a path distribution per tract. Furthermore, the mask is highly overlapping across subjects. Where direct correspondence was not possible, we found the closest matching tract. Specifically, we used ST_PREF for STBf, and merged ST_PREC with ST_POSTC to match StBm. There was no correspondence for the temporal part of StB.

      We subsequently performed the twinness test using both TractSeg and XTRACT (Author response image 2), as a way to assess whether aspects of individual variability can be captured. Due to heritability of brain organisation features, we anticipate that monozygotic twins have more similar tract reconstructions compared to dizygoIc twins and subsequently non-twin siblings. This pattern is reproduced using our proposed approach, but not using TractSeg that provides a rather flat pattern.  

      Author response image 2.

      Violin plots of the mean pairwise Pearson’s correlations across tracts between 72 monozygotic (MZ) twin pairs, 72 dizygotic (DZ) twin pairs, 72 non-twin sibling pairs, and 72 unrelated subject pairs from the Human Connectome Project, using Tractseg (left) and XTRACT (right). About 12 cortico-subcortical tracts were considered, as closely matched as possible between the two approaches. For Tractseg we considered: 'CA', 'FX', 'ST_FO', 'ST_M1S1' (merged ‘ST_PREC’ and ‘ST_POSTC’ to approximate the sensorimotor part of our striatal bundle), 'ST_OCC', 'ST_PAR', 'ST_PREF',  'ST_PREM', 'T_M1S1' (merged ‘T_PREC’ and ‘T_POSTC’ to approximate the sensorimotor part of our striatal bundle), 'T_PREF', 'T_PREM', 'UF'. For XTRACT we considered: 'ac', 'fx', 'StB<sub>f</sub>', 'StB<sub>m</sub>', 'StB<sub>p</sub>', 'StB<sub>t</sub>, 'EmC<sub>f</sub>', 'EmC<sub>p</sub>', 'EmC<sub>t</sub>', 'MB', 'amf', 'uf'. Showing the mean (μ) and standard deviation (σ) for each group. There were no significant di^erences between groups using TractSeg.

      Taken together, these results indicate as a minimum that the different approaches have potentially different aims. Their different behaviour across the two approaches can be desirable and beneficial for different applications (for instance WM ROI segmentation vs connectivity analysis) but makes it challenging to perform like-to-like comparisons.

      (3) “Subject selection at each stage is unclear in this manuscript. On page 5 the data are described as "Using dMRI data from the macaque (𝑁 = 6) and human brain (𝑁 = 50)". Were the 50 HCP subjects selected to cover a range of noise levels or subject head motion? Figure 4 describes 72 pairs for each of monozygotic, dizygotic, non-twin siblings, and unrelated pairs - are these treated separately? Similarly, NH had 10 subjects, but each was scanned 5 times. How was this represented in the sample construction?”

      We appreciate the suggestions and we agree that some of the choices in terms of group sizes may have been confusing. Short answer is we did not perform any subject selection, subjects were randomly drawn from what we had available. The 72 twin pairs are simply the maximum number of monozygotic twin pairs available in the HCP cohort, so we used 72 pairs in all categories to match this number in these specific tests. The N=6 animals are good quality post-mortem dMRI data that have been acquired in the past and we cannot easily expand. For the rest of the points, we have now made the following changes:

      We have replaced our comparison to the ON-Harmony dataset (10 subjects) with a comparison to 50 unrelated UK Biobank subjects (to match the 50 unrelated HCP subject cohort used throughout). Updated results can be seen in Figure 4A and Supplementary Figure S4. This allows a comparison of tractography reconstruction between high quality and more conventional quality data for the same N.

      We looked at QC metrics to ensure our chosen cohorts were representaIve of the full cohorts we had available. The N=50 unrelated HCP cohort and N=50 unrelated UKBiobank cohorts we used in the study captured well the range of the full 339 unrelated HCP cohort and N=7192 UKBiobank cohort in terms of absolute/relative moion (Author response image 3A and 3B respectively). A similar pattern was observed in terms of SNR and CNR ranges Author response image 4).

      We generated tractography reconstructions for single subjects, corresponding to the 10th percentile (P<sub>10</sub>), median and 90th percentile (P90) of the distributions with respect to similarity to the cohort average maps. These are now shown in Supplementary Figures S6, S7. We also checked the QC metrics for these single subjects and confirmed that average absolute subject moIon was highest for the P<sub>10</sub>, followed by the P<sub>50</sub> and lowest for the P<sub>90</sub> subject, capturing a range of within cohort data quality.

      We generated reconstructions for an even larger HCP cohort (all 339 unrelated HCP subjects) and these look very similar to the N=50 reconstructions (Supplementary Figure S5).

      Author response image 3.

      Subsets chosen from the HCP and UKB reflect similar range of average motion (relative and absolute) to the corresponding full cohorts. (A) Absolute and relative motion comparison between N=50 and N=339 unrelated HCP subjects. (B) Absolute and relative motion comparison between N=50 and N=7192 super-healthy UKB subjects.  

      Author response image 4.

      Average SNR and CNR values show similar range between the N=50 UKB subset and the full UK Biobank cohort of N=7192.

      (4) In the paper, the authors state "the mean agreement between HCP and NH reconstructions was lower for the new tracts, compared to the original protocols (𝑝 < 10^−10). This was due to occasionally reconstructing a sparser path distribution, i.e., slightly higher false negative rate," - how can we know this is a false negative rate without knowing the ground truth?

      We are sorry for the terminology, we have corrected this, as it was confusing. Indeed, we cannot call it false negaIve, what we meant is that reconstructions from lower resolution data for these bundles ended up being in general sparser than the ones from the high-resolution data, potentially missing parts of the tract. We have now revised the text accordingly.

      Reviewer #2 Public Review:

      (5) Summary:

      In this article, Assimopoulos et al. expand the FSL-XTRACT software to include new protocols for identifying cortical-subcortical tracts with diffusion MRI, with a focus on tracts connecting to the amygdala and striatum. They show that the amygdalofugal pathway and divisions of the striatal bundle/external capsule can be successfully reconstructed in both macaques and humans while preserving large-scale topographic features previously defined in tract tracing studies. The authors set out to create an automated subcortical tractography protocol, and they accomplished this for a subset of specific subcortical connections for users of the FSL ecosystem.

      Strengths:

      A main strength of the current study is the translation of established anatomical knowledge to a tractography protocol for delineating cortical-subcortical tracts that are difficult to reconstruct. Diffusion MRI-based tractography is highly prone to false positives; thus, constraining tractography outputs by known anatomical priors is important. Key additional strengths include 1) the creation of a protocol that can be applied to both macaque and human data; 2) demonstration that the protocol can be applied to be high quality data (3 shells, > 250 directions, 1.25 mm isotropic, 55 minutes) and lower quality data (2 shells, 100 directions, 2 mm isotropic, 6.5 minutes); and 3) validation that the anatomy of cortical-subcortical tracts derived from the new method are more similar in monozygotic twins than in siblings and unrelated individuals.

      We thank the Reviewer for the globally posiIve evaluaIon of this work and the perInent comments that have helped us to improve the paper.

      Weaknesses

      (6) Although this work validates the general organizational location and topographic organization of tractography-derived cortical-subcortical tracts against prior tract tracing studies (a clear strength), the validation is purely visual and thus only qualitative. Furthermore, it is difficult to assess how the current XTRACT method may compare to currently available tractography approaches to delineating similar cortical-subcortical connections. Finally, it appears that the cortical-subcortical tractography protocols developed here can only be used via FSL-XTRACT (yet not with other dMRI software), somewhat limiting the overall accessibility of the method.

      We agree that a more quanItative comparison against gold standard tracing data would be ideal. However, there are practical challenges that prohibit such a comparison at this stage: i) Access to data. There are no quantifiable, openly shared, large scale/whole brain tracing data available. The Markov study provided the only openly available weighted connectivity matrices measured by tracers in macaques (Markov, Cereb Cortex 2014), which are only cortico-cortical and do not provide the white matter routes, they only quantify the relative contrast in connection terminals. ii) 2D microscopy vs 3D tractography. The vast majority of tracing data one can find in neuroanatomy labs is on 2D microscopy slices with restricted field of view, which is also the case for the data we had access to for this study. This complicates significantly like-to-like comparisons against 3D whole-brain tractography reconstructions. iii) Quantifiability is even tricky in the case of gold standard axonal tracing, as it depends on nuisance factors, e.g. injection site, injection size, injection uniformity and coverage, which confound the gold-standard measurements, but are not relevant for tractography. For these reasons, a number of high-profile NIH BRAIN CONNECTS Centres (for instance hXps://connects.mgh.harvard.edu/, hXps://mesoscaleconnecIvity.org/) are resourced to address these challenges at scale in the coming years and provide the tools to the community to perform such quantitative comparisons in the future.  

      In terms of comparison with other approaches, we have performed new tests and detail a response to a similar comment (2) from Reviewer 1.

      Finally, our protocols have been FSL-tested, but have nothing that is FSL specific. We cannot speak of performance when used with other tools, but there is nothing that prohibits translation of these standard space protocols to other tools. In fact, the whole idea behind XTRACT was to generate an approach open to external contributions for bundle-specific delineation protocols, both for humans and for non-human species. A number of XTRACT extensions that have been published over the last 5 years for other NHP species (Roumazeilles et al. (2020); Bryant et al. (2020); Wang et al. (2025)) and similar approaches have been used in commercial packages (Boshkovski et al, 2106, ISMRM 2022).

      Recommendations To the Authors:

      (7) Superiority of the FSL-XTRACT approach to delineating cortical-subcortical tracts. The Introduction of the article describes how "Tractography protocols for white matter bundles that reach deeper subcortical regions, for instance the striatum or the amygdala, are more difficult to standardize" due to the size, proximity, complexity, and bottlenecks associated with corticalsubcortical tracts. It would be helpful for the authors to better describe how the analytic approach adopted here overcomes these various challenges. What does the present approach do differently than prior efforts to examine cortical-subcortical connectivity? 

      There have not been many prior efforts to standardise cortico-subcortical connecIvity reconstructions, as we overview in the Introduction. As outlined in (Schilling et al. (2020),  hXps://doi.org/10.1007/s00429-020-02129-z), tractography reconstructions can be highly accurate if we guide them using constraints that dictate where pathways are supposed to go and where they should not go. This is the philosophy behind XTRACT and all the proposed protocols, which provide neuroanatomical constraints across different bundles. At the same time these constraints are relatively coarse so that they are species-generalisable. We have clarified that in Discussion. The approach we took was to first identify anatomical constraints from neuroanatomy literature for each tract of interest independently, derive and test these protocols in the macaque, and then optimise in an iterative fashion until the protocols generalise well to humans and until, when considering groups of bundles, the generated reconstructions can follow topographical principles known from tract tracing literature. This process took years in order to perform these iterations as meticulously as we could. We have modified the first sections in Methods to reflect this better (3rd paragraph of 1st Methods section), as well as modified the third and second to last paragraphs of the Introduction (“We propose an approach that addresses these challenges…”).

      (8) Relatedly, it is difficult to fully evaluate the utility of the current approach to dissecting cortical-subcortical tracts without a qualitative or quantitative comparison to approaches that already exist in the field. Can the authors show that (or clarify how) the FSL-XTRACT approach is similar to - or superior to - currently available methods for defining cortical-striatal and amygdalofugal tracts (e.g., methods they cite in the Introduction)?”

      From the limited similar approaches that exist, we did perform some comparisons against TractSeg, please see Reply to Comment 2 from Reviewer 1. We have also expanded the relevant text in the introduction to clarify the differences:

      “…However, these either uIlise labour-intensive single-subject protocols (22,26), are not designed to be generalisable across species (42, 43), or are based mostly on geometrically-driven parcellaIons that do not necessarily preserve topographical principles of connecIons (40). We propose an approach that addresses these challenges and is automated, standardised, generalisable across two species and includes a larger set of cortico-subcortical bundles than considered before, yielding tractography reconstructions that are driven by neuroanatomical constraints.”

      (9) Future applications of the tractography protocol:

      It would be helpful for the authors to describe the contexts in which the automated tractography approach developed here can (and cannot) be applied in future studies. Are future applications limited to diffusion data that has been processed with FSL's BEDPOSTX and PROBTRACKX? Can FSL-XTRACT take in diffusion data modelled in other software (e.g., with CSD in mrtrix or with GQI in DSI Studio)? Can the seed/stop/target/exclusion ROIs be applied to whole-brain tractography generated in other software? Integration with other software suites would increase the accessibility of the new tract dissection protocols.

      We have added some text in the Discussion to clarify this point. Our protocols have been FSLtested, but have nothing that is FSL specific. We cannot speak of performance of other tools, but there is nothing that prohibits translaIon of these standard space protocols to other tools. As described before, the protocols are recipes with anatomical constraints including regions the corresponding white matter pathways connect to and regions they do not, constructed with cross-species generalisability in mind. In fact a number of other packages (even commercial) have adopted the XTRACT protocols with success in the past, so we do not see anything in principle that prohibits these new protocols to be similarly adopted. 

      We cannot comment on the protocols’ relevance for segmenIng whole-brain tractograms, as these can induce more false posiIves than tractography reconstructions from smaller seed regions and may require stricter exclusions.    

      (10) It was great to see confirmation that the XTRACT approach can be successfully applied in both high-quality diffusion data from the HCP and in the ON-Harmony data. Given the somewhat degraded performance in the lower quality dataset (e.g., Figure 4A), can the authors speak to the minimum data requirements needed to dissect these new cortical-subcortical tracts? Will the approach work on single-shell, low b data? Is there a minimum voxel resolution needed? Which tracts are expected to perform best and worst in lower-quality data?

      Thank you for these comments, even if we have not really tried in lower (spaIal and angular) resolution data, given the proximity of the tracts considered, as well as the small size of some bundles, we would not recommend lower resolution than those of the UK Biobank protocol. In general, we would consider the UK Biobank protocol (2mm, 2 shells) as the minimum and any modern clinical scanner can achieve this in 6-8 minutes. We hence evaluated performance from high quality HCP to lower quality UK Biobank data, covering a considerable range (scan Ime from 55 minutes down to 6 minutes). 

      In terms of which tract reconstructions were more reproducible for UKBiobank data, the tracts with lowest correlations across subjects (Figure 4) were the anterior commissure (AC) and the temporal part of the Extreme Capsule (EmC<sub>t</sub>), while the highest correlations were for the Muratoff Bundle (MB) and the temporal part of the Striatal Bundle (StB<sub>t</sub>). Interestingly, for the HCP data, the temporal part of the Extreme Capsule (EmC<sub>t</sub>) and the Muratoff Bundle were also the tracts with the lowest/highest correlations, respectively. Hence, certain tract reconstructions were consistently more variable than others across subjects, which may hint to also being more challenging to reconstruct. We have now clarified these aspects in the corresponding Results section. 

      (11) Anatomical validation of the new cortical-subcortical tracts

      I really appreciated the use of prior tract tracing findings to anatomically validate the corticalsubcortical tractography outputs for both the cortical-striatal and amygdalofugal tracts. It struck me, however, that the anatomical validation was purely qualitative, focused on the relative positioning or the topographical organization of major connections. The anatomical validation would be strengthened if profiles of connectivity between cortical regions and specific subcortical nuclei or subcortical subdivisions could be quantitatively compared, if at all possible. Can the differential connectivity shown visually for the putamen in Figure 3 be quantified for the tract tracing data and the tractography outputs? Does the amygdalofugal bundle show differential/preferential connectivity across amygdala nuclei in tract tracing data, and is this seen in tractography?

      We appreciate the comment, please see Reply to your comment 6 above. In addiIon to the challenges described there, we do not have access to terminal fields other than in the striatum and these ones are 2D, so we make a qualitaIve comparison of the relevant connecIvity contrasts. We expect that a number of currently ongoing high-profile BRAIN CONNECTS Centres (such as the LINC and the CMC) will be addressing such challenges in the coming years and will provide the tools and data to the community to perform such quanItaIve comparisons at scale.  

      (12) I believe that all visualizations of the macaque and human tractography showed groupaveraged maps. What do these tracts look like at the individual level? Understanding individual-level performance and anatomical variation is important, given the Discussion paragraph on using this method to guide neuromodulation.

      We now demonstrate some representative examples of individual subject reconstructions in Supplementary Figures S6, S7, ranking subjects by the average agreement of individual tract reconstructions to the mean and depicting the 10th percentile, median and 90th percentile of these subjects. We have also shown more results in Author response images 1-2, generated by TractSeg, to indicate how a different bundle segmentation approach would handle individual variability compared to our approach.

      (13) Connectivity-based comparisons across species:

      Figures 5 and 6 of the manuscript show that, as compared to using only cortico-cortical XTRACT tracts, using the full set of XTRACT tracts (with new cortical-subcortical tracts) allows for more specific mapping of homologous subcortical and cortical regions across humans and macaques. Is it possible that this result is driven by the fact that the "connectivity blueprints" for the subcortex did not use an intermediary GM x WM matrix to identify connection patterns, whereas the connectivity blueprints for the cortex did? I was surprised that a whole brain GM x WM connectivity matrix was used in the cortical connectivity mapping procedure, given known problems with false positives etc., when doing whole brain tractography - especially aHer such anatomical detail was considered when deriving the original tracts. Perhaps the intermediary step lowers connectivity specificity and accuracy overall (as per Figure 9), accounting for the poorer performance for cortico-cortical tracts?

      The point is well-taken, however it cannot drive the results in Figures 5 and 6. Before explaining this further, let us clarify the raIonale of using the GMxWM connecIvity matrix, which we have published quite extensively in the past for cortico-cortical connecIons (Mars, eLife 2018 - Warrington, Neuroimage 2020 - Roumazeilles, PLoS Biology 2020 - Warrington, Science Advances 2022 – Bryant, J Neuroscience 2025). 

      Having established the bodies of the tract using the XTRACT protocols, we use this intermediate step of multiplying with a GM x WM connectivity matrix to estimate the grey matter projections of the tracts. The most obvious approach of tracking towards the grey matter (i.e. simply find where tracts intersect GM) has the problem that one moves through bottlenecks in the cortical gyrus and after which fibres fan out. Most tractography algorithms have problems resolving this fanning. However, we take the opposite approach of tracking from the grey matter surface towards the white matter (GMxWM connectivity matrix), thus following the direction in which the fibres are expected to merge, rather than to fan out. We then multiply the GMxWM tractrogram with that of the body of the tract to identify the grey matter endpoints of the tract. This avoids some of the major problems associated with tracking towards the surface. In fact, using this approach improves connectivity specificity towards the cortex, rather than the opposite. We provide some indicative results here for a few tracts:

      Author response image 5.

      Connectivity profiles for example cortico-cortical tracts with and without using the intermediary GMxWM matrix. Tracts considered are the Superior Longitudinal Fasciculus 1 (SLF<sub>1</sub>), Superior Longitudinal Fasciculus 2 (SLF<sub>2</sub>), the Frontal Aslant (FA) and the Inferior Fronto-Occipital Fasciculus (IFO). We see that the surface connectivity patterns without using the GMxWM intermediary matrix are more diffuse (effect of “fanning out” gyral bias), with reduced specificity, compared to whenusing the GMxWM matrix

      Tracking to/from subcortical nuclei does not have the same tractography challenges as tracking towards the cortex and in fact we found that using the intermediary GMxWM matrix is less favourable for subcortex (Figure 9), which is why we opted for not using it. 

      Regardless of how cortical and subcortical connectivity patterns are obtained, the results in Figures 5 and 6 utilise only cortical connectivity patterns. Hence, no matter what tracts are considered (cortico-cortical or cortico-subcortical) to build the connectivity patterns, these results have been obtained by always using the intermediate step of multiplying with the GMxWM connectivity matrix (i.e. it is not the case that cortical features are obtained with the intermediate step and subcortical features without, all of them have the intermediate step applied, as the connectivity patterns comprise of cortical endpoints). Figure 9 is only applicable for subcortical endpoints that play no role in the comparisons shown in Figures 5 and 6. We hope this clarifies this point.

      (14) Methodological clarifications:

      The Methods describe how anatomical masks used in tractography were delineated in standard macaque space and then translated to humans using "correspondingly defined landmarks". Can the authors elaborate as to how this translation from macaques to humans was accomplished?

      For a given tract, our process for building a protocol involved looking into the wider anatomical literature, including the standard white matter atlas of Schmahmann and Pandya (2006) and numerous anatomy papers that are referenced in the protocol description, to determine the expected path the tract was meant to take in white matter and which cortical and subcortical regions are connected. This helped us define constraints and subsequently the corresponding masks. The masks were created through the combination of hand-drawn ROIs and standard space atlases. We firstly started with the macaque where tracer literature is more abundant, but, importantly, our protocol definitions have been designed such that the same protocol can be applied to the human and macaque brain. All choices were made with this aspect in mind, hence corresponding landmarks between the two brains were considered in the mask definition (for instance “the putamen”, “a sub-commissural white matter mask”, the “whole frontal pole” etc, as described in the protocol descriptions).

      The protocols have not been created by a single expert but have been collated from multiple experts (co-authors SA, SW, DF, KB, SH, SS drove this aspect) and the final definitions have been agreed upon by the authors. 

      (15) The article heavily utilizes spatial path distribution maps/normalized path distributions, yet does not describe precisely what these are and how they were generated. Can the authors provide more detail, along with the rationale for using these with Pearson's correlations to compare tracts across subjects (as opposed to, e.g., overlap sensitivity/specificity or the Jaccard coefficient)?

      We have now clarified in text how these plots are generated, particularly when compared using correlation values. We tried Jaccard indices on binarized masks of the tracts and these gave similar trends to the correlations reported in Figure 4 (i.e. higher similarities within that across cohorts). We however feel that correlations are better than Jaccard indices, as the latter assume binary masks, so they focus on spatial overlap ignoring the actual values of the path distributions, we hence kept correlations in the paper.

      Reviewing Editor Comments

      “The reviewers had broadly convergent comments and were enthusiastic about the work. As further detailed by Reviewer 3 (see below), if the authors choose to pursue revisions, there are several elements that have the potential to enhance impact.”

      Thank you, we have replied accordingly and aimed to address most of the comments of the Reviewers.   

      “Comparison to existing methods. How does this approach compare to other approaches cited by the authors?”

      Please see replies to Comment 2 of Reviewer 1 and Comment 7 of Reviewer 2. Briefly, we have now generated new results and clarified aspects in the text. 

      “Minimum data requirements. How broadly can this approach be used across scan variation? How does this impact data from individual participants? Displaying individual participants may help, in addition to group maps.”

      Please see replies to Comment 10 of Reviewer2 on minimum data requirements and individual parIcipants, as well as to Comment 3 of Reviewer 1 on the actual groups considered. Briefly, we have generated new figures and regenerated results using UKBiobank data. 

      Softare. What are the sofware requirements? Is the approach interoperable with other methods?”

      Please see Reply to Comment 9 of Reviewer 2. Our protocols can be used to guide tractography using other types of data as they comprise of guiding ROIs for a given tract. So, although we have not tested them beyond FSL-XTRACT, we believe they can be useful with other tractography packages as well, as there is nothing FSL-specific in these anatomically-informed recipes. 

      “Comparisons with tract tracing. To the degree possible, quantitative comparisons with tract tracing data would bolster confidence in the method.”

      Please see Replies to Comments 6 and 11 of Reviewer 2. Briefly, we appreciate the comment and it is something we would love to do, but there are no data readily available that would allow such quanItaIve comparison in a meaningful way. This is a known challenge in the tractography field, which is why NIH has invested in two 5 year Centres to address it. Our approach will provide a solid starIng point for opImising and comparing further cortico-subcortical tractography reconstructions against microscopy and tracers in the same animal and at scale.

    1. Author response:

      There was a common theme across the reviews to provide a more cautious interpretation and to consider the key question of whether peer reviewers who include citations are being purely self-serving or are highlighting important missing context. I will include a suggested new text analysis to cover this and will expand the discussion on this key question. Reviewers highlighted some confusion around the sample sizes for the different analyses, and I will clarify all sample sizes in the next version.

    1. Author response:

      Reviewer #1 (Public Review):

      This study presents an exploration of PPGL tumour bulk transcriptomics and identifies three clusters of samples (labeled as subtypes C1-C3). Each subtype is then investigated for the presence of somatic mutations, metabolism-associated pathways and inflammation correlates, and disease progression. The proposed subtype descriptions are presented as an exploratory study. The proposed potential biomarkers from this subtype are suitably caveated and will require further validation in PPGL cohorts together with a mechanistic study.

      The first section uses WGCNA (a method to identify clusters of samples based on gene expression correlations) to discover three transcriptome-based clusters of PPGL tumours. The second section inspects a previously published snRNAseq dataset, and labels some of the published cells as subtypes C1, C2, C3 (Methods could be clarified here), among other cells labelled as immune cell types. Further details about how the previously reported single-nuclei were assigned to the newly described subtypes C1-C3 require clarification.

      Thank you for your valuable suggestion. In response to the reviewer’s request for further clarification on “how previously published single-nuclei data were assigned to the newly defined C1-C3 subtypes,” we have provided additional methodological details in the revised manuscript (lines 103-109). Specifically, we aggregated the single-nucleus RNA-seq data to the sample level by summing gene counts across nuclei to generate pseudo-bulk expression profiles. These profiles were then normalized for library size, log-transformed (log1p), and z-scaled across samples. Using genesets scores derived from our earlier WGCNA analysis of PPGLs, we defined transcriptional subtypes within the Magnus cohort (Supplementary Figure. 1C). We further analyzed the single-nucleus data by classifying malignant (chromaffin) nuclei as C1, C2, or C3 based on their subtype scores, while non-malignant nuclei (including immune, stromal, endothelial, and others) were annotated using canonical cell-type markers (Figure. 4A).

      The tumour samples are obtained from multiple locations in the body (Figure 1A). It will be important to see further investigation of how the sample origin is distributed among the C1-C3 clusters, and whether there is a sample-origin association with mutational drivers and disease progression.

      Thank you for your valuable suggestion. In the revised manuscript (lines 74-79), Figure. 1A, Table S1 and Supplementary Figure. 1A, we harmonized anatomic site annotations from our PPGL cohort and the TCGA cohort and analyzed the distribution of tumor origin (adrenal vs extra-adrenal) across subtypes. The site composition is essentially uniform across C1-C3—approximately 75% pheochromocytoma (PC) and 25% paraganglioma (PG)—with only minimal variation. Notably, the proportion of extra-adrenal origin (paraganglioma origin) is slightly higher in the C1 subtype (see Supplementary Figure 1A), which aligns with the biological characteristics of tumors from this anatomical site, which typically exhibit more aggressive behavior.

      Reviewer #2 (Public Review):

      A study that furthers the molecular definition of PPGL (where prognosis is variable) and provides a wide range of sub-experiments to back up the findings. One of the key premises of the study is that identification of driver mutations in PPGL is incomplete and that compromises characterisation for prognostic purposes. This is a reasonable starting point on which to base some characterisation based on different methods. The cohort is a reasonable size, and a useful validation cohort in the form of TCGA is used. Whilst it would be resource-intensive (though plausible given the rarity of the tumour type) to perform RNA-seq on all PPGL samples in clinical practice, some potential proxies are proposed.

      We sincerely thank the reviewer for their positive assessment of our study’s rationale. We fully agree that RNA sequencing for all PPGL samples remains resource-intensive in current clinical practice, and its widespread application still faces feasibility challenges. It is precisely for this reason that, after defining transcriptional subtypes, we further focused on identifying and validating practical molecular markers and exploring their detectability at the protein level.

      In this study, we validated key markers such as ANGPT2, PCSK1N, and GPX3 using immunohistochemistry (IHC), demonstrating their ability to effectively distinguish among molecular subtypes (see Figure. 5). This provides a potential tool for the clinical translation of transcriptional subtyping, similar to the transcription factor-based subtyping in small cell lung cancer where IHC enables low-cost and rapid molecular classification.

      It should be noted that the subtyping performance of these markers has so far been preliminarily validated only in our internal cohort of 87 PPGL samples. We agree with the reviewer that larger-scale, multi-center prospective studies are needed in the future to further establish the reliability and prognostic value of these markers in clinical practice.

      The performance of some of the proxy markers for transcriptional subtype is not presented.

      We agree with your comment regarding the need to further evaluate the performance of proxy markers for transcriptional subtyping. In our study, we have in fact taken this point into full consideration. To translate the transcriptional subtypes into a clinically applicable classification tool, we employed a linear regression model to compare the effect values (β values) of candidate marker genes across subtypes (Supplementary Figure. 1D-F). Genes with the most significant β values and statistical differences were selected as representative markers for each subtype.

      Ultimately, we identified ANGPT2, PCSK1N, and GPX3—each significantly overexpressed in subtypes C1, C2, and C3, respectively, and exhibiting the most pronounced β values—as robust marker genes for these subtypes (Figure. 5A and Supplementary Figure. 1D-F). These results support the utility of these markers in subtype classification and have been thoroughly validated in our analysis. 

      There is limited prognostic information available.

      Thank you for your valuable suggestion. In this exploratory revision, we present the available prognostic signal in Figure. 5C. Given the current event numbers and follow-up time, we intentionally limited inference. We are continuing longitudinal follow-up of the PPGL cohort and will periodically update and report mature time-to-event analyses in subsequent work.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      Summary:

      The manuscript by Zhang et al describes the use of a protein language model (pLM) to analyse disordered regions in proteins, with a focus on those that may be important in biological phase separation. While the paper is relatively easy to read overall, my main comment is that the authors could perhaps make it clearer which observations are new, and which support previous work using related approaches. Further, while the link to phase separation is interesting, it is not completely clear which data supports the statements made, and this could also be made clearer.

      We thank the reviewer for their thoughtful evaluation of our manuscript and for the supportive comments. As outlined in the responses below, we have made substantial revisions to clarify the novel observations presented in our study and to strengthen the connection between sequence conservation and phase separation.

      Comment 1: With respect to putting the work in a better context of what has previously been done before, this is not to say that there is not new information in it, but what the authors do is somewhat closely related to work by others. I think it would be useful to make those links more directly.

      We have addressed the specific comments as outlined below.

      Comment 1a: Alderson et al (reference 71) analysed in detail the conservation of IDRs (via pLDDT, which is itself related to conservation) to show, for example, that conserved residues fold upon binding. This analysis is very similar to the analysis used in the current study (using ESM2 as a different measure of conservation). Thus, the result that "Given that low ESM2 scores generally reflect mutational constraint in folded proteins, the presence of region a among disordered residues suggests that certain disordered amino acids are evolutionarily conserved and likely functionally significant" is in some ways very similar to the results of that (Alderson et al) paper .

      We thank the reviewer for the comment. However, we would like to clarify that our findings show subtle but important differences from those reported by Alderson et al. Specifically, Alderson et al. used AlphaFold2 predictions to identify IDRs that undergo disorder-to-order transitions, which the authors termed as conditionally folded IDRs. These regions could potentially be functionally important, assuming that function of IDRs necessitate folding.

      We argue, however, that, the validity of this structure-function relationship for IDRs remains to be tested. In our opinion, The most direct way to evaluate the functional significance is via evaluating the evolutionary conservation.

      As shown in Author response image 1, the correlation between pLDDT scores and the conservation score, while noticable, is significantly weaker than that between the ESM2 score and the conservation score.

      Author response image 1.

      Comparison of the correlation between AlphaFold2 pLDDT scores and conservation scores with the correlation between ESM2 scores and conservation scores. Calculations were performed using proteins in the MLO-hProt dataset. (A) Correlation between the mean AlphaFold2 pLDDT scores and conservation scores for various amino acids. Pearson correlation coefficients (r) are indicated in the figure legends. The four panels on the right present analogous correlation plots for amino acids grouped by structural order, as defined by their pLDDT scores. (B) Similar as in part A but for ESM2 scores.

      Therefore, we believe that ESM2 score is a better indicator than AlphaFold2 pLDDT score for functional relevance.

      Furthermore, for the human IDRs, we explicitly selected amino acids with pLDDT scores ≤ 70.

      These would be classified as structureless, disordered amino acids, according to the study by Alderson et al. Nevertheless, as shown in Figures 2 and 3 of the main text, our analyses still identifies conserved regions. Therefore, these regions may function via distinct mechanisms than the disorder to order transition.

      We now discuss the novelty of our work in the context of existing studies in the newly added Conclusions and Discussion: Related Work, as quoted below.

      “Numerous studies have sought to identify functionally relevant amino acid groups within IDRs [cite]. For instance, using multiple sequence alignment, several groups have identified evolutionarily conserved residues that contribute to phase separation [cite]. Alderson et al. employed AlphaFold2 to detect disordered regions with a propensity to adopt structured conformations, suggesting potential functional relevance [alderson et al].

      In contrast, our approach based on ESM2 is more direct: it identifies conserved residues without relying on alignment or presupposing that functional significance requires folding into stable 3D structures. Notably, many of the conserved residues identified in our analysis exhibit low pLDDT scores (Figure 2), implying potential functional roles independent of stable conformations.”

      Comment 1b: Dasmeh et al, Lu et al and Ho & Huang analysed conservation in IDRs, including aromatic residues and their role in phase separation.

      We thank the reviewer for bringing these works to our attention! We now explicitly discuss these studies in both the Discussion section as mentioned above and in the Introduction as quoted below.

      “Evolutionary analysis of IDRs is challenging due to difficulties in sequence alignment [cite], though several studies have attempted alignment of disordered proteins with promising results [Dasmeh et al, Lu et al and Ho & Huang].”

      Comment 1c: A number of groups have performed proteomewide saturation scans using pLMs, including variants of the ESM family, including Meier (reference 89, but cited about something else) and Cagiada et al (https://doi.org/10.1101/2024.05.21.595203) that analysed variant effects in IDRs using a pLM. Thus, I think statements such as "their applicability to studying the fitness and evolutionary pressures on IDRs has yet to be established" should possibly be qualified.

      We added a new paragraph in the Introduction to discuss the application of protein language models to IDRs and cited the suggested references.

      “While protein language models have been widely applied to structured proteins [cite], it is important to emphasize that these models themselves are not inherently biased toward folded domains. For example, the Evolutionary Scale Model (ESM2) [cite] is trained as a probabilistic language model on raw protein sequences, without incorporating any structural or functional annotations. Its unsupervised learning paradigm enables ESM2 to capture statistical patterns of residue usage and evolutionary constraints without relying on explicit structural information. Thus, the success of ESM2 in modeling the mutational landscapes of folded proteins [cite] reflects the model’s ability to learn sequence-level constraints imposed by natural selection — a property that is equally applicable to IDRs if those regions are also under functional selection. Indeed, protein language models are increasingly been used to analyze variant effects in IDRs [cite].”

      Comment 2: On page 4, the authors write, "The conserved residues are primarily located in regions associated with phase separation." These results are presented as a central part of the work, but it is not completely clear what the evidence is.

      We thank the reviewer this insightful comment. We realized that our wording is not as precise as we should have been. We meant to state that the regions associated with phase separation are significantly enriched in these conserved residues. This is a significant finding and indicates that phase separation could be a source of evolutionary pressure in dictating IDP sequence conservation. However, we do not intend to suggest that phase separation is the only evolutionary pressure.

      The sentence has been revised to

      “Notably, regions associated with phase separation are significantly enriched in these conserved residues.”

      We further replaced the section title "Conserved, Disordered Residues Localize in Regions Driving Phase Separation" with "Regions Driving Phase Separation Are Enriched with Conserved, Disordered Residues" to further clarify our findings and avoid overinterpretation.

      Finally, we revised the following sentence in the discussion

      “Notably, these conserved, disordered residues are predominantly located in regions actively involved in phase separation, contributing to the formation of membraneless organelles.”

      to

      “Notably, regions actively involved in phase separation are enriched with these conserved, disordered residues, supporting their potential role in the formation of membraneless organelles.”

      The submitted manuscript provides clear evidence supporting the enrichment of conserved residues in MLO-driving IDRs. Specifically, Figures 4A and 4C demonstrate that these IDRs exhibit a substantially higher fraction of conserved residues compared to other IDRs involved in phase separation.

      In this analysis, the nMLO-hIDR group serves as a baseline, representing the distribution of conservation in disordered regions lacking MLO-related functions. In contrast, IDRs from MLOassociated groups show a pronounced lower shift in their median and interquartile ranges, indicating stronger evolutionary constraints. Within the dMLO cohort, the degree of conservation follows a distinct gradient: driving residues exhibit the highest levels of conservation, followed by participant residues, with non-participant residues showing values closer to the nMLO baseline. This pattern reflects the relative functional importance of each group in phase separation, with conservation levels corresponding to their roles in MLO scaffolding.

      To further support this, we computed, for each IDR, the fraction of conserved amino acids. As shown in Figure S11B, for IDRs that actively contribute to phase separation, the fraction is indeed higher than those not involved in phase separation. This analysis is now included in SI.

      During the revision, we explicitly evaluated whether conserved residues are preferentially located in regions associated with phase separation. To this end, for each protein in the MLO-hProt dataset, we calculated the probability p of finding conserved residues within regions contributing to phase separation. These regions include both "driving" and "participating" segments as defined in Figure 4 of the main text.

      Figure S11A presents the distribution of p across all proteins. For comparison, we also include the distribution of 1− p, representing the probability of finding conserved residues in regions not associated with phase separation. On average, p exceeds 0.5, suggesting a tendency for conserved residues to be more frequently located in phase-separating regions. However, the difference between the two distributions is not statistically significant. This result may be due to the generally low density of conserved residues in IDRs, which makes the estimation of p challenging for individual proteins. Additionally, some conserved sites may be involved in functions unrelated to phase separation.

      We added the following text to the Discussion section of the main text.

      “We emphasize that the results presented in Figure 4 do not directly demonstrate that conserved residues are preferentially located in regions associated with phase separation. Although these regions are more enriched in conserved amino acids, their total sequence length can be smaller than that of non-phase-separating regions. As a result, the absolute number of conserved residues may still be higher outside phase-separating regions. To quantitatively assess this, we calculated, for each protein in the MLO-hProt dataset, the probability p of finding conserved residues within regions contributing to phase separation. These regions include both "driving" and "participating" segments, as defined in Figure 4 of the main text. Figure S11 shows the distribution of p across all proteins. For comparison, we also present the distribution of 1− p, which reflects the probability of finding conserved residues in non-phase-separating regions. While the average value of p exceeds 0.5, indicating a trend toward conserved residues being more frequently located in phase-separating regions, the difference between the two distributions is not statistically significant. Future studies with expanded datasets may be necessary to clarify this trend.”

      Comment 3: It would be useful with an assessment of what controls the authors used to assess whether there are folded domains within their set of IDRs.

      We acknowledge that our previous labeling may have caused some confusion. Protein sequences used in Figures 2 and 3 include both folded and disordered domains. Results presented in these figures were constructed using full-length protein sequences to highlight the similarities and differences in ESM2 scores between folded and disordered domains.

      In contrast, the analyses presented in Figures 4 and 5 focus exclusively on IDRs to examine their role in phase separation.

      To prevent further confusion, we have renamed the dataset used in Figures 2 and 3 as MLO-hProt, emphasizing that the analysis pertains to entire protein sequences. The term MLO-hIDR is now reserved for a new dataset that includes only disordered residues, as used in Figures 4 and 5, and corresponding SI Figures.

      For the dMLO-IDR dataset, all except one amino acid (P40967, residue G592) are annotated as disordered in the MobiDB database (https://mobidb.org/). This database characterizes disordered regions based on a combination of predictive algorithms and experimental data. As illustrated in Figure S5A, 25.5% of the proteins in the dataset have direct experimental evidence supporting their disorderedness. These experimental annotations are derived from a diverse range of techniques (Figure S5B). For the remaining proteins, disorder was predicted by one or more computational tools. Although not all tools were applied to every protein, each protein in the dataset was identified as disordered by at least one method.

      For human proteins, IDRs were identified based on AlphaFold2 pLDDT scores, using a threshold of 70. As established in prior studies [1, 2], the pLDDT score provides a quantitative measure of local structural confidence, with lower values indicating greater structural disorder. IDRs associated with conditional folding or disorder-to-order transitions generally exhibit high pLDDT values (e.g., >70).

      Author response image 2 shows a violin plot of AlphaFold2 pLDDT scores for the various MLO-hIDR groups. The consistently low scores support the conclusion that these regions are structurally disordered.

      We also cross-checked the MLO-hIDR regions against the MobiDB database. As shown in Figure S6, approximately 76% of the proteins in the dataset are predicted to contain disordered regions. Among the non-labeled segments with pLDDT scores ≤ 70, the majority are relatively short, with segments of 1–5 residues accounting for approximately 80%.

      Author response image 2.

      AlphaFold pLDDT scores of hIDRs in different MLO-related groups.

      In addition to renaming the dataset, we also revised the manuscript to highlight the validation of disorderedness in section of Results: Regions Driving Phase Separation Are Enriched with Conserved, Disordered Residues.

      “The presence of evolutionarily conserved disordered residues raises the question of their functional significance. To explore this, we identified disordered regions of MLO-hProt using a pLDDT score less than 70 and partitioned these regions into two categories: drivers (dMLO-hIDR), which actively drive phase separation, and clients (cMLO-hIDR), which are present in MLOs under certain conditions but do not promote phase separation themselves [cite]. Additionally, IDRs from human proteins not associated with MLOs, termed nMLO-hIDR, were included as a control. To enhance statistical robustness, we extended our dataset by incorporating driver proteins from additional species [cite], resulting in the expanded dMLO-IDR dataset. Beyond the pLDDT-based classification, the majority of residues in these datasets are also predicted to be disordered by various computational tools and supported by experimental evidence (Figures S5 and S6).”

      Recommendation 1: The authors use the terms "evolutionary fitness of IDRs" (abstract and p. 5, for example), "fitness of amino acids" (p. 4), and "quantify the fitness of particular residues at specific sites" (p. 5). It is not clear what is meant by fitness in this context.

      We thank the reviewer for pointing out the ambiguity in the term fitness. To enhance clarity, we have replaced “fitness" with “mutational tolerance" to more directly emphasize the evolutionary conservation of specific residues.

      Recommendation 2: The authors write (p. 6) "Previous studies have demonstrated a strong correlation between ESM2 scores and changes in free energy related to protein structure stability". While that may be true, it might be worth noting that ESM2 scores report on the effects of mutations and function more broadly than stability because these models have previously been shown to capture conservation effects beyond stability.

      We fully agree with the reviewer’s comment and have revised the main text accordingly. Specifically, the referenced sentence has been revised and relocated, as shown below.

      “Our analysis demonstrated that HP1_α_’s structured domains consistently yield low ESM2 scores, reflecting strong mutational constraints characteristic of folded regions. These constraints are further evident in the local LLR predictions, as shown in Figure 2B, where we illustrate the folded region G120-T130. Given the functional importance of preserving the 3D of structured domains, mutations with greater detrimental effects are likely to disrupt protein folding substantially. This interpretation is consistent with previous studies reporting a significant correlation between ESM2 LLRs and changes in free energy associated with protein structural stability [cite].”

      Recommendation 3: p. 10: The authors write "To exclude sequences that no longer qualify as homologs, we filtered for sequences with at least 20% identity to the reference". How did they decide on 20% and why? And over which residues are these 20% calculated.

      We apologize for the earlier lack of clarity. Sequence alignment was performed using the full-length protein sequences, encompassing both folded and disordered regions. For each sequence, we calculated the percent identity by counting the number of positions, denoted as n, at which the amino acid matches the reference. The percent identity was then computed as n/N, where N represents the total length of the aligned reference sequence. This total includes residues in folded and disordered regions, as well as gap positions introduced during alignment.

      We updated the Methods section of the main text to clarify.

      “We performed multi-sequence alignment (MSA) analysis using HHblits from the HH-suite3 software suite [citations], a widely used open-source toolkit known for its sensitivity in detecting sequence similarities and identifying protein folds. HHblits builds MSAs through iterative database searches, sequentially incorporating matched sequences into the query MSA with each iteration. Sequence alignment was performed using the full-length protein sequences, encompassing both folded and disordered regions.

      ...

      To refine alignment quality by focusing on closely related homologs, we filtered out sequences with ≤ 20% identity to the query, excluding weakly related sequences where only short segments show similarity to the reference. For each sequence, we calculated the percent identity by counting the number of positions, denoted as n, at which the amino acid matches the reference. The percent identity was then computed as n/N, where N represents the total length of the aligned reference sequence. This total includes residues in folded and disordered regions, as well as gap positions introduced during alignment.”

      We selected a 20% sequence identity threshold to balance inclusion of true homologs with exclusion of distant matches that may not share functional relevance. To determine this cutoff, we compared identity thresholds of 0%, 10%, 20%, and 40% and examined the resulting distributions of conservation and ESM2 scores across aligned residues for MLO-hProt dataset (Author response image 3). Thresholds of 10%, 20%, and 40% produced qualitatively similar results, with a consistent correspondence between low ESM2 scores and high conservation. Lower thresholds introduced highly divergent sequences that added noise to the alignment, resulting in reduced overall conservation scores. In contrast, higher thresholds excluded homologs with potentially meaningful conservation, particularly in disordered regions where conservation scores tend to be relatively low.

      Author response image 3.

      Histograms of the ESM2 score and the conservation score, presented in a format consistent with Figure 3B of the main text. The conservation scores were computed using aligned sequences with identity thresholds of ≥0, ≥10%, ≥20%, and ≥40% (left to right). Contour lines represent different levels of −log_P_(CS,ESM2), where P is the joint probability density of conservation score (CS) and ESM2 score. Contours are spaced at 0.5-unit intervals, highlighting regions of distinct density.

      Recommendation 4: In their description of "motif" searching algorithm (p. 20) I think that the search algorithm would give a different result whether the search is performed N->C or C->N (because the first residue (i) needs to have a score <0.5 but the last (j) could have a score >0.5 as long as the average is below 0.5. Is that correct? And if so, why did they choose an asymmetric algorithm? .

      We thank the reviewer for highlighting the asymmetry in our motif-search algorithm.

      To investigate this issue, we repeated the algorithm starting from the C-terminus and compared the resulting motifs with those obtained from the N-terminal scan. We found that the two sets of motifs overlap entirely: each motif identified from the C-terminal direction has a corresponding counterpart from the N-terminal scan. However, the motifs are not identical. The directionality of the search introduces additional amino acids—referred to here as peripheral residues—at the motif boundaries, which differ between the two sets.

      As shown in Author response image 4, the number of peripheral residues is small relative to the total motif length.

      To eliminate asymmetry and ambiguity, we have revised our method to perform bidirectional scans—from both the N- and C-termini—and define each motif as the overlapping region identified by both directions. This approach emphasizes the conserved core and avoids the inclusion of spurious terminal residues. The updated procedure is described in Methods: Motif Identification.

      “To identify motifs within a given IDR, we implemented the following iterative procedure. Starting from either the N– or C–terminus of the sequence, we first locate the initial residue i whose ESM2 score falls within 0.5. From i, residues are sequentially appended…”

      Author response image 4.

      Number of peripheral residues and their relative length to the full-motif length identified from both sides. (A). The unique motifs identified from N-to-C terminal direction. (B) The unique motifs identified from C-to-N terminal direction.

      “…in the direction toward the opposite terminus until the segment’s average ESM2 score exceeds 0.5; the first residue to breach this threshold is denoted j. The segment (i,i+1,..., j−1) is then recorded as a candidate motif. This process repeats starting from j until the end of the IDR is reached.

      We perform this full procedure independently from both termini and designate the final motif as the intersection of the two candidate-motif sets. This bidirectional overlap strategy excludes terminal residues that might transiently satisfy the average-score criterion only due to adjacent low-scoring regions, thereby isolating the conserved core of each motif. All other residues—those not included in either directional pass—are classified as non-motif regions, minimizing peripheral artifacts.”

      Accordingly, we have updated the Supplementary material: ESM2_motif_with_exp_ref.csv for the new identified motifs commonly exited from both N-terminal and C-terminal searches. Minor changes were observed in the set of motifs as being discussed, but these do not affect the main conclusions. Figures 5C, 5D, and S6 have been revised accordingly.

      Reviewer #2:

      Summary:

      Unfortunately, I do not believe that the results can be trusted. ESM2 has not been validated for IDRs through experiments. The authors themselves point out its little use in that context. In this study, they do not provide any further rationale for why this situation might have changed. Furthermore, they mention that experimental perturbations of the predicted motifs in in vivo studies may further elucidate their functional importance, but none of that is done here. That some of the motifs have been previously validated does not give any credibility to the use of ESM2 here, given that such systems were probably seen during the training of the model.

      We thank the reviewer for their detailed and thoughtful critique of our manuscript. We recognize the importance of careful model validation, especially in the context of IDRs, and appreciate the opportunity to clarify the scope and rationale of our study. Below, we respond point-by-point to the main concerns.

      (1) The use of ESM2 is not validated for IDRs, and the authors provide no rationale for its applicability in this context.

      We thank the reviewer for raising this important point.

      First, we emphasize that ESM2 is a probabilistic language model trained entirely on amino acid sequences, without any structural supervision. The model does not receive any input about protein structure — folded or disordered — during training. Instead, it learns to estimate the likelihood of each amino acid at a given position, conditioned on the surrounding sequence context. This makes ESM2 agnostic to whether a sequence is folded or disordered; the model’s capacity to identify patterns of residue usage arises solely from the statistics of natural sequences.

      As such, ESM2 is not inherently biased toward folded proteins, even though previous studies have demonstrated its usefulness in identifying conserved and functionally constrained residues in structured domains [3–9]. These findings support the broader utility of language models for uncovering evolutionary constraints — and by extension, suggest that similar signatures could exist in IDRs, particularly if they are under functional selection.

      Indeed, if certain residues or motifs in IDRs are conserved due to their importance in biological processes (e.g., phase separation), we would expect such selection to be reflected in sequence-based features, which ESM2 is designed to detect. The model’s applicability to IDRs, then, is a natural extension of its core probabilistic architecture.

      To further evaluate this, we carried out an independent in silico validation using multiple sequence alignments (MSAs). This analysis allowed us to compute the evolutionary conservation of individual amino acids without any reliance on ESM2. We then compared these conservation scores to ESM2 scores and found a strong correlation between the two. This provides direct, quantitative support for the idea that ESM2 is capturing biologically meaningful sequence constraints — even in disordered regions.

      While we agree that experimental testing would ultimately provide the most compelling validation, we believe that our MSA-based comparison constitutes a strong and arguably ideal computational validation of the model’s predictions. It offers an orthogonal measure of evolutionary pressure that confirms the biological plausibility of ESM2 scores.

      We added the following text in the introduction to highlight the applicability of ESM2 to IDRs.

      “While protein language models have been widely applied to structured proteins, it is important to emphasize that these models themselves are not inherently biased toward folded domains. For example, the Evolutionary Scale Model (ESM2) [cite] is trained as a probabilistic language model on raw protein sequences, without incorporating any structural or functional annotations. It operates by estimating the likelihood of observing a given amino acid at a particular position, conditioned on the entire surrounding sequence context. This unsupervised learning paradigm enables ESM2 to capture statistical patterns of residue usage and evolutionary constraints without relying on explicit structural information. Thus, the success of ESM2 in modeling fitness landscapes of folded proteins reflects the model’s ability to learn sequence-level constraints imposed by natural selection — a property that is equally applicable to IDRs if those regions are also under functional selection. Indeed, protein language models are increasingly been used to analyze variant effects in IDRs [cite].”

      (2) There is no experimental validation of the ESM2-based predictions in this study.

      We agree that experimental validation would provide definitive support for the utility of ESM2 in IDRs, and we explicitly state this as a limitation in the revised manuscript as quoted below.

      “Limitations: Despite the promising findings, our study has several limitations. Most notably, our analysis is purely computational, relying on ESM2-derived predictions and sequence-based conservation without accompanying experimental validation. While the strong correlation between ESM2 scores and evolutionary conservation provides compelling evidence that the identified motifs are functionally constrained, the precise biological roles of these motifs remain uncharacterized. ESM2 is well-suited for highlighting regions under selective pressure, but it does not provide mechanistic insights into how conserved motifs contribute to specific molecular functions such as phase separation, molecular recognition, or dynamic regulation. Determining these roles will require targeted experimental investigations, including mutagenesis and biophysical characterization.”

      In addition, we revised the manuscript title from “Protein Language Model Identifies Disordered, Conserved Motifs Driving Phase Separation" to “Protein Language Model Identifies Disordered, Conserved Motifs Implicated in Phase Separation". This revision softens the original claim to better reflect the absence of direct experimental evidence for the motifs’ role in phase separation.

      However, we also emphasize that the goal of our study is not to claim definitive predictive power, but rather to explore whether ESM2-derived mutational profiles align with known biological features of IDRs — and in doing so, to generate new, testable hypotheses.

      In addition, while no in vivo experiments were performed, our study does include an in silico validation step, as detailed in the response to the previous comment. The strong correlation between ESM2 scores and conservation scores provides direct support for the utility of ESM2 in identifying residues under evolutionary constraint in disordered regions.

      (3) The overlap between predicted motifs and known ones may be due totraining data leakage.

      We respectfully clarify that training data leakage is not possible in this case, as ESM2 is trained using unsupervised learning on raw protein sequences alone. The model has no access to experimental annotations, functional labels, or knowledge of which motifs are involved in phase separation. It only models statistical sequence patterns derived from evolutionarily observed proteins.

      Therefore, any agreement between ESM2-derived predictions and previously validated motifs arises not from memorization of experimental data, but from the model’s ability to learn meaningful sequence constraints from the natural distribution of proteins.

      (4) The authors should revamp the study with a testable predictive framework.

      We respectfully suggest that a full revamp is not necessary or appropriate in this context.

      As outlined in our previous responses, we believe that certain misunderstandings about the nature and capabilities of ESM2 may have influenced the reviewer’s assessment.

      Importantly, both Reviewer 1 and Reviewer 3 express strong support for the significance and novelty of this work, and recommend publication following minor revisions.

      In this context, we believe the manuscript provides a useful contribution as a first step toward understanding disordered regions using language models, and that it has value even in the absence of direct experimental testing. We have now better positioned the manuscript in this light, clarified limitations, and suggested concrete next steps for follow-up research.

      We hope these clarifications and revisions address the reviewer’s concerns, and we thank them again for helping us strengthen the framing, rigor, and clarity of our study.

      Reviewer #3:

      Summary:

      This is a very nice and interesting paper to read about motif conservation in protein sequences and mainly in IDRs regions using the ESM2 language model. The topic of the paper is timely, with strong biological significance. The paper can be of great interest to the scientific community in the field of protein phase transitions and future applications using the ESM models. The ability of ESM2 to identify conserved motifs is crucial for disease prediction, as these regions may serve as potential drug targets. Therefore, I find these findings highly significant, and the authors strongly support them throughout the paper. The work motivates the scientific community towards further motif exploration related to diseases.

      Strengths:

      (1) Revealing conserved regions in IDRs by the ESM-2 language model.

      (2) Identification of functionally significant residues within protein sequences, especially in IDRs.

      (3) Findings supported by useful analyses.

      We appreciate the reviewer’s thoughtful words and support for our work.

      Weaknesses:

      (1) Lack of examples demonstrating the potential biological functions of these conserved regions.

      As detailed in the Response to Recommendation 6, we conducted additional analyses to connect the identified conserved regions with their biological functions.

      (2) Very limited discussion of potential future work and of limitations.

      We have substantially revised the Conclusions and Discussion section to provide a detailed analysis of the study’s limitations and to propose several directions for future research, as elaborated in our Response to Recommendation 5 below.

      Recommendation 1: The authors describe the ESM2 score such that lower scores are associated with conserved residues, stating that "lower scores indicate higher mutational constraint and reduced flexibility, implying that these residues are more likely essential for protein function, as they exhibit fewer permissible mutational states." However, when examining intrinsically disordered regions (IDRs), which are known to drive phase separation, I observe that the ESM2 score is relatively high (Figure 3C, pLDDT < 50, and Supplementary Figure S2). Could the authors clarify how this relatively high score aligns with the conservation of motifs that drive phase separation?

      We thank the reviewer for this insightful comment. We would like to clarify that most amino acids in the IDRs are not conserved, even for IDRs that contribute to phase separation. Only a small set of amino acids in these IDRs, which we term as motifs, are evolutionarily conserved with low ESM2 scores. Therefore, the ESM2 scores exhibit bimodal distribution at high and low values, as shown in Figures 4A and 4C of the manuscript. When averaged over all the amino acids, the mean ESM2 scores, plotted in Figure 3C, are relatively high due to dominant population of non-conserved amino acids.

      Recommendation 2: The authors mention: "We first analyzed the relationship between ESM2 and pLDDT scores for human Heterochromatin Protein 1 (HP1, residues 1-191)". I appreciate this example as a demonstration of amino acid conservation in IDRs. However, it is questionable whether the authors could provide some more examples to support amino acid conservation particularly within the IDRs along with lower ESM2 score (e.g, Could the authors provide some additional examples of "conserved disordered" regions in various proteins which are associated with relatively low ESM2 score as appear in Figure 2A).

      We thank the reviewer for this valuable suggestion. We want to kindly noted that the conserved residues on IDRs are prevalent as indicated in Figures 2D and 3B. To further illustrate the prevalence of “conserved disordered” regions, we generated ESM2 versus pLDDT score plots for the full dMLO–hProt dataset (82 proteins) in Figure S2. In these plots, residues with pLDDT ≤ 70 are highlighted in blue to denote structural disorder (dMLO-hIDR), and these disordered residues with ESM2 score ≤ 1.5 are shown in purple to indicate conserved disordered segments.

      Recommendation 3: Could the authors plot a Violin conservation score plot for Figure 4A to emphasise the relationship between ESM2 scores and conservation scores of disordered residues?

      We thank the reviewer for this suggestion. We included a violin plot illustrating the distribution of conservation scores for disordered residues across all four IDR groups, shown in Author response image 5. Consistent with the findings in Figure 4A, the phase separation drivers (dMLO-hIDR and dMLOIDR) exhibit a higher proportion of conserved amino acids compared to the client group (cMLOhIDR).

      We also note that the nMLO-hIDR group may contain conserved residues due to functions unrelated to MLO formation, which could contribute to the higher observed levels of conservation in this group.

      Author response image 5.

      Violin plots illustrating the distribution of conservation scores for disordered residues across the nMLO–hIDR, cMLO–hIDR, dMLO–hIDR, and dMLO–IDR datasets. Pairwise statistical comparisons were conducted using two-sided Mann–Whitney U tests on the conservation score distributions (null hypothesis: the two groups have equal medians). P-values indicate the probability of observing the observed rank differences under the null hypothesis. Statistical significance is denoted as follows: ***: p < 0.001; **: p < 0.01; *:p < 0.05;

      Recommendation 4: It will be appreciated if the authors could add to Figure 4 Violin plots, a statistical comparison between the different groups.

      We thank the reviewer for this valuable suggestion. We included the p-values for Figures 4A and 4C to quantify the statistical significance of differences in the distributions.

      Most comparisons are highly significant (p < 0.001), while the largest p-value (p = 0.089) between the conservation score of driving and non-participating groups (Figure 4C) still suggests a marginally significant trend.

      Recommendation 5: Could the authors expand more on potential future research directions using ESM2, given its usefulness in identifying conserved motifs? Specifically, how do the authors envision conserved motifs will contribute to future discoveries/applications/models using ESM (e.g, discuss the importance of conserved motifs, especially in IDRs motifs, in protein phase transition prediction in relation to diseases).

      We thank the reviewer for this insightful comment. To further assess the functional relevance of the conserved motifs, we incorporated pathogenic variant data from ClinVar [10, 11] to evaluate mutational impacts. As shown in Figure S12A and B, a substantial number of pathogenic variants in MLO-hProt proteins are associated with low ESM2 LLR values. This pattern holds for both folded and disordered residues.

      Moreover, we observed that variants located within motifs are more frequently pathogenic compared to those outside motifs (Figure S12C). In the main text, motifs were defined only for driver proteins; however, the available variant data for this subset are limited (6 data points). To improve statistical power, we extended motif identification to include both client and driver human proteins, following the same methodology described in the main text. Consistent with previous findings, variants within motifs in this expanded set are also more likely to be pathogenic. These results further support the functional importance of both low ESM2-scoring residues and the conserved motifs in which they reside.

      The following text was added in the Discussion section of the manuscript to discuss these results and outline future research directions.

      “Several promising directions could extend this work, both to refine our mechanistic understanding and to explore clinical relevance. One avenue is testing the hypothesis that conserved motifs in scaffold proteins act as functional stickers, mediating strong intermolecular interactions. This could be evaluated computationally via free energy calculations or experimentally via interaction assays. Deletion of such motifs in client proteins may also reduce their partitioning into condensates, illuminating their roles in molecular recruitment.

      To explore potential clinical implications, we analyzed pathogenicity data from Clin-Var [10, 11]. As shown in Figure S12A, single-point mutations with low LLR values—indicative of constrained residues—are enriched among clinically reported pathogenic variants, while benign variants typically exhibit higher LLR values. Moreover, mutations within conserved motifs are significantly more likely to be pathogenic than those in non-motif regions (Figure S12B). These findings highlight the potential of ESM2 as a first-pass screening tool for identifying clinically relevant residues and suggest that the conserved motifs described here may serve as priorities for future studies, both mechanistic and therapeutic.”

      Moreover, the functional significance of conserved motifs, particularly their implications in disease and pathology, warrants further investigation. As an initial analysis, we incorporated ClinVar pathogenic variant data [citation] to assess mutational effects within our datasets. As illustrated in Figure R12A, single-point mutations with low LLR values are enriched among clinically reported pathogenic variants, whereas benign variants are more commonly associated with higher LLR values. Notably, mutations within conserved motifs are substantially more likely to be pathogenic compared to those in non-motif regions. These findings highlight the potential of ESM2 as a firstpass tool for identifying residues of clinical relevance. The conserved motifs identified here may be prioritized in future studies aimed at elucidating their biological roles and evaluating their viability as therapeutic targets.

      Recommendation 6: The authors mention: "Our findings provide strong evidence for evolutionary pressures acting on specific IDRs to preserve their roles in scaffolding phase separation mechanisms, emphasizing the functional importance of entire motifs rather than individual residues in MLO formation." They also present a word cloud of functional motifs in Figure 5D. Although it makes sense that evolutionarily conserved motifs, especially within the IDRs regions, act as functional units, I think there is no direct evidence for such functionality (e.g., examples of biological pathways associated with IDRs and phase separation). Hence, there is no justification to write in the figure caption: "ESM2 Identifies Functional Motifs in driving IDRs" unless the authors provide some examples of such functionality. This will even make the paper stronger by establishing a clear connection to biological pathways, and hence these motifs can serve as potential drug targets.

      We thank the reviewer for this insightful suggestion. We have replaced “functional motifs" with “conserved motifs" in the figure caption.

      Identifying the precise biological pathways associated with the conserved motifs is a complex task and a comprehensive investigation lies beyond the scope of this study. Nonetheless, as an initial effort, we explored the potential functions of these motifs using annotations available in DisProt (https://disprot.org/).

      DisProt is the leading manually curated database dedicated to IDPs, providing both structural and functional annotations. Expert curators compile experimentally validated data, including definitions of disordered regions, associated functional terms, and supporting literature references. Author response image 6 presents a representative DisProt entry for DNA topoisomerase 1 (UniProt ID: P11387), illustrating its structural and biological annotation.

      For each motif, we located the corresponding DisProt entry and assigned a functional annotation based on the annotated IDR from which the motif originates. We emphasize that this functional assignment should be regarded as an approximation. Because experimental annotations often pertain to the entire IDR, regions outside the motif may also contribute to the reported function.

      Nevertheless, the annotations provide valuable insights.

      Author response image 6.

      Screenshot of information provided by the DisProt database. Detailed annotations of biological functions and structural features, along with experimental references, are accessible via mouse click.

      Approximately 50% of ESM2-predicted IDR motifs lack functional annotations. Among those that are annotated, motifs from the dMLO-IDR dataset are predominantly associated with “molecular condensate scaffold activity,” followed by various biomolecular binding functions (Author response image 7A). These findings support the role of these motifs in MLO formation.

      For comparison, we applied the same identification procedure (described in Methods: Motif Identification) to motifs from the nMLO-hIDR dataset. In contrast to the dMLO-IDR motifs, these exhibit a broader range of annotated functions related to diverse cellular processes. Collectively, these results suggest that motifs identified by ESM2 are aligned with biologically relevant functions captured in current databases.

      Finally, as illustrated in Figure S12 and discussed in the Response to Recommendation 5, variants occurring within identified motifs are more likely to be pathogenic than those in non-motif regions, further underscoring their functional importance.

      Author response image 7.

      Biological functions of ESM2-predicted motifs. (A) Distribution of biological functions associated with all identified motifs from dMLO-IDR driving groups. (B) Distribution of biological functions associated with all identified motifs from nMLO-hIDR groups.

      Recommendation 7: In Figure 2C the authors present FE (I assume this is free energy), some discussion about the difference in the free energy referring to the "a" region is missing (i.e. both "Folded" and "Disordered" regions are associated with low ESM score but with low and high free energy (FE), respectively.

      We thank the reviewer for the comments. FE indeed abbreviates free energy. To improve clarify and avoid confusion, we have updated all figure captions by replacing “FE” with “−logP” to explicitly denote the logarithm of probability in the contour density plots.

      We used “a" in Figures 2C and 2D to refer to regions with low ESM2 scores, which appears a local minimum in both plots. Since most residues in folded regions are conserved, region a has lower free energy than region b in Figure 2C. On the other hand, as most residues in disordered regions are not conserved, as we elaborated in Response to Recommendation 1, region a has lower population and higher free energy than region b.

      To avoid confusion, we have replaced “a" and “b" in Figure 2D with “I" and “II".

      Recommendation 8: Figure S2: It would be useful to plot the same figure for structured and disordered regions as well.

      We are not certain we fully understood this comment, as we believe the requested analysis has already been addressed. In Figure S2, we used the AlphaFold2 pLDDT score to represent the structural continuum of different protein regions, where residues with pLDDT > 70 (red and lightred bars) are classified as structured, while those with pLDDT ≤ 70 (blue and light-blue bars) are classified as disordered.

      Minor suggestion 1: Could the authors clarify the meaning of the abbreviation "FE" in the colorbar of the contour line? I assume this is free energy.

      We have updated all contour density plot figure captions by replacing “FE” with “−logP” to explicitly denote the logarithm of probability.

      Minor suggestion 2: In Figure 2A - do the authors mean "Conserved folded" instead of just "Folded"? If so, could the authors indicate this?

      We thank the reviewer for this comment. The ESM2 scores indeed suggest that, within folded regions, there may be multiple distinct groups exhibiting varying degrees of evolutionary conservation. However, as our primary focus is on IDRs, we chose not to investigate these distinctions further.

      Figure 2A illustrates a randomly selected folded region based on AlphaFold2 pLDDT scores.

      References

      (1) Ruff, K. M.; Pappu, R. V. AlphaFold and Implications for Intrinsically Disordered Proteins. Journal of Molecular Biology 2021, 433, 167208.

      (2) Alderson, T. R.; Pritišanac, I.; Kolaric, Ð.; Moses, A. M.; Forman-Kay, J. D. Systematic´ Identification of Conditionally Folded Intrinsically Disordered Regions by AlphaFold2. Proceedings of the National Academy of Sciences of the United States of America, 120, e2304302120.

      (3) Brandes, N.; Goldman, G.; Wang, C. H.; Ye, C. J.; Ntranos, V. Genome-Wide Prediction of Disease Variant Effects with a Deep Protein Language Model. Nature Genetics 2023, 55, 1512–1522.

