10,000 Matching Annotations
  1. Aug 2025
    1. Reviewer #1 (Public review):

      The manuscript by Bru et al. focuses on the role of vacuoles as a phosphate buffering system for yeast cells. The authors describe here the crosstalk between the vacuole and the cytosol using a combination of in vitro analyses of vacuoles and in vivo assays. They show that the luminal polyphosphatases of the vacuole can hydrolyze polyphosphates to generate inorganic phosphate, yet they are inhibited by high concentrations. This balances the synthesis of polyphosphates against the inorganic phosphate pool. Their data further show that the Pho91 transporter provides a valve for the cytosol as it gets activated by a decline in inositol pyrophosphate levels. The authors thus demonstrate how the vacuole functions as a phosphate buffering system to maintain a constant cytosolic inorganic phosphate pool.

      This is a very consistent and well-written manuscript with a number of convincing experiments, where the authors use isolated vacuoles and cellular read-out systems to demonstrate the interplay of polyphosphate synthesis, hydrolysis, and release. The beauty of this system the authors present is the clear correlation between product inhibition and the role of Pho91 as a valve to release Pi to the cytosol to replenish the cytosolic pool. I find the paper overall an excellent fit and only have a few issues, including :

      (1) Figure 3: The authors use in their assays 1 mM ZnCl2 or 1mM MgCl2. Is this concentration in the range of the vacuolar luminal ion concentration? Did they also test the effect of Ca2+, as this ion is also highly concentrated in the lumen?

      (2) Regarding the concentration of 30 mM K-PI, did the authors also use higher and lower concentrations? I agree that there is inhibition by 30 mM, but they cannot derive conclusions on the luminal concentration if they use just one in their assay. A titration is necessary here.

      (3) What are the consequences on vacuole morphology if the cells lack Pho91?

      (4) Discussion: The authors do not refer to the effect of calcium, even though I would expect that the levels of the counterion should affect the phosphate metabolism. I would appreciate it if they would extend their discussion accordingly.

      (5) I would appreciate a brief discussion on how phosphate sensing and control are done in human cells. Do they use a similar lysosomal buffer system?

    1. Reviewer #1 (Public review):

      Summary:

      Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely-moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performance on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescent. Overall, the differences between adolescent and adult neuronal data correlates with the behavior results in showing that learning a difficult task is more challenging for younger mice.

      Strengths:

      The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across age. The experiments with optogenetics and novice mice are completing the research question in a convincing way.

      The analysis, including the systematic comparison of task performance across the two age groups, is most interesting and reveals differences in learning (or learning strategies?) that are compelling.

      Neuronal recording during both behavioral training and passive sound exposure is particularly powerful, and allows interesting conclusions.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    1. Reviewer #1 (Public review):

      Summary:

      Bhandari and colleagues present tour-de-force analyses that compare the representational geometry in the lateral prefrontal cortex and primary auditory cortex between two complex cognitive control tasks, with one having a "flat" structure where subjects are asked to form rote memory of all the stimulus-action mappings in the task and one having a "hierarchical" task structure that allows clustering of task conditions and that renders certain stimulus dimensions irrelevant for choices. They discovered that the lPFC geometry is high-dimensional in nature in that it allows above-chance separation between different dichotomies of task conditions. The separability is significantly higher for task-relevant features than task-irrelevant ones. They also found task features that are represented in an "abstract" format (e.g., audio features), i.e., the neural representation generalizes across specific task conditions that share this variable. The neural patterns in lPFC are highly relevant for behaviors as they are correlated with subjects' reaction times and choices.

      Strengths:

      Typically, geometry in coding patterns is reflected in single-unit firings; this manuscript demonstrates that such geometry can be recovered using fMRI BOLD signals, which is both surprising and important. The tasks are well designed and powerful in revealing the differences in neural geometry, and analyses are all done in a rigorous way. I am thus very enthusiastic about this paper and identify no major issues.

      I am curious about the consequence of dimensionality collapse in lPFC. The authors propose a very interesting idea that separability is critical for cognitive control; indeed, separability is high for task-relevant information. What happens when task-relevant separation is low or task-irrelevant separation is high, and will this lead to behavioral errors? Maybe a difference score between the separability of task-relevant and task-irrelevant features is a signature of the strength of cognitive control?

      Weaknesses:

      The authors show a difference between flat and hierarchical tasks, but the two tasks are different in accuracy, with the flat task having more errors. Will this difference in task difficulty/errors contribute to the task differences in results reported?

    1. Reviewer #1 (Public Review):

      This paper describes technically impressive measurements of calcium signals near synaptic ribbons in zebrafish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. The experiments appear to be well-done and provide strong evidence for the main conclusions reached.

      Strengths

      The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high-speed line scans to resolve changes with a spatial resolution of ~250 nm and temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements. Hence the results provide a unique window onto these events.

      The use of calcium indicators with very different affinities and of different intracellular calcium buffers helps provide confirmation of key results.

    1. Reviewer #1 (Public review):

      Summary:

      The paper presents a three-layered hierarchical model for simulating Drosophila larva locomotion, navigation, and learning. The model consists of a basic locomotory layer that generates crawling and turning using a coupled oscillator framework, incorporating intermittency in movement through alternating runs and pauses. The intermediate layer enables navigation by allowing larvae to actively sense and respond to odor gradients, facilitating chemotaxis. The adaptive learning layer integrates a spiking neural network model of the Mushroom Body, simulating associative learning where larvae modify their behavior based on past experiences. The model is validated through simulations of free exploration, chemotaxis, and odor preference learning, demonstrating close agreement with empirical behavioral data. This modular framework provides a valuable advance for modeling larva behavior.

      Strengths:

      Every modeling paper requires certain assumptions and abstractions. The main strength of this paper lies in its modular and hierarchical approach to modeling behavior, making connections to influential theories of motor control in the brain. The authors also provide a convincing discussion of the experimental evidence supporting their layered behavioral architecture. This abstraction is valuable, offering researchers a useful conceptual framework and marking a significant step forward in the field. Connections to empirical larval movement are another major strength.

      Weaknesses:

      While the model represents a conceptual advance in the field, some of its assumptions and choices fall behind state-of-the-art approaches. One limitation is the paper's simplified representation of larval neuromechanics, in which the body is reduced to a two-segment structure with basic neural control. Another limitation is the absence of an explicit neuromuscular control system, which would better capture the role of segmental central pattern generators (CPGs) and neuronal circuits in regulating peristalsis and turning in Drosophila larvae. Many detailed neuromechanical models, as cited by the authors, have already been published. These abstractions overlook valuable experimental studies that detail segmental dynamics during crawling and the larval connectome.

      The strength of the model could also be its weakness. The model follows a subsumption architecture, where low-level behaviors operate autonomously while higher layers modulate them. However, this approach may underestimate the complexity of real neural circuits, which likely exhibit more intricate feedback mechanisms between sensory input and motor execution.

    1. Reviewer #1 (Public review):

      Lahtinen et al. evaluated the association between polygenic scores and mortality. This question has been intensely studied (Sakaue 2020 Nature Medicine, Jukarainen 2022 Nature Medicine, Argentieri 2025 Nature Medicine), where most studies use PRS as an instrument to attribute death to different causes. The presented study focuses on polygenic scores of non-fatal outcomes and separates the cause of death into "external" and "internal". The majority of the results are descriptive, and the data doesn't have the power to distinguish effect sizes of the interesting comparisons: (1) differences between external vs. internal (2) differences between PGI effect and measured phenotype. I have two main comments:

      (1) The authors should clarify whether the p-value reported in the text will remain significant after multiple testing adjustment. Some of the large effects might be significant; for example, Figure 2C (note that the small prediction accuracy of PGI in older age groups has been extensively studied, see Jiang, Holmes, and McVean, 2021, PLoS Genetics).

      (2) The authors might check if PGI+Phenotype has improved performance over Phenotype only. This is similar to Model 2 in Table 1, but slightly different.

    1. Reviewer #1 (Public review):

      Summary:

      By imaging the dynamics of synaptic proteins in cultured neurons, this study presents significant findings regarding the dynamics of excitatory and inhibitory synaptic proteins during development. The evidence shows that the ratios of excitatory and inhibitory synaptic proteins are stable during synapse development. This discovery advances our understanding of the complex mechanisms governing synapse formation. The strength of the evidence is robust, as it is supported by a combination of biological assays and endogenous labeling.

      Strengths:

      This research sheds light on the dynamics of the excitatory and inhibitory synapses during development. It is crucial to understand that while excitatory synapses and inhibitory synapses are developed independently, the ratio of their number is relatively stable during development, maintaining a stable excitatory/inhibitory ratio.

      Important findings and implications in the research include:

      (1) Persistent Synapse Dynamics: Excitatory and inhibitory synapses remain highly dynamic even in mature neurons (DIV12-14), challenging the dogma that synaptic structures are stable after the synaptogenesis stage.

      (2) Maintained E/I Balance: Despite ongoing synapse turnover (formation/elimination) and presynaptic terminal reduction, the overall density and ratio of excitatory-to-inhibitory synapses remain relatively stable during circuit maturation (Figure 7).

      (3) Developmental Shifts: While presynaptic compartments decrease over time, postsynaptic sites increase, suggesting independent regulation of pre- and postsynaptic elements within a stable E/I framework.

      Weaknesses:

      This study focuses on specific synaptic proteins within synapses, which may not fully represent the dynamics of other synaptic machinery; also, whether similar observations exist in vivo is still unknown. Further research is needed to explore the implications of these findings in more complex neuronal environments.

    1. Reviewer #1 (Public review):

      This is a very interesting paper addressing the hierarchical nature of the mammalian auditory system. The authors use an unconventional technique to assess brain responses -- functional ultrasound imaging (fUSI). This measures blood volume in cortex at a relatively high spatial resolution. They present dynamic and stationary sounds in isolation and together, and show that the effect of the stationary sounds (relative to the dynamic sounds) on blood volume measurements decreases as one ascends the auditory hierarchy. Since the dynamic/stationary nature of sounds is related to their perception as foreground/background sounds, this suggests that neurons in higher levels of the cortex may be increasingly invariant to background sounds.

      The study is interesting, well conducted and well written. In the revised manuscript, the authors have addressed all the points I raised in my review.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to address an important and timely question: how does the mesoscale architecture of cortical and subcortical circuits reorganize during sensorimotor learning? By using high-density, chronically implanted ultra-flexible electrode arrays, the authors track spiking activity across ten brain regions as mice learn a visual Go/No-Go task. The results indicate that learning leads to more sequential and temporally compressed patterns of activity during correct rejection trials, alongside changes in functional connectivity ranks that reflect shifts in the relative influence of visual, frontal, and motor areas throughout learning. The emergence of a more task-focused subnetwork is accompanied by broader and faster propagation of stimulus information across recorded regions.

      Strengths:

      A clear strength of this work is its recording approach. The combination of stable, high-throughput multi-region recordings over extended periods represents a significant advance for capturing learning-related network dynamics at the mesoscale. The conceptual framework is well motivated, building on prior evidence that decision-relevant signals are widely distributed across the brain. The analysis approach, combining functional connectivity rankings with information encoding metrics is well motivated but needs refinement. These results provide some valuable evidence of how learning can refine both the temporal precision and the structure of interregional communication, offering new insights into circuit reconfiguration during learning.

      Weaknesses:

      The technical approach is strong and the conceptual framing is compelling, but several aspects of the evidence remain incomplete. In particular, it is unclear whether the reported changes in connectivity truly capture causal influences, as the rank metrics remain correlational and show discrepancies with the manipulation results. The absolute response onset latencies also appear slow for sensory-guided behavior in mice, and it is not clear whether this reflects the method used to define onset timing or factors such as task structure or internal state. Furthermore, the small number of animals, combined with extensive repeated measures, raises questions about statistical independence and how multiple comparisons were controlled. The optogenetic experiments, while intended to test the functional relevance of rank-increasing regions, leave it unclear how effectively the targeted circuits were silenced. Without direct evidence of reliable local inhibition, the behavioral effects or lack thereof are difficult to interpret. Details on spike sorting are limited.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript characterizes a functional peptidergic system in the echinoderm Apostichopus japonicus that is related to the widely conserved family of calcitonin/diuretic hormone 31 (CT/DH31) peptides in bilaterian animals. In vitro analysis of receptor-ligand interactions, using multiple receptor activation assays, identifies three cognate receptors for two CT-like peptides in the sea cucumber, which stimulate cAMP, calcium, and ERK signaling. Only one of these receptors clusters within the family of calcitonin and calcitonin-like receptors (CTR/CLR) in bilaterian animals, whereas two other receptors cluster with invertebrate pigment dispersing factor receptors (PDFRs). In addition, this study sheds light on the expression and in vivo functions of CT-like peptides in A. japonicus, by quantitative real-time PCR, immunohistochemistry, pharmacological experiments on body wall muscle and intestine preparations, and peptide injection and RNAi knockdown experiments. This reveals a conserved function of CT-like peptides as muscle relaxants and growth regulators in A. japonicus.

      Strengths:

      This work combines both in vitro and in vivo functional assays to identify a CT-like peptidergic system in an economically relevant echinoderm species, the sea cucumber A. japonicus. A major strength of the study is that it identifies three G protein-coupled receptors for AjCT-like peptides, one related to the CTR/CLR family and two related to the PDFR family. A similar finding was previously reported for the CT-related peptide DH31 in Drosophila melanogaster that activates both CT-type and PDF-type receptors. Here, the authors expand this observation to a deuterostomian animal, which suggests that receptor promiscuity is a more general feature of the CT/DH31 peptide family and that CT/DH31-like peptides may activate both CT-type and PDF-type receptors in other animals as well.

      Besides the identification of receptor-ligand pairs, the downstream signaling pathways of AjCT receptors have been characterized, revealing broad and in some cases receptor-specific effects on cAMP, calcium, and ERK signaling.

      Functional characterization of the CT-related peptide system in heterologous cells is complemented with ex vivo and in vivo experiments. First, peptide injection and RNAi knockdown experiments establish transcriptional regulation of all three identified receptors in response to changing AjCT peptide levels. Second, ex vivo experiments reveal a conserved role for the two CT-like peptides as muscle relaxants, which have differential effects on body wall muscle and intestine preparations. Finally, peptide injection and knockdown experiments uncover a growth-promoting role for one CT-like peptide (AjCT2). Injection of AjCT2 at high concentration, or long-term knockdown of the AjCT precursor, affects diverse growth-related parameters including weight gain rate, specific growth rate, and transcript levels of growth-regulating transcription factors. The authors also reveal a growth-promoting function for the PDFR-like receptor AjPDFR2, suggesting that this receptor mediates the effects of AjCT2 on growth.

      Weaknesses:

      The authors present a more detailed phylogenetic analysis in the revised version, including a larger number of species. But some clusters in the analysis are not well supported because they have only low bootstrap values. This makes it difficult to interpret the clustering in some parts of the tree.

      Expression of CT-like peptides was investigated both at transcript and protein level, but insight into the expression of the three peptide receptors is limited. This makes it difficult to understand the mechanism underlying the (different) functions of the two CT-like peptides in vivo. The authors identify differences in signal transduction cascades activated by each peptide, which might underpin distinct functions, but these differences were established only in heterologous cells.

      The authors show overlapping phenotypes for a long-term knockdown of the AjCT precursor and the AjPDFR2 receptor, suggesting that the growth-regulating functions of AjCT2 are mediated by this receptor pathway. However, it remains unclear whether this mechanism underpins the growth-regulating function of AjCT2, until further in vivo evidence for this ligand-receptor interaction is presented. For example, the authors could investigate whether knockdown of AjPDFR2 attenuates the effects of AjCT2 peptide injection. In addition, a functional PDF system in this species remains uncharacterized, and a potential role of PDF-like peptides in growth regulation has not yet been investigated in A. japonicus. Therefore, it also remains unclear whether the ability of CT-like peptides to activate PDFRs is an evolutionary ancient property of this peptide family or whether this is an example of convergent evolution in some protostomian (Drosophila) and deuterostomian (sea cucumber) species.

    1. Reviewer #1 (Public review):

      Summary:

      Authors showed the presence of Mtb in human liver biopsy samples of TB patient and reported that chronic infection of Mtb causes immune-metabolic dysregulation. Authors showed that Mtb replicates in hepatocytes in a lipid rich environment created by up regulating transcription factor PPARγ. Authors also reported that Mtb protects itself from anti-TB drugs by inducing drug metabolising enzymes.

      Strengths:

      It has been shown that Mtb induces storage of triacylglycerol in macrophages by induction of WNT6/ACC2 which helps in its replication and intracellular survival, however, creation of favorable replicative niche in hepatocytes by Mtb is not reported. It is known that Mtb infect macrophages and induces formation of lipid-laden foamy macrophages which eventually causes tissue destruction in TB patient. In a recent article it has been reported that "A terpene nucleoside from M. tuberculosis induces lysosomal lipid storage in foamy macrophages" that shows how Mtb manipulates host defense mechanisms for its survival. In this manuscript, authors reported the enhancement of lipid droplets in Mtb infected hepatocytes and convincingly showed that fatty acid synthesis and triacylglycerol formation is important for growth of Mtb in hepatocytes. Authors also showed the molecular mechanism for accumulation of lipid and showed that the transcription factor associated with lipid biogenesis, PPARγ and adipogenic genes were upregulated in Mtb infected cells.

      The comparison of gene expression data between macrophages and hepatocytes by authors is important which indicates that Mtb modulates different pathways in different cell type as in macrophages it is related to immune response whereas, in hepatocytes it is related to metabolic pathways.

      Authors also reported that Mtb residing in hepatocytes showed drug tolerance phenotype due to up regulation of enzymes involved in drug metabolism and showed that cytochrome P450 monooxygenase that metabolize rifampicin and NAT2 gene responsible for N-acetylation of isoniazid were up regulated in Mtb infected cells.

      Weaknesses:

      There are reports of hepatic tuberculosis in pulmonary TB patients especially in immune-compromised patients, therefore finding granuloma in human liver biopsy samples is not surprising.

      Mtb infected hepatic cells showed induced DME and NAT and this could lead to enhanced metabolism of drug by hepatic cells as a result Mtb in side HepG2 cells get exposed to reduced drug concentration and show higher tolerance to drug. Authors mentioned that " hepatocyte resident Mtb may display higher tolerance to rifampicin". In my opinion higher tolerance to drug is possible only when DME of Mtb inside is up regulated or target is modified. Although, in the end authors mentioned that drug tolerance phenotype can be better attributed to host intrinsic factors rather than Mtb efflux pumps. It may be better if Drug tolerant phenotype section can be rewritten to clarify the facts.

      In the revised manuscript, by immune-staining authors convincingly showed that hepatocytes are a favourable niche for replication of MTb.

      Authors have rewritten the drug tolerant phenotype section which reads better.

      Overall, this paper has new and important information on how MTb establishes a favourable niche for growth in hepatocytes and creates a drug tolerant environment.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript assesses the differences between young and aged chondrocytes. Through transcriptomic analysis and further assessments in chondrocytes, GATA4 was found to be increased in aged chondrocyte donors compared to young. Subsequent mechanistic analysis with lentiviral vectors, siRNAs, and a small molecule were used to study the role of GATA4 in young and old chondrocytes. Lastly, an in vivo study was used to assess the effect of GATA4 expression on osteoarthritis progression in a DMM mouse model.

      Strengths:

      This work linked the over expression of GATA4 to NF-kB signaling pathway activation, alterations to the TGF-b signaling pathway, and found that GATA4 increased the progression of OA compared to the DMM control group. Indicating that GATA4 contributes to the onset and progression of OA in aged individuals.

      Comments on revised version:

      Great work! All my concerns have been well addressed.

    1. Reviewer #1 (Public review):

      Summary:

      In the retina, parallel processing of cone photoreceptor output under bright light conditions dissects critical features of our visual environment, and fundamental to visual function. Cone photoreceptor signals are sampled by several types of bipolar cells and passed onto the ganglion cells. At the output of retinal processing, retinal ganglion cells send about 40 different codes of the visual scene to the brain for further processing. In this study, the authors focus on whether subtype-specific differences in the size of synaptic ribbon-associated vesicle pools of bipolar cells contribute to different retinal ganglion cell (RGC) responses.

      Specifically, inputs to ON alpha RGCs producing transient versus sustained kinetics (ON-S vs. ON-T, respectively) are compared. The authors first demonstrate that ON-S vs. ON-T RGCs are readily identifiable in a whole mount preparation and respond differently to both static and to a spatially uniform, randomly fluctuating (Gaussian noise) light stimulus. Liner-nonlinear (LN) models were used to estimate the transformation between visual input and excitatory synaptic input for each RGCs; these models suggested the presence of transient versus sustained kinetics already in the excitatory inputs to ON-T and ON-S RGCs.

      Indeed, the authors show that (glutamatergic) excitatory inputs to ON-S vs. ON-T RGCs are of distinct kinetics. The subtypes of bipolar cells providing input to ON-S are known (i.e., type 6 and 7), but the source of excitatory bipolar inputs to ON-T RGCs needed to be determined. In a tedious process, it is elegantly shown here that ON-T RGCs receive most of their excitatory inputs from type 5 and 6 bipolars. Interestingly, the temporal properties of light-evoked responses of type 5, 6 and 7 bipolars recorded from the somas were indistinguishable and rather sustained, suggesting that the origin of transient kinetics of excitatory inputs to ON-T RGCs suggested by the LN model might be found in the processing of visual signals at the bipolar cell axon terminal. Blocking GABA- or glycinergic inhibitory inputs did not alter the light-evoked excitatory input kinetics to ON-T and ON-S RGCs. Two-photon glutamate sensor imaging revealed significantly faster kinetics of light-evoked glutamate signals at ON-T versus ON-S RGCs, and that differences in glutamate release from presynaptic bipolar cells are retained without amacrine feedback to bipolar cells. Detailed EM analysis of bipolar cell ribbon synapses onto ON-T and ON-S RGCs revealed fewer ribbon-associated vesicles at ON-T synapses, that is consistent with stronger paired-flash depression of light-evoked excitatory currents in ON-T RGCS versus ON-S RGCs. This study suggests that bipolar subtype-specific differences in the size of synaptic ribbon-associated vesicle pools contributes to transient versus sustained kinetics in RGCs.

      Strengths:

      The use of multiple, state-of-the-art tools and approaches to address the kinetics of bipolar to ganglion cell synapse in an identified circuit.

    1. Reviewer #1 (Public review):

      Summary:

      The paper is well written and investigates the cross-species insemination of fish eggs with mouse sperm. and I have a few major and minor comments.

      Strengths:

      The experiments are well executed and could provide valuable insights into the complex mechanisms of fertilization in both species. I found the information presented to be very interesting,

      Weaknesses:

      The rationale of some of the experiments, in particular those using CatSper KO sperm is, in my view.

    1. Reviewer #1 (Public review):

      Summary:

      This study evaluates whether species can shift geographically, temporally, or both ways in response to climate change. It also teases out the relative importance of geographic context, temperature variability, and functional traits in predicting the shifts. The study system is large occurrence datasets for dragonflies and damselflies split between two time periods and two continents. Results indicate that more species exhibited both shifts than one or the other (or neither), and that geographic context and temperature variability were more influential than traits. The results have implications for future analyses (e.g. incorporating habitat availability) and for choosing winner and loser species under climate change. The results also seem to support climate vulnerability assessments for species that rely on geographic range size and geospatial climate data layers rather than more detailed information (like demographic rates, abundances, or traits) that may not be so readily available. The methodology would be useful for other taxa and study regions with strong participatory ("citizen") science and extensive occurrence data.

      Strengths:

      This is an organized and well written paper that builds on a popular topic and moves it forward. It has the right idea and approach, and the results are useful answers to the predictions and for conservation planning (i.e. identifying climate winners and losers). There is technical proficiency and analytical rigor driven by an understanding of the data and its limitations.

    1. Reviewer #2 (Public review):

      Summary:

      Developing biophysically detailed computational models that accurately capture the characteristic physiological properties of neurons across diverse cell types is a key challenge in computational neuroscience. A major obstacle lies in determining the large number of model parameters, which are notoriously difficult to fit such that the model faithfully reproduces the empirically observed electrophysiological responses. Existing approaches require substantial computational resources to generate models for even a single neuron. Generating models for additional neurons typically requires starting from scratch, with no reuse of previous computations - making the process just as computationally expensive each time.

      Kim et al. introduce an innovative approach based on a Generative Adversarial Network (GAN) to overcome these limitations. Once trained, the network takes empirically observed electrophysiological responses as input and predicts the biophysical parameters with which a Hodgkin-Huxley model can reproduce these responses. The authors demonstrate this for nine non-spiking neurons in C. elegans. The resulting models generally provide a good fit to the empirical data. As the GAN has learned general relationships between biophysical parameters and the resulting electrophysiology, it can be used to generate models of diverse cell types without retraining - enabling model generation at low computational cost.

      Strengths:

      The authors address an important and technically challenging problem. A noteworthy strength of their approach is that, once trained, the GAN can generate models from new empirical data at low computational cost. The generated models reproduce the responses to current injections well.

      The authors have addressed all of my previous major concerns and have significantly improved their method:

      (1) Most importantly, the generated models reproduce both ground-truth simulated and empirical data well. Responses - including resting membrane potentials - are now well captured.

      (2) The comparison with other approaches has been extended to be more quantitative and rigorous.

      (3) The authors now convincingly demonstrate that the improved EP-GAN is relatively robust to data ablation.

      Weaknesses:

      Slow dynamics (e.g., slow ramps) are still not reliably captured. However, as the approach excels at other frontiers - the generation of models for diverse cell types at low computational cost - I consider this to be a relatively minor limitation.

    1. Reviewer #1 (Public review):

      This study provides an integrative model of the visuomotor control in Drosophila melanogaster. This model presents an experimentally derived model based on visually evoked wingbeat pattern recordings of three strategically selected visual stimulus types with well-established behavioral response characteristics. By testing variations of these models, the authors demonstrate that the virtual model behavior can recapitulate the recorded wing beat behavioral results and those recorded by others for these specific stimuli when presented individually. Yet, the novelty of this study and their model is that it allows predictions for natural visual scenes in which multiple visual stimuli occur simultaneously and may have opposite or enhancing effects on behavior. Testing three models that would allow interactions of these visual modalities, the authors show that using a visual efference copy signal allows visual streams to interact, replicating behavior recorded when multiple stimuli are presented simultaneously. Importantly, they validated the prediction of this model in real flies using magnetically tethered flies, e.g., presenting moving bars with varying backgrounds. In conclusion, the presented manuscript presents a commendable effort in developing and demonstrating the validity of a mixture model that enables predictions of Drosophila behavior in natural visual environments.

      The manuscript employs a thorough, logical approach, combining computational modeling with experimental behavioral validation using magnetically tethered flies. This iterative integration of simulation and empirical behavioral evidence enhances the credibility of the findings. The quantitative models and validating behavioral experiments make this a valuable contribution to the field. This study is well executed and addresses a significant gap in the modeling of fly behavior and holistic understanding of visuomotor behaviors.

      The associated code base is well documented and readily produces all figures in the document.

    1. Reviewer #1 (Public review):

      Summary:

      In the presented paper, Lu and colleagues focus on how items held in working memory bias someone's attention. In a series of three experiments, they utilized a similar paradigm in which subjects were asked to maintain two colored squares in memory for a short and variable time. After this delay, they either tested one of the memory items or asked subjects to perform a search task.

      In the search task, items could share colors with the memory items, and the authors were interested in how these would capture attention, using reaction time as a proxy. The behavioral data suggest that attention oscillates between the two items. At different maintenance intervals, the authors observed that items in memory captured different amounts of attention (attentional capture effect).

      This attentional bias fluctuates over time at approximately the theta frequency range of the EEG spectrum. This part of the study is a replication of Peters and colleagues (2020).

      Next, the authors used EEG recordings to better understand the neural mechanisms underlying this process. They present results suggesting that this attentional capture effect is positively correlated with the mean amplitude of alpha power. Furthermore, they show that the weighted phase lag index (wPLI) between the alpha and theta bands across different electrodes also fluctuates at the theta frequency.

      Strengths:

      The authors focus on an interesting and timely topic: how items in working memory can bias our attention. This line of research could improve our understanding of the neural mechanisms underlying working memory, specifically how we maintain multiple items and how these interact with attentional processes. This approach is intriguing because it can shed light on neuronal mechanisms not only through behavioral measures but also by incorporating brain recordings, which is definitely a strength.

      Subjects performed several blocks of experiments, ranging from 4 to 30, over a few days, depending on the experiment. This makes the results - especially those from behavioral experiments 2 and 3, which included the most repetitions - particularly robust.

      Weaknesses:

      One of the main EEG results is based on the weighted phase lag index (wPLI) between oscillations in the alpha and theta bands. In my opinion, this is problematic, as wPLI measures the locking of oscillations at the same frequency. It quantifies how reliably the phase difference stays the same over time. If these oscillations have different frequencies, the phase difference cannot remain consistent. Even worse, modeling data show that even very small fluctuations in frequency between signals make wPLI artificially small (Cohen, 2015).

      Another result from the electrophysiology data shows that the attentional capture effect is positively correlated with the mean amplitude of alpha power. In the presented scatter plot, it seems that this result is driven by one outlier. Unfortunately, Pearson correlation is very sensitive to outliers, and the entire analysis can be driven by an extreme case. I extracted data from the plot and obtained a Pearson correlation of 0.4, similar to what the authors report. However, the Spearman correlation, which is robust against outliers, was only 0.13 (p = 0.57), indicating a non-significant relationship.

      The behavioral data are interesting, but in my opinion, they closely replicate Peters and colleagues (2020) using a different paradigm. In that study, participants memorized four spatial positions that formed the endpoints of two objects, and one object was cued. Similarly, reaction times fluctuated at theta frequency, and there was an anti-phase relationship between the two objects. The main novelty of the present study is that this bias can be transferred to an unrelated task. While the current study extends Peters and colleagues' findings to a different task context, the lack of a thorough, direct comparison with Peters et al. limits the clarity of the novel insights provided.

      Cohen, M. X. (2015). Effects of time lag and frequency matching on phase-based connectivity. Journal of Neuroscience Methods, 250, 137-146.

      Peters, B., Kaiser, J., Rahm, B., & Bledowski, C. (2020). Object-based attention prioritizes working memory contents at a theta rhythm. Journal of Experimental Psychology: General, 150(6), 1250-1256.

    1. Reviewer #1 (Public review):

      Summary:

      Shahbazi et al used a recurrent neural network model trained to control a musculoskeletal model of the arm to investigate how neural populations accommodate activity patterns underpinning savings. The paper draws upon the recent finding of a "uniform shift" in preparatory activity in monkey motor cortex associated with savings, and leverages full access to a computational model to establish causality.

      Strengths:

      The paper is well written, and the figures are clearly presented. The key finding that the uniform shift first reported based on neural recordings by Sun et al. emerges in artificial neural networks performing a similar task is interesting and well-backed by their analyses. Manipulating this uniform shift to show that it drives behavioural savings is an important causal confirmation of the proposal by Sun et al.

      Weaknesses / Comments:

      As mentioned earlier, the core results are well backed by the analyses. Most of my comments relate to adding more controls and additional questions that could be explored with the model to strengthen the paper.

      (1) Savings are quantified as more rapid relearning of the FF upon re-exposure (e.g., Figure 3). This finding is based on backpropagation through time, but would this hold when using a different optimiser, e.g., FORCE?

      (2) The authors should include a "null model" showing that training on a different reaching task following NF, as opposed to FF2, won't show something akin to a uniform shift during preparation due to the adoption of TDR and having similar targets.

      (3) The analyses of network activity during movement preparation (Figure 4) nicely replicate the key finding in Sun et al, but I think the authors could leverage the full access to their network and go further, e.g., by examining changes (or the lack of) during execution in FF2 with respect to FF (and perhaps in a future NF2 with respect to NF), including whether execution activity lives also lives in parallel hyperplanes, etc.

      (4) Related to the above, while the results are interesting and the paper is well done, I kept wishing that the authors had done "more" with their model. This could be one or two final sections on "predictions" that would nicely complement their "validation" of the uniform shift, and that, in my opinion, would greatly increase the impact of the paper. In particular:<br /> a) What would be the effect of learning more "tasks"? For example, is there a limit on how many fields can be learned? (You show something related by manipulating network size, but this is slightly different.)<br /> b) Figure 5 is a nice causal demonstration that the uniform shift is related to savings. However, and related to comment #3, it'd be interesting to see more details about how the behaviour and the network activity changes as preparatory activity shifts along this axis, in particular regarding how moving the preparatory states affect the organisation and dynamics of upcoming execution activity -these are the kind of intuitions that modelling studies like this one can provide.<br /> c) The authors focus on a task design that spans baseline, FF, NF, FF2 to replicate the original study by Sun et al. However, it would be interesting if they generated predictions for neural changes to other types of tasks that have been studied behaviourally. These could include, for example: (i) modelling a visuomotor rotation or a mirror reversal task; (ii) having to adapt to a FF in the opposite direction; (iii) investigating the role of adding an explicit context and having the networks learn multiple FF; and (iv) trying to learn FF fields in opposite directions, perhaps restricted to specific targets. As the authors know, all these questions and more have been studied with similar behavioural paradigms, and it would be nice to see what neural predictions are generated by this model.

      (5) On the Discussion: When extrapolating from neural network results to animals, the fact that your networks can learn implicitly doesn't mean that animals do learn implicitly. Indeed, I think the consensus view is that different perturbations may lead to the expression of different types of savings (e.g., FF vs VR, which seems to be more explicit). Besides, these different mechanisms may be primarily implemented by brain regions less directly tied to motor control (e.g., cerebellum, parietal cortex?), which are not directly implemented in the authors' model.

      These aspects (limitations) should be discussed in the paper.

    1. Reviewer #1 (Public review):

      Summary:

      The main contributions of this paper are: (1) a replication of the surprising prior finding that information about peripherally-presented stimuli can be decoded from foveal V1 (Williams et al 2008), (2) a new demonstration of cross-decoding between stimuli presented in the periphery and stimuli presented at the fovea, (3) a demonstration that the information present in the fovea is based on shape not semantic category, and (4) a demonstration that the strength of foveal information about peripheral targets is correlated with the univariate response in the same block in IPS.

      Strengths:

      The design and methods appear sound, and finding (2) above is new, and importantly constrains our understanding of this surprising phenomenon. The basic effect investigated here is so surprising that even though it has been replicated several times since it was first reported in 2008, it is useful to replicate it again.

      Weaknesses:

      (1) The paper, including in the title ("Feedback of peripheral saccade targets to early foveal cortex") seems to assume that the feedback to foveal cortex occurs in conjunction with saccade preparation. However, participants in the original Williams et al (2008) paper never made saccades to the peripheral stimuli. So, saccade preparation is not necessary for this effect to occur. Some acknowledgement and discussion of this prior evidence against the interpretation of the effect as due to saccade preparation would be useful. (e.g., one might argue that saccade preparation is automatic when attending to peripheral stimuli.)

      (2) The most important new finding from this paper is the cross-decodability between stimuli presented in the fovea and stimuli presented in the periphery. This finding should be related to the prior behavioral finding (Yu & Shim, 2016) that when a foveal foil stimulus identical to a peripheral target is presented 150 ms after the onset of the peripheral target, visual discrimination of the peripheral target is improved, and this congruency effect occurred even though participants did not consciously perceive the foveal stimulus (Yu, Q., & Shim, W. M., 2016). Modulating foveal representation can influence visual discrimination in the periphery (Journal of Vision, 16(3), 15-15).

      (3) The prior literature should be laid out more clearly. For example, most readers will not realize that the basic effect of decodability of peripherally-presented stimuli in the fovea was first reported in 2008, and that that original paper already showed that the effect cannot arise from spillover effects from peripheral retinotopic cortex because it was not present in a retinotopic location between the cortical locus corresponding to the peripheral target and the fovea. (For example, this claim on lines 56-57 is not correct: "it remains unknown 1) whether information is fed back all the way to early visual areas".) What is needed is a clear presentation of the prior findings in one place in the introduction to the paper, followed by an articulation and motivation of the new questions addressed in this paper. If I were writing the paper, I would focus on the cross-decodability between foveal and peripheral stimuli, as I think that is the most revealing finding.

    1. Reviewer #1 (Public review):

      Summary:

      The authors developed a new gaze-based reversal task to study 6 - 10-month-old infants, in what would typically be a very challenging age group to study behavior related to learning, exploration, and perseveration. Here, the research question is excellently motivated by pointing out the limitation of past work that has typically studied adult clinical populations using similar approaches, which presents only the endpoint of the developmental process. Thus, there is important clinical and scientific value in studying much earlier stages in the developmental process. Here, the authors accomplish this with a new gaze-based paradigm that allows them to fit a variety of complex computational models to data from 41 infants. The main advantage of their winning model is that the parameters provide better pattern separation between two identified clusters of participants compared to behavioral variables alone.

      Strengths:

      Overall, the paper is well-written, and the models and analyses are applied in a principled and thorough fashion. The authors do an excellent job of both motivating their research question and addressing it through their task and set of computational models. The scope is also quite ambitious, modeling both choices and pupillary responses, while also using the models to generate behavior that is comparable to the experimental data and performing a cluster analysis to compare the suitability of the model parameters vs. other behavioral/questionnaire data in performing pattern separation between participants.

      Weaknesses:

      However, despite these strengths, I had a number of concerns that may limit the reliability of the findings.

      First, given the fact that the rewards for the initial pre-reversal setting are defined by the first choice of the infants, it was unclear to me whether the behavioral patterns in Figure 2 really support the fact that there was in fact, (prediction-error-based) learning in the task at all. The behavioral analyses proceed very briskly without really addressing this question, before rapidly jumping off the complexity cliff to present the models. However, even with the models, the winning model only had free parameters for preference (c) and a left-right dominance (epsilon), which don't really capture mechanisms related to learning. The epistemic and extrinsic components included in the model at the 2nd stage could potentially help shed light on this question, but (unless I've misunderstood) they seem to be all-or-nothing parts of the model, and thus don't reappear in later analyses (e.g., cluster analysis) because they are not individual-specific parameters. Thus, the main learning-relevant aspects of the model seem divorced from the ability to perform clustering or other clinically relevant diagnoses downstream. Thus, it was unclear to me whether the results really capture mechanisms related to cognitive flexibility that motivate the manuscript in the introduction.

      My other main concern was the complexity of the models and the way model comparison was performed using the three stages. First of all, the set of models is quite complex and risks alienating many developmental psychologists who would otherwise be very interested in these findings. Thus, I'm curious why the authors didn't consider including much simpler context-based RL models (e.g., Rescorla-Wagner/Q-learning models) that explicitly use prediction-error updates and whose simplicity might better match the simplicity of the behavior that 6-10 month infants are capable of displaying. Certainly, preference (as an inverse temperature parameter for a softmax policy) and left-right dominance (as a bias) could be implemented with these much simpler models. Second, while the three-stage model comparison seems somewhat principled, it left me questioning whether the 1st stage or 2nd stage results might be impacted by later stages. For instance, if the Simple-discard model were to still win in the first stage, once omega and eta have been eliminated as free parameters. Of course, I understand that there may be feasibility issues with testing all combinatorial variants of the model. But it was unclear why this specific order was chosen and what consequences this sequential dependency in the model fitting may have for the conclusions. And while model identifiability is stated in the abstract as one of the strengths of this approach, there don't seem to be any clear analyses supporting this fact. I would have loved to see a model recovery analysis (see Wilson & Collins et al., eLife 2019) to support this statement.

    1. Reviewer #1 (Public review):

      In the wild, bacteria can be found in a wide range of metabolic states, including states in which they are resource-limited. Because phages heavily rely on the infected cell's molecular machinery to replicate, it is natural to wonder how phage-bacteria interactions depend on the metabolic state of the cell. In this work, Marantos et al. investigate specifically how the rate of infection of 5 different phages changes between cells grown in energy-rich conditions and cells grown in energy-depleted conditions. Their results clearly show that 4 out of the 5 phages studied display a significant reduction in infection rate in cells that are energetically depleted and provide a potential explanation for this observation by looking into the mechanisms that these phages use to irreversibly infect their host cells.

      The work also tries to explain the observation using a mathematical/mechanistic model that describes infection as the sequence of two steps, where a phage first needs to bind to a cell receptor, from which it can potentially unbind, and then irreversibly infects by injecting its genome. While the model is sensible from a mechanistic perspective, the experimental evidence that supports how each model's rate is affected by the cell metabolic state is weak, as only ratios of these rates can be inferred from the data.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigated the extent to which phase-amplitude coupling (PAC) of respiratory and electrophysiological brain activity recordings was related to episodes of life-threatening apnoea in human newborns.

      Strengths:

      I want to commend the authors for acquiring unique and illuminating data; the difficulty in recording and handling these data has to be appreciated. As far as I can tell, Zandvoort and colleagues are the first to provide robust evidence for respiration-brain coupling in newborns. Their creative use of the phase-slope index for peripheral-central interactions is innovative and credible. If proven to be robust, the authors' findings have important implications well beyond the field of brain-body research.

      Weaknesses:

      While the analyses were overall competently conducted and well-justified, I was not entirely convinced by a few methodological choices, specifically i) the computation of PAC surrogates, ii) details of the linear mixed-effects model, and iii) the electrode selection for linking phase-amplitude coupling to apnoea frequency.

    1. Reviewer #1 (Public review):

      The study analyzes the gastric fluid DNA content identified as a potential biomarker for human gastric cancer. However, the study lacks overall logicality, and several key issues require improvement and clarification. In the opinion of this reviewer, some major revisions are needed:

      (1) This manuscript lacks a comparison of gastric cancer patients' stages with PN and N+PD patients, especially T0-T2 patients.

      (2) The comparison between gastric cancer stages seems only to reveal the difference between T3 patients and early-stage gastric cancer patients, which raises doubts about the authenticity of the previous differences between gastric cancer patients and normal patients, whether it is only due to the higher number of T3 patients.

      (3) The prognosis evaluation is too simplistic, only considering staging factors, without taking into account other factors such as tumor pathology and the time from onset to tumor detection.

      (4) The comparison between gfDNA and conventional pathological examination methods should be mentioned, reflecting advantages such as accuracy and patient comfort.

      (5) There are many questions in the figures and tables. Please match the Title, Figure legends, Footnote, Alphabetic order, etc.

      (6) The overall logicality of the manuscript is not rigorous enough, with few discussion factors, and cannot represent the conclusions drawn

    1. Reviewer #1 (Public review):

      Summary:

      This study presents an interesting investigation into the role of trained immunity in inflammatory bowel disease, demonstrating that β-glucan-induced reprogramming of innate immune cells can ameliorate experimental colitis. The findings are novel and clinically relevant, with potential implications for therapeutic strategies in IBD. The combination of functional assays, adoptive transfer experiments, and single-cell RNA sequencing provides comprehensive mechanistic insights. However, some aspects of the study could benefit from further clarification to strengthen the conclusions.

      Strengths:

      (1) This study elegantly connects trained immunity with IBD, demonstrating how β-glucan-induced innate immune reprogramming can mitigate chronic inflammation.

      (2) Adoptive transfer experiments robustly confirm the protective role of monocytes/macrophages in colitis resolution.

      (3) Single-cell RNA sequencing provides mechanistic depth, revealing the expansion of reparative Cx3cr1⁺ macrophages and their contribution to epithelial repair.

      (4) The work highlights the therapeutic potential of trained immunity in restoring gut homeostasis, offering new directions for IBD treatment.

      Weaknesses:

      While β-glucan may exert its training effect on hematopoietic stem cells, performing ATAC-seq on HSCs or monocytes to profile chromatin accessibility at antibacterial defense and mucosal repair-related genes would further validate the trained immunity mechanism. Alternatively, the authors could acknowledge this as a study limitation and future research direction.