      (4) Lin, Z. et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. 2023.

      (5) Zeng, W.; Dou, Y.; Pan, L.; Xu, L.; Peng, S. Improving Prediction Performance of General Protein Language Model by Domain-Adaptive Pretraining on DNA-binding Protein. Nature Communications 2024, 15, 7838.

      (6) Gong, J. et al. THPLM: A Sequence-Based Deep Learning Framework for Protein Stability Changes Prediction upon Point Variations Using Pretrained Protein Language Model. Bioinformatics 2023, 39, btad646.

      (7) Lin, W.; Wells, J.; Wang, Z.; Orengo, C.; Martin, A. C. R. Enhancing Missense Variant Pathogenicity Prediction with Protein Language Models Using VariPred. Scientific Reports 2024, 14, 8136.

      (8) Saadat, A.; Fellay, J. Fine-Tuning the ESM2 Protein Language Model to Understand the Functional Impact of Missense Variants. Computational and Structural Biotechnology Journal 2025, 27, 2199–2207.

      (9) Chu, S. K. S.; Narang, K.; Siegel, J. B. Protein Stability Prediction by Fine-Tuning a Protein Language Model on a Mega-Scale Dataset. PLOS Computational Biology 2024, 20, e1012248.

      (10) Landrum, M. J.; Lee, J. M.; Riley, G. R.; Jang, W.; Rubinstein, W. S.; Church, D. M.; Maglott, D. R. ClinVar: Public Archive of Relationships among Sequence Variation and Human Phenotype. Nucleic Acids Research 2014, 42, D980–D985.

      (11) Landrum, M. J. et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Research 2018, 46, D1062–D1067.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Tateishi et al. report a Tn-seq-based analysis of genetic requirements for growth and fitness in 8 clinical strains of Mycobacterium intracellulare Mi), and compare the findings with a type strain ATCC13950. The study finds a core set of 131 genes that are essential in all nine strains, and therefore are reasonably argued as potential drug targets. Multiple other genes required for fitness in clinical isolates have been found to be important for hypoxic growth in the type strain.

      Strengths:

      The study has generated a large volume of Tn-seq datasets of multiple clinical strains of Mi from multiple growth conditions, including from mouse lungs. The dataset can serve as an important resource for future studies on Mi, which despite being clinically significant remains a relatively understudied species of mycobacteria.

      Thank you for reviewing our manuscript and finding the significance of our data.

      Weaknesses:

      The paper lacks clarity in data presentation and organization. For example, some of the key data on cfu counts of clinical Mi strains in a mouse model can be presented along with the Tn-seq dataset in Figure 6, the visualization of which can be improved with volcano plots. etc. Improvement in data visualization is perhaps necessary throughout the paper.

      Thank you for the comment on the data presentation of in vivo studies. We previously revealed the time-course data on CFUs, animal survival, and tissue pathology from the pure strains (Tateishi Y. BMC Microbiol. 2023; new Ref #22) . Based on these data, we assumed that we would be able to harvest sufficient number of colonies from mice infected with M.i.27 or M.i.198, and we performed in vivo TnSeq studies using these two strains. We have referred to our previous publication (new Ref #22) on the virulence of MAC-PD strains used in this study for mice in the revised manuscript (page12, line 212).

      The data of CFU counts were shown in new Supplementary Fig. 3b. In the manuscript text, we explained as follows (page 12, lines 212-216): “The time course of the changes in the bacterial burden showed a pattern similar to those of the wild-type strains M.i.198 and M.i.27, respectively, except that it was not possible to harvest sufficient colonies (as few as 104/mouse) in the few mice infected with the M.i.27 Tn mutant strain in week 8 and week 16 (page 12, lines 212-216; new Supplementary Fig, 3b, new Supplementary Table 8)”.

      Regarding the suggestion to include volcano plots, we appreciate the proposal but chose not to adopt this format, as the main aim of this study was to identify genes commonly required for in vitro and in vivo fitness across multiple M. intracellulare strains, rather than to highlight differential genetic requirements within a single strain. Volcano plots are useful for visualizing differential values and significance for a single dataset but are less suited for cross-strain comparisons of shared gene sets. Our approach is aligned with the methodology used by Cary et al. (PLoS Pathog. 2018; new Ref#8), who similarly focused on identifying conserved genetic requirements across M. tuberculosis genotypes without employing volcano plots.

      [References]

      Tateishi, Y. et al. Virulence of Mycobacterium intracellulare clinical strains in a mouse model of lung infection - role of neutrophilic inflammation in disease severity. BMC Microbiol 23, 94 (2023).

      Carey, A.F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14, e1006939 (2018).

      The primary claim of the study that the clinical strains are better adapted for hypoxic growth is not well-supported by the data presented in Figure 7.

      Thank you for the comments on the difference of adaptation for hypoxic growth between ATCC13950 and clinical MAC-PD strains. To clarify, growth rates shown in Figure 7 were calculated at the inflection point (midpoint) of the growth curves, which were modeled using a four-parameter logistic (4P logistic) model. As described in the Discussion, we found the pattern of hypoxic adaptation characteristics of the clinical MAC-PD strains from the growth curve forms. Taking into consideration the impact of growing bacteria on the disease progression of MAC-PD, the slow growth with early entry to log phase implicates the continuous impact on the infected hosts during logarithmic bacterial growth, which may be involved in the persistent and steadily progressive illness of MAC-PD for years in humans.

      Unlike time-lapse imaging assay, the completely seamless sampling of culture for CFU assay is impossible. Nevertheless, we collected sufficient timepoints to allow reliable curve fitting with the 4P logistic model and thus consider our growth data to represent a valid approximation of continuous growth dynamics.

      Regarding the suggestion of mixed culture experiments, we agree that such studies could be informative. However, co-culture conditions introduce additional variables, including inter-strain competition or synergy, which can obscure the specific contributions of hypoxic adaptation in each strain. Therefore, we believe that the current approach using monoculture growth curves under defined oxygen conditions offers a clearer interpretation of strain-specific hypoxic responses.

      The title of the paper is misleading as the study doesn't provide any mechanistic aspect of hypoxic adaptation in Mi.

      Thank you for the comment on the article title. We admit that this paper does not directly reveal the mechanism of hypoxic adaptation in M. intracellulare strains but provides the data on the different pattern of hypoxic adaptation between M. intracellulare strains in relation to the difference of genetic requirements. Therefore, we revised the title as ”Functional genomics reveals strain-specific genetic requirements conferring hypoxic growth in Mycobacterium intracellulare

      Reviewer #2 (Public Review):

      Summary:

      In the study titled "Functional genomics reveals the mechanism of hypoxic adaptation in nontuberculous mycobacteria" by Tateishi et al., the authors have used TnSeq to identify the common essential and growth-defect-associated genes that represent the genomic diversity of clinical M. intracellulare strains in comparison to the reference type strain. By estimating the frequency of Tn insertion, the authors speculate that genes involved in gluconeogenesis, the type VII secretion system, and cysteine desulfurase are relatively critical in the clinical MAC-PD strains than in the type strain, both for the extracellular survival and in a mouse lung infection model.

      Based on their analysis, the authors proposed to identify the mechanism of hypoxic adaptation in nontuberculous mycobacteria (NTM) which offer promising drug targets in the strains causing clinical Mycobacterium avium-intracellulare complex pulmonary disease (MAC-PD).

      Strengths:

      A major strength of the manuscript is the performance of the exhaustive set of TnSeq experiments with multiple strains of M. intracellulare during in vitro growth and animal infection.

      Thank you for reviewing our manuscript and acknowledging the performance of producing datasets in this study.

      Weaknesses:

      (1) The study suffers from the authors' preconceived bias toward a small subset of genes involved in hypoxic pellicle formation in ATCC13950.

      Thank you for the comment regarding a potential bias toward a small subset of genes involved in hypoxic pellicle formation in ATCC13950. The rationale for the importance of hypoxic pellicle genes in clinical MAC-PD strains is that the profiles of genetic requirements in each bacterial strain reflect the adaptation to the environment in which each strain lives. When the strains are placed in a special environment, they can adapt to the situation by altering the profiles of genetic requirements, resulting in the remodeling of metabolic pathways.

      In this study, we found that several of these pellicle-associated genes also showed increased genetic requirement in the clinical MAC-PD strains, suggesting a possible overlap in hypoxic adaptation mechanisms. We did not insist that clinical MAC-PD strains showed an increase of genetic requirements in all genes of hypoxic pellicle formation. Except for the gene sets involved in hypoxic pellicle formation in ATCC13950, almost no global information has been revealed on the pathogenesis of nontuberculous mycobacterial disease, which differs from the case of tuberculosis. Along with this finding, we investigated the effect of gene silencing on bacterial growth and preferential hypoxic adaptation observed by growth kinetics in clinical MAC-PD strains compared to ATCC13950. At first glance, to focus on the gene sets of hypoxic pellicle formation seems to be “biased”, but we proceeded this research step by step based on our achievements. We consider these data provide valuable information on the pathogenesis of MAC-PD by clinical MAC-PD strains.

      We have added the description of the rationale for the importance of hypoxic pellicle genes in clinical MAC-PD strains in the revised manuscript (page 9, lines 148-155).

      (2) An important set of data with the ATCC13950 reference strain is missing in the mouse infection study. In the absence of this, it is difficult to establish whether the identified genes are critical for infection/intracellular proliferation, specifically in the clinical isolates that are relatively more adapted for hypoxia.

      Thank you for the comment on the necessity of setting ATCC13950 as a control strain of mouse TnSeq experiment. To set ATCC13950 as a control strain in mouse infection experiments would be ideal. However, we proved that ATCC13950 is eliminated within 4 weeks of infection (Tateishi Y. BMC Microbiol. 2023; new Ref#22). That means, it is impossible to perform in vivo TnSeq study due to the inability to harvest sufficient number of colonies.

      [Reference]

      Tateishi, Y. et al. Virulence of Mycobacterium intracellulare clinical strains in a mouse model of lung infection - role of neutrophilic inflammation in disease severity. BMC Microbiol 23, 94 (2023).

      (3) Statistical enrichment analysis of gene sets by GSEA wrongly involves genes required for hypoxic pellicle formation in ATCC13950 together with the gene sets found essential in the clinical MAC-PD strains, to claim that a significant % of genes belong to hypoxia-adaptation pathways. It could be factually incorrect because a majority of these might overlap with those found critical for the in vitro survival of MAC-PD strains (and may not be related to hypoxia).

      Thank you for the suggestion on the re-analysis of gene enrichment analysis of genes required for M.i.27 and M.i.198 in vivo infection, individually with genes involved in hypoxic pellicle formation in ATCC13950 and with those showing increased genetic requirements in clinical MAC-PD strains compared to ATCC13950.

      About 50% (92 and 94 out of 181 genes through Day 1 to Week 16 and Week4 to Week16 of infection) and 40% (70 and 79 genes out of 179 through Day 1 to Week 16 and Week 4 to Week 16 of infection) of genes required for hypoxic pellicle formation in ATCC13950 were listed as enriched in genes required for mouse lung infection in M.i.27 and M.i.198, respectively. In addition, about 42% (54 and 56 out of 128 genes through Day 1 to Week 16 and thorough Week 4 to Week 16 of infection) and 40% (79 and 68 out of 179 genes through Day 1 to Week 16 and through Week 4 to Week 16 of infection) of genes showing increased requirements in clinical MAC-PD strains compared to ATCC13950 were listed as enriched in genes required for mouse lung infection in M.i.27 and M.i.198, respectively.

      These data indicate that about 40-50% genes required for in vitro hypoxic pellicle formation are shared with the genes required for in vivo bacterial growth, and that about 40% strain-dependent/accessory essential genes are shared with the genes required for in vivo bacterial growth. Thus, the genes required for the growth of M.i.27 and M.i.198 in mouse lungs are enriched individually with those involved in hypoxic pellicle formation in ATCC13950, and with the gene sets found critical for in vitro growth. We have added the description of the reanalyzed data of GSEA in the manuscript (pages 16-17, lines 287-290). And the details of reanalyzed data of GSEA have been shown in Supplementary Fig. 5 and 6 as well as Supplementary Tables 15 and 16.

      (4) Validation of mouse infection experiments with individual mutants is missing.

      Thank you for the suggestion on the validation of the TnSeq hit genes on the in vivo survival. We acknowledge the importance of validating the TnSeq-hit genes by constructing knockout mutants. We have recently succeeded in constructing the vectors for making knockout strains of M. intracellulare (Tateishi. Microbiol Immunol. 2024). We will proceed to the infection experiment of knockout mutants by using our system for constructing them.

      [Reference]

      Tateishi Y. et al. Construction of knockout mutants in Mycobacterium intracellulare ATCC13950 strain using a thermosensitive plasmid containing negative selection marker rpsL. Microbiol Immunol 68, 339-347 (2024).

      (5) Phenotypes with TnSeq and CRISPRi-based KD exhibit poor correlation with misleading justifications by the authors.

      Thank you for the comment on the issue of inconsistent results between TnSeq and CRISPR-i based knockdown. We acknowledge that some inconsistencies were observed, particularly among strain-dependent/accessory essential or growth-defect-associated genes. By contrast, we found consistent data between TnSeq and CRISPR-i based knockdown results among universal essential genes such as glcB, inhA, gyrB and embB. Although the mechanism has not been fully proven yet, we consider that such inconsistent phenotypes with TnSeq and CRISPR- based knockdown may be related to the recently revealed bypass mechanism of gene essentiality which is characteristically observed in strain-specific/accessory essential genes (Rosconi F. Nat Micorbiol. 2022; new Ref#14). They suggested this bypass mechanism of gene essentiality in strain-dependent/accessory essential or growth-defect-associated genes from the ‘forced-evolution experiments’ of 36 clinical Streptococcus pneumoniae strains. For example, knockout mutants are successfully recovered from transformation experiments targeting strain-specific/accessory essential genes in TnSeq such as cytidine monophosphate kinase cmk, formate tetrahydrofolate ligase fhs and farnesyl-diphosphate synthase fpp. The bypassing of gene essentiality can be suggested by observing suppressor mutations and synthetic lethality in knockout strains. By contrast, universal essential genes fulfill the following three categories: i) high levels of conservation within and often across species, iii) limited genetic diversity, and iii) high and stable expression levels. Consequently, the universal essential genes are rigid, largely immutable key components to an organism’s survival. In the universal essential genes, the knockout recovery fails as shown by no colonies or only appearance of merodiploids. Taking into consideration such bypass mechanism of gene essentiality in strain-dependent/accessory essential genes, the lower effect of gene silencing of strain-dependent/accessory essential genes on bacterial growth may reflect pathway rewiring that helps the bacterial growth under suppression of the target gene expression.

      We have added the description of the possible reason for inconsistency between TnSeq and CRISPR-i results in the Result and Discussion in the revised manuscript (page 21, lines 367-376; pages 28-29, lines 489-519).

      [Reference]

      Rosconi, F. et al. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat Microbiol 7, 1580–1592 (2022).

      In summary, this study is unable to provide mechanistic insights into why and how different MAC-PD mutant strains exhibit differential survival (in vitro and in animals) and adaptation to hypoxia. It remains to understand why the clinical strains show better adaptation to hypoxia and what is the impact of other stresses on their growth rates.

      Thank you for the comments on the issue of being unable to prove the mechanism of MAC-PD pathogenesis and adaptation to hypoxia. We admit that the original manuscript did not provide the apparent reason and mechanism of MAC-PD pathogenesis and adaptation to hypoxia. Following the comment, we have modified the manuscript tile as “Functional genomics reveals strain-specific genetic requirements conferring hypoxic growth in Mycobacterium intracellulare”.

      However, we revealed the diversity of genetic requirements among the genus M. intracellulare including the type strain ATCC13950 and clinical MAC-PD strains. We revealed the characteristics of genetic requirements in clinical MAC-PD strains as increased genetic requirements of gluconeogenesis, type VII secretion system and cysteine desulfurase, the former two of which are also required in hypoxic pellicle formation in ATCC13950. Along with this, we demonstrated the difference of growth behavior under hypoxia between clinical MAC-PD strains and ATCC13950. Overall, we consider that we could provide the basic information suggesting the involvement of difference of genetic requirements among strains in the pathogenesis of MAC-PD.

      Reviewer #3 (Public Review):

      Summary:

      The study by Tateishi et al. utilized TnSeq in nine genetically diverse M. intracellulare strains, identifying 131 common essential and growth-defect-associated genes across those strains, which could serve as potential drug targets. The authors also provided an overview of the differences in gene essentiality required for hypoxic growth between the reference strain and the clinical strains. Furthermore, they validated the universal and accessory/strain-dependent essential genes by knocking down their expression using CRISPRi technique. Overall, this study offers a comprehensive assessment of gene requirements in different clinical strains of M. intracellular.

      Thank you for reviewing our manuscript and finding the significance of our data.

      (1) The rationale for using ATCC13950 versus clinical strains needs to be clarified. The reference strain ATCC13950 was obtained from the abdominal lymph node of a patient around 10 years ago and is therefore considered a clinical strain that has undergone passages in vitro. How many mutations have accumulated during these in vitro passages? Are these mutations significant enough to cause the behavior of ATCC13950 to differ from other recently sampled clinical strains? From the phylogenetic tree, ATCC13950 is located between M018 and M.i.27. Did the authors observe a similarity in gene essentiality between ATCC13950 and its neighbor strains? What is the key feature that separates ATCC13950 from these clinical strains? The authors should provide a strong rationale for how to interpret the results of this comparison in a clinical or biological context.

      Thank you for the comments on the rationale for using ATCC13950 versus clinical strains and the key feature that separates ATCC13950 from clinical MAC-PD strains.

      ATCC13950 was isolated in 1949, (not around 10 years ago) from 34-month-old female abdominal lymph node (Cuttino. Am J Pathol 1949; new Ref#11). Of note, the clinical background of the patient infected with ATCC13950 is quite different from the patients with MAC-pulmonary disease (MAC-PD), the incidence rate of which has been increasing worldwide without predisposing immunological disorders. ATCC13950 has been regarded as a type strain of genus M. intracellulare historically. And ATCC13950 is the first M. intracellulare strain to be sequenced in 2012 (Kim. J Bacteriol 2012; new Ref#59).

      The rationale for using ATCC13950 versus clinical MAC-PD strains is to find the answer to the question whether the essential genes and genetic requirements are similar or different between clinical MAC-PD strains and historical type strain ATCC13950. So far, there are two reports on TnSeq that compare genetic requirements between clinical mycobacterial strains and the type strains, one of which is M. tuberculosis (Carey AF. PLoS Pathogens. 2018; new Ref#8) and the other is M. abscessus (Akusobi C. mBio. 2025; new Ref#9, published after submission of our manuscript). They reported the difference and diversity of genetic requirements between clinical strain and type strains such as M. tuberculosis H37Rv and M. abscessus ATCC19977. We have added the mention of these previous reports to explain the rationale for setting the type strain ATCC13950 as a referential control strain. (page 5, lines 83-87)

      The genetic and functional analysis of clinical MAC-PD strains has not been conducted for a long time. In 2021, we have revealed the genomic diversity between clinical MAC-PD and ATCC13950 by comparative genomic analysis (Tateishi BMC Microbiol. 2021; new Ref#5). Except for our TnSeq study of ATCC13950 (Tateishi Sci Rep 2020; new Ref#10), no functional analysis has been conducted in clinical M. intracellulare strains. On our research stream of clinical MAC-PD strains, we expected that we could reveal the functional genomic characteristics of clinical MAC-PD strains by setting ATCC13950 as a referential control strain for analyzing TnSeq data.

      It seems an interesting viewpoint to consider the relationship between accumulation of mutations by in vitro passages during prolonged periods from first isolation in ATCC13950, and the difference of phenotypes between ATCC13950 and recently sampled clinical MAC-PD strains. However, there are no time-course samples of ATCC13950 isolates available. Therefore, we can neither investigate how many mutations have accumulated in a time-course manner, nor evaluate how much the accumulated mutations influence the phenotype in ATCC13950. It can be expected that the accumulation of in vitro mutations may cause the behavior of ATCC13950 different from clinical MAC-PD strains. However, it is to be elucidated yet which kinds of factors contribute to the characteristics of ATCC13950 that differ from clinical MAC-PD strains specifically.

      It seems an interesting viewpoint to investigate the similarity of gene essentiality between genetical neighbor strains. However, we focused on the overview of the profiles of gene essentiality in clinical MAC-PD strains compared to ATCC13950. Thus, it was out of scope to elucidate the details of gene essentiality in each genetic phylogeny that clinical MAC-PD strains belong. The overview of phylogenetic trees should be referred to our previous publication on the comparative genomic analysis of 55 strains (Tateishi Y. BMC Microbiol. 2021; new Ref#5, new Supplementary Fig. 1), and we have shown Fig. 1 as the extracted phylogenetic tree of subject strains. To elucidate the details of gene essentiality in each genetic clade, it would be necessary to include a considerable number of strains that we used for comparative genomic analysis in 2021 (Tateishi Y. BMC Microbiol. 2021; new Ref#5). Furthermore, it would be necessary to set a referential control strain other than ATCC13950 for comparing gene essentiality. So far, it is not the highest priority for us to elucidate the similarity of gene essentiality between phylogenetic clades in detail, and such investigation will be planned as a future study.

      The key features that separate ATCC13950 and clinical MAC-PD strains have not been proved yet, in contrast to the case of M. tuberculosis such as mutations in the gene of the response regulator PhoPR in the type strain H37Rv vs most clinical strains. However, the features that separate ATCC13950 and clinical MAC-PD strains may not be explained by a single genetic factor but may be explained by complicated factors such as epigenetic and/or regulatory factors. For example, the reason for the weakened virulence of H37Ra compared to H37Rv has not been able to be explained by simple genetic differences (Brosch R. Infect Immun. 1999).

      In summary, we set the historical type strain ATCC13950 which is derived from infant abdominal lymphadenitis as a referential control strain for TnSeq analysis, because we intended to reveal the characteristics of clinical MAC-PD strains in terms of the gene essentiality and genetic requirements by comparing the clinical MAC-PD strains with the non-MAC-PD reference strain. We consider that the profiles of gene essentiality and genetic requirements specific to clinical MAC-PD strains confer the pathogenesis in an increasing number of MAC-PD patients worldwide without predisposing immunological disorders.

      [References]

      Cuttino, J.T. & Mc, C.A. Pure granulomatous nocardiosis, a new fungus disease distinguished by intracellular parasitism; a description of a new disease in man due to a hitherto undescribed organism, Nocardia intracellularis, n. sp., including a study of the biologic and pathogenic properties of this species. Am J Pathol 25, 1-47 (1949).

      Kim, B.J. et al. Complete genome sequence of Mycobacterium intracellulare clinical strain MOTT-64, belonging to the INT1 genotype. J Bacteriol 194, 3268 (2012).

      Carey, A.F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14, e1006939 (2018).

      Akusobi. C. et al.. Transposon-sequencing across multiple Mycobacterium abscessus isolates reveals significant functional genomic diversity among strains. mBio 6, e0337624 (2025).

      Tateishi, Y. et al. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol 21, 103 (2021).

      Tateishi, Y. et al. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - Implication for metabolic remodeling. Sci Rep 10, 5449 (2020)

      Brosch R. et al. Genomic analysis reveals variation between Mycobacterium tuberculosis H37Rv and the attenuated M. tuberculosis H37Ra strain. Infect Immun. 67, 5768-74 (1999).

      (2) Regarding the 'nine representative strains of M. intracellulare with diverse genotypes in this study,' how were these nine strains selected? To what extent do they represent the genetic diversity of the M. intracellulare population? A phylogenetic tree illustrating the global genetic diversity of the M. intracellulare population, with these strains marked on it, would be important to demonstrate their genetic representativeness.

      Thank you for the comments on the selection of 9 subject strains. We selected the 9 strains based on the phylogenetic tree we published in 2021 (BMC Microbiol 2021; new Ref#5). We have shown the global phylogenetic tree of the M. intracellulare population in new supplementary Fig. 1. We have selected 4 or 5 strains from the major two groups (typical M. intracellulare group and M. paraintracellulare-M. indicus pranii group) for this TnSeq study, respectively.

      [Reference]

      Tateishi, Y. et al. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol 21, 103 (2021).

      (3) The authors observed a considerable amount of differential gene requirements in clinical strains. However, the genetic underpinning underlying the differential requirement of genes in clinical strains was not investigated or discussed. Because M. intracellulare has a huge number of accessory genes, the authors should at least check whether the differential requirement could be explained by the existence of a second copy of functional analogous genes or duplications.

      Thank you for the comments on the effect of gene duplication on the change of genetic requirements between strains. Following the comments, we conducted blast search for the 162 genes showing increased Tn insertion reads in each subject strain. We found that M019 has duplicate genes of OCU_RS44705 coding adenosylhomocysteinase (LOCUS_42940: ahcY_1, LOCUS_21000: ahcY_2). However, there were no duplicate genes found in the remaining 161 genes showing increased Tn insertion reads.

      From these results, we consider that gene duplication has minor effects on the change of genetic requirements between strains. Rather, sequence differences and accessory genes may play a key role in determining the difference of genetic requirements.

      We have added a description of the above-mentioned result in the Result section (pages11-12, lines 191-199).

      (4) Growth in aerobic and hypoxic conditions: The authors concluded that clinical strains are better adapted to hypoxia, as reflected by their earlier entry into the log phase. They presented the 'Time at midpoint' and 'Growth rate at midpoint.' However, after reviewing the growth curves, I noticed that ATCC13950 had a longer lag phase compared to other strains under hypoxic conditions, and its phylogenetic neighbor M018 also had a longer lag phase. Hence, I do not believe a conclusion can be drawn that clinical strains are better adapted to hypoxia, as this behavior could be specific to a particular clade. It's also possible that the ATCC13950 strain has adapted to aerobic growth. I would suggest that the authors include growth curves in the main figures. The difference in 'Time at midpoint' could be attributed to several factors, and visualizing the growth curves would provide additional context and clarity.

      Thank you for the comments on the possibility of genotypes as a determinant of growth pattern in M. intracelulare. Following the comments, we performed aerobic and hypoxic growth assay in the two strains (M005 and M016) that neighbor ATCC13950.

      Author response image 1.

      The phylogenetic relationship between M005, M016 and ATCC13950. The former two strains are squared in blue.

      M005 reached midpoint later than ATCC13950 both in aerobic and hypoxic conditions. By contrast, M016 reached midpoint three quarters earlier than ATCC13950 under hypoxic conditions. The growth rate was not significantly different between M005, M016 or ATCC13950 under either aerobic or hypoxic conditions, although P-value of M005 vs ATCC13950 was 0.0512 under aerobic conditions on Steel’s multiple comparisons test.

      From the data of growth pattern in M005 and M016, we suggest that in addition to gene essentiality, genotypes may have some impact on the bacterial growth pattern under hypoxia; however, since there was a significant difference in the timing of hypoxic adaptation among ATCC13950 and its neighbor strains, bacterial growth pattern under hypoxia is considered to be determined by multiple factors such as genetic requirements and unproven regulatory systems. Taking into consideration that there are lots of genetically diverse strains other than ATCC13950 clade, many clinical MAC-PD strains are possibly better adapted to hypoxia.

      Responding to the reviewer’s recommendation, we have added the description of the above-mentioned result in the revised manuscript (page 18, lines 313-322). And we have shown the data of growth curves of the original 9 subject strains in the new Fig 7. And we have added the data of the growth curves of M005 and M016 in new Supplementary Fig 7. Additionally, we have corrected the label of y-axis in new Fig. 7a and new Supplementary Fig. 7a and added the description as “Data are represented as CFUs in 4 μl sample at each timepoint.” in the Figure legends. (page 58, lines 1027-1028 and Supplementary Fig. 7a legend)

      (5) Lack of statistical statement: The authors emphasized the role of pellicle-formation-associated genes in strain-dependent essential and accessory essential genes. Additionally, the authors observed that 10% of the genes required for mouse infection are also required for hypoxic pellicle formation. However, these are merely descriptive statements. There is no enrichment analysis to justify whether pellicle-formation-associated genes are significantly enriched in these groups.

      Thank you for the comments on the enrichment of pellicle-formation associated genes in strain-dependent essential and accessory essential genes. We performed GSEA and found that 9.1% (16 out of 175) genes were hit as core enrichment. Of them, 4 genes were hit commonly as genes showing increased genetic requirements analyzed by resampling plus HMM analyses including genes of phosphoenolpyruvate carboxykinase pckA (OCU_RS48660), type VII secretion-associated serine protease mycP5 (OCU_RS38275), type VII secretion protein eccC5 (OCU_RS38345) and glycine cleavage system amino-methyltransferase gcvT (OCU_RS35955).

      Author response image 2.

      We have added the description of GSEA result in the revised manuscript (page 8, lines 137-144; Supplementary Fig. 2; Supplementary Table 5).

      Reviewer #1 (Recommendations For The Authors):

      Tn-seq and hypoxia adaption in clinical isolates of M. intracellulare (Mi): The authors claim that clinical strains are better adapted to hypoxia because their genetic requirements for optimum fitness overlap with genetic requirements for fitness of the type strain under hypoxia. This is a reasonable hypothesis, but it has not been well-supported by the data presented in Figure 7. The growth rates (Figure 7b) of most of the clinical strains under hypoxia appear to be less than the type strain, although they all seem to grow better than the type strain under normoxia. Perhaps a continuous growth curve of each strain, both as pure and mixed cultures under these conditions will provide a clearer picture.

      Thank you for the comments on the difference of adaptation of hypoxic growth between ATCC13950 and MAC-PD strains. To clarify, growth rates shown in Figure 7 were calculated at the inflection point (midpoint) of the growth curves, which were modeled using a four-parameter logistic (4P logistic) model. As described in the Discussion, we found the pattern of hypoxic adaptation characteristics of the clinical MAC-PD strains from the growth curve forms. Taking into consideration the impact of growing bacteria on the disease progression of MAC-PD, the slow growth with early entry to log phase implicates the continuous impact on the infected hosts during logarithmic bacterial growth, which may be involved in the persistent and steadily progressive illness of MAC-PD for years in humans.

      Unlike time-lapse imaging assay, the completely seamless sampling of cultures for CFU assay is impossible. Nevertheless, we collected sufficient timepoints to allow reliable curve fitting with the 4P logistic model, and thus consider our growth data to represent a valid approximation of continuous growth dynamics.

      Regarding the suggestion of mixed culture experiments, we agree that such studies could be informative. However, co-culture conditions introduce additional variables, including inter-strain competition or synergy, which can obscure the specific contributions of hypoxic adaptation in each strain. Therefore, we believe that the current approach using monoculture growth curves under defined oxygen conditions offers a clearer interpretation of strain-specific hypoxic responses.

      In vivo studies: It is unclear how virulent the two clinical strains, Mi27 and Mi198 are in the mouse model. The CFU data in Figure S1b reports the bacterial burden of the Tn libraries of the two strains, of which the overall population of Mi27 library seems to be declining. Without any information on the CFU, animal survival, and tissue pathology from the pure strains, data from the library will have limited implications.

      Thank you for the comments on the data presentation of in vivo studies. We previously revealed the time-course data on CFUs, animal survival, and tissue pathology from the pure strains (Tateishi Y. BMC Microbiol. 2023; new Ref#22). Based on these data, we assumed that we would be able to harvest sufficient number of colonies from mice infected with M.i.27 or M.i.198, and we performed in vivo TnSeq studies using these two strains. We have referred to our previous publication on the virulence of MAC-PD pure strains used in this study for mice in the revised manuscript (page 12, line 212; new Ref #22).

      The data of CFU counts were shown in new Supplementary Figure 3b. In the manuscript text, we explained as follows (page 12, lines 212-216): “The time course of the changes in the bacterial burden showed a pattern similar to those of the wild-type strains M.i.198 and M.i.27, respectively (Tateishi Y. BMC Microbiol. 2023; new Ref#22), except that it was not possible to harvest sufficient colonies (as few as 104/mouse) in the few mice infected with the M.i.27 Tn mutant strain in week 8 and week 16 (new Supplementary Fig, 3b, new Supplementary Table 8)”. The decline of overall population of M.i.27 Tn mutant library strains in the infected lungs can be explained by the lower virulence of M.i.27 pure strain that shows intermediate virulence phenotype than M.i.198 that shows high virulence phenotype.

      [References]

      Tateishi, Y. et al. Virulence of Mycobacterium intracellulare clinical strains in a mouse model of lung infection - role of neutrophilic inflammation in disease severity. BMC Microbiol 23, 94 (2023).

      Data presentation: The manuscript suffers from a lack of clarity in data visualization and presentation, especially the Tn-Seq datasets. Panels describe the experimental workflow with a densely-worded paragraph, making it difficult to navigate through the major findings.

      Thank you for the comments on the issue of Fig. 1b. Following the suggestion, we have modified the new Fig. 1b entitled “Strategy of the procedure of TnSeq analyses”.

      Language: The paper should be extensively revised for language. Often the authors have mixed-up the terms like 'core' and 'accessory' 'genes' in lines 116-119 with 'core and accessory genomes' in Figure 2c, which is not even mentioned in the paper. It is further unclear how they identified 3153 and 5824 core and accessory genes, respectively, from 55 different strains of Mi. Line 251: ..."involved by confer..." needs revision. The terms "increased gene essentiality" and 'growth-defected associated genes" are very confusing. The essentiality of a gene is either absolute or conditional but is not quantitative. Similarly, 'growth-defect associated' can be replaced with a better phrase that alludes to fitness loss in the clone. Additional typos were found throughout the paper that need to be fixed.

      Thank you for the comments on the issue of scientific words including “'core and accessory genomes” and “gene essentiality” used in this study.

      Based on Rosconi’s paper (Panel C of Fig. 1 in Nat Microbiol. 2022; new Ref#14), we used the phrases “accessory genome and core genome” as a meaning of a whole set of genes belonging to accessory and core genes. To avoid the confusion and keep consistency, we replaced the term “genomes” to “genes” in the revised manuscript.

      In our previous comparative genomic analysis, we identified 3153 and 5824 core and accessory genes, respectively, from 55 different strains of M. intracellulare (Tateishi Y. BMC Microbiol. 2021; new Ref #5). To perform pangenomic analysis, we used the software Bacterial Pan-Genome Analysis tool (BGAP) (Narendrakumar NM. Sci Rep 2016).

      We admit that gene essentiality is a qualitative but not a quantitative trait. We have corrected the term "increased gene essentiality" as "increased genetic requirements" throughout the manuscript.

      We have used the term “growth-defect (GD)” based on the classification of gene essentiality calculated by the Hidden Markov Model (HMM) complied by TRANSIT software (DeJesus. PLoS Comput Biol. 2015; new Ref#12). The HMM classifies genes as essential (ES), GD, non-essential (NE), growth-advantage (GA). GD means difficulties of growth (growth deficiency) in aerobic conditions in vitro, because Tn insertions are less frequent. The suggested phrases “fitness loss” or “less fit” may include the meaning of the comparison of two different conditions such as culture conditions exposed to a single bacterial strain. Since the HMM analysis is performed in data of a single strain in a specific bacterial condition, we consider that the phrase including “fitness” is somewhat unsuitable for describing the classification of gene essentiality. Thus, it is difficult for us to rephrase GD to the word that implies fitness levels between two conditions in a single bacterial strain.

      [References]

      Rosconi, F. et al. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat Microbiol 7, 1580–1592 (2022).

      Tateishi, Y. et al. Comparative genomic analysis of Mycobacterium intracellulare: implications for clinical taxonomic classification in pulmonary Mycobacterium avium-intracellulare complex disease. BMC Microbiol 21, 103 (2021).

      Narendrakumar NM et al. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep 2016 6, 24373 (2016).

      DeJesus, M.A. et al. TRANSIT--A Software Tool for Himar1 TnSeq Analysis. PLoS Comput Biol 11, e1004401 (2015).

      Reviewer #2 (Recommendations For The Authors):

      Major Comments:

      (1) Result 1 (Page 6-7): Common essential and growth-defect-associated genes representing the genomic diversity of M. intracellulare strains.

      (1a) From Table S1, it is observed that the numbers of Tn-inserted TA sites significantly vary (p >0.05) among biological replicates for each strain when compared with the reference strain ATCC13950. the authors should provide an explanation of how they overcame this variation in their analysis.

      Thank you for the comment on the issue of a variable number of Tn-inserted TA sites among biological replicates for each strain of MAC-PD.

      On TRANSIT software, we set the replicate option as Sum to combine read counts. And we used Beta-Geometric correction (BGC) to normalize the datasets to fit an “ideal” geometric distribution with a variable probability parameter ρ.

      Following the comment, we have added the description on which option we used for handling the replicate data and normalization (page 36, lines 640-643).

      (1b) Importantly, saturation in most of the strains is only ~50-60%. In such a case, there will be a high probability that Tn will not hit a nonessential region due to chance instead of selection (See DeJasus et al., mBio, 2017). It has been observed that the sequence pattern (GC)GNTANC(GC) is strongly associated with non-permissiveness. As shown earlier, the authors need to carefully look for the potential non-permissive sites before concluding the fate of a gene. Also, they should acknowledge the potential limitations of their approach due to the suboptimal level of saturation.

      Thank you for the comment on the saturation of Tn mutant libraries. Our method of comparison of genetic requirements between strains are the same as a previous report that used duplicate Tn mutant libraries of clinical Mtb strains of different genotypes and triplicate Tn mutant libraries of H37Rv for identifying increased genetic requirements of clinical Mtb strains (Carey. PLoS Pathog 2018; new Ref#8). Our method is also based on the coauthor’s TnSeq study on H37Rv (Minato Y. mSystems 2019; new Ref#61). Moreover, by combining replicates, the saturation of our Tn mutant libraries became 62-79% as follows: ATCC13950: 67.6%, M001: 72.9%, M003: 63.0%, M018: 62.4%, M019: 74.5%, M.i.27: 76.6%, M.i.198: 68.0%, MOTT64: 77.6%, M021: 79.9%. That is, we calculated gene essentiality from the Tn mutant libraries with 62-79% saturation in each strain. The levels of saturation of transposon libraries in our study is similar to the very recent TnSeq anlaysis by Akusobi where 52-80% saturation libraries (so-called “high-density” transposon libraries) are used for HMM and resampling analyses (Supplemental Methods Table 1[merged saturation] in Akusobi. mBio. 2025; new Ref#9). The saturation of Tn insertion in individual replicates of our libraries is also comparable to that reported by DeJesus (Table S1 in mBio 2017; new Ref#57). Thus, we consider that our TnSeq method of identifying essential genes and detecting the difference of genetic requirements between clinical MAC-PD strains and ATCC13950 is acceptable.

      As the Reviewer indicates, there is non-permissive sequence pattern in mariner transposon mutagenesis. Using more than 10 replicates of Tn mutant libraries is quite an accurate method for detecting essential genes in nonstructural small genes such as small regulatory RNAs. However, as DeJesus shows, the number essential genes identified by TnSeq are comparable in large genes possessing more than 10 TA sites between 2 and 14 TnSeq datasets, most of which seem to be structural genes (Supplementary Fig 2 in mBio 2017; new Ref#57). Thus, we do not consider that we made a serious mistake for the classification of essentiality in most of the structural genes that encode proteins. With respect to the coverage of non-permissive sites, our TnSeq method might need to be improved if it is intended to classify the gene essentiality quite accurately on the small genes including small regulatory RNAs.

      We investigated the non-permissive TA sites in ATCC13950. There are 4136 (6.43% of total ORFs) nonpermissive TA sites in ATCC13950, which is less than in H37Rv (9% of total ORFs) (DeJesus MA. mBio 20171; new Ref#57) and in M. abscessus ATCC19977 (8.1% of total ORFs)(Rifat D. mBio. 2021; new Ref#58). As for larger ORFs (TA sites > = 10), there are nonpermissive TA sites in 89 genes (ORFs) of common “essential (ES)” or “growth-defect-associated (GD)” (4.82% of a total of 1844 larger ORFs in ATCC13950). As for small ORFs (2-9 TA sites), there are nonpermissive TA sites in 41 genes (ORFs) of common ES or GD (1.35% of a total of 3021 smaller ORFs in ATCC13950).

      We appreciate the idea of concluding the fate of gene essentiality by the presence/absence of non-permissive TA sites. However, we cannot conclude the fate of gene essentiality classification only by the presence/absence of potential non-permissive sites. Because, strictly to say, it is impossible to conclude the scientific truth of gene essentiality without functional analysis using gene manipulation. In accurate, TnSeq can “predict” the gene essentiality but cannot perfectly guarantee the functional significance. However, in the current situation, most of the recent TnSeq studies have been published only by the TnSeq analysis without functional analysis that uses gene manipulation strains of all targets they identified. Taking such limitations of TnSeq including non-permissive sites into consideration, we consider that the essentiality of the detected genes should be determined in further studies, mainly including biological experiments such as functional studies using gene manipulation strains.

      We have added the above-mentioned contents in the revised manuscript (pages 32-33, lines 559-580).

      [References]

      Carey, A.F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14, e1006939 (2018).

      Minato, Y., et al. Genomewide assessment of Mycobacterium tuberculosis conditionally essential metabolic pathways. mSystems. 4, e00070-192019 (2019).

      Akusobi. C. et al. Transposon-sequencing across multiple Mycobacterium abscessus isolates reveals significant functional genomic diversity among strains. mBio 6, e0337624 (2025).

      DeJesus, M.A. et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 8, e02133-16 (2017).

      Rifat, D., Chen L., Kreiswirth, B.N. & Nuermberger, E.L.. Genome-wide essentiality analysis of Mycobacterium abscessus by saturated transposon mutagenesis and deep sequencing. mBio 12, e0104921 (2021).

      (1c) Line 100: Authors report a total of 131 genes identified as essential or growth-defect-associated with the HMM analysis across all M. intracellulare strains. It should be explained in more detail how gene essentiality was determined (see above comment in (1b)). Furthermore, in Table S3 authors should mention the essential and growth defective trait of each of the 131 genes.

      Thank you for the comment on how to classify the 131 genes as essential or growth-defect-associated with the HMM analysis across all M. intracellulare strains. As replied in (1b), the average saturation of Tn insertion of our libraries became 62-79% when combining duplicate or triplicate data in each strain. The levels of saturation of transposon libraries in our study is similar to the very recent TnSeq analysis by Akusobi where 52-80% saturation libraries (so-called “high-density” transposon libraries) were used for HMM and resampling analyses, and most of triplicate libraries ranges 70-79% saturation (Supplemental Methods Table 1[merged saturation] in Akusobi. mBio. 2025; new Ref#9). The saturation of Tn insertion in individual replicates of our libraries is also comparable to those with DeJesus (Table S1 in mBio 2017; new Ref#57). Thus, we consider that our TnSeq libraries are acceptable for identifying essential genes and growth-defect-associated genes by the HMM method.

      We used the HMM method as reported by DeJesus (DeJesus. PLoS Comput Biol. 2015; new Ref#12). HMM method can categorize the gene essentiality throughout the genome including “Essential”, “Growth-defect”, “Non-essential” and “Growth-advantage”. “Essential” genes are defined as no insertions in all or most of their TA sites. “Non-essential” genes are defined as regions that have usual read counts. “Growth-defect” genes are defined as regions that have unusually low read counts. “Growth-advantage” genes are defined as regions that have unusually high low read counts.

      Following the previous report (Carey AF. PLos Pathog 2018; new Ref#8), the annotation for the clinical MAC-PD strains was adapted from that of ATCC13950 by adjusting the START and END coordinates of each ORF in the clinical MAC-PD strains according to their alignment with the corresponding ORFs of ATCC13950. By using an adjusted annotation table, gene essentiality was classified by the HMM analysis.

      We have added the explanation of how we identified essential and growth-defect-associated genes in the Methods (pages 35-36, lines 620-632). And following the comment, we have added the data of classification of gene essentiality in the 131 genes in the new Supplementary Table 3 in the revised manuscript.

      [Reference]

      DeJesus, M.A. et al. TRANSIT--A Software Tool for Himar1 TnSeq Analysis. PLoS Comput Biol 11, e1004401 (2015).

      Carey, A.F. et al. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 14, e1006939 (2018).

      Akusobi. C. et al. Transposon-sequencing across multiple Mycobacterium abscessus isolates reveals significant functional genomic diversity among strains. mBio 6, e0337624 (2025).

      DeJesus, M.A. et al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio 8, e02133-16 (2017).

      (1d) In Table S4, the authors show strain-specific putative essential genes from the core and accessory gene sets. For the sake of clarity, it is important to have the name of all the strains against each gene in which it is predicted essential or growth defective.

      Thank you for the comment on the hit strains on the genes classified as strain-specific and accessory putative essential of growth-defect associated. Following the comment, we have added the data of hit strains in the new Supplementary Table 4 in the revised manuscript.

      (1e) Lines 123-126: It is not clear what is the relevance of highlighting genes involved in hypoxic pellicle formation in ATCC13950. These appear to be randomly distributed across different clinical isolates and is not clear whether they correlate with differential susceptibility of the reference strain and clinical isolates to hypoxia.

      Thank you for the comment on the relevance of highlighting genes involved in hypoxic pellicle formation in ATCC13950. The rationale for the importance of hypoxic pellicle genes in clinical MAC-PD strains is that the profiles of genetic requirements in each bacterial strain reflect the adaptation to the environment in which each strain lives. When the strains are placed in a special environment, they can adapt to the situation by altering the profiles of genetic requirements, resulting in the remodeling of metabolic pathways. We indeed found that the genetic requirements of several hypoxic pellicle genes were increased in clinical MAC-PD strains in vitro situations. These data suggest the hypoxic pellicle genes become more important in clinical MAC-PD strains for in vitro growth than in ATCC13950.

      Moreover, hypoxia is known to be one of the characteristic conditions in vivo including clinical lesions (McKeown. Br Br J Radiol. 2014). We consider it reasonable to expect that the strains derived from MAC-PD patients without predisposing immunological disorders may adapt under hypoxic conditions for maintaining bacterial survival. Therefore, we highlighted the genes involved in hypoxic pellicle formation in ATCC13950.

      We have added the description of the rationale for the importance of hypoxic pellicle genes in clinical MAC-PD strains in the revised manuscript (page 9, lines 148-155).<br /> [Reference]

      McKeown, S.R., et al. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br Br J Radiol 87,: 20130676 (2014).

      (2) Result 2 (pages 8-10): Genes with increased gene essentiality in clinical MAC-PD strains are also required for hypoxic pellicle formation in the type strain.

      (2a) As reported by authors (lines 123-126), only a small fraction of genes showing essentiality in clinical MAC-PD strains are required for hypoxic pellicle formation in the reference strain, which might be due to random distribution. Authors should avoid making such a generalised statement that reflects the association of the entire essential gene pool in clinical MAC-PD strains with hypoxic pellicle formation.

      Thank you for the comment on the issue of a small fraction of genes showing increased genetic requirements in clinical MAC-PD strains that is shared with genes required for hypoxic pellicle formation in the type strain ATCC13950. We admit that the section title may mislead that the genes required for hypoxic pellicle formation confer the entire essential gene pool of clinical MAC-PD strains. Following the comment, we have revised the section title as “Partial overlap of the genes showing increased genetic requirements in clinical MAC-PD strains with those required for hypoxic pellicle formation in ATCC13950” (page 9, lines 146-147).

      We consider that it cannot be explained by a mere coincidence that we obtained the data of partial overlap of genes showing essentiality in clinical MAC-PD strains with genes required for hypoxic pellicle formation in ATCC13950, because we demonstrated the supporting data such as the pattern of genetic requirements suggesting gluconeogenic metabolic shift (Fig. 5) and the different pattern of hypoxic growth curves between clinical MAC-PD strains and ATCC13950 (Fig. 7).

      (2b) I fail to understand how the number of Tn insertions determines "more" or "less" essentiality of a gene particularly with 50-60% saturation. To my understanding, essentiality is a qualitative trait. Either a gene will be essential (based on no Tn insertion despite having the permissive sites), critical (poor representation of Tn insertions at the permissive sites due to growth defect of the strain in the pool), non-essential (expected frequency of insertion) or growth-advantageous (higher representation of Tn insertions at the permissive sites due to growth advantage of the strain in the pool). Hence, authors should avoid quantifying the essentiality of a gene.

      Thank you for the comments on the trait of gene essentiality. We realize that essentiality is a qualitative trait, not a quantitative trait. Taking into consideration the number of Tn insertions determines "more" or "less" requirements of a gene, we have corrected the manuscript by using the phrase “genetic requirements” instead of “gene essentiality”.

      As mentioned earlier, our method of comparison of genetic requirements between strains are the same as a previous report that used duplicate Tn mutant libraries of clinical Mtb strains of different genotypes and triplicate Tn mutant libraries of H37Rv for identifying increased genetic requirements of clinical Mtb strains (Carey AF. PLoS Pathog 2018; new Ref#8). Moreover, as described in rebuttal (1b), the saturation of our Tn mutant libraries by combining replicates are 62-79% as follows: ATCC13950: 67.6%, M001: 72.9%, M003: 63.0%, M018: 62.4%, M019: 74.5%, M.i.27: 76.6%, M.i.198: 68.0%, MOTT64: 77.6%, M021: 79.9%. That is, we calculated gene essentiality from the Tn mutant libraries with 62-79% saturation in each strain. The levels of saturation of transposon libraries in our study is similar to the recent TnSeq analysis by Akusobi where 52-80% saturation libraries (“high-density” transposon libraries) were used for HMM and resampling analyses (Supplemental Methods Table 1[merged saturation] in Akusobi C. mBio. 2025; new Ref#9).

      Thus, we consider that our data of the difference of genetic requirements between clinical MAC-PD strains and ATCC13950 are acceptable.

      [Reference]

      Akusobi. C. et al. Transposon-sequencing across multiple Mycobacterium abscessus isolates reveals significant functional genomic diversity among strains. mBio 6, e0337624 (2025).

      (2c) From Figures 3-4, it seems the authors intend to highlight the insertion frequencies of certain genes in the clinical isolates compared to those in the reference strain to conclude whether a gene has become more critical and its disruption results in the growth defective phenotype (poor representation) in the clinical isolates, or a critical/essential gene has become dispensable in these strains.

      Based on these arguments, I suggest that the authors modify the title of the result such as "Tn insertion reveals differential requirement of genes for in vitro growth of clinical MAC-PD strains" or "Identification of genes differentially required for in vitro growth of clinical MAC-PD strains" as this is precisely the information we gain from this section of the study. Also, it is suggested to re-draft the rationale of this section as only 4 genes associated with hypoxic pellicle formation, were found to exhibit reduced insertion frequencies in the clinical isolates out of total of 283 genes. Hypoxia-related genes can be highlighted in the next section (see below).

      Thank you for the suggestion to modify the section title and to re-draft the rationale of the section. Following the comment, we modified the section title as “Partial overlap of the genes showing increased genetic requirements in clinical MAC-PD strains with those required for hypoxic pellicle formation in ATCC13950 (page 9, lines 146-147)

      Following the suggestion, we have revised the rationale of this section as follows: “The sharing of strain-dependent and accessory essential or growth-defect-associated genes with genes required for hypoxic pellicle formation in ATCC13950 prompts us to consider that the profiles of gene essentiality in clinical MAC-PD strains may be associated with the genes required for hypoxic pellicle formation in ATCC13950.” (page 9, lines 151-155)

      The reviewer points out that only 4 genes associated with hypoxic pellicle formation were found to exhibit reduced insertion frequencies in the clinical isolates out of total of 283 genes. However, to discuss how much proportion of the genes were detected to be increasingly required in clinical MAC-PD strains compared to ATCC13950, we should focus on the 121 genes showing increased requirements in clinical MAC-PD strains compared to ATCC13950, excluding the 162 genes indispensable for clinical MAC-PD strains. Thus, we described that 4 genes associated with hypoxic pellicle formation, were found to exhibit reduced insertion frequencies in the clinical isolates out of the 121 genes having significantly fewer Tn insertions than ATCC13950 in the manuscript (Fig. 3).

      (3) Result 3 (Page 10-14): Requirement of genes with increased gene essentiality in the clinical MAC-PD strains for mouse lung infection.

      (3a) The title should be modified to "Identification of genes in the clinical MAC-PD strains required for mouse lung infection".

      Following the comment, we have modified the section title as "Identification of genes in the clinical MAC-PD strains required for mouse lung infection". (page 12, lines 201-202).

      (3b) Further, the rationale of this experiment needs to be modified. As mentioned above, up until now the impact of hypoxic pellicle formation genes in the growth of MAC-PD strains remains unconvincing. The rationale of mouse infection experiments could be straightforward- "to identify genes critical for animal infection of the clinical isolates".

      Thank you for the comment on the rationale of the in vivo TnSeq experiment. Following the comment, we have revised the rationale as “The impact of hypoxia on mycobacteria under various ecological circumstances implies that the genes required for pathogenesis of MAC-PD may be in some degrees, overlapped with the genes with increased requirements in the clinical MAC-PD strains compared to ATCC13950, and also with the genes required for hypoxic pellicle formation in ATCC13950. To identify genes required for in vivo infection of clinical MAC-PD strains,” in the revised manuscript (page 12, lines 204-210).

      (3c) The authors should avoid using the term "genes with increased essentiality" for the reasons explained above in point #2b.

      Following the comment, we have corrected the term as “genes with increased requirements” in the revised manuscript (page 12, line 207).

      (3d) From Tables S8 and S9, I can find 93 genes in Mi198Tn and 74 genes in Mi27Tn for which Tn insertion mutants are under-represented in TnSeq at all time points from Day 1 to Wk 16 in comparison to input. Importantly, excluding results from Day 1 when the infection has just settled, I find 172 and 121 genes in Mi198Tn and Mi27Tn, respectively, under-represented in lungs between Wk 4-16. My suggestion is that authors should focus more on such genes and identify the characteristics of these genes and what fraction belongs to those involved in hypoxic pellicle formation in the reference strain. I am perplexed why authors have categorically ignored other genes and only focused on a set of genes that correspond to ~10-12% of entire differentially abundant mutant pool.

      Thank you for the suggestion on the genes that Tn insertion mutants are under-represented in TnSeq from Weeks 4-16 in the infected mouse lungs be analyzed for overlapping the genes involved in hypoxic pellicle formation in the type strain ATCC13950. We found that at all timepoints from Day1 to Week 16, 74 genes and 99 genes were under-represented in lungs infected with M.i.27Tn and M.i.198Tn, respectively. Of them, 21 (28.3%) and 12 (12.1%) genes belonged to the genes involved in the genes required for hypoxic pellicle formation in the type strain. We found that at timepoints from Week 4 to Week 16, 121 genes and 172 genes were under-represented in lungs infected with M.i.27Tn and M.i.198Tn, respectively. Of them, 21 (23.1%) and 30 (18.0%) genes belonged to genes involved in hypoxic pellicle formation in the type strain. These hypoxic pellicle-associated genes detected both in M.i.27 and M.i.198 encoded methionine synthesis, acyl-CoA dehydrogenase, isocitrate lyase, MMPL family transporter at all time points (from Day1 to Week 16). And additionally, multifunctional oxoglutarate decarboxylase/dehydrogenase, proteasome subunits, ABC transporter ATP-binding protein/permease, lipase chaperone at all time points (from Week 4 to Week 16). We have described these results in the Result section (page 14 lines 236-248) and new Supplementary Tables 12 and 13.

      As for M. intracellulare, conditionally essential genes have not been revealed except for those required for hypoxic pellicle formation in ATCC13950 revealed by us (Tateishi Y. Sci Rep. 2020; new Ref#10). This study is the first to focus on the relationship between the difference of genetic requirements among strains and hypoxic adaptation. We found a certain proportion of overlapped genes required for mouse lung infection and ATCC13950’s hypoxic pellicle formation. We consider it reasonable to focus on the category of genes required for hypoxic pellicle formation to analyze the datasets of TnSeq in mice.

      [Reference]

      Tateishi, Y. et al. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - Implication for metabolic remodeling. Sci Rep 10, 5449 (2020).

      (3e) Page 13, lines 224-227: "Despite the differences in the profiles of the genes required for in vivo infection between strains, these data suggest that increased gene essentiality for hypoxic growth confers advantages for pathogenesis in vivo."

      For the reason described above, I find it a misleading hypothesis that hypoxic growth confers advantages for pathogenesis in vivo. How come only 10-12% of the entire gene sets which include genes of varying functions, can be the sole contributors to bacterial survival in host organelles during infection?

      More importantly, the mouse is not considered a good model for hypoxia as mouse infection does not lead to the formation of solid granuloma with a hypoxic core Though I am not convinced with the authors' bias toward hypoxia-related genes, however, if at all they aim to investigate the role of such genes by an unbiased enrichment of TnSeq mutant, they should have used C3HeJ mice which are known to form granulomas (Boute et al., 2017 (doi: 10.1186/s13567-017-0477-7)).

      Thank you for the comments on the issue of the contribution of genes required for hypoxic growth and on the difference of hypoxic levels between mouse lineages. We did not intend to mention that a set of genes required for hypoxic growth is the sole contributor to bacterial survival in host organs during infection. As we discussed in the Discussion section, we acknowledge that the adaptation to the difference of carbon source between in vitr_o and _in vivo infection (i.e. preferential usage of lipid carbon source in vivo) is involved in the pathogenesis of mycobacterial diseases (Yang. Front Microbiol 2018; new Ref#33, Gouzy. Proc Natl Acad Sci U S A 2021; new Ref#29, Quinonez. mBio 2022; new Ref#40, Pandey. Proc Natl Acad Sci U S A 2008; new Ref#41). We consider that not only the genes required for hypoxic pellicle formation but also strain-dependent/accessory genes conferring kinds of metabolism other than hypoxic pellicle formation can be estimated to be involved in the in vivo mouse lung infection.

      We have modified the sentence to clearly express our intention as follows: “These in vivo TnSeq data suggest that, despite the differences in the profiles of the genes required for in vivo infection between strains, increase of genetic requirements for hypoxic growth in part contribute to the pathogenesis in vivo.” (pages 15-16, lines 269-271)

      It seems to be an interesting idea to perform TnSeq by using C3HeJ mice. The granuloma formed in C3HeJ mice becomes extremely hypoxic (less than 1%, corresponding the level of “pathological” hypoxia) which is as severe as the detection range by pimonidazole. In our model, the effect of such pathological levels of hypoxia on granuloma formation might not be detected. However, the lesion formed in C57BL/6 mice becomes a “physiological” level of hypoxia (5% O2) (McKeown SR. Br Br J Radiol. 2014) which is the same O2 level for M. intracellulare to form pellicles. In principle, oxygen levels inside human bodies are physiologically hypoxic, and many biological events are experimentally investigated in this condition. Thus, we consider that we were able to observe the effect of physiological hypoxia on M. intracellulre growth both in vitro (hypoxic pellicles) and in vivo (infected C57BL/6 mice).

      [Reference]

      Yang, T. et al. Pan-genomic study of Mycobacterium tuberculosis reflecting the primary/secondary genes, generality/individuality, and the interconversion through copy number variations. Front Microbiol 9, 1886 (2018).

      Gouzy, A., Healy, C., Black, K.A., Rhee, K.Y. & Ehrt, S. Growth of Mycobacterium tuberculosis at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity. Proc Natl Acad Sci U S A 118, e2024571118 (2021).

      Quinonez, C.G. et al. The role of fatty acid metabolism in drug tolerance of Mycobacterium tuberculosis. mBio 13, e0355921 (2022).

      Pandey, A.K. & Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A 105, 4376-4380 (2008).

      McKeown., S.R. et al. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br Br J Radiol 87, 20130676 (2014).

      (3f) An important set of data with the ATCC13950 reference strain is missing here. It is suggested that authors perform this study with the reference strain to identify whether the enrichment of genes is similar across all strains or is specific to the clinical isolates.

      Thank you for the comment on the setting of ATCC13950 as a control strain in the mouse infection experiment. However, we proved that bacterial burden of ATCC13950 is reduced continuously from 4 weeks of infection, and that ATCC13950 is almost completely eliminated from 8 to 16 weeks of infection (BMC Microiol 2023; new Ref#22). Therefore, it is impossible to perform TnSeq to detect the genes required for persistent infection in mice infected with ATCC13950.

      [Reference]

      Tateishi, Y. et al. Virulence of Mycobacterium intracellulare clinical strains in a mouse model of lung infection - role of neutrophilic inflammation in disease severity. BMC Microbiol 23, 94 (2023).

      (3g) Pages 13-14, lines 228-245: "We have performed a statistical enrichment analysis of gene sets by GSEA...".

      The comparison made here is not clear to me. It seems the authors do compare genes required for the growth of M.i.27 and M.i.198 in mouse lungs with the gene sets required for hypoxic pellicle formation in ATCC13950 together with the gene sets showing increased gene essentiality observed in the clinical MAC-PD strains, and claim that a significant % of genes belong to hypoxia-adaptation pathways. It is factually incorrect because a majority of these might overlap with those found critical for the in vitro survival of MAC-PD strains. It is suggested that authors re-analyze their data by comparing genes required for the growth of M.i.27 and M.i.198 in mouse lungs individually with those involved in hypoxic pellicle formation in ATCC13950, and with the gene sets found critical for in vitro growth, and present accordingly.

      Thank you for the suggestion on the re-analysis of gene enrichment analysis of genes required for M.i.27 and M.i.198 in vivo infection, individually with genes involved in hypoxic pellicle formation in ATCC13950 and with those showing genetic requirements in clinical MAC-PD strains compared to ATCC13950.

      About 50% (92 and 94 out of 181 genes through Day 1 to Week 16 and through Week4 to Week16 of infection) and 40% (70 and 79 out of 179 genes through Day 1 to Week 16 and through Week 4 to Week 16 of infection) of genes required for hypoxic pellicle formation in ATCC13950 were listed as enriched in genes required for mouse lung infection in M.i.27 and M.i.198, respectively. In addition, about 42% (54 and 56 out of 128 genes through Day 1 to Week 16 and through Week 4 to Week 16 of infection) and 40% (79 and 68 out of 179 genes through Day 1 to Week 16 and through Week 4 to Week 16 of infection) of genes showing increased requirements in clinical MAC-PD strains compared to ATCC13950 were listed as enriched in genes required for mouse lung infection in M.i.27 and M.i.198, respectively.

      The tables and graphs of GSEA results are shown in Supplementary Figs. 5, 6.

      These data indicate that 40-50% of the genes required for in vitro hypoxic pellicle formation and the strain-dependent/accessory essential genes are significantly enriched individually with in vivo bacterial growth. We have added the result of reanalyzed data of GSEA in the Result (pages 16-17, lines 287-290). We have shown the detail of reanalyzed data of GSEA in Supplementary Figs. 5, 6 and Supplementary Tables 15, 16.

      (3h) Since authors have used Tnseq of pooled mutants, which often yields misleading information, it is important to validate some of their findings upon mouse infection with individual mutants that yield prominent as well as baseline reduction at different time points. In the absence of validation, it remains a mere speculation of the role of these genes in the infection of these strains to animals.

      Thank you for the suggestion on the validation of the TnSeq hit genes on the in vivo survival. We acknowledge the importance of validating the TnSeq-hit genes by constructing knockout mutants. We have recently succeeded in constructing the vectors for making knockout strains of M. intracellulare (Tateishi Y. Microbiol Immunol. 2024). We will proceed to the infection experiment of knockout mutants by using our system for constructing them.

      [Reference]

      Tateishi Y. et al. Construction of knockout mutants in Mycobacterium intracellulare ATCC13950 strain using a thermosensitive plasmid containing negative selection marker rpsL+. Microbiol Immunol 68, 339-347 (2024).

      (4) Result 4 (Page 14-15): Preferential hypoxic adaptation of clinical MAC-PD strains evaluated with bacterial growth kinetics.

      (4a) "The metabolic remodeling, such as the increased gene essentiality of gluconeogenesis and the type VII secretion system..". As stated above, the essentiality of a gene, being a qualitative trait, should not be presented in quantitative terms. The authors should re-phrase this statement.

      Following the comment, we have corrected the term as “The metabolic remodeling, such as the increased genetic requirements of gluconeogenesis and the type VII secretion system.” (page 17, lines 296-297)

      (4b) "overlap of the genes required for mouse lung infection and those required for hypoxic pellicle formation involved by conferring these metabolic pathways..". There is a syntax error in this statement and needs revision.

      Following the comment, we have corrected the phrase as “overlap of the genes required for mouse lung infection and those required for hypoxic pellicle formation involved by these metabolic pathways”. (page 17, lines 297-299)

      (4c) The altered requirement of genes in different clinical strains for survival provides only circumstantial evidence of metabolic remodeling. Authors are suggested to perform metabolic profiling of representative clinical and reference strains, as it is important to examine whether these bacteria indeed undergo metabolic shift.

      Thank you for the comment on the metabolic profiling of the representative clinical and reference strains. We previously published the TnSeq result of ATCC13950 and we produced the current data by organizing with our previous findings (Fig. 4 in Tateishi Y. Sci Rep 2020; new Ref#10). The priority of the current study was to elucidate the difference and diversity of genetic requirements between clinical MAC-PD strains and ATCC13950. We consider that it is of some value to show the even circumstantial evidence of metabolic remodeling by TnSeq, because it provides a strong rationale for proceeding to the next study including metabolomic analysis.

      [Reference]

      Tateishi, Y. et al. Genome-wide identification of essential genes in Mycobacterium intracellulare by transposon sequencing - Implication for metabolic remodeling. Sci Rep 10, 5449 (2020).

      (5) Result 5 (Page 16-18): Effects of knockdown of universal and accessory/strain-dependent essential or growth-defect-associate genes in clinical MAC-PD strains.

      (5a) Lines 273-277: The rationale of using CRISPRi should be correctly presented to evaluate the effect of individual genes' suppression on the downstream phenotype and not to establish the CRISPRi silencing tool in MAC.

      Thank you for the comment on the rationale of the section of the CRISPR-i experiment. Following the comment, we have modified the sentence as follows: “With an intention to evaluate the effect of suppressing TnSeq-hit genes on bacterial growth.” (page 19, lines 333-334 in the revised manuscript).

      (5b) Line 278: pRH2052/pRH2521 are the plasmids and not the CRISPRi system.

      Following the comment, we have corrected the phrase as “pRH2052/pRH2521 clustered regularly interspaced short palindromic repeats interference (CRISPR-i) plasmids.” (page 19, lines 334-335 in the revised manuscript).

      (5c) Line 280: Other pioneering studies on the use of CRISPRi for gene silencing in mycobacteria (Chaudhary et al., Nat Comm, Rock et al., Nat Microbio) should also be cited.

      Thank you for the comment on adding the reference papers on CRISPR-i in mycobacteria. We have added the two suggested papers in the revised manuscript as new Ref #30 and #31. (page 19, line 336).

      (5d) Lines 282-283: It is not clear why M001 and MOTT64 could not be transformed. Did the authors use any control plasmid to evaluate the transformation efficiency of these strains?

      Thank you for the comment on the failure of transformation in M001 and MOTT64.

      Following the comment, we have performed the experiment for evaluating the efficiency of transformation in the 9 M. intracellulare strains we used in this study. We have used an E. coli-mycobacteria shuttle vector pSO246KM-Prhsp65-luc that expresses firefly luciferase as a control plasmid (Aoki K. J Biol Chem 2004). For obtaining transformed colonies, we used 7H10/OADC agar plates containing the same concentration of kanamycin that we used for preparing Tn mutant libraries and for obtaining CRSISPR-i knockdown strains.