    1. Reviewer #1 (Public review):

      Summary

      In this study Takagi and colleagues demonstrate that changes in axonal arborization of the segmental wave motor command neurons are sufficient to change behavioral motor output.

      The authors identify the Wnt receptors DFz2 and DFz4 and the ligand Wnt4 as modulators of the stereotypic segmental arborization pattern of segmental wave neurons along the anterior-posterior body axis. Based on both embryonic expression pattern analysis and genetic manipulation of the signaling components in wave neurons (receptors) and the neuropil (Wnt4) the authors convincingly demonstrate that Wnt4 acts as a repulsive ligand for DFz2 that restricts posterior axon guidance of both anterior and posterior wave neurons. They also provide first evidence that Wnt4 potentially acts as an attractive ligand for Df4 to promote posterior extension of p-wave neurons. Interestingly, artificial optogenetic activation of all wave neurons that normally induces a backward locomotion due to the activity of anterior wave neurons, fails to induce backward locomotion in a DFz2 knock down condition with altered axonal extensions of all wave neurons towards posterior segments. In addition, the authors now observe enhanced fast forward locomotion a feature normally induced by posterior wave neurons. Consistent with these findings, they observe that the natural response to an anterior tactile stimulus is similarly altered in DFz2 knock down animals. The animals respond with less backward movement and increase fast forward motion. These results suggest that alterations in the innervation pattern of wave motor command neurons are sufficient to switch behavioral response programs.

      Strengths

      The authors convincingly demonstrate the importance of Wnt signaling for anterior-posterior axon guidance of a single class of motor command neurons in the larval CNS. The demonstration that alteration of the expression level of a single axon guidance receptor is sufficient to not only alter the innervation pattern but to significantly modify the behavioral response program of the animal provides a potential entry point to understand behavioral adaptations during evolution.

      Weaknesses

      The authors demonstrate an alteration of the behavioral response to a natural tactile stimulus and correlate this to morphological alterations observed in the single-neuron analyses. As the authors suggest an alteration of the command circuitry, a direct observation of the downstream activation pattern in response to selective optogenetic stimulation of anterior wave neurons (if possible with appropriate genetic tools in the future) would further strengthen their claims.

    1. Reviewer #1 (Public review):

      Summary:

      The crystal structure of the Sld3CBD-Cdc45 complex presented by Li et al. is a significant contribution that enhances our understanding of CMG formation during the rate-limiting step of DNA replication initiation. This structure provides crucial insights into the intermediate steps of CMG formation, and the particle analysis and model predictions compellingly describe the mechanism of Cdc45 loading.<br /> Building upon previously known Sld3 and Cdc45 structures, this study offers new perspectives on how Cdc45 is recruited to MCM DH through the Sld3-Sld7 complex. The most notable finding is the structural rearrangement of Sld3CBD upon Cdc45 binding, particularly the α8-helix conformation, which is essential for Cdc45 interaction and may also be relevant to its metazoan counterpart, Treslin. Additionally, the conformational shift in the DHHA1 domain of Cdc45 suggests a potential mechanism for its binding to Mcm2NTD.<br /> Furthermore, the ssDNA-binding experiments involving Sld3 further support a broader functional role in the replication process, beyond its established role in recruiting Cdc45. This adds an intriguing new layer to our understanding of Sld3's activity in the yeast.

    1. Reviewer #1 (Public review):

      In this manuscript, Campbell et al. assess how intracranial theta-burst stimulation (TBS) applied to the basolateral amygdala in 23 epilepsy patients affects neuronal spiking in the medial temporal lobe and prefrontal cortex during a visual recognition memory task. This is an incredibly rare dataset; collecting single-unit spiking data from behaving humans during active intracranial stimulation is a Herculean task, with immense potential for translational studies of how stimulation may be applied to modulate biological mechanisms of memory. The authors utilize careful, high quality methodology throughout (e.g. task design, spike recording and sorting, statistical analysis), providing high confidence in the validity of their findings.

      In providing such a detailed and deep investigation into the single-unit responses to intracranial stimulation the authors provide a very useful resources to any researchers in the fields of brain stimulation and human neurophysiology. This work could be instrumental in guiding diverse research studies, from basic science investigating the role of theta oscillations in human cognition to translational work investigating deep-brain stimulation for memory.

      The authors have adequately addressed all prior concerns.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a comprehensive structure-guided secretome analysis of gall-forming microbes, providing valuable insights into effector diversity and evolution. The authors have employed AlphaFold2 to predict the 3D structures of the secretome from selected pathogens and conducted a thorough comparative analysis to elucidate commonalities and unique features of effectors among these phytopathogens.

      Strengths:

      The discovery of conserved motifs such as 'CCG' and 'RAYH' and their central role in maintaining the overall fold is an insightful finding. Additionally, the discovery of a nucleoside hydrolase-like fold conserved among various gall-forming microbes is interesting.

      Weaknesses:

      Important conclusions are not verified by experiments.

      Comments on revisions: I acknowledge the authors' revision efforts.

    1. Reviewer #1 (Public review):

      This was a clearly written manuscript that did an excellent job summarizing complex data. In this manuscript, Cuevas-Zuviría et al. use protein modeling to generate over 5,000 predicted structures of nitrogenase components, encompassing both extant and ancestral forms across different clades. The study highlights that key insertions define the various Nif groups. The authors also examined the structures of three ancestral nitrogenase variants that had been previously identified and experimentally tested. These ancestral forms were shown in earlier studies to exhibit reduced activity in Azotobacter vinelandii, a model diazotroph.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to understand the biophysical properties of archeal membranes made of bolalipids. Bacterial and eukaryotic membranes are made of lipids that self-assemble into bilayers. Archea, instead, use bolalipids, lipids that have two headgroups and can span the entire bilayer. The authors wanted to determine if the unique characteristics of archaea, which are often extremophiles, are in part due to the fact that their membranes contain bolalipids.

      The authors develop a minimal computational model to compare the biophysics of bilayers made of lipids, bolalipids, and mixtures of the two. Their model enables them to determine essential parameters such as bilayer phase diagrams, mechanical moduli, and the bilayer behavior upon cargo inclusion and remodeling.

      The author demonstrates that bolalipid bilayers behave as binary mixtures, containing bolalipids organized either in a straight conformation, spanning the entire bilayer, or in a u-shaped one, confined to a single leaflet. This dynamic mixture allows bolalipid bilayers to be very sturdy but also provides remodeling. However, remodeling is energetically more expensive than with standard lipids. The authors speculate that this might be why lipids were more abundant in the evolutionary process.

      Strengths:

      This is a wonderful paper, a very fine piece of scholarship. It is interesting from the point of view of biology, biophysics, and material science. The authors mastered the modeling and analysis of these complex systems. The evidence for their findings is really strong and complete. The paper is written superbly, the language is precise and the reading experience very pleasant. The plots are very well-thought.

      Weaknesses:

      None. The authors have addressed all the potential weaknesses that were raised by the reviewers.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Druker et al. shows that siRNA depletion of PHD1, but not PHD2, increases H3T3 phosphorylation in cells arrested in prometaphase. Additionally, the expression of wild-type RepoMan, but not the RepoMan P604A mutant, restored normal H3T3 phosphorylation localization in cells arrested in prometaphase. Furthermore, the study demonstrates that expression of the RepoMan P604A mutant leads to defects in chromosome alignment and segregation, resulting in increased cell death. These data support a role for PHD1-mediated prolyl hydroxylation in controlling progression through mitosis. This occurs, at least in part, by hydroxylating RepoMan at P604, which regulates its interaction with PP2A during chromosome alignment.

      Strengths:

      The data support most of the conclusions made. However, some issues need to be addressed.

      Weaknesses:

      (1) Although ectopically expressed PHD1 interacts with ectopically expressed RepoMan, there is no evidence that endogenous PHD1 binds to endogenous RepoMan or that PHD1 directly binds to RepoMan.

      (2) There is no genetic evidence indicating that PHD1 controls progression through mitosis by catalyzing the hydroxylation of RepoMan.

      (3) Data demonstrating the correlation between dynamic changes in RepoMan hydroxylation and H3T3 phosphorylation throughout the cell cycle are needed.

      (4) The authors should provide biochemical evidence of the difference in binding ability between RepoMan WT/PP2A and RepoMan P604A/PP2A.

      (5) PHD2 is the primary proline hydroxylase in cells. Why does PHD1, but not PHD2, affect RepoMan hydroxylation and subsequent control of mitotic progression? The authors should discuss this issue further.

    1. Reviewer #1 (Public review):

      The authors conducted a comprehensive investigation into sleep and circadian rhythm disturbances in Fmr1 knockout (KO) mice, a model for Fragile X Syndrome (FXS). They began by monitoring daily home cage behaviors to identify disruptions in sleep and circadian patterns, then assessed the mice's adaptability to altered light conditions through photic suppression and skeleton photoperiod experiments. To uncover potential mechanisms, they examined the connectivity between the retina and the suprachiasmatic nucleus. The study also included an analysis of social behavior deficits in the mutant mice and tested whether scheduled feeding could alleviate these issues. Notably, scheduled feeding not only improved sleep, circadian, and social behaviors but also normalized plasma cytokine levels. The manuscript is strengthened by its focus on a significant and underexplored area-sleep deficits in an FXS model-and by its robust experimental design, which integrates a variety of methodological approaches to provide a thorough understanding of the observed phenomena and potential therapeutic avenues.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Li and colleagues describes the impact of deficiency on the DKGα and ζ on Treg cells and follicular responses. The experimental approach is based on the characterization of double KO mice that show the emergence of autoimmune manifestations that include the production of autoantibodies. Additionally, there is an increase in Tfh cells, but also Tfr cells in these mice deficient in both DKGα and ζ. Although the observations are interesting, the interpretation of the observations is difficult in the absence of data related to single mutations. While a supplementary figure shows that the autoimmune manifestations are more severe in the DKGα and ζ deficient mice, prior observations show that a single DKGα deficiency has an impact on Treg homeostasis. As such, the contribution of the two chains to the overall phenotype is hard to establish.

      Strengths:

      Well-conducted experiments with informative mouse models with defined genetic defects.

      Weaknesses:

      The major weakness is the lack of clarity concerning what can be attributed to simultaneous DKGα and ζ deficiency versus deficiency on DKGα or ζ alone. Technical concerns related to a number of figures were raised in the initial report and not adequately addressed by the authors in the revised manuscript.

      In conclusion, the claims in the manuscript are not convincingly supported by the data,

    1. Reviewer #1 (Public review):

      When you search for something, you need to maintain some representation (a "template") of that target in your mind/brain. Otherwise, how would you know what you were looking for? If your phone is in a shocking pink case, you can guide your attention to pink things based on a target template that includes the attribute 'pink'. That guidance should get you to the phone pretty effectively, if it is in view. Most real-world searches are more complicated. If you are looking for the toaster, you will make use of your knowledge of where toasters can be. Thus, if you are asked to find a toaster, you might first activate a template of a kitchen or a kitchen counter. You might worry about pulling up the toaster template only after you are reasonably sure you have restricted your attention to a sensible part of the scene.

      Zhou and Geng are looking for evidence of this early stage of guidance by information about the surrounding scene in a search task. They train Os to associate four faces with four places. Then, with Os in the scanner, they show one face - the target for a subsequent search. After an 8 sec delay, they show a search display where the face is placed on the associated scene 75% of the time. Thus, attending to the associated scene is a good idea. The questions of interest are "When can the experimenters decode which face Os saw from fMRI recording?" "When can the experimenters decode the associated scene?" and "Where in the brain can the experimenters see evidence of this decoding? The answer is that the face but not the scene can be read out during the face's initial presentation. The key finding is that the scene can be read out (imperfectly but above chance) during the subsequent delay when Os are looking at just a fixation point. Apparently, seeing the face conjures up the scene in the mind's eye.

      This is a solid and believable result. The only issue, for me, is whether it is telling us anything specifically about search. Suppose you trained Os on the face-scene pairing but never did anything connected to search. If you presented the face, would you not see evidence of recall of the associated scene? Maybe you would see the activation of the scene in different areas and you could identify some areas as search specific. I don't think anything like that was discussed here.

      You might also expect this result to be asymmetric. The idea is that the big scene gives the search information about the little face. The face should activate the larger useful scene more than the scene should activate the more incidental face, if the task was reversed. That might be true if finding is related to search where the scene context is presumed to be the useful attention guiding stimulus. You might not expect an asymmetry if Os were just learning an association.

      It is clear in this study that the face and the scene have been associated and that this can be seen in the fMRI data. It is also clear that a valid scene background speeds the behavioral response in the search task. The linkage between these two results is not entirely clear but perhaps future research will shed more light.

      It is also possible that I missed the clear evidence of the search-specific nature of the activation by the scene during the delay period. If so, I apologize and suggest that the point be underlined for readers like me.

      Comments on revised version:

      I am satisfied with the revision.

    1. Reviewer #1 (Public review):

      Summary:

      In this study by Li et al., the authors re-investigated the role of cDC1 for atherosclerosis progression using the ApoE model. First, the authors confirmed the accumulation of cDC1 in atherosclerotic lesions in mice and humans. Then in order to examine the functional relevance of this cell type, the authors developed a new mouse model to selectively target cDC1. Specifically, they inserted the Cre recombinase directly after the start codon of endogenous XCR1 gene, thereby avoiding off-target activity. Following validation of this model, the authors crossed it with ApoE-deficient mice and found a striking reduction of aortic lesions (numbers and size) following high fat diet. The authors further characterized the impact of cDC1 depletion on lesional T cells and their activation state. Also, they provide in-depth transcriptomic analyses of lesional in comparison to splenic and nodal cDC1. These results imply cellular interactions between lesion T cells and cDC1. Finally, the authors show that the chemokine XCL1, which is produced by activated CD8 T cells (and NK cells) plays a key role for the interaction with XCR1-expressing cDC1 and particularly for the atherosclerotic disease progression.

      Strengths:

      The surprising results on XCL1 represent a very important gain in knowledge. The role of cDC1 is clarified with a new genetic mouse model.

      Comments on revised version:

      The authors have addressed my concerns in the revised version of this manuscript.

    1. Reviewer #1 (Public review):

      In the revised manuscript, Meng et al. report that SARS-CoV-2 infection suppresses YAP target gene transcription in both patient lung samples and iPSC-derived cardiomyocytes. Among the tested viral proteins, the helicase nonstructural protein 13 (NSP13) was identified as a key factor that impairs YAP/TEAD transcriptional activity. Through mutagenesis and protein-protein interaction studies, the authors propose a mechanism where NSP13 binds YAP/TEAD complex, remodels chromatin structure, and recruits transcriptional repressors to inhibit YAP/TEAD's transcriptional activity.

      Overall, this study uncovers a novel regulation of Hippo signaling by SARS-CoV-2 through NSP13, suggesting a potential role of this growth-related pathway in host innate immune response to viral infection. While these findings are intriguing, future studies are needed to validate the involvement of YAP/TEAD in patient tissues and to assess their potential as therapeutic targets against SARS-CoV-2.

    1. Reviewer #1 (Public review):

      Summary:

      The authors tackle a long-standing question in developmental theory: given a gene-regulatory network that includes extracellular signalling, which topologies are even capable of transforming an initial spatial profile into a genuinely new pattern? Building on the classical reaction-diffusion framework in one dimension, but imposing biologically motivated constraints, they prove that every one-signal sub-network must be either Hierarchical (H), self-activating (L+), or self-inhibiting (L-). They further demonstrate that only three composite classes of full networks - pure H, a coupled L+ L- "Turing" pair, and an L- module fed by an intracellular positive loop ("noise-amplifying")-can create non-trivial spatial transformations. Analytical criteria and illustrative simulations are provided, together providing a closed taxonomy, which is supposed to be relevant for real systems.

      Strengths:

      (1) Useful classification framework. Reducing a vast number of possible gene circuits to three canonical pattern-forming motifs is a valuable organising insight for both theorists and experimentalists.

      (2) Logical completeness. All required cases are addressed, and the proofs elevate previous computational observations to formal statements.

      (3) Practical interpretability. Given a reaction network diagram, one can now decide (assuming the model applies to the real systems) whether spatial patterning is even possible, saving experimental effort on in-silico screens that could never succeed.

      Weaknesses:

      (1) The Results section is difficult to follow. Key logical steps and network configurations are described shortly in prose, which constantly require the reader to address either SI or other parts of the text (see numerous links on the requirements R1-R5 listed at the beginning of the paper) to gain minimal understanding. As a result, a scientifically literate but non-specialist reader may struggle to grasp the argument with a reasonable time invested.

      (2) A central step in the model formulation is the linearisation of the reaction term around a homogeneous steady state; higher-order kinetics, including ubiquitous bimolecular sinks such as A + B → AB, are simply collapsed into the Jacobian without any stated amplitude bound on the perturbations. Because the manuscript never analyses how far this assumption can be relaxed, the robustness of the three-class taxonomy under realistic nonlinear reactions or large spike amplitudes remains uncertain.

      (3) All modelling is confined to one spatial dimension, and the very definition of a "non-trivial" transformation is framed in terms of peak positions along a line, which clearly must be reformulated for higher dimensions. It's well-known that diffusions in 1, 2, and 3 dimensions are also dramatically different, so the relevance of the three-class taxonomy to real multicellular tissues remains unclear, or at least should be explained in more detail.

      Discussion:

      As stated above, there are several uncertainties about the relevance of the presented framework for real systems. However, if the results hold, researchers could look at a gene-network diagram and quickly judge whether it can make spatial patterns and, if so, which of the three known mechanisms it will use. That shortcut would save experimental and computational time. In the case that the results don't hold for the real systems, the authors' proof tools at least give theorists a solid base they can extend to more complex cases.

    1. Reviewer #1 (Public review):

      Summary:

      The authors developed a sequence-based method to predict drug-interacting residues in IDP, based on their recent work, to predict the transverse relaxation rates (R2) of IDP trained on 45 IDP sequences and their corresponding R2 values. The discovery is that the IDPs interact with drugs mostly using aromatic residues that are easy to understand, as most drugs contain aromatic rings. They validated the method using several case studies, and the predictions are in accordance with chemical shift perturbations and MD simulations. The location of the predicted residues serves as a starting point for ligand optimization.

      Strengths:

      This work provides the first sequence-based prediction method to identify potential drug-interacting residues in IDP. The validity of the method is supported by case studies. It is easy to use, and no time-consuming MD simulations and NMR studies are needed.

      Weaknesses:

      The method does not depend on the information of binding compounds, which may give general features of IDP-drug binding. However, due to the size and chemical structures of the compounds (for example, how many aromatic rings), the number of interacting residues varies, which is not considered in this work. Lacking specific information may restrict its application in compound optimization, aiming to derive specific and potent binding compounds.

    1. Reviewer #1 (Public review):

      The authors responded to multiple criticisms with additional data and more detailed statistics, in some instances improving the quality of the work. However, I had difficulty understanding some of the authors' responses. The logic was not always apparent, the writing was occasionally confusing or would benefit from more careful wording, and some of the provided responses were superficial or raised new concerns. In some cases, the underlying data needed to support their responses were not shown. Thus, the current version of the manuscript does not sufficiently resolve the following critical issues raised by myself and other reviewers.

      (1) A clear new insight into a physiological process or cellular behavior remains lacking. The study largely confirms prior observations of MCAK binding to both the microtubule wall and end. However, it is still unclear whether direct binding to the tip-as opposed to accumulation via wall diffusion or interaction with other tip-binding proteins-is a significant mechanism.

      (2) The newly revealed adenosine-nucleotide-dependent binding preferences do not help clarify MCAK's catalytic function or its mechanisms of tip recognition. Consequently, the final summary figure remains speculative and is not convincingly supported by the data. It is also unclear what exactly is meant by the "working model" (figure title), or by the claim of "a simple rule of how the end-binding regulators coordinate their activities" (abstract).

      (3) As noted in my previous review, the effects of adding different adenosine nucleotides on MCAK binding to microtubules are much more pronounced than the differences in MCAK binding to tubulin with various guanosine-containing nucleotides, or to lattice versus tip (e.g., Fig. 5E). Therefore, the manuscript title-"MCAK recognizes the nucleotide-dependent feature at growing microtubule ends"-does not do justice to the scale of these effects.

      (4) The title implies that MCAK selectively recognizes a feature determined by the tubulin-bound guanosine nucleotide. However, the authors frequently claim that MCAK binds to the "entire GTP cap." It appears that they exclude structural protrusions from their definition of the cap, which is debatable. Even using their definition, the conclusion that MCAK recognizes a specific "nucleotide-dependent feature" seems inconsistent with the claim that it binds uniformly across the cap. These distinctions were not made clear.

      (5) Some important technical details are still absent. For example, when reading the authors' response to another reviewer's question, I could not find an explanation of how the kon values for end and wall binding were calculated. These calculations clearly require assumptions, e.g. about the number of binding sites, but these details are not described. In addition, the binding data are expressed in units per tubulin dimer, which are non-standard and make comparisons to other published results difficult. There are other instances where more technical detail would be desirable, but they are too numerous to list here.

      (6) Several aspects of data presentation as graphs will make it difficult for other researchers to analyze or interpret the findings. Numerical Excel-style data sheets should be provided for all measurements, including raw data-not just the ratios or derived values shown in plots. Other, more significant issues include use of mean values for non-Gaussian distributions (e.g., dwell times); binding affinities inferred from single-concentration measurements, often under varying conditions (e.g., Figs. 3C, 4); and absence of side-by-side plotted controls (e.g., Fig. 6).

      (7) While the authors have added some quantitative values and descriptive detail, the manuscript still lacks a critical comparison of their findings with existing literature. This weakens the impact of the study and limits the reader's ability to place the results in a broader context.

    1. Reviewer #2 (Public Review):

      Summary:

      This paper describes a new approach to detecting directed causal interactions between two genes without directly perturbing either gene. To check whether gene X influences gene Z, a reporter gene (Y) is engineered into the cell in such a way that (1) Y is under the same transcriptional control as X, and (2) Y does not influence Z. Then, under the null hypothesis that X does not affect Z, the authors derive an equation that describes the relationship between the covariance of X and Z and the covariance of Y and Z. Violation of this relationship can then be used to detect causality.

      The authors benchmark their approach experimentally in several synthetic circuits. In 4 positive control circuits, X is a TetR-YFP fusion protein that represses Z, which is an RFP reporter. The proposed approach detected the repression interaction in 2 of the 4 positive control circuits. The authors constructed 16 negative control circuit designs in which X was again TetR-YFP, but where Z was either a constitutively expressed reporter, or simply the cellular growth rate. The proposed method detected a causal effect in two of the 16 negative controls, which the authors argue is perhaps not a false positive, but due to an unexpected causal effect. Overall, the data support the potential value of the proposed approach.

      Strengths:

      The idea of a "no-causality control" in the context of detected directed gene interactions is a valuable conceptual advance that could potentially see play in a variety of settings where perturbation-based causality detection experiments are made difficult by practical considerations.

      By proving their mathematical result in the context of a continuous-time Markov chain, the authors use a more realistic model of the cell than, for instance, a set of deterministic ordinary differential equations.

      The authors have improved the clarity and completeness of their proof compared to a previous version of the manuscript.

      Limitations:

      The authors themselves clearly outline the primary limitations of the study: The experimental benchmark is a proof of principle, and limited to synthetic circuits involving a handful of genes expressed on plasmids in E. coli. As acknowledged in the Discussion, negative controls were chosen based on the absence of known interactions, rather than perturbation experiments. Further work is needed to establish that this technique applies to other organisms and to biological networks involving a wider variety of genes and cellular functions. It seems to me that this paper's objective is not to delineate the technique's practical domain of validity, but rather to motivate this future work, and I think it succeeds in that.

      Might your new "Proposed additional tests" subsection be better housed under Discussion rather than Results?

      I may have missed this, but it doesn't look like you ran simulation benchmarks of your bootstrap-based test for checking whether the normalized covariances are equal. It would be useful to see in simulations how the true and false positive rates of that test vary with the usual suspects like sample size and noise strengths.

      It looks like you estimated the uncertainty for eta_xz and eta_yz separately. Can you get the joint distribution? If you can do that, my intuition is you might be able to improve the power of the test (and maybe detect positive control #3?). For instance, if you can get your bootstraps for eta_xz and eta_yz together, could you just use a paired t-test to check for equality of means?

      The proof is a lot better, and it's great that you nailed down the requirement on the decay of beta, but the proof is still confusing in some places:

      On pg 29, it says "That is, dividing the right equation in Eq. 5.8 with alpha, we write the ..." but the next equation doesn't obviously have anything to do with Eq. 5.8, and instead (I think) it comes from Eq 5.5. This could be clarified.

      Later on page 29, you write "We now evoke the requirement that the averages xt and yt are stationary", but then you just repeat Eq. 5.11 and set it to zero. Clearly you needed the limit condition to set Eq. 5.11 to zero, but it's not clear what you're using stationarity for. I mean, if you needed stationarity for 5.11 presumably you would have referenced it at that step.

      It could be helpful for readers if you could spell out the practical implications of the theorem's assumptions (other than the no-causality requirement) by discussing examples of setups where it would or wouldn't hold.

    1. Reviewer #1 (Public review):

      Summary:

      The authors developed SHERLOCK4AAT, a CRISPR-Cas13a-based diagnostic toolbox for detecting multiple trypanosome species responsible for animal African trypanosomiasis. They created species-specific assays targeting six prevalent parasite species and validated the system using dried blood spots from domestic pigs in Guinea and Côte d'Ivoire. Field testing revealed high infection rates (62.7% of pigs infected) and, notably, the presence of human-infective parasites in domestic animals.

      Major Strengths:

      This study represents a valuable application of CRISPR-based detection technology to veterinary diagnostics, with strong potential for practical implementation. The authors conducted comprehensive validation, including statistical analyses to determine sensitivity and specificity, and demonstrated field utility through large-scale testing of 424 samples from two geographically distinct regions. The detection of human-infective parasites in pigs at both sites provides important One Health insights supporting integrated disease surveillance and has direct implications for public health policy and disease elimination programs. The methodology is robust, incorporating Bayesian statistical modeling and offering clear practical advantages such as dried blood spot compatibility and detection of active infections. The revised manuscript also addresses implementation considerations, including cost, training needs, and field logistics.

      Major Weaknesses:

      Some technical limitations constrain broader applicability. The assay for one key parasite species (T. vivax) shows suboptimal sensitivity, which may limit its utility in detecting this important pathogen. The current assay design does not distinguish between closely related species within the same subgenus-an important factor for certain epidemiological studies. Additionally, some assays relied on synthetic controls due to unavailable biological material, and the discussion on potential cross-reactivity with related kinetoplastid parasites is limited.<br /> Achievement of Aims: The authors clearly achieved their primary objectives of developing a sensitive, species-specific diagnostic system and demonstrating its applicability in real-world settings. The detection of human-infective trypanosomes in domestic pigs provides valuable epidemiological evidence in support of One Health strategies and targeted disease elimination efforts.

      Impact and Utility:

      This work responds to a well-documented need in veterinary diagnostics, where current methods often lack sensitivity or species discrimination. The system offers practical benefits for resource-limited settings through a short assay duration and compatibility with dried blood spot samples. While certain performance limitations may restrict broader adoption, the species identification capability represents a substantial advancement over existing approaches. The findings enhance our understanding of parasite diversity in livestock and their potential role as zoonotic reservoirs, with implications extending beyond veterinary medicine to public health surveillance and policy development.

      Context:

      This study makes a timely and relevant contribution to diagnostic epidemiology and One Health surveillance frameworks. The field-adapted use of advanced molecular detection technologies represents a significant step toward improved disease monitoring in regions where trypanosomiasis poses ongoing threats to animal health, agriculture, and human livelihoods. The cross-disciplinary implications for veterinary medicine, public health, and disease elimination programs underscore the broader significance of this work.

    1. Reviewer #2 (Public review):

      This is a revised version of a paper I reviewed previously.

      Again, the purpose of the paper is to suggest that common metrics, such as friction or any given physical property of the surface, are probably inadequate to predict the perception of the surface or its discriminability. Instead, the authors propose a very interesting and original idea that, instead, frictional instabilities are related to fine touch perception (title).

      Overall, the authors have put much effort into improving the manuscript, enhancing clarity, and avoiding overstatements. And I feel the narrative is indeed much improved and less ambiguous.

      However, the authors have systematically avoided addressing the main comment of all reviewers: the link made between the mock finger passive experiment and the active human psychophysics is incorrect and should not be done, because its interpretation could be flawed.<br /> - First, this link is very weak (the correlation of 6 datapoints is barely significant).<br /> - Second, the real and mock fingers have very different properties (think about moisture, compliance, roughness,...).<br /> - Third, the comparison is made between a passive and well-controlled experiment and an active exploration. Yet, the comparison metrics (number of events) are clearly dependent on exploration procedures.

      In your response to my comments:<br /> "We have made changes throughout the manuscript to acknowledge that our findings are correlative, clarifying this throughout, and incorporating into the discussion how our work may enable biomechanical measurements and tactile decision making models"

      The authors admit that the analysis is flawed, yet they did not remove it. If they cannot demonstrate that the mock finger and the human finger behave the same way during the perceptual experiment, then they should remove Fig2 that combines apples and oranges. OR, they should look at the active exploration data and compute the same metrics on that data.

      "This "weird choice" is the central innovation of this paper. This choice was necessary because we demonstrated that the common usage of friction coefficient is fundamentally flawed: we see that friction coefficient suggests that surface which are more different would feel more similar - indeed the most distinctive surfaces would be two surfaces that are identical, which is clearly spurious. "

      They did not "demonstrate" such a flaw. Again, the difference in friction is between the mock finger trials. At the very least, the authors should verify that it is true of the active human experiment.

      "To fully implement this, a decision-making model is necessary because, as a counter example, a participant could have generated 10 swipes of SFW and 1 swipe of a Sp, but the Sp may have been the most important event for making a tactile decision. This type of scenario is not compatible with the analysis suggested - and similar counterpoints can be made for other types of seemingly straightforward analysis."

      The suggested analyses are straightforward and would be much more valuable than the data from the mock finger, even with the potential variability stated above.

      "We recognize that, with all factors being equal, this sample size is on the smaller end"

      Yet, the authors did not collect additional data to confirm their findings.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors used a coarse-grained DNA model (cgNA+) to explore how DNA sequences and CpG methylation/hydroxymethylation influence nucleosome wrapping energy and the probability density of optimal nucleosomal configuration. Their findings indicate that both methylated and hydroxymethylated cytosines lead to increased nucleosome wrapping energy. Additionally, the study demonstrates that methylation of CpG islands increases the probability of nucleosome formation.

      Strengths:

      The major strength of this method is the model explicitly includes phosphate group as DNA-histone binding site constraints, enhancing CG model accuracy and computational efficiency and allowing comprehensive calculations of DNA mechanical properties and deformation energies.

      Weaknesses:

      A significant limitation of this study is that the parameter sets for the methylated and hydroxymethylated CpG steps in the cgNA+ model are derived from all-atom molecular dynamics (MD) simulations that use previously established force field parameters for modified cytosines (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 2021). These parameters suggest that both methylated and hydroxymethylated cytosines increase DNA stiffness and nucleosome wrapping energy, which could predispose the coarse-grained model to replicate these findings. Notably, conflicting results from other all-atom MD simulations, such as those by Ngo T in Nat. Commun. 2016, shows that hydroxymethylated cytosines increase DNA flexibility, contrary to methylated cytosines. If the cgNA+ model were trained on these later parameters or other all-atom MD force fields, different conclusions might be obtained regarding the effects of methylated and hydroxymethylation on nucleosome formation.

      Despite the training parameters of the cgNA+ model, the results presented in the manuscript indicate that methylated cytosines increase both DNA stiffness and nucleosome wrapping energy. However, when comparing nucleosome occupancy scores with predicted nucleosome wrapping energies and optimal configurations, the authors find that methylated CGIs exhibit higher nucleosome occupancies than unmethylated ones, which seems to contradict the expected relationship where increased stiffness should reduce nucleosome formation affinity. In the manuscript, the authors also admit that these conclusions "apparently runs counter to the (perhaps naive) intuition that high nucleosome forming affinity should arise for fragments with low wrapping energy". Previous all-atom MD simulations (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 202; Ngo T, et al. Nat. Commun. 20161) show that the stiffer DNA upon CpG methylation reduces the affinity of DNA to assemble into nucleosomes or destabilizes nucleosomes. Given these findings, the authors need to address and reconcile these seemingly contradictory results, as the influence of epigenetic modifications on DNA mechanical properties and nucleosome formation are critical aspects of their study.

      Understanding the influence of sequence-dependent and epigenetic modifications of DNA on mechanical properties and nucleosome formation is crucial for comprehending various cellular processes. The authors' study, focusing on these aspects, definitely will garner interest from the DNA methylation research community.

      Comments on revised version:

      The authors have addressed most of my comments and concerns regarding this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Cho et al. present a comprehensive and multidimensional analysis of glutamine metabolism in the regulation of B cell differentiation and function during immune responses. They further demonstrate how glutamine metabolism interacts with glucose uptake and utilization to modulate key intracellular processes. The manuscript is clearly written, and the experimental approaches are informative and well-executed. The authors provide a detailed mechanistic understanding through the use of both in vivo and in vitro models. The conclusions are well supported by the data, and the findings are novel and impactful. I have only a few, mostly minor, concerns related to data presentation and the rationale for certain experimental choices.

      Detailed Comments:

      (1) In Figure 1b, it is unclear whether total B cells or follicular B cells were used in the assay. Additionally, the in vitro class-switch recombination and plasma cell differentiation experiments were conducted without BCR stimulation, which makes the system appear overly artificial and limits physiological relevance. Although the effects of glutamine concentration on the measured parameters are evident, the results cannot be confidently interpreted as true plasma cell generation or IgG1 class switching under these conditions. The authors should moderate these claims or provide stronger justification for the chosen differentiation strategy. Incorporating a parallel assay with anti-BCR stimulation would improve the rigor and interpretability of these findings.

      (2) In Figure 1c, the DMK alone condition is not presented. This hinders readers' ability to properly asses the glutaminolysis dependency of the cells for the measured readouts. Also, CD138+ in developing PCs goes hand in hand with decreased B220 expression. A representative FACS plot showing the gating strategy for the in vitro PCs should be added as a supplementary figure. Similarly, division number (going all the way to #7) may be tricky to gate and interpret. A representative FACS plot showing the separation of B cells according to their division numbers and a subsequent gating of CD138 or IgG1 in these gates would be ideal for demonstrating the authors' ability to distinguish these populations effectively.

      (3) A brief explanation should be provided for the exclusive use of IgG1 as the readout in class-switching assays, given that naïve B cells are capable of switching to multiple isotypes. Clarifying why IgG1 was preferentially selected would aid in the interpretation of the results.

      (4) The immunization experiments presented in Figures 1 and 2 are well designed, and the data are comprehensively presented. However, to prevent potential misinterpretation, it should be clarified that the observed differences between NP and OVA immunizations cannot be attributed solely to the chemical nature of the antigens - hapten versus protein. A more significant distinction lies in the route of administration (intraperitoneal vs. intranasal) and the resulting anatomical compartment of the immune response (systemic vs. lung-restricted). This context should be explicitly stated to avoid overinterpretation of the comparative findings.

      (5) NP immunization is known to be an inducer of an IgG1-dominant Th2-type immune response in mice. IgG2c is not a major player unless a nanoparticle delivery system is used. However, the authors arbitrarily included IgG2c in their assays in Figures 2 and 3. This may be confusing for the readers. The authors should either justify the IgG2c-mediated analyses or remove them from the main figures. (It can be added as supplemental information with proper justification).

      (6) Similarly, in affinity maturation analyses, including IgM is somewhat uncommon. I do not see any point in showing high affinity (NP2/NP20) IgMs (Figure 3d), since that data probably does not mean much.

      (7) Following on my comment for the PC generation in Figure 1 (see above), in Figure 4, a strategy that relies solely on CD40L stimulation is performed. This is highly artificial for the PC generation and needs to be justified, or more physiologically relevant PC generation strategies involving anti-BCR, CD40L, and various cytokines should be shown.

      (8) The effects of CB839 and UK5099 on cell viability are not shown. Including viability data under these treatment conditions would be a valuable addition to the supplementary materials, as it would help readers more accurately interpret the functional outcomes observed in the study.

      (9) It is not clear how the RNA seq analysis in Figure 4h was generated. The experimental strategy and the setup need to be better explained.

    1. Reviewer #1 (Public Review):

      The study by Sianga-Mete et al revisits the effects of substitution model selection on phylogenetics by comparing reversible and non-reversible DNA substitution models. This topic is not new, previous works already showed that non-reversible, and also covarion, substitution models can fit the real data better than the reversible substitution models commonly used in phylogenetics. In this regard, the results of the present study are not surprising.

    1. Reviewer #1 (Public review):

      Yang et al. describes CCDC32 as a new clathrin mediated endocytosis (CME) accessory protein. The authors show that CCDC32 binds directly to AP2 via a small alpha helical region and cells depleted for this protein show defective CME. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome (CFNDS) disrupt the interaction of this protein to the AP2 complex. The results presented suggest that CCDC32 may act as both a chaperone (as recently published) and a structural component of the AP2 complex.

    1. Reviewer #1 (Public review):

      Ono et al. compared the activity of prime editor Nickase PE2 and prime editor nuclease PEn in introducing SNPs and short exogenous DNA sequences into the zebrafish genome to model human disease variants. They find the nickase PE2 prime editor had a higher rate of precise integration for introducing single-nucleotide substitutions, whereas the nuclease PEn prime editor showed improved precision of integration of short DNA sequences. In somatic tissue, the percentage of SNP variant precision edits improved when using PE2 RNP injection instead of mRNA injection, but increased precision editing correlated with elevated indel formation. While PEn overall had higher rates of precision edits, the indel rate was also elevated. Similar rates were observed when introducing a 3 bp stop codon into the ror gene using a standard pegRNA with a 13-nucleotide homology arm, or a springRNA lacking the homology arm that drives integration via NHEJ. Inclusion of an abasic sequence in the springRNA prevented imprecise edits caused by scaffold incorporation, but did not improve the overall percentage of precise edits in somatic tissue. Recovery of a germline ror-TGA integration allele using PEn with RNP was robust, resulting in 5 out of 10 founders transmitting a precise allele. Lastly, the authors demonstrate that PEn was effective at the integration of a 30 bp nuclear localization signal into the 5' end of GFP in an existing muscle-specific reporter line. However, the undefined number of cassettes in this multicopy transgene complicates accurate measurements of editing frequency. Integration of the NLS or other longer sequences at an endogenous locus would demonstrate the broad utility of this approach. From the work presented, it is unclear how prime editing could be used to transiently model human pathogenic variants, given the low frequency of precision edits in somatic tissue, or to isolate stable germline alleles of variants that are potentially dominant negative or gain-of-function in nature. Without a direct comparison with CRISPR/Cas9 nuclease HDR-based methods that use oligonucleotide templates to introduce edits, the advantage of prime editing is unclear. A cost comparison between prime editing and HDR methods would also be of interest, particularly for integration of longer DNA sequences.

      The conclusions of the paper are mostly well supported, but some changes to the text and additional analyses would strengthen the conclusion that PE2 vs. PEn is preferred for introducing variants, short or long DNA sequences.

      (1) In Figure 3, the data indicate a significant increase in precise edits of the 3 bp TGA using PE2 RNP (11.5%) vs. PE2 mRNA (1.3%). At the adgrf3b locus, only PEn mRNA was tested for introducing the 3 bp and 12 bp insertions. The previous study testing PE2 for 3 and 12 bp insertions was mentioned, but the frequency was not listed, and the study wasn't cited (lines 204 - 207). A comparison of germline transmission rates using PE2 vs. PEn would support the conclusion that PEn allows precise integration of longer templates and recovery of germline integration alleles.

      (2) Figure 4 shows the results of introducing a TGA stop codon that is predicted to result in nonsense-mediated decay. Testing the ability to also isolate different substitution mutations in the germline would be useful information for identifying the most effective approach for generating human disease variant models.

      (3) A comparison with the prime editing variant knock-in frequencies reported in the recent publication by Vanhooydonck et al., 2025, Lab Animal should be included in the Discussion.

    1. Reviewer #1 (Public review):

      Summary:

      In this work the authors provide evidence that impairment of cell envelope protein homeostasis through blocking the machinery for disulfide bond formation restores efficacy of antibiotics including beta-lactam drugs and colistin against AMR in Gram-negative bacteria.

      Strengths:

      The authors employ a thorough approach to showcase the restoration of antibiotic sensitivity through inhibition of the DSB machinery, including the evaluation of various antibiotics on both normal and Dsb-deficient pathogenic bacteria (i.e. Pseudomonas and Stenotrophomonas). The authors corroborate these findings by employing Dsb inhibitors in addition to delta dsbA strains. The methodology is appropriate and includes measuring MICs as well as validating their observations in vivo using the Galleria model.

    1. Reviewer #1 (Public review):

      Dixit, Noe, and Weikl apply coarse-grained and all-atom molecular dynamics to determine the response of the mechanosensitive proteins Piezo 1 and Piezo 2 proteins to tension. Cryo-EM structures in micelles show a high curvature of the protein whereas structures in lipid bilayers show lower curvature. Is the zero-stress state of the protein closer to the micelle structure or the bilayer structure? Moreover, while the tension sensitivity of channel function can be inferred from experiment, molecular details are not clearly available. How much does the protein's height and effective area change in response to tension? With these in hand, a quantitative model of its function follows that can be related to the properties of the membrane and the effect of external forces.

      Simulations indicate that in a bilayer the protein relaxes from the highly curved cryo-EM dome (Figure 1).

      Under applied tension the dome flattens (Figure 2) including the underlying lipid bilayer. The shape of the system is a combination of the membrane mechanical and protein conformational energies (Eq. 1). The membrane mechanical energy is well-characterized. It requires only the curvature and bending modulus as inputs. They determine membrane curvature and the local area metric (Eq. 4) by averaging the height on a grid and computing second derivatives (Eqs. 7, 8) consistent with known differential geometric formulas.

      While I am still critical generally of a precise estimate of the energy from simulated membrane shapes (after all it is not trivial to precisely determine even the bending modulus from a simulation), I believe with their revision the authors have convinced me that their estimate is a high quality one, without obvious issues. Although there appears to have been a miscommunication about increasing the density of grain or lowering the density of grain, the authors have tried two grains and determined a similar deformation energy, which addresses my concern. Furthermore, they have computed a dramatically reduced simplification of the curve and determined a similar value.

      In summary, this paper uses molecular dynamics simulations to quantify the force of the Piezo 1 and Piezo 2 proteins on a lipid bilayer using simulations under controlled tension, observing the membrane deformation, and using that data to infer protein mechanics. While much of the physical mechanism was previously known, the study itself is a valuable quantification.

    1. Reviewer #1 (Public review):

      The authors report on a thorough investigation of the interaction of megakaryocytes (MK) with their associated ECM during maturation. They report convincing evidence to support the existence of a dense cage-like pericellular structure containing laminin γ1 and α4 and collagen IV, which interacts with integrins β1 and β3 on MK and serve to fix the perisinusoidal localization of MK and prevent their premature intravasation. As with everything in nature, the authors support a Goldilocks range of MK-ECM interactions - inability to digest the ECM via inhibition of MMPs leads to insufficient MK maturation and development of smaller MK. This important work sheds light into the role of cell-matrix interactions in MK maturation, and suggests that higher-dimensional analyses are necessary to capture the full scope of cellular biology in the context of their microenvironment. The authors have responded appropriately to the majority of my previous comments.