      We have observed no colonies grown on agar plates in MOTT64 after electroporation of the pSO246KM-Prhsp65-luc plasmid. In most of the remaining strains, the transformed colonies have emerged fully on day 10 of culture after electroporation of the plasmid. However, we have observed that M001 needs twice as long as a period for the emergence of transformed colonies. On day 21, the number of colonies in M 001 have finally become comparable to that of the other strains. We have checked the luciferase activity of 6-12 colonies in each strain except for MOTT64, and we have confirmed the transformation of the plasmid by the data of higher luciferase activity in the colonies undergoing electroporation of the plasmid than in those not undergoing electroporation.

      The possible reason for the incapability of obtaining transformants of CRISPR-i vectors in MOTT64 may be due to the extremely low efficiency of acquiring foreign DNA. And the possible reason for the incapability of obtaining transformants of CRISPR-i vectors in M001 may be intolerable to the stress caused by transformation of plasmids compared to other M. intracellulare strains. For M001, pSO246KM-Prhsp65-luc plasmid may cause tolerable stress for transformation, resulting in the delayed emergence of transformed colonies. By contrast, the CRIPSR-i plasmids may cause greater stress for M001 than pSO246KM-Prhsp65-luc plasmid, resulting in being intolerable for transformation.

      Author response table 1.

      Author response image 3.

      Result of luciferase activities before and after transformation of pS0246KM-Prhsp65-luc plasmid. Fifty microliter of cultures were mixed with 50 u L of assay reagents (Luciferase assay system E1500, Promega) and luciferase activity was measured by the luminometer (FilterMax F5, Molecular Devices). Data are shown as mean ± SD of 6-12 colonies

      [Reference]

      Aoki K. Extracellular mycobacterial DNA-binding protein 1 participates in Mycobacterium-lung epithelial cell interaction through hyaluronic acid. J Biol Chem 279, 39798–39806 (2004).

      (5e) Lines 283-186: "To confirm the gene essentiality detected with the HMM analysis, we evaluated the consequent growth inhibition in the knockdown strains of representative universal essential or growth-defect-associated genes, including glcB, inhA, gyrB, and embB.." It is not clear what was the level of suppression of these genes in the respective KD strains. Authors should include the level of suppression of these genes also by qRT-PCR.

      Thank you for the comment on the suppression levels of gene expression in knockdown strains of universal essential genes. Following the comment, we have evaluated them by qRT-PCR and we observed comparable levels of knockdown efficiency in the knockdown strains between universally essential genes and strain-specific/accessory essential genes (new Supplementary Fig. 9). Overall, the gene expression was suppressed to 20 - 70% in the knockdown strains compared to the vector control strains that do not express sgRNA.

      We have added the data of qRT-PCR of knockdown strains of universal essential genes such as glcB, inhA, gyrB, and embB (new Supplementary Fig. 9). We have revised the Result and Discussion in the manuscript (page 21, lines 367-376; page28, lines 490-497).

      (5f) Lines 293-: I am unable to establish any correlation between the growth of the knockdown with Tn insertion reads in the respective genes. For instance, pckA exhibits reduced Tn insertion reads in almost all the strains except in M.i.27, but the effect of its KD on growth is seen only in M.i.198 and M003; glpX exhibits reduced Tn insertion reads in M003, M019, M021 but the effect of its KD on growth is seen only in M003; csd exhibits reduced Tn insertion reads in M.i.198, M003, M019 but the effect of its KD on growth is seen only in M.i.198 and M003. The authors argue that these contradictory phenotypes are due to difficulties in the effective operation of genetically modified systems using foreign genes from different bacterial species in MAC-PD strains (Lines 310-312) or the desired effect on growth could not be observed due to the inability of CRISPRi to yield >99% suppression (Line 314) are not the valid justifications. Indeed, a close look at the RT-PCR data (Figure S5) reveals that pckA levels are ~0.22, 0.5, 0.2, 0.22, 0.2, 0.5, and 0.3 fold relative to sigA in M.i.198, M.i.27, ATCC13950, M018, M019, M003 and M021, respectively, but the effect of its suppression on growth by CRISPRi is seen only in M.i.198 and M003. Secondly, >99% suppression is not a universal prerequisite for all the genes to show growth defect (as might be the case with glcB, inhA, gyrB, and embB genes in this study). Hence, it remains unclear why contrasting results are obtained for most of the genes by TnSeq and CRISPRi.

      Thank you for the comments on the issue of inconsistent results between TnSeq and CRISPR-i based knockdown. We acknowledge that some inconsistencies were observed, particularly among strain-dependent/accessory essential or growth-defect associated genes. By contrast, we found consistent data between TnSeq and CRISPR-i based knockdown results of universal essential genes. By obtaining the data of suppression levels of gene expression in the knockdown strains of universal essential genes, we have acknowledged that the low efficiency of knockdown does not explain the reason of the discrepancy between TnSeq and CRISPR-i results because the levels of knockdown efficiency were comparable between strain-dependent/accessory essential genes and universally essential genes.  

      Although the mechanism has not been fully proven yet only from the current study, we consider that such inconsistent phenotypes with TnSeq and CRISPR-i based knockdown may be related to the recently revealed the bypass mechanism of gene essentiality which is characteristically observed in strain-dependent/accessory essential or growth-defect-associated genes. According to the publication by Rosconi (Nat Microbiol. 2022: new Ref#14) reporting the ‘forced-evolution experiments’ of 36 clinical Streptococcus pneumoniae strains, gene essentiality can be bypassed by several mechanisms including the composition of the accessory genome and pathway rewiring. They recovered successfully knockout mutants from transformation experiments in strain-specific/accessory essential genes such as cytidine monophosphate kinase, a folate pathway enzyme formate tetrahydrofolate ligase and an undecaprenyl phosphate-biosynthesis pathway enzyme farnesyl-diphosphate synthase. The bypassing of gene essentiality could be suggested by observing suppressor mutations and synthetic lethality in knockout strains. By contrast, universal essential genes were reported to fulfill the three categories including high levels of conservation within and often across species, limited genetic diversity, and high and stable expression levels. Consequently, universal essential genes are estimated to be rigid, largely immutable key components to an organism’s survival.

      We consider that this is the case with our study on NTM because NTM is pangenomic. The knockdown of universal essential genes resulted in the clear growth suppression; however, the knockdown of strain-dependent/accessory essential genes did not show the consistent growth suppression. We consider that the bypass mechanism of gene essentiality can explain the inconsistent effect of gene silencing of strain-dependent/accessory genes on bacterial growth suppression.

      We have added the above-mentioned description in the Discussion (pages 28-29, lines 497-519).

      [Reference]

      Rosconi, F. et al. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat Microbiol 7, 1580–1592 (2022).

      Minor Comments:

      (1) The authors should mention the cut-off of fold-change for all the experiments in the methods section.

      Thank you for the comment on the cut-off of fold-change. We set the cut-off of fold-change as adjusted P-value < 0.05. We added the description in the Methods section. (page 41, lines 724-725)

      (2) Figure 7 legend (Lines 888-889): "Data are shown as the means {plus minus} SD of triplicate experiments. Data from one experiment representative of three independent experiments (N = 3) are shown."

      Figure S3 legend: Data on the growth curves are the means of triplicate experiments. Data from one experiment representative of three independent experiments (N = 3) are shown.

      Figure S4 legend: Data are shown as the means {plus minus} SD of triplicate experiments. Data from one experiment representative of two independent experiments (N = 2) are shown.

      Figure S5 legend: Gene expression data are the means {plus minus} SD of triplicate experiments. Data from one experiment representative of two independent experiments (N = 2) are shown.

      These statements need clarification. Whether multiple independent experiments (biological repeats), each with 2-3 technical replicates performed and the data shown represent one of the multiple biological repeats?

      Thank you for the comments on the number of experiments performed and the number of replicates. We have performed two or three independent experiments with 2-3 technical replicates. The data shown represent one of the independent experiments.

      (3) Figure 7b: Statistics are missing in the bar graph for growth rate under aerobic conditions.

      Thank you for the comment on the statistics of the data regarding growth rate under aerobic conditions. We have added the statistics in the new Fig. 7c.

      (4) The authors should check the y-axis in Figure 7b, as it is not clear whether bacteria indeed show a growth rate of 1-3 CFUs/day.

      Thank you for the comment on the y-axis in Figure 7b. We have corrected the label of y-axis as “log10[CFUs]/day” in the new Fig. 7c. Additionally, we have corrected the label of y-axis in new Fig. 7a and added the description as “Data are represented as CFUs in 4 μl sample at each timepoint.” in the Fig. 7a legend.

      Reviewer #3 (Recommendations For The Authors):

      (1) It's notable that strains M001 and MOTT64 failed to undergo a transformation, while seven other strains did. Given that M001, MOTT64, and M019 belong to the same phylogenetic clade, it raises questions about why particular strains within this clade showed different transformation outcomes. It might be valuable for them to discuss this discrepancy in their study.

      Thank you for the comment on the difference in capacity of transformation between strains belonging to the same genomic subgroup. Although the direct mechanism determining the competency for foreign DNA has not been elucidated in M. intracellulare and other pathogenic NTM species, several studies on general bacteria suggest the difficulties of introducing foreign DNA into clinical strains compared to the laboratory strains. As suggested in Staphylococcus aureus (Covaglia AR. PNAS. 2010; new ref#55), some clinical strains develop elimination system of foreign nucleic acids such as a type III-like restriction restriction endonuclease. As suggested in gran-negative bacteria (Qin J. Sci Rep. 2022; new Ref#56), there may be some difference in cell surface structures between strains, resulting in the necessity of polymyxin B nonapeptide targeting cell membrane for transforming clinical strains. The efficiency of eliminating foreign DNA may be attributed to various kinds of strain-specific factors including restriction endonuclease, natural CRISPR-interference system and cell wall structures rather than a simple genotypic factor.

      We have added the description on the difference of capability in transformation in the Discussion. (page 31, lines 546-558)

      [References]

      Corvaglia, A.R., François, P., Hernandez, D., Perron, K., Linder, P. & Schrenzel, J. A type III-like restriction endonuclease functions as a major barrier to horizontal gene transfer in clinical Staphylococcus aureus strains. Proc Natl Acad Sci U S A 107, 11954-11958 (2010).

      Qin, J., Hong, Y., Pullela, K., Morona, R., Henderson, I.R. & Totsika, M. A method for increasing electroporation competence of Gram-negative clinical isolates by polymyxin B nonapeptide. Sci Rep 12,:11629 (2022).

      (2) The authors should consider specifying M. intracellulare in their title.

      Thank you for the comment on the manuscript title. Following the comments from all Reviewers, we have modified the title as “Functional genomics reveals strain-specific genetic requirements conferring hypoxic growth in Mycobacterium intracellulare”.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      The present study evaluates the role of visual experience in shaping functional correlations between extrastriate visual cortex and frontal regions. The authors used fMRI to assess "resting-state" temporal correlations in three groups: sighted adults, congenitally blind adults, and neonates. Previous research has already demonstrated differences in functional correlations between visual and frontal regions in sighted compared to early blind individuals. The novel contribution of the current study lies in the inclusion of an infant dataset, which allows for an assessment of the developmental origins of these differences.

      The main results of the study reveal that correlations between prefrontal and visual regions are more prominent in the blind and infant groups, with the blind group exhibiting greater lateralization. Conversely, correlations between visual and somato-motor cortices are more prominent in sighted adults. Based on these data, the authors conclude that visual experience plays an instructive role in shaping these cortical networks. This study provides valuable insights into the impact of visual experience on the development of functional connectivity in the brain.

      Strengths:

      The dissociations in functional correlations observed among the sighted adult, congenitally blind, and neonate groups provide strong support for the study's main conclusion regarding experience-driven changes in functional connectivity profiles between visual and frontal regions.

      In general, the findings in sighted adult and congenitally blind groups replicate previous studies and enhance the confidence in the reliability and robustness of the current results.

      Split-half analysis provides a good measure of robustness in the infant data.

      Weaknesses:

      There is some ambiguity in determining which aspects of these networks are shaped by experience.

      This uncertainty is compounded by notable differences in data acquisition and preprocessing methods, which could result in varying signal quality across groups. Variations in signal quality may, in turn, have an impact on the observed correlation patterns.

      The study's findings could benefit from being situated within a broader debate surrounding the instructive versus permissive roles of experience in the development of visual circuits.

      Reviewer #2 (Public Review):

      Summary:

      Tian et al. explore the developmental organs of cortical reorganization in blindness. Previous work has found that a set of regions in the occipital cortex show different functional responses and patterns of functional correlations in blind vs. sighted adults. In this paper, Tian et al. ask: how does this organization arise over development? Is the "starting state" more like the blind pattern, or more like the adult pattern? Their analyses reveal that the answer depends on the particular networks investigated; some functional connections in infants look more like blind than sighted adults; other functional connections look more like sighted than blind adults; and others fall somewhere in the middle, or show an altogether different pattern in infants compared with both sighted and blind adults. 

      Strengths:

      The question raised in this paper is extremely important: what is the starting state in development for visual cortical regions, and how is this organization shaped by experience? This paper is among the first to examine this question, particularly by comparing infants not only with sighted adults but also blind adults, which sheds new light on the role of visual (and cross-modal) experience. Another clear strength lies in the unequivocal nature of many results. Many results have very large effect sizes, critical interactions between regions and groups are tested and found, and infant analyses are replicated in split halves of the data. 

      Weaknesses:

      A central claim is that "infant secondary visual cortices functionally resemble those of blind more than sighted adults" (abstract, last paragraph of intro). I see two potential issues with this claim. First, a minor change: given the approaches used here, no claims should be made about the "function" of these regions, but rather their "functional correlations". Second (and more importantly), the claim that the secondary visual cortex in general resembles blind more than sighted adults is still not fully supported by the data. In fact, this claim is only true for one aspect of secondary visual area functional correlations (i.e., their connectivity to A1/M1/S1 vs. PFC). In other analyses, the infant secondary visual cortex looks more like sighted adults than blind adults (i.e., in within vs. across hemisphere correlations), or shows a different pattern from both sighted and blind adults (i.e., in occipito-frontal subregion functional connectivity). It is not clear from the manuscript why the comparison to PFC vs. non-visual sensory cortex is more theoretically important than hemispheric changes or within-PFC correlations (in fact, if anything, the within-PFC correlations strike me as the most important for understanding the development and reorganization of these secondary visual regions). It seems then that a more accurate conclusion is that the secondary visual cortex shows a mix of instructive effects of vision and reorganizing effects of blindness, albeit to a different extent than the primary visual cortex.

      Relatedly, group differences in overall secondary visual cortex connectivity are particularly striking as visualized in the connectivity matrices shown in Figure S1. In the results (lines 105-112), it is noted that while the infant FC matrix is strongly correlated with both adult groups, the infant group is nonetheless more strongly correlated with the blind than sighted adults. I am concerned that these results might be at least partially explained by distance (i.e., local spread of the bold signal), since a huge portion of the variance in these FC matrices is driven by stronger correlations between regions within the same system (e.g., secondary-secondary visual cortex, frontal-frontal cortex), which are inherently closer together, relative to those between different systems (e.g., visual to frontal cortex). How do results change if only comparisons between secondary visual regions and non-visual regions are included (i.e., just the pairs of regions within the bold black rectangle on the figure), which limits the analysis to long-rang connections only? Indeed, looking at the off-diagonal comparisons, it seems that in fact there are three altogether different patterns here in the three groups. Even if the correlation between the infant pattern and blind adult pattern survives, it might be more accurate to claim that infants are different from both adult groups, suggesting both instructive effects of vision and reorganizing effects of blindness. It might help to show the correlation between each group and itself (across independent sets of subjects) to better contextualize the relative strength of correlations between the groups. 

      It is not clear that differences between groups should be attributed to visual experience only. For example, despite the title of the paper, the authors note elsewhere that cross-modal experience might also drive changes between groups. Another factor, which I do not see discussed, is possible ongoing experience-independent maturation. The infants scanned are extremely young, only 2 weeks old. Although no effects of age are detected, it is possible that cortex is still undergoing experience-independent maturation at this very early stage of development. For example, consider Figure 2; perhaps V1 connectivity is not established at 2 weeks, but eventually achieves the adult pattern later in infancy or childhood. Further, consider the possibility that this same developmental progression would be found in infants and children born blind. In that case, the blind adult pattern may depend on blindness-related experience only (which may or may not reflect "visual" experience per se). To deal with these issues, the authors should add a discussion of the role of maturation vs. experience and temper claims about the role of visual experience specifically (particularly in the title). 

      The authors measure functional correlations in three very different groups of participants and find three different patterns of functional correlations. Although these three groups differ in critical, theoretically interesting ways (i.e., in age and visual/cross-modal experience), they also differ in many uninteresting ways, including at least the following: sampling rate (TR), scan duration, multi-band acceleration, denoising procedures (CompCor vs. ICA), head motion, ROI registration accuracy, and wakefulness (I assume the infants are asleep).

      Addressing all of these issues is beyond the scope of this paper, but I do feel the authors should acknowledge these confounds and discuss the extent to which they are likely (or not) to explain their results. The authors would strengthen their conclusions with analyses directly comparing data quality between groups (e.g., measures of head motion and split-half reliability would be particularly effective).

      Response #1: We appreciate the reviewer’s comments. In response, we have revised the paper to provide a more balanced summary of the data and clarified in the introduction which signatures the paper focuses on and why. Additionally, we have included several control analyses to account for other plausible explanations for the observed group differences. Specifically, we randomly split the infant dataset into two halves and performed split-half cross-validation. Across all comparisons, the results from the two halves were highly similar, suggesting that the effects are robust (see Supplementary Figures S3 and S4).

      Furthermore, we compared the split-half noise ceiling across the groups (infants, sighted adults, and blind adults) and found no significant differences between them (details in response #6). Finally, we repeated our analysis after excluding infants with a radiology score of 4 or 5, and the results remained consistent, indicating that our findings are not confounded by potential brain anomalies (details in response #2).

      We hope these control analyses help strengthen our conclusions.

      Reviewer #3 (Public Review):

      Summary:

      This study aimed to investigate whether the differences observed in the organization of visual brain networks between blind and sighted adults result from a reorganization of an early functional architecture due to blindness, or whether the early architecture is immature at birth and requires visual experience to develop functional connections. This question was investigated through the comparison of 3 groups of subjects with resting-state functional MRI (rs-fMRI). Based on convincing analyses, the study suggests that: 1) secondary visual cortices showed higher connectivity to prefrontal cortical regions (PFC) than to non-visual sensory areas (S1/M1 and A1) in sighted infants like in blind adults, in contrast to sighted adults; 2) the V1 connectivity pattern of sighted infants lies between that of sighted adults (stronger functional connectivity with non-visual sensory areas than with PFC) and that of blind adults (stronger functional connectivity with PFC than with non-visual sensory areas); 3) the laterality of the connectivity patterns of sighted infants resembled those of sighted adults more than those of blind adults, but sighted infants showed a less differentiated fronto-occipital connectivity pattern than adults.

      Strengths:

      The question investigated in this article is important for understanding the mechanisms of plasticity during typical and impaired development, and the approach considered, which compares different groups of subjects including, neonates/infants and blind adults, is highly original.

      -Overall, the analyses considered are solid and well-detailed. The results are quite convincing, even if the interpretation might need to be revised downwards, as factors other than visual experience may play a role in the development of functional connections with the visual system.

      Weaknesses:

      While it is informative to compare the "initial" state (close to birth) and the "final" states in blind and sighted adults to study the impact of post-natal and visual experience, this study does not analyze the chronology of this development and when the specialization of functional connections is completed. This would require investigating when experience-dependent mechanisms are important for the setting- establishment of multiple functional connections within the visual system. This could be achieved by analyzing different developmental periods in the same way, using open databases such as the Baby Connectome Project. Given the early, "condensed" maturation of the visual system after birth, we might expect sighted infants to show connectivity patterns similar to those of adults a few months after birth.

      The rationale for mixing full-term neonates and preterm infants (scanned at term-equivalent age) from the dHCP 3rd release is not understandable since preterms might have a very different development related to prematurity and to post-natal (including visual) experience. Although the authors show that the difference between the connectivity of visual and other sensory regions, and the one of visual and PFC regions, do not depend on age at birth, they do not show that each connectivity pattern is not influenced by prematurity. Simply not considering the preterm infants would have made the analysis much more robust, and the full-term group in itself is already quite large compared with the two adult groups. The current study setting and the analyses performed do not seem to be an adequate and sufficient model to ascertain that "a few weeks of vision after birth is ... insufficient to influence connectivity".

      In a similar way, excluding the few infants with detected brain anomalies (radiological scores higher or equal to 4) would strengthen the group homogeneity by focusing on infants supposed to have a rather typical neurodevelopment. The authors quote all infants as "sighted" but this is not guaranteed as no follow-up is provided.

      Response #2: We appreciate the reviewer’s suggestion. We re-analyzed the infant cohort after excluding all cases with radiological scores ≥4 (n =39 infants excluded). The revised analysis confirmed that the connectivity patterns reported in the main text remain statistically unchanged (see Supplementary Fig. S11). This demonstrates the robustness of our findings to potential confounding effects from potential brain anomalies. We have explicitly clarified this in the revised Methods section (page 14, line 391in the manuscript).

      In our dataset, newborns (average age at scan = 2.79 weeks) have very limited and immature vision. We agree with the reviewer that long-term visual outcomes cannot be guaranteed without follow-up data. The term "sighted infants" was used operationally to distinguish this cohort from congenitally blind populations.

      The post-menstrual age (PMA) at scan of the infants is also not described. The methods indicate that all were scanned at "term-equivalent age" but does this mean that there is some PMA variability between 37 and 41 weeks? Connectivity measures might be influenced by such inter-individual variability in PMA, and this could be evaluated.

      The rationale for presenting results on the connectivity of secondary visual cortices before one of the primary cortices (V1) was not clear to understand. Also, it might be relevant to better justify why only the connectivity of visual regions to non-visual sensory regions (S1-M1, A1) and prefrontal cortex (PFC) was considered in the analyses, and not the ones to other brain regions.

      In relation to the question explored, it might be informative to reposition the study in relation to what others have shown about the developmental chronology of structural and functional long-distance and short-distance connections during pregnancy and the first postnatal months.

      The authors acknowledge the methodological difficulties in defining regions of interest (ROIs) in infants in a similar way as adults. The reliability and the comparability of the ROIs positioning in infants is definitely an issue. Given that brain development is not homogeneous and synchronous across brain regions (in particular with the frontal and parietal lobes showing delayed growth), the newborn brain is not homothetic to the adult brain, which poses major problems for registration. The functional specialization of cortical regions is incomplete at birth. This raises the question of whether the findings of this study would be stable/robust if slightly larger or displaced regions had been considered, to cover with greater certainty the same areas as those considered in adults. And have other cortical parcellation approaches been considered to assess the ROIs robustness (e.g. MCRIB-S for full-terms)?

      Recommendations for the Authors:

      Reviewer #1(Recommendations for the authors):

      Further consideration should be given to the underlying changes in network architecture that may account for differences in functional correlations across groups. An increase (or decrease) in correlation between two regions could signify an increase (decrease) in connection or communication between those regions. Alternatively, it might reflect an increase in communication or connection with a third region, while the physical connections/interactions between the two original regions remain unchanged. These possibilities lead to distinct mechanistic interpretations. For example, there are substantial changes in connectivity during early visual (e.g. Burkhalter A. 1993, Cerebral Cortex) and visuo-motor development (e.g., Csibra et al. 2000 Neuroreport). It's not clear whether increases in communication within the visual network and improvements in visuo-motor behavior (e.g., Yizhar et al. 2023 Frontiers in Neuroscience) wouldn't produce a qualitatively similar pattern of results.

      Relatedly, the within-network correlation patterns between visual ROIs and frontal ROIs appear markedly different between sighted adults and infants (Supplementary Figure S1). To what extent do the differences in long-range correlations between visual and frontal regions reflect these within-network differences in functional organization?

      Response #3: The reviewer is raising some interesting questions about possible mechanisms and network changes. Resting state studies are indeed always subject to possibility that some effects are mediated by a third, unobserved region. Prior whole-cortex connectivity analyses have observed primarily changes in occipito-frontal connectivity in blindness, so there is not a clear cortical ‘third region’ candidate (Deen et al., 2015). However, some thalamic affects have also been observed and could contribute to the phenomenon (Bedny et al., 2011). Resting state changes in correlation between two areas do not imply changes in strength of long-range anatomical connectivity. Indeed, in the current case they may well reflect differential functional coupling, rather than strengthening or weakening of anatomical connections. We now discuss this in the Discussion section on page 12, line 301 as follows:

      “Despite these insights, many questions remain regarding the neurobiological mechanisms underlying experience-based functional connectivity changes and their relationship to anatomical development. Long-range anatomical connections between brain regions are already present in infants—even prenatally—though they remain immature (Huang et al., 2009; Kostović et al., 2019, 2021; Takahashi et al., 2012; Vasung, 2017). Functional connectivity changes may stem from local synaptic modifications within these stable structural pathways, consistent with findings that functional connectivity can vary independently of structural connection strength (Fotiadis et al., 2024). Moreover, functional connectivity has been shown to outperform structural connectivity in predicting individual behavioral differences, suggesting that experience-based functional changes may reflect finer-scale synaptic or network-level modulations not captured by macrostructural measures (Ooi et al., 2022). Prior studies also suggest that, even in adults, coordinated sensory-motor experience can lead to enhancement of functional connectivity across sensory-motor systems, indicating that large-scale changes in functional connectivity do not necessarily require corresponding changes in anatomical connectivity (Guerra-Carrillo et al., 2014; Li et al., 2018).”

      It is not clear how changes in correlation patterns among visual areas would produce the connectivity between visual areas and prefrontal areas reported in the current study. Activity in visual areas drives correlations both among visual areas and between visual and prefrontal areas and the same is true of prefrontal corticies.

      The findings from this study should be more closely linked to the extensive literature surrounding the debate on whether experience plays an instructive or permissive role in visual development (e.g., Crair 1999 Current Opin Neurobiol; Sur et al. 1999 J Neurobiol; Kiorpes 2016 J Neurosci; Stellwagen & Shatz 2002 Neuron; Roy et al. 2020 Nature Communications).

      Response #4: The instructive role suggests that specific experiences or patterns of neural activity directly shape and organize neural circuitry, while the permissive role indicates that such experiences or activity merely enable other factors, such as molecular signals, to influence neural circuit formation(Crair, 1999; Sur et al., 1999). To distinguish whether experience plays an instructive or permissive role, it is essential to manipulate the pattern or information content of neural activity while maintaining a constant overall activity level (Crair, 1999; Roy et al., 2020; Stellwagen & Shatz, 2002). However, both the sighted and blind adult groups have had extensive experience and neural activity in the visual cortices. For the sighted group, activity in the visual cortex is partly driven by bottom-up input from the external environment, through the retina, LGN, and ultimately to the cortex. In contrast, the blind group’s visual cortex activity is partially driven by top-down input from non-visual networks. The precise role of this activity in shaping the observed connectivity patterns remains unclear. Although our study cannot speak to this issue directly, we now link to the relevant literature on page 12,line 320 of the manuscript in the Discussion section as follows:

      “The current findings reveal both effects of vision and effects of blindness on the functional connectivity patterns of the visual cortex. A further open question is whether visual experience plays an instructive or permissive role in shaping neural connectivity patterns. An instructive role suggests that specific sensory experiences or patterns of neural activity directly shape and organize neural circuitry. In contrast, a permissive role implies that sensory experience or neural activity merely facilitates the influence of other factors—such as molecular signals—on the formation and organization of neural circuits (Crair, 1999; Sur et al., 1999). Studies with animals that manipulate the pattern or informational content of neural activity while keeping overall activity levels constant could distinguish between these hypotheses (Crair, 1999; Roy et al., 2020; Stellwagen & Shatz, 2002).”

      The assertion that a few weeks of vision after birth is insufficient to influence connectivity is provocative. Though supported by the study's results, it would benefit from integration with research in animal models showing considerable malleability of networks from early experience (e.g., Akerman et al. 2002 Neuron; Li et al. 2006 Nature Neuroscience; Stacy et al. 2023 J Neuroscience).

      Response #5: We thank the reviewer for their suggestion. The present study found that several weeks of postnatal visual experience is insufficient to significantly alter the long-term connectivity patterns of the visual cortices. While animal studies have shown that acute visual experience, or even exposure to visual stimuli through unopened eyelids, can robustly influence visual system development(Akerman et al., 2002; Li et al., 2008; Van Hooser et al., 2012). We think this discrepancy may be attributed to the substantial differences in developmental timelines between species. The human lifespan is much longer, and so is the human critical period, making it unclear how to map duration from one species to another. We briefly touched upon the time course issue in page 11 line 289 in the Discussion section as follows:

      “The present results reveal the effects of experience on development of functional connectivity between infancy and adulthood, but do not speak to the precise time course of these effects. Infants in the current sample had between 0 and 20 weeks of visual experience. Comparisons across these infants suggests that several weeks of postnatal visual experience is insufficient to produce a sighted-adult connectivity profile. The time course of development could be anywhere between a few months and years and could be tested by examining data from children of different ages.”

      Substantial differences between the groups are evident in several key aspects of the study, including the number of subjects, brain sizes, imaging parameters, and data preprocessing, all of which are likely to have an impact on the overall signal quality. To clarify how these differences might have impacted correlation differences between groups, it would be essential to include information on the noise ceilings for each correlation analysis within each group.

      Response #6: We thank the reviewer for their suggestion. We now report the split-half noise ceiling for adult and infant groups. For each participant, we first split the rs-fMRI time series into two halves, then calculated the ROI-wise rsFC pattern from the two splits. The split-half noise ceiling was estimated according to Lage-Castellanos et al (2019). The noise ceilings of the three groups (infants: 0.90 ± 0.056,blind adults: 0.88 ± 0.041, sighted adults: 0.90 ± 0.055) showed no significant difference (One-way ANOVA<sub>,</sub> F(2,552) = 2.348, p = 0.097). Therefore, we believe that overall signal quality is unlikely to impact our results. We also add the relevant context in the Method section in page 16 Line 447 as follows:

      “Substantial differences between the groups exist in this study, including the number of subjects, brain sizes, imaging parameters, and data preprocessing, all of which are likely to have an impact on the overall signal quality. To address this concern, we compared the split-half noise ceiling across the groups (infants, sighted adults, and blind adults). For each participant, we first split the rs-fMRI time series into two halves, then calculated the ROI-wise rsFC pattern from the two splits. The split-half noise ceiling was estimated according to Lage-Castellanos et al (Lage-Castellanos et al., 2019). The noise ceilings of the three groups (infants: 0.90 ± 0.056, blind adults: 0.88 ± 0.041, sighted adults: 0.90 ± 0.055) showed no significant difference (One-way ANOVA, F (2,552) = 2.348, p = 0.097). Therefore, overall signal quality is unlikely to impact our results.”

      In general, it appears that the infant correlations are stronger compared to the other groups. While this could reflect increased coherence or lack of differentiation, it is also possible that it is simply due to the presence of a non-neuronal global signal. Such a signal has the potential to substantially limit the effective range of functional correlations and comparisons with adults. To address this, it is advisable to conduct control analyses aimed at assessing and potentially removing global signals.

      Response #7: We agree with the reviewer that global signal regression (GSR) may help reduce non-neuronal artifacts, such as motion, cardiac, and respiratory signals, which are known to correlate with the global signal. However, the global signal also contains neural signals from gray matter, and removing it can introduce unwanted artifacts, especially for the current study. First, GSR can reduce the physiological accuracy of functional connectivity (FC); second, GSR may have differential effects across groups, potentially introducing additional artifacts in between-group comparisons, as noted by Murphy et al (Murphy & Fox, 2017). The CompCor method (Behzadi et al., 2007; Whitfield-Gabrieli & Nieto-Castanon, 2012) is capble to estimate the global non-neuronal artifacts like the GSR method. Meanwhile as it estimate global non-neuronal artifacts from signals within the white matter (WM) and cerebrospinal fluid (CSF) masks, but not the gray matter (GM), CompCor could introduce minimal unwanted bias to the GM signal.

      Was there a difference in correlations for preterm vs term neonates? Recent research has suggested that preterm births can have an impact on functional networks, particularly in frontal cortices. e.g., Tokariev et al. 2019, Li et al. 2021 elife; Zhang et al. 2022 Fronteirs in Neuroscience.

      Response #8: We have compared preterm and term neonates for all the main results, including the connectivity from the secondary visual cortex/V1 to non-visual sensory cortices versus prefrontal cortices, the laterality of occipito-frontal connectivity, and the specialization across different fronto-occipital networks. This information is reported in Page 6 line 169 and Supplementary Figure S7. The connectivities of full-term infants are generally higher than those of preterm infants. However, the connectivity patterns of term and preterm infants are very similar.

      The consistency between the current results and prior work (e.g., Burton et al. 2014) is notable, particularly in the observed greater correlations in prefrontal regions and weaker correlations in somato-motor regions for early blind individuals compared to sighted. However, almost all visual-frontal correlations in both groups were negative in that prior study. Some discussion on why positive correlations were found in the current study could help to clarify.

      Response #9: Many other papers have reported positive correlations similar to those found in our study (e.g., Deen et al., 2015; Kanjlia et al., 2021). In contrast, Burton's study identified predominantly negative visual-frontal correlations, we think this is likely because the global signal was regressed out during preprocessing. This methodological choice can lead to an increase in negative connections (Murphy & Fox, 2017).

      The term "secondary visual areas" used throughout the paper lacks specificity, and its usage in terms of underlying anatomical and functional areas has been inconsistent in the literature. It would be advisable to adopt a more precise characterization based on functional and/or anatomical criteria.

      Response #10: We specified in the article that Tthe occipital ROIs were defined in the current study are functional areas in people born blind identified in prior studies as regions that respond to three non-visual tasks such as language, math, or executive function, and show functional connectivity changes in blind adults in previous studies (Kanjlia et al., 2016, 2021; Lane et al., 2015). These regions respond to language, math and executivie function in the congenitally blind population (see Figure 1.) The are refered collectively as ‘secondary visual areas’ to destinguish them from V1. Anatomically, these three regions cover the majority of the lateral occipital cortex and part of the ventral occipital cortex, providing a good sample of the connectivity profile of higher-order visual areas. Thus, we are using the term "secondary visual areas" to refer to these regions. In blind individuals, although these regions respond to non-visual tasks, their exact functions are unknown.

      The inclusion of the ventral temporal cortex in the visual ROIs is currently only depicted in Supplementary Figure S7. To enhance the clarity of the areas of interest analyzed, it would be advisable to illustrate the ventral temporal areas in the main text. Were there notable differences in the frontal correlations between the lateral occipital visual areas and ventral temporal areas?

      Response #11: We thank the reviewer for pointing out this issue. We added a statement about the ventral visual cortex in describing the location of the ROI and added the ventral view of ROIs in the Figure 1. The language-responsive and math -responsive ROIs covers both the lateral and ventral visual cortex, whereas executive function (response-conflict) regions cover only the lateral visual cortex. We compared the connectivity patterns of these three regions and found no differences (see supplementary Fig S2).

      The blind group results are characterized as reflecting a reorganization in comparison to sighted adults while the results for sighted adults compared to infants are discussed more as a maturation ("adult pattern isn't default but requires experience to establish"). Both the sighted and blind adult groups showed differences from the infant group, and these differences are attributed to the role of experience. Why use "reorganization" for one result and maturation for another?

      Response #12: We agree with the reviewer that both of the adult groups should be thought of as equal in relation to the infants. In other words, the brain develops under one set of experiential conditions or another. We do not think that the adult sighted pattern reflects maturation. Rather, the sighted adult pattern reflects the combined influence of maturation and visual experience. The adult blind pattern reflects the combined influence of maturation and blindness. We use the term ‘reorganization’ to label differences in the blind adults relative to sighted infants. We do so for the purpose of clarity and to remain consistent with terminology in prior liaterature. However, we agree with the reviewer that the blind group does not reflect ‘reorganization’ intrinsically any more than the sighted adult group.

      The statement that "visual experience is required to set up long-range functional connectivity" is unclear, especially since the infant and blind groups showed stronger long-range functional correlations with PFC.

      Response #13: We revised this sentence to specifically as “visual experience establishes elements of the sighted-adult long-range connectivity” in tha Abstract line 17.

      The statement that the visual ROIS roughly correspond to "the anatomical location of areas such as V5/MT+, LO, V3a, and V4v" appears imprecise. From Supplementary Figure S7, these areas cover anterior portions of ventral temporal cortex (do these span the anatomical location of putative category-selective areas?) and into the intraparietal sulcus.

      Response #14: Thanks to the reviewer for the clarification. The ventral ROIs cover the middle and part of the anterior portion of the ventral temporal lobe, including the putative category-selective areas. Additionally, the dorsal ROIs extend beyond the occipital lobe to the intraparietal sulcus and superior parietal lobule. We have added a more detailed description of the anatomical location of the ROI in the Methods section Page 17 line 489 as follows:

      “Each functional ROI spans multiple anatomical regions and together the secondary visual ROIs tile large portions of lateral occipital, occipito-temporal, dorsal occipital and occipito-parietal cortices. In sighted people, the secondary visual occipital ROIs include the anatomical locations of functional regions such as motion area V5/MT+, the lateral occipital complex (LO), category specific ventral occipitotemporal cortices and dorsally, V3a and V4v.  The occipital ROI also covers the middle of the ventral temporal lobe. Dorsally, it extended to the intraparietal sulcus and superior parietal lobule.”

      The motivation for assessing correlations with motor and frontal regions was briefly discussed in the introduction. It would be helpful to reiterate this motivation when first introducing the analyses in the results.

      Response #15: Thank you for the thoughtful suggestion. Upon reflection, we chose to substantially revise the Introduction to more clearly and comprehensively explain the rationale for examining the couplings with motor and frontal regions, rather than reiterating it in the Results section. We believe this revised framing provides a stronger foundation for the analyses that follow, while avoiding redundancy across sections. We hope this addresses the reviewer’s concern.

      Reviewer #2 (Recommendations for the authors):

      Congratulations on a well-written paper and an interesting set of results.

      Reviewer #3 (Recommendations for the authors):

      Abstract:

      Mentioning "sighted infants" does not seem adequate.

      Response #16: In our dataset, newborns (average age at scan = 2.79 weeks) have very limited and immature vision. We agree with the reviewer that long-term visual outcomes cannot be guaranteed without follow-up data. The term "sighted infants" was used operationally to distinguish this cohort from congenitally blind populations.

      In sentences after "Specifically...", it was not clear whether the authors referred to V1 connectivity.

      Response #17: We thank the reviewer for this comment. In the revised abstract, we have removed the original "Specifically..." phrasing and clarified the results.

      Introduction

      Talking about the "instructive effects" of vision might be confusing or misleading. Visual experiences like exposure to oral language are part of the normal/spontaneous environment that allows the infant behavioral acquisitions (contrarily with learnings that occur later during development with instruction like for reading).

      Response #18: We appreciate the reviewer’s concern and would like to clarify that the term “instructive effect” is used here derived from neurodevelopmental studies (Crair, 1999; Sur et al., 1999). In this context, “instructive” refers to activity-dependent mechanisms where patterns of neural activity actively guide the organization of synaptic connectivity, emphasizing that spontaneous or sensory-driven activity (e.g., retinal waves, visual experience) can directly shape circuit refinement, as seen in ocular dominance column formation. In the context of our study, we emphasize that vision plays an instructive role in setting up the balance of connectivity between occipital cortex and non-visual networks.

      For references on the development of connectivity, I would advise citing MRI studies but also studies based on histological approaches (see for example the detailed review by Kostovic et al, NeuroImage 2019).

      Response #19: We thank the reviewer for this suggestion. We have incorporated a discussion on the long-range anatomical connections that emerge as early as infancy, referencing studies that employed diffusion MR imaging and histological methods, as detailed below.

      “Many long-range anatomical connections between brain regions are already established in infants, even before birth, although they are not yet mature (Huang et al., 2009; Kostović et al., 2019, 2021; Takahashi et al., 2012; Vasung, 2017).” (Page 12, line 303 in the manuscript)

      Results

      P7 l170: It might be helpful to be precise that this is "compared with inter-hemispheric connectivity".

      Response #20: We thank the reviewer for this suggestion. To align with our established terminology, we have revised the statement to explicitly contrast within-hemisphere connectivity with between-hemisphere connectivity. The modified text now reads (page 7, line 183 in the manuscript):

      “Compared to sighted adults, blind adults exhibited a stronger dominance of within-hemisphere connectivity over between-hemisphere connectivity. That is, in people born blind, left visual networks are more strongly connected to left PFC, whereas right visual networks are more strongly connected to right PFC.

      L176-181: It was not clear to me what was the difference between "across" and "between hemisphere connectivity". Would it be informative to test the difference between blind and sighted adults?

      Response #21: We clarify that there is no distinction between the terms “across” and “between hemisphere connectivity”—they refer to the same concept. To ensure consistency, we have revised the text to exclusively use “between hemisphere connectivity” throughout the manuscript. Regarding the comparison between blind and sighted adults, we conducted statistical comparisons between these groups in our analysis, and the results have been incorporated into the revised version (Page 7, line 187 in the manuscript).

      Adding statistics on Figure 3, but also on Figures 1 and 2 might help the reading.

      Response #22: We have added the statistics in Figure 1-4.

      Adding the third comparison in Figure 4 would be possible in my view.

      Response #23: We explored integrating the response-conflict region into Figure 4, but this would require a 3x3 bar chart with pairwise statistical significance markers, which introduced excessive visual complexity that hindered readers’ ability to grasp our intended message. To ensure clarity, we retained the original Figure 4 while providing the complete three-region analysis (including all statistical comparisons) in Supplementary Figure S8 to ensure completeness.

      Methods

      The authors might have to specify ages at birth, and ages at scan (median + range?).

      Response #24: We have added that information in the Methods section as follows:

      “The average age from birth at scan = 2.79 weeks (SD = 3.77, median = 1.57, range = 0 – 19.71); average gestational age at scan = 41.23 weeks (SD = 1.77, median = 41.29, range = 37 – 45.14); average gestational age at birth = 38.43 weeks (SD = 3.73, median = 39.71, range = 23 – 42.71).” (Page 14, line 379 in the manuscript)

      It might be relevant to comment on the range of available fMRI volumes, and the fact that connectivity measures might then be less robust in infants.

      Response #25: We report the range of fMRI volumes in the Methods section (Page 16, Line 449). Adult participants (blind and sighted) underwent 1–4 scanning sessions, each containing 240 volumes (mean scan duration: 710.4 seconds per participant). For infants, all subjects had 2300 fMRI volumes, and we retained a subset of 1600 continuous volumes per subject with the minimum number of motion outliers. While infant connectivity measures may inherently exhibit lower robustness due to developmental and motion-related factors, our infant cohort’s large sample size (n=475) and stringent motion censoring criteria enhance the reliability of group-level inferences. We have integrated this clarification into the Methods section (Page 16, Line 444) as follows:

      "While infant connectivity estimates may be less robust at the individual level compared to adults due to shorter scan durations and higher motion, our cohort’s large sample size (n=475) and rigorous motion censoring mitigate these limitations for group-level analyses. "

      The mention of dHCP 2nd release should be removed from the paragraph on data availability.

      Response #26: We have removed it.

    1. Author response:

      Response to Comments from reviewer #1

      Many thanks for appreciating that SZN-043 can promote hepatocyte proliferation via the Wnt-signaling pathway.

      (1) The reviewer is concerned with using only CYP1A2 expression as an endpoint to make a conclusion about the effect of SZN-043 on Wnt activity in human ALD samples. The reviewer raises a good point as the more commonly used Wnt target gene, AXIN2, is not consistantly changed in both cohorts. We were at first also surprised by this finding. However, upon closer analysis we found that the expression of hepatocyte-specific target genes such as CYP1A2 (Figure 2), CYP2E1, OAT, LGR5, GLUL (Table 1) and ZNRF3 were mostly expressed in hepatocytes and ductal cells were all down-regulated in ALD samples. Others Wnt target genes expressed in epithelial and mesenchymal liver cell populations, such as AXIN2, CCND1 and NOTUM are indeed not consistently and significantly changed. Given that SZN-043 is not active on mesenchymal cells, this discrepancy could be best explained by the large increase in mesenchymal cells in ALD tissue samples, thereby confounding the results. We have now clarified this in the discussion. Another method to assess Wnt activity is to measure b-catenin phosphorylation and nuclear transfer. In our hands, this method was found to be better suited for tissue culture than histological sections from in vivo studies. We have also amended the manuscript title to refer to expression of Wnt target genes, rather than Wnt activity.

      (2) We have now added a supplemental figure to show the lack of Ki-67+ human hepatocytes in the cirrhotic tissue samples to confirm the absence of hepatocyte proliferation (Figure S1).

      (3) The differences in amino acid sequence between SZN-043 and its precursor, αASGR1-RSPO2-RAIgG, can be found in the material and method section. These changes in amino acid sequences improved the biophysical properties of the final clinical candidate, such as oxidation and nonspecific binding. The biochemical analysis of those differences exceeds the scope of the current manuscript. We present here the pharmacokinetic properties of SZN-043 only, as this was the only molecule advanced to clinical trial and used in the studies presented here.

      (4) The reviewer suggests to assess the effect of SZN-043 in Ctnnb1-KO mice to confirm that SZN043 acts via a canonical Wnt pathway. Indeed, there were several reports on the ability of Rspondin to act on other pathways besides the Wnt signaling pathway (for recent review, Niehrs et al, 2024, Bioessays). However, while an interesting suggestion, this line of investigation belongs to MOA studies and exceeds the scope of the current manuscript. An additional manuscript presenting MOA studies for SZN-043 was recently submitted elsewhere. Still, we have added this possibility in the discussion section.

      (5) The reviewer is asking how SZN-043 is affecting liver functions in general. Indeed, we have observed a consistent reduction in the international normalized ratio of prothrombin time using the thioacetamide (TAA)-induced fibrosis model and previously published those findings (Zhang, 2020). In our hands, the TAA is the only liver injury model that significantly increases INR. This increase is modest compared to that observed in clinical patients. Therefore, we do not report INR findings for other models. We have not seen any effects of SZN-043 on hepatocyte differentiation markers such as HNF4A (data not shown) and the hepatocyte specific ASGR1/2 as shown in Figure 5. Rather we focused on proliferation as the main potentially beneficial endpoint, to restore the parenchymal mass in injured livers. Finally, consistent with what was reported in the literature, we have observed a transient and reciprocal effect on albumin and alfa-fetoprotein expression during the proliferative phase of liver regeneration. These results are detailed in an additional manuscript presenting MOA studies for SZN-043, which was recently submitted elsewhere.

      (6) We have used females only in the ethanol-induced injury models because there are numerous reports in the literature stating that males are not as susceptible to those injuries.  

      (7) The reviewer questions the relevance of the ethanol-induced injury model used to evaluate SZN043 efficacy. Indeed, none of the disease model developed to date reproduce the severity and complexity of alcohol-associated liver diseases, although some, such as the ethanol supplemented Lieber DeCarli diet, are more commonly used than others – which is the reason why this model was selected. 

      (8) The reviewer questions the relevance of the fibrosis model used to evaluate SZN-043 efficacy. Indeed, none of the fibrosis models developed to date reproduce the severity and complexity of cirrhosis in human livers. While combining ethanol with CCl4 would lead to more severe fibrotic livers, CCl4 itself is not involved in ALD in humans. Both models are likely to result in similar pericentral fibrosis with central-to-central bridging. In this study, we were mostly interested in addressing the effects of SZN-043 in a tissue affected by fibrotic scars.  

      (9) The sex of CCl4-treated mice is male. We added this information in the methods section.

      (10) A summary of histology and fibrosis assessment data for alcohol-fed mice was added in supplemental Table S3. In our hands, the use of aging mice did not induce the presence of fibrosis, in contrast to published results.  

      (11) The rationale for using 13.5-month-old mice in the alcohol studies and scid mice in the CCl4 studies has been clarified in the results and discussion sections. 

      a. Briefly, aging mice were reported to be more susceptible to ethanol-induced injury than young mice and to include induction of fibrosis. However, we were unable to reproduce the presence of fibrosis reported in the literature.  

      b. Scid mice were used in the CCl4 studies to test whether a stronger response could be observed in the absence of a potential anti-drug antibodies response. While a modest reduction in fibrosis was observed in both B6 and scid mice following the SZN-043 treatment, the effect size did not seem affected by the mouse strain. 

      Response to Comments from reviewer #2

      Many thanks for appreciating that the use of multiple disease models to identify SZN-043 as a potential novel drug for liver regeneration.

      (1) The importance of restoring liver regeneration capacity to reduce the need for liver transplantation had been emphasized in the introduction.

      (2) There is continuous damage to the mouse hepatocytes in the FRG mice, due to the Fah mutation. They undergo repair mechanisms favoring the proliferation of human hepatocytes during the production period. Injury models that affect the human hepatocytes population have been developed in these mice. However, the primary goal of this study was to confirm that SZN043 was efficacious in inducing human hepatocytes proliferation, a feature difficult to reproduce in primary hepatocyte cultures. Given the artefactual nature of the chimeric liver in FRG mice and the high cost of these mice, further studies were not judged to be necessary.

      (3) Corrected

      (4) A figure including DAPI staining has now been included in supplemental Figure S2.

      (5) Clarification that the 8 weeks alcohol feeding used in our study design is a modification of the NIAAA model. While some ASGR1 has been reported on the surface of macrophages, additional data from MOA studies strongly suggest that the effect of SZN-043 is mediated via a hepatocytespecific mechanism (submitted manuscript).

      (6) The reviewer inquired about the potential role of macrophages in promoting an antiinflammatory state in response to SZN-043. While a direct effect is unlikely, a potential effect of macrophages in response to SZN-043 is plausible. Wnt activation is known to induce the secretion of hepatokines, such as LECT2, which in turn can influence macrophage activity. This possibility is discussed in the discussion section.

      (7) The potential off-target effects of SZN-043 such as stellate cell activation is discussed in the discussion section.

      (8) The discussion of the limitations of current models has been included in the discussion section of the manuscript.

      (9) We have now included a discussion of prior RSPO-based therapies, such as OMP-131R10. We explain why the hepatocyte-targeting of RSPO activity minimizes undesired effects.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The work from this paper successfully mapped transcriptional landscape and identified EA-responsive cell types (endothelial, microglia). Data suggest EA modulates BBB via immune pathways and cell communication. However, claims of "BBB opening" are not directly proven (no permeability data).

      (1) No in vivo/in vitro assays confirm BBB permeability changes (e.g., Evans blue leakage, TEER).

      (2) Only male rats were used, ignoring sex-specific BBB differences.

      (3) Pericytes and neurons, critical for the BBB, were not captured, likely due to dissociation artifacts.

      (4) Protein-level validation (Western blot, IHC) absent for key genes (e.g., LY6E, HSP90).

      (5) Fixed stimulation protocol (2/100 Hz, 40 min); no dose-response or temporal analysis.

      We sincerely apologize for the oversight regarding the description of changes in blood-brain barrier permeability. In fact, our team conducted a series of preliminary studies that verified this aspect, and we hace provided a more detailed introduction in the introduction section, in lines 60-71 of the manuscript.

      We are very grateful to the reviewers for pointing out the important and meaningful issue of "gender-specific BBB differences." We will make this a focal point in our future research.

      As for pericytes and neurons, we acknowledge their importance in the function of the blood-brain barrier. We acknowledge the importance of pericytes and neurons in the blood-brain barrier. However, neurons are absent because our sample processing method involves dissociation. During the dissociation procedure, neuronal axons, which are relatively long, are filtered out during the frequent cell suspension steps and cannot enter the downstream microfluidic system for analysis, so they are not present in our data. Since this experiment is primarily focused on non-neuronal cells, we did not choose to use nucleus extraction for sample processing. As for pericytes, we believe they are not captured because their proportion in our samples is extremely low, which is why they are not present in the data. Further research may require single-nucleus transcriptomics or the separate isolation of these two cell types for study. Of course, in our current mechanistic studies, we are also fully considering the important roles these two cell types play in BBB function.

      In addition, to validate the results at the protein level, we have recently conducted some experiments. However, as several proteins are currently at a critical stage of further experimental validation, it is not appropriate to present them in the manuscript at this time. Instead, we have uploaded the relevant data as an appendix for your review. This includes a figure of several protein markers we examined, as well as a table of the antibodies used.

      This section is also further elaborated in the introduction and its references.

      Reviewer #2 (Public review):

      Summary:

      This study uses single-cell RNA sequencing to explore how electroacupuncture (EA) stimulation alters the brain's cellular and molecular landscape after blood-brain barrier (BBB) opening. The authors aim to identify changes in gene expression and signaling pathways across brain cell types in response to EA stimulation using single-cell RNA sequencing. This direction holds promise for understanding the consequences of noninvasive methods of BBB opening for therapeutic drug delivery across the BBB.

      (1) The work falls short in its current form. The experimental design lacks a clear justification, and readers are not provided with sufficient background information on the extent, timing, or regional specificity of BBB opening in this EA model. These details, established in prior work, are critical to understanding the rationale behind the current transcriptomic analyses.

      (2) Further, the results are often presented with minimal context or interpretation. There is no model of intercellular or molecular coordination to explain the BBB-opening process, despite the stated goal of identifying such mechanisms. The statement that EA induces a "unique frontal cortex-specific transcriptome signature" is not supported, as no data from other brain regions are presented. Biological interpretation is at times unclear or inaccurate - for instance, attributing astrocyte migration effects to endothelial cell clusters or suggesting microglial tight junction changes without connecting them meaningfully to endothelial function.

      (3) The study does include analyses of receptor-ligand signaling and cell-cell communication, which could be among its most biologically rich outputs. However, these are relegated to supplementary material and not shown in the leading figures. This choice limits the utility of the manuscript as a hypothesis-generating resource.

      (4) Overall, while the dataset may be of interest to BBB researchers and those developing technologies for drug delivery across the BBB, the manuscript in its current form does not yet fulfill its interpretive goals. A more integrated and biologically grounded analysis would be beneficial.

      This section is also further elaborated in the introduction and its references.

      Our current study is actually based on previous findings that electroacupuncture can open the BBB, with a more pronounced effect observed in the frontal lobe (this aspect should be further described in the research background). Building on this foundation, our aim is to delineate the potential biological mechanisms involved. Therefore, we selected frontal lobe tissue as our primary choice for sequencing and have not yet investigated differences across other brain regions, although this may become a focus of future research. Additionally, we recognize that the mechanism underlying BBB opening is complex, and at present, we cannot determine whether it is driven by a single direct factor or by coordinated actions between cells or molecules. As such, our results are presented only briefly for now, and we will carefully consider whether to supplement our findings by incorporating insights from other studies.

      Considering the overall data layout and the length of the article, we ultimately decided not to make any changes to the presentation of the article's data. The images included in the supplementary materials are also thoroughly described and referenced in the manuscript, allowing readers to selectively view any data they are interested in.

      Indeed, our current dataset and analysis tend to present objective data results. We are also conducting a series of validations that may be related to the biology of the blood-brain barrier, and we look forward to sharing and discussing any future research findings with you and everyone.

      Reviewer #1 (Recommendations for the authors):

      (1) Figures 3-7: Label treatment groups (CON vs. EA) consistently in legends.

      (2) Methods: Specify rat strain (Sprague-Dawley) in the abstract.

      (3) Clarify Limitations: Explicitly state that BBB opening is inferred, not proven.

      This section has been revised at lines 743-733, 748, 949, 754-755, and 759-760 of the manuscript.

      Revised at line 31 of the manuscript.

      Thank you for your feedback. The background information on the open evidence of BBB has been added to the introduction.

      Reviewer #2 (Recommendations for the authors):

      (1) Abstract and Introduction

      • Include specific key findings in the abstract to improve clarity and reader engagement.

      • Expand the introduction to situate this work in the context of other BBB-opening methods (e.g., ultrasound) and the known consequences of BBB disruption.

      • Clarify the rationale for choosing electroacupuncture.

      • Include information (perhaps summarized from previous studies) about the extent, timeline, and functional assessment of BBB opening in this model to help justify the single-cell RNA-seq design.

      (2) Experimental Rationale and Context

      • Reiterate experimental design and rationale in each results section, rather than relying exclusively on the Methods section.

      • Specify the time point of tissue collection relative to the EA intervention.

      • Describe the anatomical sites of acupuncture stimulation and their physiological relevance.

      (3) Data Presentation

      • Replace the human brain cartoon in Figure 1 with an anatomically appropriate rat brain schematic.

      • Reevaluate which data are presented in the main versus supplementary figures. Highlight biologically meaningful results, such as cell-cell communication and ligand-receptor interactions, in the main figures rather than supplementary data.

      (4) Interpretation and Modeling

      • More carefully link transcriptional changes (e.g., Wnt signaling in microglia) to biologically plausible mechanisms of BBB regulation-e.g., microglial signaling to endothelial cells.

      • Clarify whether the presence of granulocytes and T cells might result from a lack of perfusion prior to brain dissection.

      • Consider proposing a model (even speculative) of how EA leads to BBB opening based on observed transcriptional changes.

      First, for the sake of brevity in the abstract, we did not present specific results in this section. Second, since BBB opening via EA is a unique strategy, our previous studies have examined the opening time window and the recovery of the BBB after EA intervention (as mentioned in the introduction). We believe its characteristics differ from those of ultrasound-induced BBB opening and BBB disruption, so we did not conduct comparative discussions, but objectively presented our research findings. In further functional validation experiments, we may consider integrating other opening strategies in our studies. Additionally, the choice of electroacupuncture was based on our previous series of studies, which have already been outlined in the research background. Finally, we did indeed determine the experimental design of this study based on prior research, as described in the background section of the introduction.

      We decided not to make changes to this section in the manuscript after careful consideration. The setup of electroacupuncture intervention and controls has been thoroughly discussed in our previous studies (as referenced in the introduction), so we have not repeated it in this manuscript. Overall, building on all our previous findings, this study focuses primarily on the potential mechanisms of EA intervention. The anatomical sites of acupuncture stimulation and their physiological relevance are another key area of our research, and we are currently conducting a series of related studies. We look forward to sharing these findings with you in the future.

      We have already changed the human brain diagram in Figure 1 to a rat brain diagram, and have replaced Figure 1 in the files with the revised version. However, considering the overall data layout and the length of the article, we ultimately decided not to make changes to the data presentation in the manuscript. The images in the supplementary materials are also thoroughly described and referenced in the manuscript, allowing readers to selectively view the data they are interested in.

      This section has provided us with excellent suggestions for further exploration, although no changes have been made to the manuscript at this time. In the future, we may conduct more detailed transcriptomic studies focusing on sex differences and different brain regions, which will allow for a more comprehensive analysis of the biological mechanisms involved in BBB regulation.

    1. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      The authors analyzed the expression of ATAD2 protein in post-meiotic stages and characterized the localization of various testis-specific proteins in the testis of the Atad2 knockout (KO). By cytological analysis as well as the ATAC sequencing, the study showed that increased levels of HIRA histone chaperone, accumulation of histone H3.3 on post-meiotic nuclei, defective chromatin accessibility and also delayed deposition of protamines. Sperm from the Atad2 KO mice reduces the success of in vitro fertilization. The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin. 

      We would like to take this opportunity to highlight that the present study builds on our previously published work, which examined the function of ATAD2 in both yeast S. pombe and mouse embryonic stem (ES) cells (Wang et al., 2021). In yeast, using genetic analysis we showed that inactivation of HIRA rescues defective cell growth caused by the absence of ATAD2. This rescue could also be achieved by reducing histone dosage, indicating that the toxicity depends on histone over-dosage, and that HIRA toxicity, in the absence of ATAD2, is linked to this imbalance.

      Furthermore, HIRA ChIP-seq performed in mouse ES cells revealed increased nucleosome-bound HIRA, particularly around transcription start sites (TSS) of active genes, along with the appearance of HIRA-bound nucleosomes within normally nucleosome-free regions (NFRs). These findings pointed to ATAD2 as a major factor responsible for unloading HIRA from nucleosomes. This unloading function may also apply to other histone chaperones, such as FACT (see Wang et al., 2021, Fig. 4C).

      In the present study, our investigations converge on the same ATAD2 function in the context of a physiologically integrated mammalian system—spermatogenesis. Indeed, in the absence of ATAD2, we observed H3.3 accumulation and enhanced H3.3-mediated gene expression. Consistent with this functional model of ATAD2— unloading chaperones from histone- and non-histone-bound chromatin—we also observed defects in histone-toprotamine replacement.

      Together, the results presented here and in Wang et al. (2021) reveal an underappreciated regulatory layer of histone chaperone activity. Previously, histone chaperones were primarily understood as factors that load histones. Our findings demonstrate that we must also consider a previously unrecognized regulatory mechanism that controls assembled histone-bound chaperones. This key point was clearly captured and emphasized by Reviewer #2 (see below).

      Strengths: 

      The paper describes the role of ATAD2 AAA+ ATPase in the proper localization of sperm-specific chromatin proteins such as protamine, suggesting the importance of the DNA replication-independent histone exchanges with the HIRA-histone H3.3 axis. 

      Weaknesses: 

      (1) Some results lack quantification. 

      We will consider all the data and add appropriate quantifications where necessary.

      (2) The work was performed well, and most of the results are convincing. However, this manuscript does not suggest a molecular mechanism for how ATAD2 promotes the formation of testis-specific chromatin. 

      Please see our comments above.

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript by Liakopoulou et al. presents a comprehensive investigation into the role of ATAD2 in regulating chromatin dynamics during spermatogenesis. The authors elegantly demonstrate that ATAD2, via its control of histone chaperone HIRA turnover, ensures proper H3.3 localization, chromatin accessibility, and histone-toprotamine transition in post-meiotic male germ cells. Using a new well-characterized Atad2 KO mouse model, they show that ATAD2 deficiency disrupts HIRA dynamics, leading to aberrant H3.3 deposition, impaired transcriptional regulation, delayed protamine assembly, and defective sperm genome compaction. The study bridges ATAD2's conserved functions in embryonic stem cells and cancer to spermatogenesis, revealing a novel layer of epigenetic regulation critical for male fertility. 

      Strengths: 

      The MS first demonstration of ATAD2's essential role in spermatogenesis, linking its expression in haploid spermatids to histone chaperone regulation by connecting ATAD2-dependent chromatin dynamics to gene accessibility (ATAC-seq), H3.3-mediated transcription, and histone eviction. Interestingly and surprisingly, sperm chromatin defects in Atad2 KO mice impair only in vitro fertilization but not natural fertility, suggesting unknown compensatory mechanisms in vivo. 

      Weaknesses:

      The MS is robust and there are not big weaknesses 

      Reviewer #3 (Public review): 

      Summary: 

      The authors generated knockout mice for Atad2, a conserved bromodomain-containing factor expressed during spermatogenesis. In Atad2 KO mice, HIRA, a chaperone for histone variant H3.3, was upregulated in round spermatids, accompanied by an apparent increase in H3.3 levels. Furthermore, the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis were partially disrupted in the absence of ATAD2, possibly due to delayed histone removal. Despite these abnormalities, Atad2 KO male mice were able to produce offspring normally. 

      Strengths: 

      The manuscript addresses the biological role of ATAD2 in spermatogenesis using a knockout mouse model, providing a valuable in vivo framework to study chromatin regulation during male germ cell development. The observed redistribution of H3.3 in round spermatids is clearly presented and suggests a previously unappreciated role of ATAD2 in histone variant dynamics. The authors also document defects in the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis, providing phenotypic insight into chromatin transitions in late spermatogenic stages. Overall, the study presents a solid foundation for further mechanistic investigation into ATAD2 function. 

      Weaknesses:

      While the manuscript reports the gross phenotype of Atad2 KO mice, the findings remain largely superficial and do not convincingly demonstrate how ATAD2 deficiency affects chromatin dynamics. Moreover, the phenotype appears too mild to elucidate the functional significance of ATAD2 during spermatogenesis. 

      We respectfully disagree with the statement that our findings are largely superficial. Based on our investigations of this factor over the years, it has become evident that ATAD2 functions as an auxiliary factor that facilitates mechanisms controlling chromatin dynamics (see, for example, Morozumi et al., 2015). These mechanisms can still occur in the absence of ATAD2, but with reduced efficiency, which explains the mild phenotype we observed.

      This function, while not essential, is nonetheless an integral part of the cell’s molecular biology and should be studied and brought to the attention of the broader biological community, just as we study essential factors. Unfortunately, the field has tended to focus primarily on core functional actors, often overlooking auxiliary factors. As a result, our decade-long investigations into the subtle yet important roles of ATAD2 have repeatedly been met with skepticism regarding its functional significance, which has in turn influenced editorial decisions.

      We chose eLife as the venue for this work specifically to avoid such editorial barriers and to emphasize that facilitators of essential functions do exist. They deserve to be investigated, and the underlying molecular regulatory mechanisms must be understood.

      (1) Figures 4-5: The analyses of differential gene expression and chromatin organization should be more comprehensive. First, Venn diagrams comparing the sets of significantly differentially expressed genes between this study and previous work should be shown for each developmental stage. Second, given the established role of H3.3 in MSCI, the effect of Atad2 knockout on sex chromosome gene expression should be analyzed. Third, integrated analysis of RNA-seq and ATAC-seq data is needed to evaluate how ATAD2 loss affects gene expression. Finally, H3.3 ChIP-seq should be performed to directly assess changes in H3.3 distribution following Atad2 knockout.  

      (1) In the revised version, we will include Venn diagrams to illustrate the overlap in significantly differentially expressed genes between this study and previous work. However, we believe that the GSEAs presented here provide stronger evidence, as they indicate the statistical significance of this overlap (p-values). In our case, we observed p-value < 0.01 (**) and p < 0.001 (***).

      (2) Sex chromosome gene expression was analyzed and is presented in Fig. 5C.

      (3) The effect of ATAD2 loss on gene expression is shown in Fig. 4A, B, and C as histograms, with statistical significance indicated in the middle panels.

      (4) Although mapping H3.3 incorporation across the genome in wild-type and Atad2 KO cells would have been informative, the available anti-H3.3 antibody did not work for ChIP-seq, at least in our hands. The authors of Fontaine et al., 2022, who studied H3.3 during spermatogenesis in mice, must have encountered the same problem, since they tagged the endogenous H3.3 gene to perform their ChIP experiments.

      (2) Figure 3: The altered distribution of H3.3 is compelling. This raises the possibility that histone marks associated with H3.3 may also be affected, although this has not been investigated. It would therefore be important to examine the distribution of histone modifications typically associated with H3.3. If any alterations are observed, ChIP-seq analyses should be performed to explore them further.  

      Based on our understanding of ATAD2’s function—specifically its role in releasing chromatin-bound HIRA—in the absence of ATAD2 the residence time of both HIRA and H3.3 on chromatin increases. This results in the detection of H3.3 not only on sex chromosomes but across the genome. Our data provide clear evidence of this phenomenon. The reviewer is correct in suggesting that the accumulated H3.3 would carry H3.3-associated histone PTMs; however, we are unsure what additional insights could be gained by further demonstrating this point.

      (3) Figure 7: While the authors suggest that pre-PRM2 processing is impaired in Atad2 KO, no direct evidence is provided. It is essential to conduct acid-urea polyacrylamide gel electrophoresis (AU-PAGE) followed by western blotting, or a comparable experiment, to substantiate this claim. 

      Figure 7 does not suggest that pre-PRM2 processing is affected in Atad2 KO; rather, this figure—particularly Fig. 7B—specifically demonstrates that pre-PRM2 processing is impaired, as shown using an antibody that recognizes the processed portion of pre-PRM2. ELISA was used to provide a more quantitative assessment; however, in the revised manuscript we will also include a western blot image.

      (4) HIRA and ATAD2: Does the upregulation of HIRA fully account for the phenotypes observed in Atad2 KO? If so, would overexpression of HIRA alone be sufficient to phenocopy the Atad2 KO phenotype? Alternatively, would partial reduction of HIRA (e.g., through heterozygous deletion) in the Atad2 KO background be sufficient to rescue the phenotype? 

      These are interesting experiments that require the creation of appropriate mouse models, which are not currently available.

      (5)The mechanism by which ATAD2 regulates HIRA turnover on chromatin and the deposition of H3.3 remains unclear from the manuscript and warrants further investigation. 

      The Reviewer is absolutely correct. In addition to the points addressed in response to Reviewer #1’s general comments (see above), it would indeed have been very interesting to test the segregase activity of ATAD2 (likely driven by its AAA ATPase activity) through in vitro experiments using the Xenopus egg extract system described by Tagami et al., 2004. This system can be applied both in the presence and absence (via immunodepletion) of ATAD2 and would also allow the use of ATAD2 mutants, particularly those with inactive AAA ATPase or bromodomains. However, such experiments go well beyond the scope of this study, which focuses on the role of ATAD2 in chromatin dynamics during spermatogenesis

      Reference

      Wang T, Perazza D, Boussouar F, Cattaneo M, Bougdour A, Chuffart F, Barral S, Vargas A, Liakopoulou A, Puthier D, Bargier L, Morozumi Y, Jamshidikia M, Garcia-Saez I, Petosa C, Rousseaux S, Verdel A, Khochbin S. ATAD2 controls chromatin-bound HIRA turnover. Life Sci Alliance. 2021 Sep 27;4(12):e202101151. doi: 10.26508/lsa.202101151. PMID: 34580178; PMCID: PMC8500222.

      Morozumi Y, Boussouar F, Tan M, Chaikuad A, Jamshidikia M, Colak G, He H, Nie L, Petosa C, de Dieuleveult M, Curtet S, Vitte AL, Rabatel C, Debernardi A, Cosset FL, Verhoeyen E, Emadali A, Schweifer N, Gianni D, Gut M, Guardiola P, Rousseaux S, Gérard M, Knapp S, Zhao Y, Khochbin S. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J Mol Cell Biol. 2016 Aug;8(4):349-62. doi: 10.1093/jmcb/mjv060. Epub 2015 Oct 12. PMID: 26459632; PMCID: PMC4991664.

      Fontaine E, Papin C, Martinez G, Le Gras S, Nahed RA, Héry P, Buchou T, Ouararhni K, Favier B, Gautier T, Sabir JSM, Gerard M, Bednar J, Arnoult C, Dimitrov S, Hamiche A. Dual role of histone variant H3.3B in spermatogenesis: positive regulation of piRNA transcription and implication in X-chromosome inactivation. Nucleic Acids Res. 2022 Jul 22;50(13):7350-7366. doi: 10.1093/nar/gkac541. PMID: 35766398; PMCID: PMC9303386.

      Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004 Jan 9;116(1):51-61. doi:10.1016/s0092-8674(03)01064-x. PMID: 14718166.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      Desveaux et al. describe human mAbs targeting protein from the Pseudomonas aeruginosa T3SS, discovered by employing single cell B cell sorting from cystic fibrosis patients. The mAbs were directed at the proteins PscF and PcrV. They particularly focused on two mAbs binding the T3SS with the potential of blocking activity. The supplemented biochemical analysis was crystal structures of P3D6 Fab complex. They also compared the blocking activity with mAbs that were described in previous studies, using an assay that evaluated the toxin injection. They conducted mechanistic structure analysis and found that these mAbs might act through different mechanisms by preventing PcrV oligomerization and disrupting PcrVs scaffolding function.

      Strengths:

      The antibiotic resistance crisis requires the development of new solutions to treat infections caused by MDR bacteria. The development of antibacterial mAbs holds great potential. In that context, this report is important as it paves the way for the development of additional mAbs targeting various pathogens that harbor the T3SS. In this report, the authors present a comparative study of their discovered mAbs vs. a commercial mAb currently in clinical testing resulting in valuable data with applicative implications. The authors investigated the mechanism of action of the mAbs using advanced methods and assays for the characterization of antibody and antigen interaction, underlining the effort to determine the discovered mAbs suitability for downstream application.

      Weaknesses:

      Although the information presented in this manuscript is important, previous reports regarding other T3SS structures complexed with antibodies, reduce the novelty of this report. Nevertheless, we provide several comments that may help to improve the report. The structural analysis of the presented mAbs is incomplete and unfortunately, the authors did not address any developability assessment. With such vital information missing, it is unclear if the proposed antibodies are suited for diagnostic or therapeutic usage. This vastly reduces the importance of the possibly great potential of the authors' findings. Moreover, the structural information does not include the interacting regions on the mAb which may impede the optimization of the mAb if it is required to improve its affinity.

      As described in the manuscript (Fig. 6), our mAbs are markedly less effective in every in vitro T3SS inhibition assay than the mAbs recently described by Simonis et al. They are therefore very unlikely to outperform these mAbs in in vivo animal models of P. aeruginosa infection. Considering the high cost of animal experiments and ethical concerns-and in accordance with the Reduction principal of the 3Rs guidelines-we chose not to pursue in vivo experiments. Instead, we focused on leveraging the new isolated mAbs to investigate the mechanisms of action and structural features of anti-PcrV mAbs.

      Following the reviewer's suggestion, we have now added mAb interaction features into the structural data presented in the manuscript. However, based on the efficiency data, the structural analysis and the mechanistic insights presented, we do not consider further therapeutic use and optimization of our mAbs to be warranted.

      Reviewer #2 (Public review):

      Summary:

      Desveaux et al. performed Elisa and translocation assays to identify among 34 cystic fibrosis patients which ones produced antibodies against P. aeruginosa type three secretion system (T3SS). The authors were especially interested in antibodies against PcrV and PcsF, two key components of the T3SS. The authors leveraged their binding assays and flow cytometry to isolate individual B cells from the two most promising sera, and then obtained monoclonal antibodies for the proteins of interest. Among the tested monoclonal antibodies, P3D6 and P5B3 emerged as the best candidates due to their inhibitory effect on the ExoS-Bla translocation marker (with 24% and 94% inhibition, respectively). The authors then showed that P5B3 binds to the five most common variants of PcrV, while P3D6 seems to recognize only one variant. Furthermore, the authors showed that P3D6 inhibits translocon formation, measured as cell death of J774 macrophages. To get insights into the P3D6PcrV interaction, the authors defined the crystal structure of the P3D6-PcrV complex. Finally, the authors compared their new antibodies with two previous ones (i.e., MEDI3902 and 30-B8).

      Strengths:

      (1) The article is well written.

      (2) The authors used complementary assays to evaluate the protective effect of candidate monoclonal antibodies.

      (3) The authors offered crystal structure with insights into the P3D6 antibody-T3SS interaction (e.g., interactions with monomer vs pentamers).

      (4) The authors put their results in context by comparing their antibodies with respect to previous ones.

      Weaknesses:

      The authors used a similar workflow to the one previously reported in Simonis et al. 2023 (antibodies from cystic fibrosis patients that included B cell isolation, antibody-PcrV interaction modeling, etc.) but the authors do not clearly explain how their work and findings differentiate from previous work.   

      We employed a similar mAb isolation pipeline to that used by Simonis et al., beginning with the screening of a cohort of cystic fibrosis patients chronically infected with P. aeruginosa. As in Simonis et al., we isolated specific B cells using a recombinant PcrV bait, followed by single-cell PCR amplification of immunoglobulin genes. The main differences in methodology between the two studies are as follows: i) the use of individuals from different cohorts, and therefore having different Ab repertoires; ii) the nature of the screening assays, although in both cases the screening was focused on the inhibition of T3SS function; iii) the PcrV labeling strategy, with Simonis et al. employing direct labeling, whereas we used a biotinylated tag combined with streptavidin;

      The number of specific mAbs obtained and produced was higher in Simonis et al. (47 versus 9 in our study). They sorted B cells from three individuals compared to two in our work and possibly started with a larger amount of PBMCs per donor, which may account for the higher number of specific B cells and mAbs isolated. Considering that the strategies were overall very similar, the greater number of mAbs isolated in Simonis et al. likely explains, to a large extent, why they identified mAbs targeting different epitopes compared to ours, including highly potent mAbs that we did not recover. 

      Our modeling study, unlike that of Simonis et al., which relied on an AlphaFold prediction of the multimeric structure of P. aeruginosa PcrV, was based on the experimentally determined structure of the homologous Salmonella SipD pentamer, as described in the manuscript. Furthermore, we compared our mAb P3D6 not only with 30-B8 from Simonis et al., but also with MEDI3902. Finally, in contrast to the approach of Simonis et al., we used functional assays to investigate the differences in mechanisms of action among these mAbs, which target three distinct epitopes.

      (2) Although new antibodies against P. aeruginosa T3SS expand the potential space of antibodybased therapies, it is unclear if P3D6 or P5B3 are better than previous antibodies. In fact, in the discussion section authors suggested that the 30-B8 antibody seems to be the most effective of the tested antibodies.  

      As explained above and shown in the Results section (Figure 6), the 30-B8 mAb is markedly more effective at inhibiting T3SS activity in both in vitro assays used.

      (3) The authors should explain better which of the two antibodies they have discovered would be better suited for follow-up studies. It is confusing that the authors focused the last sections of the manuscript on P3D6 despite P3D6 having a much lower ExoS-Bla inhibition effect than P5B3 and the limitation in the PcrV variant that P3D6 seems to recognize. A better description of this comparison and the criteria to select among candidate antibodies would help readers identify the main messages of the paper. 

      The P3D6 mAb shows stronger inhibitory activity than P5B3 in the two assays used, as shown in Supplementary Figure 1. An error in the table in Figure 2B was corrected and this table now reflects the results presented in Supplementary Figure 1. 

      The final sections of the manuscript focus on P3D6, which is more potent than P5B3, and for which we successfully determined a co-crystal structure with PcrV*. All parallel attempts to obtain a structure of P5B3 in complex with PcrV* failed. The P3D6-PcrV* structure was used to analyze epitope recognition and mechanisms of action in comparison to previously described mAbs. As previously mentioned, we do not consider further studies aimed at therapeutic development and optimization of our mAbs to be justified given the current data. Therefore, we believe that the main message of the paper is adequately captured in the title.

      (4) This work could strongly benefit from two additional experiments:

      (a) In vivo experiments: experiments in animal models could offer a more comprehensive picture of the potential of the identified monoclonal antibodies. Additionally, this could help to answer a naïve question: why do the patients that have the antibodies still have chronic P. aeruginosa infections? 

      As explained above, the mAbs we isolated are significantly less potent than those described by Simonis et al., and are therefore unlikely to outperform the best anti-PcrV candidates in vivo. In light of the data, and considering ethical concerns related to animal use in research and budgetary constraints, we decided not to proceed with in vivo experiments.

      There are a number of reasons that may explain why patients with anti-PcrV Abs blocking the T3SS can still be chronically infected with Pa. First these Abs may be at limiting concentration, particularly in sites where Pa replicates, and thus unable to clear infection. in addition, it has been described that the T3SS is downregulated in chronic infection in cystic fibrosis patients. This suggests that a therapeutic intervention with T3SS inhibiting Abs may be more efficient if done early in cystic fibrosis patients to prevent colonization when Pa possesses an active T3SS. Finally, T3SS is not the only virulence mechanism employed by P. aeruginosa during infection. Indeed, multiple protein adhesins and polysaccharides are important factors facilitating the formation of bacterial biofilms that are crucial for establishing chronic persistent infection. In this regard, a combination of Abs targeting different factors on the P. aeruginosa surface may be needed to treat chronic infections.  

      (b) Multi-antibody T3SS assays (i.e., a combination of two or more monoclonal antibodies evaluated with the same assays used for characterization of single ones). This could explore the synergistic effects of combinatorial therapies that could address some of the limitations of individual antibodies. 

      Given the high potency of the Simonis mAbs and the mechanisms of action highlighted by our analysis, it is unlikely that our mAbs would synergize with those described by Simonis. Additionally, since our two mAbs cross-compete for binding, synergy between them is also improbable.

      Reviewer #1 (Recommendations for the authors):

      Line 166: How was the serum-IgG purified? (e.g., protein A, protein G). 

      Protein A purification was used, as now mentioned in the manuscript. Purified Igs were thus predominantly IgG1, IgG2 and IgG4, as indicated.

      (2) Line 196: When mentioning affinities, it is preferable to present in molar units. 

      To facilitate comparisons, Ab concentrations were presented in µg/mL as in Simonis et al.

      (3) Line 206: The author states that P3D6 displays significantly reduced ExoS-Bla injection (Figure 2B), but according to the presented table, ExoS-Bla inhibition was higher for P5B3. Additionally, when using "significantly", what was the statistical test that was used to evaluate the significance? Please clarify.

      We thank the reviewer for pointing out this inconsistency. Indeed, the names of P3D6 and P5B3 were exchanged when building the table related to Figure 2B. The corrected version of this figure is now presented in the new version of the manuscript. An ANOVA was performed to evaluate the significance of the observed difference (adjusted p-values < 0.001) and it is now mentioned in the figure caption.  

      (4) Line 215: "P3B3" typo.

      This was corrected.

      (5) Figure 3B: Could the author explain the higher level of ExoS-Bla injection when using VRCO1 antibody compared to no antibody.  

      A slightly higher level of the median is observed in the case of three variants out of five. However, this difference is not statistically significant (p-value > 0.05).

      (6) Supplement Figure 1: the presented grey area is not clear (is it the 95%CI?) and how was the IC50 calculated? With what model was it projected? Are the values for IC50 beyond the 100µg/mL mark a projection? It seems that projecting such greater values (such as the IC50 of over 400µg/mL for variant 5) is prone to high error probability.

      The grey area represents the 95% confidence interval (95% CI) and it is now mentioned in the figure caption. The IC50 and 95% CI were both inferred by the dose-response drc R package based on a three-parameters log-logistic model and it is now explained in the Materials & Methods section. The p-values for IC50 beyond the 100µg/mL were below 0.05 but we agree that such extrapolation should be considered with precaution (see below our response to comment number 7).

      (7) Line 227: The author describes that P5B3 has similar IC50 values towards variants 1-4, but the  IC50 towards variant 5 is substantially higher with 400µg/mL, albeit the only difference between variant 4 and 5 is the switch position 225 Arg -> Lys which are very similar in their properties. Please provide an explanation. 

      As explained in our response to comment number 6, we agree that the comparison of IC50 that are estimated to be close or higher than the highest experimental concentration is somehow speculative. Indeed, we performed further statistical analysis that showed no significant difference between the IC50 toward the five PcrV variants of mAb P5B3. In contrast, the difference between the IC50 of mAbs P5B3 and P3D6 toward variant 1 is statistically significant. This is now explained in the manuscript.

      (8) Line 233: Pore assembly: It is not clear how the data was normalized. The authors mention the methods normalization against the wildtype strain in the absence of antibodies, but did not elaborate clearly if the mutant strain has the same base cytotoxicity as the wild type. It would be helpful to show the level of cytotoxicity of the wild type compared to the mutant in the absence of antibodies to understand the baseline of cytotoxicity of both strains.  

      In these experiments we did not use the wild-type strain. As explained, the only strain that allows the measurement of pore formation by translocators PopB/PopD is the one lacking all effectors. All the experiments were done with this strain, and all the measurements were normalized accordingly. 

      (9) Figure 4: The explanation is redundant as it is clearly stated in the results. It would be better for the caption to describe the figure and leave interpretation to the results section. Overall, this comment is relevant to all figure captions, as it will reduce redundancy. My suggestion is to keep the figure caption as a road map to understand what is shown in the figure. For example, the Figure 4 caption should include that the concentration is presented in logarithmic scale, what is the dashed line, what is the grey area (what interval does it represent?), what each circle represents, and what is the regression model used? 

      Figure captions have been improved as suggested. 

      (10) Line 432: The authors apparently misquoted the original article describing the chimeric form PcrV* by describing the fusion of amino acids 1-17 and 136-249. I quote the original article by Tabor et al. "[...] we generated a truncated PcrV fragment (PcrVfrag) comprising PcrV amino acids 1-17 fused to amino acids 149-236 [...]". Additionally, how does the absence of amino acid 21 in the variant affect the conclusion? 

      Our construct was inspired by the one described in Tabor et al. but was not identical. We have therefore replaced "was constructed based on a construct by Tabor et al." for "whose design was inspired by the construct described in Tabor et al."

      Amino acid 21 is only absent in the construct used for crystallization experiments; all other experiments looking at Ab activity were performed with bacteria bearing full-length PcrV. The difference in P3D6 activity between variants V1 and V2-appears to be explained by the nature of the residue at position 225, according to the structural data, as explained now in more detail in the manuscript. Accordingly, the difference in efficiency of P3D6 against the V1 and V2  variants is explained by the residue at position 225, as both variants have the same residue at position 21. However, while the nature of the residue at position 225 appears to explain the absence of efficiency of the Ab for the variants studied, an impact of residue 21 could not be totally ruled out in putative variants with a Ser at 225 but different amino acids at 21.

      (11) Line 569: Missing word - ESRF stands for European Synchrotron Radiation Facility. 

      This has been corrected.

      (12) Line 268-269 (Figure 5A): The description of the alpha helices in relation to the figure is incomplete. Helices 2,3 and 5 are not indicated. 

      Indeed, since the structure is well-known and in the interest of visibility and simplicity, we only included the most relevant secondary structure features.

      (13) Line 271-272: It would be good to elaborate on the exact binding platform between LC and HC of the Fab and the residues on the PcrV side. For example, the author could apply the structure to PDBePISA (EMBL-EBI) which will provide details about the interface between the PcrV and the antibody. It is very interesting to learn what regions of the antibody are in charge of the binding, such as: is the H-CDR3 the major contributor of the binding or are other CDRs more involved? Additionally, in line 275 they state that the substitution of Ser 225 with Arg or Lys is consistent with the P3D6 insufficient binding. What contributed to this result on the antibodies side? 

      In order to address this question, we are now providing a LigPlot figure (supplementary Figure 3) in which specific interactions between PcrV* and the Fab are shown.

      (14) Line 291: It is unclear from what data the authors concluded that anti-PscF targets 3 distinct regions of PscF. 

      The data are shown in Supplementary Table 2, as mentioned in the manuscript. We have now modified the order of the anti-PcrV mAbs in the table to better illustrate the three identified epitope clusters (Sup table 2). Similarly, the anti-PscF mAbs appear to group into three clusters as P3G9 and P5E10 only compete with themselves, while mabs P3D6 and P5B3 compete with themselves and each other.

      (15) Line 315: It is preferable to introduce results in the results section instead of the discussion. 

      While preparing the manuscript, we initially included these results as a separate paragraph in the Results section, but ultimately chose the current format to improve flow and avoid redundancy.

      (16) Supplement Figure 2: What was the regression model used to evaluate IC50, and what is presented in the graph? What is the dashed line (see comment for Figure 4 above)? 

      The regression is based on a three-parameters log-logistic model and the light-colors area correspond to the 95% IC. The dashed lines visually represents 100% of ExoS-Bla injection. These information are now mentioned in the figure caption.

      (17) Figure 6B: It would be better to show an additional rotation of the PcrV bound by Fab 30-B8 that corresponds to the same as the one represented with Fab MEDI3092. This would clear up the differences in binding regions. Same for Fab P3D6. 

      Figure 6 already depicts two orientations. Despite the fact that we agree that additional orientations could be of interest, we believe that this would add unnecessary complexity to the figure, and would prefer to maintain the figure as is, if possible.

      (18) Line 356-358: The author proposes an experiment to support the suggested mechanism of P3D6, it would follow up with a bio-chemical analysis showing the prevention of PcrV oligomerization in its presence. 

      We understand the reviewers’ comment regarding the potential use of biochemical approaches to test our hypothesis. However, this not currently feasible as we have been unable to achieve in vitro oligomerization of PcrV alone, possibly due to the absence of other T3SS components, such as the polymerized PscF needle.

      (19) Line 456: Missing details about how the ELISA was conducted including temperature, how the antigen was absorbed, plate type, etc. 

      Experimental details have been added.

      (20) Line 460: Missing substrate used for alkaline phosphatase. 

      The nature of the substrate was added to the methods.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform understanding of control across domains, which is a topic of great importance.

      We thank the Reviewer for their favorable appraisal and valuable suggestions, which have helped clarify and strengthen the study’s conclusion. 

      In its revised form, the manuscript addresses most of my previous concerns. The main remaining weakness pertains to the analyses aimed at addressing my suggesting of Bayesian updating as an alternative to the model proposed by the authors. My suggestion was to assume that people perform a form of function approximation to relate resource expenditure to success probability. The authors performed a version of this where people were weighing evidence for a few canonical functions (flat, step, linear), and found that this model underperformed theirs. However, this Bayesian model is quite constrained in its ability to estimate the function relating resources. A more robust test would be to assume a more flexible form of updating that is able to capture a wide range of distributions (e.g., using basis functions, gaussian processes, or nonparametric estimators); see, e.g., work by Griffiths on human function learning). The benefit of testing this type of model is that it would make contact with a known form of inference that individuals engage in across various settings and therefore could offer a more parsimonious and generalizable account of function learning, whereby learning of resource elasticity is a special case. I defer to the authors as to whether they'd like to pursue this direction, but if not I think it's still important that they acknowledge that they are unable to rule out a more general process like this as an alternative to their model. This pertains also to inferences about individual differences, which currently hinge on their preferred model being the most parsimonious.

      We thank the Reviewer for this thoughtful suggestion. We acknowledge that more flexible function learning approaches could provide a stronger test in favor of a more general account. Our Bayesian model implemented a basis function approach where the weights of three archetypal functions (flat, step, linear) are learned from experience Testing models with more flexible basis functions would likely require a task with more than three levels of resource investment (1, 2, or 3 tickets). This would make an interesting direction for future work expanding on our current findings. We now incorporate this suggestion in more detail in our updated manuscript (335-341):

      “Second, future models could enable generalization to levels of resource investment not previously experienced. For example, controllability and its elasticity could be jointly estimated via function approximation that considers control as a function of invested resources. Although our implementation of this model did not fit participants’ choices well (see Methods), other modeling assumptions drawn from human function learning [30] or experimental designs with continuous action spaces may offer a better test of this idea.”

      Reviewer #2 (Public review):

      This research investigates how people might value different factors that contribute to controllability in a creative and thorough way. The authors use computational modeling to try to dissociate "elasticity" from "overall controllability," and find some differential associations with psychopathology. This was a convincing justification for using modeling above and beyond behavioral output and yielded interesting results. Notably, the authors conclude that these findings suggest that biased elasticity could distort agency beliefs via maladaptive resource allocation. Overall, this paper reveals important findings about how people consider components of controllability. The authors have gone to great lengths to revise the manuscript to clarify their definitions of "elastic" and "inelastic" and bolster evidence for their computational model, resulting in an overall strong manuscript that is valuable for elucidating controllability dynamics and preferences. 

      We thank the Reviewer for their constructive feedback throughout the review process, which has substantially strengthened our manuscript and clarified our theoretical framework.

      One minor weakness is that the justification for the analysis technique for the relationships between the model parameters and the psychopathology measures remains lacking given the fact that simple correlational analyses did not reveal any significant associations.

      We note that the existence of bivariate relationships is not a prerequisite for the existence of multivariate relationships. Conditioning the latter on the former, therefore, would risk missing out on important relationships existing in the data. Ultimately, correlations between pairs of variables do not offer a sensitive test for the general hypothesis that there is a relationship between two sets of variables. As an illustration, consider that elasticity bias correlated in our data (r = .17, p<.001) with the difference between SOA (sense of agency) and SDS (self-rating depression). Notably, SOA and SDS were positively correlated (r = .47, p<.001), and neither of them was correlated with elasticity bias (SOA: r=.04 p=.43, SDS: r=-.06, p=.16). It was a dimension that ran between them that mapped onto elasticity bias. This specific finding is incidental and uncorrected for multiple comparisons, hence we do not report it in the manuscript, but it illustrates the kinds of relationships that cannot be accounted for by looking at bivariate relationships alone.  

      Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome.

      In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a very good idea.

      We thank the Reviewer for their thoughtful engagement with our manuscript. We appreciate their recognition of elasticity as a key dimension of control that has the potential to advance our understanding of psychopathology and healthy decision-making.

      Starting with theory, the authors do not provide a strong formal characterization of the proposed notion of elasticity. There are existing, highly general models of controllability (e.g., Huys & Dayan, 2009; Ligneul, 2021) and the elasticity idea could naturally be embedded within one of these frameworks. The authors gesture at this in the introduction; however, this formalization is not reflected in the implemented model, which is highly task-specific.

      Our formal definition of elasticity, detailed in Supplementary Note 1, naturally extends the reward-based and information-theoretic definitions of controllability by Huys & Dayan (2009) and Ligneul (2021). We now further clarify how the model implements this formalized definition (lines 156-159).

      “Conversely, in the ‘elastic controllability model’, the beta distributions represent a belief about the maximum achievable level of control (𝑎<sub>Control</sub>, 𝑏<sub>Control</sub>) coupled with two elasticity estimates that specify the degree to which successful boarding requires purchasing at least one (𝑎<sub>elastic≥1</sub>, 𝑏<sub>elastic≥1</sub>) or specifically two (𝑎<sub>elastic2</sub>, 𝑏<sub>elastic2</sub>) extra tickets. As such, these elasticity estimates quantify how resource investment affects control. The higher they are, the more controllability estimates can be made more precise by knowing how much resources the agent is willing and able to invest (Supplementary Note 1).”

      Moreover, the authors present elasticity as if it is somehow "outside of" the more general notion of controllability. However, effort and investment are just specific dimensions of action; and resources like money, strength, and skill (the "highly trained birke") are just specific dimensions of state. Accordingly, the notion of elasticity is necessarily implicitly captured by the standard model. Personally, I am compelled by the idea that effort and resource (and therefore elasticity) are particularly important dimensions, ones that people are uniquely tuned to. However, by framing elasticity as a property that is different in kind from controllability (rather than just a dimension of controllability), the authors only make it more difficult to integrate this exciting idea into generalizable models.

      We respectfully disagree that we present elasticity as outside of, or different in kind from, controllability. Throughout the manuscript, we explicitly describe elasticity as a dimension of controllability (e.g., lines 70-72, along many other examples). This is also expressed in our formal definition of elasticity (Supplementary Note 1). 

      The argument that vehicle/destination choice is not trivial because people occasionally didn't choose the instructed location is not compelling to me-if anything, the exclusion rate is unusually low for online studies. The finding that people learn more from non-random outcomes is helpful, but this could easily be cast as standard model-based learning very much like what one measures with the Daw two-step task (nothing specific to control here). Their final argument is the strongest, that to explain behavior the model must assume "a priori that increased effort could enhance control." However, more literally, the necessary assumption is that each attempt increases the probability of success-e.g. you're more likely to get a heads in two flips than one. I suppose you can call that "elasticity inference", but I would call it basic probabilistic reasoning.

      We appreciate the Reviewer’s concerns but feel that some of the more subjective comments might not benefit from further discussion. We only note that controllability and its elasticity are features of environmental structure, so in principle any controllability-related inference is a form of model-based learning. The interesting question is whether people account in their world model for that particular feature of the environment.   

      The authors try to retreat, saying "our research question was whether people can distinguish between elastic and inelastic controllability." I struggle to reconcile this with the claim in the abstract "These findings establish the elasticity of control as a distinct cognitive construct guiding adaptive behavior". That claim is the interesting one, and the one I am evaluating the evidence in light of.

      In real-world contexts, it is often trivial that sometimes further investment enhances control and sometimes it does not. For example, students know that if they prepare more extensively for their exams they will likely be able to achieve better grades, but they also know that there is uncertainty in this regard – their grades could improve significantly, modestly, or in some cases, they might not improve at all, depending on the type of exams their study program administers and the knowledge or skills being tested. Our research question was whether in such contexts people learn from experience the degree to which controllability is elastic to invested resources and adapt their resource investment accordingly. Our findings show that they do. 

      The authors argue for CCA by appeal to the need to "account for the substantial variance that is typically shared among different forms of psychopathology". I agree. A simple correlation would indeed be fairly weak evidence. Strong evidence would show a significant correlation after *controlling for* other factors (e.g. a regression predicting elasticity bias from all subscales simultaneously). CCA effectively does the opposite, asking whether-with the help of all the parameters and all the surveys-one can find any correlation between the two sets of variables. The results are certainly suggestive, but they provide very little statistical evidence that the elasticity parameter is meaningfully related to any particular dimension of psychopathology.

      We agree with the Reviewer on the relationship between elasticity and any particular dimension of psychopathology. The CCA asks a different question, namely, whether there is a relationship between psychopathology traits and task parameters, and whether elasticity bias specifically contributes to this relationship. 

      I am very concerned to see that the authors removed the discussion of this limitation in response to my first review. I quote the original explanation here:

      - In interpreting the present findings, it needs to be noted that we designed our task to be especially sensitive to overestimation of elasticity. We did so by giving participants free 3 tickets at their initial visits to each planet, which meant that upon success with 3 tickets, people who overestimate elasticity were more likely to continue purchasing extra tickets unnecessarily. Following the same logic, had we first had participants experience 1 ticket trips, this could have increased the sensitivity of our task to underestimation of elasticity in elastic environments. Such underestimation could potentially relate to a distinct psychopathological profile that more heavily loads on depressive symptoms. Thus, by altering the initial exposure, future studies could disambiguate the dissociable contributions of overestimating versus underestimating elasticity to different forms of psychopathology.

      The logic of this paragraph makes perfect sense to me. If you assume low elasticity, you will infer that you could catch the train with just one ticket. However, when elasticity is in fact high, you would find that you don't catch the train, leading you to quickly infer high elasticity eliminating the bias. In contrast, if you assume high elasticity, you will continue purchasing three tickets and will never have the opportunity to learn that you could be purchasing only one-the bias remains.

      The authors attempt to argue that this isn't happening using parameter recovery. However, they only report the *correlation* in the parameter, whereas the critical measure is the *bias*. Furthermore, in parameter recovery, the data-generating and data-fitting models are identical-this will yield the best possible recovery results. Although finding no bias in this setting would support the claims, it cannot outweigh the logical argument for the bias that they originally laid out. Finally, parameter recovery should be performed across the full range of plausible parameter values; using fitted parameters (a detail I could only determine by reading the code) yields biased results because the fitted parameters are themselves subject to the bias (if present). That is, if true low elasticity is inferred as high elasticity, then you will not have any examples of low elasticity in the fitted parameters and will not detect the inability to recover them.

      The logic the Reviewer describes breaks down when one considers the dynamics of participants’ resource investment choices. A low elasticity bias in a participant’s prior belief would make them persist for longer in purchasing a single ticket despite failure, as compared to a person without such a bias. Indeed, the ability of the experimental design to demonstrate low elasticity biases is evidenced by the fact that the majority of participants were fitted with a low elasticity bias (μ = .16 ± .14, where .5 is unbiased). 

      Originally, the Reviewer was concerned that elasticity bias was being confounded with a general deficit in learning. The weak inter-parameter correlations in the parameter recovery test resolved this concern, especially given that, as we now noted, the simulated parameter space encompassed both low and high elasticity biases (range=[.02,.76]). Furthermore, regarding the Reviewer's concern about bias in the parameter recovery, we found no such significant bias with respect to the elasticity bias parameter (Δ(Simulated, Recovered)= -.03, p=.25), showing that our experiment could accurately identify low and high elasticity biases.

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p – p<sup>^</sup>2 for two tickets; the p<sup>^</sup>2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, they will appear to "underestimate" the elasticity of control. I don't think this seriously jeopardizes the key results, but any follow-up work should ensure that the task's structure is consistent with the intuitive causal model.

      We thank the Reviewer for this comment, and agree the participants may have employed the intuitive understanding the Reviewer describes. This is consistent with our model comparison results, which showed that participants did not assume that control increases linearly with resource investment (lines 677-692). Consequently, this is also not assumed by our model, except perhaps by how the prior is implemented (a property that was supported by model comparison). In the text, we acknowledge that this aspect of the model and participants’ behavior deviates from the true task's structure, and it would be worthwhile to address this deviation in future studies. 

      That said, there is no reason that this will make participants appear to be generally underestimating elasticity. Following exposure to outcomes for one and three tickets, any nonlinear understanding of probabilities would only affect the controllability estimate for two tickets. This would have contrasting effects on the elasticity estimated to the second and third tickets, but on average, it would not change the overall elasticity estimated. On the other hand, such a participant is only exposed to outcomes for two and three tickets, they would come to judge the difference between the first and second tickets too highly, thereby overestimating elasticity.  

      The model is heuristically defined and does not reflect Bayesian updating. For example, it overestimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

      Note that we have tested a fully Bayesian model (lines 676-691), but found that this model fitted participants’ choices worse. 

      You're right; saying these analyses provides "no information" was unfair. I agree that this is a useful way to link model parameters with behavior, and they should remain in the paper. However, my key objection still holds: these analyses do not tell us anything about how *people's* prior assumptions influence behavior. Instead, they tell us about how *fitted model parameters* depend on observed behavior. You can easily avoid this misreading by adding a small parenthetical, e.g.

      Thus, a prior assumption that control is likely available **(operationalized by \gamma_controllability)** was reflected in a futile investment of resources in uncontrollable environments.

      We thank the Reviewer for the suggestion and have added this parenthetical (lines 219, 225).

    1. Author response:

      Reviewer #1 (Public review): 

      Summary: 

      This study addresses the important question of how top-down cognitive processes affect tactile perception in autism - specifically, in the Fmr1-/y genetic mouse model of autism. Using a 2AFC tactile task in behaving mice, the study investigated multiple aspects of perceptual processing, including perceptual learning, stimulus categorization and discrimination, as well as the influence of prior experience and attention.  

      We appreciate the reviewer’s statement highlighting the importance of our study. 

      Strengths: 

      The experiments seem well performed, with interesting results. Thus, this study can/will advance our understanding of atypical tactile perception and its relation to cognitive factors in autism. 

      We thank the reviewer for recognizing the quality of our experiments and the relevance of our findings for understanding tactile perception and cognition in autism.

      Weaknesses: 

      Certain aspects of the analyses (and therefore the results) are unclear, which makes the manuscript difficult to understand. Clearer presentation, with the addition of more standard psychometric analyses, and/or other useful models (like logistic regression) would improve this aspect. The use of d' needs better explanation, both in terms of how and why these analyses are appropriate (and perhaps it should be applied for more specific needs rather than as a ubiquitous measure). 

      We thank the reviewer for the helpful comments. We understand that the analyses were difficult to follow, and we will work on the clarity of the Results section. However, we would like to emphasize that every d′ measure is accompanied by analyses of response rates (i.e., correct and incorrect choice rates). In addition, we applied standard psychometric analyses whenever possible. Specifically, psychometric functions were fitted to the data using logistic regression. We will rework the text to clarify these points.

      During training, only two stimulus amplitudes were presented, which precluded the construction of psychometric curves. For the categorization task, however, psychometric analyses were feasible and conducted (Figure 2). These analyses revealed no evidence of categorization bias (as measured by threshold) or accuracy (as measured by the slope) across stimulus strengths.

      The calculation of d’ is included in the Methods, but we will also report and explain its use in each part of the Results section where it has been included.

      Reviewer #2 (Public review): 

      Summary: 

      This manuscript presents a tactile categorization task in head-fixed mice to test whether Fmr1 knockout mice display differences in vibrotactile discrimination using the forepaw. Tactile discrimination differences have been previously observed in humans with Fragile X Syndrome, autistic individuals, as well as mice with loss of Fmr1 across multiple studies. The authors show that during training, Fmr1 mutant mice display subtle deficits in perceptual learning of "low salience" stimuli, but not "high salience" stimuli, during the task. Following training, Fmr1 mutant mice displayed an enhanced tactile sensitivity under low-salience conditions but not high-salience stimulus conditions. The authors suggest that, under 'high cognitive load' conditions, Fmr1 mutant mouse performance during the lowest indentation stimuli presentations was affected, proposing an interplay of sensory and cognitive system disruptions that dynamically affect behavioral performance during the task. 

      Strengths: 

      The study employs a well-controlled vibrotactile discrimination task for head-fixed mice, which could serve as a platform for future mechanistic investigations. By examining performance across both training stages and stimulus "salience/difficulty" levels, the study provides a more nuanced view of how tactile processing deficits may emerge under different cognitive and sensory demands. 

      We thank the reviewer for emphasizing the strengths of our task design and analysis approach, and we appreciate that the potential of this platform for future mechanistic investigations is recognized.

      Weaknesses: 

      The study is primarily descriptive. The authors collect behavioral data and fit simple psychometric functions, but provide no neural recordings, causal manipulations, or computational modeling. Without mechanistic evidence, the conclusions remain speculative. 

      We thank the reviewer for the careful reading of our manuscript and for the constructive feedback. The reviewer raises a valid point. We agree that our study is primarily descriptive and focused on behavioral data, and we appreciate the opportunity to clarify the scope and interpretation of our findings. Our primary goal was to characterize behavioral patterns during tactile discrimination and categorization, and the psychometric analyses were intended to provide a detailed description of these patterns. We do not claim to provide direct neural, causal, or computational evidence. 

      Second, the authors repeatedly make strong claims about "categorical priors," "attention deficits," and "choice biases," but these constructs are inferred indirectly from secondary behavioral measures. Many of the effects are based on non-significant trends, and alternative explanations (such as differences in motivation, fatigue, satiety, stereotyped licking, and/or reward valuation) are not considered. 

      Alternative explanations of our findings, such as differences in motivation, fatigue, satiety, stereotyped licking, and reward valuation have indeed been considered. We will revise the manuscript to present these points more clearly. 

      Third, the mapping of the behavioral results onto high-level cognitive constructs is tenuous and overstated. The authors' interpretations suggest that they directly tested cognitive theories such as Load Theory, Adaptive Resonance Theory, or Weak Central Coherence. However, the experiments do not manipulate or measure variables that would allow such theories to be tested. More specific comments are included below.

      This was not done intentionally. We do not claim to have tested the Load Theory; rather, inspired by it, we assessed behavioral patterns in our tactile categorization task. We agree that referring to the Adaptive Resonance Theory, which is based on artificial neural network models, might be misleading since we focus on behavioral results, and we will revise the text accordingly. However, our task allowed us to examine the impact of categorization on discrimination, confirming that Fmr1<sup>-/y</sup>ation can amplify perceptual differences between stimuli belonging to different categories and reduce perceived differences within a category in WT mice but not in the mice when low-salience stimuli were experienced. Finally, we do not claim to have tested the Weak Central Coherence theory, although our results suggest reduced use of categories in low-salience tactile discrimination. 

      (1) The authors employ a two-choice behavioral task to assess forepaw tactile sensitivity in Fmr1 knockout mice. The data provide an interesting behavioral observation, but it is a descriptive study. Without mechanistic experiments, it is difficult to draw any conclusions, especially regarding top-down or bottom-up pathway dysfunctions. While the task design is elegant, the data remain correlational and do not advance our mechanistic understanding of Fmr1-related sensory and/or cognitive alterations. 

      We agree with the reviewer that our current experiments are behavioral in nature and do not provide direct mechanistic evidence for top-down pathway dysfunction. Our goal was to carefully characterize tactile responses and behavioral patterns in Fmr1<sup>-/y</sup> mice. The notion of “top-down” is used at the behavioral level, referring to the influence of higher-level cognitive processes (e.g., categorization, attention) on perception, rather than to underlying neural circuits. We will revise the manuscript to more clearly emphasize that our conclusions are based on behavioral observations, and we will frame mechanistic inferences as hypotheses rather than established findings. We will also explicitly note that future work using neural recordings or causal manipulations will be required to directly test these hypotheses.

      We also note that identifying the precise top-down circuits involved will require extensive additional experimentation. For example, one would first need to pinpoint the specific top-down pathway that modulates the influence of categorization on discrimination without directly altering categorization itself. After such a circuit is identified, further work would then be needed to rescue or manipulate this pathway in the Fmr1<sup>-/y</sup> model. These steps represent a substantial program of mechanistic research that, while important, goes well beyond the scope of the present study.

      (2) The conclusions hinge on speculative inferences about "reduced top-down categorization influence" or "choice consistency bias," but no neural, circuit-level, or causal manipulations (e.g., optogenetics, pharmacology, targeted lesions, modeling) are used to support these claims. Without mechanistic data, the translational impact is limited. 

      We recognize that “reduced top-down categorization influence” and “choice consistency bias” are based on behavioral observations. However, we respectfully disagree that this makes these constructs inherently speculative. Similar behavioral inferences have been applied in previous clinical studies to characterize cognitive tendencies (Soulières et al., 2007; Feigin et al., 2021). The translational impact of our work lies in the highly translational platform we have developed – and in highlighting the complexity of tactile measures and additional analyses that can be conducted in clinical studies.

      We agree with the reviewer that the neural-based experiments would indeed provide valuable mechanistic insight into our observed behavioral alterations, and we believe future studies should therefore focus on their underlying neurobiological substrate.

      We will revise the language throughout the manuscript to clarify that all conclusions are based on behavioral measures.  

      (3) Statistical analysis: 

      (a) Several central claims are based on "trends" rather than statistically significant effects (e.g., reduced task sensitivity, reduced across-category facilitation). Building major interpretive arguments on nonsignificant findings undermines confidence in the conclusions.  

      Several trends are evident in complex measures, such as d’ analyses on task sensitivity or responses pooled across different amplitudes. Additional analyses revealed which component of these measures showed a statistically significant difference across genotypes, namely the low-salience incorrect choices accounting for low task sensitivity. We chose to present all analyses to be transparent and to highlight that commonly used complex measures (like d’ analyses) may mask important findings. In the text, we described p-values between 0.05 and 0.1 as observed trends without over-interpreting their significance. 

      (b) The n number for both genotypes should be increased. In several experiments (e.g., Figure 1D, 2E), one animal appears to be an outlier. Considering the subtle differences between genotypes, such an outlier could affect the statistical results and subsequent interpretations. 

      The number of mice used in each genotype group is consistent with standard practices in behavioral studies using mice and sensory tasks. We have performed effect size measures (e.g., Cohen’s d) alongside some of the statistical comparisons, showing a medium effect size (>0.5). 

      As the reviewer correctly noted, no mice were excluded based on outlier analyses, since the observed variability reflects true biological differences rather than experimental or technical errors. We will reexamine our dataset for potential outliers. If any are identified, we will perform analyses both with and without the outlier and report any effects that are sensitive to single animals. These procedures and results will be explicitly described in the Methods and Results sections.

      (c) The large number of comparisons across salience levels, categories, and trial histories raises concern for false positives. The manuscript does not clearly state how multiple comparisons were controlled.  

      We thank the reviewer for raising this important point and we will include a clear statement on multiple comparisons in the Methods section. 

      (d) The data in Figure 5, shown as separate panels per indentation value, are analyzed separately as ttests or Mann-Whitney tests. However, individual comparisons are inappropriate for this type of data, as these are repeated stimulus applications across a given session. The data should be analyzed together and post-hoc comparisons reported. Given the very subtle difference in miss rates across control and mutant mice for 'low-salience' stimulus trials, this is unlikely to be a statistically meaningful difference when analyzed using a more appropriate test. 

      We thank the reviewer for raising this point. This was not done intentionally. A repeated-measures ANOVA on miss rates for low-salience stimuli during categorization confirmed that there are statistically significant differences both across stimulus amplitudes and between genotypes. Additional correction for multiple comparisons will be performed and explained in the Methods section.  

      (4) Emphasis on theoretical models: The paper leans heavily on theories such as Adaptive Resonance Theory, Load Theory of Attention, and Weak Central Coherence, but the data do not actually test these frameworks in a rigorous way. The discussion should be reframed to highlight the potential relevance of these frameworks while acknowledging that the current data do not allow them to be assessed. 

      As mentioned above, our goal was not to directly test these theories but rather to apply them within our translational framework. The Discussion section will be reframed to highlight that our findings are consistent with predictions from certain cognitive theories rather than implying that these frameworks were directly tested.

      Reviewer #3 (Public review): 

      Summary: 

      Developing consistent and reliable biomarkers is critically important for developing new pharmacological therapies in autism spectrum disorders (ASDs). Altered sensory perception is one of the hallmarks of autism and has been recently added to DSM-5 as one of the core symptoms of autism. Touch is one of the fundamental sensory modalities, yet it is currently understudied. Furthermore, there seems to be a discrepancy between different studies from different groups focusing on tactile discrimination. It is not clear if this discrepancy can be explained by different experimental setups, inconsistent terminology, or the heterogeneity of sensory processing alterations in ASDs. The authors aim to investigate the interplay between tactile discrimination and cognitive processes during perceptual decisions. They have developed a forepaw-based 2-alternative choice task for mice and investigated tactile perception and learning in Fmr1-/y mice 

      Strengths: 

      There are several strengths of this task: translational relevance to human psychophysical protocols, including controlled vibrotactile stimulation. In addition to the experimental setup, there are also several interesting findings: Fmr1-/y mice demonstrated choice consistency bias, which may result in impaired perceptual learning, and enhanced tactile discrimination in low-salience conditions, as well as attentional deficits with increased cognitive load. The increase in the error rates for low salience stimuli is interesting. These observations, together with the behavioral design, may have a promising translational potential and, if confirmed in humans, may be potentially used as biomarkers in ASD. 

      We appreciate the reviewer’s positive assessment of our study’s translational value and the importance of our behavioral findings.

      Weaknesses: 

      Some weaknesses are related to the lack of the original raster plots and density plots of licks under different conditions, learning rate vs time, and evaluation of the learning rate at different stages of learning. Overall, these data would help to answer the question of whether there are differences in learning strategies or neural circuit compensation in Fmr1-/y mice. It is also not clear if reversal learning is impaired in Fmr1-/y mice.  

      We thank the reviewer for these helpful suggestions. We agree that visualizing behavioral patterns, such as raster and density plots of licks, as well as learning rate over time, could provide additional insights into learning dynamics. This analysis will be conducted and added into the revised manuscript.

      There was no assessment of reversal learning in Fmr1<sup>-/y</sup> mice in this study. While it is an interesting and important question based on previous findings in preclinical and clinical studies, it falls outside the scope of the current manuscript.    

      Feigin H, Shalom-Sperber S, Zachor DA, Zaidel A (2021) Increased influence of prior choices on perceptual decisions in autism. Elife 10.

      Soulières I, Mottron L, Saumier D, Larochelle S (2007) At ypical categorical perception in autism: Autonomy of discrimination? J Autism Dev Disord 37:481–490.

    1. Author response:

      The following is the authors’ response to the previous reviews

      We have thoroughly addressed all the reviewers’ comments and meticulously revised the manuscript. Key modifications include the following:

      (a) Organizing the Logic and Highlighting Key Findings: We have revised the manuscript to emphasize key findings (especially the distinctions between the SEC and WOI groups) according to the following logic: constructing a receptive endometrial organoid, comparing its molecular characteristics with those of the receptive endometrium, highlighting its main features (hormone response, enhanced energy metabolism, ciliary assembly and motility, epithelial-mesenchymal transition), and exploring the function involved in embryo interaction.

      (b) Clarity and Better Description of Bioinformatic Analyses: We have revised the sections involving bioinformatic analyses to provide a more streamlined and comprehensible explanation. Instead of overwhelming the reader with excessive details, we focused on the most important findings, and performed additional experimental validation.

      (c) Rationale for Gene Selection: We have clarified the rationale for selecting certain genes and pathways for inclusion in the analysis and manuscript. The associated gene expression data for all figures have been provided in the attached Dataset.

      (d) In the response letter, we have provided the detailed presentation of the methodological optimization for constructing this endometrial assembloids, along with optimization and comparison of endometrial organoid culture media. Furthermore, in the Limitations section, we have explicitly stated that stromal cells and immune cells gradually diminish with increasing passage numbers. Therefore, this study primarily utilized endometrial assembloids within the first three passages for all investigations.

      Below, we provide a point-by-point response to each comment, with all modifications highlighted in the revised manuscript. We respectfully hope that these revisions effectively address the concerns raised by the reviewers.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study generated 3D cell constructs from endometrial cell mixtures that were seeded in the Matrigel scaffold. The cell assemblies were treated with hormones to induce a "window of implantation" (WOI) state. The authors did their best to revise their study according to the reviewers' comments. However, the study remains unconvincing and at the same time too dense and not focused enough.

      (1) The use of the term organoids is still confusing and should be avoided. Organoids are epithelial tissue-resembling structures. Hence, the multiplecell aggregates developed here are rather "coculture models" (or "assembloids"). It is still unexpected (unlikely) that these structures containing epithelial, stromal and immune cells can be robustly passaged in the epithelial growth conditions used. All other research groups developing real organoids from endometrium have shown that only the epithelial compartment remains in culture at passaging (while the stromal compartment is lost). If authors keep to their idea, they should perform scRNA-seq on both early and late (passage 6-10) "organoids". And they should provide details of culturing/passaging/plating etc that are different with other groups and might explain why they keep stromal and immune cells in their culture for such a long time. In other words, they should then in detail compare their method to the standard method of all other researchers in the field, and show the differences in survival and growth of the stromal and immune cells.

      (1) We appreciate your feedback and have revised the term 'organoids' to 'assembloids'. 2)

      I. Due to budget constraints, this study did not perform scRNA-seq on both early and late passages (P6-P10). Instead, immunofluorescence staining confirmed the persistence of stromal cells at passage 6 (as shown below).

      Author response image 1.

      Whole-mount immunofluorescence showed that Vimentin+ F-actin+ cells (stromal cells) were arranged around the glandular spheres that were only F-actin+(passage 6).

      II. Improvements in this study include the following.

      a. Optimization of endometrial tissue processing: The procedures for tissue collection, pretreatment, digestion, and culture were refined to maximize the retention of endometrial epithelial cells, stromal cells, and immune cells (detailed optimizations are provided in Response Table 1).

      b. Enhanced culture medium formulation: Based on previous protocols, WNT3A was added to promote organoid development and differentiation (PMID: 27315476), while FGF2 was supplemented to improve stromal cell survival (PMID: 35224622) (see Response Table 2 for medium comparisons). Representative culture outcomes are shown in the figure below.

      We acknowledge that the stromal and immune cells in this system still exhibit differences compared to their in vivo counterparts. In this study, we utilized the first three passages, which offer optimal cell diversity and viability, to meet experimental needs. However, replicating and maintaining the full complexity of endometrial cell types in vitro remains a major challenge in the field—one that we are actively working to address.

      Author response table 1.

      Methodological Optimization of Endometrial Organoids (Construction, Passaging, and Cryopreservation)

      Author response table 2.

      Optimization and comparison of endometrial organoid culture media

      Author response image 2.

      Bright-field microscopy captures the expansion of glands and surrounding stromal cells across passages 0 to 2 (scar bar=200μm) (Yellow arrows: stromal cells; White arrows: glands).

      (2) The paper is still much too dense, touching upon all kind of conclusions from the manifold bioinformatic analyses. The latter should be much clearer and better described, and then some interesting findings (pathways/genes) should be highlighted without mentioning every single aspect that is observed. The paper needs a lot of editing to better focus and extract take-home messages, not bombing the reader with a mass of pathways, genes etc which makes the manuscript just not readable or 'digest-able'. There is no explanation whatever and no clear rationale why certain genes are included in a list while others are not. There is the impression that mass bioinformatics is applied without enough focus.

      Thanks for your suggestions. We have made improvements and revisions in the following areas:

      (a) Clarity and Better Description of Bioinformatic Analyses: We have revised the sections involving bioinformatic analyses to provide a more streamlined and comprehensible explanation. Instead of overwhelming the reader with excessive details, we focused on the most important findings.

      (b) Organizing the Logic and Highlighting Key Findings: We have revised the manuscript to emphasize key findings according to the following logic: constructing a receptive endometrial organoid, comparing its molecular characteristics with those of the receptive endometrium, highlighting its main features (hormone response, enhanced energy metabolism, ciliary assembly and motility, epithelial-mesenchymal transition), and exploring the function involved in embryo interaction.

      (c) Rationale for Gene Selection: We have clarified the rationale for selecting certain genes and pathways for inclusion in the analysis and manuscript.

      We hope these revisions address your concerns and improve the overall quality and clarity of the manuscript. Thank you once again for your valuable input.

      (3) The study is much too descriptive and does not show functional validation or exploration (except glycogen production). Some interesting findings extracted from the bioinformatics must be functionally tested.

      Thanks for your suggestions. We have restructured the logic and revised the manuscript, incorporating functional validation. The focus is on the following points: highlighting its main features (hormone response, enhanced energy metabolism, ciliary assembly and motility, epithelial-mesenchymal transition), and exploring the functions involved in embryo interaction.

      (4) In contrast to what was found in vivo (Wang et al. 2020), no abrupt change in gene expression pattern is mentioned here from the (early-) secretory to the WoI phase. Should be discussed. Although the bioinformatic analyses point into this direction, there are major concerns which must be solved before the study can provide the needed reliability and credibility for revision.

      To further investigate the abrupt change, the Mfuzz algorithm was utilized to analyze gene expression across the three groups, focusing on gene clusters that were progressively upregulated or downregulated. It was observed that mitochondrial and cilia-related genes exhibited the highest expression levels in WOI endometrial organoids, as well as cell junction and negative regulation of cell differentiation were downregulated (Figure 4A).

      (5) All data should be benchmarked to the Wang et al 2020 and Garcia-Alonso et al. 2021 papers reporting very detailed scRNA-seq data, and not only the Stephen R. Quake 2020 paper.

      We appreciate your suggestion. By integrating data from Garcia-Alonso et al. (2021) (shown in the figure below), we observed that both WOI organoids and SEC organoids exhibit increased glandular secretory epithelium and developed ciliated epithelium, mirroring features of mid-secretory endometrium. The findings exhibit parallels when contrasting these two papers.

      Author response image 3.

      UMAP visualization of integrated scRNA-seq data (our dataset and Garcia-Alonso et al. 2021) showing: (A) cell types, (B) WOI-org, (C)CTRL-org, (D)SEC-org versus published midsecretory samples.

      (6) Fig. 2B: Vimentin staining is not at all clear. F-actin could be used to show the typical morphology of the stromal cells?

      We appreciate your suggestion. We performed additional staining for F-actin based on Vimentin, and found that Vimentin+ F-actin+ cells (stromal cells) were arranged around the glandular spheres that were only F-actin+.

      (7) Where does the term "EMT-derived stromal cells" come from? On what basis has this term been coined?

      Within endometrial biology, stromal cells in the transition from epithelial to mesenchymal phenotype are specifically referred to as 'stromal EMT transition cells' (PMID: 39775038, PMID: 39968688).

      In certain cancers or fibrotic diseases, epithelial cells can transition into a mesenchymal phenotype, contributing to the stromal environment that supports tumor growth or tissue remodeling (PMID: 20572012).

      (8) CD44 is shown in Fig. 2D but the text mentions CD45 (line 159)?

      In Fig 2D, T cells are defined as a cluster of CD45+CD3+ cells, further subdivided into CD4+ and CD8+ T cells based on their expression of CD4 and CD8. This figure does not include data on CD44.

      (9) All quantification experiments (of stainings etc) should be in detail described how this was done. It looks very difficult (almost not feasible) when looking at the provided pictures to count the stained cells.

      a. Manual Measurement:

      For TEM-observed pinopodes, glycogen particles, microvilli, and cilia, manual region-of-interest (ROI) selection was performed using ImageJ software for quantitative analysis of counts, area, and length. Twenty randomly selected images per experimental group were analyzed for each morphological parameter.

      b. Automated Measurement:

      We quantified the fluorescence images using ImageJ. Firstly, preprocess them by adjusting brightness and contrast, and removing background noise with the “Subtract Background” feature.

      Secondly, set the threshold to highlight the cells, then select the regions of interest (ROI) using selection tools. Thirdly, as for counting the cells, navigate to Analyze > Analyze Particles. AS for measuring the influence intensity and area, set the “Measurement” options as mean gray value. Adjust parameters as needed, and view results in the “Results” window. Save the data for further analysis and ensure consistency throughout your measurements for reliable results.

      For 3D fluorescence quantification, ZEN software (Carl Zeiss) was exclusively used, with 11 images analyzed per experimental group. This part has been incorporated into “Supporting Information”

      Line 94-100.

      c. Normalization Method:

      For fluorescence quantification, DAPI was used as an internal reference for normalization, where both DAPI and target fluorescence channel intensities were quantified simultaneously. The normalized target signal intensity (target/DAPI ratio) was then compared across experimental groups. A minimum of 15 images were analyzed for each parameter per group. This part has been incorporated into “Supporting Information” Line 101-104.

      (10) Fig. 3C: it is unclear how quantification can be reliably done. Moreover, OLFM4 looks positive in all cells of Ctrl, but authors still see an increase?

      (a) Fluorescence images were quantitatively analyzed using ImageJ by measuring the mean gray values. For normalization, DAPI staining served as an internal reference, with simultaneous measurement of mean gray values in both the target fluorescence channel and the DAPI channel. The relative fluorescence intensity was then calculated as the ratio of target channel to DAPI signal for inter-group quantitative comparisons.

      (b) OLFM4 is an E2-responsive gene. Its expression in endometrial organoids of the CTRL group is physiologically normal (PMID: 31666317). However, its fluorescence intensity (quantified as mean gray value) was significantly stronger in both the SEC and WOI groups compared to the CTRL group (quantitative method as described above).

      (11) Fig. 3F: Met is downregulated which is not in accordance with the mentioned activation of the PI3K-AKT pathway.

      We appreciate your careful review. Our initial description was imprecise. In the revised manuscript, this statement has been removed entirely.

      (12) Lines 222-226: transcriptome and proteome differences are not significant; so, how meaningful are the results then? Then, it is very hard to conclude an evolution from secretory phase to WoI.

      We appreciate your feedback. The manuscript has been comprehensively revised, and the aforementioned content has been removed.

      (13) WoI organoids show an increased number of cilia. However, some literature shows the opposite, i.e. less ciliated cells in the endometrial lining at WoI (to keep the embryo in place). How to reconcile?

      Thank you for raising this question. We conducted a statistical analysis of the proportion of ciliated cells across endometrial phases.

      (a) Based on the 2020 study by Stephen R. Quake and Carlos Simon’s team published in Nature Medicine (PMID: 32929266), the mid-secretory phase (Days 19–23) exhibited a higher proportion of ciliated cells compared to the early-secretory (Days 15–18) and late-secretory phases (Days 24– 28) (Fig. R13 A).

      (b) According to the 2021 study by Roser Vento-Tormo’s team in Nature Genetics, ciliated cell abundance peaked in the early-to-mid-secretory endometrium across all phases (Fig. R13 B-C).

      Data were sourced from the Reproductive Cell Atlas.

      (14) How are pinopodes distinguished from microvilli? Moreover, Fig. 3 does not show the typical EM structure of cilia.

      Thank you for this insightful question.

      (a) Pinopodes are large, bulbous protrusions with a smooth apical membrane. Under transmission electron microscopy (TEM), it can be observed that the pinopodes contain various small particles, which are typically extracellular fluid and dissolved substances.

      Microvilli are elongated, finger-like projections that typically exhibit a uniform and orderly arrangement, forming a "brush border" structure. Under transmission electron microscopy, dense components of the cytoskeleton, such as microfilaments and microtubules, can be seen at the base of the microvilli.

      (b) You may refer to the ciliated TEM structure shown in the current manuscript's Fig. 2E (originally labeled as Fig. 2H in the draft). The cilium is composed of microtubules. The cross-section shows that the periphery of the cilium is surrounded by nine pairs of microtubules arranged in a ring. The longitudinal section shows that the cilium has a long cylindrical structure, with the two central microtubules being quite prominent and located at the center of the cilium.

      (15) There is a recently published paper demonstrating another model for implantation. This paper should be referenced as well (Shibata et al. Science Advances, 2024).

      Thanks for your valuable comments. We have cited this reference in the manuscript at Line 77-78.

      (16) Line 78: two groups were the first here (Turco and Borreto) and should both be mentioned.

      Thanks for your valuable comments. We have cited this reference in the manuscript at Line 74-76.

      (17) Line 554: "as an alternative platform" - alternative to what? Authors answer reviewers' comments by just changing one word, but this makes the text odd.

      Thank you for your review. Here, we propose that this WOI organoid serves as an alternative research platform for studying endometrial receptivity and maternal-fetal interactions, compared to current secretory-phase organoids. In the revised manuscript, we have supplemented the data by co-culturing this WOI organoid with blastoid, demonstrating its robust embryo implantation potential.

      Reviewer #2 (Public Review):

      In this research, Zhang et al. have pioneered the creation of an advanced organoid culture designed to emulate the intricate characteristics of endometrial tissue during the crucial Window of Implantation (WOI) phase. Their method involves the incorporation of three distinct hormones into the organoid culture, coupled with additives that replicate the dynamics of the menstrual cycle. Through a series of assays, they underscore the striking parallels between the endometrial tissue present during the WOI and their crafted organoids. Through a comparative analysis involving historical endometrial tissue data and control organoids, they establish a system that exhibits a capacity to simulate the intricate nuances of the WOI. The authors made a commendable effort to address the majority of the statements. Developing an endometrial organoid culture methodology that mimics the window of implantation is a game-changer for studying the implantation process. However, the authors should strive to enhance the results to demonstrate how different WOI organoids are from SEC organoids, ensuring whether they are worth using in implantation studies, or a proper demonstration using implantation experiments.

      Thank you for your valuable suggestions. The WOI organoids differ from SEC organoids in the following aspects.

      (1) Structurally, WOI endometrial organoids exhibit subcellular features characteristic of the implantation window: densely packed pinopodes on the luminal side of epithelial cells, abundant glycogen granules, elongated and tightly arranged microvilli, and increased cilia (Figure 2F).

      (2) At the molecular level, WOI organoids show enlarged and functionally active mitochondria, enhanced ciliary assembly and motility, and single-cell signatures resembling mid-secretory endometrium.

      Specifically, mitochondrial- and cilia-related genes/proteins are most highly expressed in WOI organoids (Figure 4A,B). TEM analysis revealed that WOI organoids have the largest average mitochondrial area (Figure 4C). Mitochondrial-related genes display an increasing trend across the three organoid groups, and WOI organoids produce more ATP and IL-8 (Figure 4D,E).

      For cilia, WOI organoids upregulate genes/proteins involved in ciliary assembly, basal bodies, and motile cilia, while downregulating non-motile cilia markers (Figure 5A-C).

      Single-cell analysis further confirms that WOI organoids recapitulate mid-secretory endometrial traits in mitochondrial metabolism and cell adhesion (Figure 2G).

      (3) Functionally, WOI organoids demonstrate superior embryo implantation potential. Given the scarcity and ethical constraints of human embryos, we used blastoids for implantation assays (Figure 6A). These blastoids successfully grew within endometrial organoids, established interactions (Figure 6B), and exhibited normal trilineage differentiation (epiblast: OCT4; hypoblast: GATA6; trophoblast: KRT18) (Figure 6C). WOI organoids achieved significantly higher blastoid survival (66% vs. 19% in CTRL and 28% in SEC) and interaction rates (90% vs. 47% in CTRL and 53% in SEC), confirming their robust embryo-receptive capacity (Figure 6D,E).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In conclusion, it is needed to first meet all the concerns of the reviewers and then submit an appropriately adapted and comprehensive paper (also showing the robustness of the "organoids" and functionality of the findings) instead of this still fully descriptive paper. Further comments are included in the rebuttal document of the authors and will be provided by the editor as PDF.

      Reviewer #2 (Recommendations For The Authors):

      The authors made a good effort to reply all the statements. However, there are some points that the authors need to address.

      • There is an inconsistency in the manuscript regarding the number of passages in which the organoids are used; in the response to the reviewers, it mentions 5 passages, while in the Materials and Methods section, it states 3 passages.

      We sincerely appreciate your thorough review. In this study, organoids within the first three passages were used. To address the reviewer's question comprehensively, we have now provided a detailed account of the organoid passage history in our response.

      • We agree that the difference between SEC and WOI organoids may be subtle, but in response to this, the authors should explain what they mean by "the most notable differences lie in the more comprehensive differentiation and varied cellular functions exhibited by WOI organoids..."

      In the original manuscript, this statement indicated that, at the single-cell level, WOI endometrial organoids exhibited more functionally mature and thoroughly differentiated characteristics compared to SEC endometrial organoids (See details below).

      In the revised version, we have restructured this section to focus on following aspects: hormone response, energy metabolism, ciliary assembly and motility, epithelial-mesenchymal transition, and embryo implantation potential. Consequently, the "the most notable differences lie in the more comprehensive differentiation and varied cellular functions exhibited by WOI organoids..."has been removed.

      (1) Varied cellular functions:

      a. Secretory Epithelium: Compared to SEC organoids, WOI organoids exhibit enhanced peptide metabolism and mitochondrial energy metabolism in their secretory epithelium, supporting endometrial decidualization and embryo implantation (Figure 3F).

      b. Proliferative Epithelium: Compared to SEC organoids, WOI organoids demonstrate enhanced GTPase activity, angiogenesis, cytoskeletal assembly, cell differentiation, and RAS protein signaling in their proliferative epithelium (Figure S2G).

      c. Ciliated Epithelium: The ciliated epithelium of WOI endometrial organoids is associated with the regulation of vascular development and exhibits higher transcriptional activity compared to SEC organoids (Figure 5E).

      d. Stromal Cells: Compared to SEC organoids, WOI organoids exhibit enhanced cell junctions, cell migration, and cytoskeletal regulation in EMT-derived stromal cells (Figure S4A right panel). Similarly, cell junctions are also strengthened in stromal cells (Figure S4A left panel).

      (2) comprehensive differentiation:

      a. Compared to SEC organoids, WOI organoids exhibit more complete differentiation from proliferative epithelium to secretory epithelium (Figure 3G).

      b. The WOI organoids demonstrate more robust ciliary differentiation compared to SEC organoids (Figure 5F).

      c. The proliferative epithelium progressively differentiates into EMT-derived cells. Compared to SEC organoids, WOI organoids are predominantly localized at the terminal end of the differentiation trajectory, indicating more complete differentiation (Figure S4B).

      • What do the authors mean by "average intensity" when referring to the extra reagents added to the WOI? The results that the authors show in response to Reviewer 2's Q1 must be included as part of the results and explain how it was done in the materials and methods section.

      This parameter indicates the growth status of organoids. It measures the gray value of organoids through long-term live-cell tracking. When organoids undergo apoptosis, they progressively condense into denser solid spheres, leading to an increase in gray value (average intensity). This content has been incorporated into the Results section (Line 129) and is further explained in the Supporting Information "Materials and Methods" (Lines 70-77).

      • In panel 1C, it is not possible to see the stromal cells around because they are brightfield images.

      You are partly right. Bright-field images alone indeed make it difficult to distinguish stromal cells. However, by combining whole-mount immunofluorescence staining with the characteristic elongated spindle-shaped morphology of stromal cells, we were able to roughly determine their distribution in the bright-field images.

      • Responding to Reviewer 2's question Q7, the authors indicate how they establish the cluster. However, they do not specify whether they extrapolate the data from a database or create the cluster themselves based on the literature. It should be stated from which classification list (or classification database) the extrapolation has been made.