      Some remaining points:

      In a previous critique, I had suggested that "it is unclear how activation of integrins allows the MK to become "architects for their ECM microenvironment" as the authors posit. A transcriptomic analysis of control and DKO MKs may help elucidate these effects". The authors pointed out the technical difficulty of obtained sufficient numbers of MK for such analysis, which I accept, and instead analyzed mature platelets, finding no difference between control and DKO platelets. This is not necessarily surprising, since mature circulating platelets have no need to engage an ECM microenvironment, and for the same reason I would suggest that mature platelet analyses are not representative of MK behavior as regards ECM interactions.

    1. Reviewer #1 (Public review):

      Summary:

      The mechanism by which WNT signals are received and transduced into the cell has been the topic of extensive research. Cell surface levels of the WNT receptors of the FZD family are subject to tight control and it's well established that the transmembrane ubiquitin ligases ZNRF3 and RNF43 target FZDs for degradation and that proteins of the R-spondin family block this effect. This manuscript explores the role that WNT proteins play in receptor internalization, recycling and degradation, and the authors provide evidence that WNTs promote interactions of FZD with the ubiquitin ligases. Using cells mutant in all 3 DVL genes, the authors demonstrate that this effect of WNT on FZD is DVL-independent.

      Strengths:

      Overall, the data are of good quality and support the authors' hypothesis. Strengths of this study is the use of CRISPR-mutated cell lines to establish genetic requirements for the various components. The finding that FZD internalization and degradation is WNT dependent and does not involve DVL is novel.

      Weaknesses:

      A weakness of the work includes a heavy reliance on overexpression of FZD proteins. To detect endogenous FZDs, the authors have inserted a V5 tag into the endogenous gene, which may affect their activity(ies).

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Gerken et al examined how neurons in the human medial temporal lobe respond to and potentially code dynamic movie content. They had 29 patients watch a long-form movie while neurons within their MTL were monitored using depth electrodes. They found that neurons throughout the region were responsive to the content of the movie. In particular, neurons showed significant responses to people, places, and to a lesser extent, movie cuts. Modeling with a neural network suggests that neural activity within the recorded regions was better at predicting the content of the movies as a population, as opposed to individual neural representations. Surprisingly, a subpopulation of unresponsive neurons performed better than the responsive neurons at decoding the movie content, further suggesting that while classically nonresponsive, these neurons nonetheless provided critical information about the content of the visual world. The authors conclude from these results that low-level visual features, such as scene cuts, may be coded at the neuronal level, but that semantic features rely on distributed population-level codes.

      Strengths:

      Overall, the manuscript presents an interesting and reasonable argument for their findings and conclusions. Additionally, the large number of patients and neurons that were recorded and analyzed makes this data set unique and potentially very powerful. On the whole, the manuscript was very well written, and as it is, presents an interesting and useful set of data about the intricacies of how dynamic naturalistic semantic information may be processed within the medial temporal lobe.

      Weaknesses:

      There are a number of concerns I have based on some of the experimental and statistical methods employed that I feel would help to improve our understanding of the current data.

      In particular, the authors do not address the issue of superposed visual features very well throughout the manuscript. Previous research using naturalistic movies has shown that low-level visual features, particularly motion, are capable of driving much of the visual system (e.g, Bartels et al 2005; Bartels et al 2007; Huth et al 2012; Çukur et al 2013; Russ et al 2015; Nentwich et al 2023). In some of these papers, low-level features were regressed out to look at the influence of semantics, in others, the influence of low-level features was explicitly modeled. The current manuscript, for the most part, appears to ignore these features with the exception of scene cuts. Based on the previous evidence that low-level features continue to drive later cortical regions, it seems like including these as regressors of no interest or, more ideally, as additional variables, would help to determine how well MTL codes for semantic features over top of these lower-order variables.

      Following on this, much of the current analyses rely on the training of deep neural networks to decode particular features. The results of these analyses are illuminating, however, throughout the manuscript, I was increasingly wondering how the various variables interact with each other. For example, separate analyses were done for the patients, regions, and visual features. However, the logistic regression analysis that was employed could have all of these variables input together, obtaining beta weights for each one in an overall model. This would potentially provide information about how much each variable contributes to the overall decoding in relation to the others.

      A few more minor points that would help to clarify the current results involve the selection of data for particular analyses. For some analyses, the authors chose to appropriately downsample their data sets to compare across variables. However, there are a few places where similar downsampling would be informative, but was not completed. In particular, the analyses for patients and regions may have a more informative comparison if the full population were downsampled to match the size of the population for each patient or region of interest. This could be done with the Monte Carlo sampling that is used in other analyses, thus providing a control for population size while still sampling the full population.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors explore a novel concept: GPCR-mediated regulation of miRNA release via extracellular vesicles (EVs). They perform an EV miRNA cargo profiling approach to investigate how specific GPCR activations influence the selective secretion of particular miRNAs. Given that GPCRs are highly diverse and orchestrate multiple cellular pathways - either independently or collectively - to regulate gene expression and cellular functions under various conditions, it is logical to expect alterations in gene and miRNA expression within target cells.

      Strengths:

      The novel idea of GPCRs-mediated control of EV loading of miRNAs.

      Weaknesses:

      Incomplete findings failed to connect and show evidence of any physiological parameters that are directly related to the observed changes. The mechanical detail is lacking.

      The manuscript falls short of providing a comprehensive understanding. Identifying changes in cellular and EV-associated miRNAs without elucidating their physiological significance or underlying regulatory mechanisms limits the study's impact. Without demonstrating whether these miRNA alterations have functional consequences, the findings alone are insufficient. The findings may be suitable for more specialized journals.

      Furthermore, a critical analysis of the relationship between cellular miRNA levels and EV miRNA cargo is essential. Specifically, comparing the intracellular and EV-associated miRNA pools could reveal whether specific miRNAs are preferentially exported, a behavior that should be inversely related to their cellular abundance if export serves a beneficial function by reducing intracellular levels. This comparison is vital to strengthen the biological relevance of the findings and support the proposed regulatory mechanisms by GPCRs.

    1. Reviewer #1 (Public review):

      Summary:

      As TDP-43 mislocalization is a hallmark of multiple neurodegenerative diseases, the authors seek to identify pathways that modulate TDP-43 levels. To do this, they use a FACS based genome wide CRISPR KD screen in a Halo tagged TDP-43 KI iPSC line. Their screen identifies a number of genetic modulators of TDP-43 expression including BORC which plays a role in lysosome transport.

      Strengths:

      Genome wide CRISPR based screen identifies a number of modulators of TDP-43 expression to generate hypotheses regarding RNA BP regulation and perhaps insights into disease

    1. Reviewer #1 (Public review):

      Summary:

      Compared to placental mammals, marsupials have a short gestation period and give birth to altricial young. To assist with the detection and response to cues that direct the neonate joeys to the mother's pouch, as well as latching onto the teat, marsupial craniofacial development at this stage is rapid and heterochronous relative to placentals. Cook et al. have presented an important study on the transcriptomic and epigenomic signature underlying this heterochronous development of craniofacial features across mammals, using the fat-tailed dunnart as a marsupial model.

      Given the lack of a dunnart genome, the authors prepared long and short read sequence datasets to assemble and annotate a novel genome to allow for mapping of RNAseq and ChIPseq data against H3K4me3 and H3K27ac, which allowed for identification of putative promoter and enhancer sites in dunnart. They found that genes proximal to these regulatory loci were enriched for functions related to bone, skin, muscle and embryonic development, verifying the precocious state of newborn dunnart facial tissue. When compared with mouse, the authors found a much higher proportion of promoter regions aligned between species than for enhancer regions, and subsequent profiling identified regulatory elements conserved across species and are important for mammalian craniofacial development. In contrast, identification of dunnart-specific enhancers and patterns of RNA expression further confirm the precocious state of muscle development, as well as for sensory system development, in dunnart, suggesting that early formation of these features are critical for neonate marsupials.

      Marsupials are emerging as an important model for studying mammalian development and evolution, and the authors have performed a novel and thorough analysis that helps to elucidate the regulatory profile underlying craniofacial heterochrony. Impressively, this study also includes the assembly of a new marsupial reference genome that will benefit many future studies of mammalian developmental biology.

      Strengths:

      The genome assembly method was thorough, using two different long-read methods (Pacbio and ONT) to generate the long reads for contig and scaffold construction, increasing the quality of the final assembled genome, which was effectively annotated and used for functional analysis of orthologous regulatory elements.

      The birth of altricial young in marsupials is an important feature of their development that is distinct from placental mammals which are separated by about 160 million years of evolution. Very little is known, however, about the regulatory profile that contributes to the advanced craniofacial development required for joey survival. This is one of the few epigenomic studies performed in marsupials (of any organ) and the first performed in fat-tailed dunnart (also of any organ), which begins to address this lack of knowledge.

      The study also provides evidence supporting the important role enhancer elements play in mammalian phenotypic evolution, relative to promoters.

      Weaknesses:

      Biological replicates of facial tissue were collected at a single developmental time point of the fat-tailed dunnart within the first postnatal day (P0), and analysed this in the context of similar mouse facial samples from the ENCODE consortium at six developmental time points, where previous work from the authors have shown that the younger mouse samples (E11.5-12.5) approximately corresponds to the dunnart developmental stage (Cook et al. 2021). However, it would be useful to have samples from at least one older dunnart time point, for example, at a developmental stage equivalent to mouse E15.5. This would provide additional insight into the extent of accelerated face development in dunnart relative to mouse, i.e. how long do the regulatory elements that are activated early in dunnart remain active for and does their function later influence other aspects of craniofacial development?

    1. Reviewer #2 (Public review):

      Summary:

      This study aims to investigate how social observation influences risky decision-making. Using a gambling task, the study explored how participants adjusted their risk-taking behavior when they believed their decisions were being observed by either a risk-averse or risk-seeking partner. The authors hypothesized that individuals would simulate the choices of their observers based on learned preferences and integrate these simulated choices into their own decision-making. In addition to behavioral experiments, the study employed computational modeling to formalize decision processes and fMRI to identify the neural underpinnings of risky decision-making under social observation.

      Strengths:

      The study provides a fresh perspective on social influence in decision-making, moving beyond the simple notion that social observation leads to uniformly riskier behavior. Instead, it shows that individuals adjust their choices depending on their beliefs about the observer's risk preferences, offering a more nuanced understanding of how social contexts shape decision-making. The authors provide evidence using comprehensive approaches, including behavioral data based on a well-designed task, computational modeling, and neuroimaging. The three models are well selected to compare at which level (e.g., computing utility, risk preference shift, and choice probability) the social influence alters one's risky decision-making. This approach allows for a more precise understanding of the cognitive processes underlying decision-making under social observation.

      Weaknesses:

      While the neuroimaging results are generally consistent with the behavioral and computational findings, the strength of the neural evidence could be improved. The authors' claims about the involvement of the TPJ and mPFC in integrating social information are plausible, but further analysis, such as model comparisons at the neuroimaging level, is needed to decisively rule out alternative interpretations that other computational models suggest.

      My concern raised above in the previous round has been addressed with the newly added results. I now find the manuscript substantially improved.

      I have only a minor suggestion: when discussing the conflict-related signals observed in the dACC and dlPFC, I encourage the authors to include alternative interpretations beyond conflict monitoring per se. For example, these signals may also reflect processes related to information updating during social learning or inference. While the study does not aim to dissociate these possibilities, acknowledging them would enrich the discussion and provide a broader perspective for readers.

      Comments on revised version:

      Thank you for the substantial revision. I believe the additional analyses have meaningfully strengthened the manuscript, particularly by improving the connection between the behavioral modeling and neuroimaging results. The findings are consistent with prior work while also providing novel insights.

      When discussing the conflict-related signals observed in the dACC/dlPFC, I encourage the authors to include alternative interpretations in addition to conflict monitoring per se. For example, these signals may also reflect processes related to information updating during social learning or inference. While the study does not aim to dissociate these possibilities, acknowledging them would enrich the discussion and offer a broader perspective for readers.

      I have updated my evaluation of the strength of evidence from Solid to Convincing.

    1. Reviewer #1 (Public review):

      Summary:

      Felipe and colleagues try to answer an important question in Sarbecovirus Orf9b-mediated interferon signaling suppression, given that this small viral protein adopts two distinct conformations, a dimeric β-sheet-rich fold and a helix-rich monomeric fold when bound by Tom70 protein. Two Orf9b structures determined by X-ray crystallography and Cryo-EM suggest an equilibrium between the two Orf9b conformations, and it is important to understand how this equilibrium relates to its functions. To answer these questions, the authors developed a series of ordinary differential equations (ODE) describing the Orf9b conformation equilibrium between homodimers and monomers binding to Tom70. They used SPR and a fluorescent polarization (FP) peptide displacement assay to identify parameters for the equilibrium and create a theoretical model. They then used the model to characterize the effect of lipid-binding and the effects of Orf9b mutations in homodimer stability, lipid binding, and dimer-monomer equilibrium. They used their model to further analyze dimerization, lipid binding, and Orf9b-Tom70 interactions for truncated Orf9b, Orf9b fusion mutant S53E (blocking Tom70 binding), and Orf9b from a set of Sars-CoV-2 VOCs. They evaluated the ability of different Orf9b variants for binding Tom70 using Co-IP experiments and assessed their activity in suppressing IFN signaling in cells.

      Overall, this work is well designed, the results are of high quality and well-presented; the results support their conclusions.

      Strengths:

      (1) They developed a working biophysical model for analyzing Orf9b monomer-dimer equilibrium and Tom70 binding based on SPR and FP experiments; this is an important tool for future investigation.

      (2) They prepared lipid-free Orf9b homodimer and determined its crystal structure.

      (3) They designed and purified obligate Orf9b monomer, fused-dimer, etc., a very important Orf9b variant for further investigations.

      (4) They identified the lipid bound by Orf9b homodimer using mass spectra data.

      (5) They proposed a working model of Orf9b-Tom70 equilibrium.

      Weaknesses:

      (1) It is difficult to understand why the obligate Orf9b dimer has similar IFN inhibition activity as the WT protein and obligate Orf9b monomer truncations.

      (2) The role of Orf9b homodimer and the role of Orf9b-bound lipid in virus infection, remains unknown.

      Comments on revisions:

      In the revised manuscript, the authors have addressed my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      The authors stated aim is to introduce so-called Minkowski tensors to characterize and quantify the shape of cells in tissues. The authors introduce Minkowski tensors and then define the p-atic order q_p as a cell shape measure, where p is an integer. They also introduce a previously defined measure of p-atic order in the form of the parameter \gamma_p. The authors compute q_p for data obtained by simulating an active vertex model and a multiphase field model, where they focus on p=2 and p=6 - so-called nematic and hexatic order - as the two values of highest biological relevance. Based on their analysis, the authors state that q_2 and q_6 are independent, that there is no crossover for the coarse-grained quantities, that a comparison of q_p for different values of p is not meaningful, and determine the dependence of the mean value of q_2 and q_6 on cell activity and deformability. Subsequently, they apply their method to data from MDCK monolayers and argue that the full range of q_p values needs to be considered to characterize shape and positional order in epithelia..

      Strength:

      The work presents a set of parameters that are useful for analyzing cell shape.

      Weaknesses:

      The introduction of the Minkowski tensors is hardly accessible for typical biologists. Eventually, most quantification is done using q_p, which can be defined without recursion to Minkowski functionals. The relation to Minkowski functionals makes the important properties of robustness and stability evident. However, for an audience of biologists, the derivation of this property could be relegated to an Appendix. Instead, the text could directly go to the results of the analysis of experimental and modeling data.

      Important details about how the cell shapes are extracted from the experimental data are missing. The two data sets the authors consider are not analyzed in the same way.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to develop a fully scalable, feeder-free protocol for deriving dorsal forebrain neural rosette stem cells (NRSCs) from human pluripotent stem cells, eliminating the need for manual rosette isolation. Using dynamic suspension culture combined with single-SMAD inhibition (RepSox), they sought to generate FOXG1⁺/OTX2⁺ NRSCs within ten days and expand them through at least twelve passages while retaining regional identity. They also aimed to demonstrate the cells' capacity to differentiate into functional neurons, astrocytes, and oligodendrocytes under defined conditions.

      Strengths:

      A key strength is the elimination of labour-intensive manual rosette picking, which significantly reduces operator variability and enhances throughput. The authors provide diverse validation in the form of flow cytometry showing >95% OTX2⁺ over passages 2-12, immunocytochemistry, single-cell RNA-seq, and functional MEA recordings, confirming both regional fidelity and neuronal activity. They also demonstrate glial differentiation and reproducibility across two hESC lines.

      The results convincingly demonstrate that the RepSox/suspension approach yields high-purity dorsal forebrain neural progenitor cells (NRSCs) that maintain marker expression and multipotency through passage 12 and differentiate into electrophysiologically active neurons and mature glia. Thus, the authors have achieved their primary objectives.

      This protocol addresses a significant bottleneck in neural stem cell production by providing a reproducible, high-throughput alternative that is well-suited to drug screening, disease modelling, and potential cell therapy manufacturing. Standardised, scalable NRSC banks will accelerate neurodevelopmental and neurodegenerative disorder studies, enable automated bioreactor workflows, and encourage the sharing of resources across academia and industry.

      Weaknesses:

      Weaknesses include a lack of direct comparison to conventional manual-selection protocols, and the need to improve the statistical rigor of all quantitative assays by applying appropriate hypothesis tests (e.g., t-tests or ANOVA with multiple-comparison correction) rather than reporting mean {plus minus} SD alone.

      Additional Context:

      Beyond the core technical advance, it's important to situate this work within the broader landscape of neural stem cell research and its downstream applications. Traditionally, dorsal forebrain NSCs have been generated via manual rosette picking after dual-SMAD inhibition (Chambers et al., 2009), a process that is labor-intensive, low-throughput, and prone to operator-dependent variability. By eliminating that step, this protocol directly addresses a key barrier to standardizing NSC production under GMP-compatible conditions - critical for both large-scale drug screening and eventual clinical use. Stable, regionally specified forebrain NSCs are especially valuable for modeling early neurodevelopmental disorders (e.g., autism spectrum disorders, microcephaly) and late-onset pathologies (e.g., Alzheimer's disease) in vitro, where precise cortical patterning is essential to recapitulate disease phenotypes. Moreover, establishing long-term epigenetic fidelity (e.g., via future ATAC-seq or histone-mark profiling) will further reassure users that transcriptional consistency reflects preserved regulatory networks, not just transient marker expression. Finally, demonstrating robust cryopreservation viability (>80%) makes these cells a readily shareable resource for the community, accelerating cross-lab reproducibility and comparative studies of patient-derived iPSC lines. This context underscores how scalable, high-purity forebrain NSCs can transform both basic neuroscience research and translational pipelines.

    1. Reviewer #1 (Public review):

      In this manuscript, Gruber et al perform serial EM sections of the antennal lobe and reconstruct the neurites innervating two types of glomeruli - one that is narrowly tuned to geosmin and one that is broadly tuned to other odours. They quantify and describe various aspects of the innervations of olfactory sensory neurons (OSNs), uniglomerlular projection neurons (uPNs), and the multiglomerular Local interneurons (LNs) and PNs (mPNs). They find that narrowly tuned glomeruli had stronger connectivity from OSNs to PNs and LNs, and considerably more connections between sister OSNs and sister PNs than the broadly tuned glomeruli. They also had less connectivity with the contralateral glomerluli. These observations are suggestive of strong feed-forward information flow with minimal presynaptic inhibition in narrowly tuned gomeruli, which might be ecologically relevant, for example, while making quick decisions such as avoiding a geosmin-laden landing site. In contrast, information flow in more broadly tuned glomeruli show much more lateralisation of connectivity to the contralateral glomerulus, as well as to other ipsilateral glomeruli.

      The data are well presented, the manuscript clearly written, and the results will be useful to the olfaction community. I had earlier suggested comparisons with other EM datasets that exist to investigate stereotypy, and am convinced by their efforts and reasons for which these were either not possible to do or not possible within the timeframe of a revision.

      Comments on revisions:

      Thank you for the careful responses to my suggestions. I hope that such approaches will be possible by others going forward.

    1. Reviewer #1 (Public review):

      Summary:

      The authors performed genome assemblies for two Fagaceae species and collected transcriptome data from four natural tree species every month over two years. They identified seasonal gene expression patterns and further analyzed species-specific differences.

      Strengths:

      The study of gene expression patterns in natural environments, as opposed to controlled chambers, is gaining increasing attention. The authors collected RNA-seq data monthly for two years from four tree species and analyzed seasonal expression patterns. The data are novel. The authors could revise the manuscript to emphasize seasonal expression patterns in three species (with one additional species having more limited data). Furthermore, the chromosome-scale genome assemblies for the two Fagaceae species represent valuable resources, although the authors did not cite existing assemblies from closely related species.

      Weaknesses:

      The study design has a fundamental flaw regarding the evaluation of genetic or evolutionary effects. As a basic principle in biology, phenotypes, including gene expression levels, are influenced by genetics, environmental factors, and their interaction. This principle is well-established in quantitative genetics.

      In this study, the four species were sampled from three different sites (see Materials and Methods, lines 543-546), and additionally, two species were sampled from 2019-2021, while the other two were sampled from 2021-2023 (see Figure S2). This critical detail should be clearly described in the Results and Materials and Methods. Due to these variations in sampling sites and periods, environmental conditions are not uniform across species.

      Even in studies conducted in natural environments, there are ways to design experiments that allow genetic effects to be evaluated. For example, by studying co-occurring species, or through transplant experiments, or in common gardens. To illustrate the issue, imagine an experiment where clones of a single species were sampled from three sites and two time periods, similar to the current design. RNA-seq analysis would likely detect differences that could qualitatively resemble those reported in this manuscript.

      One example is in line 197, where genus-specific expression patterns are mentioned. While it may be true that the authors' conclusions (e.g., winter synchronization, phylogenetic constraints) reflect real biological trends, these conclusions are also predictable even without empirical data, and the current dataset does not provide quantitative support.

      If the authors can present a valid method to disentangle genetic and environmental effects from their dataset, that would significantly strengthen the manuscript. However, I do not believe the current study design is suitable for this purpose.

      Unless these issues are addressed, the use of the term "evolution" is inappropriate in this context. The title should be revised, and the result sections starting from "Peak months distribution..." should be either removed or fundamentally revised. The entire Discussion section, which is based on evolutionary interpretation, should be deleted in its current form.

      If the authors still wish to explore genetic or evolutionary analyses, the pair of L. edulis and L. glaber, which were sampled at the same site and over the same period, might be used to analyze "seasonal gene expression divergence in relation to sequence divergence." Nevertheless, the manuscript would benefit from focusing on seasonal expression patterns without framing the study in evolutionary terms.

      To better support the seasonal expression analysis, the early RNA-seq analysis sections should be strengthened. There is little discussion of biological replicate variation or variation among branches of the same individual. These could be important factors to analyze. In line 137, the mapping rate for two species is mentioned, but the rates for each species should be clearly reported. One RNA-seq dataset is based on a species different from the reference genome, so a lower mapping rate is expected. While this likely does not hinder downstream analysis, quantification is important.

      In Figures 2A and 2B, clustering is used to support several points discussed in the Results section (e.g., lines 175-177). However, clustering is primarily a visualization method or a hypothesis-generating tool; it cannot serve as a statistical test. Stronger conclusions would require further statistical testing.

      The quality of the genome assemblies appears adequate, but related assemblies should be cited and discussed. Several assemblies of Fagaceae species already exist, including Quercus mongolica (Ai et al., Mol Ecol Res, 2022), Q. gilva (Front Plant Sci, 2022), and Fagus sylvatica (GigaScience, 2018), among others. Is there any novelty here? Can you compare your results with these existing assemblies?

      Most importantly, Figure 1B-D shows synteny between the two genera but also indicates homology between different chromosomes. Does this suggest paleopolyploidy or another novel feature? These chromosome connections should be interpreted in the main text-even if they could be methodological artifacts.

      In both the Results and Materials and Methods sections, descriptions of genome and RNA-seq data are unclear. In line 128, a paragraph on genome assembly suddenly introduces expression levels. RNA-seq data should be described before this. Similarly, in line 238, the sentence "we assembled high-quality reference genomes" seems disconnected from the surrounding discussion of expression studies. In line 632, Illumina short-read DNA sequencing is mentioned, but it's unclear how these data were used.

    1. Reviewer #1 (Public review):

      Summary:

      This is a strong paper that presents a clear advance in multi-animal tracking. The authors introduce an updated version of idtracker.ai that reframes identity assignment as a contrastive learning problem rather than a classification task requiring global fragments. This change leads to gains in speed and accuracy. The method eliminates a known bottleneck in the original system, and the benchmarking across species is comprehensive and well executed. I think the results are convincing and the work is significant.

      Strengths:

      The main strengths are the conceptual shift from classification to representation learning, the clear performance gains, and the fact that the new version is more robust. Removing the need for global fragments makes the software more flexible in practice, and the accuracy and speed improvements are well demonstrated. The software appears thoughtfully implemented, with GUI updates and integration with pose estimators.

      Weaknesses:

      I don't have any major criticisms, but I have identified a few points that should be addressed to improve the clarity and accuracy of the claims made in the paper.

      (1) The title begins with "New idtracker.ai," which may not age well and sounds more promotional than scientific. The strength of the work is the conceptual shift to contrastive representation learning, and it might be more helpful to emphasize that in the title rather than branding it as "new."

      (2) Several technical points regarding the comparison between TRex (a system evaluated in the paper) and idtracker.ai should be addressed to ensure the evaluation is fair and readers are fully informed.

      (2.1) Lines 158-160: The description of TRex as based on "Protocol 2 of idtracker.ai" overlooks several key additions in TRex, such as posture image normalization, tracklet subsampling, and the use of uniqueness feedback during training. These features are not acknowledged, and it's unclear whether TRex was properly configured - particularly regarding posture estimation, which appears to have been omitted but isn't discussed. Without knowing the actual parameters used to make comparisons, it's difficult to assess how the method was evaluated.

      (2.2) Lines 162-163: The paper implies that TRex gains speed by avoiding Protocol 3, but in practice, idtracker.ai also typically avoids using Protocol 3 due to its extremely long runtime. This part of the framing feels more like a rhetorical contrast than an informative one.

      (2.3) Lines 277-280: The contrastive loss function is written using the label l, but since it refers to a pair of images, it would be clearer and more precise to write it as l_{I,J}. This would help readers unfamiliar with contrastive learning understand the formulation more easily.

      (2.4) Lines 333-334: The manuscript states that TRex can fail to track certain videos, but this may be inaccurate depending on how the authors classify failures. TRex may return low uniqueness scores if training does not converge well, but this isn't equivalent to tracking failure. Moreover, the metric reported by TRex is uniqueness, not accuracy. Equating the two could mislead readers. If the authors did compare outputs to human-validated data, that should be stated more explicitly.

      (2.5) Lines 339-341: The evaluation approach defines a "successful run" and then sums the runtime across all attempts up to that point. If success is defined as simply producing any output, this may not reflect how experienced users actually interact with the software, where parameters are iteratively refined to improve quality.

      (2.6) Lines 344-346: The simulation process involves sampling tracking parameters 10,000 times and selecting the first "successful" run. If parameter tuning is randomized rather than informed by expert knowledge, this could skew the results in favor of tools that require fewer or simpler adjustments. TRex relies on more tunable behavior, such as longer fragments improving training time, which this approach may not capture.

      (2.7) Line 354 onward: TRex was evaluated using two varying parameters (threshold and track_max_speed), while idtracker.ai used only one (intensity_threshold). With a fixed number of samples, this asymmetry could bias results against TRex. In addition, users typically set these parameters based on domain knowledge rather than random exploration.

      (2.8) Figure 2-figure supplement 3: The memory usage comparison lacks detail. It's unclear whether RAM or VRAM was measured, whether shared or compressed memory was included, or how memory was sampled. Since both tools dynamically adjust to system resources, the relevance of this comparison is questionable without more technical detail.

      (3) While the authors cite several key papers on contrastive learning, they do not use the introduction or discussion to effectively situate their approach within related fields where similar strategies have been widely adopted. For example, contrastive embedding methods form the backbone of modern facial recognition and other image similarity systems, where the goal is to map images into a latent space that separates identities or classes through clustering. This connection would help emphasize the conceptual strength of the approach and align the work with well-established applications. Similarly, there is a growing literature on animal re-identification (ReID), which often involves learning identity-preserving representations across time or appearance changes. Referencing these bodies of work would help readers connect the proposed method with adjacent areas using similar ideas, and show that the authors are aware of and building on this wider context.

      (4) Some sections of the Results text (e.g., lines 48-74) read more like extended figure captions than part of the main narrative. They include detailed explanations of figure elements, sorting procedures, and video naming conventions that may be better placed in the actual figure captions or moved to supplementary notes. Streamlining this section in the main text would improve readability and help the central ideas stand out more clearly.

      Overall, though, this is a high-quality paper. The improvements to idtracker.ai are well justified and practically significant. Addressing the above comments will strengthen the work, particularly by clarifying the evaluation and comparisons.

    1. Reviewer #1 (Public review):

      The authors' goal was to arrest PsV capsids on the extracellular matrix using cytochalasin D. The cohort was then released, and interaction with the cell surface, specifically with CD151, was assessed.

      The model that fragmented HS associated with released virions mediates the dominant mechanism of infectious entry has only been suggested by research from a single laboratory and has not been verified in the 10+ years since publication. The authors are basing this study on the assumption that this model is correct, and these data are referred to repeatedly as the accepted model despite much evidence to the contrary. The discussion in lines 65-71 concerning virion and HSPG affinity changes is greatly simplified. The structural changes in the capsid induced by HS interaction and the role of this priming for KLK8 and furin cleavage have been well researched. Multiple laboratories have independently documented this. If this study aims to verify the shedding model, additional data need to be provided. The model should be fitted into established entry events, or at minimum, these conflicting data, a subset of which is noted below, need to be acknowledged.

      (1) The Sapp lab (Richards et al., 2013) found that HSPG-mediated conformational changes in L1 and L2 allowed the release of the virus from primary binding and allowing secondary receptor engagements in the absence of HS shedding.

      (2) Becker et al. found that furin-precleaved capsids could infect cells independently of HSPG interaction, but this infection was still inhibited with cytochalasin D.

      (3) Other work from the Schelhaas lab showed that cytochalasin D inhibition of infection resulted in the accumulation of capsids in deep invaginations from the cell surface, not on the ECM.

      (4) Selinka et al., 2007, showed that preventing HSPG-induced conformational changes in the capsid surface resulted in noninfectious uptake that was not prevented with cytochalasin D.

      (5) The well-described capsid processing events by KLK8 and furin need to be mechanistically linked to the proposed model. Does inhibition of either of these cleavages prevent engagement with CD151?

      The authors need to consider an explanation for these discrepancies.

      Other issues:

      (1) Line 110-111. The statement about PsVs in the ECM being too far away from the cell surface to make physical contact with the cell surface entry receptors is confusing. ECM binding has not been shown to be an obligatory step for in vitro infection. This idea is referred to again on lines 158-159 and 199. The claim (line 158) that PsV does not interact with the cell within an hour needs to be demonstrated experimentally and seems at odds with multiple laboratories' data. PsV has been shown to directly interact with HSPG on the cell surface in addition to the ECM. Why are these PsVs not detected?

      (2) The experiments shown in Figure 5 need to be better controlled. Why is there no HS staining of the cell surface at the early timepoints? This antibody has been shown to recognize N-sulfated glucosamine residues on HS and, therefore, detects HSPG on the ECM and cell surface. Therefore, the conclusion that this confirms HS coating of PsV during release from the ECM (line 430-431) is unfounded. How do the authors distinguish between "HS-coated virions" and HSPG-associated virions?

      It is difficult to comprehend how the addition of 50 vge/cell of PsV could cause such a global change in HS levels. The claim that the HS levels are decreased in the non-cytochalasin-treated cells due to PsV-induced shedding needs to be demonstrated. If HS is actually shed, staining of the cell periphery could increase with the antibody 3G10, which detects the HS neoepitope created following heparinase cleavage.

    1. Reviewer #1 (Public Review):

      In this study, Deng et al. investigate the antibody response against HA antigen following repeated vaccination with the H1N1 2009 pandemic influenza vaccine strain, using in silico modeling. The proposed model provides valuable mechanistic insights into how the broadening of the antibody response takes place upon repeated vaccination.

      Overall, the authors' model effectively explains the mechanistic principles underlying antibody responses against the viral antigens harboring epitope immunodominancy.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Comments on revisions:

      The authors have addressed all major and minor points that I raised in a satisfying way during the revision process. The work can now be regarded as complete: , the assumptions were clarified, the results are convincing, the conclusions are justified, and the novelty has been made clear. This manuscript will be of interest to cell biologists, mainly those studying bacteria, but not only

    1. Reviewer #1 (Public review):

      This revision of the computational study by Mondal et al addresses several issues that I raised in the previous round of reviews and, as such, is greatly improved. The manuscript is more readable, its findings are more clearly described, and both the introduction and the discussion section are tighter and more to the point. And thank you for addressing the three timescales of half activation/inactivation parameters. It makes the mechanism clearer.

      Some issues remain that I bring up below.

      Comment:

      I still have a bone to pick with the claim that "activity-dependent changes in channel voltage-dependence alone are insufficient to attain bursting". As I mentioned in my previous comment, this is also the case for the gmax values (channel density). If you choose the gmax's to be in a reasonable range, then the statement above is simply cannot be true. And if, in contrast, you choose the activation/inactivation parameters to be unreasonable, then no set of gmax's can produce proper activity. So I remain baffled what exactly is the point that the authors are trying to make.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Klug et al. investigated the pathway specificity of corticostriatal projections, focusing on two cortical regions. Using a G-deleted rabies system in D1-Cre and A2a-Cre mice to retrogradely deliver channelrhodopsin to cortical inputs, the authors found that M1 and MCC inputs to direct and indirect pathway spiny projection neurons (SPNs) are both partially segregated and asymmetrically overlapping. In general, corticostriatal inputs that target indirect pathway SPNs are likely to also target direct pathway SPNs, while inputs targeting direct pathway SPNs are less likely to also target indirect pathway SPNs. Such asymmetric overlap of corticostriatal inputs has important implications for how the cortex itself may determine striatal output. Indeed, the authors provide behavioral evidence that optogenetic activation of M1 or MCC cortical neurons that send axons to either direct or indirect pathway SPNs can have opposite effects on locomotion and different effects on action sequence execution. The conclusions of this study add to our understanding of how cortical activity may influence striatal output and offer important new clues about basal ganglia function.

      The conceptual conclusions of the manuscript are supported by the data, but the details of the magnitude of afferent overlap and causal role of asymmetric corticostriatal inputs on some behavioral outcomes may be a bit overstated given technical limitations of the experiments.

      For example, after virally labeling either direct pathway (D1) or indirect pathway (D2) SPNs to optogenetically tag pathway-specific cortical inputs, the authors report that a much larger number of "non-starter" D2-SPNs from D2-SPN labeled mice responded to optogenetic stimulation in slices than "non-starter" D1 SPNs from D1-SPN labeled mice did. Without knowing the relative number of D1 or D2 SPN starters used to label cortical inputs, it is difficult to interpret the exact meaning of the lower number of responsive D2-SPNs in D1 labeled mice (where only ~63% of D1-SPNs themselves respond) compared to the relatively higher number of responsive D1-SPNs (and D2-SPNs) in D2 labeled mice. While relative differences in connectivity certainly suggest that some amount of asymmetric overlap of inputs exists, differences in infection efficiency and ensuing differences in detection sensitivity in slice experiments make determining the degree of asymmetry problematic.

      It is also unclear if retrograde labeling of D1-SPN- vs D2-SPN- targeting afferents labels the same densities of cortical neurons. This gets to the point of specificity in some of the behavioral experiments. If the target-based labeling strategies used to introduce channelrhodopsin into specific SPN afferents label significantly different numbers of cortical neurons, might the difference in the relative numbers of optogenetically activated cortical neurons itself lead to behavioral differences?

    1. Reviewer #1 (Public review):

      Summary:

      This work starts with the observation that embryo polarization is asynchronous starting at the early 8-cell stage, with early polarizing cells being biased towards producing the trophectoderm (TE) lineage. They further found that reduced CARM1 activity and upregulation of its substrate BAF155 promote early polarization and TE specification, this piece of evidence connects the previous finding that at Carm1 heterogeneity 4-cell stage guide later cell lineages - the higher Carm1-expressing blastomeres are biased towards ICM lineage. Thus, this work provides a link between asymmetries at the 4-cell stage and polarization at the 8-cell stage, providing a cohesive explanation regarding the first lineage allocation in mouse embryos.

      Strengths:

      In addition to what has been put in the summary, the advanced 3D image-based analysis has found that early polarization is associated with a change in cell geometry in blastomeres, regarding the ratio of the long axis to the short axis. This is considered a new observation that has not been identified.

      Weaknesses:

      For the microinjection-based method to overexpression/deletion of proteins, although it has been shown to be effective in the early embryo settings and has been widely used, it may not fully represent the in vivo situation in some cases, compared to other strategies such as the use of knock-in mice.

      This is a minor weakness and has been discussed by the author in the revised manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This paper is using state-of-the-art techniques to define the cellular composition and its complexity in two rodent species (mice and rats). The study is built on available datasets but extends those in a way that future research will be facilitated. The study will be of high impact for the study of metabolic control.

      Strengths:

      After revision, the paper is much improved. I have no further comments.

    1. Reviewer #1 (Public review):

      In the Late Triassic and Early Jurassic (around 230 to 180 Ma ago), southern Wales and adjacent parts of England were a karst landscape. The caves and crevices accumulated remains of small vertebrates. These fossil-rich fissure fills are being exposed in limestone quarrying. In 2022 (reference 13 of the article), a partial articulated skeleton and numerous isolated bones from one fissure fill of end-Triassic age (just over 200 Ma) were named Cryptovaranoides microlanius and described as the oldest known squamate - the oldest known animal, by some 20 to 30 Ma, that is more closely related to snakes and some extant lizards than to other extant lizards. This would have considerable consequences for our understanding of the evolution of squamates and their closest relatives, especially for their speed and absolute timing, and was supported in the same paper by phylogenetic analyses based on different datasets.

      In 2023, the present authors published a rebuttal (reference 18) to the 2022 paper, challenging anatomical interpretations and the irreproducible referral of some of the isolated bones to Cryptovaranoides. Modifying the datasets accordingly, they found Cryptovaranoides outside Squamata and presented evidence that it is far outside. In 2024 (reference 19), the original authors defended most of their original interpretation and presented some new data, some of it from newly referred isolated bones. The present article discusses anatomical features and the referral of isolated bones in more detail, documents some clear misinterpretations, argues against the widespread but not justifiable practice of referring isolated bones to the same species as long as there is merely no known evidence to the contrary, further argues against comparing newly recognized fossils to lists of diagnostic characters from the literature as opposed to performing phylogenetic analyses and interpreting the results, and finds Cryptovaranoides outside Squamata again.

      Although a few of the character discussions and the discussion of at least one of the isolated bones can probably still be improved (and two characters are addressed twice), I see no sign that the discussion is going in circles or otherwise becoming unproductive. I can even imagine that the present contribution will end it.

    1. Reviewer #1 (Public review):

      Summary:

      By applying the laser scanning photostimulation (LSPS) approach to a novel slice preparation, the authors aimed to study the degree of convergence and divergence of cortical inputs to individual striatal projection neurons (SPNs).

      Strengths:

      The experiments were well-designed and conducted, and data analysis was thorough. The manuscript was well written and related work in the literature was properly discussed. This work has the potential to advance our understanding of how sensory inputs are integrated into the striatal circuits.

    1. Reviewer #1 (Public review):

      Summary:

      The authors note that while many software packages exist for spike sorting, these do not automatically differentiate with known accuracy between excitatory and inhibitory neurons. Moreover, most existing spike sorting packages are for in vivo use, where the majority of electrodes are separated from each other by several hundred microns or more. There is a need for spike sorting packages that can take advantage of high-density electrode arrays where all electrodes are within a few tens of microns from other electrodes. Here, the authors offer such a software package with SpikeMAP, and they validate its performance in identifying parvalbumin interneurons that were optogenetically stimulated.

      Strengths:

      The main strength of this work is that the authors use ground truth measures to show that SpikeMAP can take features of spike shapes to correctly identify known parvalbumin interneurons against a background of other neuron types. They use spike width and peak to peak distance as the key features for distinguishing between neuron types, a method that has been around for many years (Barthó, Peter, et al. "Characterization of neocortical principal cells and interneurons by network interactions and extracellular features." Journal of neurophysiology 92.1 (2004): 600-608.), but whose performance has not been validated in the context of high-density electrode arrays.

      Another strength of this approach is that it is automated - a necessity if your electrode array has 4096 electrodes. Hand-sorting or even checking such a large number of channels is something even the cruellest advisor would not wish upon a graduate student. With such large channel counts, it is essential to have automated methods that are known to work accurately. Hence, the combination of validation and automation is an important advance.

      A nice feature of this work is that with high-density electrode arrays, the spike waveforms appear on multiple nearby electrodes simultaneously. And since spike amplitudes fall off with distance, this allows triangulation of neuron locations within the regular electrode array. Thus, spike correlations between neuron types, or within neuron types, can be plotted as a function of distance. While SpikeMAP is not the first to do this (Peyrache, Adrien, et al. "Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep." Proceedings of the national academy of sciences 109.5 (2012): 1731-1736.), it is a welcome capability of this package.

      It is also good that the code for this package is open-source, allowing a community of people (I expect in vitro labs will especially want to use this) to use the code and further improve it.

      Weaknesses:

      As this code was developed for use with a 4096-electrode array, it is important to be aware of double counting neurons across the many electrodes. I understand that there are ways within the code to ensure that this does not happen, but care must be taken in two key areas: First, action potentials traveling down axons will exhibit a triphasic waveform that is different from the biphasic waveform that appears near the cell body, but these two signals will still be from the same neuron (for example, see Litke et al., 2004 "What does the eye tell the brain: Development of a System for the Large-Scale Recording of Retinal Output Activity"; figure 14). I did not see anything that would directly address this situation, so it might be something for you to consider in updated versions of the code. Second, spike shapes are known to change when firing rates are high, like in bursting neurons (Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141-149 (2001)). I did not see this addressed in the present version of the manuscript.

      Another area for possible improvement would be to build on the excellent validation experiments you have already conducted with parvalbumin interneurons. Although it would take more work, similar experiments could be conducted for somatostatin and vasoactive intestinal peptide neurons against a background of excitatory neurons. These may have different spike profiles, but your success in distinguishing them can only be known if you validate against ground truth, like you did for the PV interneurons.

      Appraisal:

      This work addresses the need for an automated spike sorting software package for high density electrode arrays. Although no spike sorting software is flawless, the package presented here, SpikeMAP, has been validated on PV interneurons, inspiring a degree of confidence. This is a good start, and further validation on other neuron types could increase that confidence. Groups doing in vitro experiments, where 4096 electrode arrays are more common, could find this system particularly helpful.

      Comments on revised version:

      I appreciate the dialogue that has occurred over this submission. I have seen how the authors have taken into account the issues that I have raised, as well as those brought up by reviewer 2. I am satisfied that the paper has improved and is now a novel and useful contribution in the area of spike sorting.

    1. Reviewer #1 (Public review):

      Summary

      This article is about the neural representation of odors in the early olfactory system of insects, fish, and rodents. Specifically, it regards the transformation that occurs between the olfactory sensory cells and the second-order neurons (projection neurons in insects, mitral/tufted cells in vertebrates). The central question is how the nervous system can encode both the identity of an odor and its concentration over many log units. The authors reanalyze data from experimental studies of odor responses in primary and secondary neurons, and test a range of computational models as to whether they match the observed transformation. They focus on two aspects of the second-order neuron response to odor concentration: the average activity across all neurons varies only a little with odor concentration, and different neurons have concentration-response curves with different shapes. They conclude that a model of divisive normalization can account for these effects, whereas two alternative models fail the test. A second observation is that tufted cells in the rodent system seem to undergo less normalization than mitral cells, and some reasons for this difference are proposed.