      Within endometrial biology, stromal cells in the transition from epithelial to mesenchymal phenotype are specifically referred to as 'stromal EMT transition cells' (PMID: 39775038, PMID: 39968688).

      In certain cancers or fibrotic diseases, epithelial cells can transition into a mesenchymal phenotype, contributing to the stromal environment that supports tumor growth or tissue remodeling (PMID: 20572012).

      • Regarding Reviewer 2's question Q8, if the authors have not been able to make comparisons with, at least, SEC organoids, unfortunately, the ERT loses much of its strength and should not serve as support.

      We agree with you at this point. These results have been moved to the supplementary figures.

      • If the differences in the transcriptome and proteome between SEC and WOI organoids are not significant, the result does not support the authors' model. If there are barely any differences at the proteome and transcriptome level between SEC and WOI organoids, why would anyone choose to use their model over SEC organoids?

      We sincerely appreciate your valuable feedback. In this revised manuscript, we have further integrated transcriptomic and proteomic analyses, revealing that WOI organoids exhibit enlarged and functionally active mitochondria, along with enhanced cilia assembly and motility compared to SEC organoids. Additionally, using a blastoid model, we demonstrated that WOI organoids possess superior embryo implantation potential, significantly outperforming SEC organoids. Our research group aims to develop an embryo co-culture model. Through systematic comparisons of structural, molecular, and co-culture characteristics between SEC and WOI organoids, we ultimately confirmed the superior performance of WOI organoids.

      • SEC and WOI organoids must be different enough to establish a new model, and the authors do not demonstrate that they are.

      Thank you for your valuable feedback. In the revised manuscript, we have emphasized the distinctions between SEC and WOI organoids in terms of structure, molecular characteristics, and functionality (co-culture with blastoid), as detailed below.

      (1) Structurally, WOI endometrial organoids exhibit subcellular features characteristic of the implantation window: densely packed pinopodes on the luminal side of epithelial cells, abundant glycogen granules, elongated and tightly arranged microvilli, and increased cilia (Figure 2F).

      (2) At the molecular level, WOI organoids show enlarged and functionally active mitochondria, enhanced ciliary assembly and motility, and single-cell signatures resembling mid-secretory endometrium.

      Specifically, mitochondrial- and cilia-related genes/proteins are most highly expressed in WOI organoids (Figure 4A,B). TEM analysis revealed that WOI organoids have the largest average mitochondrial area (Figure 4C). Mitochondrial-related genes display an increasing trend across the three organoid groups, and WOI organoids produce more ATP and IL-8 (Figure 4D,E).

      For cilia, WOI organoids upregulate genes/proteins involved in ciliary assembly, basal bodies, and motile cilia, while downregulating non-motile cilia markers (Figure 5A-C).

      Single-cell analysis further confirms that WOI organoids recapitulate mid-secretory endometrial traits in mitochondrial metabolism and cell adhesion (Figure 2G).

      (3) Functionally, WOI organoids demonstrate superior embryo implantation potential. Given the scarcity and ethical constraints of human embryos, we used blastoids for implantation assays (Figure 6A). These blastoids successfully grew within endometrial organoids, established interactions (Figure 6B), and exhibited normal trilineage differentiation (epiblast: OCT4; hypoblast: GATA6; trophoblast: KRT18) (Figure 6C). WOI organoids achieved significantly higher blastoid survival (66% vs. 19% in CTRL and 28% in SEC) and interaction rates (90% vs. 47% in CTRL and 53% in SEC), confirming their robust embryo-receptive capacity (Figure 6D,E).

      • Regarding Q16, Boretto et al. 2017 and Turco et al. 2017 also manage to isolate stromal cells, but they lose them between passages. It's not a matter of isolating them from the tissue or not, but rather how they justify their maintenance in culture. In the images added by the authors, it can be seen that the majority of stromal cells are lost from P0 to P1 after thawing. I still believe that the epithelial part can be passed and maintained, but the rest cannot, and that should be mentioned in the paper as a limitation. However, the authors can demonstrate the maintenance of stromal cells by performing immunostaining with vimentin from passages 4, 5, and 6.

      Thank you for your valuable comments. We have added the statement 'Stromal cells and immune cells are difficult to pass down stably and their proportion is lower than that in the in vivo endometrium' to the Limitations section (Line 364-365). Additionally, we performed immunostaining with vimentin starting from passage 6 and confirmed the presence of Vimentin+ F-actin+ stromal cells (as shown in Author response image 1).

    1. Author response:

      Reviewer #1 (Public review):

      Cognitive Load and Task-Switching Components:

      We agree that cognitive load is multi-faceted and encompasses dimensions not fully captured in our present models, including domain and rule switching. For the revision, we will explicitly model these components in the statistical analyses by incorporating predictors reflecting attended domain switching and rule complexity, as suggested. We will also explain our inclusion of n-back reaction predictors and justify their relationship with theoretical constructs of executive function. Full details of coding schemes will be provided.

      Modeling Entropy and Surprisal:

      We appreciate the reviewer’s suggestion to further explain the distinction between entropy (predictive uncertainty) and surprisal (integration difficulty), and acknowledge that our treatment of entropy warrants extension. In the revision, we will expand the results and discussion on entropy, providing clearer theoretical motivation for its inclusion and conducting supplementary analyses to examine its role alongside surprisal.

      Replicability of Findings:

      We note the concern regarding two-way vs. three-way interactions in model replication. In the revised manuscript, we will report robustness analyses on subsets of our data (e.g., matched age and education groups), clarify degrees of freedom and group sizes, and transparently report any discrepancies.

      Predictors and Statistical Modeling:

      We will add clarifications on predictor selection, data structure, and rationale for model hierarchy. The functions of d-prime, comprehension accuracy, and performance modeling will be described in more detail, including discussion of block-level vs. participant-level effects.

      Reviewer #2 (Public review):

      Distinction Between Prediction and Predictability:

      We recognize the importance of clearly communicating the difference between prediction and predictability, as well as integration-based vs. prediction-based effects. We will clarify these distinctions throughout the introduction, methods, and discussion sections, citing the relevant theoretical literature (e.g., Pickering & Gambi 2018; Federmeier 2007; Staub 2015; Frisson 2017).

      Aging, Corpus Predictability, and Individual Differences:

      We appreciate the critical point regarding age, corpus-based predictability, and potential cohort effects in language model estimates. In the revision, we will provide conceptual clarifications on how surprisal and entropy might differ for different age groups and discuss limitations in extrapolating these metrics to participant-specific predictions. The limitations inherent in relying on LLM-derived estimates and text materials will be more directly addressed.

      Coverage of Literature and Paradigms:

      We will broaden the literature review as requested, particularly on the N400 effects and behavioral traditions in prediction research. These additions should help contextualize the present work within both neuroscience and psycholinguistics.

      Experimental Context and Predictability Metrics:

      We will address concerns regarding the context window for prediction estimation, describing more precisely how context was defined and whether broader textual cues may improve predictability metrics.

      References

      Pickering, M.J. & Gambi, C. (2018). Predicting while comprehending language: A theory and review. Psychol. Bull., 144(10), 1002–1044.

      Federmeier, K.D. (2007). Thinking ahead: The role and roots of prediction in language comprehension. Psychophysiology, 44(4), 491–505.

      Frisson, S. (2017). Can prediction explain the lexical processing advantage for short words? J. Mem. Lang., 95, 121–138.\

      Staub, A. (2015). The effect of lexical predictability on eye movements in reading: Critical review and theoretical interpretation. Lang. Linguist. Compass, 9(8), 311–327.Huettig, F. & Mani, N. (2016). Is prediction necessary to understand language? Probably not. Trends Cogn. Sci., 20(10), 484–492.We appreciate the reviewers’ constructive comments and believe their suggestions will meaningfully strengthen the paper. Our planned revisions will address each of the above points with additional analyses, clarifications, and expanded discussion.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      (1) The manuscript is quite dense, with some concepts that may prove difficult for the non-specialist. I recommend spending a few more words (and maybe some pictures) describing the difference between task-relevant and task-irrelevant planes. Nice technique, but not instantly obvious. Then we are hit with "stimulus-related", which definitely needs some words (also because it is orthogonal to neither of the above). 

      We agree that the original description of the planes was too terse and have expanded on this in the revised manuscript.

      Line 85 - To test the influence of attention, trials were sorted according to two spatial reference planes, based on the location of the stimulus: task-related and task-unrelated (Fig. 1b). The task-related plane corresponded to participants’ binary judgement (Fig 1b, light cyan vertical dashed line) and the task-unrelated plane was orthogonal to this (Fig 1b, dark cyan horizontal dashed line). For example, if a participant was tasked with performing a left-or-right of fixation judgement, then their task-related plane was the vertical boundary between the left and right side of fixation, while their task-unrelated plane was the horizontal boundary. The former (left-right) axis is relevant to their task while the latter (top-bottom) axis is orthogonal and task irrelevant. This orthogonality can be leveraged to analyze the same data twice (once according to the task-related plane and again according to the taskunrelated plane) in order to compare performance when the relative location of an event is either task relevant or irrelevant.

      Line 183 - whereas task planes were constant, the stimulus-related plane was defined by the location of the stimulus on the previous trial, and thus varied from trial to trial. That is, on each trial, the target is considered a repeat if it changes location by <|90°| relative to its location on the previous trial, and an alternate if it moves by >|90°|.

      (2) While I understand that the authors want the three classical separations, I actually found it misleading. Firstly, for a perceptual scientist to call intervals in the order of seconds (rather than milliseconds), "micro" is technically coming from the raw prawn. Secondly, the divisions are not actually time, but events: micro means one-back paradigm, one event previously, rather than defined by duration. Thirdly, meso isn't really a category, just a few micros stacked up (and there's not much data on this). And macro is basically patterns, or statistical regularities, rather than being a fixed time. I think it would be better either to talk about short-term and long-term, which do not have the connotations I mentioned. Or simply talk about "serial dependence" and "statistical regularities". Or both. 

      We agree that the temporal scales defined in the current study are not the only way one could categorize perceptual time. We also agree that by using events to define scales, we ignore the influence of duration. In terms of the categories, we selected these for two reasons: 1) they conveniently group previous phenomena, and 2) they loosely correspond to iconic-, short- and long-term memory. We agree that one could also potentially split it up into two categories (e.g., short- and long-term), but in general, we think any form of discretization will have limitations. For example, Reviewer 1 suggests that the meso category is simply a few micros stacked together. However, there is a rich literature on phenomena associated with sequences of an intermediate length that do not appear to be entirely explained by stacking micro effects (e.g., sequence learning and sequential dependency). We also find that when controlling for micro level effects, there are clear meso level effects. Also, by the logic that meso level effects are just stacked micro effects, one could also argue the same for macro effects. We don’t think this argument is incorrect, rather we think it exemplifies the challenge of discretising temporal scales. Ultimately, the current study was aimed to test whether seemingly disparate phenomena identified in previous work could be captured by unifying principles. To this end we found that these categories were the most useful. However, we have included a “Limitations and future directions” section in the Discussion of the revised manuscript that acknowledges both the alternative scheme proposed by Reviewer 1, and the value of extending this work to consider the influence of duration (as well as events).

      Line 488 - Limitations and future directions. One potential limitation of the current study is the categorization of temporal scales according to events, independent of the influence of event duration. While this simplification of time supports comparison between different phenomena associated with each scale (e.g., serial dependence, sequential dependencies, statistical learning), future work could investigate the role of duration to provide a more comprehensive understanding of the mechanisms identified in the current study.

      Related to this, while the temporal scales applied here conveniently categorized known sensory phenomena, and partially correspond to iconic-, short-, and long-term memory, they are but one of multiple ways to delineate time. For example, temporal scales could alternatively be defined simply as short- and long-term (e.g., by combining micro and meso scale phenomena). However, this could obscure meaningful differences between phenomena associated with sensory persistence and short-term memory, or qualitative differences in the way that shortsequences of events are processed.

      (3) More serious is the issue of precision. Again, this is partially a language problem. When people use the engineering terms "precision" and "accuracy" together, they usually use the same units, such as degrees. Accuracy refers to the distance from the real position (so average accuracy gives bias), and precision is the clustering around the average bias, usually measured as standard deviation. Yet here accuracy is percent correct: also a convention in psychology, but not when contrasting accuracy with precision, in the engineering sense. I suggest you change "accuracy" to "percent correct". On the other hand, I have no idea how precision was defined. All I could find was: "mixture modelling was used to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively". I do not know what that means.

      In the case of a binary decision, is seems reasonable to use the term “accuracy” to refer to the correspondence between the target state and the response on a task. However, we agree that while our (main) task is binary, the target is not and nor is the secondary task. We thank the reviewer for bringing this to our attention, as we agree that this will be a likely cause of confusion. To avoid confusion we have specifically referred to “task accuracy” throughout the revised manuscript.

      With regards to precision, our measure of precision is consistent with what Reviewer 1 describes as such, i.e., the clustering of responses. In particular, the von Mises distribution is essentially a Gaussian distribution in circular space, and the kappa parameter defines the width of the distribution, regardless of the mean, with larger values of kappa indicating narrower (more precise) distributions. We could have used standard deviation to assess precision; however, this would incorrectly combine responses on which participants failed to encode the target (e.g., because of a blink) and were simply guessing. To account for these trials, we applied mixture modelling of guess and genuine responses to isolate the precision of genuine responses, as is standard in the visual working memory literature. However, we agree that this was not sufficiently described in the original manuscript and have elaborated on this method in the revised version.

      Line 598 - From the reproduction task, we sought to estimate participant’s recall precision. It is likely that on some trials participants failed to encode the target and were forced to make a response guess. To isolate the recall precision from guess responses, we used mixture modelling to estimate the precision and guess rate of reproduction responses, based on the concentration (k) and height of von Mises and uniform distributions, respectively (Bays et al., 2009). The k parameter of the von Mises distribution reflects its width, which indicates the clustering of responses around a common location.

      (4) Previous studies show serial dependence can increase bias but decrease scatter (inverse precision) around the biased estimate. The current study claims to be at odds with that. But are the two measures of precision relatable? Was the real (random) position of the target subtracted from each response, leaving residuals from which the inverse precision was calculated? (If so, the authors should say so..) But if serial dependence biases responses in essentially random directions (depending on the previous position), it will increase the average scatter, decreasing the apparent precision. 

      Previous studies have shown that when serial dependence is attractive there is a corresponding increase in precision around small offsets from the previous item (citations). Indeed, attractive biases will lead to reduced scattering (increased precision) around a central attracter. Consistent with previous studies, and this rational, we also found an attractive bias coupled with increased precision. To clarify, for the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the offset between the current and previous target and then performing the same mixture modelling described above to estimate the mean (bias) and kappa (precision) parameters of the von Mises distribution fit to the angular errors. This was not explained in the original manuscript, so we thank Reviewer 1 for bringing this to our attention and have clarified the analysis in the revised version.

      Line 604 - For the serial dependency analysis, we calculated bias and precision by binning reproduction responses according to the angular offset between the current and previous target and then performing mixture modelling to estimate the mean (bias) and k (precision) parameters of the von Mises distribution.

      (5) I suspect they are not actually measuring precision, but location accuracy. So the authors could use "percent correct" and "localization accuracy". Or be very clear what they are actually doing. 

      As explained in our response to Reviewer 1’s previous comment, we are indeed measuring precision.

      Reviewer #2 (Public review):

      (1) The abstract should more explicitly mention that conclusions about feedforward mechanisms were derived from a reanalysis of an existing EEG dataset. As it is, it seems to present behavioral data only.

      It is not clear what relevance the fact that the data has been analyzed previously has to the results of the current study. However, we do think that it is important to be clear that the EEG recordings were collected separately from the behavioural and eyetracking data, so we have clarified this in the revised abstract.

      Line 7 - By integrating behavioural and pupillometry recordings with electroencephalographical recordings from a previous study, we identify two distinct mechanisms that operate across all scales.

      (2) The EEG task seems quite different from the others, with location and color changes, if I understand correctly, on streaks of consecutive stimuli shown every 100 ms, with the task involving counting the number of target events. There might be different mechanisms and functions involved, compared to the behavioral experiments reported. 

      As stated above, we agree that it is important that readers are aware that the EEG recordings were collected separately to the behavioural and eyetracking data. We were forthright about this in the original manuscript and how now clarified this in the revised abstract. We agree that collecting both sets of data in the same experiment would be a useful validation of the current results and have acknowledged this in a new Limitations and future directions section of the Discussion of the revised manuscript.

      Line 501 - Another limitation of the current study is that the EEG recordings were collected in the separate experiment to the behavioural and pupillometry data. The stimuli and task were similar between experiments, but not identical. For example, the EEG experiment employed coloured arc stimuli presented at a constant rate of ~3.3 Hz and participants were tasked with counting the number of stimuli presented at a target location. By contrast, in the behavioural experiment, participants viewed white blobs presented at an average rate of ~2.8 Hz and performed a binary spatial task coupled with an infrequent reproduction task. An advantage of this was that the sensory responses to stimuli in the EEG recordings were not conflated with motor responses; however, future work combining these measures in the same experiment would serve as a validation for the current results.

      (3) How is the arbitrary choice of restricting EEG decoding to a small subset of parieto-occipital electrodes justified? Blinks and other artifacts could have been corrected with proper algorithms (e.g., ICA) (Zhang & Luck, 2025) or even left in, as decoders are not necessarily affected by noise. Moreover, trials with blinks occurring at the stimulus time should be better removed, and the arbitrary selection of a subset of electrodes, while reducing the information in input to the decoder, does not account for trials in which a stimulus was missed (e.g., due to blinks).

      Electrode selection was based on several factors: 1) reduction of eye movement/blink artifacts (as noted in the original manuscript), 2) consistency with the previous EEG study (Rideaux, 2024) and other similar decoding studies (Buhmann et al., 2024; Harrison et al., 2023; Rideaux et al., 2023), 3) improved signal-to-noise by including only sensors that carry the most position information (as shown in Supplementary Figure 1a and the previous EEG study). We agree that this was insufficiently explained in the original manuscript and have clarified our sensor selection in the revised version.

      Line 631 - We only included the parietal, parietal-occipital, and occipital sensors in the analyses to i) reduce the influence of signals produced by eye movements, blinks, and non-sensory cortices, ii) for consistency with similar previous decoding studies (Buhmann et al., 2024; Rideaux, 2024; Rideaux et al., 2025), and iii) to improve decoding accuracy by restricting sensors to those that carried spatial position information (Supplementary Fig. 1a).

      (4) The artifact that appears in many of the decoding results is puzzling, and I'm not fully convinced by the speculative explanation involving slow fluctuations. I wonder if a different high-pass filter (e.g., 1 Hz) might have helped. In general, the nature of this artifact requires better clarification and disambiguation.

      We agree that the nature of this artifact requires more clarification and disambiguation. Due to relatively slow changes in the neural signal, which are not stimulus-related, there is a degree of temporal autocorrelation in the recordings. This can be filtered out, for example, by using a stricter high-pass filter; however, we tried a range of filters and found that a cut-off of at least 0.7 Hz is required to remove the artifact, and even a filter of 0.2 Hz introduces other (stimulus-related) artifacts, such as above-chance decoding prior to stimulus onset. These stimulus-related artifacts are due to the temporal smearing of data, introduced by the filtering, and have a more pronounced and complex influence on the results and are more difficult to remove through other means, such as the baseline correction applied in the original manuscript.

      The temporal autocorrelation is detected by the decoder during training and biases it to classify/decode targets that are presented nearby in time as similar. That is, it learns the neural pattern for a particular stimulus location based on the activity produced by the stimulus and the temporal autocorrelation (determined by slow stimulus unrelated fluctuations). The latter only accounts for a relatively smaller proportion of the variance in the neural recordings under normal circumstances and would typically go undetected when simply plotting decoding accuracy as a function of position. However, it becomes weakly visible when decoding accuracy is plotted as a function of distance from the previous target, as now the bias (towards temporally adjacent targets) aligns with the abscissa. Further, it becomes highly visible when the stimulus labels are shuffled, as now the decoder can only learn from the variance associated with the temporal autocorrelation (and not from the activity produced by the stimulus).

      In the linear discriminant analysis, this led to temporally proximal items being more likely to be classified as on the same side. This is why there is above-chance performance for repeat trials (Supplementary Figure 2b), and below-chance performance for alternate trials, even when the labels are shuffled – the temporal autocorrelation produces a general bias towards classifying temporally proximate stimuli as on the same side, which selectively improves the classification accuracy of repeat trials. Fortunately, the bias is relatively constant as a function of time within the epoch and is straightforward to estimate by shuffling the labels, which means that it can be removed through a baseline correction. However, to further demonstrate that the autocorrelation confound cannot account for the differences observed between repeat and alternate trials in the micro classification analysis, we now additionally show the results from a more strictly filtered version of the data (0.7 Hz). These results show a similar pattern as the original, with the additional stimulusrelated artifacts introduced by the strict filter, e.g., above chance decoding prior to stimulus onset.

      In the inverted encoding analysis, the same temporal autocorrelation manifests as temporally proximal trials being decoded as more similar locations. This is why there is increased decoding accuracy for targets with small angular offsets from the previous target, even when the labels are shuffled (Supplementary Figure 3c), because it is on these trials that the bias happens to align with the correct position. This leads to an attractive bias towards the previous item, which is most prominent when the labels are shuffled.

      To demonstrate the phenomenon, we simulated neural recordings from a population of tuning curves and performed the inverted encoding analysis on a clean version of the data and a version in which we introduced temporal autocorrelation. We then repeated this after shuffling the labels. The simulation produced very similar results to those we observed in the empirical data, with a single exception: while precision in the simulated shuffled data was unaffected by autocorrelation, precision in the unshuffled data was clearly affected by this manipulation. This may explain why we did not find a correlation between the shuffled and unshuffled precision in the original manuscript. 

      These results echo those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and delta location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180 to 180 degrees, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this removed the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis (Supplementary Figure 3f), but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset (Supplementary Figure 3d). However, given thar we were primarily interested in the pattern of accuracy, precision, and bias as a function of delta location, and less concerned with the precise temporal dynamics of these changes, which appeared relatively stable in the filtered data. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3.

      We have updated the revised manuscript in light of these changes, including a fuller description of the artifact and the results from the abovementioned control analyses.

      Figure 3 updated.

      Figure 3 caption - e) Decoding accuracy for stimulus location, from reanalysis of previously published EEG data (17). Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). f) Decoding accuracy for location, as a function of time and D location. Bright colours indicate higher decoding accuracy; absolute accuracy values can be inferred from (e). g-i) Average location decoding  (g) accuracy, (h) precision, and (h) bias from 50 – 500 ms following stimulus onset. Horizontal bar in (e) indicates cluster corrected periods of significance; note, all time points were significantly above chance due to temporal smear introduced by strict high-pass filtering (see Supplementary Figure 3 for full details). Note, the temporal abscissa is aligned across (e & f). Shaded regions indicate ±SEM.

      Line 218 - To further investigate the influence of serial dependence, we applied inverted encoding modelling to the EEG recordings to decode the angular location of stimuli. We found that decoding accuracy of stimulus location sharply increased from ~60 ms following stimulus onset (Fig. 3e). Note, to reduce the influence of general temporal dependencies, we applied a 0.7 Hz high-pass filter to the data, which temporally smeared the stimulus-related information, resulting in above chance decoding accuracy prior to stimulus presentation (for full details, see Supplementary Figure 3). To understand how serial dependence influences the representation of these features, we inspected decoding accuracy for location as a function of both time and D location (Fig. 3f). We found that decoding accuracy varied depending not only as a function of time, but also as a function of D location. To characterise this relationship, we calculated the average decoding accuracy from 50 ms until the end of the epoch (500 ms), as a function of D location (Fig. 3g). This revealed higher accuracy for targets with larger D location. We found a similar pattern of results for decoding precision (Fig. 3h). These results are consistent with the micro temporal context (behavioural) results, showing that targets that alternated were recalled more precisely. Lastly, we calculated the decoding bias as a function of D location and found a clear repulsive bias away from the previous item (Fig. 3i). While this result is inconsistent with the attractive behavioural bias, it is consistent with recent studies of serial dependence suggesting an initial pattern of repulsion followed by an attractive bias during the response period (20–22).

      Line 726 - As shown in Supplementary Figure 3, we found the same general temporal dependencies in the decoding accuracy computed using inverted encoding that were found using linear discriminant classification. However, as a baseline correction would not have been appropriate or effective for the parameters decoded with this approach, we instead used a high-pass filter of 0.7 Hz to remove the confound, while being cautious about interpreting the timing of effects produced by this analysis due to the temporal smear introduced by the filter.

      Supplementary Figure 2 updated.

      Supplementary Figure 2 caption - Removal of general micro temporal dependencies in EEG responses. We found that there were differences in classification accuracy for repeat and alternate stimuli in the EEG data, even when stimulus labels were shuffled. This is likely due to temporal autocorrelation within the EEG data due to low frequency signal changes that are unrelated to the decoded stimulus dimension. This signal trains the decoder to classify temporally proximal stimuli as the same class, leading to a bias towards repeat classification. For example, in general, the EEG signal during trial one is likely to be more similar to that during trial two than during trial ten, because of low frequency trends in the recordings. If the decoder has been trained to classify the signal associated with trial one as a leftward stimulus, then it will be more likely to classify trial two as a leftward stimulus too. These autocorrelations are unrelated to stimulus features; thus, to isolate the influence of stimulus-specific temporal context, we subtracted the classification accuracy produced by shuffling the stimulus labels from the unshuffled accuracy (as presented in Figure 2e, f). We confirmed that using a stricter high-pass filter (0.7 Hz) removes this artifact, as indicated by the equal decoding accuracy between the two shuffled conditions. However, the stricter high-pass filter temporally smears the stimulus-related signal, which introduces other (stimulus-related) artifacts, e.g., above-chance decoding accuracy prior to stimulus presentation, that are larger and more complex, i.e., changing over time. Thus, we opted to use the original high pass filter (0.1 Hz) and apply a baseline correction. a) The uncorrected classification  accuracy along task related and unrelated planes. Note that these results are the same as the corrected version shown in Figure 2e, because the confound is only apparent when accuracy is grouped according to temporal context.

      b) Same as (a), but split into repeat and alternate stimuli, along (left) task-related and (right) unrelated planes. Classification  accuracy when labels are shuffled is also shown. Inset in (a) shows the EEG sensors included in the analysis (blue dots). (c, d) Same as (a, b), but on data filtered using a 0.7 Hz high-pass filter. Black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). Shaded regions indicate ±SEM.

      Supplementary Figure 3 updated.

      Supplementary Figure 3 caption - Removal of general temporal dependencies in EEG responses for inverted encoding analyses. As described in Methods - Neural Decoding, we used inverted encoding modelling of EEG recordings to estimate the decoding accuracy, precision, and bias of stimulus location. Just as in the linear discriminant classification analysis, we also found the influence of general temporal dependencies in the results produced by the inverted encoding analysis. In particular, there was increased decoding accuracy for targets with low D location. This was weakly evident in the period prior to stimulus presentation, but clearly visible when the labels were shuffled. These results are mirror those from the classification analysis, albeit in a more continuous space. However, whereas in the classification analysis it was straightforward to perform a baseline correction to remove the influence of general temporal dependency, the more complex nature of the accuracy, precision, and bias parameters over the range of time and D location makes this approach less appropriate. For example, the bias in the shuffled condition ranged from -180° to 180°, which when subtracted from the bias in the unshuffled condition would produce an equally spurious outcome, i.e., the equal opposite of this extreme bias. Instead for the inverted encoding analysis, we used the data high-pass filtered at 0.7 Hz. As with the classification analysis, this significantly reduced the influence of general temporal dependencies, as indicated by the results of the shuffled data analysis, but it also temporally smeared the stimulus-related signal, resulting in above chance decoding accuracy prior to stimulus onset. However, we were primarily interested in the pattern of accuracy, precision, and bias as a function of D location, and less concerned with the precise temporal dynamics of these changes. Thus, this was the more suitable approach to removing the general temporal dependencies in the inverted encoding analysis and the one that is presented in Figure 3. (a) Decoding accuracy as a function of time for the EEG data filtered using a 0.1 Hz high-pass filter. Inset shows the EEG sensors included in the analysis (blue dots), and black rectangles indicate the timing of stimulus presentations (solid: target stimulus, dashed: previous and subsequent stimuli). (b, c) The same as (a), but as a function of time and D location for (b) the original data and (c) data with shuffled labels. (d-f) Same as (a-c), but for data filtered using a 0.7 Hz high-pass filter. Shaded regions in (a, d) indicate ±SEM. Horizontal bars in (a, d) indicate cluster corrected periods of significance; note, all time points in (d) were significantly above chance. Note, the temporal abscissa is vertically aligned across plots (a-c & d-f).

      In the process of performing these additional analyses and simulations, we became aware that the sign of the decoding bias in the inverted encoding analyses had been interpreted in the wrong direction. That is, where we previously reported an initial attractive bias followed by a repulsive bias relative to the previous target, we have in fact found the opposite, an initial repulsive bias followed by an attractive bias relative to the previous target. Based on the new control analyses and simulations, we think that the latter attractive bias was due to general temporal dependencies. That is, in the filtered data, we only observe a repulsive bias. While the bias associated with serial dependence was not a primary feature of the study, this (somewhat embarrassing) discovery has led to reinterpretation of some results relating to serial dependence. However, it is encouraging to see that our results now align with those of recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan et al. 2024).

      Line 385 - Our corresponding EEG analyses revealed better decoding accuracy and precision for stimuli preceded by those that were different and a bias away from the previous stimulus. These results are consistent with finding that alternating stimuli are recalled more precisely. Further, while the repulsive pattern of biases is inconsistent with the observed behavioural attractive biases, it is consistent with recent work on serial dependence indicating an initial period of repulsion, followed by an attractive bias during the response period (20–22). These findings indicate that serial dependence and first-order sequential dependencies can be explained by the same underlying principle.

      (5) Given the relatively early decoding results and surprisingly early differences in decoding peaks, it would be useful to visualize ERPs across conditions to better understand the latencies and ERP components involved in the task.

      A rapid presentation design was used in the EEG experiment, and while this is well suited to decoding analyses, unfortunately we cannot resolve ERPs because the univariate signal is dominated by an oscillation at the stimulus presentation frequency (~3 Hz). We agree that this could be useful to examine in future work.

      (6) It is unclear why the precision derived from IEM results is considered reliable while the accuracy is dismissed due to the artifact, given that both seem to be computed from the same set of decoding error angles (equations 8-9).

      This point has been addressed in our response to point (4).

      (7) What is the rationale for selecting five past events as the meso-scale? Prior history effects have been shown to extend much further back in time (Fritsche et al., 2020). 

      We used five previous items in the meso analyses to be consistent with previous research on sequential dependencies (Bertelson, 1961; Gao et al., 2009; Jentzsch & Sommer, 2002; Kirby, 1976; Remington, 1969). However, we agree that these effects likely extend further and have acknowledged this in the revied version of the manuscript.

      Line 240 - Higher-order sequential dependences are an example of how stimuli (at least) as far back as five events in the past can shape the speed and task accuracy of responses to the current stimulus (9, 10); however, note that these effects have been observed for more than five events (20).

      (8) The decoding bias results, particularly the sequence of attraction and repulsion, appear to run counter to the temporal dynamics reported in recent studies (Fischer et al., 2024; Luo et al., 2025; Sheehan & Serences, 2022). 

      This point has been addressed in our response to point (4).

      (9) The repulsive component in the decoding results (e.g., Figure 3h) seems implausibly large, with orientation differences exceeding what is typically observed in behavior. 

      As noted in our response to point (4), this bias was likely due to the general temporal dependency confound and has been removed in the revised version of the manuscript.

      (10) The pattern of accuracy, response times, and precision reported in Figure 3 (also line 188) resembles results reported in earlier work (Stewart, 2007) and in recent studies suggesting that integration may lead to interference at intermediate stimulus differences rather than improvement for similar stimuli (Ozkirli et al., 2025).

      Thank you for bringing this to our attention, we have acknowledged this in the revised manuscript.

      Line 197 - Consistent with our previous binary analysis, and with previous work (19), we also found that responses were faster and more accurate when D location was small (Fig. 3b, c).

      (11) Some figures show larger group-level variability in specific conditions but not others (e.g., Figures 2b-c and 5b-c). I suggest reporting effect sizes for all statistical tests to provide a clearer sense of the strength of the observed effects. 

      Yes, as noted in the original manuscript, we find significant differences between the variance task-related and -unrelated conditions. We think this is due to opposing forces in the task-related condition: 

      “The increased variability of response time differences across the taskrelated plane likely reflects individual differences in attention and prioritization of responding either quickly or accurately. On each trial, the correct response (e.g., left or right) was equally probable. So, to perform the task accurately, participants were motivated to respond without bias, i.e., without being influenced by the previous stimulus. We would expect this to reduce the difference in response time for repeat and alternate stimuli across the taskrelated plane, but not the task-unrelated plane. However, attention may amplify the bias towards making faster responses for repeat stimuli, by increasing awareness of the identity of stimuli as either repeats or alternations (17). These two opposing forces vary with task engagement and strategy and thus would be expected produce increased variability across the task-related plane.” We agree that providing effect sizes may provided a clearer sense of the observed effects and have done so in the revised version of the manuscript.

      Line 739 - For Wilcoxon signed rank tests, the rank-biserial correlation (r) was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (54). For Friedman’s ANONA tests, Kendal’s W was calculated as an estimate of effect size, where 0.1, 0.3, and 0.5 indicate small, medium, and large effects, respectively (55).

      (12) The statement that "serial dependence is associated with sensory stimuli being perceived as more similar" appears inconsistent with much of the literature suggesting that these effects occur at post-perceptual stages (Barbosa et al., 2020; Bliss et al., 2017; Ceylan et al., 2021; Fischer et al., 2024; Fritsche et al., 2017; Sheehan & Serences, 2022). 

      In light of the revised analyses, this statement has been removed from the manuscript.

      (13) If I understand correctly, the reproduction bias (i.e., serial dependence) is estimated on a small subset of the data (10%). Were the data analyzed by pooling across subjects?

      The dual reproduction task only occurred on 10% of trials. There were approximately 2000 trials, so ~200 reproduction responses. For the micro and macro analyses, this was sufficient to estimate precision within each of the experimental conditions (repeat/alternate, expected/unexpected). However, it is likely that we were not able to reproduce the effect of precision at the meso level across both experiments because we lacked sufficient responses to reliably estimate precision when split across the eight sequence conditions. Despite this, the data was always analysed within subjects.

      (14) I'm also not convinced that biases observed in forced-choice and reproduction tasks should be interpreted as arising from the same process or mechanism. Some of the effects described here could instead be consistent with classic priming. 

      We agree that the results associated with the forced-choice task (response time task accuracy) were likely due to motor priming, but that a separate (predictive) mechanism may explain the (precision) results associated with the reproduction task. These are two mechanisms we think are operating across the three temporal scales investigated in the current study.

      Reviewing Editor Comments:

      (1) Clarify task design and measurement: The dense presentation makes it difficult to understand key design elements and their implications. Please provide clearer descriptions of all task elements, and how they relate to each other (EEG vs. behaviour, stimulus plane vs. TR and TU plane, reproduction vs. discrimination and role of priming), and clearly explain how key measures were computed for each of these (e.g., precision, accuracy, reproduction bias).

      In the revised manuscript, we have expanded on descriptions of the source and nature of the data (behavioural and EEG), the different planes analyzed in the behavioural task, and how key metrics (e.g., precision) were computed.

      (2) Offer more insight into underlying data, including original ERP waveforms to aid interpretation of decoding results and the timing of effects. In particular, unpack the decoding temporal confound further.

      In the revised manuscript, we have considerably offered more insight into the decoding results, in particular, the nature of the temporal confound. We were unable to assess ERPs due to the rapid presentation design employed in the EEG experiment.

      (3) Justify arbitrary choices such as electrode selection for EEG decoding (e.g., limiting to parieto-occipital sensors), number of trials in meso scale, and the time terminology itself.

      In the revised manuscript, we have clarified the reasons for electrode selection.

      (3) Discuss deviations from literature: Several findings appear to contradict or diverge from previous literature (e.g., effects of serial dependence). These discrepancies could be discussed in more depth. 

      Upon re-analysis of the serial dependence bias and removal of the temporal confound, the results of the revised manuscript now align with those from previous literature, which has been acknowledged.

      Reviewer #1 (Recommendations for the authors):

      (1) would like to use my reviewer's prerogative to mention a couple of relevant publications. 

      Galluzzi et al (Journal of Vision, 2022) "Visual priming and serial dependence are mediated by separate mechanisms" suggests exactly that, which is relevant to this study.

      Xie et al. (Communications Psychology, 2025) "Recent, but not long-term, priors induce behavioral oscillations in peri-saccadic vision" also seems relevant to the issue of different mechanisms. 

      Thank you for bringing these studies to our attention. We agree that they are both relevant have referenced both appropriately in the revised version of the manuscript.

      Reviewer #2 (Recommendations for the authors): 

      (1) I find the discussion on attention and awareness (from line 127 onward) somewhat vague and requiring clarification.

      We agree that this statement was vague and referred to “awareness” without operationation. We have revised this statement to improve clarity.

      Line 135 - However, task-relatedness may amplify the bias towards making faster responses for repeat stimuli, by increasing attention to the identity of stimuli as either repeats or alternations (17).

      (2) Line 140: It's hard to argue that there are expectations that the image of an object on the retina is likely to stay the same, since retinal input is always changing. 

      We agree that retinal input is often changing, e.g., due to saccades, self-motion, and world motion. However, for a prediction to be useful, e.g., to reduce metabolic expenditure or speed up responses, it must be somewhat precise, so a prediction that retinal input will change is not necessarily useful, unless it can specify what it will change to. Given retinal input of x at time t, the range of possible values of x at time t+1 (predicting change) is infinite. By contrast, if we predict that x=x at time t+1 (no change), then we can make a precise prediction. There is, of course, other information that could be used to reduce the parameter space of predicted change from x at time t, e.g., the value of x at time t-1, and we think this drives predictions too. However, across the infinite distribution of changes from x, zero change will occur more frequently than any other value, so we think it’s reasonable to assert that the brain may be sensitive to this pattern.

      (3) Line 564: The gambler's fallacy usually involves sequences longer than just one event.

      Yes, we agree that this phenomenon is associated with longer sequences. This section of the manuscript was in regards to previous findings that were not directly relevant to the current study and has been removed in the revised version.

      (4) In the shared PDF, the light and dark cyan colors used do not appear clearly distinguishable. 

      I expect this is due to poor document processing or low-quality image embeddings. I will check that they are distinguishable in the final version.

      References: 

      Barbosa, J., Stein, H., Martinez, R. L., Galan-Gadea, A., Li, S., Dalmau, J., Adam, K. C. S., Valls-Solé, J., Constantinidis, C., & Compte, A. (2020). Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nature Neuroscience, 23(8), Articolo 8. https://doi.org/10.1038/s41593-020-0644-4

      Bliss, D. P., Sun, J. J., & D'Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific reports, 7(1), 14739. 

      Ceylan, G., Herzog, M. H., & Pascucci, D. (2021). Serial dependence does not originate from low-level visual processing. Cognition, 212, 104709. https://doi.org/10.1016/j.cognition.2021.104709

      Fischer, C., Kaiser, J., & Bledowski, C. (2024). A direct neural signature of serial dependence in working memory. eLife, 13. https://doi.org/10.7554/eLife.99478.1

      Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590-595. 

      Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife, 9, e55389. https://doi.org/10.7554/eLife.55389

      Gekas, N., McDermott, K. C., & Mamassian, P. (2019). Disambiguating serial effects of multiple timescales. Journal of vision, 19(6), 24-24. 

      Luo, M., Zhang, H., Fang, F., & Luo, H. (2025). Reactivation of previous decisions repulsively biases sensory encoding but attractively biases decision-making. PLOS Biology, 23(4), e3003150. https://doi.org/10.1371/journal.pbio.3003150

      Ozkirli, A., Pascucci, D., & Herzog, M. H. (2025). Failure to replicate a superiority effect in crowding. Nature Communications, 16(1), 1637. https://doi.org/10.1038/s41467025-56762-5

      Sheehan, T. C., & Serences, J. T. (2022). Attractive serial dependence overcomes repulsive neuronal adaptation. PLoS biology, 20(9), e3001711. 

      Stewart, N. (2007). Absolute identification is relative: A reply to Brown, Marley, and

      Lacouture (2007).  Psychological  Review, 114, 533-538. https://doi.org/10.1037/0033-295X.114.2.533

      Treisman, M., & Williams, T. C. (1984). A theory of criterion setting with an application to sequential dependencies. Psychological review, 91(1), 68. 

      Zhang, G., & Luck, S. J. (2025). Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals. NeuroImage, 316, 121304. https://doi.org/10.1016/j.neuroimage.2025.121304

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations for the authors):

      Although this study is rigorous and the paper is well-written, I have a few concerns that the authors should address before publication.

      (1) Cellular levels of protein ADP-ribosylation should be analyzed using anti-ADPR antibodies following infection, both with and without Mac1 and AVI-4206 treatment. While the authors have provided impressive in vivo data, these experiments could ideally be conducted in mice. However, I would be amenable to these analyses being performed in human airway organoids, as they demonstrate clear phenotypes following AVI-4206 treatment post-infection. For a more in-depth exploration, the authors could consider affinity purifying ADP-ribosylated proteins and identifying them via mass spectrometry. I would find it particularly compelling if this approach revealed components of the NF-kB signaling pathway, given the intriguing results presented in Fig. 5. I am also curious if there are differences in ADP ribosylated proteins when comparing Mac1 KO SARS-C0V-2 to AVI-4206 treatment.

      We note that despite the recent flurry of activity around Mac1, there is a surprising lack of public data on overall ADPr levels or targets. While we will address the literature precedence for PARP14 signals specifically below (Reviewer 2 point (h)) by immunofluorescence, we note that overall levels have not been characterized biochemically previously. Recent PARP14 papers and the ASAP AViDD preprint show changes by immunofluorescence only: and the evidence in that preprint is quite modest - see Figure 7B - https://pmc.ncbi.nlm.nih.gov/articles/PMC11370477/.

      We suspect the difficulty in tracking changes biochemically is due to multiple factors that influence the overall detectability and reproducibility. First, with regard to detectability - it is quite possible that only a small change in the ADPr status of a small number of targets is responsible for the phenotypes in vivo. Virus levels are very low in the organoid system and the variability in ADPr levels from tissue samples from in vivo experiments is high. Given the difficulty in translating back to cellular models, this problem is therefore magnified further. Second, with regard to reproducibility - we observe a great deal of reagent dependence on ADPr signals by Western blot+/- Mac1 expression in both cellular and tissue lysates (including when stimulated with H2O2, interferon, or during viral infection). Similarly, we do not observe reproducible proteins that pulldown with Mac1 when assayed by mass spectrometry. It is quite likely that these issues are a result of tissue/sample preparation that results in a loss of the ADPr modification during preparation (especially for acidic residue modifications). This also explains the reliance on IF assays in the PARP14 literature. A very good discussion of these issues is also contained in this paper: https://doi.org/10.1042/BSR20240986.

      Nonetheless we have attempted one final experiment. Here, we have measured ADPr modification of cellular lysates upon uninfected conditions as well as upon infection with either WT or N40D mutant virus. For all conditions, this was done with or without treatment of cells with 100 μM of AVI-4206. Measurement of ADPr modifications by western blot using a  pan-ADPr antibody revealed a single prominent band with a molecular weight of ~130kDa, that showed a uniform increase in signal upon treatment of cells with AVI-4206 regardless of infection status. While this general trend was also observed with the mono-ADPr antibody, it was not statistically significant in its regulation upon AVI-4206 treatment. We suspect that the major band observed in these western blots is PARP1, as upon enrichment of ADPr proteins from these lysates by Af1521 immunoprecipitation, we find PARP1 to be among the most abundant proteins detected within this molecular weight range. We note that there is a baseline increase in polyADPr detection upon infection of virus with WT Mac1 (relative to uninfected and virus with N40D) and further increase when treated with AVI-4206. This compound-dependent increase is paralleled in the uninfected and N40D conditions. The counterintuitive increase upon WT Mac1 virus infection, which should erase ADPr marks, and the compound-dependent increase in the uninfected condition suggest that there are many indirect effects on ADPr signalling dynamics in this experiment. These results are difficult to reconcile with the specificity profiling of AVI-4206 (Supplementary Figure5: Thermal proteome profiling in A549 cellular lysates). As mentioned above, the lack of consistent signal across reagents for ADPr detection and the timing of monitoring ADPr levels are additional complicating factors.

      We added to the results:

      “However, we observed no strong consistent signals of global pan-ADP-ribose (panADPr) or mono-ADP-ribose (monoADPr) accumulation in infected cells treated with AVI-4206 in immunoblot analyses (Supplementary Figure 8).”

      Methods for experiment:

      Calu3 cells were obtained from ATCC and cultured in Advanced DMEM (Gibco) supplemented with 2.5% FBS, 1x GlutaMax, and 1x Penicillin-Streptomycin at 37°C and 5% CO<sub>2</sub>. 5x10<sup>6</sup> cells were plated in 15-cm dishes and media was changed every 2-3 days until the cells were 80% confluent. The cells were treated with INFy 50 ng/mL (R&D Systems) w/without AVI-4206 100 μM. After 6 hours, the cells were infected with WA1 or WA1 NSP3 Mac1 N40D at a multiplicity of infection (MOI) of 1 for 36 hours. The cells were washed with PBS x 3 and scraped in Pierce IP Lysis Buffer (ThermoFisher) containing 1x HALT protease and phosphatase inhibitor mix (ThermoFisher) on ice. The lysate was stored at -80C until further processing.

      The cell lysate was incubated for 5 minutes at room temperature with recombinant benzonase. Following incubation, the lysate was centrifuged at 13,000 rpm at 4°C for 20 minutes, and the supernatant was collected. The samples were then boiled for 5 minutes at 95°C in 1x NuPAGE LDS sample buffer (Invitrogen) with a final concentration of 1X NuPAGE sample reducing agent (Invitrogen). For the detection of ADPr levels in whole-cell lysates, the samples were subjected to SDS-PAGE and Immunoblotting. All primary and secondary antibodies (pan-ADP-ribose antibody (MABE1016, Millipore), Mono-ADP-ribose antibody (AbD33204, Bio-Rad), HRP-conjugated (Cell signaling), used at a 1:1000 dilution were diluted in 5% non-fat dry milk in TBST. Signals were detected by chemiluminescence (Thermo) and visualized using the ChemiDoc XRS+ System (Bio-Rad). Densitometric analysis was performed using Image Lab (Bio-Rad). Quantification was normalized to Actin. The data are expressed as mean ± SD. Statistical differences were determined using an unpaired t-test in GraphPad Prism 10.3.1.

      (2) SARS-CoV-2 escape mutants for AVI-4206 should be generated, sequenced, and evaluated for both ADP-ribosyl hydrolase activity and their susceptibility to inhibition by AVI-4206.

      We thank the reviewer for this suggestion. These are indeed key experiments which are currently hampered by the lack of a cell line that is fully responsive to drug treatment. Although infected organoids and macrophages show an effect in response to AVI-4206, viral levels are ~3 logs lower than in cell lines and difficult to sequence. In the absence of a system that would allow meaningful screening for outgrowth of resistant viruses, we have conducted mass spectrometry studies that showed that Mac1 is the only significant hit for AVI-4206 (SupplementaryFigure 5). The suggested outgrowth experiments will be conducted once a responsive cell line model has been established.

      (3) Given that Mac1 is found in several coronaviruses, it would be insightful for the authors to test a selection of Mac1 homologs from divergent coronaviruses to assess whether AVI-4206 can inhibit their activity in vitro.

      As mentioned above, inconsistencies in ADPr staining limit our ability to directly measure cellular activity. As an alternative approach to measure AVI-4206 selectivity in cells, we have adapted our CETSA assay for SARS-1 and MERs macrodomain proteins and find evidence that AVI-4206 can shift the melting temperature of both proteins, albeit to a lesser degree than that seen for Mac1. In line with MERS being more structurally divergent than SARS-1 from SARS CoV2, the ΔTagg for SARS-1 and MERS are 4℃ and 1℃, respectively, compared to 9℃ for Mac1.  These data have been added as Supplementary Fig S3C. Development of broader spectrum pan-inhibitors is on our radar for future work which will more thoroughly assess homologs from divergent coronaviruses.

      We added the following sentence to the main results:

      “Encouragingly, we were also able to adapt our CETSA assay for SARS-1 and MERs macrodomain proteins and find that AVI-4206 can shift the melting temperature of both proteins, albeit to a lesser degree than that seen for Mac1 (Supplementary Figure 3C).”

      We also added this supplementary figure 3:

      Minor

      (1) Line 88, "respectively.heir potency"

      Fixed, thank you!

      (2) Line 149 add a period after proteome

      Fixed, thank you!

      Reviewer #2 (Recommendations for the authors):

      (a) The authors assess inhibition of MacroD2 and Targ1 as of-targets for AVI-4206. However, Mac1 belongs to the MacroD-type class of macrodomains of which MacroD1, MacroD2 and MOD1s of PARP9 and PARP14 are the human members. In contrast Targ1 belongs to the ALC1-like class, which is only very distantly related to Mac1. Furthermore, recent studies have shown that the first macrodomains of PARP9 and PARP4 (MOD1 of PARP9/14) are much closer related to Mac1 and PARP9/14 were implicated in antiviral immunity. As such the authors should include assays showing the activity of their compounds against MacroD1 and MOD1s of PARP9/14.

      We emphasize that we detect no significant shift for any protein other than Mac1 in A549 cells by CETSA-MS (Supplementary Figure 6). For Mac1 CESTA, we see an average of 6 PARP14 spectral counts across conditions and did not detect PARP9.  In addition, for separate work in MPro, we ran similar CETSA experiments where we observed an average of 2 PARP9 and 15 PARP14 spectral counts across conditions. Although PARP9 and PARP14 massively increase expression upon IFN treatment in A549 cells, both proteins have been detected by Western Blot in A549 cells previously at baseline.

      Nonetheless, we have included modeling of more diverse macrodomains as a supplemental figure and added to the text:

      Modeling of other diverse macrodomains, including those within human PARP9 and PARP14 further suggests that AVI-4206 is selective for Mac1 (Supplementary Figure 4)

      (b) In the context of SARS-CoV-2 superinfection are a known major complication of infections. These superinfections are associated with lung damage and therefore it would be good if the authors could assess lung damage, e.g. by histology, to see if their treatment has a positive impact on lung damage and thus may help to suppress complications.

      We performed histology and the results are inconclusive, but suggest that AVI-4206 treatment could lower apoptosis.There is no difference in pathology between the N40D cohort and vehicle with these markers. This could suggest that AVI-4206 provides an additional mechanism that results in protection.  We added to the results:

      Caspase 3 staining shows that AVI-4206 treatment reduces apoptosis in the lungs compared to vehicle controls. Additionally, Masson's Trichrome staining reveals  a significant reduction in collagen deposition, a surrogate for lung pathology, in the lungs of AVI-4206 treated animals.(Supplementary Figure 9).

      Histology:

      Mouse lung tissues were fixed in 4% PFA (Sigma Aldrich, Cat #47608) for 24 hours, washed three times with PBS and stored in 70% ethanol. All the stainings were performed at Histo-Tec Laboratory (Hayward, CA). Samples were processed, embedded in paraffin, and sectioned at 4μm. The slides were dewaxed using xylene and alcohol-based dewaxing solutions. Epitope retrieval was performed by heat-induced epitope retrieval (HIER) of the formalin-fixed, paraffin-embedded tissue using citrate-based pH 6 solution (Leica Microsystems, AR9961) for 20 mins at 95°C. The tissues were stained for H&E, caspase-3 (Biocare #CP229c 1:100), and trichrome, dried, coverslipped (TissueTek-Prisma Coverslipper), and visualized using Axioscan 7 slide scanner (ZEISS) at 40X. Image quantification was performed with Image J software and GraphPad Prism.

      (c) Fig. 1D labelling is wrong

      Thank you - fortunately the data were plotted correctly and it was just the inset table of values that was incorrect. This is now fixed!

      (d) Line 88: "T" missing at start of sentence

      Fixed, thank you!

      (e) Line 118: NudT5/AMP-Glo assay was developed in https://doi.org/10.1021/acs.orglett.8b01742

      We have added this foundational reference, thank you!

      (f) Line 147ff: It would be good if the authors could highlight that the TPP methodology has known limitations (e.g. detection of low abundance proteins and low thermal shift of some binders) and thus is not an absolute proof that AVI-4206 "engage with high specificity for Mac1"

      We added this important context to the concluding sentence of this paragraph:

      “While this assay may not be sensitive to detection of proteins with low abundance proteins or low thermal shift upon ligand binding, collectively, these results indicate that AVI-4206 can cross cellular membranes and engage with high specificity for Mac1.”

      (g) The authors use their well established in vitro Mac1 model as well as the SARS-CoV-2 WA strain. Given the ongoing diversification of SARS-CoV-2 and the current prevalence of the Omicron VOC it would be good if the authors could investigate whether alteration in Mac1 occurred or are detected which could influence the efficacy of their inhibitor. Similarly, it would be interesting to know how effective their drug is on other clinically relevant beta-CoV Mac1, e.g. from MERS or SARS1.

      We thank the reviewer for the suggestion. Mac1 is one of the more conserved areas of the SARS-CoV-2 genome as there has only been one nonsynonymous mutation V34L (Orf1a:V1056L) that recently emerged in the BA.2.86 lineage and is now in all of the JN.1 derivatives. Currently, the mutation is only ~80% penetrant in circulating SARS-CoV-2 sequences suggesting that it might revert to wild-type and is not associated with a fitness benefit. Based on our structural analysis (shown in Supplementary Figure4D above), we do not believe this mutation affects AVI-4206 binding, but we are including this variant in our future in vitro and in vivo studies as well as other beta-CoV.  For SARS and MERS, see response to Reviewer 1 using CETSA to show that these targets are engaged by AVI-4206.

      (h) As methods to detect PARP14-derived ADP-ribosylation are available and it was shown that Mac1 can reverse this modification in cells. It would be good if the authors could investigate the impact of AVI-4206 on ADP-ribosylation in vivo.

      To test this idea we adapted the IF assay used by others in the field and show an effect of AVI-4206. We have added to the text:

      Although the IFN response was not sufficient to control viral replication, it is possible that the changes in ADP-ribosylation, in particular marks catalyzed by PARP14, downstream of IFN treatment could serve as a marker for Mac1 efficacy  (Ribeiro et al. 2025). To investigate whether downstream signals from PARP14 were specifically erased by Mac1, we used an immunofluorescence assay that showed that Mac1 could remove IFN-γ-induced ADP-ribosylation that is mediated by PARP14 (Kar et al. 2024).  We stably expressed wild-type Mac1 and the N40D mutant Mac1 in A549 cells. The data showed that Mac1 expression decreased IFN-γ-induced ADP-ribosylation, whereas the Mac1-N40D mutant did not (Figure 3E, F), indicating that Mac1 mediates the hydrolysis of IFN-γ-induced ADP-ribosylation. The PARP14 inhibitor RBN012759 completely blocked IFN-γ-induced ADP-ribosylation (Figure 3E, F), further confirming that IFN-γ-induced ADP-ribosylation is mediated by PARP14. AVI-4206 reversed the Mac1-induced hydrolysis of ADP-ribosylation and enhanced the ADP-ribosylation signal in Mac1-overexpressing cells (Figure 3E, F), further demonstrating its ability to inhibit the hydrolase activity of Mac1. We further validated this result using different ADP-ribosylation antibodies for immunofluorescence (Supplementary Figure 7). However, we observed no strong consistent signals of global pan-ADP-ribose (panADPr) or mono-ADP-ribose (monoADPr) accumulation in infected cells treated with AVI-4206 in immunoblot analyses (Supplementary Figure 8). Collectively, these results provide further evidence that simple cellular models are insufficient to explore the effects of Mac1 inhibition and that monitoring specific PARP14-mediated ADP-ribosylation patterns can provide an accessible biomarker for the efficacy of Mac1 inhibition.

      A549 Mac1 expression cell construction

      Mac1 wild-type (Mac1) and N1062D mutant (Mac1 N1062D) gene fragments were loaded into pLVX-EF1α-IRES-Puro (empty vector, EV) using Gibson cloning kit (NEB E5510). Lentivirus was prepared as previously described (PMID: 30449619; DOI: 10.1016/j.cell.2018.10.024). Briefly, 15 million HEK293T cells were grown overnight on 15 cm poly-L-Lysine coated dishes and then transfected with 6 ug pMD2.G (Addgene plasmid # 12259 ; http://n2t.net/addgene:12259 ; RRID:Addgene_12259), 18 ug dR8.91 (since replaced by second generation compatible pCMV-dR8.2, Addgene plasmid #8455) and 24 ug pLVX-EF1α-IRES-Puro (EV, Mac1, Mac1-N1062D) plasmids using the lipofectamine 3000 transfection reagent per the manufacturer’s protocol (Thermo Fisher Scientific, Cat #L3000001). pMD2.G and dR8.91 were a gift from Didier Trono. The following day, media was refreshed with the addition of viral boost reagent at 500x as per the manufacturer’s protocol (Alstem, Cat #VB100). Viral supernatant was collected 48 hours post transfection and spun down at 300 g for 10 minutes, to remove cell debris. To concentrate the lentiviral particles, Alstem precipitation solution (Alstem, Cat #VC100) was added, mixed, and refrigerated at 4°C overnight. The virus was then concentrated by centrifugation at 1500 g for 30 minutes, at 4°C. Finally, each lentiviral pellet was resuspended at 100x of original volume in cold DMEM+10%FBS+1% penicillin-streptomycin and stored until use at -80°C. To generate Mac1 overexpressing cells, 2 million A549 cells were seeded in 10 cm dishes and transduced with lentivirus in the presence of 8 μg/mL polybrene (Sigma, TR-1003-G). The media was changed after 24h and, after 48 hours, media containing 2μg/ml puromycin was added. Cells were selected for 72 hours and then expanded without selection. The expression of Mac1 was confirmed by Western Blot.

      Immunofluorescence assay:

      To assess the effect of Mac1 on IFN-induced ADP-ribosylation. A549-pLVX-EV, A549-pLVX-Mac1 and A549-pLVX-Mac1-N1062D cells were seeded in 96-well plate (10,000 cells/well). Cells were pre-treated with medium or 100 unit/mL IFN-γ (Sigma, SRP3058) for 24 hours to induce the expression of ADP-ribosylation. These 3 cell lines were then treated the next day with the indicated concentrations of AVI-4206 or RBN012759 (Medchemexpress, HY-136979). After 24 hours of exposure to drugs, treated cells were fixed in pre-cooled methanol at -20°C for 20 min, blocked in 3% bovine serum albumin for 15 min, incubated with Poly/Mono-ADP Ribose (E6F6A) Rabbit mAb (CST, 83732S) or Poly/Mono-ADP Ribose (D9P7Z) Rabbit mAb (CST, 89190S) antibodies for 1 h, and then incubated with Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 (ThermoFisher, A-11008) secondary antibodies for 30 min and stained with DAPI for 10 minutes. Fluorescent cells were imaged with an IN Cell Analyzer 6500 System (Cytiva) and analyzed using IN Carta software (Cytiva).

      Reviewer #3 (Recommendations for the authors):

      Just a couple of observations/details that might help strengthen the article:

      (1) The caco-1 data for AVI4206 would suggest that there is some sort of efflux going on, yet there is no mention of it in the paper. This might be useful in the optimization paradigm moving forward.

      We thank the reviewer for this observation and suggestion.  Indeed, we believe that efflux is behind the low oral bioavailability of AVI-4206.  We are working specifically to remove this liability in next-generation analogs, using the caco2 assay to guide this ongoing effort. Keep an eye out for a preprint on this soon!  We have added to the discussion:

      “In addition to dissecting such molecular mechanisms of macrodomain function and inhibition, future efforts will focus on improving pharmacokinetic properties, including a cellular efflux liability that results in low oral bioavailability of AVI-4206. ”

      (2) There are some spectroscopic anomalies/mistakes in the NMR data. The carbon NMR for 1-((8-amino-9H-pyrimido[4,5-b]indol-4-yl)amino)pyrrolidin-2-one should only have 14 unique carbons, but the authors report 15. The HNMR for AVI1500 should only have 19 H's, but the authors list 20. The HNMR data for AVI3762/3763 should have 16 H's, but the authors only report 13. The CNMR for AVI4206 should only have 19 unique carbons, but the authors report 20.

      Thank you for noting these inconsistencies regarding the reported NMR spectra. We have rectified them by more closely examining the spectra and in some cases acquiring new data. We identified one peak (47.9) in the 13C NMR of 1-((8-amino-9H-pyrimido[4,5-b]indol-4-yl)amino)pyrrolidin-2-one that is apparently an artifact of the automated peak picking in the data analysis software.  In the 1H NMR of AVI-1500, the triplet peak at 7.20 integrates to 1H, but was erroneously reported as 2H in the original manuscript.  This error has been corrected.  Spectra were re-acquired for AVI-3762, AVI-3763, and AVI-4206 with longer acquisition times, and/or on a 600 MHz spectrometer to afford the complete line lists now reported in the revised manuscript. Please note AVI-4206 has 18 distinct 13C resonances due to the equivalence of the gem-dimethyl methyl groups.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      (1) The use of single-cell RNA and TCR sequencing is appropriate for addressing potential relationships between gene expression and dual TCR.

      Thank you for your detailed review and suggestions. The main advantages of scRNA+TCR-seq are as follows: (1) It enables comparative analysis of features such as the ratio of single TCR paired T cells to dual TCR paired T cells at the level of a large number of individual T cells, through mRNA expression of the α and β chains. In the past, this analysis was limited to a small number of T cells, requiring isolation of single T cells, PCR amplification of the α and β chains, and Sanger sequencing; (2) While analyzing TCR paired T cell characteristics, it also allows examination of mRNA expression levels of transcription factors in corresponding T cells through scRNA-seq.

      (2) The data confirm the presence of dual TCR Tregs in various tissues, with proportions ranging from 10.1% to 21.4%, aligning with earlier observations in αβ T cells.

      Thank you very much for your detailed review and suggestions. Early studies on dual TCR αβ T cells have been very limited in number, with reported proportions of dual TCR T cells ranging widely from 0.1% to over 30%. In contrast, scRNA+TCR-seq can monitor over 5,000 single and paired TCRs, including dual paired TCRs, in each sample, enabling more precise examination of the overall proportion of dual TCR αβ T cells. It is important to note that our analysis focuses on T cells paired with functional α and β chains, while T cells with non-functional chain pairings and those with a single functional chain without pairing were excluded from the total cell proportion analysis. Previous studies generally lacked the ability to determine expression levels of specific chains in T cells without dual TCR pairings.

      (3) Tissue-specific patterns of TCR gene usage are reported, which could be of interest to researchers studying T cell adaptation, although these were more rigorously analyzed in the original works.

      Thank you very much for your detailed review and suggestions. T cell subpopulations exhibit tissue specificity; thus, we conducted a thorough investigation into Treg cells from different tissue sites. This study builds upon the original by innovatively analyzing the differences in VDJ rearrangement and CDR3 characteristics of dual TCR Treg cells across various tissues. This provides new insights and directions for the potential existence of “new Treg cell subpopulations” in different tissue locations. The results of this analysis suggest the necessity of conducting functional experiments on dual TCR Treg cells at both the TCR protein level and the level of effector functional molecules.

      (4) Lack of Novelty: The primary findings do not substantially advance our understanding of dual TCR expression, as similar results have been reported previously in other contexts.

      Thank you for your detailed review and suggestions. Early research on dual TCR T cells primarily relied on transgenic mouse models and in vitro experiments, using limited TCR alpha chain or TCR beta chain antibody pairings. Flow cytometry was used to analyze a small number of T cells to estimate dual TCR T cell proportion. No studies have yet analyzed dual TCR Treg cell proportion, V(D)J recombination, and CDR3 characteristics at high throughput in physiological conditions. The scRNA+TCR-seq approach offers an opportunity to conduct extensive studies from an mRNA perspective. With high-throughput advantages of single-cell sequencing technology, researchers can analyze transcriptomic and TCR sequence characteristics of all dual TCR Treg cells within a study sample, providing new ideas and technical means for investigating dual TCR T cell proportions, characteristics, and origins under different physiological and pathological states.

      (5) Incomplete Evidence: The claims about tissue-specific differences lack sufficient controls (e.g., comparison with conventional T cells) and functional validation (e.g., cell surface expression of dual TCRs).

      Thank you for your detailed review and suggestions. This study indeed only analyzed dual  TCR Treg cells from different tissue locations based on the original manuscript, without a comparative analysis of other dual TCR T cell subsets corresponding to these tissue locations. The main reason for this is that, in current scRNA+TCR-seq studies of different tissue locations, unless specific T cell subsets are sorted and enriched, the number of T cells obtained from each subset is very low, making a detailed comparative analysis impossible. In the results of the original manuscript, we observed a relatively high proportion of dual TCR Treg cell populations in various tissues, with differences in TCR composition and transcription factor expression. Following the suggestions, we have included additional descriptions in R1, citing the study by Tuovinen et al., which indicates that the proportion of dual TCR Tregs in lymphoid tissues is higher than other T cell types. This will help understand the distribution characteristics of dual TCR Treg cells in different tissues and provide a basis for mRNA expression levels to conduct functional experiments on dual TCR Treg cells in different tissue locations.

      (6) Methodological Weaknesses: The diversity analysis does not account for sample size differences, and the clonal analysis conflates counts and clonotypes, leading to potential misinterpretation.

      We thank you for your review and suggestions. In response to your question about whether the diversity analysis considered the sample size issue, we conducted a detailed review and analysis. This study utilized the inverse Simpson index to evaluate TCR diversity of Treg cells. A preliminary analysis compared the richness and evenness of single TCR Treg cell and dual TCR Treg cell repertoires. The two datasets analyzed were from four mouse samples with consistent processing and sequencing conditions. However, when analyzing single TCR Tregs and dual TCR Tregs from various tissues, differences in detected T cell numbers by sequencing cannot be excluded from the diversity analysis. Following recommendations, we provided additional explanations in R1: CDR3 diversity analysis indicates TCR composition of dual TCR Treg cells exhibits diversity, similar to single TCR Treg cells; however, diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparison. Regarding the "clonal analysis" you mentioned, we define clonality based on unique TCR sequences; cells with identical TCR sequences are part of the same clone, with ≥2 counts defined as expansion. For example, in Blood, there are 958 clonal types and 1,228 cells, of which 449 are expansion cells. In R1, we systematically verified and revised clonal expansion cells across all tissue samples according to a unified standard.

      (7) Insufficient Transparency: The sequence analysis pipeline is inadequately described, and the study lacks reproducibility features such as shared code and data.

      Thank you for your review and suggestions. Based on the original manuscript, we have made corresponding detailed additions in R1, providing further elaboration on the analysis process of shared data, screening methods, research codes, and tools. This aims to offer readers a comprehensive understanding of the analytical procedures and results.

      (8) Weak Gene Expression Analysis: No statistical validation is provided for differential gene expression, and the UMAP plots fail to reveal meaningful clustering patterns.