      Strengths:

      (1) The work compares different models for normalization, rather than simply reporting success with one.

      (2) The analysis is applied to very diverse species, potentially revealing a common principle of olfactory processing.

      Weaknesses:

      (1) It is unclear that animals actually have a need to represent odor concentration over many log units in support of olfactory behaviors.

      (2) The stimuli used in the chosen experiments, and the measure of neural response, are only weakly related to any ecological need, e.g., during odor tracking.

      (3) Some of the comparisons between receptors and second-order neurons also compare across evolutionarily distant insect species that may not use the same coding principles.

      (4) The analysis ignores the dynamics of odor responses, which figure prominently in previous answers to the question of identity/intensity coding.

      (5) There is considerable prior consensus in the literature on the importance of normalization from primary to secondary neurons.

      Elaboration of my comments:

      (1) Motivation

      The article starts from the premise that animals need to know the absolute concentration of an odor over many log units, but the need for this isn't obvious. The introduction cites an analogy to vision and audition. These are cases where we know for a fact that the absolute intensity of the stimulus is not relevant. Instead, sensory perception relies on processing small differences in intensity across space or time. And to maintain that sensitivity to small differences, the system discards the stimulus baseline. Humans are notoriously bad at judging the absolute light level. That information gets discarded even before light reaches the retina, namely through contraction of the pupil. Similarly, it seems plausible that a behavior like olfactory tracking relies on sensing small gradients across time (when weaving back and forth across the track) or space (across nostrils). It is important that the system function over many log units of concentration (e.g., far and close to a source) but not that it accurately represents what that current concentration is [see e.g., Wachowiak et al, 2025 Recalibrating Olfactory Neuroscience..].

      Still, many experiments in olfactory research have delivered square pulses of odor at concentrations spanning many log units, rather than the sorts of stimuli an animal might encounter during tracking. Even within that framework, though, it doesn't seem mysterious anymore how odor identity and odor concentration are represented differently. For example, Stopfer et al 2003 showed that the population response of locust PNs traces a dynamic trajectory. Trajectories for a given odor form a manifold, within which trajectories for different concentrations are distinct by their excursions on the manifold. To see this, one must recognize that the PN responds to an odor pulse with a time-varying firing rate, that different PNs have different dynamics, and that the dynamics can change with concentration. This is also well recognized in the mammalian systems. Much has been written about the topic of dynamic coding of identity and intensity - see the reviews of Laurent (2002) and Uchida (2014).

      (2) Conceptual

      Given the above comments on the dynamics of odor responses in first- and second-order neurons, it seems insufficient to capture the response of a neuron with a single number. Even if one somehow had to use a single number, the mean firing rate during the odor pulse may not be the best choice. For example, the rodent mitral cells fire in rhythm with the animal's sniffing cycle, and certain odors will just shift the phase of the rhythm without changing the total number of spikes (see e.g., Fantana et al, 2008). During olfactory search or tracking, the sub-second movements of the animal in the odor landscape get superposed on the sniffing cycle. Given all this, it seems unlikely that the total number of spikes from a neuron in a 4-second period is going to be a relevant variable for neural processing downstream.

      Much of the analysis focuses on the mean activity of the entire population. Why is this an interesting quantity? Apparently, the mean stays similar because some neurons increase and others decrease their firing rate. It would be more revealing, perhaps, to show the distribution of firing rates at different concentrations and see how that distribution is predicted by different models of normalization. This could provide a stronger test than just the mean.

      The question "if concentration information is discarded in second-order neurons, which exclusively transmit odor information to the rest of the brain, how does the brain support olfactory behaviors, such as tracking and navigation?" is really not an open question anymore. For example, reference 23 reports in the abstract that "Odorant concentration had no systematic effect on spike counts, indicating that rate cannot encode intensity. Instead, odor intensity can be encoded by temporal features of the population response. We found a subpopulation of rapid, largely concentration-invariant responses was followed by another population of responses whose latencies systematically decreased at higher concentrations."

      (3) Methods

      It would be useful to state early in the manuscript what kinds of stimuli are being considered and how the response of a neuron is summarized by one number. There are many alternative ways to treat both stimuli and responses.

      "The change in response across consecutive concentration levels may not be robust due to experimental noise and the somewhat limited range of concentrations sampled": Yes, a number of the curves just look like "no response". It would help the reader to show some examples of raw data, e.g. the time course of one neuron's firing rate to 4 concentrations, and for the authors to illustrate how they compress those responses into single numbers.

      "We then calculated the angle between these two slopes for each neuron and plotted a polar histogram of these angles." The methods suggest that this angle is the arctan of the ratio of the two slopes in the response curve. A ratio of 2 would result from a slope change from 0.0001 to 0.0002 (i.e., virtually no change in slope) or from 1 to 2 (a huge change). Those are completely different response curves. Is it reasonable to lump them into the same bin of the polar plot? This seems an unusual way to illustrate the diversity of response curve shapes.

      The Drosophila OSN data are passed through normalization models and then compared to locust PN data. This seems dangerous, as flies and locusts are separated by about 300 M years of evolution, and we don't know that fly PNs act like locust PNs. Their antennal lobe anatomy differs in many ways, as does the olfactory physiology. To draw any conclusions about a change in neural representation, it would be preferable to have OSN and PN data from the same species.

      (4) Models of normalization

      One conclusion is that divisive normalization could account for some of the change in responses from receptors to 2nd order neurons. This seems to be well appreciated already [e.g., Olsen 2010, Papadopoulou 2011, minireview in Hong & Wilson 2013].

      Another claim is that subtractive normalization cannot perform that function. What model was used for subtractive normalization is unclear (there is an error in the Methods). It would be interesting if there were a categorical difference between divisive and subtractive normalization.

      Looking closer at the divisive normalization model, it really has two components: (a) the "lateral inhibition" by which a neuron gets suppressed if other neurons fire (here scaled by the parameter k) , and (b) a nonlinear sigmoid transformation (determined by the parameters n and sigma). Both lateral inhibition and nonlinearity are known to contribute to decorrelation in a neural population (e.g., Pitkow 2012). The "intraglomerular gain control" contains only the nonlinearity. The "subtractive normalization" we don't know. But if one wanted to put divisive and subtractive inhibition on the same footing, one should add a sigmoid nonlinearity in both cases.

      The response models could be made more realistic in other ways. For example, in both locusts and fish, the 2nd order neurons get inputs from multiple receptor types; presumably, that will affect their response functions. Also, lateral inhibition can take quite different forms. In locusts, the inhibitory neurons seem to collect from many glomeruli. But in rats, the inhibition by short axon cells may originate from just a few sparse glomeruli, and those might be different for every mitral cell (Fantana 2008).

      (5) Tufted cells

      There are questions raised by the following statements: "traded-off energy for faster and finer concentration discrimination" and "an additional type of second-order neuron (tufted cells) that has evolved in land vertebrates and that outperforms mitral cells in concentration encoding" and later "These results suggest a trade-off between concentration decoding and normalization processes, which prevent saturation and reduce energy consumption.". Are the tufted cells inferior to the mitral cells in any respect? Do they suffer from saturation at high concentration? And do they then fail in their postulated role for odor tracking? If not, then what was the evolutionary driver for normalization in the mitral cell pathway? Certainly not lower energy consumption (50,000 mitral cells = 1% of rod photoreceptors, each of which consumes way more energy than a mitral cell).

    1. Reviewer #1 (Public review):

      Summary:

      Zhang et al. used a conditional knockout mouse model to re-examine the role of the RNA-binding protein PTBP1 in the transdifferentiation of astroglial cells into neurons. Several earlier studies reported that PTBP1 knockdown can efficiently induce the transdifferentiation of rodent glial cells into neurons, suggesting potential therapeutic applications for neurodegenerative diseases. However, these findings have been contested by subsequent studies, which in turn have been challenged by more recent publications. In their current work, Zhang et al. deleted exon 2 of the Ptbp1 gene using an astrocyte-specific, tamoxifen-inducible Cre line and investigated, using fluorescence imaging and bulk and single-cell RNA-sequencing, whether this manipulation promotes the transdifferentiation of astrocytes into neurons across various brain regions. The data strongly indicate that genetic ablation of PTBP1 is not sufficient to drive efficient conversion of astrocytes into neurons. Interestingly, while PTBP1 loss alters splicing patterns in numerous genes, these changes do not shift the astroglial transcriptome toward a neuronal profile.

      Strengths:

      Although this is not the first report of PTBP1 ablation in mouse astrocytes in vivo, this study utilizes a distinct knockout strategy and provides novel insights into PTBP1-regulated splicing events in astrocytes. The manuscript is well written, and the experiments are technically sound and properly controlled. I believe this study will be of considerable interest to a broad readership.

      Weaknesses:

      (1) The primary point that needs to be addressed is a better understanding of the effect of exon 2 deletion on PTBP1 expression. Figure 4D shows successful deletion of exon 2 in knockout astrocytes. However, assuming that the coverage plots are CPM-normalized, the overall PTBP1 mRNA expression level appears unchanged. Figure 6A further supports this observation. This is surprising, as one would expect that the loss of exon 2 would shift the open reading frame and trigger nonsense-mediated decay of the PTBP1 transcript. Given this uncertainty, the authors should confirm the successful elimination of PTBP1 protein in cKO astrocytes using an orthogonal approach, such as Western blotting, in addition to immunofluorescence. They should also discuss possible reasons why PTBP1 mRNA abundance is not detectably affected by the frameshift.

      (2) The authors should analyze PTBP1 expression in WT and cKO substantia nigra samples shown in Figure 3 or justify why this analysis is not necessary.

      (3) Lines 236-238 and Figure 4E: The authors report an enrichment of CU-rich sequences near PTBP1-regulated exons. To better compare this with previous studies on position-specific splicing regulation by PTBP1, it would be helpful to assess whether the position of such motifs differs between PTBP1-activated and PTBP1-repressed exons.

      (4) The analyses in Figure 5 and its supplement strongly suggest that the splicing changes in PTBP1-depleted astrocytes are distinct from those occurring during neuronal differentiation. However, the authors should ensure that these comparisons are not confounded by transcriptome-wide differences in gene expression levels between astrocytes and developing neurons. One way to address this concern would be to compare the new PTBP1 cKO data with publicly available RNA-seq datasets of astrocytes induced to transdifferentiate into neurons using proneural transcription factors (e.g., PMID: 38956165).

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents maRQup, a Python pipeline for automating the quantitative analysis of preclinical cancer immunotherapy experiments using bioluminescent imaging in mice. maRQup processes images to quantify tumor burden over time and across anatomical regions, enabling large-scale analysis of over 1,000 mice. The study uses this tool to compare different CAR-T cell constructs and doses, identifying differences in initial tumor control and relapse rates, particularly noting that CD19.CD28 CAR-T cells show faster initial killing but higher relapse compared to CD19.4-1BB CAR-T cells. Furthermore, maRQup facilitates the spatiotemporal analysis of tumor dynamics, revealing differences in growth patterns based on anatomical location, such as the snout exhibiting more resistance to treatment than bone marrow.

      Strengths:

      (1) The maRQup pipeline enables the automatic processing of a large dataset of over 1,000 mice, providing investigators with a rapid and efficient method for analyzing extensive bioluminescent tumor image data.

      (2) Through image processing steps like tail removal and vertical scaling, maRQup normalizes mouse dimensions to facilitate the alignment of anatomical regions across images. This process enables the reliable demarcation of nine distinct anatomical regions within each mouse image, serving as a basis for spatiotemporal analysis of tumor burden within these consistent regions by quantifying average radiance per pixel.

      Weaknesses:

      (1) While the pipeline aims to standardize images for regional assessment, the reliance on scaling primarily along the vertical axis after tail removal may introduce limitations to the quantitative robustness of the anatomically defined regions. This approach does not account for potential non-linear growth across dimensions in animals of different ages or sizes, which could result in relative stretching or shrinking of subjects compared to an average reference.

      (2) Furthermore, despite excluding severely slanted images, the pipeline does not fully normalize for variations in animal pose during image acquisition (e.g., tucked body, leaning). This pose variability not only impacts the precise relative positioning of internal anatomical regions, potentially making their definition based on relative image coordinates more qualitative than truly quantitative for precise regional analysis, but it also means that the bioluminescent light signal from the tumor will not propagate equally to the camera, as photons will travel differentially through the tissue. This differing light path through tissues due to variable positioning can introduce large variability in the measured radiance that was not accounted for in the analysis algorithm. Achieving more robust anatomical and quantitative normalization might require methods that control animal posture using a rigid structure during imaging.

    1. Reviewer #1 (Public review):

      In this study, Ramirez-Diaz and coworkers address an important and lingering question in the bacterial cell division field, i.e., whether FtsZ polymers bend the cell membrane inwards, using an elegant and innovative approach. The key cell division protein FtsZ is a homolog of tubulin and forms curved polymers in the presence of GTP. It has long been hypothesized that this curvature provides the force to bend the cell membrane inwards, thereby triggering septal synthesis. Several in vitro studies have shown that purified FtsZ, when attached to the membrane, can indeed deform artificial membranes. However, other studies favor the view that only septal peptidoglycan synthesis drives cell division. Ramirez-Diaz has tried to address the membrane deformation theory in vivo by developing a mutant that synthesizes extra lipids. In this way, the membrane tension is lowered, which would facilitate cell division if deformation of the cell membrane by curved FtsZ polymers is a crucial step in cell division. Surprisingly, they showed that this mutant overcomes the cell division block in a sepF ezrA double mutant. In addition, they carefully characterize the membrane characteristics of the mutant and the effect on FtsZ ring formation. With this work, they have set up a very useful model system to study the role of the cell membrane in cell division, and also a new tool to better study the function of the cell division proteins EzrA and SepF. Overall, this is a very important study for the bacterial cell division field with interesting findings and ideas.

      Nevertheless, the authors jump to a conclusion that I cannot yet share. The main issue I have is that they focus on membrane tensions, yet what they seem to modulate is membrane fluidity. Both are clearly related but not the same. I think that it is important to extensively address this issue in the manuscript. They (also) use Laurdan generalized polarization as an indication of membrane tension (Figure 1F), but this method is primarily used in the literature to measure membrane fluidity. In addition, they explain the occurrence of strong local fluorescent membrane signals as the occurrence of double membranes (Figure S1D), whereas others have shown that such fluorescent hot spots can, in theory, also be formed by local accumulation of fluid lipids (PMID: 24603761). The reason why it is so important to distinguish fluidity from tension is that for the attachment of FtsZ polymers, the cell makes use of anchor proteins like FtsA that contain an amphipathic alpha helix, which inserts into the inner leaflet of the lipid bilayer. Importantly, this insertion only works when the fatty acids can be "pushed apart", and this is stimulated by unsaturated and short-chain fatty acids that make the membrane more fluid (PMID: 12676941). If a membrane is "more fluid", then it can more easily accommodate an amphipathic helix. Thus, the production of extra membrane material may increase the fluidity of the cell membrane, as the Laurdan GP measurements indicated, which can then facilitate the attachment of FtsA, including the attached FtsZ polymers, to the membrane. In other words, what the authors have observed may not be a stimulation of Z-ring formation due to lowering membrane tension, but rather because of stimulated binding of FtsZ polymers to the cell membrane. It might be that the attachment of late cell division to the Z-ring, which is all transmembrane proteins, is also facilitated in a more fluid lipid environment. The authors have not excluded the latter (by using a mutant depleted for one of the late cell division proteins).

      Finally, the authors performed EM studies to measure septa thickness, and surprisingly, they did not seem to observe deformed septa in a sepF-ezrA double mutant, when overexpressing accDA, while it has been shown before that the absence of SepF leads to strongly deformed septa. Since this finding nuances the mode of action of SepF polymers, it should be discussed.

      In conclusion, this is an important and interesting study, but it seems crucial for the interpretation of the findings to include a clear discussion on membrane fluidity and its consequences.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript describes the use of computational tools to design a mimetic of the interleukin-7 (IL-7) cytokine with superior stability and receptor binding activity compared to the naturally occurring molecule. The authors focused their engineering efforts on the loop regions to preserve receptor interfaces while remediating structural irregularities that destabilize the protein. They demonstrated the enhanced thermostability, production yield, and bioactivity of the resulting molecule through biophysical and functional studies. Overall, the manuscript is well written, novel, and of high interest to the fields of molecular engineering, immunology, biophysics, and protein therapeutic design. The experimental methodologies used are convincing; however, the article would benefit from more quantitative comparisons of bioactivity through titrations.

    1. Reviewer #1 (Public review):

      This study aims to elucidate the mechanisms by which stress-induced α2A-adrenergic receptor (α2A-AR) internalization leads to cytosolic noradrenaline (NA) accumulation and subsequent neuronal dysfunction in the locus coeruleus (LC). While the manuscript presents an interesting but ambitious model involving calcium dynamics, GIRK channel rundown, and autocrine NA signaling, several key limitations undermine the strength of the conclusions.

      First, the revision does not include new experiments requested by reviewers to validate core aspects of the mechanism. Specifically, there is no direct measurement of cytosolic NA levels or MAO-A enzymatic activity to support the link between receptor internalization and neurochemical changes. The authors argue that such measurements are either not feasible or beyond the scope of the study, leaving a significant gap in the mechanistic chain of evidence.

      Second, the behavioral analysis remains insufficient to support claims of cognitive impairment. The use of a single working memory test following an anxiety test is inadequate to verify memory dysfunction behaviors. Additional cognitive assays, such as the Morris Water Maze or Novel Object Recognition, are recommended but not performed.

      Third, concerns regarding the lack of rigor in differential MAO-A expression in fluorescence imaging were not addressed experimentally. Instead of clarifying the issue, the authors moved the figure to supplementary data without providing further evidence (e.g., an enzymatic assay or quantitative reanalysis of Western blot, or re-staining of IF for MAO-A) to support their interpretation.

      Fourth, concerns regarding TH staining remain unresolved. In Figure S7, the α2A-AR signal appears to resemble TH staining, and vice versa, raising the possibility of labeling errors. It is recommended that the authors re-examine this issue by either double-checking the raw data or repeating the immunostaining to validate the staining.

      Overall, the manuscript offers a potentially interesting framework but falls short in providing the experimental rigor necessary to establish causality. The reliance on indirect reasoning and reorganizing of existing data, rather than generating new evidence, limits the overall impact and interpretability of the study.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how the brain processes facial expressions across development by analyzing intracranial EEG (iEEG) data from children (ages 5-10) and post-childhood individuals (ages 13-55). The researchers used a short film containing emotional facial expressions and applied AI-based models to decode brain responses to facial emotions. They found that in children, facial emotion information is represented primarily in the posterior superior temporal cortex (pSTC) - a sensory processing area - but not in the dorsolateral prefrontal cortex (DLPFC), which is involved in higher-level social cognition. In contrast, post-childhood individuals showed emotion encoding in both regions. Importantly, the complexity of emotions encoded in the pSTC increased with age, particularly for socially nuanced emotions like embarrassment, guilt, and pride. The authors claim that these findings suggest that emotion recognition matures through increasing involvement of the prefrontal cortex, supporting a developmental trajectory where top-down modulation enhances understanding of complex emotions as children grow older.

      Strengths:

      (1) The inclusion of pediatric iEEG makes this study uniquely positioned to offer high-resolution temporal and spatial insights into neural development compared to non-invasive approaches, e.g., fMRI, scalp EEG, etc.

      (2) Using a naturalistic film paradigm enhances ecological validity compared to static image tasks often used in emotion studies.

      (3) The idea of using state-of-the-art AI models to extract facial emotion features allows for high-dimensional and dynamic emotion labeling in real time.

      Weaknesses:

      The study has notable limitations that constrain the generalizability and depth of its conclusions. The sample size was very small, with only nine children included and just two having sufficient electrode coverage in the posterior superior temporal cortex (pSTC), which weakens the reliability and statistical power of the findings, especially for analyses involving age. Electrode coverage was also uneven across brain regions, with not all participants having electrodes in both the dorsolateral prefrontal cortex (DLPFC) and pSTC, and most coverage limited to the left hemisphere-hindering within-subject comparisons and limiting insights into lateralization. The developmental differences observed were based on cross-sectional comparisons rather than longitudinal data, reducing the ability to draw causal conclusions about developmental trajectories. Moreover, the analysis focused narrowly on DLPFC, neglecting other relevant prefrontal areas such as the orbitofrontal cortex (OFC) and anterior cingulate cortex (ACC), which play key roles in emotion and social processing. Although the use of a naturalistic film stimulus enhances ecological validity, it comes at the cost of experimental control, with no behavioral confirmation of the emotions perceived by participants and uncertain model validity for complex emotional expressions in children. A non-facial music block that could have served as a control was available but not analyzed. Generalizability is further limited by the fact that all participants were neurosurgical patients, potentially with neurological conditions such as epilepsy that may influence brain responses. Additionally, the high temporal resolution of intracranial EEG was not fully utilized, as data were downsampled and averaged in 500-ms windows. Finally, the absence of behavioral measures or eye-tracking data makes it difficult to directly link neural activity to emotional understanding or determine which facial features participants attended to.

    1. Joint Public Review:

      Summary:

      This study investigates plasticity effects in brain function and structure from training in navigation and verbal memory.

      The authors used a longitudinal design with a total of 75 participants across two sites. Participants were randomised to one of three conditions: verbal memory training, navigation training, or a video control condition. The results show behavioural effects in relevant tasks following the training interventions. The central claim of the paper is that network-based measures of task-based activation are affected by the training interventions, but structural brain metrics (T2w-derived volume and diffusion-weighted imaging microstructure) are not impacted by any of the training protocols tested.

      Strengths:

      (1) This is a well-designed study which uses two training conditions, an active control, and randomisation, as appropriate. It is also notable that the authors combined data acquisition across two sites to reach the needed sample size and accounted for it in their statistical analyses quite thoroughly. In addition, I commend the authors on using pre-registration of the analysis to enhance the reproducibility of their work.

      (2) Some analyses in the paper are exhaustive and compelling in showcasing the presence of longitudinal behavioural effects, functional activation changes, and lack of hippocampal volume changes. The breadth of analysis on hippocampal volume (including hippocampal subfields) is convincing in supporting the claim regarding a lack of volumetric effect in the hippocampus.

      Weaknesses:

      (1) The rationale for the study and its relationship with previous literature is not fully clear from the paper. In particular, there is a very large literature that has already explored the longitudinal effects of different types of training on functional and structural neuroimaging. However, this literature is barely acknowledged in the Introduction, which focuses on cross-sectional studies. Studies like the one by Draganski et al. 2004 are cited but not discussed, and are clumped together with cross-sectional studies, which is confusing. As a reader, it is difficult to understand whether the study was meant to be confirmatory based on previous literature, or whether it fills a specific gap in the literature on longitudinal neuroimaging effects of training interventions.

      (2) The main claim regarding the lack of changes in brain structure seems only partially supported by the analyses provided. The limited whole-brain evidence from structural neuroimaging makes it difficult to confirm whether there is indeed no effect of training. Beyond hippocampal analyses, many whole-brain analyses of both volumetric and diffusion-weighted imaging metrics are only based on coarse ROIs (for example, 34 cortical parcellations for grey matter analyses). Although vertex-wise analyses in FreeSurfer are reported, it is unclear what metrics were examined (cortical thickness? area? volume?). Diffusion-weighted imaging seems to focus on whole-tract atlas ROIs, which can be less accurate/sensitive than tractography-defined ROIs or voxel-wise approaches.

      (3) Quality control of images is only mentioned for FA images in subject space. Given that most analyses are based on atlas ROIs, visual checks following registration are fundamental and should be described in further detail.

    1. Reviewer #1 (Public review):

      Summary:<br /> The authors strived for an inventory of GPCRs and GPCR pathway component genes within the genomes of 23 choanoflagellates and other close relatives of metazoans.

      Strengths:<br /> The authors generated a solid phylogenetic overview of the GPCR superfamily in these species. Intriguingly, they discover novel GPCR families, novel assortments of domain combinations, novel insights into the evolution of those groups within the Opisthokonta clade. A particular focus is laid on adhesion GPCRs, for which the authors discover many hitherto unknown subfamilies based on Hidden Markov Models of the 7TM domain sequences, which were also reflected by combinations of extracellular domains of the homologs. In addition, the authors provide bioinformatic evidence that aGPCRs of choanoflagellates also contained a GAIN domain, which are self-cleavable thereby reflecting the most remarkable biochemical feat of aGPCRs.

      Weaknesses:<br /> The chosen classification scheme for aGPCRs may require reassessment and amendment by the authors in order to prevent confusion with previously issued classification attempts of this family.

    1. Reviewer #2 (Public review):

      Summary:

      CTCF is one of the most well-characterized regulators of chromatin architecture in mammals. Given that CTCF is an essential protein, understanding how its binding is regulated is a very active area of research. It has been known for decades that CTCF is sensitive to 5-cystosine DNA methylation (5meC) in certain contexts. Moreover, at genomic imprints and in certain oncogenes, 5meC-mediated CTCF antagonism has very important gene regulatory implications. A number of labs (eg, Schubeler and Stamatoyannopoulos) have assessed the impact of DNA methylation on CTCF binding, but it is important to also interrogate the effect on chromatin organization (ie, looping). Here, Roseman and colleagues used a DNMT1 inhibitor in two established human cancer lines (HCT116 [colon] and K562 [leukemia]), and performed CTCF ChIPseq and HiChIP. They showed that "reactivated" CTCF sites-that is, bound in the absence of 5meC-are enriched in gene bodies, participate in many looping events, and intriguingly, appear associated with nuclear speckles. This last aspect suggests that these reactivated loops might play an important role in increased gene transcription. They showed a number of genes that are upregulated in the DNA hypomethylated state actually require CTCF binding, which is an important result.

      Strengths:

      Overall, I found the paper to be succinctly written and the data presented clearly. The relationship between CTCF binding in gene bodies and association with nuclear speckles is an interesting result. Another strong point of the paper was combining DNMT1 inhibition with CTCF degradation.

      Weaknesses:

      The most problematic aspect of the original version was the insufficient evidence for the association of "reactivated" CTCF binding sites with nuclear speckles. This has been more diligently assessed in the revised version.

      Comments on revisions:

      The authors have adequately addressed my points in this revised version.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates beta burst dynamics in the primate motor cortex during movement and recovery from stroke. The authors differentiate between "global" beta bursts, which are synchronous across cortical and often subcortical regions, and more spatially confined "local" bursts. Global bursts are associated with reduced spiking variability, slower movements, and are more frequent after stroke, while local bursts increase during recovery and grasp execution. The study provides compelling evidence that beta bursts with different spatial and temporal characteristics may play distinct roles in motor control and recovery.

      Strengths:

      The major strength of this paper lies in its conceptual advance: the identification and characterization of distinct global and local beta bursts in the primate motor cortex. This distinction builds upon and considerably extends previous work on the heterogeneity of beta bursts. The paper is methodologically rigorous, using simultaneous cortical and subcortical recordings, detailed behavioral tracking, and thorough analyses of spike-LFP interactions. The use of stroke models and neurotypical animals provides converging evidence for the functional dissociation between burst types. The observation that local bursts increase with motor recovery and occur during grasping is particularly novel and may prove valuable for developing biomarkers of motor function.

      Weaknesses:

      There are several conceptual and methodological limitations that should be addressed. First, the burst detection method relies on an amplitude threshold (median + 1 SD), which is susceptible to false positives and variability (Langford & Wilson, 2025). The classification into global or local bursts then depends on the number of co-bursting channels, compounding the arbitrariness. Second, the imposition of a minimum of three co-bursting cortical channels may bias against the detection of truly local bursts. Third, the classification is entirely cortical; subcortical activity is considered post hoc rather than integrated into the classification, despite the key role of subcortical-cortical synchrony in motor control. Fourth, the apparent dissociation between global and local bursts raises important questions about their spatial distribution across areas like M1 and PMv, which are not thoroughly analyzed. Finally, while the authors interpret local bursts during grasping as novel, similar findings have been reported (e.g., Szul et al., 2023; Rayson et al., 2023), and a deeper discussion of these precedents would strengthen the argument.

      Impact:

      This work is likely to have a substantial impact on the field of motor systems neuroscience. The distinction between global and local beta bursts offers a promising framework for understanding the dual roles of beta in motor inhibition and sensorimotor computation. The findings are relevant not only for basic research but also for translational efforts in stroke rehabilitation and neuromodulation, particularly given the emerging interest in beta burst-based biomarkers and stimulation targets. The dataset and analytical framework will be useful to researchers investigating beta dynamics, spike-field relationships, and recovery from neural injury.

      Langford, Z.D., Wilson, C.R.E., 2025. Simulations reveal that beta burst detection may inappropriately characterize the beta band. https://doi.org/10.1101/2023.12.15.571838.

      Rayson, H., Szul, M.J., El-Khoueiry, P., Debnath, R., Gautier-Martins, M., Ferrari, P.F., Fox, N., Bonaiuto, J.J., 2023. Bursting with potential: How sensorimotor beta bursts develop from infancy to adulthood. J. Neurosci. https://doi.org/10.1523/JNEUROSCI.0886-23.2023.

      Szul, M.J., Papadopoulos, S., Alavizadeh, S., Daligaut, S., Schwartz, D., Mattout, J., Bonaiuto, J.J., 2023. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog. Neurobiol. 228, 102490.

    1. Reviewer #1 (Public review):

      The manuscript by Butler et al. explores a novel physiological role for connexin 32 (Cx32) hemichannels in Schwann cells at peripheral nerves. Building on the authors' prior work on CO₂-sensitive gating of connexins, this study proposes that mitochondrial CO₂ production dependent on neuronal activity promotes the opening of Cx32 hemichannels in the paranode, which in turn modulates neuronal activity by reducing conduction velocity. This hypothesis is addressed using a multifaceted approach that includes immunofluorescence microscopy, dye uptake assays, calcium imaging, computational modeling, and extracellular recordings in isolated sciatic nerves.

      Among the strengths of the study are the interdisciplinary integration of imaging, in silico approaches, and functional data. Also, this study proposes a new mechanism with profound physiological relevance. Specifically, Butler et al. provide new insights into glial modulation of electrical conduction in sensory/motor myelinated nerves.

      In the current state, the study has some limitations. The evidence linking Cx32 to the observed dye uptake and conduction velocity changes relies primarily on pharmacological inhibition with carbenoxolone, which lacks specificity. The imaging data show overlapping marker signals that preclude the anatomical distinction between nodes and paranodes. FITC uptake, while convincing to test Cx32 hemichannel gating, lacks spatial-temporal information and validation of distribution and localization to viable intracellular compartments. Moreover, while the findings are intriguing, functional proof that Cx32 regulates conduction velocity through ATP release or other downstream effects remains incomplete. Further work using targeted genetic tools, live-tissue imaging, and additional controls would strengthen the mechanistic conclusions.

      Overall, the manuscript offers compelling preliminary evidence that supports a new role for Cx32 in peripheral nerve physiology and raises important questions for future investigation.

    1. Reviewer #1 (Public review):

      Summary:

      This article presents a study consisting of two experiments, which aim to dissociate and quantify the distinct motivational functions of phasic and tonic pain within a naturalistic and immersive VR setting. Specifically, the authors test two hypotheses: (i) that phasic pain acts as a punishment signal that drives avoidance learning; (ii) that tonic pain reduces motivational vigor, promoting energy conservation and recuperation. In both experiments, participants performed a free-operant foraging task, where they collected virtual pineapples to earn points.

      In Experiment 1, phasic pain was delivered as a brief electric shock to the grasping hand when picking up green pineapples. As phasic pain intensity increased, participants were less likely to choose painful fruits. A reinforcement learning model that incorporated reward, pain cost, and effort cost was able to successfully capture behavior.

      Experiment 2 combined the effects of phasic and tonic pain. Tonic pain was induced by a pressure cuff on the non-dominant arm, simulating sustained discomfort. Interestingly, tonic pain did not affect the perceived intensity or avoidance of phasic pain. However, it significantly reduced movement velocity and pineapple collection rate, interpreted as a reduction of motivational vigor. A temporal decision model incorporating vigor cost successfully captured these effects.

      Concomitant EEG recordings showed that tonic pain was associated with reduced alpha and beta power in parietal and temporal areas. Phasic pain ratings and decision values distinctively correlated with skin conductance responses.

      Overall, these findings indicate that phasic and tonic pain have distinct and dissociable motivational effects.

      Strengths:

      This is an ambitious study that provides a quantitative dissociation of the roles of phasic and tonic pain in adaptive behavior, by integrating ecological neuroscience, motivational theory, and computational modeling. The use of immersive VR combined with a free-operant foraging task offers a more ecologically valid context to study pain-related behavior compared to traditional paradigms. Furthermore, the study employs a multimodal approach by combining behavioral data, computational frameworks, physiological signals, and EEG. In particular, one of the main strengths of the study is the use of sophisticated computational modeling to capture phasic and tonic pain effects. The experiment codes are available on GitHub, increasing reproducibility.

      Weaknesses:

      The main limitations of this article are that it provides insufficient detail on VR implementation. The design of the VR environment is, at this stage, under-described. Crucial information is missing, such as the number of pineapples per block, timing precision, details on how motion is mapped to the virtual movement, etc. This aspect strongly limits the reproducibility of the experiments. A second limitation lies in the lack of clarity regarding the study hypotheses. Although two overarching hypotheses can be inferred, they are not explicitly formulated. To this end, it is unclear which analyses were merely exploratory, especially for physiological and EEG outcomes.

      In Experiment 2, the reduction in vigor during tonic pain could plausibly reflect attentional load rather than pain per se. As recognized by the authors, there is no control condition involving an innocuous salient stimulus to rule out non-specific effects of distraction. Perhaps a tonic non-painful but salient somatosensory stimulus (e.g., a strong vibrotactile stimulus applied on the same arm) could have been used as a control stimulus.

    1. Reviewer #1 (Public review):

      Summary

      This manuscript describes a haemogenic gastruloid system that the authors claim recapitulates early mouse embryonic development to produce sequential waves of yolk sac and AGM-like haematopoiesis, with spatial and temporal accuracy. The model claims to reproduce mouse development to 'beyond' the E9.0 stage and apply its use to the aetiology of infant leukaemia.

      Strengths

      Gastruloids models are useful systems for studying early embryonic development, recapitulating aspects of gastrulation, anteroposterior regionalisation and somitogenesis. Gastruloid models that specifically mimic particular regions of the embryo could provide insights into how these regions form during development.

      Weaknesses

      There are a couple of major issues with this manuscript that I feel need to be addressed.

      Firstly, the authors acknowledge that the proportion of blood cells that are produced by their haemogenic gastruloid system is very low - there are fewer than 2% of either blood or endothelium produced. The authors argue however, that this is because they have developed a hematopoietic organoid that captures much more of the essence of the developing embryo and therefore has a broader tissue representation and a more relevant spatial representation.

      In order to prosecute this argument, this reviewer needs to understand how the differentiation protocol achieves this end, ie what is notable about the combination of factors and other media components. Also, they need to know what the evidence is to support this claim, in other words, what are the tissues that make up the organoid and is it truly representative of what would be expected in a developing embryo over this time. Does it pass from epiblast to primitive streak and then to cells of the germ layers? And how do haemGXs at different times map onto the developing mouse embryo?

      Secondly, the point is repeatedly made by the authors that the distinction between non-engrafting yolk sac hematopoiesis and AGM-like hematopoiesis from which repopulating HSCs first derive is not really possible without spatial cues. This is really not true. It has been shown by a number of investigators, and summarised in a recent review (Abuhantash et al 2021), that the expression of HOXA cluster genes - most prominently HOXA9 - clearly distinguishes AGM-derived, from yolk sac derived cells. In this manner, it is evident from the UMAP provided that the is no HOXA9 expressed in either endothelium or blood cells. This argues very strongly against the proposition that AGM-type hematopoiesis is generated. Indeed, given the duration of the organoid culture of only 9 days (216hrs), it would be highly unlikely that development would even reach the stage of AGM hematopoiesis (E11.5 in the mouse), even with a 1:1 concordance between embryonic time and in vitro differentiation. Finally, if there is recapitulation of the normal pattern of embryogenesis, it would be expected that there would be a prominent phase of yolk sac hematopoiesis antedating AGM-associated hematopoiesis, which should be observed in the haemGx.

      I feel that these are major conceptual points that need to be addressed in this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript aims to elucidate the impact of a prophage within the genome of Shewanella fidelis on its interaction with the marine tunicate Ciona robusta. The authors made a deletion mutant of S. fidelis that lacks one of its two prophages. This mutant exhibited an enhanced biofilm phenotype, as assessed through crystal violet staining, and showed reduced motility. The authors examined the effect of prophage deletion on several genes that could modulate cyclic-diGMP levels. While no significant changes were observed under in vitro conditions, the gene for one protein potentially involved in cyclic-diGMP hydrolysis was overexpressed during microbe-host interactions. The mutant was retained more effectively within a one-hour timeframe, whereas the wild-type (WT) strain became more abundant after 24 hours. Fluorescence microscopy was used to visualize the localization patterns of the two strains, which appeared to differ. Additionally, a significant difference in the expression of one immune protein was noted after one hour, but this difference was not evident after 23 hours. An effect of VCBC-C addition on the expression of one prophage gene was also observed.

      Strengths:

      I appreciate how the authors integrate diverse expertise and methods to address questions regarding the impact of prophages on gut microbiome-host interactions. The chosen model system is appropriate, as it allows for high-throughput experimentation and the application of simple imaging techniques.

      Weaknesses:

      My primary concern is that the manuscript primarily describes observations without providing insight into the molecular mechanisms underlying the observed differences. It is particularly unclear how the presence of the prophage leads to the phenotypic changes related to bacterial physiology and host-microbe interactions. Which specific prophage genes are critical, or is the insertion at a specific site in the bacterial genome the key factor? While significant effects on bacterial physiology are reported under in vitro conditions, there is no clear attribution to particular enzymes or proteins. In contrast, when the system is expanded to include the tunicate, differences in the expression of a cyclic-diGMP hydrolase become apparent. Why do we not observe such differences under in vitro conditions, despite noting variations in biofilm formation and motility? Furthermore, given that the bacterial strain possesses two prophages, I am curious as to why the authors chose to target only one and not both.

      Regarding the microbe-host interaction, it is not clear why the increased retention ability of the prophage deletion strain did not lead to greater cell retention after 24 hours, especially since no differences in the immune response were observed at that time point.

      Concerning the methodological approach, I am puzzled as to why the authors opted for qPCR instead of transcriptomics or proteomics. The latter approaches could have provided a broader understanding of the prophage's impact on both the microbe and the host.

      Comments on revisions:

      While the authors were able to solve some of my issues, I see that other questions were not tackled.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Li and coworkers addresses the important and fundamental question of replication initiation in Escherichia coli, which remains open, despite many classic and recent works. It leverages single-cell mRNA-FISH experiments in strains with titratable DnaA and novel DnaA activity reporters to monitor DNA activity peaks versus size. The authors find oscillations in DnaA activity and show that their peaks correlate well with the estimated population-average replication initiation volume across conditions and imposed dnaA transcription levels. The study also proposes a novel extrusion model where DNA-binding proteins regulate free DnaA availability in response to biomass-DNA imbalance. Experimental perturbations of H-NS support the model validity, addressing key gaps in current replication control frameworks.

      Strengths:

      I find the study interesting and well conducted, and I think its main strong points are:

      (1) the novel reporters obtained with systematic synthetic biology methods, and combined with a titratable dnaA strain.

      (2) the interesting perturbations (titration, production arrest, and H-NS).

      (3) the use of single-cell mRNA FISH to monitor transcripts directly.

      The proposed extrusion model is also interesting, though not fully validated, and I think it will contribute positively to the future debate.

      Weaknesses and Limitations:

      (1) A relevant limitation in novelty is that DnaA activity and concentration oscillations have been reported by the cited Iuliani and coworkers previously by dynamic microscopy, and to a smaller extent by the other cited study by Pountain and coworkers using mRNA FISH.

      (2) An important limitation is that the study is not dynamic. While monitoring mRNA is interesting and relevant, the current study is based on concentrations and not time variations (or nascent mRNA). Conversely, the study by Iuliani and coworkers, while having the drawback of monitoring proteins, can directly assess production rates. It would be interesting for future studies or revisions to monitor the strains and reporters dynamically, as well as using (as a control) the technique of this study on the chromosomal reporters used by Iuliani et al.

      (3) Regarding the mathematical models, a lot of details are missing regarding the definitions and the use of such models, which are only presented briefly in the Methods section. The reader is not given any tools to understand the predictions of different models, and no analytical estimates are used. The falsification procedures are not clear. More transparency and depth in the analysis are needed, unless the models are just used as a heuristic tool for qualitative arguments (but this would weaken the claims). The Berger model, for example, has many parameters and many regimes and behaviors. When models are compared to data (e.g., in Figure 2G), it is not clear which parameters were used, how they were fixed, and whether and how the model prediction depends on parameters.

      (4) Importantly, the main statement about tight correlations of peak volumes and average estimated initiation volume does not establish coincidence, and some of the claims by the authors are unclear in these respects (e.g., when they say "we resolve a 1:1 coupling between DnaA activity thresholds and replication initiation", the statement could be correct but is ambiguous). Crucially, the data rely on average initiation volumes (on which there seems to be an eternally open debate, also involving the authors), and the estimate procedure relies on assumptions that could lead to biases and uncertainties added to the population variability (in any case, error bars are not provided).

      (5) The delays observed by the authors (in both directions) between the peaks of DnaA-activity conditional averages with respect to volume and the average estimated initiation volumes are not incompatible with those observed dynamically by Iuliani and coworkers. The direct experiment to prove the authors' point would be to use a direct proxy of replication initiation, such as SeqA or DnaN, and monitor initiations and quantify DnaA activity peaks jointly, with dynamic measurements.

      (6) While not being an expert, I had some doubt that the fact that the reporters are on plasmid (despite a normalization control that seems very sensible) might affect the measurements. Also, I did not understand how the authors validated the assumptions that the reporters are sensitive to DnaA-ATP specifically. It seems this assumption is validated by previous studies only.

      Overall Appraisal:

      In summary, this appears as a very interesting study, providing valuable data and a novel hypothesis, the extrusion model, open to future explorations. However, given several limitations, some of the claims appear overstated. Finally, the text contains some self-evaluations, such as "our findings redefine the paradigm for replication control", etc., that appear exaggerated.

    1. Reviewer #1 (Public review):

      Summary:

      The authors describe the degradation of an intrinsically disordered transcription factor (LMO2) via PROTACs (VHL and CRBN) in T-ALL cells. Given the challenges of drugging transcription factors, I find the work solid and a significant scientific contribution to the field.

      Strengths:

      (1) Validation of LMO2 degradation by starting with biodegraders, then progressing to chemical degrades.

      (2) interrogation of the biology and downstream pathways upon LMO2 degradation (collateral degradation and apoptotic markers).

      (3) Cell line models that are dependent/overexpression of LMO2 vs LMO2 null cell lines.

      (4) CRBN and VHL-derived PROTACs were synthesized and evaluated.

      Weaknesses:

      (1) The conventional method used to characterize PROTACs in the literature is to calculate the DC50 and Dmax of the degraders, I did not find this information in the manuscript.

      (2) The proteomics data is not very convincing, and it is not clear why LMO2 does not show in the volcano plot (were higher concentrations of the PROTAC tested? and why only VHL was tested and not CRBN-based PROTAC?).

      (3) The correlation between degradation potency and cell growth is not well-established (compare Figure 4C: P12-Ichikawa blots show great degradation at 24 and 48 hrs, but it is unclear if the cell growth in this cell line is any better than in PF-382 or MOLT-16) - Can the authors comment on the correlation between degradation and cell growth?