      Thank you very much for your review and suggestions. Based on your recommendations, we conducted an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with statistical significance determined by Padj < 0.05. Regarding the clustering patterns in the UMAP plots, since the analyzed samples consisted of isolated Treg cell subpopulations that highly express immune suppression-related genes, we did not perform a more detailed analysis of subtypes and expression gene differences. This study primarily aims to explore the proportions of single TCR and dual TCR Treg cells from different tissue sources, as well as the characteristics of CDR3 composition, with a focus on showcasing the clustering patterns of samples from different tissue origins and various TCR pairing types.

      (9) A quick online search reveals that the same authors have repeated their approach of reanalysing other scientists' publicly available scRNA-VDJ-seq data in six other publications,In other words, the approach used here seems to be focused on quick re-analyses of publicly available data without further validation and/or exploration.

      Thank you for your review and suggestions. Most current studies utilizing scRNA+TCR-seq overlook analysis of TCR pairing types and related research on single TCR and dual TCR T cell characteristics. Through in-depth analysis of shared scRNA+TCR-seq data from multiple laboratories, we discovered a significant presence of dual TCR T cells in high-throughput T cell research results that cannot be ignored. In this study, we highlight the higher proportion of dual TCR Tregs in different tissue locations, which exhibits a certain degree of tissue specificity, suggesting these cells may participate in complex functional regulation of Tregs. This finding provides new ideas and a foundation for further research into dual TCR Treg functions. However, as reviewers pointed out, findings from scRNA+TCR-seq at the mRNA level require additional functional experiments on dual TCR T cells at the protein level. We have supplemented our discussion in R1 based on these suggestions.

      Reviewer #2 (Public review):

      (1) The existence of dual TCR expression by Tregs has previously been demonstrated in mice and humans (Reference #18 and Tuovinen. 2006. Blood. 108:4063; Schuldt. 2017. J Immunol. 199:33, both omitted from references). The presented results should be considered in the context of these prior important findings.

      Thank you very much for your review and suggestions. Based on the original manuscript, we have supplemented our reading, understanding, and citation of closely related literature (Tuovinen, 2006, Blood, 108:4063 (line 44,line175 in R1); Schuldt, 2017, J Immunol, 199:33 (line 44,line178 in R1)). We once again appreciate the valuable comments from the reviewers, and we will refer to these in our subsequent dual TCR T cell research.

      (2) This demonstration of dual TCR Tregs is notable, though the authors do not compare the frequency of dual TCR co-expression by Tregs with non-Tregs. This limits interpreting the findings in the context of what is known about dual TCR co-expression in T cells.

      Thank you very much for your review and suggestions. This analysis is primarily based on the scRNA+TCR-seq study of sorted Treg cells, where we found the proportions and distinguishing features of dual TCR Treg cells in different tissue sites. Given the diversity and complexity of Treg function, conducting a comparative analysis of the origins of dual TCR Treg cells and non-T cells with dual TCRs will be a meaningful direction. Currently, peripheral induced Treg cells can originate from the conversion of non-Treg cells; however, little is known about the sources and functions of dual TCR Treg cell subsets in both central and peripheral sites. In R1, we have supplemented the discussion regarding the possible origins and potential applications of the "novel dual TCR Treg" subsets.

      (3) Comparison of gene expression by single- and dual TCR Tregs is of interest, but as presented is difficult to interpret. Statistical analyses need to be performed to provide statistical confidence that the observed differences are true.

      Thank you very much for your review and suggestions. Based on your recommendations, we performed an initial differential expression analysis of the top 10 mRNA molecules in single TCR Treg and dual TCR Treg cells using the DESeq2 R package in R1, with a statistical significance threshold of Padj<0.05 for comparisons.

      (4) The interpretations of the gene expression analyses are somewhat simplistic, focusing on the single-gene expression of some genes known to have a function in Tregs. However, the investigators miss an opportunity to examine larger patterns of coordinated gene expression associated with developmental pathways and differential function in Tregs (Yang. 2015. Science. 348:589; Li. 2016. Nat Rev Immunol. Wyss. 2016. 16:220; Nat Immunol. 17:1093; Zenmour. 2018. Nat Immunol. 19:291).

      Thank you for your review and suggestions. This study is based on publicly available scRNA+TCR-seq data from different organ sites generated by the original authors, focusing on sorted and enriched Treg cells within each tissue sample. However, there was no corresponding research on other cell types in each tissue sample, preventing analysis of other cells and factors involved in development and differentiation of single TCR Treg and dual TCR Treg. The literature suggested by the reviewer indicates that development, differentiation, and function of Treg cells have been extensively studied, resulting in significant advances. It also highlights complexity and diversity of Treg origins and functions. This research aims to investigate "novel dual TCR Treg cell subpopulations" that may exhibit tissuespecific differences found in the original authors' studies of Treg cells across different organ sites. This suggests further experimental research into their development, differentiation, origin, and functional gene expression as an important direction, which we have supplemented in the discussion section of R1.

      Reviewer #3 (Public review):

      (1) Definition of Dual TCR and Validity of Doublet Removal:This study analyzes Treg cells with Dual TCR, but it is not clearly stated how the possibility of doublet cells was eliminated. The authors mention using DoubletFinder for detecting doublets in scRNA-seq data, but is this method alone sufficient?We strongly recommend reporting the details of doublet removal and data quality assessment in the Supplementary Data.

      Thank you very much for your review and suggestions. In the analysis of the shared scRNA+TCR-seq data across multiple laboratories, as you mentioned, this study employed the DoubletFinder R package to exclude suspected doublets. Additionally, we used the nCount values of individual cells (i.e., the total sequencing reads or UMI counts for each cell) as auxiliary parameters to further optimize the assessment of cell quality. Generally, due to the possibility that doublet cells may contain gene expression information from two or more cells, their nCount values are often abnormally high. In this study, all cells included in the analysis had nCount values not exceeding 20,000. Among the five tissue sample datasets, we further utilized hashtag oligonucleotide (HTO) labeling (where HTO labeling provides each cell with a unique barcode to differentiate cells from different tissue sources. By analyzing HTO labels, doublets and negative cells can be accurately identified) to eliminate doublets and negative cells.After the removal of chimeric cells, all samples exhibited T cells that possessed two or more TCR clones. This phenomenon validates the reliability of the methodological approach employed in this study and indicates that the analytical results accurately reflect the proportion of dual TCR T cells. Based on the recommendations of the reviewers, we have supplemented and clarified the methods and discussion sections in the manuscript. It is particularly noteworthy that in our analysis, the discussed dual TCR Treg cells and single TCR Treg cells specifically refer to those T cells that possess both functional α and β chains, which are capable of forming TCR. We have excluded from this analysis any Treg cells that possess only a single functional α or β chain and do not form TCR pairs, as well as those Treg cells in which the α or β chains involved in TCR pairing are non-functional.

      (2) In Figure 3D, the proportion of Dual TCR T cells (A1+A2+B1+B2) in the skin is reported to be very high compared to other tissues. However, in Figure 4C, the proportion appears lower than in other tissues, which may be due to contamination by non-Tregs. The authors should clarify why it was necessary to include non-Tregs as a target for analysis in this study. Additionally, the sensitivity of scRNA-seq and TCR-seq may vary between tissues and may also be affected by RNA quality and sequencing depth in skin samples, so the impact of measurement bias should be assessed.

      We deeply appreciate your review and constructive comments. Based on the original manuscript, we have further supplemented and elaborated on the uniqueness and relative proportions of double TCR T cell pairs in skin tissue samples in Section R1. Due to the scarcity of T cells in skin samples, we included some non-Treg cells during single-cell RNA sequencing and TCR sequencing to obtain a sufficient number of cells for effective analysis. The presence of non-regulatory T cells may indeed impact the statistical representation of double TCR T cells as well as the related comparative analyses, as noted by the reviewer. T cells with A1+A2+B1+B2 type double TCR pairings are primarily found within the non-regulatory T cell population in the skin. In response to this point, we have provided a detailed explanation of this analytical result in the revised manuscript R1. Furthermore, concerning the two datasets included in the study, we conducted a comparative analysis in R1, exploring how factors such as sequencing depth at different tissue sites might introduce biases in our findings, which we have thoroughly elaborated upon in the discussion section. We thank you once again for your valuable suggestions. 

      (3) Issue of Cell Contamination:In Figure 2A, the data suggest a high overlap between blood, kidney, and liver samples, likely due to contamination. Can the authors effectively remove this effect? If the dataset allows, distinguishing between blood-derived and tissue-resident Tregs would significantly enhance the reliability of the findings. Otherwise, it would be difficult to separate biological signals from contamination noise, making interpretation challenging.

      We thank you for your review and suggestions. We have carefully verified data sources for tissues such as blood, kidneys, and liver. In the study by Oliver T et al., various techniques were employed to differentiate between leukocytes from blood and those from tissues, ensuring accurate identification of leukocytes from tissue samples. First, anti-CD45 antibody was injected intravenously to label cells in the vasculature, verifying that analyzed cells were indeed resident in the tissue. Second, prior to dissection and cell collection, authors performed perfusion on anesthetized mice to reduce contamination of tissue samples by leukocytes from the vasculature. Additionally, during single-cell sequencing, authors utilized HTO technology to avoid overlap between cells from different tissues.

      Analysis of the scRNA+TCR-seq data shared by the original authors revealed highly overlapping TCR sequences in blood, kidney, and liver, despite distinct cell labels associated with each tissue. While these techniques minimize overlap of cells from different sources, they cannot completely rule out the potential impact of this technical issue. As suggested, we have provided additional clarification in R1 of the manuscript regarding this phenomenon of high overlap in the kidney, liver, and blood, indicating that the possibility of Treg migration from blood to kidney and liver cannot be entirely excluded.

      (4) Inconsistency Between CDR3 Overlap and TCR Diversity:The manuscript states that Single TCR Tregs have a higher CDR3 overlap, but this contradicts the reported data that Dual TCR Tregs exhibit lower TCR diversity (higher 1/DS score). Typically, when TCR diversity is low (i.e., specific clones are concentrated), CDR3 overlap is expected to increase. The authors should carefully address this discrepancy and discuss possible explanations.

      Thank you for your review and suggestions. Regarding the potential relationship between CDR3 overlap and TCR diversity, in samples with consistent sequencing depth, lower diversity indeed corresponds to a higher proportion of CDR3 overlap. In our analysis of scRNA+TCR-seq data, we found that single TCR Tregs exhibit both higher diversity and CDR3 overlap, seemingly presenting contradictory analytical results (i.e., dual TCR Tregs show lower TCR diversity and CDR3 overlap). In R1, we supplemented the analysis of possible reasons: the presence of multiple TCR chains in dual TCR Treg cells may lead to a higher uniqueness of CDR3 due to multiple rearrangements and selections, resulting in lower CDR3 overlap; the lower diversity of dual TCR Tregs may be related to the number of T cells sequenced in each sample. The CDR3 diversity analysis in this study merely suggests that the TCR composition of dual TCR Treg cells is diverse, similar to that of single TCR Tregs. However, the diversity indices of single TCR Tregs and dual TCR Tregs are not suitable for statistical comparative analysis. A more in-depth and specific analysis of the diversity and overlap of the VDJ recombination mechanisms and CDR3 composition in dual TCR Tregs during development will be an important technical means to elucidate the function of dual TCR Treg cells.

      (5) Functional Evaluation of Dual TCR Tregs:This study indicates gene expression differences among tissue-resident Dual TCR T cells, but there is no experimental validation of their functional significance. Including functional assays, such as suppression assays or cytokine secretion analysis, would greatly enhance the study's impact.

      We sincerely appreciate your review and suggestions: In this analysis of scRNA+TCR-seq data, we innovatively discovered a higher proportion of dual TCR Treg cells in different tissue sites, which exhibited differences in tissue characteristics. Furthermore, we conducted a comparative analysis of the homogeneity and heterogeneity between single TCR Treg and dual TCR Treg cells. This result provides a foundation for further research on the origin and characteristics of dual TCR Treg cells in different tissue sites, offering new insights for understanding the complexity and functional diversity of Treg cells. Based on your suggestions, we have supplemented R1 with the feasibility of further exploring the functions of tissue-resident dual TCR T cells and the necessity for potential application research.

      (6) Appropriateness of Statistical Analysis:When discussing increases or decreases in gene expression and cell proportions (e.g., Figure 2D), the statistical methods used (e.g., t-test, Wilcoxon, FDR correction) should be explicitly described. They should provide detailed information on the statistical tests applied to each analysis.

      Thank you for your review and suggestions: Based on the original manuscript, we have supplemented the specific statistical methods for the differences in cell proportions and gene expression in R1.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “Alternative possibilities are discussed regarding the prior and likelihood of the model. Given that the second case study inspired the introduction of the zero-inflation likelihood, it is not clear how applicable the general methodology is to various datasets. If every unique dataset requires a tailored prior or likelihood to produce the best results, the methodology will not easily replace more traditional statistical analyses that can be applied in a straightforward manner. Furthermore, the differences between the results produced by the two Bayesian models in case study 2 are not discussed. In specific regions, the models provide conflicting results (e.g., regions MH, VPMpc, RCH, SCH, etc.), which are not addressed by the authors. A third case study would have provided further evidence for the generalizability of the methodology.”

      We hope in this paper to propose a ‘standard workflow’ for these data; this standard workflow uses the horseshoe prior and we propose that this is the approach used to describe cell count data instead of the better established, but to our thinking, inefficient, t-testing approach.

      The horseshoe prior is robust and allows a partially-pooled model to used while weighing-up the contribution of different data points. This is an analogue of excluding outliers and, in any analysis it is normal to investigate further if there are points being excluded as outliers. Often this reveals a particular challenge with the data, in the case of the data here, there are a lot of zeros, indicating that some samples should be excluded because the preparation failed to tag cells rather than because there were no cells to tag. This idea behind the ZIP example is to show that the Bayesian method can allow for this sort of further investigation and, indeed, as the reviewer notes this sort of extended analysis is often bespoke, tailored to the data.

      We have clearly failed to explain that the ‘standard workflow’ we propose replace the more traditional methods is the first one we describe, with the horseshoe prior; this produces better results on both datasets than the traditional approach. However, we also feel it is useful to show how a more tailored follow-on can be useful; we need to make it clear that this is intended as an illustration of an ‘optional extra’ rather than a part of the more straightforward ‘standard workflow’.

      To make this clearer we have made altered the text in several locations:

      • end of Introduction: added clarifying sentence “Here, our aim is to introduce a ‘standard’ Bayesian model for cell count data. We illustrate the application of this model to two datasets, one related to neural activation and the other to developmental lineage. For the second dataset, we also demonstrate a second example extension Bayesian model.”

      • Section Hierarchical modeling: “Our goal in both cases is to quantify group differences in the data. We present a ‘standard’ hierarchical model. This model reflects the experimental features common to cell count experiments and reflects the hierarchical structure of cell count data; the standard model is designed to deal robustly and efficiently with noise. On some occasions, to reflect a specific hypotheses, the structure of a particular experiment or an observed source of noise, this model can be further refined or changed to target the analysis. We will give an example of this for our second dataset.”

      • Section Horseshoe prior: “The alternative is via a flexible prior such as the horseshoe Carvalho et al., 2010; Piironen and Vehtari, 2017. This more generic option may be suitable as a default ‘standard’ approach in the typical case where outliers are poorly understood.”

      • Discussion: word ‘standard’ added to sentence: “Our standard workflow uses a horseshoe prior, along with the partial pooling, this allows our model to deal effectively with outliers.”

      • Discussion: modified sentence “The horseshoe prior model workflow we have exhibited here is intended as a standard approach.”

      Indeed, because the horseshoe prior deals robustly with outliers, whereas the ZIP is intended to model the outliers, any substantial difference between the two should be examined carefully. The referee is right to point out that we have not explained this in any detail and has helpfully listed a few brain regions were there are differences. This is useful, particularly since the examples listed illustrate in a useful way the opportunities and hazards this sort of data presents. To address this, we have added a new version of Figure 6 to the revised manuscript

      Previously Figure 6 showed two example brain regions: MPN and TMd. We have now added MH and SCH to the figure, and new text commenting on the insights the plots provide, both in the Results and Discussion.

      Reviewer #2 (Public review):

      “A clearer link between the experimental data and model-structure terminology would be a benefit to the non-expert reader.”

      This is a very good point and we are acutely aware through our own work how difficult it can be moving between fields with different research goals, different scientific cultures and different technical vocabularies. Just as it can be difficult translating from one language to another without losing nuance and meaning, it can be a real challenge finding technical terms that are useful for the non-expert reader while retaining the precision the application requires! In the long run, we hope that, just as some of the very specialized vocabulary that surrounds frequentist statistics has become familiar to to the working experimental scientists, the precise terminology involved in Bayesian modelling will become familiar and transparent. However, in advance of that day, we have included a glossary of terms at the end of the main text, and have made numerous small tweaks to make sure that link between data and model terminology is clearer and better explained.

      Reviewer #1 (Recommendations fro the authors):

      (1) “I would strongly recommend that the authors include more case studies in the manuscript, and address the qualitative differences between the different versions of the model.”

      We agree that our method will only become established when it is applied to more datasets, we hope to contribute to further analysis and we know other people are already using the approach on their own data. We do, however, feel that adding more datasets to this paper will make it longer and more complex; the plan, instead, is to use the method on novel datasets to test specific hypotheses, so that the results will include novel scientific findings as well as adding another illustration of the Bayesian approach applied to data that is already well studied.

      (2) “Figure 6 is not discussed in the main text.”

      We had discussed the results presented in Figure 6 in the second paragraph of the section “Case study two – Ontogeny of inhibitory interneurons of the mouse thalamus”, however the reviewer is right in that we did not directly refer to the Figure – this was an oversight. In any case, in the revised manuscript we present a new version of Figure 6 (in response to above comment), which is now explicitly cited in the text.

      Revised Figure 6: Example data and inferences highlighting model discrepancies. On the left under ‘data’: boxplots with medians and interquartile ranges for the raw data for four example brain regions. The shape of each point pairs left and right hemisphere readings in each of the five animals. On the right under ‘inference’: HDIs and confidence intervals are plotted. Purple is the Bayesian horseshoe model, pink is the Bayesian ZIP model, and orange is the sample mean. The Bayesian estimates are not strongly influenced by the zero-valued observations (MPN, SCH, TMd) or large-valued outliers (MH) and have means close to the data median. This explains the advantage of the Bayesian results over the confidence interval.

      Reviewer #2 (Recommendations from the authors):

      (1) “This is a generally well-written methodology paper that also provides the underlying code as a resource. As a reviewer outside both cell-count modelling and hierarchical-Bayesian approaches (though with a general interest in the topics) I found the method a little difficult to follow and would have liked to have been left with a better understanding of how the method is applied to the data. For example, in Figure 1 we are introduced to brain region count, animal count, and “items”. Then in the next line: pooling, model, structure, population and etc in subsequent lines. It is not clear what the subscripts (the pools?) are referring to: are they different regions R or animals N? These terms need to be better linked to the data and/or trimmed. Having said that, the later results look like a solid contribution to the field with a significant reduction in uncertainty from the Bayesian approach over the frequentist one. A future version of the manuscript, therefore, would benefit from greater precision of language as well as an economy and greater focus of terms linking the method to the biology. This is particularly the case around the exposition parts in Figure 1, Figure 2, and the “Hierarchical modelling” section.”

      This is another important point. We have now made numerous small changes to tighten up the text in the paper, in response to both this point and the next point.

      (2) “Language throughout could be sharpened. Subjectivity like “surprising outliers” could be removed and quirky grammar like “often small, ten is a typical” improved. There are also typos “an rate” etc that should be tidied up.”

      As per previous response, we have made numerous tweaks and small improvements and feel that the paper is stronger in this respect.

      (3) “Figure 1 caption. “It is a spectrum that depends” Is spectrum the right word here? Also, “thicker stroke” what does this refer to? Wasn’t immediately clear. In A, why is the whole animal within the R bracket that signifies brain regions, and then the brain regions are within the N bracket that signifies whole animals? Apart from the teal colouring, what are the other coloured regions in the image referring to? Improving this first figure would greatly help a reader unfamiliar with the context of the approach.”

      We have replaced the word “spectrum” with “continuum”. We have replaced “ Observed quantities have been highlighted with a thicker stroke in the graphical model.” with “The observed data quantities, y<sub>i</sub> to y<sub>n</sub>, are highlighted with a thick line in the model diagrams”. We have added the following text to describe the red and green lines in panel A: “green and red lines indicate regions labeled as damaged”.

      (4) “On P2 there is no discussion of priors when running through the advantage of the Bayesian approach. Is this a choice or an oversight? Priors do have a role in the later analysis.”

      A short additional paragraph has been added to the introduction outlining the advantage of having a prior, but also noting that the obligation to pick a prior can be intimidating and that suggesting priors is one of the contributions of our paper: “A Bayesian model also includes a set of probability distributions, referred to as the prior, which represent those beliefs it is reasonable to hold about the statistical model parameters before actually doing the experiment. The prior can be thought of as an advantage, it allows us to include in our analysis our understanding of the data based on previous experiments. The prior also makes explicit in a Bayesian model assumptions that are often implicit in other approaches. However, having to design priors is often considered a challenge and here we hope to make this more straightforward by suggesting priors that are suitable for this class of data.”

      (5) “On P4 more explanation would help greatly. Formulas like 23*10*4 or 50*6+50*4 are presented without explanation. What are the various numbers being multiplied? Regions, animals? Again, a clearer link between biological data and model structure would be advantageous.”

      We have now modified this line to clearly state the numbers’ sources: “The index i runs over the full set of samples, which in this case comprises 23 brain regions ×10 animals ×4 groups ≈920 datapoints in the first study, and 50 brain regions × 6 HET animals + 50 brain regions × 4 KO animals ≈500 datapoints in the second.”

      (6) “P6 and Results. Is it possible to show examples of the data set sampled from? Perhaps an image or two for the two experiments. Both Figures 4 and 5 as they currently are could be made slightly smaller to provide space for a small explanatory sub-panel. This would help ground the results.”

      This is a good idea. We have now added heatmap visualisations of both entire datasets to revised versions of Figures 4 and 5 (assuming that this is what the reviewer was suggesting).

    1. Author response:

      Reviewer #1 (Public review):

      Weaknesses:

      (1) Data:

      a) The main weakness in the data is the lack of functional and anatomical data from mouse hair bundles. While the authors compensate in part for this difficulty with bullfrog crista bundles, those data are also fragmentary - one TEM and 2 exemplar videos. Much of the novelty of the EM depends on the different appearance of stretches of a single kinocilium - can we be sure of the absence of the central microtubule singlets at the ends?

      Our single-cell RNA-seq findings show that genes related to motile cilia are specifically expressed in vestibular hair cells. This has not been demonstrated before. We have also provided supporting evidence using electrophysiology and imaging from bullfrogs and mice. Although no ultrastructural images of mouse vestibular kinocilia were provided in our study, transmission electron micrograph of mouse vestibular kinocilia has been published (O’Donnell and Zheng, 2022). The mouse vestibular kinocilia have a “9+2” microtubule configuration with nine doublet microtubules surrounding two central singlet microtubules. This finding contrasts with a previous study, which demonstrated that the vestibular kinocilia from guinea pigs lack central singlet microtubules and inner dynein arms, whereas outer dynein arms and radial spokes are present (Kikuchi et al., 1989). The central pair of microtubules is absent at the end of the bullfrog saccular kinocilium (Fig. 7A).  We would like to point out that the dual identity of primary and motile cilia is not just based on the TEM images. The kinocilium has long been considered a specialized cilium, and its role as a primary cilium during development has been demonstrated before (Moon et al., 2020; Shi et al., 2022).  

      In most motile cilia, the central pair complex (CPC) does not originate directly from the basal body; instead, it begins a short distance above the transition zone, a feature that already illustrates variation in CPC assembly across systems (Lechtreck et al., 2013). The CPC can also show variation in its spatial extent: for example, in mammalian sperm axonemes, it can terminate before reaching the distal end of the axoneme (Fawcett and Ito, 1965). In addition, CPC orientation differs across organisms: in metazoans and Trypanosoma, the CPC is fixed relative to the outer doublets, whereas in Chlamydomonas and ciliates it twists within the axoneme (Lechtreck et al., 2013). Such variation has been described in multiple motile cilia and flagella and is therefore not unique to vestibular kinocilia. What appears more unusual in our data is the organization at the distal tip, where a distinct distal head is present, similar to cilia tip morphologies recently described in human islet cells (Polino et al., 2023). Although this feature is intriguing, we interpret it primarily as a structural signature rather than as evidence for a specialized motile adaptation, and we will moderate our interpretation accordingly in the revision.

      b) While it was a good idea to compare ciliary motility expression in published P2 datasets for mouse cochlear and vestibular hair cells for comparison with the authors' adult hair cell data, the presentation is too superficial to assess (Figure 6C-E; text from line 336) - it is hard to see the basis for concluding that motility genes are specifically lower in P2 cochlear hair cells than vestibular hair cells. Visually, it is striking that CHCs have much darker bands for about 10 motility-related genes.

      We aimed to show that kinocilia in neonatal cochlear and vestibular hair cells are largely similar, except that neonatal cochlear hair cells lack key genes and proteins required for the motile apparatus. While these genes (e.g., Dynll1, Dynll2, Dynlrb1, Cetn2, and Mdh1) appear more highly expressed in P2 cochlear hair cells, they are not uniquely associated with the axoneme. For example, Dynll1/2 and Dynlrb1 are components of the cytoplasmic dynein-1 complex (Pfister et al., 2006), Cetn2 has multiple basic cellular functions beyond cilia (e.g., centrosome organization, DNA repair), and Mdh1 encodes a cytosolic malate dehydrogenase involved in central metabolic pathways such as the citric acid cycle and malate–aspartate shuttle. This contrasts with axonemal dyneins, which are uniquely required for cilia motility. To avoid ambiguity, we will mark such cytoplasmic or multifunctional genes with stars in both Figure 5G and Figure 6D together with legend in the revised manuscript.

      Although those genes (i.e., Dynll1, Dynll2, Dynlrb1, Cetn2, and Mdh1) are highly expressed in neonatal cochlear hair cells, key genes for motile machinery are not detected. For example, Dnah6, Dnah5, and Wdr66 are not expressed in the P2 cochlear hair cells.  Dnah6 and Dnah5 encode axonemal dynein and are part of inner and outer dynein arms while Wdr66 is a component of radial spokes. Importantly, we did not detect the expression of CCDC39 and CCDC40 in kinocilia of P2 cochlear hair cells.  Axonemal CCDC39 and CCDC40 are the molecular rulers that organize the axonemal structure in the 96-nm repeating interactome and are required for the assembly of IDAs and N-DRC for ciliary motility (Becker-Heck et al., 2011; Merveille et al., 2011; Oda et al., 2014). We will modify Figure 6D to highlight the key difference between P2 cochlear and vestibular hair cells in the revised manuscript. We will also revise the text so that the key differences will clearly be described.

      (2) Interpretation:

      The authors take the view that kinociliary motility is likely to be normally present but is rare in their observations because the conditions are not right. But while others have described some (rare) kinociliary motility in fish organs (Rusch & Thurm 1990), they interpreted its occurrence as a sign of pathology. Indeed, in this paper, it is not clear, or even discussed, how kinociliary motility would help with mechanosensitivity in mature hair bundles. Rather, the presence of an autonomous rhythm would actively interfere with generating temporally faithful representations of the head motions that drive vestibular hair cells.

      Spontaneous flagella-like rhythmic beating of kinocilia in vestibular HCs in frogs and eels (Flock et al., 1977; Rüsch and Thurm, 1990) and in zebrafish early otic vesicle (Stooke-Vaughan et al., 2012; Wu et al., 2011) has been reported previously. Based on Rüsch and Thurm (1990), spontaneous kinocilia motility occurred under non-physiological conditions and was interpreted as a sign of cellular deterioration rather than a normal feature. We speculate that deterioration under non-physiological conditions may lead to the disruption of lateral links between the kinocilium and the stereociliary bundle, effectively unloading the kinocilium and allowing it to move more freely. Additionally, fluctuations in intracellular ATP levels may contribute, as ciliary motility is highly ATP-dependent; when ATP is depleted, beating ceases. Similar phenomena have been documented in respiratory epithelia, where ciliary activity can temporarily pause. Nevertheless, the fact that kinocilia can exhibit spontaneous motility under these conditions indicates that they possess the motile machinery necessary for such beating. Irrespective of the condition, cilia without the molecular machinery required for motility will not be able to move.

      We agree with the reviewer that, based on the present data, it is difficult to know the functional role of kinocilia and whether the presence of such autonomous rhythm would interfere with temporal fidelity. Spontaneous bundle motion, driven by the active process associated with mechanotransduction, was observed in bullfrog saccular hair cells (Benser et al., 1996; Martin et al., 2003). We will revise the discussion to clarify this important point of the reviewer. Specifically, we will emphasize that our observations of ciliary beating in the ex vivo conditions may not reflect its properties in the mature in vivo context, but rather a byproduct of motile machinery clearly present in the kinocilia. We speculate that this machinery in mature hair cells could operate in a more subtle mode—modulating the rigor state of dynein arms or related axonemal structures to influence kinociliary mechanics and, in turn, bundle stiffness in response to stimuli or signaling cues. Such a mechanism could either enhance sensitivity or introduce filtering properties, thereby contributing to the fine control of mechanosensory function without compromising temporal fidelity. Future studies using loss-of-function approach will be needed to reveal the unexplored role(s) of kinocilia for vestibular hair cells in vertebrates. 

      Could kinociliary beating play other roles, possibly during development - for example, by interacting with forming accessory structures (but see Whitfield 2020) or by activating mechanosensitivity cell-autonomously, before mature stimulation mechanisms are in place? Then a latent capacity to beat in mature vestibular hair cells might be activated by stressful conditions, as speculated regarding persistent Piezo channels that are normally silent in mature cochlear hair cells but may reappear when TMC channel gating is broken (Beurg and Fettiplace 2017). While these are highly speculative thoughts, there is a need in the paper for more nuanced consideration of whether the observed motility is normal and what good it would do.

      We thank the reviewer for these excellent suggestions. We agree that kinociliary motility could plausibly serve roles during development, for example by guiding hair bundle formation or by contributing to early mechanosensitivity and spontaneous activity before mature stimulation mechanisms are established. It is also possible that the motility machinery represents a latent capacity in mature vestibular hair cells that could be reactivated under stress or pathological conditions. We will revise the Discussion to address these possibilities and to provide a more nuanced consideration of whether the observed motility is normal and what potential functions it might serve.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors compared the transcriptomes of the various types of hair cells contained in the sensory epithelia of the cochlea and vestibular organs of the mouse inner ear. The analysis of their transcriptomic data led to novel insights into the potential function of the kinocilium.

      Strengths:

      The novel findings for the kinocilium gene expression, along with the demonstration that some kinocilia demonstrate rhythmic beating as would be seen for known motile cilia, are fascinating. It is possible that perhaps the kinocilium, known to play a very important role in the orientation of the stereocilia, may have a gene expression pattern that is more like a primary cilium early in development and later in mature hair cells, more like a motile cilium. Since the kinocilium is retained in vestibular hair cells, it makes sense that it is playing a different role in these mature cells than its role in the cochlea.

      Another major strength of this study, which cannot be overstated, is that for the transcriptome analysis, they are using mature mice. To date, there is a lot of data from many labs for embryonic and neonatal hair cells, but very little transcriptomic data on the mature hair cells. They do a nice job in presenting the differences in marker gene expression between the 4 hair cell types. This information is very useful to those labs studying regeneration or generation of hair cells from ES cell cultures. One of the biggest questions these labs confront is what type of hair cells develop in these systems. The more markers available, the better. These data will also allow researchers in the field to compare developing hair cells with mature hair cells to see what genes are only required during development and not in later functioning hair cells.

      We would like to thank reviewer 2 for his/her comments and hope that the datasets provided in this manuscript will be a useful resource for researchers in the auditory and vestibular neuroscience community.

      Joint Recommendations:

      We will make changes in the revision based on the joint recommendations of the two reviewers.

      References

      Becker-Heck, A., Zohn, I.E., Okabe, N., Pollock, A., Lenhart, K.B., Sullivan-Brown, J., McSheene, J., Loges, N.T., Olbrich, H., Haeffner, K., Fliegauf, M., Horvath, J., Reinhardt, R., Nielsen, K.G., Marthin, J.K., Baktai, G., Anderson, K.V., Geisler, R., Niswander, L., Omran, H., Burdine, R.D., 2011. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43, 79–84. https://doi.org/10.1038/ng.727

      Benser, M.E., Marquis, R.E., Hudspeth, A.J., 1996. Rapid, Active Hair Bundle Movements in Hair Cells from the Bullfrog’s Sacculus. J. Neurosci. 16, 5629–5643. https://doi.org/10.1523/JNEUROSCI.16-18-05629.1996

      Fawcett, D.W., Ito, S., 1965. The fine structure of bat spermatozoa. American Journal of Anatomy 116, 567–609. https://doi.org/10.1002/aja.1001160306

      Flock, Å., Flock, B., Murray, E., 1977. Studies on the Sensory Hairs of Receptor Cells in the Inner Ear. Acta Oto-Laryngologica 83, 85–91. https://doi.org/10.3109/00016487709128817

      Kikuchi, T., Takasaka, T., Tonosaki, A., Watanabe, H., 1989. Fine structure of guinea pig vestibular kinocilium. Acta Otolaryngol 108, 26–30.https://doi.org/10.3109/00016488909107388

      Lechtreck, K.-F., Gould, T.J., Witman, G.B., 2013. Flagellar central pair assembly in Chlamydomonas reinhardtii. Cilia 2, 15. https://doi.org/10.1186/2046-2530-2-15

      Martin, P., Bozovic, D., Choe, Y., Hudspeth, A.J., 2003. Spontaneous Oscillation by Hair Bundles of the Bullfrog’s Sacculus. J. Neurosci. 23, 4533–4548. https://doi.org/10.1523/JNEUROSCI.23-11-04533.2003

      Merveille, A.-C., Davis, E.E., Becker-Heck, A., Legendre, M., Amirav, I., Bataille, G., Belmont, J., Beydon, N., Billen, F., Clément, A., Clercx, C., Coste, A., Crosbie, R., de Blic, J., Deleuze, S., Duquesnoy, P., Escalier, D., Escudier, E., Fliegauf, M., Horvath, J., Hill, K., Jorissen, M., Just, J., Kispert, A., Lathrop, M., Loges, N.T., Marthin, J.K., Momozawa, Y., Montantin, G., Nielsen, K.G., Olbrich, H., Papon, J.-F., Rayet, I., Roger, G., Schmidts, M., Tenreiro, H., Towbin, J.A., Zelenika, D., Zentgraf, H., Georges, M., Lequarré, A.-S., Katsanis, N., Omran, H., Amselem, S., 2011. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat Genet 43, 72–78. https://doi.org/10.1038/ng.726

      Moon, K.-H., Ma, J.-H., Min, H., Koo, H., Kim, H., Ko, H.W., Bok, J., 2020. Dysregulation of sonic hedgehog signaling causes hearing loss in ciliopathy mouse models. eLife 9, e56551. https://doi.org/10.7554/eLife.56551

      Oda, T., Yanagisawa, H., Kamiya, R., Kikkawa, M., 2014. A molecular ruler determines the repeat length in eukaryotic cilia and flagella. Science 346, 857–860. https://doi.org/10.1126/science.1260214

      O’Donnell, J., Zheng, J., 2022. Vestibular Hair Cells Require CAMSAP3, a Microtubule Minus-End Regulator, for Formation of Normal Kinocilia. Front Cell Neurosci 16, 876805. https://doi.org/10.3389/fncel.2022.876805

      Pfister, K.K., Shah, P.R., Hummerich, H., Russ, A., Cotton, J., Annuar, A.A., King, S.M., Fisher, E.M.C., 2006. Genetic Analysis of the Cytoplasmic Dynein Subunit Families. PLOS Genetics 2, e1. https://doi.org/10.1371/journal.pgen.0020001

      Polino, A.J., Sviben, S., Melena, I., Piston, D.W., Hughes, J.W., 2023. Scanning electron microscopy of human islet cilia. Proceedings of the National Academy of Sciences 120, e2302624120. https://doi.org/10.1073/pnas.2302624120

      Rüsch, A., Thurm, U., 1990. Spontaneous and electrically induced movements of ampullary kinocilia and stereovilli. Hearing Research 48, 247–263. https://doi.org/10.1016/0378-5955(90)90065-W

      Shi, H., Wang, H., Zhang, C., Lu, Y., Yao, J., Chen, Z., Xing, G., Wei, Q., Cao, X., 2022. Mutations in OSBPL2 cause hearing loss associated with primary cilia defects via sonic hedgehog signaling [WWW Document]. https://doi.org/10.1172/jci.insight.149626

      Stooke-Vaughan, G.A., Huang, P., Hammond, K.L., Schier, A.F., Whitfield, T.T., 2012. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development 139, 1777–1787. https://doi.org/10.1242/dev.079947

      Wu, D., Freund, J.B., Fraser, S.E., Vermot, J., 2011. Mechanistic Basis of Otolith Formation during Teleost Inner Ear Development. Developmental Cell 20, 271–278. https://doi.org/10.1016/j.devcel.2010.12.00

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na<SUP>+</SUP>/K<SUP>+</SUP>ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channelsand extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.

      (2)The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

      Comments on revisions:

      The revised manuscript is notably improved.

      We thank the reviewer for their concise and accurate summary and appreciate the constructive feedback on the article’s strengths and weaknesses. Experimental work is beyond the scope of our modeling-based study. However, we would like our work to serve as a framework for future experimental studies into the role of the electrogenic pump current (and its possible compensatory currents) in disease, and its role in evolution of highly specialized excitable cells (such as electrocytes).

      Quantitative estimates of metabolic costs in this study are limited to the ATP that is required to fuel the Na<SUP>+</SUP>/K<SUP>+</SUP> pump. By integrating the net pump current over time and dividing by one elemental charge, one can find the rate of ATP that is consumed by the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for either compensatory mechanism. The difference in net pump current is thus proportional to ATP consumption, which allows for a direct comparison of the cost efficiency of the Na<SUP>+</SUP>/K<SUP>+</SUP> pump for each proposed compensatory mechanism. The Na<SUP>+</SUP>/K<SUP>+</SUP> pump is however not the only ATP-consuming element in the electrocyte, and some of the compensatory mechanisms induce other costs related to cell ‘housekeeping’ or presynaptic processes. We now added a section in the appendix titled ‘Considerations on metabolic costs of compensatory mechanisms’ (section 11.4), where we provide rough estimates on the influence of the compensatory mechanisms on the total metabolic costs of the cell and membrane space occupation. Although we argue that according these rough estimates, the impact of discussed compensatory mechanisms could be significant, due to the absence of more detailed experimental quantification, a plausible quantitative cost estimate on the whole cell level remains beyond the scope of this article.

      Reviewer #1 (Recommendations for the authors):

      I just have a few recommendations on the updated manuscript.

      (1) When exploring the different roles of Na<SUP>+</SUP>/K<SUP>+</SUP>-ATPase in the Results section, the authors employed many different models. For instance, the voltage equation on page 15, voltage equation (2) on page 22, voltage equation (12) on page 24, voltage equation (30) on page 32, and voltage equation (38) on page 35 are presented as the master equations for their respective biophysical models. Meanwhile, the phase models are presented on page 29 and page 33. I would recommend that the authors clearly specify which equations correspond to each subsection of the Results section and explicitly state which equations were used to generate the data in each figure. This would help readers more easily follow the connections between the models, the results, and the figures.

      We thank the reviewer for pointing out that the links of the different voltage equations to the results could be expressed more explicitly in the article. All simulations were done using the ‘master equation’  expressed in Eq. 2, and the other voltage equations that are specified in the article (in the new version of the article Eqs. 13, 31, and 39) are reformulations of Eq. 2 to analytically show different properties of the voltage equation (Eq. 2). This has now been mentioned in the article when formulating the voltage equations, and the equation for the total leak current (in the new version Eq. 3) has been added for completeness.

      (2) The authors may want to revisit their description and references concerning Eigenmannia virescens. For example, wave-type weakly electric fish (e.g., Eigenmannia) and pulse-type weakly electric fish (e.g., Gymnotus carapo) exhibit large differences, making references 52-55 may be inappropriate for subsection 4.3.1, as these studies focus on Gymnotus carapo. Additionally, even within wave-type species, chirp patterns vary. For example, Eigenmannia can exhibit short "pauses"-type chirps, whereas Apteronotus leptorhynchus (another waver-form fish) does not (https://pubmed.ncbi.nlm.nih.gov/14692494/).

      We thank the reviewer for pointing this out. The citations and phrasing in sections 4.3.1 and 4.3.2 have been updated to specifically refer to the weakly electric fish e. Virescens.

      (3) Table on page 21: Please explain why the parameter value (13.5mM) of [Na<SUP>^</SUP>+]_{in} is 10 timeslarger than its value (1.35mM) in reference [26]? How does this value (13.5mM) compare with the range of variable [Na<SUP>^</SUP>+]_{in} in equation (6)?

      The intracellular sodium concentration in reference [26] was reported to be 1.35 mM, but the authors also reported an extracellular sodium concentration of 120 mM, and a sodium reversal potential of 55 mV. Upon calculating the sodium reversal potential, we found that an intracellular sodium concentration of 1.35 mM would give a sodium reversal potential of 113 mV. An intracellular sodium concentration of 13.5 mM, on the other hand, leads to the reported and physiological reversal potential of 55 mV. This has now been clarified in the article, and the connection between this value and Eq. 6 (Eq. 7 in the new version) has also been clarified.

      Reviewer #2 (Public review):

      Summary:

      The paper by Weerdmeester, Schleimer, and Schreiber uses computational models to present the biological constraints under which electrocytes - specialized, highly active cells that facilitate electro-sensing in weakly electric fish-may operate. The authors suggest potential solutions that these cells could employ to circumvent these constraints.

      Electrocytes are highly active or spiking (greater than 300Hz) for sustained periods (for minutes to hours), and such activity is possible due to an influx of sodium and efflux of potassium ions into these cells after each spike. The resulting ion imbalance must be restored, which in electrocytes, as with many other biological cells, is facilitated by the Na-K pumps at the expense of biological energy, i.e., ATP molecules. For each ATP molecule the pump uses, three positively charged sodium ions from the intracellular space are exchanged for two positively charged potassium ions from the extracellular space. This creates a net efflux of positive ions into the extracellular space, resulting in hyperpolarized potentials for the cell over time. For most cells, this does not pose an issue, as their firing rate is much slower, and other compensatory mechanisms and pumps can effectively restore the ion imbalances. However, in the electrocytes of weakly electric fish, which spike at exceptionally high rates, the net efflux of positive ions presents a challenge. Additionally, these cells are involved in critical communication and survival behaviors, underscoring their essential role in reliable functioning.

      In a computational model, the authors test four increasingly complex solutions to the problem of counteracting the hyperpolarized states that occur due to continuous NaK pump action to sustain baseline activity. First, they propose a solution for a well-matched Na leak channel that operates in conjunction with the NaK pump, counteracting the hyperpolarizing states naturally. Their model shows that when such an orchestrated Na leak current is not included, quick changes in the firing rates could have unexpected side effects. Secondly, they study the implications of this cell in the context of chirps-a means of communication between individual fish. Here, an upstream pacemaking neuron entrains the electrocyte to spike, which ceases to produce a so-called chirp - a brief pause in the sustained activity of the electrocytes. In their model, the authors demonstrate that including the extracellular potassium buffer is necessary to obtain a reliable chirp signal. Thirdly, they tested another means of communication in which there was a sudden increase in the firing rate of the electrocyte, followed by a decay to the baseline. For this to occur reliably, the authors emphasize that a strong synaptic connection between the pacemaker neuron and the electrocyte is necessary. Finally, since these cells are energy-intensive, they hypothesize that electrocytes may have energy-efficient action potentials, for which their NaK pumps may be sensitive to the membrane voltages and perform course correction rapidly.

      Strengths:

      The authors extend an existing electrocyte model (Joos et al., 2018) based on the classical Hodgkin and Huxley conductance-based models of sodium and potassium currents to include the dynamics of the sodium-potassium (NaK) pump. The authors estimate the pump's properties based on reasonable assumptions related to the leak potential. Their proposed solutions are valid and may be employed by weakly electric fish. The authors explore theoretical solutions to electrosensing behavior that compound and suggest that all these solutions must be simultaneously active for the survival and behavior of the fish. This work provides a good starting point for conducting in vivo experiments to determine which of these proposed solutions the fish employ and their relative importance. The authors include testable hypotheses for their computational models.

      Weaknesses:

      The model for action potential generation simplifies ion dynamics by considering only sodium and potassium currents, excluding other ions like calcium. The ion channels considered are assumed to be static, without any dynamic regulation such as post-translational modifications. For instance, a sodium-dependent potassium pump could modulate potassium leak and spike amplitude (Markham et al., 2013).

      This work considers only the sodium-potassium (NaK) pumps to restore ion gradients. However, in many cells, several other ion pumps, exchangers, and symporters are simultaneously present and actively participate in restoring ion gradients. When sodium currents dominate action potentials, and thus when NaK pumps play a critical role, such as the case in Eigenmannia virescens, the present study is valid. However, since other biological processes may find different solutions to address the pump's non-electroneutral nature, the generalizability of the results in this work to other fast-spiking cell types is limited. For example, each spike could include a small calcium ion influx that could be buffered or extracted via a sodium-calcium exchanger.

      We thank the reviewer for the detailed summary and the updated identified strengths and weaknesses. The current article indeed focuses on and isolates the interplay between sodium currents, potassium currents, and sodium-potassium pump currents. As discussed in section 5.1, in excitable cells where these currents are the main players in action-potential generation, the results presented in this article are applicable. The contribution of post-translational effects of ion channels, other ionic currents, and other active transporters and pumps, could be exciting avenues for further studies

      .

      Reviewer #2 (Recommendations for the authors):

      Thank you for addressing my comments.

      All the figures are now consistent. The color schema used is clear.

      The methods and discussions expansions improve the paper.

      Including the model assumptions and simplifications is appreciated.

      Including internal references is helpful.

      The equations are clear, and the references have been fixed.

      I am content with the changes. I have updated my review accordingly.

      We thank the reviewer for their initial constructive comments that lead to the significant improvement of the article.

      Page : 3 Line : 113 Author : Unknown Author 07/24/2025 

      Although this is technically correct, the article is about electrocommunication signals and does not focus on sensing.

      Page : 3 Line : 153 Author : Unknown Author 07/24/2025

      electrocommunication

      Page : 4 Line : 164 Author : Unknown Author 07/24/2025 

      Judging from the cited article, I think this should be a sodium-dependent potassium current.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential druginteracting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

      We fully recognize that different compounds may have different interaction propensity profiles along the IDP sequence. In future studies, we will investigate compound-specific parameter values. The limiting factor is training data, but such data are beginning to be available.

      Reviewer #2 (Public review):

      Summary:

      In this work, the authors introduce DIRseq, a fast, sequence-based method that predicts druginteracting residues (DIRs) in IDPs without requiring structural or drug information. DIRseq builds on the authors' prior work looking at NMR relaxation rates, and presumes that those residues that show enhanced R2 values are the residues that will interact with drugs, allowing these residues to be nominated from the sequence directly. By making small modifications to their prior tool, DIRseq enables the prediction of residues seen to interact with small molecules in vivo.

      Strengths:

      The preprint is well written and easy to follow

      Weaknesses:

      (1) The DIRseq method is based on SeqDYN, which itself is a simple (which I do not mean as a negative - simple is good!) statistical predictor for R2 relaxation rates. The challenge here is that R2 rates cover a range of timescales, so the physical intuition as to what exactly elevated R2 values mean is not necessarily consistent with "drug interacting". Presumably, the authors are not using the helix boost component of SeqDYN here (it would be good to explicitly state this). This is not necessarily a weakness, but I think it would behove the authors to compare a few alternative models before settling on the DIRseq method, given the somewhat ad hoc modifications to SeqDYN to get DIRseq.

      Actually, the factors that elevate R2 are well-established. These are local interactions and residual secondary structures (if any). The basic assumption of our method is that intra-IDP interactions that elevate R2 convert to IDP-drug interactions. This assumption was supported by our initial observation that the drug interaction propensity profiles predicted using the original SeqDYN parameters already showed good agreement with CSP profiles. We only made relatively small adjustments to the parameters to improve the agreement. Indeed we did not apply the helix boost portion of SeqDYN to DIRseq, and now state as such (p. 4, second last paragraph). We now also compare DIRseq with several alternative models, as summarized in new Table S2.

      Specifically, the authors previously showed good correlation between the stickiness parameter of Tesei et al and the inferred "q" parameter for SeqDYN; as such, I am left wondering if comparable accuracy would be obtained simply by taking the stickiness parameters directly and using these to predict "drug interacting residues", at which point I'd argue we're not really predicting "drug interacting residues" as much as we're predicting "sticky" residues, using the stickiness parameters. It would, I think, be worth the authors comparing the predictive power obtained from DIRseq with the predictive power obtained by using the lambda coefficients from Tesei et al in the model, local density of aromatic residues, local hydrophobicity (note that Tesei at al have tabulated a large set of hydrophobicity scores!) and the raw SeqDYN predictions. In the absence of lots of data to compare against, this is another way to convince readers that DIRseq offers reasonable predictive power.

      We now compare predictions of these various parameter sets, and report the results in Table S2.  In short, among all the tested parameter sets, DIRseq has the best performance as measured by (1) strong correlations between prediction scores and CSPs and (2) high true positives and low false positives (p. 7-9).

      (2) Second, the DIRseq is essentially SeqDYN with some changes to it, but those changes appear somewhat ad hoc. I recognize that there is very limited data, but the tweaking of parameters based on physical intuition feels a bit stochastic in developing a method; presumably (while not explicitly spelt out) those tweaks were chosen to give better agreement with the very limited experimental data (otherwise why make the changes?), which does raise the question of if the DIRseq implementation of SeqDYN is rather over-parameterized to the (very limited) data available now? I want to be clear, the authors should not be critiqued for attempting to develop a model despite a paucity of data, and I'm not necessarily saying this is a problem, but I think it would be really important for the authors to acknowledge to the reader the fact that with such limited data it's possible the model is over-fit to specific sequences studied previously, and generalization will be seen as more data are collected.

      We have explained the rationale for the parameter tweaks, which were limited to q values for four amino-acid types, i.e., to deemphasize hydrophobic interactions and slightly enhance electrostatic interactions (p. 4-5). We now add that these tweaks were motivated by observations from MD simulations of drug interactions with a-syn (ref 13). As already noted in the response to the preceding comment, we now also present results for the original parameter values as well as for when the four q values are changed one at a time.

      (3) Third, perhaps my biggest concern here is that - implicit in the author's assumptions - is that all "drugs" interact with IDPs in the same way and all drugs are "small" (motivating the change in correlation length). Prescribing a specific length scale and chemistry to all drugs seems broadly inconsistent with a world in which we presume drugs offer some degree of specificity. While it is perhaps not unexpected that aromatic-rich small molecules tend to interact with aromatic residues, the logical conclusion from this work, if one assumes DIRseq has utility, is that all IDRs bind drugs with similar chemical biases. This, at the very least, deserves some discussion.

      The reviewer raises a very important point. In Discussion, we now add that it is important to further develop DIRseq to include drug-specific parameters when data for training become available (p. 12-13). To illustrate this point, we use drug size as a simple example, which can be modeled by making the b parameter dependent on drug molecule size.

      (4) Fourth, the authors make some general claims in the introduction regarding the state of the art, which appear to lack sufficient data to be made. I don't necessarily disagree with the author's points, but I'm not sure the claims (as stated) can be made absent strong data to support them. For example, the authors state: "Although an IDP can be locked into a specific conformation by a drug molecule in rare cases, the prevailing scenario is that the protein remains disordered upon drug binding." But is this true? The authors should provide evidence to support this assertion, both examples in which this happens, and evidence to support the idea that it's the "prevailing view" and specific examples where these types of interactions have been biophysically characterized.

      We now cite nine studies showing that IDPs remain disordered upon drug binding.

      Similarly, they go on to say:

      "Consequently, the IDP-drug complex typically samples a vast conformational space, and the drug molecule only exhibits preferences, rather than exclusiveness, for interacting with subsets of residues." But again, where is the data to support this assertion? I don't necessarily disagree, but we need specific empirical studies to justify declarative claims like this; otherwise, we propagate lore into the scientific literature. The use of "typically" here is a strong claim, implying most IDP complexes behave in a certain way, yet how can the authors make such a claim? 

      Here again we add citations to support the statement.

      Finally, they continue to claim:

      "Such drug interacting residues (DIRs), akin to binding pockets in structured proteins, are key to optimizing compounds and elucidating the mechanism of action." But again, is this a fact or a hypothesis? If the latter, it must be stated as such; if the former, we need data and evidence to support the claim.

      We add citations to both compound optimization and mechanism of action.

      Reviewer #1 (Recommendations for the authors):

      (1) The authors should compare the sequences of the IDPs in the case studies with the 45 IDPs in training the SeqDYN model to make sure that they are not included in the training dataset or are highly homologous.

      Please note that the data used for training SeqDYN were R2 rates, which are independent of the property being studied here, i.e., drug interacting residues. Therefore whether the IDPs studied here were in the training set for SeqDYN is immaterial.

      (2) The authors manually tuned four parameters in SeqDYN to develop the model for predicting drug-interacting residues without giving strict testing or explanations. More explanations, testing of more values, and ablation testing should be given.

      As responded above, we now both expand the explanation and present more test results.

      (3) The authors changed the q values of L, I, and M to the value of V. What are the results if these values are not changed?

      These results are shown in Table S2 (entry named SeqDYN_orig).

      (4) Only one b value is chosen based on the assumption that a drug molecule interacts with 3-4 residues at a time. However, the number of interacting residues is related to the size of the drug molecule. Adjusting the b value with the size of the ligand may provide improvement. It is better to test the influence of adjusting b values. At least, this should be discussed.

      Good point! We now state that b potentially can be adjusted according to ligand size (p. 12-13). In addition, we also show the effect of varying b on the prediction results (Table S2; p. 8, last paragraph).

      (5) The authors add 12 Q to eliminate end effects. However, explanations on why 12 Qs are chosen should be given. How about other numbers of Q or using other residues (e.g., the commonly used residues in making links, like GS/PS or A?

      As we already explained, “Gln was selected because its 𝑞 value is at the middle of the 20 𝑞 values.” (p. 5, second paragraph). Also, 12 Qs are sufficient to remove any end effects; a higher number of Qs does not make any difference.

      Reviewer #2 (Recommendations for the authors):

      (1) The authors make reference to the "C-terminal IDR" in cMyc, but the region they note is found in the bHLH DNA binding domain (which falls from residue ~370-420).

      We now clarify that this region is disordered on its own but form a helix-loop-loop structure upon heterodimerization with Max (p. 11, last paragraph).

      (2) Given the fact that X-seq names are typically associated with sequencing-based methods, it's perhaps confusing to name this method DIRseq?

      We appreciate the reviewer’s point, but by now the preprint posted in bioRxiv is in wide circulation, and the DIRseq web server has been up for several months, so changing its name would cause a great deal of confusion.

      (3) I'd encourage the authors just to spell out "drug interacting residues" and retain an IDR acronym for IDRs. Acronyms rarely make writing clearer, and asking folks to constantly flip between IDR and DIR is asking a lot of an audience (in this reviewer's opinion, anyway).

      The reviewer makes a good point; we now spell out “drug-interacting residues”.

      (4) The assumption here is that CSPs result from direct drug:IDR interactions. However, CSPs result from a change in the residue chemical environment, which could in principle be an indirect effect (e.g., in the unbound state, residues A and B interact; in the bound state, residue A is now free, such that it experiences a CSP despite not engaging directly). While I recognize such assumptions are commonly made, it behoves the authors to explicitly make this point so the reader understands the relationship between CSPs and binding.

      We did add caveats of CSP in Introduction (p. 3, second paragraph).

      (5) On the figures, please label which protein is which figure, as well as provide a legend for the annotations on the figures (red line, blue bar, cyan region, etc.)

      We now label protein names in Fig. 1. For annotation of display items, it is also made in the Figs. 2 and 3 captions; we now add it to the Fig. 4 caption.

      (6) abstract: "These successes augur well for deciphering the sequence code for IDP-drug binding." - This is not grammatically correct, even if augur were changed to agree. Suggest rewriting.

      “Augur well” means to be a good sign (for something). We use this phrase here in this meaning.

      (6) page 5: "we raised the 𝑞 value of Asp to be the same as that of Glu" → suggested "increased" instead of raised.

      We have made the suggested change.

      (7) The authors should consider releasing the source code (it is available via the .js implementation on the server, but this is not very transferable/shareable, so I'd encourage the authors to provide a stand-alone implementation that's explicitly shareable).

      We have now added a link for the user to download the source code.

    1. Author response:

      The following is the authors’ response to the current reviews.

      eLife Assessment

      The authors examine the effect of cell-free chromatin particles (cfChPs) derived from human serum or from dying human cells on mouse cells in culture and propose that these cfChPs can serve as vehicles for cell-to-cell active transfer of foreign genetic elements. The work presented in this paper is intriguing and potentially important, but it is incomplete. At this stage, the claim that horizontal gene transfer can occur via cfChPs is not well supported because it is only based on evidence from one type of methodological approach (immunofluorescence and fluorescent in situ hybridization (FISH)) and is not validated by whole genome sequencing.

      We disagree with the eLife assessment that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate technology. Rather, eLife should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells.

      The reviewer is mistaken. We do not claim that the internalized cfChPs are incorporated into the nucleus. We show throughout the paper that the cfChPs perform their novel functions autonomously outside the genome without being incorporated into the nucleus. This is clearly seen in all our chromatin fibre images, metaphase spreads and our video abstract. Occasionally, when the cfChPs fluorescent signal overlie the chromosomes, we have been careful to state that the cfChPs are associated with the chromosomes without implying that they have integrated.

      These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Again the reviewer makes the same mistake. We do not claim that the internalized cfChPs are incorporated into the chromosomes. We have addressed this issue above.

      We have a feeling that the reviewer has not understood our work – which is the discovery of “satellite genomes” which function autonomously outside the nuclear genome.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed on Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer has raised a related issue below and we have responded to both of them together.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      I thank the authors for taking my comments and those of the other reviewer into account and for adding new material to this new version of the manuscript. Among other modifications/additions, they now mention that they think that NIH3T3 cells treated with cfChPs die out after 250 passages because of genomic instability which might be caused by horizontal transfer of cfChPs DNA into the genome of treated cells (pp. 45-46, lines 725-731). However, no definitive formal proof of genomic instability and horizontal transfer is provided.

      We mention that the NIH3T3 cells treated with cfChPs die out after 250 passages in response to the reviewer’s earlier comment “Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism”.

      We have agreed with the reviewer and have simply speculated that the cells may die because of extreme genomic instability. We have left it as a speculation without diverting our paper in a different direction to prove genomic instability.

      The authors now refer to an earlier study they conducted in which they Illumina-sequenced NIH3T3 cells treated with cfChPs (pp. 48, lines. 781-792). This study revealed the presence of human DNA in the mouse cell culture. However, it is unclear to me how the author can conclude that the human DNA was inside mouse cells (rather than persisting in the culture medium as cfChPs) and it is also unclear how this supports horizontal transfer of human DNA into the genome of mouse cells. Horizontal transfer implies integration of human DNA into mouse DNA, through the formation of phosphodiester bounds between human nucleotides and mouse nucleotides. The previous Illumina-sequencing study and the current study do not show that such integration has occured. I might be wrong but I tend to think that DNA FISH signals showing that human DNA lies next to mouse DNA does not necessarily imply that human DNA has integrated into mouse DNA. Perhaps such signals could result from interactions at the protein level between human cfChPs and mouse chromatin?

      With due respect, our earlier genome sequencing study that the reviewer refers to was done on two single cell clones developed following treatment with cfChPs. So, the question of cfChPs lurking in the culture medium does not arise.

      The authors should be commended for doing so many FISH experiments. But in my opinion, and as already mentioned in my earlier review of this work, horizontal transfer of human DNA into mouse DNA should first be demonstrated by strong DNA sequencing evidence (multiple long and short reads supporting human/mouse breakpoints; discarding technical DNA chimeras) and only then eventually confirmed by FISH.

      As mentioned earlier, we disagree with the reviewer that our study is incomplete because we did not perform whole genome sequencing. Tens of thousands of genomes have been sequenced, and yet they have failed to detect the presence of the numerous “satellite genomes” that we describe in our paper. To that extent whole genome sequencing has proved to be an inappropriate approach. Rather, the reviewer should have commended us for the numerous control experiments that we have done to ensure that our FISH probes and antibodies are target specific and do not cross-react.

      Regarding my comment on the quantity of human cfChPs that has been used for the experiments, the authors replied that they chose this quantity because it worked in a previous study. Could they perhaps explain why they chose this quantity in the earlier study? Is there any biological reason to choose 10 ng and not more or less? Is 10 ng realistic biologically? Could it be that 10 ng is orders of magnitude higher than the quantity of cfChPs normally circulating in multicellular organisms and that this could explain, at least in part, the results obtained in this study?

      The reviewer again raises the same issue to which we have already addressed in our revised manuscript. To quote “We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and activation of apoptotic pathways using this concentration of cfChPs (Mittra I et. al., 2015)”.

      It is also mentioned in the response that RNA-seq has been performed on mouse cells treated with cfChPs, and that this confirms human-mouse fusion (genomic integration). Since these results are not included in the manuscript, I cannot judge how robust they are and whether they reflect a biological process rather than technical issues (technical chimeras formed during the RNA-seq protocol is a well-known artifact). In any case, I do not think that genomic integration can be demonstrated through RNA-seq as junction between human and mouse RNA could occur at the RNA level (i.e. after transcription). RNA-seq could however show whether human-mouse chimeras that have been validated by DNA-sequencing are expressed or not.

      We did perform transcriptome sequencing as suggested earlier by the reviewer, but realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript.

      Given these comments, I believe that most of the weaknesses I mentioned in my review of the first version of this work still hold true.

      An important modification is that the work has been repeated in other cell lines, hence I removed this criticism from my earlier review.

      Additional changes made

      (1) We have now rewritten the “Abstract” to 250 words to fit in eLife’s instructions. (It was not possible to reduce the word count further.

      (2) We have provided the Video 1 as separate file instead of link.

      (3) Some of Figure Supplements (which were stand-alone) are now given as main figures. We have re-arranged Figures and Figure Supplements in accordance with eLife’s instructions.

      (4) We have now provided a list of the various cell lines used in this study, their tissue origin and procurement source in Supplementary File 3.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells. These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 1-4)”.

      Another weakness of this study is that it is performed only in one receiving cell type (NIH3T3 mouse cells). Thus, rather than a general phenomenon occurring on a massive scale in every multicellular organism, it could merely reflect aberrant properties of a cell line that for some reason became permeable to exogenous cfChPs. This begs the question of the relevance of this study for living organisms.

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 6)”.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer is right in expecting that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome. This is indeed the case, and we find that beyond ~ 250 passages the cfChPs treated NIH3T3 cells begin to die out apparently become their genomes have become too unstable for survival. This point will be highlighted in the revised version (pp. 45-46, lines 725-731).

      Reviewer #2 (Public review):

      I must note that my comments pertain to the evolutionary interpretations rather than the study's technical results. The techniques appear to be appropriately applied and interpreted, but I do not feel sufficiently qualified to assess this aspect of the work in detail.

      I was repeatedly puzzled by the use of the term "function." Part of the issue may stem from slightly different interpretations of this word in different fields. In my understanding, "function" should denote not just what a structure does, but what it has been selected for. In this context, where it is unclear if cfChPs have been selected for in any way, the use of this term seems questionable.

      We agree. We have removed the term “function” wherever we felt we had used it inappropriately.

      Similarly, the term "predatory genome," used in the title and throughout the paper, appears ambiguous and unjustified. At this stage, I am unconvinced that cfChPs provide any evolutionary advantage to the genome. It is entirely possible that these structures have no function whatsoever and could simply be byproducts of other processes. The findings presented in this study do not rule out this neutral hypothesis. Alternatively, some particular components of the genome could be driving the process and may have been selected to do so. This brings us to the hypothesis that cfChPs could serve as vehicles for transposable elements. While speculative, this idea seems to be compatible with the study's findings and merits further exploration.

      We agree with the reviewer’s viewpoint. We have replaced the term “predatory genome” with a more realistic term “satellite genome” in the title and throughout the manuscript. We have also thoroughly revised the discussion section and elaborated on the potential role of LINE-1 and Alu elements carried by the concatemers in mammalian evolution. (pp. 46-47, lines 743-756).

      I also found some elements of the discussion unclear and speculative, particularly the final section on the evolution of mammals. If the intention is simply to highlight the evolutionary impact of horizontal transfer of transposable elements (e.g., as a source of new mutations), this should be explicitly stated. In any case, this part of the discussion requires further clarification and justification.

      As mentioned above, we have revised the “discussion” section taking into account the issues raised by the reviewer and highlighted the potential role of cfChPs in evolution by acting as vehicles of transposable elements.

      In summary, this study presents important new findings on the behavior of cfChPs when introduced into a foreign cellular context. However, it overextends its evolutionary interpretations, often in an unclear and speculative manner. The concept of the "predatory genome" should be better defined and justified or removed altogether. Conversely, the suggestion that cfChPs may function at the level of transposable elements (rather than the entire genome or organism) could be given more emphasis.

      As mentioned above, we have replaced the term “predatory genome” with “satellite genome” and revised the “discussion” section taking into account the issues raised by the reviewer.

      Reviewer #1 (Recommendations for the authors):

      (1) I strongly recommend validating the findings of this study using other approaches. Whole genome sequencing using both short and long reads should be used to validate the presence of human DNA in the mouse cell line, as well as its integration into the mouse genome and concatemerization. Breakpoints between mouse and human DNA can be searched in individual reads. Finding these breakpoints in multiple reads from two or more sequencing technologies would strengthen their biological origin. Illumina and ONT sequencing are now routinely performed by many labs, such that this validation should be straightforward. In addition to validating the findings of the current study, it would allow performance of an in-depth characterization of the rearrangements undergone by both human cfChPs and the mouse genome after internalization of cfChPs, including identification of human TE copies integrated through bona fide transposition events into the mouse genome. New copies of LINE and Alu TEs should be flanked by target site duplications. LINE copies should be frequently 5' truncated, as observed in many studies of somatic transposition in human cells.

      (2) Furthermore, should the high level of cell-to-cell HGT detected in this study occur on a regular basis within multicellular organisms, validating it through a reanalysis of whole genome sequencing data available in public databases should be relatively easy. One would expect to find a high number of structural variants that for some reason have so far gone under the radar.

      (3) Short and long-read RNA-seq should be performed to validate the expression of human cfChPs in mouse cells. I would also recommend performing ChIP-seq on routinely targeted histone marks to validate the chromatin state of human cfChPs in mouse cells.

      (4) The claim that fused human proteins are produced in mouse cells after exposing them to human cfChPs should be validated using mass spectrometry.

      The reviewer has suggested a plethora of techniques to validate our findings. Clearly, it is neither possible to undertake all of them nor to incorporate them into the manuscript. However, as suggested by the reviewer, we did conduct transcriptome sequencing of cfChPs treated NIH3T3 cells and were able to detect the presence of human-human fusion sequences (representing concatemerisation) as well as human-mouse fusion sequences (representing genomic integration). However, we realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript. However, to address the reviewer’s concerns we have now referred to results of our earlier whole genome sequencing study of NIH3T3 cells similarly treated with cfChPs wherein we had conclusively detected the presence of human DNA and human Alu sequences in the treated mouse cells. These findings have now been added as an independent paragraph (pp. 48, lines. 781-792).

      (5) It is unclear from what is shown in the paper (increase in FISH signal intensity using Alu and L1 probes) if the increase in TE copy number is due to bona fide transposition or to amplification of cfChPs as a whole, through mechanisms other than transposition. It is also unclear whether human TEs end up being integrated into the neighboring mouse genome. This should be validated by whole genome sequencing.

      Our results suggest that TEs amplify and increase their copy number due to their association with DNA polymerase and their ability to synthesize DNA (Figure 14a and b). Our study design cannot demonstrate transposition which will require real time imaging.

      The possibility of incorporation of TEs into the mouse genome is supported by our earlier genome sequencing work, referred to above, wherein we detected multiple human Alu sequences in the mouse genome (pp. 48, lines. 781-792).

      (6) In order to be able to generalize the findings of this study, I strongly encourage the authors to repeat their experiments using other cell types.

      We thank the reviewer for this suggestion. We have now used four different cell lines derived from four different species and demonstrated that horizontal transfer of cfChPs occur in all of them suggesting that it is a universal phenomenon. (pp. 37, lines 560-572) and (Supplementary Fig. S14a-d).

      We have also mentioned this in the abstract (pp. 3, lines 52-54).

      (7) Since the results obtained when using cfChPs isolated from healthy individuals are identical to those shown when using cfChPs from cancer sera, I wonder why the authors chose to focus mainly on results from cancer-derived cfChPs and not on those from healthy sera.

      Most of the experiments were conducted using cfChPs isolated from cancer patients because of our especial interest in cancer, and our earlier results (Mittra et al., 2015) which had shown that cfChPs isolated from cancer patients had significantly greater activity in terms of DNA damage and activation of apoptotic pathways than those isolated from healthy individuals. We have now incorporated the above justification on (pp. 6, lines. 124-128).

      (8) Line 125: how was the 10-ng quantity (of human cfChPs added to the mouse cell culture) chosen and how does it compare to the quantity of cfChPs normally circulating in multicellular organisms?

      We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and apoptotic pathways using this concentration of cfChPs (Mittra I et. al. 2015). We have now incorporated the justification of using this dose in our manuscript (pp. 51-52, lines. 867-870).

      (9) Could the authors explain why they repeated several of their experiments in metaphase spreads, in addition to interphase?

      We conducted experiments on metaphase spreads in addition to those on chromatin fibres because of the current heightened interest in extra-chromosomal DNA in cancer, which have largely been based on metaphase spreads. We were interested to see how the cfChP concatemers might relate to the characteristics of cancer extrachromosomal DNA and whether the latter in fact represent cfChPs concatemers acquired from surrounding dying cancer cells. We have now mentioned this on pp. 7, lines 150-155.

      (10) Regarding negative controls consisting in checking whether human probes cross-react with mouse DNA or proteins, I suggest that the stringency of washes (temperature, reagents) should be clearly stated in the manuscript, such that the reader can easily see that it was identical for controls and positive experiments.

      We were fully aware of these issues and were careful to ensure that washing steps were conducted meticulously. The careful washing steps have been repeatedly emphasized under the section on “Immunofluorescence and FISH” (pp. 54-55, lines. 922-944).

      (11) I am not an expert in Immuno-FISH and FISH with ribosomal probes but it can be expected that ribosomal RNA and RNA polymerase are quite conserved (and thus highly similar) between humans and mice. A more detailed explanation of how these probes were designed to avoid cross-reactivity would be welcome.

      We were aware of this issue and conducted negative control experiment to ensure that the human ribosomal RNA probe and RNA polymerase antibody did not cross-react with mouse. Please see Supplementary Fig. S4c.

      (12) Finally, I could not understand why the cfChPs internalized by neighboring cells are called predatory genomes. I could not find any justification for this term in the manuscript.

      We agree and this criticism has also been made by #Reviewer 2. We have now replaced the term “predatory” genomes with “satellite” genomes.

      Reviewer #2 (Recommendations for the authors):

      (1) P2 L34: The term "role" seems to imply "what something is supposed to do" (similar to "function"). Perhaps "impact" would be more neutral. Additionally, "poorly defined" is vague-do you mean "unknown"?

      We thank the reviewer for this suggestion. We have now rephrased the sentence to read “Horizontal gene transfer (HGT) plays an important evolutionary role in prokaryotes, but it is thought to be less frequent in mammals.” (pp. 2, lines. 26-27).

      (2) P2 L35: It seems that the dash should come after "human blood."

      Thank you, we have changed the position of the dash (pp. 2, line. 29).

      (3) P2 L37: Must we assume these structures have a function? Could they not simply be side effects of other processes?

      We think this is a matter of semantics, especially since we show that cfChPs once inside the cell perform many functions such as replication, DNA synthesis, RNA synthesis, protein synthesis etc. We, therefore, think the word “function” is not inappropriate.

      (4) Abstract: After reading the abstract, I am unclear on the concept of a "predatory genome." Based on the summarized results, it seems one cannot conclude that these elements provide any adaptive value to the genome.

      We agree. We have now replaced the term “predatory” genomes with a more realistic term viz. “satellite” genomes.

      (5) Video abstract: The video abstract does not currently stand on its own and needs more context to be self-explanatory.

      Thank you for pointing this out. We have now created a new and much more professional video with more context which we hope will meet with the reviewer’s approval.

      (6) P4 L67: Again, I am uncertain that HGT should be said to have "a role" in mammals, although it clearly has implications and consequences. Perhaps "role" here is intended to mean "consequence"?

      We have now changed the sentence to read as follows “However, defining the occurrence of HGT in mammals has been a challenge” (pp. 4, line. 73).

      (7) P6 L111: The phrase "to obtain a new perspective about the process of evolution" is unclear. What exactly is meant by this statement?

      We have replaced this sentence altogether which now reads “The results of these experiments are presented in this article which may help to throw new light on mammalian evolution, ageing and cancer” (pp. 5-6, lines 116-118).

      (8) P38 L588: The term "predatory genome" has not been defined, making it difficult to assess its relevance.

      This issue has been addressed above.

      (9) P39 L604: The statement "transposable elements are not inherent to the cell" suggests that some TEs could originate externally, but this does not rule out that others are intrinsic. In other words, TEs are still inherent to the cell.

      This part of the discussion section has been rewritten and the above sentence has been deleted.

      (10) P39 L609: The phrase "may have evolutionary functions by acting as transposable elements" is unclear. Perhaps it is meant that these structures may serve as vehicles for TEs?

      This sentence has disappeared altogether in the revised discussion section.

      (11) P41 L643: "Thus, we hypothesize ... extensively modified to act as foreign genetic elements." This sentence is unclear. Are the authors referring to evolutionary changes in mammals in general (which overlooks the role of standard mutational processes)? Or is it being proposed that structural mutations (including TE integrations) could be mediated by cfChPs in addition to other mutational mechanisms?

      We have replaced this sentence which now reads “Thus, “within-self” HGT may occur in mammals on a massive scale via the medium of cfChP concatemers that have undergone extensive and complex modifications resulting in their behaviour as “foreign” genetic elements” (pp. 47, lines 763-766).

      (12) P41 L150: The paragraph beginning with "It has been proposed that extreme environmental..." transitions too abruptly from HGT to adaptation. Is it being proposed that cfChPs are evolutionary processes selected for their adaptive potential? This idea is far too speculative at this stage and requires clarification.

      We agree. This paragraph has been removed.

      (13) P43 L681: This summary appears overly speculative and unclear, particularly as the concept of a "predatory genome" remains undefined and thus cannot be justified. It suggests that cfChPs represent an alternative lifestyle for the entire genome, although alternative explanations seem far more plausible at this point.

      We have now replaced the term “predatory” genome with “satellite” genome. The relevant part of the summary section has also been partially revised (pp. 49-50, lines 817-831).

      Changes independent of reviewers’ comments.

      We have made the following additions / modifications.

      (1) The abstract has been modified and it’s “conclusion” section has been rewritten.

      (2) Section 1.14 has been newly added together with accompanying Figures 15 a,b and c.

      (3) The “Discussion” section has been greatly modified and parts of it has been rewritten.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      In this study, the authors explore a novel mechanism linking aging to chromosome mis-segregation and aneuploidy in yeast cells. They reveal that, in old yeast mother cells, chromosome loss occurs through asymmetric partitioning of chromosomes to daughter cells, a process coupled with the inheritance of an old Spindle Pole Body. Remarkably, the authors identify that remodelling of the nuclear pore complex (NPC), specifically the displacement of its nuclear basket, triggers these asymmetric segregation events. This disruption also leads to the leakage of unspliced pre-mRNAs into the cytoplasm, highlighting a breakdown in RNA quality control. Through genetic manipulation, the study demonstrates that removing introns from key chromosome segregation genes is sufficient to prevent chromosome loss in aged cells. Moreover, promoting pre-mRNA leakage in young cells mimics the chromosome mis-segregation observed in old cells, providing further evidence for the critical role of nuclear envelope integrity and RNA processing in aging-related genome instability. 

      Strengths: 

      The findings presented are not only intriguing but also well-supported by robust experimental data, highlighting a previously unrecognized connection between nuclear envelope integrity, RNA processing, and genome stability in aging cells, deepening our understanding of the molecular basis of chromosome loss in aging. 

      We thank the reviewer for this very positive assessment of our work

      Weaknesses: 

      Further analysis of yeast aging data from microfluidic experiments will provide important information about the dynamic features and prevalence of the key aging phenotypes, e.g. pre-mRNA leakage and chromosome loss, reported in this work. 

      We thank the reviewer for bringing this point, which we have addressed in the revised version of the manuscript.  In short, chromosome loss is an abrupt, late event in the lifespan of the cells. To examine its prevalence, we have quantified the combined loss frequency of two chromosomes when both are labelled in the same cell. Whereas single chromosomes are lost at a frequency of 10-15% per cell, less than 5% of the cells lose both at the same time.  Thus, the different chromosomes are lost largely but not fully independently from each other. Based on these data, and on the fact that yeast cells have 16 chromosomes, we evaluate that about half of the cells lose at least one chromosome in their final cell cycle.

      We also tried to estimate the prevalence of the pre-mRNA leakage phenotype, based on the increased mCherry to GFP ratio observed between 0h and 24 hours of aging for 146 individual cells. For this analysis, we compared the mCherry/GFP ratio at 0 and 24h for the same individual cell. This analysis indicates that 81% of the cells show a fold change strictly above 1 as they age. Furthermore, the data appears to be unimodal. Thus, we can conservatively conclude that a majority of the cells show premRNA leakage at 24 hours.  Since not all cells are at the end of their life at that time, this is possibly an underestimate.

      In addition, a discussion would be needed to clarify the relationship between "chromosome loss" in this study and "genomic missegregation" reported previously in yeast aging. 

      Genomic mis-segregation is characterized by the entry of both SPBs and all the chromosomes into the daughter cell compartment (PMID: 31714209).  We have observed these events in our movies as well.  However, the chromosome loss phenotype that we are focusing on affects only some chromosomes (as discussed above) and takes place under proper elongation of the spindle, with one SPB remaining in the mother cell whereas the other one goes to the bud, as shown in the manuscript’s Figure 2.  In our movies, chromosome loss is at least three-fold more frequent (for a single chromosome) than full genome mis-segregation (Sup Fig 1A-B). Furthermore, whereas chromosome loss is alleviated by the removal of the introns of MCM21, NBL1 and GLC7, genomic mis-segregation is not (Sup Fig 1B).  Thus, genomic mis-segregation mentioned by the reviewer is a process distinct from the chromosome loss that we report.  This discussion and the relevant data have been added to the manuscript.

      We thank the reviewer for bringing up the possible confusion between these two phenotypes, allowing us to clarify this point.

      Reviewer #2 (Public review): 

      Summary: 

      The authors make the interesting discovery of increased chromosome non-dysjunction in aging yeast mother cells. The phenotype is quite striking and well supported with solid experimental evidence. This is quite significant to a haploid cell (as used here) - loss of an essential chromosome leads to death soon thereafter. The authors then work to tie this phenotype to other age-associated phenotypes that have been previously characterized: accumulation of extrachromosomal rDNA circles that then correlate with compromised nuclear pore export functions, which correlates with "leaky" pores that permit unspliced mRNA messages to be inappropriately exported to the cytoplasm. They then infer that three intron containing mRNAs that encode portions in resolving sister chromatid separation during mitosis, are unspliced in this age-associated defect and thus lead to the non-dysjunction problem. 

      Strengths: The discovery of age-associated chromosome non-dysjunction is an interesting discovery, and it is demonstrated in a convincing fashion with "classic" microscopy-based single cell fluorescent chromosome assays that are appropriate and seem robust. The correlation of this phenotype with other age-associated phenotypes - specifically extrachromosomal rDNA circles and nuclear pore dysfunction - is supported by in vivo genetic manipulations that have been well-characterized in the past. 

      In addition, the application of the single cell mRNA splicing defect reporter showed very convincingly that general mRNA splicing is compromised in aged cells. Such a pleiotropic event certainly has big implications. 

      We thank the reviewer for this assessment of our work.  To avoid confusion, we would like to stress out, however, that our data do not show that splicing per se is defective in old cells.  Actually, we specifically show that the cells are unlikely to show splicing defect (last figure of the original and the revised version of the manuscript). Our data specifically show that unspliced mRNAs tend to leak out of the nucleus of old cells.

      Weaknesses: 

      The biggest weakness is "connecting all the dots" of causality and linking the splicing defect to chromosome disjunction. I commend the authors for making a valiant effort in this regard, but there are many caveats to this interpretation. While the "triple intron" removal suppressed the non-dysjunction defect in aged cells, this could simply be a kinetic fix, where a slowdown in the relevant aspects of mitosis, could give the cell time to resolve the syntelic attachment of the chromatids.  

      The possibility that intron-removal leads to a kinetic fix is an interesting idea that we have now considered.  In the revised manuscript, we now provide measurements of mitotic duration in the “triple intron” mutant compared to wild type cells and the duration of their last cell cycle (See supplementary figure 3A-D). There is no evidence that removing these introns slows down mitosis.  Thus, the kinetic fix hypothesis is unlikely to explain our observation about the effect of intron removal.

      To this point, I note that the intron-less version of GLC7, which affects the most dramatic suppression of the three genes, is reported by one of the authors to have a slow growth rate (Parenteau et al, 2008 - https://doi.org/10.1091/mbc.e07-12-1254)

      The reviewer is right, removing the intron of GLC7 reduces the expression levels of the gene product (PMID: 16816425) to about 50% of the original value and causes a slow growth phenotype.  However, the cells revert fairly rapidly through duplication of the GLC7-∆i gene (see supplementary Figure 3EF).  As a consequence, neither the GLC7-∆i nor the 3x∆i mutant strains show noticeable growth phenotypes by spot assays.  We now document these findings in supplementary figure 3.  

      Lastly, the Herculean effort to perform FISH of the introns in the cytoplasm is quite literally at the statistical limit of this assay. The data were not as robust as the other assays employed through this study. The data show either "no" signal for the young cells or a signal of 0, 1, or 2 FISH foci in the aged cells. In a Poisson distribution, which this follows, it is improbable to distinguish between these differences. 

      This is correct, this experiment was not the easiest of the manuscript... However, despite the limitations of the assay, the data presented in figure 7B are very clear.  300 cells aged by MEP were analysed, divided in the cohorts of 100 each, and the distribution of foci (nuclear vs cytoplasmic) in these aged cells were compared to the distribution in three cohorts of young cells.  For all 3 aged cohorts, over 70% of the visible foci were cytoplasmic, while in the young cells, this figure was around 3%.  A t-test was conducted to compare these frequencies between young and old cells (Figure 7B). The difference is highly significant.  Therefore, we are clearly not at the statistical limit.

      What the reviewer refers to is the supplementary Figure 4, where we were simply asking i) is the signal lost in cells lacking the intron of GLC7 (the response is unambiguously yes) and ii) what is the general number of dots per cell between young and old wild type cells (without distinguishing between nuclear and cytoplasmic) and the information to be taken from this last quantification is indeed that there is no clearly distinguishable difference between these two population of cells, as the reviewer rightly concludes.  In other word, the reason why there are more dots in the cytoplasm of the old cells in the Figure 7B is not because the old cells have much more dots in general (see supplementary Figure 4C).  We hope that these clarifications help understand the data better.  We have edited the manuscript to avoid confusion.

      Reviewer #3 (Public review): 

      Summary: 

      Mirkovic et al explore the cause underlying development of aneuploidy during aging. This paper provides a compelling insight into the basis of chromosome missegregation in aged cells, tying this phenomenon to the established Nuclear Pore Complex architecture remodelling that occurs with aging across a large span of diverse organisms. The authors first establish that aged mother cells exhibit aberrant error correction during mitosis. As extrachromosomal rDNA circles (ERCs) are known to increase with age and lead to NPC dysfunction that can result in leakage of unspliced pre-mRNAs, Mirkovic et al search for intron-containing genes in yeast that may be underlying chromosome missegregation, identifying three genes in the aurora B-dependent error correction pathway: MCM21, NBL1, and GLC7. Interestingly, intron-less mutants in these genes suppress chromosome loss in aged cells, with a significant impact observed when all three introns were deleted (3x∆i). The 3x∆i mutant also suppresses the increased chromosome loss resulting from nuclear basket destabilization in a mlp1∆ mutant. The authors then directly test if aged cells do exhibit aberrant mRNA export, using RNA FISH to identify that old cells indeed leak intron-containing pre-mRNA into the cytoplasm, as well as a reporter assay to demonstrate translation of leaked pre-mRNA, and that this is suppressed in cells producing less ERCs. Mutants causing increased pre-mRNA leakage are sufficient to induce chromosome missegregation, which is suppressed by the 3x∆i. 

      Strengths: 

      The finding that deleting the introns of 3 genes in the Aurora B pathway can suppress age-related chromosome missegregation is highly compelling. Additionally, the rationale behind the various experiments in this paper is well-reasoned and clearly explained. 

      We thank the reviewer for their very positive assessment of our work

      Weaknesses:  

      In some cases, controls for experiments were not presented or were depicted in other figures. 

      We are sorry about this confusion.  We have improved our presentation of the controls, bringing them back each time they are relevant.  We have also added those that were missing (such as those mentioned by reviewer 2, see above). Note that the frequencies of centromeric plasmid loss at 0h in Figure 1C is not meaningful and therefore not presented. Since the cells were grown on selective medium before loading on to the ageing chip, we cannot report a plasmid loss frequency here. The ageing experiments themselves were subsequently conducted in full medium, to allow for centromeric plasmid loss without killing the cell. We explain this in the materials and methods section.

      High variability was seen in chromosome loss data, leading to large error bars. 

      We thank the reviewer for this comment. The variance in those two figures (3A and 5D) comes from the suboptimal plotting of this data. This is now corrected as follows.  We divided the available data into 4 cohorts and then plotted the average loss frequency across these cohorts for the indicated age groups.  This filters out much of the noise and improves the statistical resolution.

      The text could have been more polished. 

      Thank you for this comment.  We have gone through the manuscript again in detail.

      Reviewer #1 (Recommendations for the authors):

      (1) A previous study (PMID: 31714209). showed that aging yeast cells undergo genomic missegregation in which material was abnormally segregated to the daughter cells, leading to cell cycle arrest. After that, the missegregation is either corrected by returning aberrantly segregated genetic material to the mother cells so that they can resume cell cycles, or if not corrected, the mother cells will terminally exist the cell cycle and eventually die. That paper also showed that this agedependent genomic missegregation is related to rDNA instability. Is the chromosome loss in this work related to the genomic missegregation reported before? Is it partially reversible like genomic missegregation? Are all the chromosomes lost in one cell division, like in the case of genomic missegregation? Some additional characterization and a discussion would be helpful. 

      As mentioned above, indeed the phenotype of full genome mis-segregation described by Crane et al. (2019) is observable in our data as well. At 24h ~3% of the cells segregate both SPBs to the bud, as they previously described (Supp Figure 1A and B).  This phenomenon is clearly distinct from asymmetric chromosome partition, where cells undergo anaphase, separate the SPBs and segregate one to the mother cell and one to the bud (Figure 2A).  Also, asymmetric chromosome partitioning affects only a subset of the chromosomes (see below), not the entire genome. Finally, unlike asymmetric chromosome partitioning, the frequency of genome mis-segregation in ageing was not alleviated by intron removal (Supp Figure 1B). Thus, these two processes are clearly distinct and driven by different mechanisms. Note that asymmetric chromosome partitioning appears 3 to 5 times more frequently than genomic mis-segregation.

      Supporting further the notion that these two processes are distinct, chromosome loss seals the end of the life of the cell, as we reported, indicating that this is not a reversible event.  Also, it does not involve all chromosomes at once. Cells that contain the labelled versions of both chromosome II and IV at the same time, the loss frequency of both chromosomes is less than 5%, whereas each chromosome is lost in 10-15% of the cells (Figure 1C). Thus, most cells lose one and keep the other. Furthermore, this indicates that there are many more cells losing at least one chromosome than the 15% that lose chromosome IV for example, probably 50% or more.  Thus, chromosome loss by asymmetric segregation is much more frequent than the partly transient transfer of the entire nucleus to the bud.

      (2) What percentage of aging WT cells undergo pre-mRNA leakage (using the GFP/mCherry reporter) during their entire lifespan? Is it a sporadic, reversible process or an accumulative, one-way deterioration? Previous studies (PMID: 32675375; PMID: 24332850; PMID: 36194205; PMID: 31291577) showed that only a fraction of yeast cells age with rDNA instability and ERC accumulation, as indicated by excessive rRNA transcription and nucleolar enlargement. Are they the same fraction of aging cells that undergo pre-mRNA leakage and chromosome loss? This information will indicate the prevalence of the key aging phenotypes reported in this work and should be readily obtainable from microfluidic experiments. In addition, a careful discussion would be helpful. 

      Pre-mRNA leakage is relatively widespread in the population, but it is difficult to put a precise number on it. Analysis of how the mCherry/GFP ratio changes in 146 individual cells between 0 and 24 hours and imaging in our microfluidics platform indicates that ~80% show an increase and 50% of the cells show an increase above 1.5-fold. Therefore, the frequencies of pre-mRNA leakage and chromosome loss are probably similar.  We have modified the discussion to account for these considerations.  This would be in the same range as the frequency of aging by ERC accumulation (mode 1) estimated by PMID: 32675375. 

      Reviewer #2 (Recommendations for the authors)

      The manuscript could use a bit of editing in places - please go through it once more. 

      Editing suggestions: 

      Line 80 – irrespective

      Corrected.

      Line 97 - these are not "rates" but frequencies. Please correct this error throughout. 

      Replaced “rate” with “frequency throughout the manuscript and the figures, when pertaining to chromosome loss

      Line 328 - increase in chromosome... 

      Corrected.

      Line 379 - tampering 

      Reviewer #3 (Recommendations for the authors):

      Specific Feedback to Authors 

      (a) Major Points 

      (i) While the proposed connection between ERC-mediated nuclear basket removal and erroneous error correction was clearly stated, this connection is correlative and was not directly tested. Specifically, although mutants impacting ERC levels were tested for missegregation, it was not directly tested if increased missegregation levels occurred due to ERC tethering to the NPC and subsequent nuclear basket removal. It is possible that the increased ERCs may be driving missegregation via a different pathway. Authors should consider experiments to strengthen this idea, such as looking at chromosome loss frequency in a sir2∆ 3x∆i double mutant, or a sir2∆ sgf73∆ double mutant. 

      This connection is addressed in the original version of the manuscript, where we show that preventing attachment of ERCs to the NPC, by removing the linker protein Sgf73, alleviates chromosome loss.  The link is further substantiated by the fact that removing the basket on its own promote chromosome loss and that in both cases, namely during normal aging, i.e., upon ERC accumulation, and upon basket removal the mechanism of chromosome loss is the same.  In both cases, it depends on the introns of the GLC7, MCM21 and NBL1 genes.  

      However, we acknowledge that the mutants tested have pleiotropic effects, making interpretation somewhat difficult, even when examining chromosome loss in multiple mutants that affect ERC formation and NPC remodelling, as we have done.  As recommended by the reviewer, we have characterized the phenotype of the sir2∆ 3x∆i mutant strain. Intron removal in the sir2∆ mutant cells largely rescued the elevated chromosome loss frequency of these cells and slightly extended their replicative lifespan (Figure 6D-E). We conclude that intron removal can remedy the chromosome loss phenotype of the sir2∆. Although clearly significant, the effect on the replicative lifespan was not very strong, likely due to the sir2∆ affecting other ageing processes.

      Touching on this question, we added a new set of experiments asking whether any accumulating DNA circle causes chromosome loss in an intron-dependent manner.  Thus, we have introduced a noncentromeric replicative plasmid in wild type and 3x∆i mutant strains carrying the labelled version of chromosome II (Figure 6A-C).  These studies show that these cells age much faster than wild type cells, as expected, and lose chromosomes at a higher frequency than non-transformed cells.  Finally, the effect is at least in part alleviated by removing the introns of NBL1, MCM21 and GLC7.

      Therefore, after adding this new and more direct test of the role of DNA circles in chromosome loss, we are confidently concluding that ERC-mediated basket removal is the trigger of chromosome loss in old cells.

      (b) Minor Points 

      (i) In Figure 1C, the text (lines 91-92) argues that chromosome loss happens abruptly as cells age; however the data only show loss at young and old time points, not an intermediate, which leaves open the possibility that chromosome loss is occurring gradually. While cells that lost chromosomes should fail to divide further, we don't know if these events happened and were simply excluded.

      We agree with the reviewer that formally the conclusion drawn in the lines 91-92 (of the original manuscript), namely that chromosome loss takes place abruptly as cells age, cannot be drawn from the Figure 1C alone but only from subsequent observations. However, since chromosome loss is lethal in haploid, as we mention in the text and the reviewer notes as well, it is difficult to envision how cells could lose chromosomes before the end of their lifespan and must therefore increase abruptly as the cells reach that point.  This is now underlined in the revised version of the manuscript. Accordingly, the frequency of chromosome loss per age group, which is depicted in Figure 3A, shows that the wild type cells that have budded less than 10 times show no chromosome loss. The chromosome loss frequency starts to ramp up only pass that point. Therefore, chromosome loss does not increase linearly with age.

      Additionally, cells that lost minichromosome should not arrest. We suggest that the interpretation of these data should be softened in the text, or that chromosome loss fraction could be more effectively portrayed as a Kaplan-Meier survival curve depicting cells that have not lost chromosomes, if these data are easily available. Or, chromosome loss at an intermediate time point could be depicted. 

      Since we cannot visualize more than 2 chromosomes at a time, it is not possible to plot the KaplanMeier curve of cells that have not lost chromosomes. However, as mentioned above, the chromosome loss frequencies at intermediate time points are depicted in Figure 3A and Figure 4B and shows that it increases with age.

      (ii) Also regarding Figure 1, it would be helpful to expound on the purpose of the minichromosomes, as well as how the Ubi-GFP minichromosome is constructed. 

      We now explained why we tested the loss of minichromosome, namely, as a mean to test whether the centromere is necessary and sufficient to drive the loss of the genetic material linked to it, i.e., chromosomes, in old cells.  Concerning the Ubi-GFP minichromosome, the Materials and methods section is now updated and reports plasmid construction, backbone used, primers as well as the plasmid sequence being available in the supplementary data.

      The purpose of the minichromosome initially appears to be the engineering of an eccDNA (ERC) with a CEN to demonstrate distinct behaviour, but it is unclear whether this was actually conducted or if the minichromosome are simply CEN plasmids and/or if this was the intended goal. Furthermore, lines 102-103 state that the presence of a centromere was necessary and sufficient for minichromosome loss. However, since no constructs lacking a centromere were tested, necessity cannot be concluded. Please clarify this in the text and include experimental details to help readers understand what was tested. 

      We apologize for having been too short here. The behaviour of the CEN-less version of this plasmid has been characterized in detail in previous studies (Shcheprova et al., 2008; Denoth-Lippuner 2014, Meinema et al 2022). Here we focused on the behaviour of the CEN+ version of an otherwise Identical plasmid.  We now clarify in the text that this plasmid is retained in the mother cell when CEN-less and cite the relevant literature. 

      (iii) It is unclear how cells at 0-3 budding events were identified in assays using the microfluidics platform. Can the authors clarify the known "age" of the cells once captured, i.e. how do the authors know how many divisions a cell has undergone prior to capture? 

      The reviewer is right; we do not know the exact age of these cells.  However, in any asynchronous population of yeast cells, which is what we start from, 50% of the cells are newborn daughters, 25% have budded once, 12.5 have budded twice, 6.25 % have budded three times…  Therefore, at the time of loading, 93% of the cells have budded between 0 and 3 times.  For this reason, we report to this population as cells age 0-3 CBE. We acknowledge that this is an approximation, but it remains a relatively safe one.  

      (iv) While the schematic in Figure 2D is generally helpful, a different depiction of the old and new SPBs would be beneficial in cases where the new SPB and TetR-GFP are depicted as colocalized, it is difficult to see that the red is fainter for the new SPB. 

      We have corrected this issue by completely separating the SPB and the Chromosome signals in the Figure 2D.

      (v) In Figure 2F, the grey colour of the 12h Ipl1-321 data bar did not have high enough contrast when the manuscript was printed-would recommend changing this to a darker shade. 

      We have corrected this issue by using a darker shade of grey.

      (vi) In Figure 3A, 'Budding' is misspelled on X-axis label  

      We have corrected this error.

      (vii) In Figure 4, the authors should clarify the differences between the analyses in panels B and C. The distinction is not immediately clear and may be difficult to grasp upon initial reading. 

      We have corrected this issue in the main text as well as figure legend.

      (viii) In Figure 5, It would aid comparisons to depict the 3x∆i only as well on panels B, D, and E. 

      We have added 3x∆i data to Figure 5,6 and 8.

      (ix) In Figure 6D, it is unclear why there was an appreciable level of unspliced RNA in the wild-type and sir2∆ young cells. Additionally, it is unclear why there is so much signal observed in the Merge image for the old wild-type cell, especially regarding the apparent bright spot. Is that nuclear signal? Please clarify. 

      The pre-mRNA processing reporter is not very efficiently spliced. It was selected as such during design (Sorenson et al 2014; DOI: 10.1261/rna.042663.113) to provide sensitivity. As for the bright spot occurring, translation of the unspliced reporter produces the N-terminal part of a ribosomal protein, a fraction of which forms some sort of nuclear aggregate in a fraction of the population. 

      (x) In Figure 6E, why does the sir2∆ exhibit higher mCherry/GFP than the wild-type and fob1∆ at "young age"? Is this due to disrupted proteostasis in the sir2∆, or a different pleiotropic effect of sir2∆? Please comment on this observation in the text.

      Indeed, as we have stated in the text the sir2∆ mutation already perturbs pre-mRNA processing in young cells. We do not know the reason of this but indeed it is most probably reflective of its pleiotropic function. Following the reviewer’s request, we now state this in the text. For example, Sir2 may regulate the acetylation state of the basket itself.  The genetic interactions observed between sir2∆ and quite a few nucleoporin mutations seem to support this possibility. 

      (xi) Throughout, the authors switch between depicting aging in Completed Budding Events versus hours, which made it difficult to compare data across figures

      Ideally, all the data in this manuscript should be plotted according to the CBE age of the cell. To ensure that the major findings are plotted in such a way, we have done so for over ~3000 combined cells and thousands of replicative divisions in Figures 3,5-7. All the measurements of chromosome loss at a specific CBE had to be done manually, due to the absence of algorithms that would be able to accurately detect chromosome loss and replicative age. Therefore, doing this for the entirety of our dataset, encompassing well over 50 ageing chips and tens of thousands of cells is not easily doable at this stage. 

      (xii) Typo on line 12 (Sindle Pole Body) 

      We have corrected this error.

      (xiii) The phrase should be 'chromosome partitioning' rather than 'chromosome partition', throughoutfor example, line 17 

      Replaced “chromosome partition” with “chromosome partitioning” throughout the text.

      (xiv) There are inconsistencies between plural and singular references throughout sentences-example, lines 35-37, and lines 44-45. 

      We carefully combed through the manuscript again and hope that we caught all inconsistencies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Common comments

      (1) Significance of zero mutation rate

      Reviewers asked why we included mutation rate even though setting mutation rate to zero doesn’t change results. We think that including non-zero mutation rate makes our results more generalisable, and thus is a strength rather than weakness. To better motivate this choice, we have added a sentence to the beginning of Results:

      (2) Writing the mu=0 case first

      Reviewers suggested that we should first focus on the mu=0 case, and then generalize the result. The suggestions are certainly good. However, given the large amount of work involved in a re-organization, we have decided to adhere to our current narrative. However, we now only include equations where mu=0 in the main text, and have moved the case of nonzero mutation rate to Supplementary Information.

      (3) Making equations more accessible

      We have taken three steps to make equations more readable.

      ● Equations in the main text correspond to the case of zero-mutation rate.

      ● The original section on equation derivation is now in a box in the main text so that readers have the choice of skipping it but interested readers can still get a gist of where equations came from.

      ● We have provided a much more detailed interpretation of the equation (see page 10).

      (4) Validity of the Gaussian approximation

      Reviewers raised concerns about the validity of Gaussian approximation on F frequency𝑓(𝜏). The fact that our calculations closely match simulations suggest that this approximation is reasonable. Still, we added a discussion about the validity of this approximation in Box 1.

      We also added to SI with various cases of initial S and F sizes. This figure shows that when either initial S or initial F is small, the distribution of𝑓(𝜏) is not normal. However, if initial S and F are both on the order of hundreds, then the distribution of 𝑓(𝜏) is approximately Gaussian.

      Public Reviews:

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle are important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamic systems.

      We have added this clarification in the main text:

      “Note that here, selection outcome is path-dependent in the sense of being sensitive to initial conditions. This phenomenon is distinct from hysteresis where path-dependence results from whether a tuning parameter is increased or decreased.

      Weaknesses:

      (1) Connecting structure and function

      In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main Figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      We have added this to introduction: “This is a common quest: whenever a collective function depends on both populations, collective function is maximised, by definition, at an intermediate frequency (e.g. too little of either population will hamper function [23]).”

      (2) Explain intra-collective and inter-collective selection better for readers.

      The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. For the wide readership of eLife, a clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      This is a great point. We have added in Abstract:

      “Such collective selection is dictated by two opposing forces: during collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Due to this model structure, maintaining a target frequency requires the continued action of inter-collective selection.”

      and in Introduction

      “A selection cycle consists of three stages (Fig. 1). During collective maturation, intra-collective selection favors fast-growing individuals within a collective. At the end of maturation, inter-collective selection acts on collectives and favors those achieving the target composition. Finally during collective reproduction, offspring collectives sample stochastically from the parents, a process dominated by genetic drift.”

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.

      I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main Figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck is imposed on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      We have added an analytical approximation for N0˘, the Newborn size below which all target frequencies can be achieved in SI.

      Also, we have added lines indicating N0˘ in Fig4a.

      (4) Consideration of environmental stochasticity.

      The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      You are correct that our work considers only demographic stochasticity.

      Indeed, considering other types of stochasticity will be an exciting future research direction. We added in the main text:

      “Overall our model considers mutational stochasticity, as well as demographic stochasticity in terms of stochastic birth and stochastic sampling of a parent collective by offspring collectives. Other types of stochasticity, such as environmental stochasticity and measurement noise, are not considered and require future research.”

      (5) Assumption about mutation rates

      If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      This is a great point. We have added this to the beginning of Results to better motivate our study:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations. This scenario is encountered in biotechnology: an engineered pathway will slow down growth, and breaking the pathway (and thus faster growth) is much easier than the other way around. When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.

      See answer on common question 1.

      (6) Minor points

      In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.

      We added a description in caption 3b.

      In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

      We increased the resolution of Fig 5b so that the gold region near FF is more visible.

      We have added Fig 5c and the following explanation to the main text:

      “From numerical simulations, we identified two accessible regions: a small region near FF and a band region spanning from S to F (gold in Fig. 5b i). Intuitively, the rate at which FF grows faster than S+F is greater than the rate at which F grows faster than S (see section VIII in Supplementary Information). Thus, the problem can initially be reduced to a two-population problem (i.e. FF versus F+S; Fig. 5c left), and then expanded to a three-population problem (Fig. 5c right).”

      Recommendations For The Authors

      Since the conclusion of the model greatly depends on the noise (variation) of F and S in the Gaussian distribution, it would be nice to have a plot where the y-axis is the variation in terms of frequency and the x-axis is the s_0 or f_0 (frequency). In the plot, I would love to see how the variation in the frequency depends on the initial frequency of S and F. Maybe this is just trivial.

      In the SI, we added Fig6a, as per your request. Previous Fig6 became Fig6b.

      Reviewer #2 (Public review):

      The authors provide an analytical framework to model the artificial selection of the composition of communities composed of strains growing at different rates. Their approach takes into account the competition between the targeted selection at the level of the meta-community and the selection that automatically favors fast-growing cells within each replicate community. Their main finding is a tipping point or path-dependence effect, whereby compositions dominated by slow-growing types can only be reached by community-level selection if the community does not start and never crosses into a range of compositions dominated by fast growers during the dynamics.

      These results seem to us both technically correct and interesting. We commend the authors on their efforts to make their work reproducible even when it comes to calculations via extensive appendices, though perhaps a table of contents and a short description of these appendices at the start of SI would help navigate them.

      Thank you for the suggestion. We have added a paragraph at the beginning of SI.

      The main limitation in the current form of the article is that it could clarify how its assumptions and findings differ from and improve upon the rest of the literature:

      -  Many studies discuss the interplay between community-level evolution and species- or strain-level evolution. But "evolution" can be a mix of various forces, including selection, drift/randomness, and mutation/innovation.

      - This work's specificity is that it focuses strictly on constant community-level selection versus constant strain-level selection, all other forces being negligible (neither stochasticity nor innovation/mutation matter at either level, as we try to clarify now).

      Note that intra-collective selection is not strictly “constant” in the sense that selection favoring F is the strongest at intermediate F frequency (Fig 3). However, we think that you mean that intra- and inter-collective selection are present in every cycle, and this is correct for our case, and for community selection in general.

      -  Regarding constant community-level selection, it is only briefly noted that "once a target frequency is achieved, inter-collective selection is always required to maintain that frequency due to the fitness difference between the two types" [pg. 3 {section sign}2]. In other words, action from the selector is required indefinitely to maintain the community in the desired state. This assumption is found in a fraction of the literature, but is still worth clarifying from the start as it can inform the practical applicability of the results.

      This is a good point. We have added to abstract:

      “Such collective selection is dictated by two opposing forces: during collective maturation, intra-collective selection acts like a waterfall, relentlessly driving the S-frequency to lower values, while during collective reproduction, inter-collective selection resembles a rafter striving to reach the target frequency. Due to this model structure, maintaining a target frequency requires the continued action of inter-collective selection.”

      - More importantly, strain-level evolution also boils down here to pure selection with a constant target, which is less usual in the relevant literature. Here, (1) drift from limited population sizes is very small, with no meaningful counterbalancing of selection, (2) pure exponential regime with constant fitness, no interactions, no density- or frequency-dependence, (3) there is no innovation in the sense that available types are unchanging through time (no evolution of traits such as growth rate or interactions) and (4) all the results presented seem unchanged when mutation rate mu = 0 (as noted in Appendix III), meaning that the conclusions are not "about" mutation in any meaningful way.

      With regard to point (1), Figure 4a (reproduced below) shows how Newborn size affects the region of achievable targets. Indeed at large Newborn size (e.g. 5000 and above), no target frequency is achievable (since drift is too small to generate sufficient inter-community variation and consequently all communities are dominated by fast-growing F). However at Newborn size of for example 1000, there are two regions of accessible target frequencies. At smaller Newborn size, all target frequencies become achievable due to drift becoming sufficiently strong.

      With regard to points (2) and (3), we have added to Introduction

      “To enable the derivation of an analytical expression, we have made the following simplifications.

      First, growth is always exponential, without complications such as resource limitation, ecological interactions between the two populations, or density-dependent growth. Thus, the exponential growth equation can be used. Second, we consider only two populations (genotypes or species): the fast-growing F population with size F and the slow-growing S population with size S. We do not consider a spectrum of mutants or species, since with more than two populations, an analytical solution becomes very difficult.”

      With regard to point (4), we view this as a strength rather than weakness. We have added the following to the beginning of Results and Discussions:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations.”

      “When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.”

      See Point 1 of Common comments.

      - Furthermore, the choice of mutation mechanism is peculiar, as it happens only from slow to fast grower: more commonly, one assumes random non-directional mutations, rather than purely directional ones from less fit to fitter (which is more of a "Lamarckian" idea). Given that mutation does not seem to matter here, this choice might create unnecessary opposition from some readers or could be considered as just one possibility among others.

      We have added the following justification:

      “This scenario is encountered in biotechnology: an engineered pathway will slow down growth, and breaking the pathway (and thus faster growth) is much easier than the other way around.”

      It would be helpful to have all these points stated clearly so that it becomes easy to see where this article stands in an abundant literature and contributes to our understanding of multi-level evolution, and why it may have different conclusions or focus than others tackling very similar questions.

      Finally, a microbial context is given to the study, but the assumptions and results are in no way truly tied to that context, so it should be clear that this is just for flavor.

      We have deleted “microbial” from the title, and revised our abstract:

      Recommendations For The Authors

      (1) More details concerning our main remark above:

      - The paragraph discussing refs [24, 33] is not very clear in how they most importantly differ from this study. Our impression is that the resource aspect is not very important for instance, and the main difference is that these other works assume that strains can change in their traits.

      We are fairly sure that resource depletion is important in Rainey group’s study, as the attractor only evolved after both strains grew fast enough to deplete resources by the end of maturation. Indeed, evolution occurred in interaction coefficients which dictate the competition between strains for resources.

      Regardless, you raised an excellent point. As discussed earlier, we have added the following:

      “To enable the derivation of an analytical expression, we have made the following simplifications.

      First, growth is always exponential, without complications such as resource limitation, ecological interactions between the two populations, or density-dependent growth. Thus, the exponential growth equation can be used. Second, we consider only two populations (genotypes or species): the fast-growing F population with size F and the slow-growing S population with size S. We do not consider a spectrum of mutants or species, since with more than two populations, an analytical solution becomes very difficult.”

      - We would advise the main text to focus on mu = 0, and only say in discussion that results can be generalized.

      Your suggestion is certainly good. However, given the large amount of work involved in a reorganisation, we have decided to adhere to our current narrative. However, as discussed earlier, we have added this at the beginning of Results to help orient readers:

      “We will start with a complete model where S mutates to F at a nonzero mutation rate µ. We made this choice because it is more challenging to attain or maintain the target frequency when the abundance of fast-growing F is further increased via mutations.”

      “When the mutation rate is set to zero, the same model can be used to capture collectives of two species with different growth rates.”

      (2) We think the material on pg. 5 "Intra-collective evolution is the fastest at intermediate F frequencies, creating the "waterfall" phenomenon", although interesting, could be presented in a different way. The mathematical details on how to find the probability distribution of the maximum of independent random variables (including Equation 1) will probably be skipped by most of the readers (for experienced theoreticians, it is standard content; for experimentalists, it is not the most relevant), as such I would recommend displacing them to SM and report only the important results.

      This is an excellent suggestion. We have put a sketch of our calculations in a box in the main text to help orient interested readers. As before, details are in SI.

      Similarly, Equations 2, 3, and 4 are hard to read given the large amount of parameters and the low amount of simplification. Although exploring the effect of the different parameters through Figures 3 and 4 is useful, I think the role of the equations should be reconsidered:

      i. Is it possible to rewrite them in terms of effective variables in a more concise way?

      See Point 3 of Common comments.

      ii. Is it possible to present extreme/particular cases in which they are easier to interpret?

      We have focused on the case where the mutation rate is zero. This makes the mathematical expressions much simpler (see above).

      (3) Is it possible to explain more in detail why the distribution of f_k+1 conditional to f_k^* is well approximated by a Gaussian? Also, have you explored to what extent the results would change if this were not true (in light of the few universal classes for the maximum of independent variables)?

      Despite the appeal to the CLT and the histograms in the Appendix suggesting that the distribution looks a bit like a Gaussian at a certain scale, fluctuations on that scale are not necessarily what is relevant for the results - a rapid (and maybe wrong) attempt at a characteristic function calculation suggests that in your case, one does not obtain convergence to Gaussians unless we renormalize by S(t=0) and F(t=0), so it seems there is a justification missing in the text as is for the validity of this approximation (or that it is simply assumed).

      See point 4 of Common comments.

      Reviewer #3 (Public Reviews):

      The authors address the process of community evolution under collective-level selection for a prescribed community composition. They mostly consider communities composed of two types that reproduce at different rates, and that can mutate one into the other. Due to such differences in 'fitness' and to the absence of density dependence, within-collective selection is expected to always favour the fastest grower, but the collective-level selection can oppose this tendency, to a certain extent at least. By approximating the stochastic within-generation dynamics and solving it analytically, the authors show that not only high frequencies of fast growers can be reproducibly achieved, aligned with their fitness advantage. Small target frequencies can also be maintained, provided that the initial proportion of fast growers is sufficiently small. In this regime, similar to the 'stochastic corrector' model, variation upon which selection acts is maintained by a combination of demographic stochasticity and of sampling at reproduction. These two regions of achievable target compositions are separated by a gap, encompassing intermediate frequencies that are only achievable when the bottleneck size is small enough or the number of communities is (disproportionately) larger.

      A similar conclusion, that stochastic fluctuations can maintain the system over evolutionary time far from the prevalence of the faster-growing type, is then confirmed by analyzing a three-species community, suggesting that the qualitative conclusions of this study are generalizable to more complex communities.

      I expect that these results will be of broad interest to the community of researchers who strive to improve community-level selection, but are often limited to numerical explorations, with prohibitive costs for a full characterization of the parameter space of such embedded populations. The realization that not all target collective functions can be as easily achieved and that they should be adapted to the initial conditions and the selection protocol is also a sobering message for designing concrete applications.

      A major strength of this work is that the qualitative behaviour of the system is captured by an analytically solvable approximation so that the extent of the 'forbidden region' can be directly and generically related to the parameters of the selection protocol.

      Thanks so much for these positive comments.

      I however found the description of the results too succinct and I think that more could be done to unpack the mathematical results in a way that is understandable to a broader audience. Moreover, the phenomenon the authors characterize is of purely ecological nature. Here, mutations of the growth rate are, in my understanding, neither necessary (non-trivial equilibria can be maintained also when \mu =0) nor sufficient (community-level selection is necessary to keep the system far from the absorbing state) for the phenomenon described. Calling this dynamics community evolution reflects a widespread ambiguity, and is not ascribable just to this work. I find that here the authors have the opportunity to make their message clearer by focusing on the case where the 'mutation' rate \mu vanishes (Equations 39 & 40 of the SI) - which is more easily interpretable, at least in some limits - while they may leave the more general equations 3 & 4 in the SI.

      See points 1-4 of Common comments.

      Combined with an analysis of the deterministic equations, that capture the possibility of maintaining high frequencies of fast growers, the authors could elucidate the dynamics that are induced by the presence of a second level of selection, and speculate on what would be the result of real open-ended evolution (not encompassed by the simple 'switch mutations' generally considered in evolutionary game theory), for instance discussing the invasibility (or not) of mutant types with slightly different growth rates.

      Indeed, evolution is not restricted to two types. However, our main goal here is to derive an analytical expression, and it was difficult for even two types. For three-type collectives, we had to resort to simulations. Investigating the case where fitness effects of mutations are continuously distributed is beyond the scope of this study.

      The single most important model hypothesis that I would have liked to be discussed further is that the two types do not interact. Species interactions are not only essential to achieve inheritance of composition in the course of evolution but are generally expected to play a key role even on ecological time scales. I hope the authors plan to look at this in future work.

      In our system, the S and F do interact in a competitive fashion: even though S and F are not competing for nutrients (which are always in excess), they are competing for space. This is because a fixed number of cells are transferred to the next cycle. Thus, the presence of F will for example reduce the chance of S being propagated. We have added this clarification to our main text:

      “Note that even though S and F do not compete for nutrients, they compete for space: because the total number of cells transferred to the next cycle is fixed, an overabundance of one population will reduce the likelihood of the other being propagated.”

      Recommendations For The Authors

      I felt the authors could put some additional effort into making their theoretical results meaningful for a population of readers who, though not as highly mathematically educated as they are, can nonetheless appreciate the implications of simple relations or scaling. Below, you find some suggestions:

      (1) In order to make it clear that there is a 'natural' high-frequency equilibrium that can be reached even in the absence of selection, the authors could examine first the dynamics of the deterministic system in the absence of mutations, and use its equilibria to elucidate the combined role of the 'fitness' difference \omega and of the generation duration \tau in setting its value. The fact that these parameters always occur in combination (when there are no mutations) is a general and notable feature of the stochastic model as well. Moreover, this model would justify why you only focus on decreasing the frequency in the new generation.

      Note that the ‘natural’ high-frequency equilibrium in the absence of collective selection is when fast grower F becomes fixed in the population. Following your suggestion, we have introduced two parameters 𝑅τ and 𝑊τ to reflect the coupling between ‘fitness’ and ‘generation duration’:

      (2) Since the phenomenon described in the paper is essentially ecological in nature (as the author states, it does not change significantly if the 'mutation rate' \mu is set to zero), I would put in the main text Equations 39 & 40 of the SI in order to improve intelligibility.

      See Point 2 at the beginning of this letter.

      These equations can be discussed in some detail, especially in the limit of small f^*_k, where I think it is worth discussing the different dependence of the mean and the variance of the frequency distribution on the system's parameters.

      This is a great suggestion. We have added the following:

      “In the limit of small , Equation (3) becomes f while Equation (4) becomes . Thus, both Newborn size (N<sub>0</sub>) and fold-change in F/S during maturation (W<sub>τ</sub>) are important determinants of selection progress.

      (3) I would have appreciated an explanation in words of what are the main conceptual steps involved in attaining Equation 2, the underlying hypotheses (notably on community size and distributions), and the expected limits of validity of the approximation.

      See points 3 and 4 at the beginning of this letter.

      (4) I think that some care needs to be put into explaining where extreme value statistics is used, and why is the median of the conditional distribution the most appropriate statistics to look at for characterizing the evolutionary trajectory (which seems to me mostly reliant on extreme values).

      Great point! We added an explanation of using median value in Box 1.

      and also added figure 7 to explaining it in SI.

      Showing in a figure the different distributions you are considering (for instance, plotting the conditional distribution for one generation in the trajectories displayed in Figure 2) would be useful to understand what information \bar f provides on a sequence of collective generations, where in principle there may be memory effects.

      Thanks for this suggestion. We have added to Fig 2d panel to illustrate the shape and position of F frequency distributions in each step in the first two selection cycles.

      (5) Similarly, I do not understand why selecting the 5% best communities should push the system's evolution towards the high-frequency solution, instead of just slowing down the improvement (unless you are considering the average composition of the top best communities - which should be justified). I think that such sensitivity to the selection intensity should be appropriately referenced and discussed in the main text, as it is a parameter that experimenters are naturally led to manipulate.

      In the main text, we have added this explanation:

      “In contrast with findings from an earlier study [23], choosing top 1 is more effective than the less stringent “choosing top 5%”. In the earlier study, variation in the collective trait is partly due to nonheritable factors such as random fluctuations in Newborn biomass. In that context, a less stringent selection criterion proved more effective, as it helped retain collectives with favorable genotypes that might have exhibited suboptimal collective traits due to unfavorable nonheritable factors. However, since this study excludes nonheritable variations in collective traits, selecting the top 1 collective is more effective than selecting the top 5% (see Fig. 11 in Supplementary Information).”

      (6) Equation 1 could be explained in simpler terms as the product between the probability that one collective reaches the transmitted value times the probability that all others do worse than that. The current formulation is unclear, perhaps just a matter of English formulation.

      We have revised our description to state:

      “Equation (1) can be described as the product between two terms related to probability: (i) describes the probability density that any one of the g Adult collectives achieves f given , and (ii) describes the probability that all other g – 1 collectives achieve frequencies above f and thus not selected.”

      (7) I think that the discussion of the dependence of the boundaries of the 'waterfall' region with the difference in growth rate \omega is important and missing, especially if one wants to consider open-ended evolution of the growth rate - which can occur at steps of different magnitude.

      We added a new chapter and figure in supplementary information on the threshold values when \omega varies. As expected, smaller \omega enlarges the success area.

      We have also added a new figure panel to show how maturation time affects selection efficacy.

      (8) Notations are a bit confusing and could be improved. First of all, in most equations in the main text and SI, what is initially introduced as \omega appears as s. This is confusing because the letter s is also used for the frequency of the slow type.

      The letter S is used to denote an attribute of cells (S cells), the type of cells (Equations 1-3 of the SI) and the number of these cells in the population, sometimes with different meanings in the same sentence. This is confusing, and I suggest referring to slow cells or fast cells instead (or at least to S-cells and F-cells), and keeping S and F as variables for the number of cells of the two types.

      All typos related to the notation have been fixed. We use S and F as types, and S and F (italic) and population numbers.

      (9) On page 3, when introducing the sampling of newborns as ruled by a binomial distribution, the information that you are just transmitting one collective is needed, while it is conveyed later.

      We have added this emphasis:

      “At the end of a cycle, a single Adult with the highest function (with F frequency f closest to the target frequency ) is chosen to reproduce g Newborn collectives each with N<sub>0</sub> cells (‘Selection’ and ’Reproduction’ in Fig. 1).”

      (10) I found that the abstract talks too early about the 'waterfall' phenomenon. As this is a concept introduced here, I suggest the authors first explain what it is, then use the term. It is a useful metaphor, but it should not obscure the more formal achievements of the paper.

      We feel that the “waterfall” analogy offers a gentle helping hand to orient those who have not thought much about the phenomenon. We view abstract as an opportunity to attract readership, and thus the more accessible the better.

      (11) In the SI there are numerous typos and English language issues. I suggest the authors read carefully through it, and add line numbers to the next version so that more detailed feedback is possible.

      Thank you for going through SI. We have gone through the SI, and fixed problems.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The present work studies the coevolution of HIV-1 and the immune response in clinical patient data. Using the Marginal Path Likelihood (MPL) framework, they infer selection coefficients for HIV mutations from time-series data of virus sequences as they evolve in a given patient.

      Strengths:

      The authors analyze data from two human patients, consisting of HIV population sequence samples at various points in time during the infection. They infer selection coefficients from the observed changes in sequence abundance using MPL. Most beneficial mutations appear in viral envelop proteins. The authors also analyze SHIV samples in rhesus macaques, and find selection coefficients that are compatible with those found in the corresponding human samples.

      Weaknesses:

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis.

      As suggested, we have now addressed this limitation by inferring epistatic fitness landscapes for CH505, CH848, SHIV.CH505, and SHIV.CH848. Indeed, the computational burden of the epistasis inference procedure was one constraint that motivated us to consider only additive fitness in the previous version of our paper. The original approach developed by Sohail et al. (2022) tested only sequences with <50 sites due to this limitation, far smaller than the ones we consider. Beyond this computational constraint, we also believed that 1) an additive fitness model may suffice to capture local fitness landscapes, and practically, 2) epistatic interactions are more challenging to validate than the effects of individual mutations, making the interpretation of the model more complex.

      However, after performing the analyses described in this paper, we developed a new approach for identifying epistatic interactions that can scale to much longer sequences (Shimagaki et al., Genetics, in press). We therefore applied this method to infer an epistatic fitness landscape for the HIV and SHIV data sets that we studied. As in that work, we focused on short-range (<50 bp) interactions which we could more confidently estimate from data. We have added a section in the SI describing the epistatic fitness model and our analysis. 

      Overall, we found substantial agreement between the epistatic and purely additive models in terms of the estimated fitness effects of individual mutations (new Supplementary Fig. 8) and overall fitness (Supplementary Fig. 9). Consistent with our prior work, we did not find substantial evidence for very strong epistatic interactions (Supplementary Fig. 10). This does not necessarily mean that strong epistatic interactions do not exist; rather, this shows that strong interactions don’t substantially improve the fit of the model to data, and thus many are regularized toward zero. While the biological validation of epistatic interactions is challenging, we found that the largest epistatic interactions, which we defined as the top 1% of all shortrange interactions, were modestly but significantly enriched in the CD4 binding site, V1 and V5 regions for CH505 and in the CD4 binding site, V4, and V5 for CH848. In addition, mutation pairs N280S/V281A and E275K/V281G, which confer resistance to CH235, ranked in the top 15% of all epistatic interactions in CH505.

      We have now included an additional section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which discusses our epistatic analyses (page 6, lines 415-464), along with the above Supplementary Figures and a technical section in the SI summarizing the epistasis inference approach.

      Although the evolution of broadly neutralizing antibodies (bnAbs) is a motivating question in the introduction and discussion sections (and the title), the relevance of the analysis and results to better understanding how bnAbs arise is not clear. The only result presented in direct connection to bnAbs is Figure 6.

      It is true that, while bnAb development is a major motivator of our study, our analysis focuses on HIV-1 and does not directly consider antibody evolution. We have now brought attention to this point as a limitation directly in the Discussion. Following the suggestion below in the “Recommendations for the authors,” we have edited our manuscript to place more emphasis on viral fitness and somewhat reduce the emphasis on bnAbs, though this remains an important motivating factor. Specifically, the Abstract now begins

      Human immunodeficiency virus (HIV)-1 evolves within individual hosts to escape adaptive immune responses while maintaining its capacity for replication. Coevolution between the HIV-1 and the immune system generates extraordinary viral genetic diversity. In some individuals, this process also results in the development of broadly neutralizing antibodies (bnAbs) that can neutralize many viral variants, a key focus of HIV-1 vaccine design. However, a general understanding of the forces that shape virusimmune coevolution within and across hosts remains incomplete. Here we performed a quantitative study of HIV-1 evolution in humans and rhesus macaques, including individuals who developed bnAbs.

      We have similarly modified the Discussion to focus first on viral fitness. In response to comments from Reviewer 3, we have also more clearly articulated how our work might contribute to the understanding of bnAb development in the Discussion.

      Questions or suggestions for further discussion:

      I list here a number of points for which I believe the paper would benefit if additional discussion/results were included.

      The MPL method used by the authors considers only additive effects of mutations, thus ignoring epistasis. In Sohail et al (2022) MBE 39(10), p. msac199  (https://doi.org/10.1093/molbev/msac199) an extension of MPL is developed allowing one to infer epistasis. Can the authors comment on why this was not attempted here?

      I presume one possible reason is that epistasis inference requires considerably more computational effort (and more data). However, since the authors find most beneficial mutations occurring in Env, perhaps restricting the analysis to Env genes only (e.g. the trimer shown in Figure 2) can lead to tractable inference of epistasis within this segment (instead of the full genome).

      As described above, we have now addressed this comment by inferring epistatic fitness landscapes for the data sets that we consider. Our overall results using the epistatic fitness model are consistent with the ones that we previously obtained with an additive model.

      Do the authors find correlations in the inferred selection coefficients of the two samples CH505 and CH848? I could not find any discussion of this in the manuscript. Only correlations between Humans and RM are discussed.

      To address this question, we compared the fitness values and individual selection coefficients across CH505 and CH848 data sets. We found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. We found only 199 common mutations between HIV-1 amino acid sequences from CH505 and CH848 out of 868 and 1,406 total mutations, respectively. Thus, we were not surprised to find no strong relationship between fitness estimates from CH505 and CH848 data sets. 

      Reviewer #2 (Public review):

      Summary:

      This paper combines a biological topic of interest with the demonstration of important theoretical/methodological advances. Fitness inference is the foundation of the quantitative analysis of adapting systems. It is a hard and important problem and this paper highlights a compelling approach (MPL) first presented in (1) and refined in (2), roughly summarized in equation 12.

      (1) Sohail, M. S., Louie, R. H., McKay, M. R. & Barton, J. P. Mpl resolves genetic linkage in fitness inference from complex evolutionary histories. Nature biotechnology 39, 472-479 (2021).

      (2) Shimagaki, K. & Barton, J. P. Bézier interpolation improves the inference of dynamical models from data. Physical Review E 107, 024116 (2023).

      The authors find that positive selection shapes the variable regions of env in shared patterns across two patient donors. The patterns of positive selection are interesting in and of themselves, they confirm the intuition that hyper-variation in env is the result of immune evasion rather than a broadly neutral landscape (flatness). They show that the immune evasion patterns due to CD8 T and naive B-cell selection are shared across patients. Furthermore, they suggest that a particular evolutionary history (larger flux to high fitness states) is associated with bNAb emergence. Mimicking this evolutionary pattern in vaccine design may help us elicit bNAbs in patients in the future.

      There is a lot of information to be found in the full fitness landscape of env. The enormous strength of reversion-to-consensus in the patterns is a known pattern of HIV post-infection populations but they are nicely quantified here. Agreement between SHIV and HIV evolution is shown. They find selection is larger for autologous antibodies than the bNAbs themselves (perhaps bNAbs are just too small a component of the host response to drive the bulk of selection?), and that big fitness increases precede antibody breadth in rhesus macaques, suggesting that this fitness increase is the immune challenge required to draw forth a bNAb. This is all of high interest to HIV researchers.

      Strength of evidence:

      One limitation is, of course, that the fitness model is constant in time when the immune challenge is variable and changing. This simplification may complicate some interpretations.

      We agree that this is a limitation of our current approach. In prior work, we have found that the constant fitness effects of mutations that we infer typically reflect the time-averaged fitness effect when the selection changes over time (Gao and Barton, PNAS 2025; Lee et al., Nat Commun 2025). It could be difficult, however, to capture changes in selection that fluctuate rapidly with underlying immune responses. We have added a new paragraph in the Discussion that more clearly sets out some of the limitations of our analysis, including our assumption of constant selection coefficients.

      There are additional methodological and technical limitations that should be considered in the interpretation of our results. Most notably, we assume that the viral fitness landscape is static in time. While we do not expect selection for effective replication (“intrinsic” fitness) to change substantially over time, pressure for immune escape could vary along with the immune responses that drive them. In prior work, we have found that constant selection coefficients typically reflect the average fitness effect of a mutation when its true contribution to fitness is time-varying [42,43]. This may not adequately description mutational effects that undergo large or rapid shifts in time. Future work should also examine temporal patterns in selection for individual mutations.

      Equation 12 in the methods is really a beautiful tool because it is so simple, but accounts for linkage and can be solved precisely even in the presence of detailed mutational and selection models. However, the reliance on incomplete observations of the frequency leads to complications that must be carefully (re)addressed here.

      For instance, the consistent finding of strong selection in hypervariable regions is biologically intuitive but so striking, that I worry that it might be the result of a bias for selection in high entropy regions. 

      Thank you for this suggestion. We agree that it is important to carefully interrogate these results. To assess the effects of general sequence variability on inferred selection, we first computed a position-specific entropy measure, H<sub >i</sub >, for each site i. We first defined the time-dependent entropy H<sub >i</sub >(t) = - ∑<sub >a</sub> x<sub>i</sub> (a, t) log x<sub>i</sub> (a, t)), where x<sub>i</sub> (a, t) represents the frequency of amino acid/nucleotide a at position i and time t, at each sample time. We then computed H<sub>i</sub> as the average of H<sub>i</sub>(t) across all sample times. A new Supplementary Fig. 1 plots the entropy against the inferred selection coefficients. Although some sequence variation must be observed in order for us to infer that a mutation is beneficial, we did not find a systematic bias toward larger (more beneficial) selection coefficients at more variable sites. Overall, we found only a modest correlation between inferred selection coefficients and entropy (Pearson’s r = 0.33 and 0.29 for CH505 and CH848, respectively), which appears to be partly driven by the tendency for mutations inferred to be significantly deleterious to occur at sites with low entropy. In addition to the new Supplementary Figure, we have added a reference to this analysis in the main text:

      To test whether our results might be biased by overall sequence variability, we examined the relationship between our inferred selection coefficients and entropy, a common measure of sequence variability. Overall, we found only a modest correlation between selection and entropy, suggesting that the signs of selection that we observe are not due to increased sequence variability alone (Supplementary Fig. 1).

      Mutational and covariance terms in equation 12 might be underestimated, due to finite sampling effect in highly diverse populations. Sampling effects lead to zeros in x(t) when actual frequency zeros might be rare at the population sizes of HIV viral loads and mutation rates. Both mutational flux and C underestimation will bias selection upward in eq. 12. 

      The prior papers (1) and (2) seem to show robustness to finite sampling effects, but, again, more care needs to be shown that this robustness transfers to the amino acid inference under these conditions. That synonymous sites are rarely selected for in the nucleotide level is a good sign, and it may be a matter of simply fully explaining the amino-acid level model.

      As above, we agree that these tests are important. To assess the robustness of our results to finite sampling, we performed bootstrap sampling on the viral sequences and inferred selection coefficients using the resampled sequences. Specifically, we resampled the same number of sequences as in the original data at each time point and repeated this for all time points across all HIV-1 and SHIV data sets. A new Supplementary Fig. 11 shows a typical comparison of the original selection coefficients vs. those obtained through bootstrap resampling. Overall, we observe a high degree of consistency between the selection coefficients in each case, which is surely aided by the long time series in these data sets. As pointed out by the reviewer, uncertainty in low-frequency mutations is a particular concern, though the effects on inferred selection are mitigated by regularization. 

      We have added a section in the Results, “Robustness of inferred selection to changes in the fitness model and finite sampling”, which includes this analysis:

      Finite sampling of sequence data could also affect our analyses. To further test the robustness of our results, we inferred selection coefficients using bootstrap resampling, where we resample sequences from the original ensemble, maintaining the same number of sequences for each time point and subject. The selection coefficients from the bootstrap samples are consistent with the original data (see Supplementary Fig. 11), with Pearson’s r values of around 0.85 for HIV-1 data sets and 0.95 for SHIV data sets, respectively.

      Uncertainty propagates to the later parts of the paper, eg. HIV and SIV shared patterns might be the result of shared biases in the method application. However, this worry does not extend to the apples-to-apples comparison of fitness trajectories across individuals (Figures 5 and 6) which I think are robust (for these sample sizes). 

      One way to address this uncertainty is to compare the fitness values and individual selection coefficients across CH505 and CH848 data sets, which was also requested by Reviewer 1. Overall, we found little correlation between CH505 and CH848 fitness values (shown in a new Supplementary Fig. 6) or selection coefficients. This suggests that similarities between HIV-1 and SHIV landscapes are not solely determined by potential biases in the inference approach. We have now added a reference to this point in the main text:

      In contrast, the inferred fitness landscapes of CH505 and CH848, which share few mutations in common, are poorly correlated (Supplementary Fig. 6). This suggests that the similarities between viral fitness values in humans and RMs are not artifacts of the model, but rather stem from similarities in underlying evolutionary drivers.

      The timing evidence is slightly weakened by the fact that bNAb detection is different from bNAb presence and the possibility that fitness increases occurred after the bNAbs appeared remains. Still, their conclusion is plausible and fits in with the other observations which form a coherent and compelling picture.