      (4) The PROTACs are not very potent (double-digit micromolar range?) - can the authors elaborate on any challenges in the optimization of the degradation potency?

      (5) The authors mentioned trying six iDAb-E3 ligase proteins; I would recommend listing the E3 ligases tried and commenting on the results in the main text.

    1. Reviewer #1 (Public review):

      M. tuberculosis exhibits metabolic flexibility, enabling it to adapt to various environmental stresses, including antibiotic treatment. In this manuscript, Serafini et al. investigate the metabolic remodeling of M. tuberculosis used to survive iron-limited conditions by employing LC-MS metabolomics and 13C isotope tracing experiments. The results demonstrate that metabolic activity in the oxidative branch of the TCA cycle slows down, while the reductive branch is reverted to facilitate the biosynthesis of malate, which is subsequently secreted.

      Overall, this study is experimentally well-designed, particularly the use of 13C isotope tracing to monitor TCA cycle remodeling under iron-limited conditions. The findings are valuable as they offer potential new targets for antibiotics aimed at non-replicating M. tuberculosis occurring in the hosts. However, despite these strengths, the reviewer has concerns regarding the mechanistic basis underlying the observed metabolic remodeling and its role in M. tuberculosis pathogenesis.

      Major Comments:

      The authors argue that iron starvation is a physiologically relevant stressor encountered by M. tuberculosis post-infection. Using Erdman and H37Rv strains under DFO conditions, Erdman loses viability, whereas H37Rv maintains it. Nonetheless, both strains exhibit similar metabolic remodeling in the TCA cycle based upon metabolomics and isotope tracing data. The authors should clarify the specific metabolic adaptations in H37Rv that enable it to sustain viability under DFO conditions.

      The authors report no significant changes in NAD/NADH and ATP levels in H37Rv and Erdman exposed to DFO conditions. They observe TCA cycle remodeling, particularly the reversal of the reaction between OAA and MAL, catalyzed by malate dehydrogenase, an enzyme that uses NAD+ and NADH as cofactors. The directionality of this reaction likely depends on the relative levels of NAD+ and NADH. Additionally, other dehydrogenases, such as pyruvate DH and aKG DH, also require NAD+/NADH cofactors. In Figure 1I, NAD+ and NADH levels are monitored only at day 3 post-exposure to DFO conditions. Since Erdman loses viability after 2-3 weeks, the authors should include measurements of NAD+, NADH, and ATP levels at weekly intervals up to 3 weeks. Furthermore, glycine levels - which are linked to NAD+ recycling via the conversion of glyoxylate - should be measured under both HI and DFO conditions as an indirect indicator of the NAD+/NADH ratio.

      In Figure 2A, it is unclear why a 100-fold accumulation of aKG does not correspond proportionally to the accumulation of (iso)citrate.

      The authors state that fumarate, aKG, (iso)citrate, malate, and pyruvate are secreted under DFO conditions. While the secretion of aKG and pyruvate makes sense, given their marked intracellular accumulation, it is puzzling why (iso)citrate, malate, and fumarate are secreted even though there are no changes in their intracellular abundance. To rule out the possibility that these metabolites are released due to bacterial lysis rather than active secretion, the authors should analyze the 13C-labeled fractions of these metabolites in the culture filtrate using the M. tuberculosis culture in media containing 13C glycerol.

      To validate the role of the PCK-mediated reductive TCA cycle in malate biosynthesis and secretion under DFO conditions, the authors should generate a malate dehydrogenase (MDH) knockdown strain, considering that MDH is essential, and examine the 13C labeling patterns and NAD/NADH under DFO conditions.

      The authors also observe decreased GABA abundance and overall 13C labeling in DFO conditions, suggesting that the GABA shunt is the primary route for Succinate biosynthesis under DFO conditions. Thus, it is strongly recommended that the authors perform a 13C glutamate tracing experiment to directly track labeling in aKG and GABA shunt metabolites, providing more definitive evidence for the involvement of the GABA shunt.

    1. Reviewer #1 (Public review):

      To elucidate the mechanisms and evolution of animal biomineralization, Voigt et al. focused on the sponge phylum-the earliest branching extant metazoan lineages exhibiting biomineralized structures-with a particular emphasis on deciphering the molecular underpinnings of spicule formation. This study centered on calcareous sponges, specifically Sycon ciliatum, as characterized in previous work by Voigt et al. In S. ciliatum, two morphologically distinct spicule types are produced by set of two different types of cells that secrete extracellular matrix proteins, onto which calcium carbonate is subsequently deposited. Comparative transcriptomic analysis between a region with active spicule formation and other body regions identified 829 candidate genes involved in this process. Among these, the authors focused on the calcarine gene family, which is analogous to the Galaxins, the matrix proteins known to participate in coral calcification. The authors performed three-dimensional structure prediction using AlphaFold, examined mRNA expression of Calcarin genes in spicule-forming cell types via in situ hybridization, conducted proteomic analysis of matrix proteins isolated from purified spicules, and carried out chromosome arrangement analysis of the Calcarin genes. Based on these analyses, it was revealed that the combination of Calcarin genes expressed during spicule formation differs between the founder cells-responsible for producing diactines and triactines-and the thickener cells that differentiate from them, underscoring the necessity for precise regulation of Calcarin gene expression in proper biomineralization. Furthermore, the observation that 4 Calcarin genes are arranged in tandem arrays on the chromosome suggests that two rounds of gene duplication followed by neofunctionalization have contributed to the intricate formation of S. ciliatum spicules. Additionally, similar subtle spatiotemporal expression patterns and tandem chromosomal arrangements of Galaxins during coral calcification indicate parallel evolution of biomineralization genes between S. ciliatum and aragonitic corals.

      Strength:

      The study presents detailed and convincing insights that point to parallel evolution of biomineralization in calcitic sponges and corals. This is supported by a comprehensive analysis employing a wide range of experimental approaches including protein tertiary structure predictions, gene expression profiling during calcification (RNA seq and Whole-mount in situ hybridization), and chromosomal sequence analysis.

      An integrative research approach, encompassing transcriptomic, genomic, and proteomic analyses as well as detailed FISH.

      High-quality FISH images of Calcarin genes, along with a concise summary clearly illustrating their expression patterns, is appreciated.

      It was suggested that thickener cells originate from founder cells. To the best of my knowledge, this is the first study to demonstrate trans-differentiation of sponge cells based on the cell-type specific gene expression, as determined by in situ hybridization.

      Overall, this is a high-quality piece of work that proposes a compelling scenario for biomineralization.

      Weaknesses:

      I found no significant weakness in this manuscript.

      Comments on revisions:

      The authors have addressed all of the questions and recommendations from the prior review.

    1. Reviewer #1 (Public review):

      Summary:

      Migration of the primordial germ cells (PGCs) in mice is asynchronous, such that leading and lagging populations of migrating PGCs emerge. Prior studies found that interactions between the cells the PGCs encounter along their migration routes regulates their proliferation. In this study, the authors used single cell RNAseq to investigate PGC heterogeneity and to characterize their niches during their migration along the AP axis. Unlike prior scRNAseq studies of mammalian PGCs, the authors conducted a time course covering 3 distinct stages of PGC migration (pre, mid, and post migration) and isolated PGCs from defined somite positions along the AP axis. In doing so, this allowed the authors to uncover differences in gene expression between leading and lagging PGCs and their niches and to investigate how their transcript profiles change over time. Among the pathways with the biggest differences were regulators of actin polymerization and epigenetic programming factors and Nodal response genes. In addition, the authors report changes in somatic niches, specifically greater non-canonical WNT in posterior PGCs compared to anterior PGCs. This relationship between the hindgut epithelium and migrating PGCs was also detected in reanalysis of a previously published dataset of human PGCs. Using whole mount immunofluorescence, the authors confirmed elevated Nodal signaling based on detection of the LEFTY antagonists and targets of Nodal during late stage PGC migration. Taken together, the authors have assembled a temporal and spatial atlas of mouse PGCs and their niches. This resource and the data herein provide support for the model that interactions of migrating mouse PGCs with their niches influences their proliferation, cytoskeletal regulation, epigenetic state and pluripotent state.

      Overall, the findings provide new insights into heterogeneity among leading and lagging PGC populations and their niches along the AP axis, as well as comparisons between mouse and human migrating PGCs. The data are clearly presented, and the text is clear and well-written. This atlas resource will be valuable to reproductive and developmental biologists as a tool for generating hypotheses and for comparisons of PGCs across species.

      Strengths:

      (1) High quality atlas of individual PGCs prior to, during and post migration and their niches at defined positions along the AP axis.

      (2) Comparisons to available datasets, including human embryos, provide insight into potentially conserved relationships among PGCs and the identified pathways and gene expression changes.

      (3) Detailed picture of PGC heterogeneity.

      (4) Valuable resource for the field.

      (5) Some validation of Nodal results and further support for models in the literature based on less comprehensive expression analysis.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Ozcan et al., presents compelling evidence demonstrating the latent potential of glial precursors of the adult cerebral cortex for neuronal reprogramming. The findings substantially advance our understanding of the potential of endogenous cells in the adult brain to be reprogrammed. Moreover, they describe a molecular cocktail that directs reprogramming toward corticospinal neurons (CSN).

      Strengths:

      Experimentally, the work is compelling and beautifully designed. The work provides a characterization of endogenous progenitors, genetic strategies to isolate them, and proof of concept of exploiting these progenitors' potential to produce a specific desired neuronal type with "a la carte" combination of transcription factors.

      Weaknesses:

      This study demonstrates reprogramming in vitro. Future research will need to assess how these reprogrammed corticospinal neurons integrate and function under physiological conditions and in models of trauma or neurodegeneration.

      Although still in its early stages, neural reprogramming holds significant promise. This study reinforces the hope that, in the future, it may be possible to restore lost or damaged neurons through targeted cellular reprogramming.

    1. Reviewer #1 (Public review):

      In this updated and improved manuscript, the authors investigate the role of Aurora Kinase A (AurA) in trained immunity, following a broader drug screening aimed at finding inhibitors of training. They show AurA is important for trained immunity by looking at the different aspects and layers of training using broad omics screening, followed up by a more detailed investigation of specific mechanisms. The authors finalised the investigation with an in vivo MC-38 cancer model where AurA inhibition reduces beta-glucan's antitumour effects.

      Strengths:

      The experimental methods are generally well-described. I appreciate the authors' broad approach to studying different key aspects of trained immunity (from comprehensive transcriptome/chromatin accessibility measurements to detailed mechanistic experiments). Approaching the hypothesis from many different angles inspires confidence in the results. Furthermore, the large drug-screening panel is a valuable tool as these drugs are readily available for translational drug-repurposing research.

      In response to the rebuttal, I would like to compliment and thank the authors for the large amount of work they have done to improve this manuscript. They have removed most of my previous concerns and confusions, and explained some of their approaches in a way that I now agree with them - a great learning opportunity for me as well.

      Weaknesses:

      (1) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (2) The authors have removed most of my concerns. Regarding the use of unpaired tests because that is what is often done in the literature: I still don't agree with this, nor do I think that 'common practice' is a solid argument to justify the approach. However, we can agree to disagree, as I know indeed that many people argue over when paired tests are appropriate in these types of experiments. I appreciate that n=2 for sequencing experiments is justifiable in the way these analyses are used as exploratory screening methods with later experimental validation. I also want to thank the authors for reporting biological replicates where relevant and (I should have mentioned this in my original review also) I appreciate they validate some findings in a separate cell line - many papers neglect this important step.

      (3) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (4) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (5) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (6) The authors have adequately responded to my comments and updated the manuscript accordingly. They have actually gone above and beyond.

      (7) I would like to thank the authors for highlighting this information and taking away my confusion. The authors have adequately responded to my comments and updated the manuscript accordingly.

      (8) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (9) I still think adding the 'alisertib alone' control would be of great added value, but I can see how it is unreasonable to ask the authors to redo those experiments.

      (10) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (11) The authors have adequately responded to my comments and updated the manuscript accordingly.

      (12) I thank the authors for their work to repeat this experiment with my suggestions included. I am convinced by this nice data. I would recommend that the authors put the data from New Figure 4 also in the manuscript as it adds value to the manuscript (unless I just missed it, I don't see it in Figure 6 or the supplement). Not every reader may look at the reviewer comments/rebuttal documents.

    1. Reviewer #1 (Public review):

      Summary:

      As a general phenomenon, adaptation of populations to their respective local conditions is well-documented, though not universally. In particular, local adaptation has been amply demonstrated in Arabidopsis thaliana, the focal species of this research, which is naturally highly selfing. Here, the authors report assays designed to evaluate the spatial scale of fitness variation among source populations and sites, as well as temporal variability in fitness expression. Further, they endeavor to identify traits and genomic regions that contribute to the demonstrated variation in fitness.

      Strengths:

      With many (200) inbred accessions drawn from throughout Sweden, the study offers an unusually fine sampling of genetic variation within this much-studied species, and through assays in multiple sites and years, it amply demonstrates the context-dependence of fitness expression. It supports the general phenomenon of local adaptation, with multiple nuances. Other examples exist, but it is of value to have further cases illustrating not only the context-dependence of fitness expression but also the sometimes idiosyncratic nature of fitness variation. I commend the authors on their cautionary language in relation to inferences about the roles of particular genomic regions (e.g.l.140-144; l.227)

      Weaknesses:

      To my mind, the manuscript is written primarily for the Arabidopsis community. This community is certainly large, but there are many evolutionary biologists who could appreciate this work but are not invited to do so. The authors could address the broader evolution community by acknowledging more of the relevant work of others (I've noted a few references in my comments to the authors). At least as important, the authors could make clearer the fact that A. thaliana is (almost) strictly selfing and how this feature of its biology both enables such a study and also limits inferences from it. Further, it seems to me that though I could be wrong, readers would appreciate a more direct, less discursive style of writing, and one that makes the broader import of the focal questions clearer.

      As a reader, I would value seeing estimates of the overall fitness of the accessions in the different conditions, i.e., by combining the survival and fecundity results of the common garden experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Artiushin et al. establish a comprehensive 3D atlas of the brain of the orb-web building spider Uloborus diversus. First, they use immunohistochemistry detection of synapsin to mark and reconstruct the neuropils of the brain of six specimens and they generate a standard brain by averaging these brains. Onto this standard 3D brain, they plot immunohistochemical stainings of major transmitters to detect cholinergic, serotonergic, octopaminergic/taryminergic and GABAergic neurons, respectively. Further, they add information on the expression of a number of neuropeptides (Proctolin, AllatostatinA, CCAP, and FMRFamide). Based on this data and 3D reconstructions, they extensively describe the morphology of the entire synganglion, the discernible neuropils, and their neurotransmitter/neuromodulator content.

      Strengths:

      While 3D reconstruction of spider brains and the detection of some neuroactive substances have been published before, this seems to be the most comprehensive analysis so far, both in terms of the number of substances tested and the ambition to analyze the entire synganglion. Interestingly, besides the previously described neuropils, they detect a novel brain structure, which they call the tonsillar neuropil.<br /> Immunohistochemistry, imaging, and 3D reconstruction are convincingly done, and the data are extensively visualized in figures, schemes, and very useful films, which allow the reader to work with the data. Due to its comprehensiveness, this dataset will be a valuable reference for researchers working on spider brains or on the evolution of arthropod brains.

      Weaknesses:

      As expected for such a descriptive groundwork, new insights or hypotheses are limited, apart from the first description of the tonsillar neuropil. A more comprehensive labeling in the panels of the mentioned structures would help to follow the descriptions. The reconstruction of the main tracts of the brain would be a very valuable complementary piece of data.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have examined gene expression between life cycle stages in a range of brown macroalgae to examine whether there are conserved aspects of biological features.

      Strengths:

      The manuscript incorporates large gene expression datasets from 10 different species and therefore enables a comprehensive assessment of the degree of conservation of different aspects of gene expression and underlying biology.

      The findings represent an important step forward in our understanding of the core aspects of cell biology that differ between life cycle phases and provide a substantial resource for further detailed studies in this area. Convincing evidence is provided for the conservation of life-cycle-specific gene expression between species, particularly in core housekeeping gene modules.

      Weaknesses:

      I found a few weaknesses in the methodology and experimental design. I think the manuscript could have been clearer when linking the findings to the biology of the brown algae.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to investigate how short-term visual deprivation influences tactile processing in the primary somatosensory cortex (S1) of sighted rats. They justify the study based on previous studies that have shown that long-term blindness can enhance tactile perception, and aim to investigate the neural mechanisms underlying rapid, short-term cross-modal plasticity. The authors recorded local field potentials from S1 as rats encountered different tactile textures (smooth and rough sandpaper) under light and dark conditions. They used deep learning techniques to decode the neural signals and assess how tactile representations changed across the four different conditions. Their goal was to uncover whether the absence of visual cues leads to a rapid reorganization of tactile encoding in the brain.

      Strengths:

      The study effectively integrates high-density local field potential (LFP) recordings with convolutional neural network (CNN) analysis. This combination allows for decoding high-dimensional population-level signals, revealing changes in neural representations that traditional analyses (e.g., amplitude measures) failed to detect. The custom treadmill paradigm permits independent manipulation of visual and tactile inputs under stable locomotion conditions. Gait analysis confirms that motor behavior was consistent across conditions, strengthening the conclusion that neural changes are due to sensory input rather than movement artifacts.

      Weaknesses:

      (1) While the study interprets the emergence of more distinct texture representations in the dark as evidence of rapid cross-modal plasticity, the claim rests on correlational data from a short-term manipulation and decoding analysis. The authors show that CNN-derived feature embeddings cluster more clearly by texture in the dark, but this does not directly demonstrate plasticity in the classical sense (e.g., synaptic or circuit-level reorganization).

      (2) Although gait was controlled, changes in arousal or exploratory behavior in light versus dark conditions might contribute to the observed neural differences. These factors are acknowledged but not directly measured (e.g., via pupillometry or cortical state indicators).

      (3) Moreover, the time course of the observed changes (within 10 minutes) is quite rapid, and while intriguing, the study does not include direct evidence that the underlying circuits were reorganized - only that population-level signals become more discriminable. As such, the term "plasticity" may overstate the conclusions and should be interpreted with caution unless validated by additional causal or longitudinal data.

      (4) The study highlights the forelimb region of S1 and a post-contact temporal window as particularly important for decoding texture, based on occlusion and integrated gradient analyses. However, this finding may be somewhat circular: The LFPs were aligned to forelimb contact, and the floor textures were sensed primarily via the forelimbs, making it unsurprising that forelimb electrodes were most informative. The observed temporal window corresponds directly to the event-aligned epoch, and while it may shift slightly in duration in the dark, this could reflect general differences in sensory gain or arousal, rather than changes in stimulus-specific encoding. Thus, while these findings are consistent with somatotopy and context-dependent dynamics, they do not provide strong independent evidence for novel spatial or temporal organization.

      (5) While the neural data suggest enhanced tactile representations, the study does not assess whether rats' actual tactile perception improved. Without a behavioral readout (e.g., discrimination accuracy), claims about perceptual enhancement remain speculative.

      (6) In addition to point 4, the authors discuss implications for sensory rehabilitation, including Braille training and haptic feedback enhancement. However, the lack of actual chronic or even more acute pathological sensory deprivation, behavioral data, or subsequent intervention in this study limits the ability to draw translational conclusions. It remains unknown whether the more distinct neural representations observed actually translate into better tactile performance, discriminability, or perception. Additionally, extrapolating from rats walking on sandpaper in the dark to human rehabilitative contexts is speculative without a clearer behavioral or mechanistic bridge. The potential is certainly there, but the claim is currently aspirational rather than empirically grounded.

      (7) While the CNN showed good performance, details on generalization robustness and validation (e.g., cross-validation folds, variance across animals) are not deeply discussed. Also, while explainability tools were used, interpretability of CNNs remains limited, and more transparent models (e.g., linear classifiers or dimensionality reduction) could offer complementary insights.

      Therefore, while the authors raise interesting hypotheses around rapid plasticity, somatotopic dynamics, and rehabilitation, the evidence for each is indirect. Stronger claims would require causal experiments, behavioral readouts, and mechanistic specificity beyond what the current data can provide.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript reports the results of an observational study conducted in Dar es Salaam, Tanzania, investigating potential associations between genetic variation in M. tuberculosis and human host vs. disease severity. The headline finding is that no such associations were found, either for host / bacillary genetics as main effects or for interactions between them.

      Strengths:

      Strengths of the study include its large size and rigorous approaches to classification of genetic diversity for host and bacillus.

      Comments on revisions:

      The authors have responded satisfactorily to comments raised.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript by Tesmer and colleagues uses fiber photometry recordings, sophisticated analysis of movement, and deep learning algorithms to provide compelling evidence that activity in hypothalamic hypocretin/orexin neurons (HONs) correlates with net body movement over multiple behaviors. By examining projection targets, the authors show that hypocretin/orexin release differs in projection targets to the locus coeruleus and substantia nigra, pars compacta. Ablation of HONs does not cause differences in the power spectra of movements. Movement tracking ability of HONs is independent of HON activity that correlates with blood glucose levels. Finally, the authors show that body movement is not encoded to the same extent in other neural populations.

      Strengths:

      The major strengths of the study are the combination of fiber photometry recordings, analysis of movement in head-fixed mice, and sophisticated classification of movement using deep learning algorithms. The experiments seem to be well performed, and the data are well presented, visually. The data support the main conclusions of the manuscript.

      Weaknesses:

      To some degree, it is already known that hypocretin/orexin neurons correlate with movement and arousal, although this manuscript studies this correlation with unprecedented sophistication and scale.

      Taken together, this study is likely to be impactful to the field and our understanding of HONs across behavioral states.

    1. Reviewer #1 (Public review):

      Summary:

      This is a new and important system that can efficiently train mice to perform a variety of cognitive tasks in a flexible manner. It is innovative and opens the door to important experiments in the neurobiology of learning and memory.

      Strengths:

      Strengths include: high n's, a robust system, task flexibility, comparison of manual-like training vs constant training, circadian analysis, comparison of varying cue types, long-term measurement, and machine teaching.

      Weaknesses:

      I find no major problems with this report.

      Comments on revisions:

      My concerns have been addressed now.

    1. Reviewer #1 (Public review):

      Summary:

      This study highlights the strengths of using predictive computational models to inform C. elegans screening studies of compounds' effects on aging and lifespan. The authors primarily focus on all-trans retinoic acid (atRA), one of the 5 compounds (out of 16 tested) that extended C. elegans lifespan in their experiments. They show that atRA has positive effects on C. elegans lifespan and age-related health, while it has more modest and inconsistent effects (i.e., some detrimental impacts) for C. briggsae and C. tropicalis. In genetic experiments designed to evaluate contributing mediators of lifespan extension with atRA exposure, it was found that 150 µM of atRA did not significantly extend lifespan in akt-1 or akt-2 loss-of-function mutants, nor in animals with loss of function of aak-2, or skn-1 (in which atRA had toxic effects); these genes appear to be required for atRA-mediated lifespan extension. hsf-1 and daf-16 loss-of-function mutants both had a modest but statistically significant lifespan extension with 150 µM of atRA, suggesting that these transcription factors may contribute towards mediating atRA lifespan extension, but that they are not individually required for some lifespan extension. RNAseq assessment of transcriptional changes in day 4 atRA-treated adult wild type worms revealed some interesting observations. Consistent with the study's genetic mutant lifespan observations, many of the atRA-regulated genes with the greatest fold-change differences are known regulated targets of daf-2 and/or skn-1 signaling pathways in C. elegans. hsf-1 loss-of-function mutants show a shifted atRA transcriptional response, revealing a dependence on hsf-1 for ~60% of the atRA-downregulated genes. On the other hand, RNAseq analysis in aak-2 loss-of-function mutants revealed that aak-2 is only required for less than a quarter of the atRA transcriptional response. All together, this study is a proof of the concept that computational models can help optimize C. elegans screening approaches that test compounds' effects on lifespan, and provides comprehensive transcriptomic and genetic insights into the lifespan-extending effects of all-trans retinoic acid (atRA).

      Strengths:

      A clearly described and well-justified account describes the approach used to prioritize and select compounds for screening, based on using the top candidates from a published list of computationally ranked compounds (Fuentealba et al., 2019) that were cross-referenced with other bioinformatics publications to predict anti-aging compounds, after de-selecting compounds previously evaluated in C. elegans as per the DrugAge database. 16 compounds were tested at 4-5 different concentrations to evaluate effects on C. elegans lifespan.

      Robust experimental design was undertaken evaluating the lifespan effects of atRA, as it was tested on three strains each of C. elegans, C. briggsae, and C. tropicalis, with trial replication performed at three distinct laboratories. These observations extended beyond lifespan to include evaluations of health metrics related to swimming performance.

      In-depth analyses of the RNAseq data of whole-worm transcriptional responses to atRA revealed interesting insights into regulator pathways and novel groups of genes that may be involved in mediating lifespan-extension effects (e.g., atRA-induced upregulation of sphingolipid metabolism genes, atRA-upregulation of genes in a poorly-characterized family of C. elegans paralogs predicted to have kinase-like activity, and disproportionate downregulation of collagen genes with atRA).

      Weaknesses:

      The authors' computational-based compound screening approach led to a ~30% prediction success rate for compounds that could extend the median lifespan of C. elegans. However, follow-up experiments on the top compounds highlighted the fact that some of these observed "successes" could be driven by indirect, confounding effects of these compounds on the bacterial food source, rather than direct beneficial effects on C. elegans physiology and lifespan. For instance, this appeared to be the case for the "top" hit of propranolol. Other compounds were not tested with metabolically inert or killed bacteria to preclude the possibility of bacteria-produced metabolites exerting observed effects; this might be a useful future direction to consider.

      Transcriptomic analyses of atRA effects were extensive in this study, but discussions of potential non-transcriptional effects of key proposed regulators (such as AMPK) were limited. For instance, other outputs of aak-2/AMPK (non-transcriptional changes to metabolic balance, autophagy, etc.) might account for its requirement for mediating lifespan extension effects, since aak-2 was not required for a major proportion of atRA transcriptional responses.

      Comments on revisions:

      In their revisions, the authors resolved all of my initial recommendations, and I have no additional suggestions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors in this study extensively investigate how telomere length (TL) regulates hTERT expression via non-telomeric binding of the telomere-associated protein TRF2. They conclusively show that TRF2 binding to long telomeres results in a reduction in its binding to the hTERT promoter. In contrast, short telomeres restore TRF2 binding in the hTERT promoter, recruiting repressor complexes like PRC2, and suppressing hTERT expression. The study presents several significant findings revealing a previously unknown mechanism of hTERT regulation by TRF2 in a TL-dependent manner

      Strengths:

      (1) A previously unknown mechanism linking telomere length and hTERT regulation through the non-telomeric TRF2 protein has been established, strengthening our understanding of telomere biology.

      (2) The authors used both cancer cell lines and iPSCs to showcase their hypothesis and multiple parameters to validate the role of TRF2 in hTERT regulation.

      (3) Comprehensive integration of the recent literature findings and implementation in the current study.

      (4) In vivo validation of the findings.

      (5) Rigorous controls and well-designed assays have been used.

      Comments on current version:

      The current version of the manuscript has addressed all the reviewers' concerns to the best of its ability. However, understanding the limitations of the authors, exploring ALT cell lines for the current mechanism would be desirable in the future.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors showed that enalapril was able to reduce cellular senescence and improve health status in aged mice. The authors further showed that phosphorylated Smad1/5/9 was significantly elevated and blocking this pathway attenuated the protection of cells from senescence. When middle-aged mice were treated with enalapril, the physiological performance in several tissues, including memory capacity, renal function and muscle strength, exhibited significant improvement.

      Strengths:

      The strength of the study lies in the identification of pSMAD1/5/9 pathway as the underlying mechanism mediating the anti-senescence effects of enalapril with comprehensive evaluation both in vitro and in vivo.

      Weaknesses:

      The major weakness of the study is the in vivo data. Despite the evidence shown in the in vitro study, there is no data to show that blocking the pSmad1/5/9 pathway is able to attenuate the anti-aging effects of enalapril in the mice. In addition, the aging phenotypes mitigation by enalapril is not evidenced by the extension of lifespan. If it is necessary to show that NAC is able to attenuate enalapril effects in the aging mice. In addition, it would be beneficial to test if enalapril is able to achieve similar rescue in a premature aging mouse model.

      Comments on revisions:

      The revised manuscript provided additional in vivo data that addressed my questions accordingly. I think the authors have done an excellent job in demonstrating that enalapril improved physiological phenotypes in aged mice through pSmad1/5/9 pathway.

      Their response to my question regarding the test in HGPS mice was not satisfactory. Premature aging and physiological aging share substantial similarities in their pathways. Given that this is not the focus of current study and the manuscript does not provide data on HGPS mice, I think this does not affect the conclusion of the current study.

    1. Reviewer #1 (Public review):

      Summary:

      This fundamental study identifies a new mechanism that involves a mycobacterial nucleomodulin manipulation of the host histone methyltransferase COMPASS complex to promote infection. Although other intracellular pathogens are known to manipulate histone methylation, this is the first report demonstrating the specific targeting of the COMPASS complex by a pathogen. The rigorous experimental design using state-of-the art bioinformatic analysis, protein modeling, molecular and cellular interaction, and functional approaches, culminating with in vivo infection modeling, provides convincing, unequivocal evidence that supports the authors' claims. This work will be of particular interest to cellular microbiologists working on microbial virulence mechanisms and effectors, specifically nucleomodulins, and cell/cancer biologists that examine COMPASS dysfunction in cancer biology.

      Strengths:

      (1) The strengths of this study include the rigorous and comprehensive experimental design that involved numerous state-of-the-art approaches to identify potential nucleomodulins, define molecular nucleomodulin-host interactions, cellular nucleomodulin localization, intracellular survival, and inflammatory gene transcriptional responses, and confirmation of the inflammatory and infection phenotype in a small animal model.

      (2) The use of bioinformatic, cellular, and in vivo modeling that are consistent and support the overall conclusions is a strength of the study. In addition, the rigorous experimental design and data analysis, including the supplemental data provided, further strengthen the evidence supporting the conclusions.

      Weaknesses:

      (1) This work could be stronger if the MgdE-COMPASS subunit interactions that negatively impact COMPASS complex function were better defined. Since the COMPASS complex consists of many enzymes, examining the functional impact on each of the components would be interesting.

      (2) Examining the impact of WDR5 inhibitors on histone methylation, gene transcription, and mycobacterial infection could provide additional rigor and provide useful information related to the mechanisms and specific role of WDR5 inhibition on mycobacterial infection.

      (3) The interaction between MgdE and COMPASS complex subunit ASH2L is relatively undefined, and studies to understand the relationship between WDR5 and ASH2L in COMPASS complex function during infection could provide interesting molecular details that are undefined in this study.

      (4) The AlphaFold prediction results for all the nuclear proteins examined could be useful. Since the interaction predictions with COMPASS subunits range from 0.77 for WDR5 and 0.47 for ASH2L, it is not clear how the focus on COMPASS complex over other nuclear proteins was determined.

    1. Reviewer #1 (Public review):

      The authors use electrophysiological and behavioral measurements to examine how animals could reliably determine odor intensity/concentration across repeated experience. Because stimulus repetition leads to short-term adaptation evidenced by reduced overall firing rates in the antennal lobe and firing rates are otherwise concentration-dependent, there could be an ambiguity in sensory coding between reduced concentration or more recent experience. This would have a negative impact on the animal's ability to generate adaptive behavioral responses that depend odor intensities. The authors conclude that changes in concentration alter the constituent neurons contributing to the neural population response, whereas adaptation maintains the 'activated ensemble' but with scaled firing rates. This provides a neural coding account of the ability to distinguish odor concentrations even after extended experience. Additional analyses attempt to distinguish hypothesized circuit mechanisms for adaptation. A larger point that runs through the manuscript is that overall spiking activity has an inconsistent relationship with behavior and that the structure of population activity may be the more appropriate feature to consider.

      To my knowledge, the dissociation of effects of odor concentration and adaptation on olfactory system population codes was not previously demonstrated. This is a significant contribution that improves on any simple model based on overall spiking activity. The primary result is most strikingly supported by visualization of a principal components analysis in Figure 4. Additional experiments and analysis complement and provide context for this finding regarding the relationship between neural population changes and behavior. There are some natural limitations on the interpretation of these data imposed by the methodology.

      (1) Because individual recordings do not acquire a sufficient cell population to carry our population analyses, the cells must be combined into pseudopopulations for many analyses. This is common practice but it limits the ability to test the repeatability of findings across animals or populations. One potential additional solution would be to subsample the pseudopopulation, which would reveal the importance of individual sampled cells in the overall result. The utility of this additional testing is suggested by, for example, the benzaldehyde responses in supplementary figure 5, where two cells differentiate high and low concentration responses and would be expected to strongly impact correlation and classifier analyses.

      (2) I do not think the analysis in Figure 2e can be strongly interpreted in terms of the vesicle depletion model. The hard diagonal bound on the lower part of each scatter plot indicates that features of the data/analysis necessarily exclude data in the lower left quadrant. I think this could be possibly explained by a floor effect wherein lower-response neurons cannot possibly express a large deltaResponse. To strengthen this case, one would need to devise a control analysis for the case where neural responses are simply all going as far down as they can go.

      (3) Very minor, but it is confusing and not well-described how the error is computed in Figure 1f. One can imagine that the mean p(POR) is arrived at by averaging the binary values across locusts. Is this the case? If so, the same estimation of variance could be applied to Figures 1d and e

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Weiguang Kong et al. investigate the role of immunoglobulin M (IgM) in antiviral defense in the teleost largemouth bass (Micropterus salmoides). The authors employ an in vivo IgM depletion system and viral infection models, complemented by in vitro assays, histology, and gene expression analysis. Assuming the specificity of the MoAb, their findings demonstrate that largemouth bass IgM functions in both systemic and mucosal immunity and exhibits viral neutralization capabilities by acting on viral particles.

      Strengths:

      The authors utilize multiple complementary methods, including an innovative teleost immunoglobulin depletion approach, to provide strong evidence for the important and conserved role of IgM in anti-viral resistance. The study also highlights the dual role of teleost IgM at both systemic and mucosal levels, challenging the established idea that IgT primarily mediates mucosal protection. Despite variability in IgM depletion levels, the authors demonstrate that fish with depleted IgM+ B cells exhibit significantly higher viral loads, more severe pathological changes, and increased mortality compared to control fish. These results have evolutionary and practical implications, suggesting that IgM's role as an antiviral effector has been conserved across jawed vertebrates for over 500 million years. Insights into IgM's role could inform vaccine strategies targeting mucosal immunity in fish, addressing a key challenge in aquaculture.

      Weaknesses:

      While the authors validate the specificity of MoAb against IgM and address most of the aspects suggested by the reviewer. Some aspects are missing, mainly concerning the overstatement of the findings' novelty.

    1. Reviewer #1 (Public review):

      Wang, Junxiu et al. investigated the underlying molecular mechanisms of the insecticidal activity of betulin against the peach aphid, Myzus persicae. There are two important findings described in this manuscript: (a) betulin inhibits the gene expression of GABA receptor in the aphid, and (b) betulin binds to the GABA receptor protein, acting as an inhibitor. The first finding is supported by RNA-Seq and RNAi, and the second one is convinced with MST and electrophysiological assays. Further investigations on the betulin binding site on the receptor protein provided a fundamental discovery that T228 is the key amino acid residue for its affinity, thereby acting as an inhibitor, backed up by site-directed mutagenesis of the heterologously-expressed receptor in E. coli and by CRISPR-genome editing in Drosophila.

      Although the manuscript does have strengths in principle, the weaknesses do exist: the manuscript would benefit from more comprehensive analyses to fully support its key claims in the manuscript. In particular:

      (1) The Western blotting results in Figure 5A & B appear to support the claim that betulin inhibits GABR gene expression (L26), as a decrease in target protein levels is often indicative of suppressed gene expression. The result description for Figure 5A & B is found in L312-L316, within Section 3.6 ("Responses of MpGABR to betulin"), where MST and voltage-clamp assays are also presented. It seems the observed decrease in MpGABR protein content is due to gene downregulation, rather than a direct receptor protein-betulin interaction. However, this interpretation lacks discussion or analysis in either the corresponding results section or the Discussion. In contrast, Figures 5C-F are specifically designed to illustrate protein-betulin interactions. Presenting Figure 5A & B alongside these panels might lead to confusion, as they support distinct claims (gene expression vs. protein binding/inhibition). Therefore, I recommend moving Figure 5A & B either to the end of Figure 3 or to a separate figure altogether to improve clarity and logical flow. A minor point in the Western blotting experiment is that although GAPDH was used as a reference protein, there is no explanation in the corresponding M&M section.

      (2) The description of the electrophysiological recording experiment is unclear regarding the use of GABA. I didn't realize that GABA, the true ligand of the GABA receptor, was used in this inhibition experiment until I reached the Results section (L321), which states, "In the presence of only GABA, a fast inward current was generated." Crucially, no details are provided on the experiment itself, including how GABA was applied (e.g., concentration, duration, whether GABA was treated, followed by betulin, or vice versa). This information is essential for reproducibility. Please ensure these details are thoroughly described in the corresponding M&M section.

      (3) The phylogenetic analysis, particularly concerning Figures 4 and 6B, needs significant attention for clarity and representativeness. First, your claim that MpGABR is only closely related to CAI6365831.1 (L305-L310) is inconsistent with the provided phylogenetic tree, which shows MpGABR as equally close to Metopolophium dirhodum (XP_060864885.1) and Acyrthosiphon pisum (XP_008183008.2). Therefore, singling out only Macrosiphum euphorbiae (CAI6365831.1) is not supported by the data. Second, the representation of various insect orders is insufficient. All 11 sequences in the Hemiptera category (in both Figure 4 and Figure 6B) are exclusively from the Aphididae family. This small subset cannot represent the highly diverse Order Hemiptera. Consequently, statements like "only THR228 was conserved in Hemiptera" (L338), "The results of the sequence alignment revealed that only THR228 was conserved in Hemiptera" (L430), or "THR228... is highly conserved in Hemiptera" (L486) are not adequately supported. Third, similar concerns apply to the Diptera order, which includes 10 Drosophila and 2 mosquito samples (not diverse or representative enough), and likely to other orders as well. Thereby, the Figure 6B alignment should be revised accordingly to reflect a more accurate representation or to clarify the scope of the analysis. Fourth, there's a discrepancy in the phylogenetic method used: the M&M section (L156) states that MEGA7, ClustalW, and the neighbor-joining method were used, while the Figure 4 caption mentions that MEGA X, MUSCLE, and the Maximum likelihood method were employed. This inconsistency needs to be clarified and made consistent throughout the manuscript. Fifth, I have significant concerns about the phylogenetic tree itself (Figure 4). A small glitch was observed at the Danaus plexippus node, which raises suspicion regarding potential manipulation after tree construction. More critically, the tree, especially within Coleoptera, does not appear to be clearly resolved. I am highly concerned about whether all included sequences are true GABR orthologs or if the dataset includes partial or related sequences that could distort the phylogeny. Finally, for Figure 6B, both protein (XP_) and nucleotide (XM_) sequences were mix used. I recommend using the protein sequences instead of nucleotide sequences in this figure panel, as protein sequences are more directly informative.

      (4) The Discussion section requires significant revision to provide a more insightful and interpretative analysis of the results. Currently, much of the section primarily restates findings rather than offering deeper discussion. For instance, L409-L419 restate the results, followed by the short sentence "Collectively, these results suggest that betulin may have insecticidal effects on aphids by inhibiting MpGABR expression". It could be further expanded to make it beneficial to elaborate on proposed mechanisms by which gene expression might be suppressed, including any potential transcription factors involved. In contrast, while L422-L442 also initially summarize results, the subsequent paragraph (L445-L472) effectively discusses the potential mechanisms of inhibitory action and how mortality is triggered, which is a good model for other parts of the section. However, all the discussion ends up with a short statement, "implying that betulin acts as a CA of MpGABR" (L472), which appears to be a leap. The inference that betulin acts as a competitive antagonist (CA) is solely based on the location of its extracellular binding site, which does not exactly overlap with the GABA binding site. It needs stronger justification or actually requires further experimental validation. The authors should consider rephrasing this statement to acknowledge the need for additional studies to definitively confirm this mechanism of action.

    1. Reviewer #1 (Public review):

      Summary:

      Asthenospermia, characterized by reduced sperm motility, is one of the major causes of male infertility. The "9 + 2" arranged MTs and over 200 associated proteins constitute the axoneme, the molecular machine for flagellar and ciliary motility. Understanding the physiological functions of axonemal proteins, particularly their links to male infertility, could help uncover the genetic causes of asthenospermia and improve its clinical diagnosis and management. In this study, the authors generated Ankrd5 null mice and found that ANKRD5-/- males exhibited reduced sperm motility and infertility. Using FLAG-tagged ANKRD5 mice, mass spectrometry, and immunoprecipitation (IP) analyses, they confirmed that ANKRD5 is localized within the N-DRC, a critical protein complex for normal flagellar motility. However, transmission electron microscopy (TEM) and cryo-electron tomography (cryo-ET) of sperm from Ankrd5 null mice did not reveal significant structural abnormalities.

      Strengths:

      The phenotypes observed in ANKRD5-/- mice, including reduced sperm motility and male infertility, are conversing. The authors demonstrated that ANKRD5 is an N-DRC protein that interacts with TCTE1 and DRC4. Most of the experiments are well designed and executed.

      Weaknesses:

      The last section of cryo-ET analysis is not convincing. "ANKRD5 depletion may impair buffering effect between adjacent DMTs in the axoneme".

      "In WT sperm, DMTs typically appeared circular, whereas ANKRD5-KO DMTs seemed to be extruded as polygonal. (Fig. S9B,D). ANKRD5-KO DMTs seemed partially open at the junction between the A- and B-tubes (Fig. S9B,D)." In the TEM images of 4E, ANKRD5-KO DMTs look the same as WT. The distortion could result from suboptimal sample preparation, imaging or data processing. Thus, the subsequent analyses and conclusions are not reliable.

      This paper still requires significant improvements in writing and language refinement. Here is an example: "While N-DRC is critical for sperm motility, but the existence of additional regulators that coordinate its function remains unclear" - ill-formed sentences.

    1. Reviewer #1 (Public review):

      Summary:

      The major result in the manuscript is the observation of the higher order structures in a cryoET reconstruction that could be used for understanding the assembly of toroid structures. The cross-linking ability of ZapD dimers result in bending of FtsZ filaments to a constant curvature. Many such short filaments are stitched together to form a toroid like structure. The geometry of assembly of filaments - whether they form straight bundles or toroid like structures - depends on the relative concentrations of FtsZ and ZapD.

      Strengths:

      In addition to a clear picture of the FtsZ assembly into ring-like structures, the authors have carried out basic biochemistry and biophysical techniques to assay the GTPase activity, the kinetics of assembly, and the ZapD to FtsZ ratio.

      Weaknesses:

      Future scope of work includes the molecular basis of curvature generation and how molecular features of FtsZ and ZapD affect the membrane binding of the higher order assembly.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Lamberti et al. investigate how translation initiation and elongation are coordinated at the single-mRNA level in mammalian cells. The authors aim to uncover whether and how cells dynamically adjust initiation rates in response to elongation dynamics, with the overarching goal of understanding how translational homeostasis is maintained. To this end, the study combines single-molecule live-cell imaging using the SunTag system with a kinetic modeling framework grounded in the Totally Asymmetric Simple Exclusion Process (TASEP). By applying this approach to custom reporter constructs with different coding sequences, and under perturbations of the initiation/elongation factor eIF5A, the authors infer initiation and elongation rates from individual mRNAs and examine how these rates covary.