      Yes, we agree that this is a limitation of our analysis — bNAbs may have been present at low levels before they were detected, and we cannot definitively reject selection by bNAbs. Nonetheless, in at least one case (RM5695), rapid fitness gains were substantially separated in time from bNAb detection (roughly 2 weeks after infection vs. 16 weeks, respectively). We have now added this point in a new paragraph in the Discussion:

      While we found a strong relationship between viral fitness dynamics and the emergence of bnAbs, it may not be true that the former stimulates the latter. For example, bnAbs may have been present within each host before they were experimentally detected. Rapid viral fitness gains within hosts that developed broad antibody responses could then have been driven by undetected bnAb lineages. However, we did not find strong selection for known bnAb resistance mutations, and in at least one case (RM5695), rapid fitness gains (roughly 2 weeks after infection) substantially preceded bnAb detection (16 weeks). Still, given the limited size of the data set that we studied, it is unclear the extent to which our results will transfer to larger and broader data sets.

      Overall thisrpretations could provide valuable insights into the broader significance of these results. is a convincing paper, part of a larger admirable project of accurately inferring complete fitness landscapes.

      Reviewer #3 (Public review):

      Summary:

      Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simianhuman immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.

      Strengths:

      A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance.

      Weaknesses:

      However, the study has some limitations. The most significant weakness is that the authors do not sufficiently discuss the implications of the observed similarities. While the identification of shared evolutionary patterns (e.g., Figure 5) is intriguing, the study would benefit from a more explicit discussion of what these findings mean for instance, in the context of HIV vaccine design, immunotherapy, or fundamental viral-host interactions. Even speculative inte

      Thank you for this suggestion. We have now clarified the potential implications of our work in several areas. While speculative, one possible application is in vaccine design: it may be beneficial to design sequential immunogens to mimic the patterns of viral evolution associated with rapid fitness gains. This “population-based” design principle is different from typical approaches, which have focused on molecular details of virus surface proteins. 

      We have extended our discussion of our results in the context of viral evolution within and across hosts and related host species. Overall, our work suggests that there may be relatively few paths to significantly higher viral fitness in vivo. Evolutionary “contingencies” such as shifting immune pressure or epistatic interactions could influence the direction of evolution, but not so dramatically that the dynamics that we see in different hosts are not comparable. We have also connected our work more broadly to the literature in evolutionary parallelism in HIV-1 in different contexts.

      A secondary, albeit less critical, limitation is the placement of methodological details in the Supplementary Information. While it is understandable that the authors focus on results in the main text - especially since the methodology is not novel and has been previously described in earlier publications - some readers might benefit from a more thorough presentation of the method within the main paper.

      We have now modified the main text to add a new section, “Model overview,” that lays out the key steps of our approach. While we reserve technical details for the Methods, we believe that this new section provides more intuition about how our results were obtained (including a discussion of the important Eq. 12, now Eq. 3 in the main text) and our underlying assumptions.

      Conclusions:

      Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques. While the quantitative comparison between species is a notable contribution, a deeper discussion of its broader implications would strengthen the paper's impact.

      Reviewer #1 (Recommendations for the authors):

      I suggest de-emphasizing bnAbs and focusing on selection landscape inference, which seems to be the actual focus of the paper.

      While we do not directly study antibody development in this work, bnAb development is certainly an important motivating factor. As described in the responses above, we have now modified the Abstract and Discussion to place relatively more emphasis on fitness comparisons and to relatively less focus on bnAb development.  

      Reviewer #2 (Recommendations for the authors):

      Please make sure that the MPL method is defined in this paper and its limitations are at least partially repeated.

      As noted in responses above, we have now included more methodological details in the main text of the paper, which we hope will make the intuition and assumptions involved in our analysis clearer.

      I'd like the code to better show or describe the model, I could not figure out the model details by looking at the code. It seems mostly just to be csv exporting for use with preexisting MPL code. A longer code readme would be helpful.

      We have now updated the README on GitHub to include a conceptual overview of our inference approach, which references how each step is implemented in the code.

      Reviewer #3 (Recommendations for the authors):

      Try to give some more details (not necessarily giving the full mathematical derivation) on the statistical method utilized.

      As noted above, we have now expanded our discussion of the statistical methods and assumptions in the main text.

      Figures 3 and 4 are somewhat 'messy'. Although I do not have a constructive suggestion here, I feel that with a little more effort maybe the authors could come up with something more clean.

      It is true that the mutation frequency dynamics are somewhat “choppy” and difficult to follow intuitively. To attempt to make these figures easier to parse visually, we have increased the transparency on the lines and added exponential smoothing to the mutation frequencies, resulting in smoother trajectories. The trajectories without smoothing are retained in Supplementary Fig. 3. Here we also note that this smoothing is for visual purposes only; we use the original frequency trajectories for inference, rather than the smoothed ones.

    1. Author response:

      Reviewer #1 (Public review)

      Summary:

      Ever since the surprising discovery of the membrane-associated Periodic Skeleton (MPS) in axons, a significant body of published work has been aimed at trying to understand its assembly mechanism and function. Despite this, we still lack a mechanistic understanding of how this amazing structure is assembled in neuronal cells. In this article, the authors report a "gap-and-patch" pattern of labelled spectrin in iPSC-derived human motor neurons grown in culture. The mid-sections of these axons exhibit patches with reasonably well-organized MPS that are separated by gaps lacking any detectable MPS and having low spectrin content. Further, they report that the intensity modulation of spectrin is correlated with intensity modulations of tubulin as well. However, neurofilament fluorescence does not show any correlation. Using DIC imaging, the authors show that often the axonal diameter remains uniform across segments, showing a patch-gap pattern. Gaps are seen more abundantly in the midsection of the axon, with the proximal section showing continuous MPS and the distal segment showing continuous spectrin fluorescence but no organized MPS. The authors show that spectrin degradation by caspase/calpain is not responsible for gap formation, and the patches are nascent MPS domains. The gap and patch pattern increases with days in culture and can be enhanced by treating the cells using the general kinase inhibitor staurosporine. Treatment with the actin depolymerizing agent Latrunculin A reduces gap formation. The reasons for the last two observations are not well understood/explained.

      We thank the reviewer for the detailed and accurate description of the data shown and its relevance to further our understanding of MPS assembly mechanism and function.

      Strengths:

      The claims made in the paper are supported by extensive imaging work and quantification of MPS. Overall, the paper is well written and the findings are interesting. Although much of the reported data are from axons treated with staurosporine, this may be a convenient system to investigate the dynamics of MPS assembly, which is still an open question.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      Much of the analysis is on staurosporine-treated cells, and the effects of this treatment can be broad. The increase in patch-gap pattern with days in culture is intriguing, and the reason for this needs to be checked carefully. It would have been nice to have live cell data on the evolution of the patch and gap pattern using a GFP tag on spectrin. The evolution of individual patches and possible coalescence of patches can be observed even with confocal microscopy if live cell super-resolution observation is difficult.

      We will consider the inclusion of live imaging experiments using the expressión of C-terminus-tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we will explore how to develop these experiments to generate data for inclusion in a revised submission.

      Some more comments:

      (1) Axons can undergo transient beading or regularly spaced varicosity formation during media change if changes in osmolarity or chemical composition occur. Such shape modulations can induce cytoskeletal modulations as well (the authors report modulations in microtubule fluorescence). The authors mention axonal enlargements in some instances. Although they present DIC images to argue that the axons showing gaps are often tubular, possible beading artefacts need to be checked. Beading can be transient and can be checked by doing media changes while observing the axons on a microscope.

      We don´t discard the presence of “nano beads” in these axons. It was recently suggested that the normal morphology of axons is indeed resembling “pearls-on-a-string” (Griswold et al., 2025), with “nano beads” separated by thin tubular "connectors" (also referred to as NSV, for non-synaptic varicosities). However, it is unlikely that the gap-patch pattern of beta2-spectrin can be attributed to such a morphology, given we used formaldehyde as fixative, and Griswold and colleagues show that the use of aldehyde-based fixatives do not preserve NSVs. We are able to see scattered axonal enlargements (“micro beads”), as we described in distal portions in Fig. 1C(C2) and E. However, the number, appearance and staining of these are not compatible with the gap-patch pattern in beta2-spectrin. Moreover, we would have expected to see these NSVs in our extensive STED imaging, yet we did not. We will discuss this further in the resubmission.

      (2) Why do microtubules appear patchy? One would imagine the microtubule lengths to be greater than the patch size and hence to be more uniform.

      Our stainings are for tubulin protein isoforms beta-III and alpha-II. That is, they would label microtubules, but free tubulin as well. The slight decrease in intensity for tubulin within gaps is indeed something to investigate, but we don´t interpret this as “patchy microtubules”. If the Reviewer refers to Fig. 2C-D, it is actually difficult to anticipate the slight decrease in intensity by the naked eye. To further support this, we will consider including stainings and quantitative analyses for microtubules in the resubmission. We are familiar with the use of permeabilizing conditions during fixation (in protocols known as “cytoskeletal fixation” to label microtubules (and not free tubulin).

      (3) Why do axons with gaps increase with days in culture? If patches are nascent MPS that progressively grow, one would have expected fewer gaps with increasing days in culture. Is this indicative of some sort of degeneration of axons?

      We agree with the apparent discrepancy. However, one has to take into account that these axons are still elongating even at 2 weeks in culture. Hence, at any time point, there is a new axonal compartment recently added, and hence, with low beta2-spectrin and no MPS. Also, the dynamical evolution of the MPS has to take into account beta2-spectrin supply. If supply is somehow lower than a given threshold, it is expected that there will be more gaps, given the new, more distant parts of the axons have a lower supply of beta2-spectrin . To explore this formally, we are working on simulations of these multifactorial dynamic systems to better understand this, that together with key experimental observations would enhance our understanding into overall MPS assembly in growing axons. However, findings for this project will be the subject of another manuscript.

      (4) It is surprising that Latrunculin A reduces gap formation induced by staurosporine (also seems to increase MPS correlation) while it decreases actin filament content. How can this be understood? If the idea is to block actin dynamics, have the authors tried using Jasplakinolide to stabilize the filaments?

      The results with the co-treatment with Latrunculin A and Staurosporine are indeed intriguing, and provide clear evidence that the gap-and-patch pattern arises from local assembly of the MPS, requiring new actin filaments. However, the fact that F-actin within the pre-formed MPS seems unaffected is not surprising. There are many different populations of F-actin in axons (i.e. MPS rings, longitudinal filaments, actin patches, actin trails). Latrunculin A affects filaments indirectly. The target of Latrunculin A is not actin filaments, but free monomers. It ultimately affects actin filaments as they end up losing monomers, and devoid of new monomers, filaments get shorter and eventually disappear. The drastic decrease in F-actin in our axons reflects that. The fact that F-actin in the MPS is preserved only speaks to the fact that these filaments are stable -if they are not losing monomers in the time frame of the treatment, the filament remains unaffected. We will support this with more observations and imaging and with a more extensive discussion summarizing the literature on the matter in the resubmission.

      On the other hand, the use of F-actin stabilizing drugs (like Jasplakinolide) would have a different effect. We will study how an experiment with these drugs could be informative of the process under investigation for the resubmission

      (5) The authors speculate that the patches are formed by the condensation of free spectrins, which then leaves the immediate neighborhood depleted of these proteins. This is an interesting hypothesis, and exploring this in live cells using spectrin-GFP constructs will greatly strengthen the article. Will the patch-gap regions evolve into continuous MPS? If so, do these patches expand with time as new spectrin and actin are recruited and merge with neighboring patches, or can the entire patch "diffuse" and coalesce with neighboring patches, thus expanding the MPS region?

      We agree with the reviewer's interpretation. A virtue of our experimental model and our interpretations of the observations in fixed cells is that it gives rise to informative questions such as the ones posed by the reviewer. As stated above, we will consider the inclusion of live imaging experiments using the expressión of C-terminus tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we think we can provide the evidence suggested.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Gazal et al. describe the presence of unique gaps and patches of BetaII-spectrin in medial sections of long human motor neuron axons. BII-spectrin, along with Alpha-spectrin, forms horizontal linkers between 180nm spaced F-actin rings in axons. These F-actin rings, along with the spectrin linkers, form membrane periodic structures (MPS) which are critical for the maintenance of the integrity, size, and function of axons. The primary goal of the authors was to address whether long motor axons, particularly those carrying familial mutations associated with the neurodegenerative disorder ALS, show defects in gaps and patches of BetaII-spectrin, ultimately leading to degradation of these neurons.

      We thank the reviewer for the detailed and accurate description of the data shown.

      Strengths:

      The experiments are well-designed, and the authors have used the right methods and cutting-edge techniques to address the questions in this manuscript. The use of human motor neurons and the use of motor neurons with different familial ALS mutations is a strength. The use of isogenic controls is a positive. The induction of gaps and patches by the kinase inhibitor staurosporine and their rescue by Latrunculin A is novel and well-executed. The use of biochemical assays to explore the role of calpains is appropriate and well-designed. The use of STED imaging to define the periodicity of MPS in the gaps and patches of spectrin is a strength.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      The primary weakness is the lack of rigorous evaluation to validate the proposed model of spectrin capture from the gaps into adjacent patches by the use of photobleaching and live imaging. Another point is the lack of investigation into how gaps and patches change in axons carrying the familial ALS mutations as they age, since 2 weeks is not a time point when neurodegeneration is expected to start.

      We will consider the inclusion of live imaging experiments using the expressión of tagged human beta2-spectrin in the revised version of the manuscript. We are familiar with live-imaging and FRAP experiments and we believe we can provide the evidence suggested. We don't discard the notion that axons carrying familial ALS mutations will show defects in MPS formation and/or stability when observed at longer culture times, or under culture conditions that promote neuronal aging (Guix et al., 2021). Thus, we will continue to work with these cells, but the goal of that project lies well beyond the primary message of the present manuscript, and we anticipate that the revised version will not include new data on this matter. 

      Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      We thank the reviewer for the positive comments on the manuscript, the techniques used and the proposed model.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      We will further explore the inclusion of more measurements of other parameters and variables towards establishing whether these gaps-and-patches patterns are equivalent structures in control and staurosporine-treated cells. 

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

      As stated before regarding similar comments by other reviewers, we will consider the inclusion of live imaging experiments in the revised version of the manuscript.

      Nicolas Unsain, PhD, and Thomas Durcan, PhD.

      References

      Griswold, J.M., Bonilla-Quintana, M., Pepper, R. et al. Membrane mechanics dictate axonal pearls-on-a-string morphology and function. Nat Neurosci 28, 49–61 (2025). https://doi.org/10.1038/s41593-024-01813-1

      Guix F.X., Marrero Capitán A., Casadomé-Perales A., Palomares-Pérez .I, López Del Castillo I., Miguel V., Goedeke L., Martín M.G., Lamas S., Peinado H., Fernández-Hernando C., Dotti C.G. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021 Jun 28;4(8):e202101055. doi: 10.26508/lsa.202101055. Print 2021 Aug.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      The authors describe a massively parallel reporter assays (MPRA) screen focused at identifying polymorphisms in 5' and 3' UTRs that affect translation efficiency and thus might have a functional impact on cells. The topic is of timely interest, and indeed, several related efforts have recently been published and preprinted (e.g., https://pubmed.ncbi.nlm.nih.gov/37516102/ and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635273/). This study has several major issues with the results and their presentation.

      Major comments:

      • The main issue remains that it appears that the screen has largely failed, and the reasons for that remain unclear, which make it difficult to interpret how useful is the resulting data. The authors mention batch effects as a potential contributor. The authors start with a library that includes ~6,000 variants, which makes it a medium-size MPRA. But then, only 483 pairs of WT/mutated UTRs yield high confidence information, which is already a small number for any downstream statistical analysis, particularly since most don't actually affect translation in the reporter screen setting (which is not unexpected). It is unclear why >90% of the library did not give high-confidence information. The profiles presented as base-case examples in Fig. 2B don't look very informative or convincing. All the subsequent analysis is done on a very small set of UTRs that have an effect, and it is unclear to this reviewer how these can yield statistically significant and/or biologically-relevant associations.

      • From the variants that had an effect, the authors go on to carry out some protein-level validations, and see some changes, but it is not clear if those changes are in the same direction was observed in the screen. In their rebuttal the authors explain that they largely can not infer directionality of changes form the screen, which further limits its utility.

      • It is particularly puzzling how the authors can build a machine learning predictor with >3,000 features when the dataset they use for training the model has just a few dozens of translation-shifting variants.

      We recognize that RNA distribution within polysomes is inherently less stable than the associated protein components. This instability has been noted in previous studies, including those cited by the reviewer, which used RNA from bulk polysomes to infer the translatome without fractionation. Acknowledging this limitation, we purposely adopted a conservative strategy: (i) performing gross fractionation of polysomes, and (ii) collaborating with biostatisticians at the Institute of Statistical Science, Academia Sinica, to design a conservative yet optimized analysis pipeline that minimized batch effects.

      This approach proved robust: representative cases in Fig. 2B clearly demonstrate distinct distributions of reference and alternative alleles. From our high-confidence dataset, we applied a well-established statistical framework specifically designed to accommodate multiple influencing factors in relatively small datasets (Elements of Statistical Learning by Hastie, Tibshirani, and Friedman). We further conducted sensitivity analyses to select an optimal QC cutoff across a range of stringencies, ensuring maximal reliability of our results. We have therefore successfully shortlisted UTR variants which have strong effect on translation.

      Building upon these conservative measures, we developed a predictive model for translation effects of UTR variants. Importantly, this model was validated not only with our internal test dataset but also with independent external datasets. In addition, the sequence features identified by the model were validated through reporter assays and in vivo CRISPR editing. These external and functional validations establish the generalizability and robustness of our approach.

      A more detailed analysis of the directionality of changes in translation efficiency is under active investigation. These results will be reported in a separate manuscript currently in preparation.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors describe a massively parallel reporter assays (MPRA) screen focused on identifying polymorphisms in 5' and 3' UTRs that affect translation efficiency and thus might have a functional impact on cells. The topic is of timely interest, and indeed, several related efforts have recently been published and preprinted (e.g., https://pubmed.ncbi.nlm.nih.gov/37516102/ and https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10635273/). This study has several major issues with the results and their presentation.

      Major comments:

      (1) The main issue is that it appears that the screen has largely failed, yet the reasons for that are unclear, which makes it difficult to interpret. The authors start with a library that includes approximately 6,000 variants, which makes it a medium-sized MPRA. But then, only 483 pairs of WT/mutated UTRs yield highconfidence information, which is already a small number for any downstream statistical analysis, particularly since most don't actually affect translation in the reporter screen setting (which is not unexpected). It is unclear why >90% of the library did not give high-confidence information. The profiles presented as basecase examples in Figure 2B don't look very informative or convincing. All the subsequent analysis is done on a very small set of UTRs that have an effect, and it is unclear to this reviewer how these can yield statistically significant and/or biologically relevant associations.

      To make sure our final results are technically and statistically sound, we applied stringent selection criteria and cutoffs in our analytics workflow. First, from our RNA-seq dataset, we filtered the UTRs with at least 20 reads in a polysome profile across all three repeated experiments. Secondly, in the following main analysis using a negative binomial generalized linear model (GLM), we further excluded the UTRs that displayed batch effect, i.e. their batch-related main effect and interaction are significant. We believe our measure has safeguarded the filtered observations (UTRs) from the (potential) high variation of our massively parallel translation assays and thus gives high confidence to our results.

      Regarding the interpretation of Figure 2B, since we aimed to identify the UTRs whose interaction term of genotype and fractions is significant in our generalized linear model, it is statistically conventional to doublecheck the interaction of the two variables using such a graph. For instance, in the top left panel of Figure 2B (5'UTR of ANK2:c.-39G>T), we can see that read counts of WT samples congruously decreased from Mono to Light, whereas the read counts of mutant samples were roughly the same in the two fractions – the trend is different between WT and mutant. Ergo, the distinct distribution patterns of two genotypes across three fractions in Figure 2B offer the readers a convincing visual supplement to our statistics from GLM.

      In contrast to Figure 2B, the graphs of nonsignificant UTRs (shown below) reveal that the trends between the two genotypes are similar across the 'Mono and Light' and 'Light and Heavy' polysome fractions. Importantly, our analysis remains unaffected by differential expression levels between WT and mutant, as it specifically distinguishes polysome profiles with different distributions. This consistent trend further supports the lack of interaction between genotype and polysome fractions for these UTRs.

      Author response image 1.

      Examples of non-significant UTR pairs in massively parallel polysome profiling assays.

      (2) From the variants that had an effect, the authors go on to carry out some protein-level validations and see some changes, but it is not clear if those changes are in the same direction as observed in the screen.

      To infer the directionality of translation efficiency from polysome profiles, a common approach involves pooling polysome fractions and comparing them with free or monosome fractions to identify 'translating' fractions. However, this method has two major potential pitfalls: (i) it sacrifices resolution and does not account for potential bias toward light or heavy polysomes, and (ii) it fails to account for discrepancies between polysome load and actual protein output (as discussed in https://doi.org/10.1016/j.celrep.2024.114098 and https://doi.org/10.1038/s41598-019-47424-w). Therefore, our analysis focused on the changes within polysome profiles themselves. 'Significant' candidates were identified based on a significant interaction between genotype and polysome distribution using a negative binomial generalized linear model, without presupposing the direction of change on protein output. 

      (3) The authors follow up on specific motifs and specific RBPs predicted to bind them, but it is unclear how many of the hits in the screen actually have these motifs, or how significant motifs can arise from such a small sample size.

      We calculated the Δmotif enrichment in significant UTRs versus nonsignificant UTRs using Fisher’s exact test. For example, the enrichment of the Δ‘AGGG’ motif in 3’ UTRs is shown below:

      Author response table 1.

      This test yields a P-value of 0.004167 by Fisher’s exact test. The P-values and Odds ratios of Δmotifs in relation to polysome shifting are included in Supplementary Table S4, and we will update the detailed motif information in the revised Supplementary Table S4.

      (4) It is particularly puzzling how the authors can build a machine learning predictor with >3,000 features when the dataset they use for training the model has just a few dozens of translation-shifting variants.

      We understand the concern regarding the relatively small number of translation-shifting variants compared to the large number of features. To address this, we employed LASSO regression, which, according to The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman, is particularly suitable for datasets where the number of features 𝑝𝑝 is much larger than the number of samples 𝑁𝑁. LASSO effectively performs feature selection by shrinking less important coefficients to zero, allowing us to build a robust and generalizable model despite the limited number of variants.

      (5) The lack of meaningful validation experiments altering the SNPs in the endogenous loci by genome editing limits the impact of the results.

      Following the reviewer’s suggestion, we assessed the endogenous mutant effect by generating CRISPR knock-in clones carrying the IRF6:c.-4609G>A variant. We showed that this G>A variant generate a deleterious upstream open reading frame, which dramatically reduced protein expression of the main open reading frame (Fig. 7B-D). The genome editing further demonstrated the G>A variant reduced endogenous IRF6 protein expression to 23% or 44% in two independent clones. We have incorporated the genome editing results in the revised  main text and the new Figure 7E&F: 

      “To further validate the endogenous effect of the novel upstream ATG (uATG), we generated CRISPR knockin clones carrying the IRF6:c.-4609G>A variant and examined its impact on gene expression. The introduction of the uATG reduced RNA levels to 88% and 37% of the wild-type in two independent clones (Fig. 7E), and protein levels to 44% and 23%, respectively (Fig. 7F), resulting in an overall reduction of translation efficiency to 50–62%.“ (p.18)

      Reviewer #2 (Public Review):

      Summary:

      In their paper "Massively Parallel Polyribosome Profiling Reveals Translation Defects of Human DiseaseRelevant UTR Mutations" the authors use massively parallel polysome profiling to determine the effects of 5' and 3' UTR SNPs (from dbSNP/ClinVar) on translational output. They show that some UTR SNPs cause a change in the polysome profile with respect to the wild-type and that pathogenic SNPs are enriched in the polysome-shifting group. They validate that some changes in polysome profiles are predictive of differences in translational output using transiently expressed luciferase reporters. Additionally, they identify sequence motifs enriched in the polysome-shifting group. They show that 2 enriched 5' UTR motifs increase the translation of a luciferase reporter in a protein-dependent manner, highlighting the use of their method to identify translational control elements.

      Strengths:

      This is a useful method and approach, as UTR variants have been more difficult to study than coding variants. Additionally, their evidence that pathogenic mutations are more likely to cause changes in polysome association is well supported.

      Weaknesses:

      The authors acknowledge that they "did not intend to immediately translate the altered polysome profile into an increase or decrease in translation efficiency, as the direction of the shift was not readily evident. Additionally, sedimentation in the sucrose gradient may have been partially affected by heavy particles other than ribosomes." However, shifted polysome distribution is used as a category for many downstream analyses. Without further clarity or subdivision, it is very difficult to interpret the results (for example in Figure 5A, is it surprising that the polysome shifting mutants decrease structure? Are the polysome "shifts" towards the untranslated or heavy fractions?)

      Our approach, combining polysome fractionation of the UTR library with negative binomial generalized linear model (GLM) analysis of RNA-seq data, systematically identifies variants that affect translational efficiency. The GLM model is specifically designed to detect UTR pairs with significant interactions between genotype and polysome fractions, relying solely on changes in polysome profiles to identify variants that disrupt translation. Consequently, our analytical method does not determine the direction of translation alteration.

      Following the massively parallel polysome profiling, we sought to understand how these polysome-shifting variants influence the translation process. To do this, we examined their effects on RNA characteristics related to translation, such as RBP binding and RNA structure. In Figure 5A, we observed a notable trend in significant hits within 5’ UTRs—they tend to increase ΔG (weaker folding energy) in response to changes in polysome profiles, regardless of whether protein production increases or decreases (Fig. 3).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      (1) Figure 3A - the claim that 5'UTR variants had a stronger effect than 3'UTR is based on the two UTRs with the strongest effect. It is unclear how these differences between 5' and 3'UTRs are significant.

      We carried out a Wilcoxon rank-sum test to examine the mut/WT fold change of translation efficiency between the 3’ and 5’ UTR variants. The results showed that the 5’ UTR variants exhibited a greater change of translation efficiency. We have inserted this result in the revised Figure 3C and refers to this figure in the main text: “Furthermore, we observed that 5’ UTR variants had a greater impact on translation activity relative to 3’ UTR variants (Fig. 3C).” (p. 12)

      (2) Figures 2B and S1, S2 - what is the meaning of less signal for a light chain and a similar signal for a heavy chain? How can this situation, while being a significant difference between the profiles, lead to a biologically relevant difference in eventual protein output?

      Taking 3’UTR ACADSB:c.*4177G>A (bottom-left panel in Figure 2B) as an example: WT transcripts have less read count (in the unit of log(CPM)) compared with the transcripts carrying the mutant UTR in the light polysome-containing fraction, whereas the read counts of the two genotypes are approximately the same in the heavy polysome-containing fraction.

      In line with our reply to Reviewer 1’s major comment 1, we aimed to identify the UTRs whose interaction term of genotype and fractions is significant in our generalized linear model (GLM). That is, the UTR pairs whose WT and mutant have different trends across the fractions (Mono to Light & Light to Heavy) are our targets. In Figure 2B, 3’UTR ACADSB:c.*4177G>A is a perfect example of our significant hits, as it displays the clear distinction of the trends of the two genotypes across three fractions.

      It is widely known that the alteration of polysome profiling distribution indicates the change of translational efficiency. Our GLM model helped us identify the UTR pairs whose WT and mutant have different polysome profiling patterns and thus likely have distinct translational efficiency. Nevertheless, since we only had limited polysome fractions in our experiments, we further validated our significant hits and confirmed the direction of regulation using luciferase reporter assay.

      (3) The paragraph starting with "Even with the high confidence dataset, we did not intend to immediately translate the altered polysome profile into an increase or decrease in translation efficiency" is confusing. The whole premise of the screen used by the authors is that polysome profiling is a useful proxy for estimating levels of translation, so claiming that it doesn't necessarily measure translation is counterintuitive.

      In line with our reply to the last question, our goal is to use the alteration of polysome profiling patterns as a proxy for the change of translational efficiency. However, due to the limited number of fractions in our experiment, we could not directly infer the direction of regulation, i.e. increase or decrease of translational efficiency, of the statistically significant variants. That is why we refrained from making any conclusion about the direction of the regulation for the significant hits and proceed to validate them using luciferase reporter assay.

      (4) Figure S5A - this is normalized to the nucleotide distribution in 5' or 3'UTRs? Is this statistic being applied to 27 SNPs in 3'UTRs?

      To identify sequence features associated with altered polysome association, we systematically analyzed both significant and nonsignificant UTRs for nucleotide and motif-level changes. Fisher’s exact test was employed to evaluate whether specific nucleotide or motif alterations were enriched or depleted in polysome-shifting UTRs, compared to nonsignificant UTR pairs. For example, in the case of nucleotide C (see table below; also Table S4 and new Fig. S6A), only four significant 3’ UTRs involved a change in C, resulting in a significant depletion of this nucleotide change among polysome-shifting 3’ UTRs (odds ratio = 0.22, p = 0.0069). Expanding this approach to all 1-7 nt motifs, we identified multiple motif and nucleotide changes that were significantly associated with altered polysome association.

      Author response table 2.

      (5) "uATG in the 5' UTR was not identified by the model as a widespread feature explaining polysome shifting". Is this because of the method of ribosome profiling or because of the sequences in the library? Can having more sequences in the library specifically looking at 5'UTR give more power for such an effect to emerge?

      Our assay design accounted for the presence of upstream ATG codons and the strength of adjacent Kozak sequences. However, additional factors known to influence the function of upstream open reading frames (uORFs)—such as the reading frame of the uORF relative to the main coding sequence, and the use of nonATG initiation codons—were not systematically included. As a result, the current assay may have limited sensitivity in detecting uORF-related regulatory effects. A dedicated design specifically tailored to uORF variants is likely to enhance the detection power and better capture their contribution to translational control.

      (6) Figure 7B- it is not clear whether the luciferase reporter and the GFP reporter in the library function in a similar manner; is it creating out-of-frame or in of in frame uORF? Also, it is not clear if the differences are statistically significant.

      In the MPRA library, the IRF6 uORF is out of frame relative to the GFP coding sequence. To directly assess its translational impact, we employed a luciferase reporter assay by fusing luciferase downstream of the IRF6 uORF. These constructs revealed a significant reduction in protein production, as shown in Figures 3 and 7B–F. Although the clinically relevant IRF6 uORF is out-of-frame with the main ORF, we engineered an inframe uORF variant to validate translation initiation at the upstream ATG (uATG) (Fig. 7B-D). The in-frame construct confirmed uATG usage and led to a significant reduction in luciferase protein expression. Together, these results support the conclusion that the IRF6:c.-4609G>A variant gives rise to an active uORF that suppresses translation of the main ORF.

      Reviewer #2 (Recommendations For The Authors):

      (1) It would be helpful for the authors to subcategorize their data in ways that they consider meaningful and interpretable (e.g. shifts from all monosome to heavy, all heavy to monosome/free, etc.) Relatedly, what do the authors think the functional meaning is when a given transcript has high mono/heavy occupancy but low light occupancy (like what is shown in Figure 2B for ANK2) in the polysome profiling experiment? It is not apparent why a transcript with a high ribosome occupancy (heavy) would also have light occupancy (light).

      From the amplicon sequencing data, we obtained read counts for each UTR variant across the monosome, light, and heavy polysome fractions. Notably, this approach does not preserve the original relative abundance of transcripts among the three fractions. That is, despite a greater abundance of mRNAs in the heavy polysome fraction, comparable numbers of sequencing reads were recovered from the monosome and light fractions. As a result, this method is not suitable for interpreting the global directionality of translational shifts but is well-suited for detecting relative differences in polysome association. Therefore, our experimental and analytical design—combining targeted amplicon sequencing with generalized linear modeling (GLM)—was optimized to identify UTR variants that alter polysome association, independently of absolute transcript abundance in each fraction.

      (2) The method put forward in Figure 2 would be more convincing if there was data showing reproducibility in the massively parallel reporter assay. Perhaps the mut/WT ratio for all transcripts can be plotted against each other and a statistical test of correlation can be performed.

      Thank you for pointing this out. To demonstrate the reproducibility of our massively parallel reporter assay, we have plotted scatter plots of the ratios of all transcripts (summing the monosome, light, and heavy fractions) across different batches using our high-confidence dataset. We calculated the Pearson correlation coefficients and corresponding p-values for these comparisons. The results show strong correlation between each batch, supporting the reproducibility of our assay. We have incorporated this analysis in the main text as well as Supplemental Figure 3: “Pearson correlation analysis revealed R coefficients ranging from 0.59 to 0.71 for the mut-to-WT transcript ratios across three independent experiments (Supplemental Fig. 3).”

      (3) The dots in Figure 2B indicate separate experiments, but the y-axis is log(counts). Values could be normalized (perhaps a ratio of mut/WT) for comparison between experiments.

      We aimed to compare UTR distribution across polysome fractions and recognized the importance of presenting the distribution patterns for both genotypes. This approach allows us to more clearly illustrate the differences or similarities in polysome association between the two genotypes.

      (4) When describing the 5' UTRs used for the validation experiments in Figure 3, more information about the 5' UTR sequence used is necessary. It is not clear how much or what part of the 5' UTRs were removed, or why this was necessary considering the same experiment was conducted using full-length UTRs.

      In the initial library design, technical limitations of bulk oligonucleotide synthesis constrained the UTRs to 155 nucleotides, comprising 115-nt of endogenous human UTR sequence flanked by 20-nt priming sites on both ends. Variants were centered at the 58th nucleotide within the 115-nt UTR sequence. When one flanking region of the native UTR was shorter than 57 nt, the variant was shifted accordingly toward the shorter arm to maintain the 115-nt UTR length (Fig. 2A).

      Given that endogenous UTRs in the human genome are often longer than 155 nt, we further evaluated the functional consequences of variants within full-length UTR sequences (Fig. 3B). While the mutant effects observed in the library setting were largely recapitulated, their magnitude was diminished in the full-length context, likely due to the increased sequence and structural complexity.

      To clarify the experimental design related to Figure 3, we modified the text as the following: “The variants significantly altering the polysome profile were then individually validated by means of high-sensitivity luciferase reporter assays (Fig. 3A). To that end, we resynthesized both the variant and corresponding wildtype alleles in the same library format - 115-nt native UTR segments centered on the variant and flanked by 20-nt priming sites. These UTRs were then cloned upstream (5’) or downstream (3’) of the firefly luciferase coding sequence, depending on their genomic location.” (p. 11)

      (5) The conclusions from inserting RBP-binding motifs into 5' UTRs and assaying translational output (Figure 4) would be strengthened by including luciferase reporters containing endogenous 5' UTRs containing these motifs, and versions where the motifs are disrupted.

      Several variants that altered translation efficiency were validated in their native sequence contexts, including 5’ UTR variants in DMD and NF1 that affect SRSF1/2 binding sites, as well as a 3’ UTR variant in AL049650.1 that impacts a KHSRP binding site (Fig. 3 and Supplemental Figs. S1 & S2). To address the functional relevance of these variants within their native regulatory landscapes, we have incorporated the following clarification into the text (p. 13): “This observation is consistent with additional findings where variants that create or disrupt specific RBP binding sites—such as SRSF1/2 (e.g., in DMD and NF1; Fig. 2 and Supplementary Fig. S4) and KHSRP (e.g., in AL049650.1; Fig. 2 and Supplementary Figs. S4 & S5)—led to significant changes in translation efficiency within their native UTR contexts.”

      (6) Figure 5C shows that 5' UTR SNPs that form an uAUG are associated with greater structural changes, but this does not "indicate" that "structure‐modifying UTR variants may control primary ORF translation partly by interfering with translation initiation from a uORF." The data presented in Figure 5 and luciferase/polysome data presented previously do not distinguish whether translation is occurring at an uAUG or canonical AUG. The statement quoted above is speculative and it should be clear that it is a hypothesis generated by the data and is not conclusive.

      We appreciate the reviewer’s suggestion. We have therefore modified our text to: ”Therefore, while changes in uATG may not be common explanatory factors for polysome-shifting mutations, our results suggest that structure-modifying UTR variants may control primary ORF translation partly by interfering with translation initiation from a uORF.” (p. 14)

      Minor points/questions

      (1) The authors should clarify whether during library construction for massively parallel polysome profiling the 3' UTR constructs contain a common 5' UTR? Likewise, do the 5' UTR constructs contain a common 3' UTR? Perhaps the lack of a 5' UTR in the 3' UTR constructs, which is implied by Figure 2A, would influence differences seen between 3' UTR pairs (and likewise for 5' UTR pairs).

      There are short common 5’ UTRs appended to the 3’ UTR library, and likewise, a common short 3’ UTR is included in the 5’ UTR library. The common 5’ UTR comprises partial sequences from the CMV promoter and the plasmid backbone of pEGFP-N1 vector. The common 3’ UTR includes sequences from the pEGFP-N1 backbone and a short polyadenylation signal from HBA1 (hemoglobin subunit alpha 1). While we cannot entirely rule out potential crosstalk between 5’ and 3’ UTRs, the design ensures that all constructs are compared in a controlled and consistent context, enabling valid pairwise comparisons between variant and wildtype alleles.

      To clarify the library design, we have revised the main text to include this explanation: 

      “The entire library of UTR oligonucleotides (UTR library) was subsequently ligated upstream or downstream of an enhanced GFP (EGFP) coding region, along with a CMV promoter and a common UTR sequence on the opposite end. Cells transfected with the UTR library were treated with cycloheximide 14 hours post transfection and then subjected to polysome fractionation (see Methods).” (p.11) 

      “The variants significantly altering the polysome profile were then individually validated through highsensitivity luciferase reporter assays (Fig. 3A). To this end, we resynthesized both the variant and corresponding wildtype alleles in the same library format - 115-nt native UTR segments centered on the variant and flanked by 20-nt priming sites. These UTRs were then cloned upstream (5’) or downstream (3’) of the firefly luciferase coding sequence, depending on their genomic location. As the initial library design, the test UTR segment differs only by one nucleotide, while a shared short UTR fragment is present on the opposite end of the coding sequence to ensure consistency across constructs (Fig. 2A).” (p. 12)

      (2) The lines connecting the polysome distribution points make the plots appear busy and difficult to read, the data would be easier to interpret if they were removed.

      We employed a generalized linear model (GLM) to identify the variants that altered the polysome association of the corresponding transcripts. Statistically speaking, we were looking for the variants which led to significant interaction between genotype and polysome fractions. Ergo, displaying the lines as it is in our plots offers readers a convincing visualization of the interaction: lines from WT and Mut groups were not parallel, which indicates the interaction between genotype and polysome fractions. Moreover, showing the lines from three batches of experiments also helps us ascertain the reproducibility of our experiments. Taken all together, the presence of the lines makes our plots even more informative.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      “In their current study, Cummings et al have approached this fundamental biochemical problem using a combination of purified enzyme-substrate reactions, MS/MS, and microscopy in vitro to provide key insights into the hierarchy of generating polyglycylation in cilia and flagella. They first establish that TTLL8 is a monoglycylase, with the potential to add multiple mono glycine residues on both α- and β-tubulin. They then go on to establish that monoglycylation is essential for TTLL10 binding and catalytic activity, which progressively reduces as the level of polyglycylation increases. This provides an interesting mechanism of how the level of polyglycylation is regulated in the absence of a deglycylase. Finally, the authors also establish that for efficient TTLL10 activity, it is not just monoglycylation, but also polyglutamylation that is necessary, giving a key insight into how both these modifications interact with each other to ensure there is a balanced level of PTMs on the axonemes for efficient cilia function.”

      Strengths: 

      The manuscript is well-written, and experiments are succinctly planned and outlined. The experiments were used to provide the conclusions to what the authors were hypothesising and provide some new novel possible mechanistic insights into the whole process of regulation of tubulin glycylation in motile cilia.”

      We thank the reviewer for their support of our study and recognition of its importance to understanding microtubule glycylation and its regulation.  

      “The initial part of the manuscript where the authors discuss about the requirement of monoglycylation by TTLL8 is not new. This was established back in 2009 when Rogowski et al (2009) showed that polyglycylation of tubulin by TTLL10 occurs only when co-expressed in cells with TTLL3 or TTLL8. So, this part of the study adds very little new information to what was known. “

      Our study provides the first in vitro evidence with purified recombinant components that human TTLL8 is exclusively a monoglycylase (Figure 1) and that polyglycylation by TTLL10 requires previous priming with monoglycylation (Figure 2). Studies with purified recombinant components are the gold standard for establishing the activity of an enzyme as cellular work can be obfuscated by the activity of other regulators. We did cite in our original submission the work by Rogowski, Gaertig and Janke from 2009 (reference 15 in the original submission) as well as that Ikegami and Setou 2009 work (reference 26 in the original submission) that established that TTLL10 polygyclylase activity requires co-expression with TTLL8 in cells. Specifically, we stated in our original submission and in the revised manuscript:

      “Cellular overexpression studies coupled with the use of antibodies that recognize mono- and polyglycylation indicate that TTLL8 is also a glycyl-initiase, while TTLL10 a glycyl-elongase (15, 26).  However, direct biochemical evidence with purified enzymes for segregated initiation and elongation activity for glyclases is still lacking as does knowledge of their substrate specificity and regulation.” 

      In addition to citing the Setou study, we now cite again the Rogowski, Gaertig and Janke 2009 study later in the manuscript when the cellular data are mentioned again.  Specifically, we state in the revised manuscript: 

      “This is consistent with cellular overexpression data which showed that polyglycylation signal was detected via antibody only in tubulin from cells that co-expressed TTLL8 and TTLL10, but not TTLL10 alone (15, 26).”

      “The study also fails to discuss the involvement of the other monoglycylase, TTLL3 in the entire study, which is a weakness as in vivo, in cells, both the monoglycylases act in concert and so, may play a role in regulating the activity of TTLL10. “

      We previously showed that purified recombinant TTLL3, like TTLL8, adds only monoglycines, with a preference for the b-tubulin tail (Garnham et al., PNAS 2017). Given that TTLL10 requires priming by monoglycylation, we expect that, similarly to TTLL8, TTLL3 will allow elongation of the initial monoglycyline chains by TTLL10. 

      (1) From the mass spec data, it appears that the Xaenopus Laevis TTLL10 can add up to 18 residues. However, the numbers indicated in Figure 2E seem to suggest that it is a maximum of 23 residues only at a particular position. Does this mean that the 13-18 residues observed are a collection of multiple short-chain polyglycylations or are there positions that the authors observed where there were chains of longer than 3 glycine residues? This would be an interesting point to note as when it was discovered in Paramecium, the polyglycyl chains were reported to be up to 34 residues (Redeker et al., Science 1994). If the authors could test the TTLL10 from Paramecium to observe if this is a consistent phenomenon across evolution or is there a biologically significant difference that is being developed, would be interesting to know.”

      Figure 2E shows a subset of the modified tails that we identified and where the position of the posttranslationally added glycine can be mapped to a specific position, or range of positions. Additional species exist. We note that the mass spectra in Figure 2B are intact LC/MS, while those in Figure 2E are MS/MS. The ionization of tubulin tail peptides with larger number of glycines is not as efficient as for shorter glycine chains, reducing the sensitivity of detection of species that have higher number of glycines. This is not as pronounced when the mass spectra are obtained from the intact protein (Figure 2B). In summary, our data supports the fact that TTLL10 elongates polyglycine chains at multiple positions in the tubulin tail (shown in Figure 2E), however, we cannot ascertain the maximum polyglycine chain length, only the total number of glycyines added.

      Testing the enzyme from Paramecium is an interesting proposal but outside the scope of this manuscript. 

      (2) While it is interesting to know that the TTLL10 binds to TTLL8-modified tubulin with a much higher affinity than unmodified tubulin, in vivo, the microtubules will be a mixture of both TTLL3- and TTLL8-modified tubulin. It would be good to see the binding of the enzyme to a tubulin that is modified by both TTLL3 and TTLL8 if the two have a greater influence on TTLL10 binding.”

      Our previous work showed that purified recombinant TTLL3 has purely monoglycylase activity, with a preference for b-tubulin (Garnham et al., PNAS 2017). The sites of monoglycylation by TTLL3 overlap with those introduced by TTLL8 on b-tubulin (the difference being mainly that TTLL3 is more selective towards b-tubulin and thus has lower activity on a-tubulin). TTLL8 introduces additional monoGlys on the a-tubulin tail. Therefore, it is unlikely that TTLL10 will have a different response to microtubules that carry similar numbers of Gly residues, regardless of whether introduced by TTLL8 or TTLL3 and 8. Our data show that TTLL10 binding increases with Gly number, but that the gains in affinity plateau as the density of glycine residues on the tails increases above a certain threshold, likely because one TTLL10 molecule recognizes one monoGly branch, and steric hindrance on the tubulin tail prevents further recruitment of additional TTLL10 molecules.  

      (3) The authors have always increased the number of monoglycines in beta-tubulin more than in alpha-tubulin. Is there a rationale for this? Since TTLL8 is known to predominantly modify alphatubulin (Rogowski et al., 2009; Gadadhar et al., 2017) why did the authors not check for the increased binding of the TTLL10 on dimers where the number of monoglycines on alpha-tubulin is higher than 1.1? Especially when they themselves observe in their mass spec that even on alphatubulin there are 1, 2, and 3 glycines added. I would like to see what happens if the ratio is high alpha-G + low beta-G”

      As our spectra in Figure 1 show, we find that TTLL8 is able to modify robustly in vitro both a- and b-tubulin but that it shows a slight preference for b-tubulin (Figure 1B). The work from the Janke group that the reviewer is referring to (Rogowski et al., 2009 and Gadahar et al., 2017) did not use recombinant, purified enzymes and unmodified microtubules as substrates and used axonemal tubulin (which carries many modifications), and so it is possible that the a-tubulin preference observed in that system when TTLL8 is overexpressed, is likely to other factors that do not reflect the biochemical property of the enzyme alone (for example, it could be because btubulin site are not available because they are already glutamylated). As can be seen from Figure 3D, the gain in affinity when increasing the number of glycines from one glycine is small, compared to the initial monoglycine added to the a- and the b-tubulin tail, likely reflecting that one tail cannot bind more than one TTLL10 at one time because of steric hindrance. Moreover, it is important here to note that glutamylation and glycylases compete for the same sites on the tubulin tails, as we have for example shown for TTLL3 and TTLL7 (Garnham et al., 2017), therefore the activity of these enzymes in vivo or with non-naïve substrates are context dependent and influences also what sites are available for TTLL10 to modify. In conclusion, by using recombinant enzymes and naïve tubulin we gain insight into the intrinsic property of these enzymes and therefore provide a framework for the interpretation of in vitro and in vivo observations. 

      (4) I wonder why the authors did not use the human TTLL10 to test if this also shows similar binding to the glycylated tubulin despite the fact that it is enzymatically inactive. If it does, then it would be interesting to see the kinetics of binding of this enzyme to see if the fall off of the enzyme from the tubulin is solely driven by the level of polyglycylation only, or if it has any other mechanism involved as well.”

      Work with human recombinant TTLL10, a TTLL10 homolog which was proposed to be inactive, will be an interesting future direction but outside the scope of this manuscript. We did note in our previous manuscript (Garnham et al., 2017, Figure S5) that the residues which are mutated in the human enzyme compared to other mammals are on the dorsal face of the enzyme, far away from the active site, raising an interesting question of how they inactivate the enzyme.   We need however to emphasize that our work clearly shows that it is polyglycylation on the microtubules that reduces binding of TTL10 to microtubules because experiments done in the absence of glycylating activity i.e. with enzyme that was incubated with microtubules that were pre-modified with polyglycline chains, but in the absence of glycyine substrate (precluding any glycylation activity during the binding assay) show that the binding decreases monotonically with the number of polyglycines  on the microtubule (Figures 4A, B).  

      (5) In Figure 5, the authors use monoglycylated tubulin that is either glutamylated or not to show that the activity of TTLL10 is enhanced by the extent of polyglutamylation present on the tubulin. However, there is no evidence of the enzyme binding to microtubules that are only glutamylated. It would be good to test this to determine if the binding is also dependent on both monoglycylation and glutamylation or is it only the enzyme activity.

      Figure 5E shows that TTLL10 binding increases with monoglycylation alone, and that glutamylation is additive and Figures 4A, B show that it is not the enzyme activity that affects the binding, but the glycylation state of the microtubule. We did not determine binding to microtubules that were only glutamylated, because TTLL10 would not be able to elongate polyglycine chains on those microtubules, even if it bound. 

      (6) The level of polyglycylation used in Figure 5 is quite low. It would be good to see how the length of the polyglycine chain impacts TTLL10 activity in the presence of polyglutamylation, and whether this has any cooperative effect leading to longer chain polyglycylation than what is seen with only monoglycylated tubulin.

      We expect longer chain polyglycylation to have an inhibitory effect as we show in Figure 4. 

      “(7) In the overall study, the authors fail to discuss whether the activity of both the glycylases at different sites on tubulin is sequential, or modifications at different residues happen all at once. If the authors were to do a sequential time course of the modification followed by MS/MS analysis, they could get some indications about this.”

      As the data in Figure 3D shows, the effect of adding more monoGly site on a tubulin tail has a muted effect on binding, indicating that the additional mono-Gly branches do not lead to more TTLL10 recruitment because of steric hindrance i.e. multiple TTLL10 enzymes cannot be accommodated on the same tail at the same time efficiently. This is consistent with the overall dimensions of the enzyme and the positions of its active site, which were modeled initially in our previous publication (Garnham et al., PNAS 2017).  The site of TTL10 action is pre-determined by the position of the mono-Gly branch introduced by TTLL3 or TTLL8. The length of the tubulin tail and the proximity of mono-Gly sites to each other precludes TTLL10 acting at multiple positions at once on the same tail.

      “(8) Do the modifications have any cooperative effect with respect to the sites of modification? Does modifying a particular site enhance the kinetics of modification of the other sites? Can the authors test this?”

      This would be an interesting line of future investigations.  

      “Minor points:

      (1’) The authors opine that the level of polyglycylation is regulated by the decreased binding of the TTLL10 to the polyglycylated tubulin. While this is an interesting argument, which could be a possibility based on the data they present, it would still not answer if this is a mechanism followed by TTLL10 of all species or not. If they could test the efficacy of TTLL10 from another species, to see the binding efficiency of that enzyme, it could potentially strengthen their argument of this possible mechanism.”

      The differences between the properties of TTLL10 from different organisms will be an interesting focus of future investigations, but outside the scope of this present study. However, we would like to point out that the level of sequence conservation between TTLL10 makes it unlikely that other TTLL10 do not follow a similar mechanism, albeit with possible differences in the extent of the response.  We also note that we have shown that polyglycylation also inhibits binding to the microtubule of the severing enzyme katanin (Szczesna et al., Dev. Cell 2022). Therefore, these studies suggests that polyglycylation might be a more general mechanism for reducing microtubule binding affinity since glycylation reduces the negative charge on the tubulin tails, which frequently interact with positively charged domains or interfaces in microtubule associated proteins.  

      “(2) The authors indicate that glycylases act on pre-glutamylated microtubules. However, in their assays, they use unmodified tubulin, which I would presume is also not glutamylated. If this is the case, how can they justify that the enzymes prefer pre-glutamylated microtubules? This is a bit unclear. Do they mean that their tubulin is already pre-glutamylated? Have they tested this?”

      The statement regarding the action of these enzymes on glutamylated microtubules refer to the in vivo situation where polyglycylated microtubules appear in cilia biogenesis after the microtubules in the axoneme are already glutamylated. In vitro, by using microtubules that are only monoglycylated and microtubules that are both glutamylated and monoglycylated, we show that glutamylation further increases recruitment of TTLL10 to microtubules that are monoglycyated. Therefore, glutamylated microtubules will be polyglycylated preferentially over those that are not glutamylated. 

      We state: “Axonemal microtubules are abundantly glutamylated. Glutamylation appears during cilia development first, followed by glycylation (12, 13), indicating that in this scenario glycylases act on pre-glutamylated microtubule substrates.”

      “(3) In continuation with the previous point, an immunoblot of their purified tubulin showing no reactivity to anti-glycylation or anti-glutamylation antibodies, which upon treatment with TTLL8 reacts to the anti-glycylation antibody would be confirmatory evidence to show that the isolated tubulin was indeed unmodified.”

      We have now included a Western blot of our TOG-purified tubulin as Figure S3 in our revised manuscript.  This shows a faint signal with the pep-G1 antibody and a very strong signal after TTLL8 treatment. We are not sure whether the low signal with the pep-G1 antibody for the unmodified tubulin is due to low bona fide monoglycylation-specific signal or a low affinity nonspecific interaction of this antibody (raised against mono-glycylated tubulin tail peptides) with the unmodified tubulin. We note that this signal is clearly visible only when loading at least 0.2 micrograms of the purified tubulin. At this loading level the signal for the glycylated species is saturated. It is also important to note that we have not detected glycylated species in this tubulin either by LC-MS or MS/MS. Therefore, our data strongly indicate that the tubulin purified from tsA201 cells is not glycylated or has at most extremely low levels of glycylation. Importantly, this potential trace level of monoglycylated tubulin does not affect any of the conclusions in this study. The Western blot also shows no detectable signal with the polyglycyation antibody in the unmodified tubulin and a very strong, saturated signal after the tubulin was treated with both TTLL8 and TTLL10.  We also added an additional Figure S8 that shows that the tSA201 tubulin does not give a detectable signal for glutamylation. Please see also Figure 3 from Vemu et al., Methods Enzymology 2017 where we also published a Western blot from our TOG-purified tubulin using anti-glutamylation antibodies. 

      “(4) In their study, the authors have used polyglycylation of up to 10-13 residues. This brings me to my first point that in the case of Paramecium, the number was identified to be up to 34, which would mean that this enzyme has higher binding or catalytic activity. I would like to know the authors' perspective on this, as to what could potentially determine the difference in the activities of TTLL10 across species.”

      The Xenopus TTLL10 enzyme can add more glycines than the 10-13 range that we show here if the enzyme is incubated for longer periods. The fact that glycine numbers as high as 34 were detected in Paramecium does not necessarily mean that the Paramecium enzyme is more active since there is no equivalent data to compare it with from Xenopus. The only way to address potential species differences in enzyme specific activity is to purify enzymes from different species and compare their activity side-by-side.  

      (5) How was the completion of the reaction of monoglycylation and polyglycylation determined? If the enzymes were left for more than 20 minutes, did TTLL8/ TTLL10 add more glycines? What is the reason for using less tubulin (1:20 enzyme:tubulin molar ratio) for monoglycylation by TTLL8, and more tubulin (1:50 enzyme:tubulin molar ratio) for polyglycylation by TTLL10?

      Yes, if the enzymes were incubated longer, they added more glycines. The extent of glycylation was determined from the LC-MS and the incubation time was varied to obtain samples with fewer or more glycines.   The lower ratio used for TTLL10 is because of the higher specific activity of that enzyme compared to TTLL8.  

      (6) Figure S2 A, b2 ion is not indicated in the peptide sequence, while it is shown in the m/z graph.

      We thank the reviewer for the careful reading. We have corrected this in our MS/MS spectrum. 

      Reviewer #2 (Public review):

      “In their manuscript, Cummings et al. focus on the enzymatic activities of TTLL3, TTLL8, and TTLL10, which catalyze the glycylation of tubulin, a crucial posttranslational modification for cilia maintenance and motility. The experiments are beautifully performed, with meticulous attention to detail and the inclusion of appropriate controls, ensuring the reliability of the findings. The authors utilized in vitro reconstitution to demonstrate that TTLL8 functions exclusively as a glycyl initiase, adding monoglycines at multiple positions on both α- and β-tubulin tails. In contrast, TTLL10 acts solely as a tubulin glycyl elongase, extending existing glycine chains. A notable finding is the differential substrate recognition between TTLL glycylases and TTLL glutamylases, highlighting a broader substrate promiscuity in glycylases compared to the more selective glutamylases. This observation aligns with the greater diversification observed among glutamylases. The study reveals a hierarchical mechanism of enzyme recruitment to microtubules, where TTLL10 binding necessitates prior monoglycylation by TTLL8. This binding is progressively inhibited by increasing polyglycine chain length, suggesting a self-regulatory mechanism for polyglycine chain length control. Furthermore, TTLL10 recruitment is enhanced by TTLL6mediated polyglutamylation, illustrating a complex interplay between different tubulin modifications. In addition, they uncover that polyglutamylation stimulates TTLL10 recruitment without necessarily increasing glycylation on the same tubulin dimer, due to the potential for TTLLs to interact with neighboring tubulin dimers. This mechanism could lead to an enrichment of glycylation on the same microtubule, contributing to the complexity of the tubulin code. The article also addresses a significant challenge in the field: the difficulty of generating microtubules with controlled posttranslational modifications for in vitro studies. By identifying the specific modification sites and the interplay between TTLL activities, the authors provide a valuable tool for creating differentially glycylated microtubules. This advancement will facilitate further studies on the effects of glycylation on microtubule-associated proteins and the broader implications of the tubulin code. In summary, this study substantially contributes to our knowledge of posttranslational enzymes and their regulation, offering new insights into the biochemical mechanisms underlying microtubule modifications. The rigorous experimental approach and the novel findings presented make this a pivotal addition to the field of cellular and molecular biology.”

      We thank the reviewer for their support of our work.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Minor:

      (1) In Figure 2, only the right or left selective neurons are presented for the comparison, it would be helpful to also compare these with the neurons that are not selective for any of the sides and maybe include them in the supplemental materials

      We have included all non-selective neurons in Figure 2D and supplemental Figure 2B. Their differences in firing rate between left and right sides are quantified by their selective indices (SIs). 

      (2) The authors should provide controls of speed during NMDA infusion and vehicle.

      We have quantified and compared the duration of running laps, which is equivalent to speed.

      (3) In Figure 1d, the trend shows that even during NMDA infusion, the animals learn as shown by a higher proportion of correct trials in the 3rd compared to the 1st trial

      We thank the reviewer for pointing that out. We noticed that NMDAlesioned ACC animal showed a trend of improved performance in the track, and we believe this is due to re-learning of the task, which we point out in the main text. However, we emphasize that, compared to the Vehicle control, the overall performance of NMDA-lesioned animals was significantly impaired.

      (4) Clarify the implications of the NMDA experiments, as it is not straightforward to interpret that an interplay between ACC-CA1 is involved in this task as per this experiment.

      Rather than stating the involvement of ACC-CA1 interplay, we use the results of NMDA lesion experiment to demonstrate that ACC is also required, besides CA1, for the task.

      (5) In Figure 4b, there seems to be a lag between CA1 and ACC correlations; the authors could provide a quantification of this temporal delay between CA1 and ACC.

      Figure 4B shows the cross-correlation between one example ACC cell and its associated CA1 ensembles on the left and opposite sides. There was a broad peak around time lag 0. Our further investigation did not identify a significant, systemic delay for all ACC cells, which led us to quantify the correlation at time lag 0 in Figure 4C and D.

      (6) The example correlation provided in 5c for the opposite, doesn't seem representative of the population trend as shown in 5d, since both the Same and the Opposite for the demo show a positive trend. It would be best to choose an example that represents the population better.

      Following the reviewer’s suggestion, we have replaced the original plot with another ACC cell in Figure 5C.

      (7) Almost the same can be applied to Figure 6.

      Following the reviewer’s suggestion, we have replaced the original plot with another ACC cell in Figure 6E.

      (8) The results in Figure 7 are convincing, in my opinion, as they show that the trend is lost for the opposite side (contrary to the coactivation shown in Figures 5 and 6 that showed the same trends for the same and opposite during Demo). Do the authors have any interpretation of this? Is it due to co-activity reflecting other task-relevant features different than the spatial trajectory being observed?

      The correlation on the opposite side between CA1 and ACC shown in Figure 5C-D and Figure 6E-F is likely due to a general interaction between CA1 activities around SWRs with prefrontal cortical areas including ACC, as shown in previous studies (Jadhav et al., 2016; Remondes and Wilson, 2015).  We would like to point out that this correlation only quantifies the coactivation between CA1 ensemble firing rates and individual ACC cells’ firing rate. This raw correlation does not consider the content of spikes generated by CA1 ensembles, neglecting the sequential firing patterns of CA1 cells. The replay analysis in Fig. 7 examines the order of spikes generated by individual CA1 cells. The result in Fig. 7 shows that the sequential activation of CA1 place cells more accurately reflects the distinction between the same- and opposite-side trajectories. We consider Fig. 7 is more refined analysis than Figs. 5 and 6.

      (9) For all the figures regarding SWR activities, the authors should provide average PSTH for CA1 as well as ACC, perhaps also examples of neurons that are selectively active during one side or the opposite side runs.

      Following the reviewer’s suggestion, we have added data to show PSTH for CA1 and ACC cells surrounding SWR peaks (Figure S5E, F). 

      Reviewer #2 (Recommendations For The Authors):

      Below are additional notes for improvements.

      (1) Figure 1C. Unclear what Time 0 indicates.

      We specify it (OB's poke time) in the figure legend. 

      (2) Figure 2C. Unclear what the numbers above datapoints mean.

      Those numbers are selection indices (SIs), as specified in the legend. 

      (3) Figure 5: Line 374-375. Given the repetitive nature of the task, it is unclear whether SWRs are encoding upcoming or past spatial trajectories or whether they are encoding trajectories at all. The authors would need to show that SWRs-ACC communication is predictive of task outcome to claim it is specifically necessary for future outcomes rather than consolidating past trajectories.

      We agree with the reviewer and have made changes to reflect that the ACC-CA1 correlation in Fig.5 is specific to the same side of their selectivity, not exactly to future trajectories. Regarding the repetitive nature of the task (same-side rule), we have specifically addressed the advantage and limitation of this task design in the discussion. Regarding the observer's own past vs. future trajectories, our past publication (Mou et al., 2022) shows that the CA1 replay in SWRs more likely encode the correct, future trajectories. 

      (4) Figure 7. It appears that the correlation was conducted between ACC activity and CA1 replays recorded at distinct time windows (delay period vs. water consumption). It is unclear how ACC activity could influence CA1 replays when they occur hundreds of milliseconds apart or even longer.

      We thank the reviewer for raising this important question. We have shown that the higher same-side ACC activity during observation continues during water consumption. However, our added data in Fig.S5E show that this enhancement did not occur precisely within SWRs. We thus propose a possibility that the overall enhanced activity of same-side ACC cells during water consumption provides an overall, background excitation boost to same-side CA1 cells to enhance their replay within SWRs. We have revised the discussion section to present this model. 

      (5) Abstract: lines 24-25 Discussion: lines 475-476 Based on the data there is no certainty whether ACC biases or coordinates CA1 replays. The data simply shows that they are correlated with one another.

      We have modified those sentences to clarify the non-causal nature of the interaction.

      Reviewer #3 (Recommendations For The Authors):

      Please see below for the list of minor corrections and suggestions:

      (1) Line 136-143: On the data shown in Figure 1D, I recommend using two-way mixed ANOVA with sessions as a within-subjects factor and groups as a between-subjects factor.

      We thank the reviewer for this point. We indeed use two-way ANOVA for those comparisons. We have specified out in the text.

      (2) Line 219-228: I recommend expanding the explanation of two control conditions here. It was written in the method section, but the readers would appreciate the gist of these conditions in the result section. In particular, it was unclear how box SI was calculated in the Empty condition. Also, the plots of poke rates in the control conditions will be useful to show that rats did not learn the correct choice from observation in these control conditions.

      We have added more explanation of the two control conditions in the text. The quantifications of poke rates for Demo and two control conditions (Object, Empty) are provided in our previous publication (Mou et al., 2022).

      (3) Line 610: Please specify the number of three types of sessions each rat underwent and the order of these session types.

      We revise the texts in the Method section and provide the numbers.

      (4) In Figure 2c legend, please specify what the number (e.g., -0.41) indicates.

      Those numbers are selection indices (SIs), as specified in the legend.

    1. Author response:

      We would like to thank editors and reviewers for their time spent on our work, fair assessments and constructive criticism. We plan to address their concerns in the future revision as follows, detailed by topic.

      (1) Limitations of focusing on CDR3β only

      In its current state, our work tested the proposed pipeline of data augmentation for binding prediction on benchmark datasets limited to peptide+CDR3β sequence pairs only. As pointed out by all the reviewers, the TCR-peptide interaction is more complex and involves also other regions of the receptor (such as the CDR3α chain) and the MHC presenting the peptide as well. To investigate how the inclusion of additional information impacts results, we plan to apply our pipeline in a setting where the generative protocol is extended to generate paired α and β. The supervised classifier will then receive a concatenation of α+β chains as inputs. We will compare the performance of this classifier with the one using β chains only, and add this analysis to the revised manuscript.

      (1) Validation of generated sequences and interpretation of the features learned by the generative model

      The reliability of the generative model in augmenting the training set with biologically sensible sequences is a crucial assumption of our approach, and we agree with the reviewers raising this as a main concern. Before stating our strategy to improve the soundness of the method, let us first point out a few aspects already considered in the present manuscript:

      • The test set of the classifier is always composed of real sequences: in this way, an increase in performance due to data augmentation cannot be due to overfitting to synthetic, possibly unrealistic, sequences.

      • The generative protocol is initialized from real sequences, and used to generate sequences not too far from them. In this respect, it could be taken as a way to “regularize” the simplest strategy of data augmentation, random oversampling (taking multiple copies of sequences at random to rebalance the data). This procedure avoids generating “wildly hallucinated” sequences with unreliable models. We will better quantify this statement (see below).

      • The training protocol is tailored to push the generative model towards learning binding features between peptide and CDR3β sequences (and not merely fitting their local statistics separately). For example, in the pan-specific setting, during training of the generative model on peptide+CDR3β sequences, the masked language modeling task is modified to force the model to recover the missing amino acid using only the other sequence context.

      We will better stress these points in the revised manuscript. To further validate the generative protocol in the future revision, we will carry out additional sanity checks on the generated data to confirm that the synthetic sequences remain biologically plausible and comparable to real ones.

      (1) Assessment of the performance of the pan-specific protocol for out-of-distribution data:

      To better clarify how the degradation in performance of a classifier tested on out-of-distribution data is impacted by the dissimilarity between test and training data distribution, we will improve the synthetic analysis currently reported in Table 1, adding confidence intervals for accuracy, quantifying thresholds on the distance for the method to work, providing t-SNE embeddings of in- and out-of distribution data.

      (2) Quantification of the threshold for the number of examples per class in order to train the generative model and obtain a performance increase

      In the paper, we adopted an operative common-sense threshold of at least 100 sequences per class in order to apply our data augmentation pipeline. We will quantify this effect testing this threshold in the revised manuscript, in order to (i) emphasize the limits of this two-step generative protocol in the low-data regime and to (ii) assess if the generative model falls back to a random oversampling strategy (due to strong overfitting) when few data are available for training.

      (3) Motivation for the use of RBMs:

      While RBMs have known limitations, their use in our pipeline (together with the more modern TCR-BERT, that we also test) is mainly motivated by the fact that they provide measurable increases in performance with data augmentation despite their simple 2-layer architecture. We stress that simpler generative (profile) models are unable to show this increase, see Appendix 3. In this respect, the RBM provides a minimal generative model allowing us to augment data successfully, and a lower bound to the increase of performance with respect to more complex architectures trained on more data. We will report this point of view in the text.

      (4) Clarification on the role of lattice proteins as an oversimplified toy model for protein interaction

      We agree with the points raised by Reviewer #2 on the limitations of lattice proteins as a model for protein interaction. Indeed, we used it merely as a toy model for phenomenology, a strategy whose validity has been fairly acknowledged by the reviewer. We will report in the main text all the drastic simplifications and reasons why the reader should take the comparison to real data with great care.