      The central finding is that initiation and elongation rates are strongly correlated across a range of coding sequences, resulting in consistently low ribosome density ({less than or equal to}12% of the coding sequence occupied). This coupling is preserved under partial pharmacological inhibition of eIF5A, which slows elongation but is matched by a proportional decrease in initiation, thereby maintaining ribosome density. However, a complete genetic knockout of eIF5A disrupts this coordination, leading to reduced ribosome density, potentially due to changes in ribosome stalling resolution or degradation.

      Strengths:

      A key strength of this work is its methodological innovation. The authors develop and validate a TASEP-based Hidden Markov Model (HMM) to infer translation kinetics at single-mRNA resolution. This approach provides a substantial advance over previous population-level or averaged models and enables dynamic reconstruction of ribosome behavior from experimental traces. The model is carefully benchmarked against simulated data and appropriately applied. The experimental design is also strong. The authors construct matched SunTag reporters differing only in codon composition in a defined region of the coding sequence, allowing them to isolate the effects of elongation-related features while controlling for other regulatory elements. The use of both pharmacological and genetic perturbations of eIF5A adds robustness and depth to the biological conclusions. The results are compelling: across all constructs and conditions, ribosome density remains low, and initiation and elongation appear tightly coordinated, suggesting an intrinsic feedback mechanism in translational regulation. These findings challenge the classical view of translation initiation as the sole rate-limiting step and provide new insights into how cells may dynamically maintain translation efficiency and avoid ribosome collisions.

      Weaknesses:

      A limitation of the study is its reliance on exogenous reporter mRNAs in HeLa cells, which may not fully capture the complexity of endogenous translation regulation. While the authors acknowledge this, it remains unclear how generalizable the observed coupling is to native mRNAs or in different cellular contexts.

      Additionally, the model assumes homogeneous elongation rates and does not explicitly account for ribosome pausing or collisions, which could affect inference accuracy, particularly in constructs designed to induce stalling. While the model is validated under low-density assumptions, more work may be needed to understand how deviations from these assumptions affect parameter estimates in real data.

      Furthermore, although the study observes translation "bursting" behavior, this is not explicitly modeled. Given the growing recognition of translational bursting as a regulatory feature, incorporating or quantifying this behavior more rigorously could strengthen the work's impact.

      Assessment of Goals and Conclusions:

      The authors successfully achieve their stated aims: they quantify translation initiation and elongation at the single-mRNA level and show that these processes are dynamically coupled to maintain low ribosome density. The modeling framework is well suited to this task, and the conclusions are supported by multiple lines of evidence, including inferred kinetic parameters, independent ribosome counts, and consistent behavior under perturbation.

      Impact and Utility:

      This work makes a significant conceptual and technical contribution to the field of translation biology. The modeling framework developed here opens the door to more detailed and quantitative studies of ribosome dynamics on single mRNAs and could be adapted to other imaging systems or perturbations. The discovery of initiation-elongation coupling as a general feature of translation in mammalian cells will likely influence how researchers think about translational regulation under homeostatic and stress conditions.

      The data, models, and tools developed in this study will be of broad utility to the community, particularly for researchers studying translation dynamics, ribosome behavior, or the effects of codon usage and mRNA structure on protein synthesis.

      Context and Interpretation:

      This study contributes to a growing body of evidence that translation is not merely controlled at initiation but involves feedback between elongation and initiation. It supports the emerging view that ribosome collisions, stalling, and quality control pathways play active roles in regulating initiation rates in cis. The findings are consistent with recent studies in yeast and metazoans showing translation initiation repression following stalling events. However, the mechanistic details of this feedback remain incompletely understood and merit further investigation, particularly in physiological or stress contexts.

      In summary, this is a thoughtfully executed and timely study that provides valuable insights into the dynamic regulation of translation and introduces a modeling framework with broad applicability. It will be of interest to a wide audience in molecular biology, systems biology, and quantitative imaging.

    1. Reviewer #1 (Public review):

      Summary:

      In this revised report, Yamanaka and colleagues investigate a proposed mechanism by which testosterone modulates seminal plasma metabolites in mice. The authors have made improvements from the previous version by softening the claim that oleic acid derived from seminal vesicle epithelium strongly affects linear progressive motility in isolated cauda epididymal sperm in vitro. They have also addressed the ambiguous references to the strength of the relationship between fatty acids and sperm motility, making the manuscript more balanced and nuanced.

      Strengths:

      This study addresses an important gap in our understanding of how testosterone influences seminal plasma metabolites and, in turn, sperm motility. The findings provide valuable insights into the sensitivity of seminal vesicle epithelial cells to testosterone, which could improve in vitro conditions for studying sperm motility. The authors have added methodological details and re-performed experiments with more appropriate control groups, enhancing the robustness of the study. These revisions, along with more carefully modified language reflecting measurement nuances, add significant value to the field. The study's detailed exploration of the physiological role of reproductive tract glandular secretions in modulating sperm behaviors is likely to be of broad interest, providing a strong foundation for future research on the relationship between fatty acid beta-oxidation and sperm motility patterns.

      Weaknesses:

      While the connection between media fatty acids and sperm motility patterns is still not fully conclusive, the authors have taken substantial steps to clarify and tone down their conclusions. The revised manuscript presents a more balanced view, acknowledging the complexity of the relationship and providing a more solid basis for follow-on studies.

  2. Jul 2025
    1. Reviewer #1 (Public review):

      Summary:

      The authors aim to explore the effects of the electrogenic sodium-potassium pump (Na+/K+-ATPase) on the computational properties of highly active spiking neurons, using the weakly-electric fish electrocyte as a model system. Their work highlights how the pump's electrogenicity, while essential for maintaining ionic gradients, introduces challenges in neuronal firing stability and signal processing, especially in cells that fire at high rates. The study identifies compensatory mechanisms that cells might use to counteract these effects, and speculates on the role of voltage dependence in the pump's behavior, suggesting that Na<sup>+</sup>/K<sup>+</sup>-ATPase could be a factor in neuronal dysfunctions and diseases

      Strengths:

      (1) The study explores a less-examined aspect of neural dynamics-the effects of Na<sup>+</sup>/K<sup>+</sup>-ATPase electrogenicity. It offers a new perspective by highlighting the pump's role not only in ion homeostasis but also in its potential influence on neural computation.

      (2) The mathematical modeling used is a significant strength, providing a clear and controlled framework to explore the effects of the Na<sup>+</sup>/K<sup>+</sup>+-ATPase on spiking cells. This approach allows for the systematic testing of different conditions and behaviors that might be difficult to observe directly in biological experiments.

      (3) The study proposes several interesting compensatory mechanisms, such as sodium leak channels and extracellular potassium buffering, which provide useful theoretical frameworks for understanding how neurons maintain firing rate control despite the pump's effects.

      Weaknesses:

      (1) While the modeling approach provides valuable insights, the lack of experimental data to validate the model's predictions weakens the overall conclusions.

      (2) The proposed compensatory mechanisms are discussed primarily in theoretical terms without providing quantitative estimates of their impact on the neuron's metabolic cost or other physiological parameters.

      Comments on revisions:

      The revised manuscript is notably improved.

    1. Reviewer #1 (Public review):

      The manuscript by Long et al. focused on SUL1, a gene encoding a sulfate transporter with signaling roles in yeast. The authors claim that the deletion of SUL1, rather than SUL2 (encoding a similar transporter), extended yeast replicative lifespan independent of sulfate transport. They also show that SUL1 loss-of-function mutants display decreased PKA activity, indicated by stress-protective carbohydrate accumulation, relevant transcription factor relocalization (measured during aging in single cells), and changes in gene expression. Finally, they show that loss of SUL1 increases autophagy, which is consistent with the longer lifespan of these cells. Overall, this is an interesting paper, but additional work should strengthen several conclusions, especially for the role of sulfate transport. Specific points include the following:

      What prompted the authors to measure the RLS of sul1 mutants? Prior systematic surveys of RLS in the same strain background (which included the same sul1 deletion strain they used) did not report lifespan extension in sul1 cells (PMID: 26456335).

      Cells carrying a mutant Sul1 (E427Q), which was reported to be disrupted in sulfate transport, did not have a longer lifespan (Figure 1), leading them to conclude that "lifespan extension by SUL1 deletion is not caused by decreased sulfate uptake". They would need to measure sulfate uptake in the mutants they test to draw that conclusion firmly.

      Related to my previous point, another simple experiment would be to repeat the assays in Figure 1 with exogenous sulfur added to see if the lifespan extension is suppressed.

      There needs to be more information in the text or the methods about how they did the enrichment analysis in Figure 2B. P-values are typically insufficient, and adjusted FDR values are reported from standard gene ontology platforms (e.g., PANTHER).

      It is somewhat puzzling that relocalization of Msn2 was not seen in very old cells (past the 17th generation), but it was evident in younger cells. The authors could consider another possibility, that it was early and midlife experiences that made those cells live longer. Past that window, loss of Sul1 may have no impact on longevity. A conditional shutoff system to regulate SUL1 expression would be needed to test the above, albeit this is probably beyond the scope of this report.

      The connections between glucose restriction, autophagy, and sul1 (Figure 4) could be further tested by measuring the RLS of sul1 cells in glucose-restricted cells. If RLS is further extended by glucose restriction, then whatever effects they see should be independent of glucose restriction.

      They made and tested the double (sul1, msn2) mutants, but they should also test the sul1, msn4 combination since Msn4 functions similarly to Msn2.

      Comments on revisions:

      Overall, this is a somewhat improved manuscript, but some prior concerns about the validity of the conclusions remain unresolved.

    1. Reviewer #1 (Public review):

      The authors aimed to explore the prognostic and therapeutic relevance of immunogenic cell death (ICD)-related genes in bladder cancer, focusing on a risk-scoring model involving CALR, IL1R1, IFNB1, and IFNG. The research indicates that higher expression of certain ICD-related genes is associated with enhanced immune infiltration, prolonged survival, and improved responsiveness to PD1-targeted therapy in bladder cancer patients.

      Major strengths:

      • The establishment of an ICD-related gene risk model based on publicly available datasets (TCGA and GEO) and further validated through tissue arrays and preliminary single-cell RNA sequencing data provides potential but weak clinical guidance.

      • The integration of multi-dimensional data (gene expression, mutation burden, immune infiltration, and treatment responses) strengthens the clinical applicability of the model.

      Key limitations and concerns:

      (1) Gene Selection and Novelty:

      The selection of genes predominantly reflects known regulators of immune responses, somewhat limiting the novelty. Exploring less-characterized ICD markers or extending validation beyond bladder cancer could improve the model's innovative aspect and wider clinical relevance.

      (2) Reliance on RNA-Seq for Immune Infiltration:

      Immune infiltration analyses based primarily on bulk RNA-Seq data have inherent methodological limitations, such as inability to distinguish cell subsets accurately. Incorporation of robust single-cell sequencing would significantly enhance the reliability of these findings. Although the authors recognize this limitation, future studies should directly address it.

      (3) Drug Sensitivity and Immunotherapy Response Data:

      While the authors clarify that the drug sensitivity analysis was performed using established databases (TCGA via pRRophetic), the unexpected correlations between ICD-related genes and various targeted therapies need further mechanistic validation. The observed relationships may reflect indirect associations rather than direct biological relevance, which warrants cautious interpretation.

      (4) Presentation and Clarity Issues:

      Initially noted formatting inconsistencies across figures compromised professional presentation; these have been corrected by the authors. Additionally, the authors have now provided essential methodological details, including clear sample sizes and database versions, enhancing reproducibility.

      (5) Immunotherapy Response Evidence:

      Conclusions regarding differences in immunotherapy response rates between patient subgroups, although intriguing, remain based on retrospective database analyses with relatively limited demographic and clinical detail. Future prospective studies or more detailed patient characterization would be required to robustly confirm these associations.

      (6) Interpretation of ICD Gene Signatures:

      The ICD-related gene set includes many genes broadly associated with immune activation rather than specifically ICD. Although this was addressed by the authors, clearly distinguishing ICD-specific versus general immune-response genes in future studies would help clarify biological implications.

      Summary and Recommendations for Readers:

      Overall, this study presents an interesting and clinically relevant risk-scoring approach to stratify bladder cancer patients based on ICD-related gene expression profiles. It provides useful information about prognosis, immune infiltration, and potential immunotherapy responsiveness. However, readers should interpret the results within the context of its limitations, notably the need for broader validation and careful consideration of the biological significance underlying the observed associations. This work lays a valuable foundation for further investigation into the integration of ICD and immune response signatures in personalized cancer therapy.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate the role of deubiquitinases (DUBs) in modulating the efficacy of PROTAC-mediated degradation of the cell-cycle kinase AURKA. Using a focused siRNA screen of 97 human DUBs, they identify UCHL5 and OTUD6A as negative regulators of AURKA degradation by PROTACs. They further offer a mechanistic explanation of enhanced AURKA degradation in the nucleus via OTUD6A expression being restricted to the cytosol, thereby protecting the cytoplasmic pool of AURKA. These findings provide important insight into how subcellular localization and DUB activity influence the efficiency of targeted protein degradation strategies, which could have implications for therapy.

      Strengths:

      (1) The manuscript is well-structured, with clearly defined objectives and well-supported conclusions.

      (2) The study employs a broad range of well-validated techniques - including live-cell imaging, proximity ligation assays, HiBiT reporter systems, and ubiquitin pulldowns - to dissect the regulation of PROTAC activity.

      (3) The authors use informative experimental controls, including assessment of cell-cycle progression effects, rescue experiments with siRNA-resistant constructs to confirm specificity, and the application of both AURKA-targeting PROTACs with different warheads and orthogonal degrader systems (e.g., dTAG-13 and dTAGv-1) to differentiate between target- and ligase-specific effects.

      (4) The identification of OTUD6A as a cytosol-restricted DUB that protects cytoplasmic but not nuclear AURKA is novel and may have therapeutic relevance for selectively targeting oncogenic nuclear AURKA pools.

      Weaknesses:

      (1) Although UCHL5 and OTUD6A are shown to limit AURKA degradation, direct physical interaction was not assessed.

      (2) Although the authors identify a correlation between DUB knockdown-induced cell cycle progression and enhanced PROTAC activity, only one DUB (USP36) is excluded on this basis. In addition, one DUB is shown in the correlation plot (Figure 3B) whose knockdown enhances PROTAC sensitivity without significantly altering cell cycle progression, but it is not identified/discussed.

      (3) While the authors suggest that combining PROTACs with DUB inhibition could enhance degradation, this was not experimentally tested.

      (4) The study identifies UCHL5 as a general antagonist of CRBN-recruiting PROTACs, yet the ubiquitin pulldown experiments (Figure 5G, H) show no change in AURKA ubiquitination upon UCHL5 knockdown. This raises questions about the precise step or mechanism by which UCHL5 exerts its protective effect.

    1. Reviewer #1 (Public review):

      Summary:

      BK channels are widely distributed and involved in many physiological functions. They have also proven a highly useful tool for studying general allosteric mechanisms for gating and modulation by auxiliary subunits. Tetrameric BK channels are assembled from four separate alpha subunits, which would be identical for homozygous alleles and potentially of five different combinations for heterozygous alleles (Geng et al., 2023, https://doi.org/10.1085/jgp.202213302). Construction of BK channels with concatenated subunits in order to strictly control heteromeric subunit composition had not yet been used because the N-terminus in BK channels is extracellular, whereas the C-terminus is intracellular. In this new work, Chen, Li, and Yan devise clever methods to construct and assemble BK channels of known subunit composition, as well as to fix the number of γ1 axillary subunits per channel. With their novel molecular approaches, Chen, Li and Yan report that a single γ1 axillary subunit is sufficient to fully modulate a BK channel, that the deep conducting pore mutation L312A exhibited a graded effect on gating with each addition mutated subunit replacing a WT subunit in the channel adding an additional incremental left shift in activation, and that the V288A mutation at the selectivity filter must be present on all four alpha subunits in order to induce channel inactivation. Chen, Li, and Yan have been successful in introducing new molecular tools to generate BK channels of known stoichiometry and subunit composition. They validate their methods and provide three examples of their use with useful observations.

      Strengths:

      Powerful new molecular tools for the study of channel gating have been developed and validated in the study.

      Weaknesses:

      One example each of auxiliary, deep pore, and selectivity filter allosteric actions is presented, but this is sufficient for the purposes of the paper to establish their methods and present specific examples of applicability.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript presents a high-quality, chromosome-level genome assembly of the European cuttlefish (Sepia officinalis), a representative species of the cephalopod lineage. Using state-of-the-art sequencing and scaffolding technologies -including PacBio HiFi long reads and Hi-C chromatin conformation capture - the authors deliver a genome assembly with exceptional contiguity and completeness, as evidenced by high BUSCO scores. This genome resource fills a significant gap in cephalopod genomics and offers a valuable foundation for studies in neurobiology, behavior, and evolutionary biology. However, there are several major aspects that need to be strengthened.

      Major Revisions Recommended:

      (1) Single-individual genome limitation

      The genome assembly is based on a single individual, which appears to be male. While this approach is common in genome projects, it does not capture the full genetic diversity of the species. As S. officinalis exhibits a wide geographical range and possible population structure, future efforts (or discussion in this manuscript) should consider re-sequencing multiple individuals - of both sexes and from diverse geographic origins - to characterize population-level variation, sex-linked features, and structural polymorphisms.

      (2) Limited experimental validation of chromosomal inferences

      The study reports chromosome-scale scaffolding using Hi-C data and proposes a revised karyotype for S. officinalis. However, these inferences would be significantly strengthened by orthogonal validation methods. In particular, fluorescence in situ hybridization (FISH) or karyotyping from cytogenetic preparations would provide direct confirmation of chromosome number and structural arrangements. The reliance solely on Hi-C contact maps for inferring chromosomal organization should be acknowledged as a limitation or supplemented with such validations.

      (3) Shallow discussion of chromosomal evolution

      The manuscript briefly mentions chromosomal number differences among cephalopods but does not explore their evolutionary or functional implications. A more thorough comparative analysis - linking chromosomal rearrangements (e.g., fusions, fissions) with ecological adaptation, life history, or neural complexity - would greatly enhance the impact of the findings. Referencing chromosomal dynamics in related taxa and possible links to behavioral innovations would contextualize these results more effectively.

      (4) Underdeveloped gene family and pathway analysis

      While the authors identify expansions in gene families such as protocadherins and C2H2 zinc finger transcription factors, the functional significance of these expansions remains speculative. The manuscript would benefit from:

      a) Functional enrichment analyses (e.g., GO, KEGG) targeting these gene families.

      b) Expression profiling across tissues or developmental stages to infer regulatory roles.

      c) Comparison with expression or expansion patterns in other cephalopods with known behavioral complexity (e.g., Octopus bimaculoides, Euprymna scolopes).

      d) Potential integration of transcriptomic or epigenomic data to support regulatory hypotheses.

    1. Reviewer #1 (Public review):

      Summary:

      This research investigates how the cellular protein quality control machinery influences the effectiveness of cystic fibrosis (CF) treatments across different genetic variants. CF is caused by mutations in the CFTR gene, with over 1,700 known disease-causing variants that primarily work through protein misfolding mechanisms. While corrector drugs like those in Trikafta therapy can stabilize some misfolded CFTR proteins, the reasons why certain variants respond to treatment while others don't remain unclear. The authors hypothesized that the cellular proteostasis network-the machinery that manages protein folding and quality control-plays a crucial role in determining drug responsiveness across different CFTR variants. The researchers focused on calnexin (CANX), a key chaperone protein that recognizes misfolded glycosylated proteins. Using CRISPR-Cas9 gene editing combined with deep mutational scanning, they systematically analyzed how CANX affects the expression and corrector drug response of 234 clinically relevant CF variants in HEK293 cells.

      In terms of findings, this study revealed that CANX is generally required for robust plasma membrane expression of CFTR proteins, and CANX disproportionately affects variants with mutations in the C-terminal domains of CFTR and modulates later stages of protein assembly. Without CANX, many variants that would normally respond to corrector drugs lose their therapeutic responsiveness. Furthermore, loss of CANX caused broad changes in how CF variants interact with other cellular proteins, though these effects were largely separate from changes in CFTR channel activity.

      This study has some limitations: the research was conducted in HEK293 cells rather than lung epithelial cells, which may not fully reflect the physiological context of CF. Additionally, the study only examined known disease-causing variants and used methodological approaches that could potentially introduce bias in the data analysis.

      How cellular quality control mechanisms influence the therapeutic landscape of genetic diseases is an emerging field. Overall, this work provides important cellular context for understanding CF mutation severity and suggests that the proteostasis network significantly shapes how different CFTR variants respond to corrector therapies. The findings could pave the way for more personalized CF treatments tailored to patients' specific genetic variants and cellular contexts.

      Strengths:

      (1) This work makes an important contribution to the field of variant effect prediction by advancing our understanding of how genetic variants impact protein function.

      (2) The study provides valuable cellular context for CFTR mutation severity, which may pave the way for improved CFTR therapies that are customized to patient-specific cellular contexts.

      (3) The research provides further insight into the biological mechanisms underlying approved CFTR therapies, enhancing our understanding of how these treatments work.

      (4) The authors conducted a comprehensive and quantitative analysis, and they made their raw and processed data as well as analysis scripts publicly available, enabling closer examination and validation by the broader scientific community.

      Weaknesses:

      (1) The study only considers known disease-causing variants, which limits the scope of findings and may miss important insights from variants of uncertain significance.

      (2) The cellular context of HEK293 cells is quite removed from lung epithelia, the primary tissue affected in cystic fibrosis, potentially limiting the clinical relevance of the findings.

      (3) Methodological choices, such as the expansion of sorted cell populations before genetic analysis, may introduce possible skew or bias in the data that could affect interpretation.

      (4) While the impact on surface trafficking is convincingly demonstrated, how cellular proteostasis affects CFTR function requires further study, likely within a lung-specific cellular context to be more clinically relevant.

    1. Reviewer #1 (Public review):

      This was a clearly written manuscript that did an excellent job summarizing complex data. In this manuscript, Cuevas-Zuviría et al. use protein modeling to generate over 5,000 predicted structures of nitrogenase components, encompassing both extant and ancestral forms across different clades. The study highlights that key insertions define the various Nif groups. The authors also examined the structures of three ancestral nitrogenase variants that had been previously identified and experimentally tested. These ancestral forms were shown in earlier studies to exhibit reduced activity in Azotobacter vinelandii, a model diazotroph.

      This work provides a useful resource for studying nitrogenase evolution. However, its impact is somewhat limited due to a lack of evidence linking the observed structural differences to functional changes. For example, in the ancestral nitrogenase structures, only a small set of residues (lines 421-431) were identified as potentially affecting interactions between nitrogenase components. Why didn't the authors test whether reverting these residues to their extant counterparts could improve nitrogenase activity of the ancestral variants?

      Additionally, the paper feels somewhat disconnected. The predicted nitrogenase structures discussed in the first half of the manuscript were not well integrated with the findings from the ancestral structures. For instance, do the ancestral nitrogenase structures align with the predicted models? This comparison was never explicitly made and could have strengthened the study's conclusions.

      Comments on revisions:

      I appreciate the authors responding to my comments. I think Fig. S10 helps put the structural data into more context. It would be helpful to make clearer in the legend what proteins are being compared, especially in 10C.

      Although I can see why the authors focus on the NifK extension and its potential connection to oxygen protection, I would point out that Vnf and Anf do not have this extension in their K subunit, and you find both Vnf and Anf in aerobic and facultative anaerobic diazotrophs. This is a minor point, but I think it is important to mention in the discussion.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors utilized in situ cryo-electron tomography (cryo-ET) to uncover the native thylakoid architecture of spinach chloroplasts and mapped the molecular organization of these thylakoids with single-molecule resolution. The obtained images show the detailed ultrastructural features of grana membranes and highlight interactions between thylakoids and plastoglobules. Interestingly, despite the distinct three-dimensional architecture of vascular plant thylakoids, their molecular organization closely resembles that of green algae. The pronounced lateral segregation of PSII and PSI was observed at the interface between appressed and non-appressed thylakoid regions, without evidence of a specialized grana margin zone where these complexes might intermix. Furthermore, unlike isolated thylakoid membranes, photosystem II (PSII) did not form a semi-crystalline array and was distributed uniformly within the membrane plane and across stacked grana membranes in intact chloroplasts. Based on the above observations, the authors propose a simplified two-domain model for the molecular organization of thylakoid membranes, which can be applied to both green algae and vascular plants. This study suggests that the general understanding of the functional separation of thylakoid membranes in vascular plants requires reconsideration.

      Strengths:

      By employing and refining AI-driven computational tools for the automated segmentation of membranes and identification of membrane proteins, this study successfully quantifies the spatial organization of photosynthetic complexes both within individual thylakoid membranes and across neighboring stacked membranes.

      Weaknesses:

      This study's weakness is that it requires the use of chloroplasts isolated from leaves and the need to freeze them on a grid for observation. However, the authors have correctly identified the limitations of this approach and have made some innovations, such as rapid sample preparation. The reliability of the interpretation of the results in light of previous results can be evaluated as high.

      Comments on revised version:

      The author has responded appropriately to the peer review comments and revised the paper.

    1. Reviewer #1 (Public review):

      Munday, Rosello, and colleagues compared predictions from a group of experts in epidemiology with predictions from two mathematical models on the question of how many Ebola cases would be reported in different geographical zones over the next month. Their study ran from November 2019 to March 2020 during the Ebola virus outbreak in Democratic Republic of the Congo. Their key result concerned predicted numbers of cases in a defined set of zones. They found that neither the ensemble of models nor the group of experts produced consistently better predictions. Similarly, neither model performed consistently better than the other, and no expert's predictions were consistently better than the others'. Experts were also able to specify other zones in which they expected to see cases in the next month. For this part of the analysis, experts consistently outperformed the models. In March, the final month of the analysis, the models' accuracy was lower than in other months, and consistently poorer than the experts' predictions.

      A strength of the analysis is use of consistent methodology to elicit predictions from experts during an outbreak that can be compared to observations, and that are comparable to predictions from the models. Results were elicited for a specified group of zones, and experts were also able to suggest other zones that were expected to have diagnosed cases. This likely replicates the type of advice being sought by policymakers during an outbreak.

      A potential weakness is that the authors included only two models in their ensemble. Ensembles of greater numbers of models might tend to produce better predictions. The authors do not address whether a greater number of models could outperform the experts.

      The elicitation was performed in four months near the end of the outbreak. The authors address some of the implications of this. A potential challenge for the transferability of this result is that the experts' understanding of local idiosyncrasies in transmission may have improved over the course of the outbreak. The model did not have this improvement over time. The comparison of models to experts may therefore not be applicable to early stages of an outbreak when expert opinions may be less well-tuned.

      This research has important implications for both researchers and policy-makers. Mathematical models produce clearly-described predictions that will later be compared to observed outcomes. When model predictions differ greatly from observations, this harms trust in the models, but alternative forms of prediction are seldom so clearly articulated or accurately assessed. If models are discredited without proper assessment of alternatives then we risk losing a valuable source of information that can help guide public health responses. From an academic perspective, this research can help to guide methods for combining expert opinion with model outputs, such as considering how experts can inform models' prior distributions and how model outputs can inform experts' opinions.

      Comments on revisions:

      I am grateful to the authors for their responses to my previous comments. I think their updates have made the paper much clearer. I do not think the updates change the opinions already given in the public review so I have not modified it.

    1. Reviewer #1 (Public review):

      Summary:

      The authors sought to identify the relationships between gut microbiota, lipid metabolites and the host in type 2 diabetes (T2DM) by using spontaneously developed T2DM in macaques, considered among the best human models.

      Strengths:

      The authors compared comprehensively the gut microbiota, plasma fatty acids between spontaneous T2DM and the control macaques, verifying the results with macaques in a high-fat diet-fed mice model.

      Comments on revisions:

      The authors responded to the comments raised, and the manuscript has been improved.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors explore the role of the conserved transcription factor POU4-2 in planarian maintenance and regeneration of mechanosensory neurons. The authors explore the role of this transcription factor and identify potential targets of this transcription factor. Importantly, many genes discovered in this work are deeply conserved, with roles in mechanosensation and hearing, indicating that planarians may be a useful model with which to study the roles of these key molecules. This work is important within the field of regenerative neurobiology, but also impactful for those studying the evolution of the machinery that is important for human hearing.

      Strengths:

      The paper is rigorous and thorough, with convincing support for the conclusions of the work.

      Weaknesses:

      Weaknesses are relatively minor and could be addressed with additional experiments or changes in writing.

    1. Reviewer #1 (Public review):

      Summary:

      While previous studies by this group and others have demonstrated the anti-inflammatory properties of osteoactivin, its specific role in cartilage homeostasis and disease pathogenesis remains unknown. Building on current knowledge, Asaad and colleagues investigated the functional role of this protein using both in vitro systems and an in vivo post-traumatic osteoarthritis model. In line with existing literature, the authors report that osteoactivin exerts inhibitory effects in these experimental settings. This study thus offers novel evidence supporting the cartilage-protective effects of osteoactivin in various experimental models.

      Strengths:

      Strengths of the study include its clinical relevance, given the lack of curative treatments for osteoarthritis, as well as the clarity of the narrative and the quality of most results.

      Weaknesses:

      A limitation of the study is the reliance on standard techniques; however, this is a minor concern that does not diminish the overall impact or significance of the work.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Gamen et al. analyzed the functional role of HIF signaling in the epicardium, providing evidence that stabilization of the hypoxia signaling pathway might contribute to neonatal heart regeneration. By generating different conditionally mouse mutants and performing pharmacological interventions, the authors demonstrate that stabilizing HIF signaling enhances cardiac regeneration after MI in P7 neonatal hearts.

      Strengths:

      The study presents convincing genetic and pharmacological approaches to the role of hypoxia signaling in enhancing the regenerative potential of the epicardium.

      Weaknesses:

      The major weakness is the lack of convincing evidence demonstrating the role of hypoxia signaling in EMT modulation in epicardial cells. Additionally, novel experimental approaches should be performed to allow for the translation of these findings to the clinical arena.

    1. Reviewer #1 (Public review):

      Summary:

      This study presents a new Bayesian approach to estimate importation probabilities of malaria, combining epidemiological data, travel history, and genetic data through pairwise IBD estimates. Importation is an important factor challenging malaria elimination, especially in low-transmission settings. This paper focuses on Magude and Matutuine, two districts in southern Mozambique with very low malaria transmission. The results show isolation-by-distance in Mozambique, with genetic relatedness decreasing with distances larger than 100 km, and no spatial correlation for distances between 10 and 100 km. But again, strong spatial correlation in distances smaller than 10 km. They report high genetic relatedness between Matutuine and Inhambane, higher than between Matutuine and Magude. Inhambane is the main source of importation in Matutuine, accounting for 63.5% of imported cases. Magude, on the other hand, shows smaller importation and travel rates than Matutuine, as it is a rural area with less mobility. Additionally, they report higher levels of importation and travel in the dry season, when transmission is lower. Also, no association with importation was found for occupation, sex, and other factors. These data have practical implications for public health strategies aiming for malaria elimination, for example, testing and treating travelers from Matutuine in the dry season.

      Strengths:

      The strength of this study lies in the combination of different sources of data - epidemiological, travel, and genetic data - to estimate importation probabilities, and the statistical analyses.

      Weaknesses:

      The authors recognize the limitations related to sample size and the biases of travel reports.

    1. Reviewer #1 (Public review):

      This study investigates how ant group demographics influence nest structures and group behaviors of Camponotus fellah ants, a ground-dwelling carpenter ant species (found locally in Israel) that build subterranean nest structures. Using a quasi-2D cell filled with artificial sand, the authors perform two complementary sets of experiments to try to link group behavior and nest structure: first, the authors place a mated queen and several pupae into their cell and observe the structures that emerge both before and after the pupae eclose (i.e., "colony maturation" experiments); second, the authors create small groups (of 5,10, or 15 ants, each including a queen) within a narrow age range (i.e., "fixed demographic" experiments) to explore the dependence of age on construction. Some of the fixed demographic instantiations included a manually induced catastrophic collapse event; the authors then compared emergency repair behavior to natural nest creation. Finally, the authors introduce a modified logistic growth model to describe the time-dependent nest area. The modification introduced parameters that allow for age-dependent behavior, and the authors use their fixed demographic experiments to set these parameters, and then apply the model to interpret the behavior of the colony maturation experiments. The main results of this paper are that for natural nest construction, nest areas, and morphologies depend on the age demographics of ants in the experiments: younger ants create larger nests and angled tunnels, while older ants tend to dig less and build predominantly vertical tunnels; in contrast, emergency response seems to elicit digging in ants of all ages to repair the nest.

      The experimental results are solid, providing new information and important insights into nest and colony growth in a social insect species. As presented, I still have some reservations about the model's contribution to a deeper understanding of the system. Additional context and explanation of the model, implications, and limitations would be helpful for readers.

    1. Reviewer #1 (Public review):

      The medicinal leech preparation is an amenable system in which to understand how the underlying cellular networks for locomotion function. A previously identified non-spiking neuron (NS) was studied and found to alter the mean firing frequency of a crawl-related motoneuron (DE-3), which fires during the contraction phase of crawling. The data are mostly solid. Identifying upstream neurons responsible for crawl motor patterning is essential for understanding how rhythmic behavior is controlled.

      Review of Revision:

      Reviewer: On a positive note, the rationale for the study is clearer to me now after reading the authors' responses to both reviewers, but that information, as described in the authors' responses, is minimally incorporated into the current revised paper. Incorporating a discussion of previous work on the NS cell has, indeed, improved the paper.

      I suggested earlier that the paper be edited for clarity but not much text has been changed since the first draft. I will provide an example of the types of sentences that are confusing. The title of the paper is: "Phase-specific premotor inhibition modulates leech rhythmic motor output". Are the authors referring to the inhibition created by premotor neurons (e.g., on to the motoneurons) or the inhibition that the premotor neurons receive?

      I also find the paper still confusing with regard to the suggested "functional homology" with the vertebrate Renshaw cells. When the authors set up this expectation of homology (should be analogy) in the introduction and other sections of the paper, one would assume that the NS cell would be directly receiving excitation from a motoneuron (like DE-3) and, in turn, the motoneuron would then receive some sort of inhibitory input to regulate its firing frequency. Essentially, I have always viewed the Renshaw cells as nature's clever way to monitor the ongoing activity of a motoneuron while also providing recurrent feedback or "recurrent inhibition" to modify that cell's excitatory state. The authors present their initial idea below on line 62. Authors write: "These neurons are present as bilateral pairs in each segmental ganglion and are functional homologs of the mammalian Renshaw cells (Szczupak, 2014). These spinal cord cells receive excitatory inputs from motoneurons and, in turn, transmit inhibitory signals to the motoneurons (Alvarez and Fyffe, 2007)."

      [Reviewer (minor note): I suggest re-writing this last sentence as "these" is confusing. Change to: 'In the spinal cord, Renshaw interneurons receive excitatory inputs from motoneurons and, in turn, transmit inhibitory signals to them (Alvarez and Fyffe, 2007).']

      Reviewer: Furthermore, the authors note that (line 69 on): "In the context of this circuit the activity of excitatory motoneurons evokes chemically mediated inhibitory synaptic potentials in NS. Additionally, the NS neurons are electrically coupled......In physiological conditions this coupling favors the transmission of inhibitory signals from NS to motoneurons." Based on what is being conveyed here, I see a disconnect with the "functional homology" being presented earlier. I may be missing something, but the Renshaw analogy seems to be quite different compared to what looks like reciprocal inhibition in the leech. If the authors want to make the analogy to Renshaw cells clearer, then they should make a simple ball and stick diagram of the leech system and visually compare it to the Renshaw/motoneuron circuit with regard to functionality. This simple addition would help many readers.

      Reviewer: The Abstract, Authors write (line 19), "Specifically, we analyzed how electrophysiological manipulation of a premotor nonspiking (NS) neuron, that forms a recurrent inhibitory circuit (homologous to vertebrate Renshaw cells)...."<br /> First, a circuit would not be homologous to a cell, and the term homology implies a strict developmental/evolutionary commonality. At best, I would use the term functionally analogous but even then I am still not sure that they are functionally that similar (see comments above). Line 22: "The study included a quantitative analysis of motor units active throughout the fictive crawling cycle that shows that the rhythmic motor output in isolated ganglia mirrors the phase relationships observed in vivo." This sentence must be revised to indicate that not all of the extracellular units were demonstrated to be motor units. Revise to: "The study included a quantitative analysis of identified and putative motor units active throughout the fictive crawling cycle that shows.....'

      Line 187 regarding identifying units as motoneurons: Authors write, "While multiple extracellular recordings have been performed previously (Eisenhart et al., 2000), these results (Figure 4) present the first quantitative analysis of motor units activated throughout the crawling cycle in this type of recordings." The authors cannot assume that the units in the recorded nerves belong only to motoneurons. Based on their first rebuttal, the authors seem to be reluctant to accept the idea that the extracellularly recorded units might represent a different class of neurons. They admit that some sensory neurons (with somata located centrally) do, indeed, travel out the same nerves recorded, but go on to explain why they would not be active.

      The leech has a variety of sensory organs that are located in the periphery, and some of these sensory neurons do show rhythmic activity correlated with locomotor activity (see Blackshaw's early work). The numerous stretch receptors, in fact, have very large axons that pass through all the nerves recorded in the current paper. In Fig. 4, it is interesting that the waveforms of all the units recorded in the PP nerve exhibit a reversal in waveform as compared to those in the DP nerve, which might indicate (based on bipolar differential recording) that the units in the PP nerve are being propagated in the opposite direction (i.e., are perhaps afferent). Rhythmic presynaptic inhibition and excitation is commonly seen for stretch receptors within the CNS (see the work of Burrows) and many such cells are under modulatory control.

      Most likely, the majority of the units are from motoneurons, but we do not really know at this point. The authors should reframe their statements throughout the paper as: 'While multiple extracellular recordings have been performed previously (Eisenhart et al., 2000), these results (Figure 4) present the first quantitative analysis of multiple extracellular units, using spike sorting methods, which are activated throughout the crawling cycle.' In cases where the identity of the unit is known, then it is fine to state that, but when the identity of the unit is not known, then there should be some qualification and stated as 'putative motor units'

      Reviewer, the Methods section: needs to include the full parameters that were used to assess whether bursting activity was qualified in ways to be considered crawling activity or not. Typically, crawl-like burst periods of no more than 25 seconds have been the limit for their qualification as crawling activity. In Fig 2F, for example, the inter-burst period is over 35 seconds; that coupled with an average 5 second burst duration would bring the burst period to 40 seconds, which is substantially out of range for there to be bursting relevant to crawl activity. Simply put, long DE-3 burst periods are often observed but may not be indicative of a crawl state as the CV motoneurons are no longer out of phase with DE-3. A number of papers have adopted this criterion.

    1. Reviewer #1 (Public review):

      This work addresses an important question in the field of Drosophila aggression and mating. Prior social isolation is known to increase aggression in males, manifesting as increased lunging, which is suppressed by group housing (GH). However, it is also known that single housed (SH) males, despite their higher attempts to court females, are less successful. Here, Gao et al., develop a modified aggression assay to address this issue by recording aggression in Drosophila males for 2 hours, with a virgin female immobilized by burying its head in the food. They found that while SH males frequently lunge in this assay, GH males switch to higher intensity but very low frequency tussling. Constitutive neuronal silencing and activation experiments implicate cVA sensing Or67d neurons in promoting high frequency lunging, similar to earlier studies, whereas Or47b neurons promote low frequency but higher intensity tussling. Optogenetic activation revealed that three pairs of pC1SS2 neurons increase tussling. Cell-type-specific DsxM manipulations combined with morphological analysis of pC1SS2 neurons and side-by-side tussling quantification link the developmental role of DsxM to the functional output of these aggression-promoting cells. In contrast, although optogenetic activation of P1a neurons in the dark did not increase tussling, thermogenetic activation under visible light drove aggressive tussling. Using a further modified aggression assay, GH males exhibit increased tussling and maintain territorial control, which could contribute to a mating advantage over SH males, although direct measures of reproductive success are still needed

      Strengths:

      Through a series of clever neurogenetic and behavioral approaches, the authors implicate specific subsets of ORNs and pC1 neurons in promoting distinct forms of aggressive behavior, particularly tussling. They have devised a refined territorial control paradigm, which appears more robust than earlier assays using a food cup (Chen et al., 2002). This new setup is relatively clutter-free and could be amenable to future automation using computer vision approaches. The updated Figure 5, which combines cell-type-specific developmental manipulation of pC1SS2 neurons with behavioral output, provides a link between developmental mechanisms and functional aggression circuits. The manuscript is generally well written, and the claims are largely supported by the data.

      Weakness:

      Although most concerns have been addressed, the manuscript still lacks a rigorous, objective method for quantifying lunging and tussling. Because scoring appears to have been done manually and a single lunge in a 30 fps video spans only 2-3 frames, the 0.2 s cutoff seems arbitrary, and there are no objective criteria distinguishing reciprocal lunging from tussling. Despite this, the study offers valuable insights into the neural and behavioral mechanisms of Drosophila aggression.

    1. Reviewer #1 (Public review):

      The manuscript by Feng et al. reported that Endothelin B receptor (ETBR) expressed by the satellite glial cells (SGCs) in the dorsal root ganglions (DRG) acted to inhibit sensory axon regeneration in both adult and aged mice. Thus, pharmacological inhibition of ETBR with specific inhibitors resulted in enhanced sensory axon regeneration in vitro and in vivo. In addition, sensory axon regeneration significantly reduces in aged mice and inhibition of ETBR could restore such defect in aged mice. Moreover, the study provided some evidence that the reduced level of gap junction protein connexin 43 might act downstream of ETBR to suppress axon regeneration in aged mice. Overall, the study revealed an interesting SGC-derived signal in the DRG microenvironment to regulate sensory axon regeneration. It provided additional evidence that non-neuronal cell types in the microenvironment function to regulate axon regeneration via cell-cell interaction.

      However, the molecular mechanisms by which ETBR regulates axon regeneration are unclear, and the structure of the manuscript is relatively not well organized, especially the last section. Some discussion and explanation about the data interpretation are needed to improve the manuscript.

      (1) The result showed that the level of ETBR was not changed after the peripheral nerve injury. Does it mean that its endogenous function is to limit the spontaneous sensory axon regeneration? In other words, the results suggest that SGCs expressing ETBR or vascular endothelial cells expressing its ligand ET-1 act to suppress sensory axon regeneration. Some explanation or discussion about this are necessary. Moreover, does the protein level of ETBR or its ligand change during aging?

      (2) In ex vivo experiments, NGF was added in the culture medium. Previous studies have shown that adult sensory neurons could initiate fast axon growth in response to NGF within 24 hours. In addition, dissociated sensory neurons could also initiate spontaneous regenerative axon growth without NGF after 48 hours. Some discussion or rationale is needed to explain the difference between NGF-induced or spontaneous axon growth of culture adult sensory neurons and the roles of ETBR and SGCs.

      (3) In cultured dissociated sensory neurons, inhibiting ETBR also enhanced axon growth, which meant the presence of SGCs surrounding the sensory neurons. Some direct evidence is needed to show the cellular relationship between them in culture.

      (4) In Figure 3, the in vivo regeneration experiments first showed enhanced axon regeneration either at 1 day or 3 days after the nerve injury. The study then showed that inhibiting ETBR could enhance sensory axon growth in vitro from uninjured naïve neurons or conditioning lesioned neurons. To my knowledge, in vivo sensory axon regeneration is relatively slow during the first 2 days after the nerve injury and then enter the fast regeneration mode in the 3rd day, representing the conditioning lesion effect in vivo. Some discussion is needed to compare the in vitro and the in vivo model of axon regeneration.

      (5) In Figure 5, the study showed that the level of connexin 43 increased after ETBR inhibition in either adult or aged mice, proposing an important role of connexin 43 in mediating the enhancing effect of ETBR inhibition on axon regeneration. However, in the study there was no direct evidence supporting that ETBR directly regulate connexin 43 expression in SGCs. Moreover, there was no functional evidence that connexin 43 acted downstream of ETBR to regulate axon regeneration.

      In the revised manuscript, most comments have been addressed with some new experiments or text revisions in the results or discussion. For representative images showing in vitro cultured DRG neurons, it would be much more convincing if several neurons in the same imaging field are shown, rather than a single neuron (Figure 2A, 3J).

    1. Reviewer #1 (Public review):

      Summary:

      The authors study the steady-state solutions of ODE models for molecular signaling involving ligand binding coupled to multi-site phosphorylation at saturating ligand concentrations. Although the results are in principle general, the work highlights the receptor tyrosine kinases (RTK) as model systems. After presenting previous ODE model solutions, the authors present their own "kinetic sorting" model, which is distinguished by ligand-induced phosphorylation-dependent receptor degradation and the property that every phosphorylation state is signaling competent. The authors show that this model recovers the two types of non-monotonicity experimentally reported for RTKs: maximum activity for intermediate ligand affinity and maximum activity for intermediate kinase activity.

      The main contribution of the work is in demonstrating that their model can capture both types of non-monotonicity, whereas previous models could at most capture non-monotonicity of ligand binding.

      Strengths:

      The question of how energy-dissipating, and thus non-equilibrium, molecular systems can achieve steady-state solutions not accessible to equilibrium systems is of fundamental importance in biomolecular information processing and self-organization. Although the authors do not address the energy requirements of their non-equilibrium model, their comparative analysis of different alternative non-equilibrium models provides insight into the design choices necessary to achieve non-monotonic control, a property that is inaccessible at equilibrium.

      The paper is succinctly written and easy to follow, and the authors achieve their aims by providing convincing numerical solutions demonstrating non-monotonicity over the range of parameter values encompassing the biologically relevant regime.

      Weaknesses:

      (1) A key motivating framework for this work is the argument that the ability to tune to recognize intermediate ligand affinities provides a control knob for signal selection that is available to non-equilibrium systems. As such, this seems like a compelling type of ligand selectivity, which is a question of broad interest. However, as the authors note in the results, the previously published "limited signaling model" already achieves such non-monotonicity in ligand binding affinity. The introduction and abstract do not clearly delineate the new contributions of the model.

      The novel benefit of the model introduced by the authors is that it also achieves a non-monotonic response to kinase activity. Because such non-monotonicity is observed for RTK, this would make the authors' model a better fit for capturing RTK behavior. However, the broad significance of achieving non-monotonicity to kinase activity is not motivated or supported by empirical evidence in the paper. As such, the conceptual significance of the modified model presented by the authors is not clear.

      (2) Whereas previous models used in the literature are schematized in Figure 1, the model proposed by the authors is missing (see line 97 of page 3). Without the schematic, the text description of the model is incomplete.

      (3) The authors use the activity of the first phosphorylation site as the default measure of activity. This choice needs to be justified. Why not use the sum of the activities at all sites?

    1. Reviewer #1 (Public review):

      Summary:

      The study by Teplenin and coworkers assesses the combined effects of localized depolarization and excitatory electrical stimulation in myocardial monolayers. They study the electrophysiological behaviour of cultured neonatal rat ventricular cardiomyocytes expressing the light-gated cation channel Cheriff, allowing them to induce local depolarization of varying area and amplitude, the latter titrated by the applied light intensity. In addition, they used computational modeling to screen for critical parameters determining state transitions and to dissect the underlying mechanisms. Two stable states, thus bistability, could be induced upon local depolarization and electrical stimulation, one state characterized by a constant membrane voltage and a second, spontaneously firing, thus oscillatory state. The resulting 'state' of the monolayer was dependent on the duration and frequency of electrical stimuli, as well as the size of the illuminated area and the applied light intensity, determining the degree of depolarization as well as the steepness of the local voltage gradient. In addition to the induction of oscillatory behaviour, they also tested frequency-dependent termination of induced oscillations.

      Strengths:

      The data from optogenetic experiments and computational modelling provide quantitative insights into the parameter space determining the induction of spontaneous excitation in the monolayer. The most important findings can also be reproduced using a strongly reduced computational model, suggesting that the observed phenomena might be more generally applicable.

      Weaknesses:

      While the study is thoroughly performed and provides interesting mechanistic insights into scenarios of ventricular arrhythmogenesis in the presence of localized depolarized tissue areas, the translational perspective of the study remains relatively vague. In addition, the chosen theoretical approach and the way the data are presented might make it difficult for the wider community of cardiac researchers to understand the significance of the study.

    1. Reviewer #1 (Public review):

      MPRAs are a high-throughput and powerful tool for assaying the regulatory potential of genomic sequences. However, linking MPRA-nominated regulatory sequences to their endogenous target genes and identifying the more specific functional regions within these sequences can be challenging. MPRAs that tile a genomic region, and saturation mutagenesis-based MPRAs, can help to address these challenges. In this work, Tulloch et al. describe a streamlined MPRA system for the identification and investigation of the regulatory elements surrounding a gene of interest with high resolution. The use of BACs covering a locus of interest to generate MPRA libraries allows for an unbiased and high-coverage assessment of a particular region. Follow-up degenerate MPRAs, where each nucleotide in the nominated sequences is systematically mutated, can then point to key motifs driving their regulatory activity. The authors present this MPRA platform as straightforward, easily customizable, and less time- and resource-intensive than traditional MPRA designs. They demonstrate the utility of their design in the context of the developing mouse retina, where they first use the LS-MPRA to identify active regulatory elements for select retinal genes, followed by d-MPRA, which allowed them to dissect the functional regions within those elements and nominate important regulatory motifs. These assays were able to recapitulate some previously known cis-regulatory modules (CRMs), as well as identify some new potential regulatory regions. Follow-up experiments assessing co-localization of the gene of interest with the CRM-linked GFP reporter in the target cells, and CUT&RUN assays to confirm transcription factor binding to nominated motifs, provided support linking these CRMs to the genes of interest. Overall, this method appears flexible and could be an easy-to-implement tool for other investigators aiming to study their locus of interest with high resolution.

      Strengths:

      (1) The method of fragmenting BACs allows for high, overlapping coverage of the region of interest.

      (2) The d-MPRA method was an efficient way to identify key functional transcription factor motifs and nominate specific transcription factor-driven regulatory pathways that could be studied further.

      (3) Additional assays like co-expression analyses using the endogenous gene promoter, and use of the Notch inhibitor in the case of Olig2, helped correlate the activity of the CRMs to the expression of the gene of interest, and distinguish false positives from the initial MPRA.

      (4) The use of these assays across different time points, tissues, and even species demonstrated that they can be used across many contexts to identify both common and divergent regulatory mechanisms for the same gene.

      Weaknesses:

      The LS-MPRA assay most strongly identified promoters, which are not usually novel regulatory elements you would try to discover, and the signal-to-noise ratio for more TSS-distal, non-promoter regulatory elements was usually high, making it difficult to discriminate lower activity CRMs, like enhancers, from the background. For example, NR2 and NR3 in Figure 3 have very minimal activity peaks (NR3 seems non-existent). The ex vivo data in Figure 2 are similarly noisy. Is there a particular metric or calculation that was or could be used to quantitatively or statistically call a peak above the background? The authors mention in the discussion some adjustments that could reduce the noise, such as increased sequencing depth, which I think is needed to make these initial LS-MPRA results and the benchmarking of this assay more convincing and impactful.

    1. Reviewer #1 (Public review):

      (1) Presentation of Figures in the Response Letter

      I would like to note that the figures included in the response letter would benefit from improved organization. For example, Author response image 1 lacks clarity for experimental conditions. From the response letter, my understanding is that a "Labeling rate index", Rg−Rn, was calculated to represent the difference in the rate of increase in labeling between neurons and glial across two time intervals based on experiments shown in Figure 2-figure supplement 1C and G. It seems that a mean convergence index was calculated for each experimental condition at each time point for glial and neurons, and then the differences in mean convergence index increase between time intervals were calculated for glial and neurons. The legend needs more detail to enhance clarity.

      Furthermore, the manuscript should clearly distinguish between figures generated from re-analysis of existing data and those based on newly conducted experiments. This distinction should be explicitly stated in the figure legends and/or main text.<br /> I recommend that all response figures containing data integral to the authors' rebuttal be properly integrated into the manuscript's existing supplementary figure set, rather than remaining isolated in the response document. This would enhance clarity and ensure that key supporting data are fully accessible to readers. For instance, Author response image 1 can be integrated with Figure 2-figure supplement.

      (2) Glial Cell Labeling and Specificity of Trans-Synaptic Spread

      The authors provided a comprehensive and well-reasoned response to the concern regarding the labeling of radial glial cells. The inclusion of a dedicated section in the revised Discussion and response figures (possibly to be integrated with supplementary figures), strengthens the manuscript.

      The authors have made an interesting observation in Author response image 2 that glial labeling was frequently observed near the soma and dendrites of starter cells, suggesting that transneuronal labeled glial cells may be synaptically associated with the starter neurons. Also astroglia starter cells lead to infection of nearby TVA-negative astroglia, suggesting astroglia-to- astroglia transmission.

      I find the response scientifically satisfactory and appreciate the authors' transparency in addressing the limitations of their approach.

      (3) Temperature Effects and Larval Viability

      The authors' justification for raising larvae at 36C to improve labeling efficiency is reasonable. The supporting data indicating minimal impact on larval viability within the experimental timeframe are convincing. Referencing prior behavioral studies and including survival data under controlled conditions adds credibility to their claims. I find this issue satisfactorily addressed.

      (4) Viral Toxicity and Dosage Considerations, Secondary Starter Cells

      The authors present a well-reasoned explanation that viral cytotoxicity is primarily driven by replication and not by viral titer or injection volume. However, the inclusion of experimental data directly testing the effects of higher titer or volume on starter cell viability would have strengthened this point, particularly since such tests are relatively straightforward to perform.

      Regarding the potential contribution of secondary starter cells, the authors provide a convincing rationale for why such effects are unlikely under their sparse labeling conditions. However, in cases where TVA and G are broadly expressed-such as under the vglut2a promoter, as shown in Author response image 2-it would be valuable to directly evaluate this possibility experimentally. While the authors' interpretation is reasonable, empirical validation would further strengthen their conclusions.

    1. Reviewer #1 (Public review):

      The authors conducted a comprehensive investigation into sleep and circadian rhythm disturbances in Fmr1 knockout (KO) mice, a model for Fragile X Syndrome (FXS). They began by monitoring daily home cage behaviors to identify disruptions in sleep and circadian patterns, then assessed the mice's adaptability to altered light conditions through photic suppression and skeleton photoperiod experiments. To uncover potential mechanisms, they examined the connectivity between the retina and the suprachiasmatic nucleus. The study also included an analysis of social behavior deficits in the mutant mice and tested whether scheduled feeding could alleviate these issues. Notably, scheduled feeding not only improved sleep, circadian, and social behaviors but also normalized plasma cytokine levels. The manuscript is strengthened by its focus on a significant and underexplored area-sleep deficits in an FXS model-and by its robust experimental design, which integrates a variety of methodological approaches to provide a thorough understanding of the observed phenomena and potential therapeutic avenues.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript titled "Introduction of cytosine-5 DNA methylation sensitizes cells to oxidative damage" proposes that 5mC modifications to DNA, despite being ancient and wide-spread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      I am satisfied that the points #2, #3 and #4 relating to non-addativity, transcriptional changes and ROS generation have been appropriately addressed in this revised manuscript. The most important point (previously #1) has not been addressed beyond the acknowledgement in the results section that: "Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity." This slightly miss-represents the original point that 5mC the main enzymatic product of DNMTs rather or in addition to 3mC is likely to lead to transient damage susceptible ssDNA, especially in an alkB deficient background. And more centrally to the main claims of this manuscript, the authors have not resolved whether methylated cytosine introduced into bacteria is deleterious in the context of genotoxic stress because of the oxidative modification to 5mC and 3mC, or because of oxidative/chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC, especially in an alkB deficient background. This is a crucial distinction because chemical vulnerability of 5mC would likely be a universal property of cytosine methylation across life, but the wide-spread exposure of ssDNA is expected to be peculiarity of introducing cytosine methylation into a system not evolved with that modification as a standard component of its genome.

      These two models make different predictions about the predominant mutation types generated, in the authors system using M.SssI that targets C in a CG context - if oxidative damage to 5mC dominates then mutations are expected to be predominantly in a CG context, if ssDNA exposure effects dominate then the mutations are expected to be more widely distributed - sequencing post exposure clones could resolve this.

      Strengths:

      This work is based on an interesting initial premise, it is well motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity.

      (1) Original query which still stands: As noted in the manuscript, AlkB repairs alkylation damage by direct reversal (DNA strands are not cut). In the absence of AlkB, repair of alklylation damage/modification is likely through BER or other processes involving strand excision and resulting in single stranded DNA. It has previously been shown that 3mC modification from MMS exposure is highly specific to single stranded DNA (PMID:20663718) occurring at ~20,000 times the rate as double stranded DNA. Consequently the introduction of DNMTs is expected to introduce many methylation adducts genome-wide that will generate single stranded DNA tracts when repaired in an AlkB deficient background (but not in an AlkB WT background), which are then hyper-susceptible to attack by MMS. Such ssDNA tracts are also vulnerable to generating double strand breaks, especially when they contain DNA polymerase stalling adducts such as 3mC. The generation of ssDNA during repair is similarly expected follow the H2O2 or TET based conversion of 5mC to 5hmC or 5fC neither of which can be directly repaired and depend on single strand excision for their removal. The potential importance of ssDNA generation in the experiments has not been [adequately] considered.

    1. Reviewer #1 (Public review):

      In the current article, Octavia Soegyono and colleagues study "The influence of nucleus accumbens shell D1 and D2 neurons on outcome-specific Pavlovian instrumental transfer", building on extensive findings from the same lab. While there is a consensus about the specific involvement of the Shell part of the Nucleus Accumbens (NAc) in specific stimulus-based actions in choice settings (and not in General Pavlovian instrumental transfer - gPIT, as opposed to the Core part of the NAc), mechanisms at the cellular and circuitry levels remain to be explored. In the present work, using sophisticated methods (rat Cre-transgenic lines from both sexes, optogenetics, and the well-established behavioral paradigm outcome-specific PIT-sPIT), Octavia Soegyono and colleagues decipher the differential contribution of dopamine receptors D1 and D2 expressing spiny projection neurons (SPNs).

      After validating the viral strategy and the specificity of the targeting (immunochemistry and electrophysiology), the authors demonstrate that while both NAc Shell D1- and D2-SPNs participate in mediating sPIT, NAc Shell D1-SPNs projections to the Ventral Pallidum (VP, previously demonstrated as crucial for sPIT), but not D2-SPNs, mediates sPIT. They also show that these effects were specific to stimulus-based actions, as value-based choices were left intact in all manipulations.

      This is a well-designed study, and the results are well supported by the experimental evidence. The paper is extremely pleasant to read and adds to the current literature.

    1. Reviewer #1 (Public review):

      Wojcik et al. conducted a working memory (WM) experiment in which participants had to press the right or left button after being presented with a square (upright) or diamond stimulus. The response mapping ('context') depended on a colour cue presented at the start of each trial. This results in an XOR task, requiring participants to integrate colour and shape information. Importantly, multiple colours could map onto the same context, allowing the authors to disentangle the (neural) representations of context from those of colour.

      The authors report that participants learn the appropriate context mappings quickly over the course of the experiment. Neural context representation is evident in the WM delay and emerges later in the experiment, unlike colour representation, which is present only during colour presentation and does not evolve over experimental time. There are furthermore results on neural geometry (averaged cross-generalized decoding) and neural dimensionality (averaged decoding after shattering all task dimensions), which are somewhat harder to interpret.

      Overall, the findings are likely Important, as they highlight the flexible and future-oriented nature of WM. The strength of support at the moment is incomplete: there are some loose ends on the context/colour generalization, and the evidence for the XOR neural representation is not (yet) well-established.

      I have one (major) concern and several suggestions for improvement.

      (1a) As the authors also acknowledge in several places, the XOR dimension is strongly correlated with motor responses, in any case toward the end of the task (and by definition for all correct trials). This should be dealt with properly. Right now, e.g. Figures 2g/i, 2h/j, 3e/g, 3f/h are highly similar, respectively, because of this strong collinearity. I would remove the semi-duplicate graphs and/or deal with this explicitly through some partial regression, trial selection, or similar (and report these correlations).

      (1b) Most worrisome in this respect is that one of the key results presented is that XOR decoding increases with learning. But also task accuracy increases, meaning that the proportion of correct trials increases with learning, meaning that the XOR and motor regressors become more similar over experimental time. This means that any classifier picking up on motor signals will be better able to do so later on in the task than earlier on. (In other words, the XOR regressor may be a noisy version of the motor regressor early on, and a more precise version of the motor regressor later on.) Therefore, the increase in XOR decoding over experimental time may be (entirely) due to an increase in similarity between the XOR and motor dimensions. The authors should either rule out this explanation, and/or remove/tone down the conclusions regarding the XOR coding increase. (Note that the takeaway regarding colour/context generalization does not depend on this analysis, fortunately.) The absence of a change in motor decoding with learning (as reported on page 11) does not affect this potential confound; in fact it is made more likely with it.

      (2) Bayes factors would be valuable in several places, especially with null results (p. 5) or cases with borderline-significant p-values.

      (3) The authors' interpretation of the key results implies that the abstract coding learned over the task should be relevant for behaviour. The current results do not show a particularly strong behavioural relevance of coding, to put it mildly. It might be worth exploring whether neural coding expresses itself in reaction times, rather than (in)correct responses, and reflecting on the (lack of) behavioural relevance in the Discussion.

      (4) All data and experiment/analysis code should be made available, in public repositories (i.e., not "upon request").

    1. Reviewer #1 (Public review):

      Circannual timing is a phylogenetically widespread phenomenon in long-lived organisms and is central to the seasonal regulation of reproduction, hibernation, migration, fur color changes, body weight, and fat deposition in response to photoperiodic changes. Photoperiodic control of thyroid hormone T3 levels in the hypothalamus dictates this timing. However, the mechanisms that regulate these changes are not fully understood. The study by Stewart et al. reports that hypothalamic iodothyronine deiodinase 3 (Dio3), the major inactivator of the biologically active thyroid hormone T3, plays a critical role in circannual timing in the Djungarian hamster. Overall, the study yields important results for the field and is well-conducted, with the exception of the CRISPR/Cas9 manipulation.

      Figure 1 lays the foundation for examining circannual timing by establishing the timing of induction, maintenance, and recovery phases of the circannual timer upon exposure of hamsters to short photoperiod (SP) by monitoring morphological and physiological markers. Measures of pelage color, torpor, body mass, plasma glucose, etc, established that the initiation phase occurred by weeks 4-8 in SP, the maintenance by weeks 12-20, and the recovery after week 20, where all morphological and physiological changes started to reverse back to long photoperiod phenotypes. The statistical analyses look fine, and the results are unambiguous. Their representation could, however, be improved. In Figures 1d and 1e, two different measures are plotted on each graph and differentiated by dots and upward or downward arrowheads. The plots are so small, though, that distinguishing between the direction of the arrows is difficult. Some color coding would make it more reader-friendly. The same comment applies to Figure S4. The authors went on to profile the transcriptome of the mediobasal and dorsomedial hypothalamus, paraventricular nucleus, and pituitary gland (all known to be involved in seasonal timing) every 4 weeks over the different phases of the circannual interval timer. A number of transcripts displaying seasonal rhythms in expression levels in each of the investigated structures were identified, including transcripts whose expression peaks during each phase. This included two genes of particular interest due to their known modulation of expression in response to photoperiod, Dio3 and Sst, found among the transcripts upregulated during the induction and maintenance phases, respectively. The experiments are technically sound and properly analyzed, revealing interesting candidates. Again, my main issues lie with the representation in the figure. In particular, the authors should clarify what the heatmaps on the right of Figures 1f and 1g represent. I suspect they are simply heatmaps of averaged expression of all genes within a defined category, but a description is missing in the legend, as well as a scale for color coding near the figure.

      Figure 2 reveals that SP-programmed body mass loss is correlated to increased Dio3-dependent somatostatin (Sst) expression. First, to distinguish whether the body mass loss was controlled by rheostatic mechanisms and not just acute homeostatic changes in energy balance, experiments from hamsters fed ad lib or experiencing an acute food restriction in both LP and SP were tested. Unlike plasma insulin, food restriction had no additional effect on SP-driven epididymal fat mass loss (Figure S7). This clearly establishes a rheostatic control of body mass loss across weeks in SP conditions. Importantly, Sst expression in the mediobasal hypothalamus increased in both ad lib fed or restriction fed SP hamsters and this increase in expression could be reduced by a single subcutaneous injection of active T3, clearly suggesting that increase in Sst expression in SP is due to a decrease of active T3 likely via Dio3 increase in expression in the hypothalamus. The results are unambiguous.

      Figure 3 provides a functional test of Dio3's role in the circannual timer. Mediobasal hypothalamic injections of CRISPR-Cas9 lentiviral vectors expressing two guide RNAs targeting the hamster Dio3 led to a significant reduction in the interval between induction and recovery phases seen in SP as measured by body mass, and diminished the extent of pelage color change by weeks 15-20. In addition, hamsters that failed to respond to SP exposure by decreasing their body mass also had undetectable Dio3 expression in the mediobasal hypothalamus. Together, these data provide strong evidence that Dio3 functions in the circannual timer. I noted, however, a few problems in the way the CRISPR modification of Dio3 in the mediobasal hypothalamus was reported in Figure S8. One is in Figure S8b, where the PAM sites are reported to be 9bp and 11bp downstream of sgRNA1 and sgRNA2, respectively. Is this really the case? If so, I would have expected the experiment to fail to show any effect as PAM sites need to immediately follow the target genomic sequence recognized by the sgRNA for Cas9 to induce a DNA double-stranded break. It seems that each guide contains a 3' NGG sequence that is currently underlined as part of sgRNAs in both Fig S8b and in the method section. If this is not a mistake in reporting the experimental design, I believe that the design is less than optimal and the efficiencies of sgRNAs are rather low, if at all functional. The authors report efficiencies around 60% (line 325), but how these were obtained is not specified. Another unclear point is the degree to which the mediobasal hypothalamus was actually mutated. Only one mutated (truncated) sequence in Figure S8c is reported, but I would have expected a range of mutations in different cells of the tissue of interest. Although the authors clearly find a phenotypic effect with their CRISPR manipulation, I suspect that they may have uncovered greater effects with better sgRNA design. These points need some clarification. I would also argue that repeating this experiment with properly designed sgRNAs would provide much stronger support for causally linking Dio3 in circannual timing.

      A proposed schematic model for mechanisms of circannual interval timing is presented in Figure S9. I think this represents a nice summary of the findings put in a broader context and should be presented as a main figure in the manuscript itself rather than being relayed in supplementary materials.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes an interesting phenotype of C. elegans lite-1 mutants. Previous work showed that lite-1 mutants lose a violet/blue light avoidance response. The authors show here that lite-1 mutants also show a defect in negative diacetyl chemotaxis. While wild-type worms avoid diacetyl at high concentrations, lite-1 mutants are instead *attracted* to it. The authors go on to perform Ca2+ imaging in sensory neurons and find that ADL and ASK neurons show altered Ca2+ responses to diacetyl in lite-1 mutants, suggesting LITE-1 is required for these responses. As unc-13 mutants with defective synaptic transmission show similar diacetyl Ca2+ responses as wild-type, this suggests these neurons respond cell autonomously to diacetyl. However, whether lite-1 also acts cell-autonomously is not discussed. Indeed, because unc-13 and lite-1 mutants show different ADL and ASK Ca2+ responses, it seems the diacetyl response regulated by LITE-1 is likely acting outside of those cells. An interesting result that is not commented on is the switching of the valence of the ASK Ca2+ response in lite-1 mutants. ASK neurons still respond to diacetyl, but instead of a strong increase in Ca2+, diacetyl appears to drive it strongly lower. This may be consistent with the switch in valence in the diacetyl chemotaxis assay. It also argues against the idea that LITE-1 is a low-affinity diacetyl receptor that drives avoidance or the Ca2+ responses in ASK, since it is still present in lite-1 mutants. The authors then use a strain that expresses LITE-1 in the body wall muscles and show this expression is sufficient to engender them with sensitivity to diacetyl, as measured through altered swimming and hypercontractility. The authors interpret this result as LITE-1 may act as a diacetyl receptor. The authors test whether a structurally similar molecule, 2,3-pentanedione, shows similar effects, and they find it does. Alpha-fold modeling and molecular docking analysis show where diacetyl might bind to the LITE-1 protein. They then test whether lite-1 mutants show chemotaxis defects to other molecules, as seen with diacetyl. Generally, they find that the observed diacetyl responses are unique, although lite-1 mutants do lose their avoidance response to 2,3-pentanedione. However, unlike the acquisition of diacetyl attraction in lite-1 mutants, 2,3 pentanedione avoidance is *lost*; it is not switched to attraction. Overall, I felt the description of the results and their implications could have been more in-depth. Further, the evidence that LITE-1 is a chemoreceptor itself, rather than acting in some way to shape chemoreceptor responses (via light or otherwise), remains unclear, as conceded by the authors.

      Strengths:

      Overall, the study follows up on an interesting and useful result. The experiments as presented are generally well-conceived and performed. The authors use a variety of behavioral and imaging approaches to test how LITE-1 mediates diacetyl avoidance.

      Weaknesses:

      The study is missing experiments needed to resolve whether LITE-1 is doing what they propose. The evidence that LITE-1 is a diacetyl receptor is lacking support since lite-1 mutants have their avoidance and calcium responses flipped, which would not be expected if it were acting solely as an avoidance receptor. Presumably, the authors are concluding that the attractive response that is left in the lite-1 mutant is mediated by ODR-10, but that experiment is not shown. Similarly, the authors concede that "the use of lite-1 point mutants that affect specific LITE-1 function, such as light sensing, channel gating, or binding pocket, could further elucidate LITE-1 mechanisms." This reviewer agrees, and such experiments designed to localize diacetyl binding site(s) would be necessary to conclude definitively that LITE-1 is a diacetyl receptor. The body wall muscle assay used or some other heterologous experimental system could work for such a structure-function analysis. A concern is whether the extensive number of LITE-1 point mutants described in the literature affect cell surface expression vs. receptor function, which might complicate the interpretation of a result showing loss of diacetyl responses.

    1. Reviewer #1 (Public review):

      The axonal membrane periodic skeleton (MPS) comprises axially aligned tetramers of α and β spectrins that are attached to evenly distributed radial F-actin rings, which maintain a<br /> typical spacing of 180 - 190 nm. The exact molecular mechanisms underlying the early organization have been unclear. The focus of this study is on those mechanisms.

      This is a comprehensive and professionally carried out study. It brings convincing evidence that intact actin and microtubules are required for normal development of MPS and that the actin-binding and lipid-interacting domains of βII-spectrin are critical for its subplasmalemmal confinement and, subsequently, MPS maturation. However, whilst the study does bring new insights, we are still missing the overall understanding of how everything comes together.

      The study describes, using spectrin mutations, that the membrane and actin binding of spectrin are required for the proper organization of MPS. However, it is unclear how everything could come together mechanistically.

      The authors follow how the MPS is organized by looking at spectrin. Latrunculin affects actin polymerization, as well as CK666 and formin inhibition, but it remains unclear which actin structures are affected. The same is true for microtubules; while they are affected, we don't know how they are affected.

    1. Reviewer #1 (Public review):

      Summary:

      This study delineates a highly specific role for the pPVT in unconditioned defensive responses. The authors use a novel, combined SEFL and SEFR paradigm to test both conditioned and unconditioned responses in the same animal. Next, a c-fos mapping experiment showed enhanced PVT activity in the stress group when exposed to the novel tone. No other regions showed differences. Fiber photometry measurements in pPVT showed enhancement in response to the novel tone in the stressed but not non-stressed groups. Importantly, there were also no effects when calcium measurements were taken during conditioning. Using DREADDS to bidirectionally manipulate global pPVT activity, inhibition of the PVT reduced tone freezing in stressed mice while stimulation increased tone freezing in non-stressed mice.

      Strengths:

      A major strength of this research is the use of a multi-dimensional behavioral assay that delineates behavior related to both learned and non-learned defensive responses. The research also incorporates high-resolution approaches to measure neuronal activity and provide causal evidence for a role for PVT in a very narrow band of defensive behavior. The data are compelling, and the manuscript is well-written overall.

      Weaknesses:

      Figure 1 shows a small, but looks to be, statistically significant, increase in freezing in response to the novel tone in the no-stress group relative to baseline freezing. This observation was also noticed in Figures 2 and 7. The tone presented is relatively high frequency (9 kHz) and high dB (90), making it a high-intensity stimulus. Is it possible that this stimulus is acting as an unconditioned stimulus? In addition, in the final experiment, the tone intensity was increased to 115 dB, and the freezing % in the non-stressed group was nearly identical (~20%) to the non-stressed groups in Figures 1-2 and Figure 7. It seems this manipulation was meant as a startle assay (Pantoni et al., 2020). Because the auditory perception of mice is better at high frequencies (best at ~16 kHz), would the effect seen be evident at a lower dB (50-55) at 9 kHz? If the tone was indeed perceived as "neutral," there should be no freezing in response to the tone. This complicates the interpretation of the results somewhat because while the authors do admit the stimulus is loud, would a less loud stimulus result in the same effect? Could the interaction observed in this set of studies require not a novel tone, but rather a high-intensity tone that elicits an unconditioned response? Along these same lines, it appears there may be an elevation in c-fos in the PVT in the non-stress tone test group versus the no-stress home cage control, and overall it appears that tone increases c-fos relative to homecage. Could PVT be sensitive to the tone outside of stress? Would there be the same results with a less intense stimulus? I would also be curious to know what mice in the non-stressed group were doing upon presentation of the tone besides freezing. Were any startle or orienting responses noticed?

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates how mice make defensive decisions when exposed to visual threats and how those decisions are influenced by reward value and social hierarchy. Using a naturalistic foraging setup and looming stimuli, the authors show that higher threat leads to faster escape, while lower threat allows mice to weigh reward value. Dominant mice behave more cautiously, showing higher vigilance. The behavioral findings are further supported by a computational model aimed at capturing how different factors shape decisions.

      Strengths:

      (1) The behavioral paradigm is well-designed and ethologically relevant, capturing instinctive responses in a controlled setting.

      (2) The paper addresses an important question: how defensive behaviors are influenced by social and value-based factors.

      (3) The classification of behavioral responses using machine learning is a solid methodological choice that improves reproducibility.

      Weaknesses:

      (1) Key parts of the methods are hard to follow, especially how trials are selected and whether learning across trials is fully controlled for. For example, it is unclear whether animals are in the nest during the looming stimulus presentations. The main text and methods should clarify whether multiple mice are in the nest simultaneously and whether only one mouse is in the arena during looming exposure. From the description, it seems that all mice may be freely exploring during some phases, but only one is allowed in the arena at a time during stimulus presentation. This point is important for understanding the social context and potential interactions, and should be clearly explained in both the main text and methods.

      (2) It is often unclear whether the data shown (especially in the main summary figures) come from the first trial or are averages across several exposures. When is the cut-off for trials of each animal? How do we know how many trial presentations were considered, and how learning at different rates between individuals is taken into account when plotting all animals together? This is important because the looming stimulus is learned to be harmless very quickly, so the trial number strongly affects interpretation.

      (3) The reward-related effects are difficult to interpret without a clearer separation of learning vs first responses.

      (4) The model reproduces observed patterns but adds limited explanatory or predictive power. It does not integrate major findings like social hierarchy. Its impact would be greatly improved if the authors used it to predict outcomes under novel or intermediate conditions.

      (5) Some conclusions (e.g., about vigilance increasing with reward) are counterintuitive and need stronger support or alternative explanations. Regarding the interpretation of social differences in area coverage, it's also possible that the observed behavioral differences reflect access to the nesting space. Dominant mice may control the nest, forcing subordinates to remain in the open arena even during or after looming stimuli. In this case, subordinates may be choosing between the threat of the dominant mouse and the external visual threat. The current data do not distinguish between these possibilities, and the authors do not provide evidence to support one interpretation over the other. Including this alternative explanation or providing data that addresses it would strengthen the conclusions.

      (6) While potential neural circuits are mentioned in the discussion, an earlier introduction of candidate brain regions and their relevance to threat and value processing would help ground the study in existing systems neuroscience.

      (7) Some figures are difficult to interpret without clearer trial/mouse labeling, and a few claims in the text are stronger than what the data fully support. Figure 3H is done for low contrast, but the interesting findings will be to do this experiment with high contrast. Figure 4H - I don't understand this part. If the amount of time in the center after the loom changes for subordinate mice, how does this lead to the conclusion that they spend most of their time in the reward zone?. Figure 3A - The example shown does not seem representative of the claim that high contrast stimuli are more likely to trigger escape. In particular, the 10% sucrose condition appears to show more arena visits under low contrast than high contrast, which seems to contradict that interpretation. Also, the plot currently uses trials on the Y-axis, but it would be more informative to show one line per animal, using only the first trial for each. This would help separate initial threat responses from learning effects and clarify individual variability.

      (8) The analysis does not explore individual variability in behavior, which could be an important source of structure in the data. Without this, it is difficult to know whether social hierarchy alone explains behavioral differences or if other stable traits (e.g., anxiety level, prior experiences) also contribute.

      (9) The study shows robust looming responses in group-housed animals, which contrasts with other studies that often require single housing to elicit reliable defensive responses. It would be valuable for the authors to discuss why their results differ in this regard and whether housing conditions might interact with social rank or habituation.

    1. Reviewer #1 (Public review):

      Summary:

      The authors tested two competing mechanisms of expectation: (1) a sharpening model that suppresses unexpected information via center-surround inhibition; (2) a cancelation model that predicts a monotonic gradient response profile. Using two psychophysical experiments manipulating feature space distance between expected and unexpected stimuli, the results consistently supported the sharpening model. Computational modeling further showed that expectation effects were explained by either sharpened tuning curves or tuning shifts. Finally, convolutional neural network simulations revealed that feedback connections critically mediate the observed center-surround inhibition.

      Strengths:

      The manuscript provides compelling and convergent evidence from both psychophysical experiments and computational modeling to robustly support the sharpening model of expectation, demonstrating clear center-surround inhibition of unexpected information.

      Weaknesses:

      The manuscript could directly validate the experimental manipulations and address how these results reconcile with existing literature on expectation effects.

    1. Reviewer #1 (Public review):

      This is a theoretical study addressing the problem of constructing integrator networks for which the activity state and integrated variables display non-trivial topologies. Historically, researchers in theoretical neuroscience have focused on models with simple underlying geometries (e.g., circle, torus), for which analytical models could be more easily constructed. How these models can be generalised to complex scenarios is, however, a non-trivial question. This is furthermore a time-sensitive issue, as population recordings from the brain in complex tasks and environments increasingly require the ability to construct such models.

      I believe the authors do a good job of explaining the challenges related to this problem. They also propose a class of models that, although not fully general, overcome many of these difficulties while appearing solid and well-functioning. This requires some non-trivial mathematics, which is nevertheless conveyed in a reasonably accessible form. The manuscript is well written, and both the methodology and the code are well documented.

      That said, I believe the manuscript has two major limitations, which could be addressed in a revision. First, some of the assumptions underlying this class of models are somewhat restrictive but are not sufficiently discussed. Second, although the stated goal of the manuscript is to provide practical recipes for constructing integrator networks, the methods section is not very explicit about the specific steps required for different geometries. I elaborate on these limitations below.


      (1) The authors repeatedly describe MADE as a technique for constructing integrators of specified "topologies and geometries." What do they mean by "geometries"? Intuitively, I would associate geometry with properties beyond topology, such as embedding dimensionality or curvature. However, it is unclear to me to what extent these aspects are explicitly specified or controlled in MADE. It seems that geometry is only indirectly defined via the connectivity kernel, which itself obeys certain constraints (e.g., limited spatial scale; see below). I believe it is important for the authors to clarify what they mean by "geometry." They should also specify which aspects are under their control, and whether, in fact, all geometries can be realized.


      (2) The authors make two key assumptions: that connectivity is purely inhibitory and that the connectivity kernel has a small spatial scale. They state that under these conditions, the homogeneous fixed point becomes unstable, leading to a non-periodic state. However, it seems to me that they do not demonstrate that this emergent state is necessarily a bump localized in all manifold dimensions -- although this is assumed throughout the manuscript. Are other solutions possible or observed? For example, might the network converge to states that are localized in one dimension but extended in another, yielding e.g., stripe-like activity in the plane rather than bumps? In other words, does the proposed recipe guarantee convergence to bumps? This is a critical point and should be clarified.


      (3) Related to the question above: What are the failure modes when these two assumptions are violated? Does the network always exhibit runaway activity (as suggested in the text), or can other types of solutions emerge? It would be useful if the authors could briefly discuss this.


      (4) Again, related to the question above: can this formalism be extended to activity profiles beyond bumps? For example, periodic fields as seen in grid cells, or irregular fields as observed in many biological datasets -- particularly in naturalistic environments? These activity profiles are of key importance to neuroscientists, so I believe this is an important point that should at least be addressed in the Discussion. Can MADE be naturally extended to these scenarios? What are the challenges involved?


      (5) Line 119: "Since σ is the only spatial scale being introduced in the dynamics, we qualitatively expect that a localized bump state within the ball will have a spatial scale of O(σ)."
Is this statement always true? I understand that the spatial scale of the synaptic inputs exchanged via recurrent interactions (i.e., the argument of the function f in Equation 1) is characterised by the spatial scale σ. But the non-linear function f could modify that spatial scale -- for example, by "cutting" the bump close to its tip. Where am I wrong? Could the authors clarify?


      (6) The authors provide beautiful intuition about the problem of constructing integrators on non-trivial topologies and propose a mathematically grounded solution using Killing vectors. Of course, solutions based on Killing vectors are more complex than those with constant offsets, which raises the question: Is the brain capable of learning and handling such complex structures? Perhaps the authors could speculate in the Discussion about the biological plausibility of these mechanisms.


      (7) A great merit of this paper is that it provides mathematical tools for neuroscience researchers to build integrators on non-trivial geometries. I found that, although all the necessary information is present in the Methods, the authors could improve the presentation by schematizing the steps required to build each type of model. It would be extremely useful if, for each considered geometry, the authors provided a short list of required components: the manifold P, the choice of distance, and the connectivity offsets defined by the Killing vectors. Currently, this information is presented, but scattered (not grouped by geometry).

    1. Reviewer #1 (Public review):

      Summary of the paper:

      The paper presents an elegant task designed to investigate humans' ability to generalize knowledge of learned graph structures to new experiences that share the same structure but are built from different stimuli. Using behavior and MEG recordings, the authors test evidence for neural representation and application of structural knowledge.

      Review overview:

      While the task design is elegant, it isn't clear to me that the data support all the claims made in the paper. I have detailed my concerns below.

      Major concerns

      (1) The authors claim that their findings reveal "striking learning and generalization abilities based on factorization of complex experiences into underlying structural elements, parsing these into distinct subprocesses derived from past experience, and forming a representation of the dynamical roles these features play within distinct subprocesses." And "neural dynamics that support compositional generalisation, consistent with a structural scaffolding mechanism that facilitates efficient adaption within new contexts".

      a. First, terms used in these example quotes (but also throughout the paper) do not seem to be well supported by data or the task design. For example, terms such as 'compositional generalisation' and 'building blocks' have important relevance in other papers by (some of) the same authors (e.g., Schwartenbeck et al., 2023), but in the context of this experiment, what is 'composition'? Can the authors demonstrate clear behavioural or neural evidence for compositional use of multiple graph structures, or alternatively remove reference to these terms? In the current paper, it seems to me that the authors are investigating abstract knowledge for singular graph structures (together with the influence of prior learning), as opposed to knowledge for the compound, more complex graph formed from the product of two simpler graphs.

      b. While I would like to be convinced that this data provides evidence for the transfer of abstract, structural knowledge, I think the authors either need to provide more convincing evidence or tone down their claims.

      Specifically:

      (i) Can the increase in neural similarity between stimuli mapping to the same abstract structural sub-process not be explained by temporal proximity in experiencing the transitions (e.g., Cai et al., 2016)? Indeed, behavior seems to be dominated by direct experience of the structure as opposed to applying abstract knowledge of equivalent structures (and, as a result, there is little difference in behavioural performance between experience and inference probes).

      (ii) The strongest evidence for neural representation of abstract task structures seems to be the increase in similarity by transition type. But this common code for 'transition type' is only observed for 6-bridge graphs and only for experienced transitions. There was no significant effect in inference probes. Therefore, there doesn't seem to be evidence for the application of a knowledge scaffold to facilitate transfer learning. Instead, the data reflects learning from direct experience and not generalisation.

      (iii) The authors frequently suggest that they are providing insight into temporal dynamics, but there is no mention of particular oscillations or particular temporal sequences of neural representation that support task performance.

      (2) Regardless of point (b), can the authors provide more convincing evidence for a graph structure being represented per se (regardless of whether this representation is directly experienced or inferred)? From Figure 3C, it seems that the model RDM doesn't account for relative distance within the graph. Do they see evidence for distance coding? Can they reconstruct the graph from representational patterns using MDS?

      (3) In general, the figures are not very clear, and the outcome from statistical tests is not graphically shown. The paper would be easier to digest if, for example, Figures 1-2 were made clearer and statistical significance relative to chance were indicated throughout. To give two examples: (i) Figure 1 should clearly indicate what is meant by observed and held-out transitions and whether it is just the transition or also the compound that is new to the participant. (ii) Figure 2D-E could be shown with relevant comparisons and simpler statistical comparisons. Currently, it is hard to follow without carefully reading the legend.

    1. Joint Public Review:

      Summary:

      This manuscript couples a 32-parameter model with simulation-based inference (SBI) to identify parameter changes that can compensate for three canonical hyperexcitability perturbations (interneuron loss, recurrent-excitatory sprouting, and intrinsic depolarisation). The study demonstrates a careful implementation of SBI and offers a practical ranking of "compensatory levers" that could, in principle, guide therapeutic strategies for epilepsy and related network disorders.

      Strengths:

      (1) By analysing three mechanistically distinct hyper-excitable regimes within the same modelling and inference framework, the work reveals how different perturbations require different compensatory interventions.

      (2) The authors adopt posterior estimation to systematically rank the efficiency of different mechanisms in balancing hyperexcitability.

      (3) Code and data are available.

      Weaknesses:

      (1) A highly dense presentation of the simulated models and undefined symbols makes it hard for readers outside the modelling community to follow the biological message. An illustration of the models, accompanied by some explanations and references to the main equations and parameters discussed in this paper, would make the first section much more straightforward.

      (2) This methodology appears to be a brute-force approach, requiring millions of simulations to tune 32 parameters in a network of 500-700 cells. It isn't scalable. Moreover, the authors did not use cross-validation, which, with a relatively low increase in computational cost, would provide a quantitative measure as to how well it generalizes; this combination raises doubts about both scalability and reliability.

      (3) Several parameters remain so broadly distributed after fitting that the model cannot say with confidence which specific changes matter. Therefore, presenting them as "compensatory levers" is somewhat questionable.

      (4) Every conclusion is drawn from simulated data; without testing the predictions on recordings, we have no evidence that the proposed interventions would work in real neural tissue. Because today we cannot diagnose which of the three modelled pathological regimes is actually present in vivo, the paper's recommendations cannot yet be used to guide therapy.

    1. Reviewer #1 (Public review):

      Summary:

      Measurement of BOLD MR imaging has regularly found regions of the brain that show reliable suppression of BOLD responses during specific experimental testing conditions. These observations are to some degree unexplained, in comparison with more usual association between activation of the BOLD response and excitatory activation of the neurons (most tightly linked to synaptic activity) in the same brain location. This paper finds two patients whose brains were tested with both non-invasive functional MRI and with invasive insertion of electrodes, which allowed the direct recording of neuronal activity. The electrode insertions were made within the fusiform gyrus, which is known to process information abouit faces, in a clinical search for the sites of intractable epilepsy in each patient. The simple observation is that the electrode location in one patient showed activation of the BOLD response and activation of neuronal firing in response to face stimuli. This is the classical association. The other patient showed an informative and different pattern of responses. In this person, the electrode location showed a suppression of the BOLD response to face stimuli and, most interestingly, an associated suppression of neuronal activity at the electrode site.

      Strengths:

      Whilst these results are not by themselves definitive, they add an important piece of evidence to a long-standing discussion about the origins of the BOLD response. The observation of decreased neuronal activation associated with negative BOLD is interesting because, at various times, exactly the opposite association has been predicted. It has been previously argued that if synaptic mechanisms of neuronal inhibition are responsible for the suppression of neuronal firing, then it would be reasonable

      Weaknesses:

      The chief weakness of the paper is that the results may be unique in a slightly awkward way. The observation of positive BOLD and neuronal activation is made at one brain site in one patient, while the complementary observation of negative BOLD and neuronal suppression actually derives from the other patient. Showing both effects in both patients would make a much stronger paper.

      Comments on revisions:

      The material on lines 165-175 should not be left hidden away in the Methods section. This should be highlighted in the Discussion as a limitation of the current study and an issue that could be improved upon in future studies.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Diana et al. present a Monte Carlo-based method to perform spike inference from calcium imaging data. A particular strength of their approach is that they can estimate not only averages but also uncertainties of the modeled process. The authors focus on the quantification of spike time uncertainties in simulated data and in data recorded with high sampling rate in cebellar slices with GCaMP8f, and they demonstrate the high temporal precision that can be achieved with their method to estimate spike timing.

      Strengths:

      - The author provide a solid ground work for sequential Monte Carlo-based spike inference, which extends previous work of Pnevmatikakis et al., Greenberg et al. and others.

      - The integration of two states (silence vs. burst firing) seems to improve the performance of the model.

      - The acquisition of a GCaMP8f dataset in cerebellum is useful and helps make the point that high spike time inference precision is possible under certain conditions.

      Weaknesses:

      - Although the algorithm is compared (in the revised manuscript) to other models to infer individual spikes (e.g., MLSpike), these comparisons could be more comprehensive. Future work that benchmarks this and other algorithms under varying conditions (e.g., noise levels, temporal resolution, calcium indicators) would help assess and confirm robustness and useability of this algorithm.

      - The mathematical complexity underlying the method may pose challenges for experimentalist who may want to use the methods for their analyses. While this is not a weakness of the approach itself, this highlights the need for further validation and benchmarking in future work, to build user confidence.

    1. Joint Public Review:

      This manuscript investigates a mechanism between the histone reader protein YEATS2 and the metabolic enzyme GCDH, particularly in regulating epithelial-to-mesenchymal transition (EMT) in head and neck cancer (HNC).

      The authors addressed most of the concerns of the reviewers. They have:

      (1) Increased the patient cohort size from 10 to 23 for evaluating the levels of YEATS2 and H3K27cr.

      (2) Checked the expression of major genes involved in the YEATS2-mediated histone crotonylation axis (YEATS2, GCDH, ECHS1, Twist1, along with H3K27cr levels) in head and neck cancer tissues using immunohistochemistry.

      (3) Analyzed publicly available head and neck cancer patient datasets, which revealed a significant positive correlation between YEATS2 expression and increasing tumor grade.

      (4) Performed GSEA on TCGA HNC patient samples stratified by high versus low YEATS2 expression. This analysis robustly demonstrated a positive enrichment of metastasis-related gene sets in the high YEATS2 expression group, compared to the low YEATS2 group.

      (5) Performed extensive experiments to look into the role of p300 in assisting YEATS2 in regulating promoter histone crotonylation. The p300 was knocked down in BICR10 cells, followed by immunoblotting to assess SPARC protein levels.

      (6) Performed co-immunoprecipitation assays to check for an interaction between endogenous YEATS2 and p300. The results clearly demonstrate the presence of YEATS2 in the p300-immunoprecipitate sample, indicating that YEATS2 and p300 physically interact and likely function together as a complex to drive the expression of target genes like SPARC.

      (7) Performed RNA Polymerase II ChIP-qPCR on the SPARC promoter in YEATS2 knockdown cells.

      (8) To confirm p300's specific role in crotonylation at this locus, they performed H3K27cr ChIP-qPCR after p300 knockdown.

      (9) Performed SP1 knockdown (which reduces YEATS2 expression) followed by ectopic YEATS2 overexpression, and then assessed p300 occupancy and H3K27cr levels on the SPARC promoter.

    1. Joint Public Review:

      Summary:

      In this manuscript, Li and coworkers present experiments generated with human induced pluripotent stem cells (iPSCs) differentiated to astrocytes through a three-step protocol consisting of neural induction/midbrain patterning, switch to expansion of astrocytic progenitors, and terminal differentiation to astroglial cells. They used lineage tracing with a LMX1A-Cre/AAVS1-BFP iPSCs line, where the initial expression of LMX1A and Cre allows the long-lasting expression of BFP, yielding BFP+ and BFP- populations, that were sorted when in the astrocytic progenitor expansion. BFP+ showed significantly higher number of cells positive to NFIA and SOX9 than BFP- cells, at 45 and 98 DIV. However, no significant differences in other markers such as AQP4, EAAT2, GFAP (which show a proportion of less than 10% in all cases) and S100B were found between BFP-positive or -negative, at these differentiation times. Intriguingly, non-patterned astrocytes produced higher proportions of GFAP positive cells than the midbrain-induced and then sorted populations. BFP+ cells have enhanced calcium responses after ATP addition, compared to BFP- cells. Single-cell RNA-seq of early and late cells from BFP- and BFP+ populations were compared to non-patterned astrocytes and neurons differentiated from iPSCs. Bioinformatic analyses of the transcriptomes resulted in 9 astrocyte clusters, 2 precursor clusters and one neuronal cluster. DEG analysis between BFP+ and BFP- populations showed some genes enriched in each population, which were subject to GO analysis, resulting in biological processes that are different for BFP+ or BFP- cells.

      Strengths:

      The manuscript tries to tackle an important aspect in Neuroscience, namely the importance of patterning in astrocytes. Regionalization is crucial for neuronal differentiation and the presented experiments constitute a trackable system to analyze both transcriptional identities and functionality on astrocytes.

      Weaknesses:

      The presented results have several fundamental issues, to be resolved, as listed in the following major points:

      (1) It is very intriguing that GFAP is not expressed in late BFP- nor in BFP+ cultures, when authors designated them as mature astrocytes.<br /> (2) In Fig. 2D, authors need to change the designation "% of positive nuclei".<br /> (3) In Fig. 2E, the text describes a decrease caused by 2APB on the rise elicited by ATP, but the graph shows an increase with ATP+2APB. However, in Fig. 2F, the peak amplitude for BFP+ cells is higher in ATP than in ATP+2APD, which is mentioned in the text, but this is inconsistent with the graph in 2E.<br /> (4) The description of Results in the single-cell section is confusing, particularly in the sorted CD49 and unsorted cultures. Where do these cells come from? Are they BFP-, BFP+, unsorted for BFP, or non-patterned? Which are the "all three astrocyte populations"? A more complete description of the "iPSC-derived neurons" is required in this section to allow the reader to understand the type and maturation stage of neurons, and if they are patterned or not.<br /> (5) A puzzling fact is that both BFP- and BFP- cells have similar levels of LMX1A, as shown in Fig. S6F. How do authors explain this observation?<br /> (6) In Fig. 3B, the non-patterned cells cluster away from the BFP+ and BFP-; on the other hand, early and late BFP- are close and the same is true for early and late BFP+. A possible interpretation of these results is that patterned astrocytes have different paths for differentiation, compared to non-patterned cells. If that can be implied from these data, authors should discuss the alternative ways for astrocytes to differentiate.<br /> (7) Fig. 3D shows that cluster 9 is the only one with detectable and coincident expression of both S100B and GFAP expression. Please discuss why these widely-accepted astrocyte transcripts are not found in the other astrocytes clusters. Also, Sox9 is expressed in neurons, astrocyte precursors and astrocytes. Why is that?<br /> (8) Line 337, Why authors selected a log2 change of 0.25? Typically, 1 or a higher number is used to ensure at least a 2-fold increase, or a 50% decrease. A volcano plot generated by the comparison of BFP+ with BFP- cells would be appropriate. The validation of differences by immunocytochemistry, between BFP+ and BFP-, is inconclusive. The staining is blur in the images presented in Fig. S8C. Quantification of the positive cells, without significant background signal, in both populations is required.<br /> (9) Lines 349-351: BFP+ cells did not show higher levels of transcripts for LMX1A nor FOXA2. This fact jeopardizes the claim that these cells are still patterned. In the same line, there are not significant differences with cortical astrocytes, indicating a wider repertoire of the initially patterned cells, that seems to lose the midbrain phenotype. Furthermore, common DGE shared by BFP- and BFP+ cells when compared to non-patterned cells indicate that after culture, the pre-pattern in BFP+ cells is somehow lost, and coincides with the progression of BFP- cells.<br /> (10) For the GO analyses, How did authors select 1153 genes? The previous section mentioned 287 genes unique for BFP+ cells. The Results section should include a rationale for performing a wider search for the enriched processes.<br /> (11) For Fig. 4C and 4D, both p values and the number of genes should be indicated in the graph. I would advise to select the 10 or 15 most significant categories, these panels are very difficult to read. Whereas the listed processes for BFP+ have a relation to Parkinson disease, the ones detected for BFP- cells are related to extracellular matrix and tissue development. Does it mean that BFP+ cells have impaired formation of this matrix, or defective tissue development? This is in contradiction of enhanced calcium responses of BFP+ cells compared to BFP- cells.<br /> (12) Both the comparison between midbrain and cortical astrocytes in Fig. S8A, and the volcano plot in S8B do not show consistent changes. For example, RCAN2 in Fig. S8A has the same intensity for cortical and midbrain cells, but is marked as an enriched gene in midbrain in the p vs log2FC graph in Fig. S8B.

    1. Reviewer #1 (Public review):

      Mitochondrial staining difference is convincing, but the status of the mitos, fused vs fragmented, elongated vs spherical, does not seem convincing. Given the density of mito staining in CySC, it is difficult to tell what is an elongated or fused mito vs the overlap of several smaller mitos.

      I'm afraid the quantification and conclusions about the gstD1 staining in CySC vs. GSCs is just not convincing-I cannot see how they were able to distinguish the relevant signals to quantify once cell type vs the other.

      The overall increase in gstD1 staining with the CySC SOD KD looks nice, but again I can't distinguish different cel types. This experiment would have been more convincing if the SOD KD was mosaic, so that individual samples would show changes in only some of the cells. Still, it seems that KD of SOD in the CySC does have an effect on the germline, which is interesting.

      The effect of SOD KD on the number of less differentiated somatic cells seems clear. However, the effect on the germline is less clear and is somewhat confusing. Normally, a tumor of CySC or less differentiated Cyst cells, such as with activated JAK/STAT, also leads to a large increase in undifferentiated germ cells, not a decrease in germline as they conclude they observe here. The images do not appear to show reduced number of GSCs, but if they counted GSCs at the niche, then that is the correct way to do it, but its odd that they chose images that do not show the phenotype. In addition, lower number of GSCs could also be caused by "too many CySCs" which can kick out GSCs from the niche, rather than any affect on GSC redox state. Further, their conclusion of reduced germline overall, e.g. by vasa staining, does not appear to be true in the images they present and their indication that lower vasa equals fewer GSCs is invalid since all the early germline expresses Vasa.

      The effect of somatic SOD KD is perhaps most striking in the observation of Eya+ cyst cells closer to the niche. The combination of increased Zfh1+ cells with many also being Eya+ demonstrates a strong effect on cyst cell differentiation, but one that is also confusing because they observe increases in both early cyst cells (Zfh1+) as well as late cyst cells (Eya+) or perhaps just an increase in the Zfh1/Eya double-positive state that is not normally common. The effects on the RTK and Hh pathways may also reflect this disturbed state of the Cyst cells.

      However, the effect on germline differentiation is less clear-the images shown do not really demonstrate any change in BAM expression that I can tell, which is even more confusing given the clear effect on cyst cell differentiation.

      For the last figure, any effect of SOD OE in the germline on the germline itself is apparently very subtle and is within the range observed between different "wt" genetic backgrounds.

    1. Reviewer #1 (Public review):

      Liver cancer shows a high incidence in males than females with incompletely understood causes. This study utilized a mouse model that lacks the bile acid feedback mechanisms (FXR/SHP DKO mice) to study how dysregulation of bile acid homeostasis and a high circulating bile acid may underlie the gender-dependent prevalence and prognosis of HCC. By transcriptomics analysis comparing male and female mice, unique sets of gene signatures were identified and correlated with HCC outcomes in human patients. The study showed that ovariectomy procedure increased HCC incidence in female FXR/SHP DKO mice that were otherwise resistant to age-dependent HCC development, and that removing bile acids by blocking intestine bile acid absorption reduced HCC progression in FXR/SHP DKO mice. Based on these findings, the authors suggest that gender-dependent bile acid metabolism may play a role in the male-dominant HCC incidence, and that reducing bile acid level and signaling may be beneficial in HCC treatment. This study include many strengths: 1. Chronic liver diseases often proceed the development of liver and bile duct cancer. Advanced chronic liver diseases are often associated with dysregulation of bile acid homeostasis and cholestasis. This study takes advantage of a unique FXR/SHP DKO model that develop high organ bile acid exposure and spontaneous age-dependent HCC development in males but not females to identify unique HCC-associated gene signatures. The study showed that the unique gene signature in female DKO mice that had lower HCC incidence also correlated with lower grade HCC and better survival in human HCC patients. 2. The study also suggests that differentially regulated bile acid signaling or gender-dependent response to altered bile acids may contribute to gender-dependent susceptibility to HCC development and/or progression. 3. The sex-dependent differences in bile acid-mediated pathology clearly exist but are still not fully understood at the mechanistic level. Female mice have been shown to be more sensitive to bile acid toxicity in a few cholestasis models, while this study showed a male dominance of bile acid promotion of HCC. This study used ovariectomy to demonstrate that female hormones are possible underlying factors. Future studies are needed to understand the interaction of sex hormones, bile acids, and chronic liver diseases and cancer.

    1. Reviewer #4 (Public review):

      The paper by Xie et al. investigates the micro-evolutionary dynamics of sex-biased gene expression across somatic and gonadal tissues in four mouse taxa, with comparative analyses in humans. The study introduces a new metric, the Sex-Bias Index (SBI), to quantify individual-level variation in sex-biased gene expression, and explores the evolutionary turnover, variance, and adaptive evolution of these genes.

      These strengths of the paper are not in dispute:

      Novelty: The study is among the first to systematically analyze sex-biased gene expression at a micro-evolutionary scale in outbred animals, using closely related mouse taxa. This contrasts with most previous work, which focused on macro-evolutionary comparisons between distant species.

      Controlled Sampling: The use of age-matched, outbred individuals raised under standardized conditions minimizes environmental confounders, allowing for robust within- and between-taxon comparisons.

      Somatic vs. Gonadal Focus: Unlike many earlier studies that emphasized gonadal tissues, this work provides a detailed analysis of somatic organs, revealing rapid evolutionary turnover and mosaicism in sex-biased gene expression.

      Sex-Bias Index (SBI): The SBI offers a cumulative, individual-level measure of sex-biased gene expression, facilitating visualization of variance and overlap between sexes within tissues. While one can argue about whether a new metric is necessary (as the authors argue), the combination of fold-change cutoffs, non-parametric Wilcoxon tests, and FDR correction reduces false positives, addressing concerns raised in the field about inflated detection of sex-biased genes.

      Evolutionary implications: The study demonstrates that sex-biased gene expression in somatic tissues evolves more rapidly than in gonads, and that this turnover is often accompanied by signatures of adaptive protein evolution. The lack of correlation in SBI across tissues within individuals supports a mosaic model of sex-biased gene expression, challenging binary models of sexual differentiation.

      The weaknesses are already listed by previous rounds of review but I will add one more: in an attempt to be comprehensive, the writing is quite dry and the main conclusions sort of get hidden within the less important observations.

      Since the debate is mostly about what words to use to describe the importance and the strength of evidence, I thought it would be useful to directly compare this study to other studies that address the same topic:

      Naqvi et al. Science 2019 (David Page lab): Conservation, acquisition, and functional impact of sex-biased gene expression in mammals

      Oliva et al. Science 2020 (Stranger lab): The impact of sex on gene expression across human tissues

      Rodríguez-Montes et al. Science 2023 (Kaessman, Cardoso-Moreira labs)

      Let's start with the fact that all three peer studies have had a major impact. Second, although Naqvi et al. (2019) and Oliva et al. (2020) provided foundational cross-species and cross-tissue analyses of sex-biased gene expression, but did not address micro-evolutionary turnover or individual-level variance. Third, Rodríguez-Montes et al. (2023) focused on developmental and evolutionary patterns of sex-biased expression, but at a broader phylogenetic scale and without the individual-level or module-based analyses presented here. None of the peer studies addressed the possibility of mosaicism within individuals, none of them addressed the relations between expression bias and adaptive evolution. So the comparison is really a bit of an apples to oranges comparison: the peer studies are about patterns in deep phylogeny, whereas the present study is an amazing (to me) analysis of inter-individual mosaicism, which is at the heart of this kind of variation, which would totally be missed or worse misinterpreted in deep phylogenetic analyses. Having said that, in my subjective opinion, all three related papers are better written than the present one, but to me there is no question this belongs in the same pedestal as all of them.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the roles of the insulin receptor and the insulin growth factor receptor were investigated in podocytes. Mice in which both receptors were deleted developed glomerular dysfunction and developed proteinuria and glomerulrosclerosis over several months. Because of concerns about incomplete KO, the authors generated podocyte cell lines where both receptors were deleted. Loss of both receptors was highly deleterious with greater than 50% cell death. To elucidate the mechanism, the authors performed global proteomics and find that spliceosome proteins are down-regulated. They confirm this by using long-range sequencing. These results suggest a novel role for these pathways in podocytes.

      This is primarily a descriptive study. The mechanism of how insulin and IGF1 signaling are linked to the spliceosome is not addressed and the phenotype of the mice is only superficially explored. The main issues are that the completeness of the mouse KO is never assessed nor is the completeness of the KO in cell lines. The absence of this data is a significant weakness. The mouse experiments would be improved if the serum creatinines were measured to provide some idea about the severity of the kidney injury. An attempt to rescue the phenotype by overexpression of SF3B4 would also be useful. If this didn't rescue the phenotype, an explanation in the text would suffice. As insulin and IGF are regulators of metabolism, some assessment of metabolic parameters would be an optional add-on. Lastly, in the cell line experiments, the authors should discuss the caveats associated with studying the 50% of the cells that survive vs the ones that died.

      Significance:

      With the GLP1 agonists providing renal protection, there is great interest in understanding the role of insulin and other incretins in kidney cell biology. It is already known that Insulin and IGFR signaling play important roles in other cells of the kidney, therefore, there is great interest in understanding these pathways in podocytes. The major advance is that these two pathways appear to have a role in RNA metabolism, the major limitations are the lack of information regarding the completeness of the KO's. If, for example, they can determine that in the mice, the KO is complete, that the GFR is relatively normal, then the phenotype they describe is relatively mild.

      Comments on revision plan:

      I agree with the suggested experiments especially, the experiments to examine whether insulin/IGF1 signaling have effects on splicing proteins. An alternative experiment would be to ask whether rescue of IR or IGF1R would ameliorate the splicing effects.

    1. Reviewer #1 (Public review):

      This study by Gangadharan and colleagues provides significant progress towards a quantitative biochemical mechanism for Stu2 polymerase activity. A key conceptual advance is the novel application of an enzyme-like model, initially developed for the actin polymerase Ena/VASP, to Stu2.

      New refined affinity measurements for a Stu2 TOG domain using Bio-layer interferometry show more than an order of magnitude higher affinity of TOG domains to tubulin compared to previously published reports.

      The findings reinforce the "concentrating reactants" or, more specifically, for TOG-domain proteins, the "tubulin-shuttling antenna" model, compared to the "polarized unfurling" model, a more speculative structural hypothesis.

      The manuscript builds upon a series of previous manuscripts that showcase the profound intellectual engagement with microtubule polymerization mechanisms by TOG-domain proteins from the Rice lab, a thought leader in microtubule polymerization for over a decade.

      Minor remarks:

      (1) A major new experimental finding of this paper is the affinity of TOG domains, which is more than an order of magnitude lower (10 nM) than previous measurements from the same lab (~200 nM). The authors attribute this change to ionic strength differences between buffer conditions, citing the lab's previous work (Ayaz et al., 2014). This argument left me contemplating what the buffer conditions are in both experiments, and I wonder if other readers would feel the same. After going down the rabbit hole, I believe the difference in ionic strength is ~2.3 fold, and at least on the back of my envelope, this works out beautifully with the measured differences in affinities. A short version of this argument may strengthen the manuscript.

      (2) I am wondering if there may be an alternative explanation to tubulin binding by TOG being the kinetically rate-limiting step for polymerase function:

      TOG + Tubulin ⇌ TOG:Tubulin (fast binding rate, high-affinity binding)<br /> TOG:Tubulin + MT_end → TOG:MT (tubulin is incorporated into MT, fast transfer rate)<br /> The binding rate is 3/s, and the transfer rate is 5/s.

      I was wondering if the following step should be considered, which involves a conformational change of tubulin (e.g., straightening) TOG:MT → TOG + MT (rate-limiting straightening and unbinding of TOG from the lattice).

      Presumably, the affinity of TOGs for straight tubulin is practically zero for the purpose of this discussion, as there is no lattice binding, which means unbinding is likely very rapid; however, straightening may be the rate-limiting factor here.

      In theory, straightening should also be rapid; however, we lack measurements of how fast or slow this step occurs within the context of a TOG domain, which presumably skews the process towards curved tubulin.

      A hypothetical Stu2, when bound to the microtubule end and with the TOG domain not disengaged from tubulin, would not permit the processivity of that molecule or the binding of a new molecule.<br /> To emphasize the importance of unbinding, when it is not efficient, as reported for the T238 mutant that results in Stu2 lattice binding (Geyer et al., 2018), the polymerase becomes inefficient.

    1. Reviewer #1 (Public review):

      Summary:

      This study on potassium ion transport by the protein complex KdpFABC from E. coli reveals a 2.1 Å cryo-EM structure of the nanodisc-embedded transporter under turnover conditions. The results confirm that K+ ions pass through a previously identified tunnel that connects the channel-like subunit with the P-type ATPase-type subunit.

      Strengths:

      The excellent resolution of the structure and the thorough analysis of mutants using ATPase and ion transport measurements help to strengthen new and previous interpretations. The evidence supporting the conclusions is solid, including biochemical assays and analysis of mutants. The work will be of interest to the membrane transporter and channel communities and to microbiologists interested in osmoregulation and potassium homeostasis.

      Weaknesses:

      There is insufficient credit and citation of previous work.

    1. Reviewer #1 (Public review):

      In this study, Ma et al. aimed to determine previously uncharacterized contributions of tissue autofluorescence, detector afterpulse, and background noise on fluorescence lifetime measurement interpretations. They introduce a computational framework they named "Fluorescence Lifetime Simulation for Biological Applications (FLiSimBA)" to model experimental limitations in Fluorescence Lifetime Imaging Microscopy (FLIM) and determine parameters for achieving multiplexed imaging of dynamic biosensors using lifetime and intensity. By quantitatively defining sensor photon effects on signal to noise in either fitting or averaging methods of determining lifetime, the authors contradict any claims of FLIM sensor expression insensitivity to fluorescence lifetime and highlight how these artifacts occur differently depending on analysis method. Finally, the authors quantify how statistically meaningful experiments using multiplexed imaging could be achieved.

      A major strength of the study is the effort to present results in a clear and understandable way given that most researcher do not think about these factors on a day-to-day basis. Additionally, the model code is readily available in Matlab and Python, which should allow for open access to a larger community.

      Overall, the authors' achieved their aims of demonstrating how common factors (autofluorescence, background, and sensor expression) will affect lifetime measurements and they present a clear strategy for understanding how sensor expression may confound results if not properly considered. This work should bring to awareness an issue that new users of lifetime biosensors may not be aware of and that experts, while aware, have not quantitatively determine the conditions where these issues arise. This work will also point to future directions for improving experiments using fluorescence lifetime biosensors and the development of new sensors with more favorable properties.

    1. Joint Public Review:

      Summary:

      In this paper the authors examined the effects of strip cropping, a relatively new agricultural technique of alternating crops in small strips of several meters wide, on ground beetle diversity. The results show an increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, unbalanced and taxonomically unspecific yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch. Moreover, after the first round of reviews, the authors have done a great job at rewriting the paper to make it less overstated, more relevant to the data at hand and more solid in the findings. Many of the weaknesses noted in the first review have been dealt with. The overall structure of the paper is good, with a clear introduction, hypotheses, results section and discussion.

    1. Reviewer #1 (Public review):

      Summary:

      The authors report four cryoEM structures (2.99 to 3.65 Å resolution) of the 180 kDa, full-length, glycosylated, soluble Angiotensin-I converting enzyme (sACE) dimer, with two homologous catalytic domains at the N- and C-terminal ends (ACE-N and ACE-C). ACE is a protease capable of effectively degrading Aβ. The four structures are C2 pseudo-symmetric homodimers and provide insight into sACE dimerization. These structures were obtained using discrete classification in cryoSPARC and show different combinations of open, intermediate, and closed states of the catalytic domains, resulting in varying degrees of solvent accessibility to the active sites.

      To deepen the understanding of the gradient of heterogeneity (from closed to open states) observed with discrete classification, the authors performed all-atom MD simulations and continuous conformational analysis of cryo-EM data using cryoSPARC 3DVA, cryoDRGN, and RECOVAR. cryoDRGN and cryoSPARC 3DVA revealed coordinated open-closed transitions across four catalytic domains, whereas RECOVAR revealed independent motion of two ACE-N domains, also observed with cryoSPARC focused classification. The authors suggest that the discrepancy in the results of the different methods for continuous conformational analysis in cryo-EM could results from different approaches used for dimensionality reduction and trajectory generation in these methods.

      Strengths:

      This is an important study that shows, for the first time, the structure and the snapshots of the dynamics of the full-length sACE dimer. Moreover, the study highlights the importance of combining insights from different cryo-EM methods that address questions difficult or impossible to tackle experimentally, while lacking ground truth for validation.

      Weaknesses (from the last round of review):

      The open, closed, and intermediate states of ACE-N and ACE-C in the four cryo-EM structures from discrete classification were designated quantitatively (based on measured atomic distances on the models fitted into cryo-EM maps). Unfortunately, atomic models were not fitted into cryo-EM maps obtained with cryoSPARC 3DVA, cryoDRGN, and RECOVAR, and the open/closed states in these cases were designated based on a qualitative analysis.

    1. Reviewer #1 (Public review):

      Summary:

      In their study, the authors investigated the F. graminearum homologue of the Drosophila Misato-Like Protein DML1 for a function in secondary metabolism and sensitivity to fungicides.

      Strengths:

      Generally, the topic of the study is interesting and timely, and the manuscript is well written, albeit in some cases, details on methods or controls are missing.

      Weaknesses:

      However, a major problem I see is with the core result of the study, the decrease in the DON content associated with the deletion of FgDML1. Although some growth data are shown in Figure 6, indicating a severe growth defect, the DON production presented in Figure 3 is not related to biomass. Also, the method and conditions for measuring DON are not described. Consequently, it could well be concluded that the decreased amount of DON detected is simply due to decreased growth, and the specific DON production of the mutant remains more or less the same.

      To alleviate this concern, it is crucial to show the details on the DON measurement and growth conditions and to relate the biomass formation under the same conditions to the DON amount detected. Only then can a conclusion as to an altered production in the mutant strains be drawn.

    1. Reviewer #1 (Public review):

      Summary:

      The authors make a bold claim that a combination of repetitive transcranial magnetic stimulation (intermittent theta burst-iTBS) and transcranial alternating current stimulation (gamma tACS) causes slight improvements in memory in a face/name/profession task.

      Strengths:

      The idea of stimulating the human brain non-invasively is very attractive because, if it worked, it could lead to a host of interesting applications. The current study aims to evaluate one such exciting application.

      Weaknesses:

      (1) The title refers to the "precuneus-hippocampus" network. A clear definition of what is meant by this terminology is lacking. More importantly, mechanistic evidence that the precuneus and the hippocampus are involved in the potential effects of stimulation remains unconvincing.

      (2) The question of the extent to which the stimulation approach and the stimulation parameters used in these experiments causes specific and functionally relevant neural effects remains open. Invasive recordings that could address this question remain out of the scope of this non-invasive study. The authors conducted scalp EEG experiments in an attempt to address this question using non-invasive methods. However, the results shown in Fig. 3 are unclear. The results are inconsistently reported in units of microvolts squared in some panels (3A, 3B) and in units of microvolts in other panels (3C). Also, there is insufficient consideration of potential contamination by signal components reflecting eye movements, other muscle artifacts, or another volume-conducted signal reflecting aggregate activity inside the brain.

      (3) Figure 3 indicates "Precuneus oscillatory activity ...", but evidence that the activity presented reflects precuneus activity is lacking. The maps shown at the bottom of Figure 3C suggest that the EEG signals recorded with scalp EEG reflect activity generated across a wide spatial range, with a peak encompassing at least tens of centimeters. Thus, evidence that effects specifically reflect precuneus activity, as the paper's title and text throughout the manuscript suggest, is lacking.

      (4) The paper as currently presented (e.g., Figure 3) also lacks rigorous evidence of relevant oscillatory activity. Prior to filtering EEG signals in a particular frequency band, clear evidence of oscillations in the frequency band of interest should be shown (e.g., demonstration of a clear peak that emerges naturally in the frequency range of interest when spectral analysis is applied to "raw" signals). The authors claim that gamma oscillations change because of the stimulation, but a clear peak in the gamma range prior to stimulation is not apparent in the data as currently presented. Thus, the extent to which spectral measurements during stimulation reflect physiological gamma oscillations remains unclear.

      (5) Concerns remain regarding the rigor of statistical analyses in the revised manuscript (see also point 8 below). Figure 3B shows an undefined statistical test with p<0.05. The statistical test that was used is not explained. Also, a description of how corrections for multiple comparisons were made is missing. Figures 3A and 3C are not accompanied by statistics, making the results difficult to interpret. For Figure 4C, a claim was made based on a significant p-value for one statistical test and a non-significant p-value in another test. This is a common statistical mistake (see Figure 1 and accompanying discussion in Makin and Orban de Xivry (2019) Science Forum: Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. eLife 8:e48175).

      (6) In the second question posed in the original review, I highlighted that it was unclear how such stimulation would produce memory enhancement. The authors replied that, in the absence of mechanisms, there are many other studies that suffer from the same problem. This raises the question of placebo effects. The paper does not sufficiently address or discuss the possibility that any potential stimulation effects may reflect placebo effects.

      (7) The third major concern in the original review was the lack of evidence for a mechanism that is specific to the precuneus. Evidence for specific involvement of the precuneus remains lacking in the revised manuscript. The authors state: "the non-invasive stimulation protocol was applied to an individually identified precuneus for each participant". However, the meaning of this statement is unclear. Specifically, it is unclear how the authors know that they are specifically targeting the precuneus. Without directly recording from the precuneus and directly demonstrating effects, which is outside of the scope of the study, specific involvement of the precuneus seems speculative. Also, it does not seem as though a figure was included in the paper to show how the stimulation protocol specifically targets the precuneus. In their response to the original reviews, the authors state that posterior medial parietal areas are the only regions that show significant differences following the stimulation, but they did not cite a specific figure, or statistics reported in the text, that show this. In any event, posterior medial parietal areas encompass a wide area of the brain, so this would still not provide evidence for an effect specifically involving the precuneus.

      (8) Regarding chance levels, it is unfortunate that the authors cannot quantify what chance levels are in the immediate and delayed recall conditions. This makes interpretation of the results challenging. In the immediate and delayed conditions, the authors state that the chance level is 33%. It would be useful to mark this in the figures. If I understand correctly, chance is 33% in Fig. 2A. If this is the case and if I am interpreting the figure correctly:<br /> Gray bars for the sham condition appear to be below chance (~20-25%). Why is this condition associated with an accuracy level that is lower than chance?<br /> Cyan bars and red bars do not appear to be significantly different from chance (i.e., 33%), with red slightly higher than cyan. What statistic was performed to obtain the level of significance indicated in the figure? The highest average value for the red condition appears to be around 35%. More details are needed to fully explain this figure and to support the claims associated with this figure.

      (9) In the revised version of the paper, the authors did not address concerns associated with the block design (please see question 4d in the original review).

      In sum, this study presents an admirable aspirational goal, the notion that a non-invasive stimulation protocol could modulate activity in specific brain regions to enhance memory. However, the evidence presented at the behavioral level and at the mechanistic level (e.g. the putative involvement of specific brain regions) remains unconvincing.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use longitudinal in vivo 1-photon calcium recordings in mouse prefrontal cortex throughout the learning of an odor-guided spatial memory task, with the goal of examining the development of task-related prefrontal representations over the course of learning in different task stages and during sleep sessions. They report replication of their previous results, Muysers et al. 2025, that task and representations in prefrontal cortex arise de novo after learning, comprising of goal selective cells that fire selectively for left or right goals during the spatial working memory component of the task, and generalized task phase selective cells that fire equivalently in the same place irrespective of goal, together comprising task-informative cells. The number of task-informative cells increases over learning, and covariance structure changes resulting in increased sequential activation in the learned condition, but with limited functional relevance to task representation. Finally, the authors report that similar to hippocampal trajectory replay, prefrontal sequences are replayed at reward locations.

      Strengths:

      The major strength of the study is the use of longitudinal recordings, allowing identification of task-related activity in the prefrontal cortex that emerges de novo after learning, and identification of sub-second sequences at reward wells.

      Weaknesses:

      (1) The study mainly replicates the authors' previously reported results about generalized and trajectory-specific coding of task structure by prefrontal neurons, and stable and changing representations over learning (Muysers et al., 2024, PMID: 38459033; Muysers et al., 2025, PMID: 40057953), although there are useful results about changes in goal-selective and task-phase selective cells over learning. There are basic shortcomings in the scientific premise of two new points in this manuscript, that of the contribution of pre-existing spatial representations, and the role of replay sequences in the prefrontal cortex, both of which cannot be adequately tested in this experimental design.

      (2) The study denotes neurons that show precise spatial firing equivalently irrespective of goal, as generalized task representations, and uses this as a means to testing whether pre-existing spatial representations can contribute to task coding and learning. A previous study using this data has already shown that these neurons preferentially emerge during task learning (Muysers et al., 2025, PMID: 40057953). Furthermore, in order to establish generalization for abstract task rules or cognitively flexibility, as motivated in the manuscript, there is a need to show that these neurons "generalize" not just to firing in the same position during learning of a given task, but that they can generalize across similar tasks, e.g., different mazes with similar rules, different rules with similar mazes, new odor-space associations, etc. For an adequate test of pre-existing spatial structure, either a comparison task, as in the examples above, is needed, or at least a control task in which animals can run similar trajectories without the task contingencies. An unambiguous conclusion about pre-existing spatial structure is not possible without these controls.

      (3) The scientific premise for the test of replay sequences is motivated using hippocampal activity in internally guided spatial working memory rule tasks (Fernandez-Ruiz et al., 2019, PMID: 31197012; Kay et al., PMID: 32004462; Tang et al., 2021, PMID: 33683201), and applied here to prefrontal activity in a sensory-cue guided spatial memory task (Muysers et al., 2024, PMID: 38459033; Symanski et al., PMID: 36480255; Taxidis et al, 2020, PMID: 32949502). There are several issues with the conclusion in the manuscript that prefrontal replay sequences are involved in evaluating behavioral outcomes rather than planning future outcomes.

      (4) First, odor sampling in odor-guided memory tasks is an active sensory processing state that leads to beta and other oscillations in olfactory regions, hippocampus, prefrontal cortex, and many other downstream networks, as documented in a vast literature of studies (Martin et al., 2007, PMID: 17699692; Kay, 2014, PMID: 24767485; Martin et al., 2014; Ramirez-Gordillo, 2022, PMID: 36127136; Symanski et al., 2022, PMID: 36480255). This is an active sensory state, not conducive to internal replay sequences, unlike references used in this manuscript to motivate this analysis, which are hippocampal spatial memory studies with internally guided rather than sensory-cue guided decisions, where internal replay is seen during immobility at reward wells. These two states cannot be compared with the expectation of finding similar replay sequences, so it is trivially expected that internal replay sequences will not be seen during odor sampling.

      (5) Second, sequence replay is not the only signature of reactivation. Many studies have quantified prefrontal replay using template matching and reactivation strength metrics that do not involve sequences (Peyrache et al., 2009, PMID: 19483687; Sun et al., 2024, PMID: 38872470). Third, previous studies have explicitly shown that prefrontal activity can be decoded during odor sampling to predict future spatial choices - this uses sensory-driven ensemble activity in prefrontal cortex and not replay, as odor sampling leads to sensory driven processing and recall rather than a reactivation state (Symanski et al., 2022, PMID: 36480255). It is possible that 1-photon recordings do not have the temporal resolution and information about oscillatory activity to enable these kinds of analyses. Therefore, an unambiguous conclusion about the existence and role of prefrontal reactivation is not possible in this experimental and analytical design.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript provides an open-source tool including hardware and software, and a dataset to facilitate and standardize behavioral classification in laboratory mice. The hardware for behavioral phenotyping was extensively tested for safety. The software is GUI-based, facilitating the usage of this tool across the community of investigators who do not have a programming background. The behavioral classification tool is highly accurate, and the authors deposited a large dataset of annotations and pose tracking for many strains of mice. This tool has great potential for behavioral scientists who use mice across many fields; however, there are many missing details that currently limit the impact of this tool and publication.

      Strengths:

      (1) There is software-hardware integration for facilitating cross-lab adaptation of the tool and minimizing the need to annotate new data for behavioral classification.

      (2) Data from many strains of mice were included in the classification and genetic analyses in this manuscript.

      (3) A large dataset was annotated and deposited for the use of the community.

      (4) The GUI-based software tool decreases barriers to usage across users with limited coding experience.

      Weaknesses:

      (1) The authors only report the quality of the classification considering the number of videos used for training, but not considering the number of mice represented or the mouse strain. Therefore, it is unclear if the classification model works equally well in data from all the mouse strains tested, and how many mice are represented in the classifier dataset and validation.

      (2) The GUI requires pose tracking for classification, but the software provided in JABS does not do pose tracking, so users must do pose tracking using a separate tool. Currently, there is no guidance on the pose tracking recommendations and requirements for usage in JABS. The pose tracking quality directly impacts the classification quality, given that it is used for the feature calculation; therefore, this aspect of the data processing should be more carefully considered and described.

      (3) Many statistical and methodological details are not described in the manuscript, limiting the interpretability of the data presented in Figures 4,7-8. There is no clear methods section describing many of the methods used and equations for the metrics used. As an example, there are no details of the CNN used to benchmark the JABS classifier in Figure 4, and no details of the methods used for the metrics reported in Figure 8.

    1. Reviewer #1 (Public review):

      The authors note that very premature infants experience the visual world early and, as a consequence, sustain lasting deficits including compromised motion processing. Here they investigate the effects of early eye opening in ferret, choosing a time point after birth when both retinal waves and light traveling through closed lids drive sensory responses. The laboratory has long experience in quantitative studies of visual response properties across development and this study reflects their expertise.

      The investigators find little or no difference in mean orientation and direction selectivity, or in spatial frequency tuning, as a result of early eye opening but marked differences in temporal frequency tuning. These changes are especially interesting as they relate to deficits seen in prematurely delivered children. Temporal frequency bandwidth for responses evoked from early-opened contralateral eyes were broader than for controls; this is the case for animals in which either one or both eyes were opened prematurely. Further, when only one eye was opened early, responses to low temporal frequencies were relatively stronger.

      The investigators also found changes in firing rate and sign of response to visual stimuli. Premature eye-opening increased spontaneous rates in all test configurations. When only one eye was opened early, firing rates recorded from the ipsilateral cortex were strongly suppressed, with more modest effects in other test cases.

      As the authors' discussion notes, these observations are just a starting point for studies underlying mechanism. The experiments are so difficult to perform and so carefully described that the results will be foundational for future studies of how premature birth influences cortical development.

    1. Joint Public Review:

      Summary:

      This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.

      The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.

      Strengths:

      One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.

    1. Reviewer #1 (Public review):

      Summary:

      Can a plastic RNN serve as a basis function for learning to estimate value. In previous work this was shown to be the case, with a similar architecture to that proposed here. The learning rule in previous work was back-prop with an objective function that was the TD error function (delta) squared. Such a learning rule is non-local as the changes in weights within the RNN, and from inputs to the RNN depends on the weights from the RNN to the output, which estimates value. This is non-local, and in addition, these weights themselves change over learning. The main idea in this paper is to examine if replacing the values of these non-local changing weights, used for credit assignment, with random fixed weights can still produce similar results to those obtained with complete bp. This random feedback approach is motivated by a similar approach used for deep feed-forward neural networks.

      This work shows that this random feedback in credit assignment performs well but is not as well as the precise gradient-based approach. When more constraints due to biological plausibility are imposed performance degrades. These results are consistent with previous results on random feedback.

      Strengths:

      The authors show that random feedback can approximate well a model trained with detailed credit assignment.

      The authors simulate several experiments including some with probabilistic reward schedules and show results similar to those obtained with detailed credit assignments as well as in experiments.

      The paper examines the impact of more biologically realistic learning rules and the results are still quite similar to the detailed back-prop model.

    1. Reviewer #1 (Public Review):

      The authors reported that mutations were identified in the ZC3H11A gene in four adolescents from 1015 high myopia subjects in their myopia cohort. They further generated Zc3h11a knockout mice utilizing the CRISPR/Cas9 technology.

      The main claims are only partially supported. The reviewers still have the concerns of 1) the modes of inheritance for the families need to be shown; 2) the phenotype of heterozygous mutant mice is too weak; 3) the authors still have not addressed the biological question of whether there are fewer bipolar cells or decreased expression of the marker protein. This would involve counting cells, which they have not done. The blots they show do not appear to support their quantifications. Considering the sensitivity of quantifying nearly saturated blots, the authors should show blots that are not exposed to that level of saturation.

    1. Reviewer #1 (Public review):

      Summary:

      This is an interesting follow-up to a paper published in Human Molecular Genetics reporting novel roles in corticogenesis of the Kif7 motor protein that can regulate the activator as well as the repressor functions of the Gli transcription factors in Shh signalling. This new work investigates how a null mutation in the Kif7 gene affects the formation of corticofugal and thalamocortical axon tracts and the migration of cortical interneurons. It demonstrates that Kif7 null mutant embryos present with ventriculomegaly and heterotopias as observed in patients carrying KIF7 mutations. The Kif7 mutation also disrupts the connectivity between cortex and thalamus and leads to an abnormal projection of thalamocortical axons. Moreover, cortical interneurons show migratory defects that are mirrored in cortical slices treated with the Shh inhibitor cyclopamine suggesting that the Kif7 mutation results in a down-regulation of Shh signalling. Interestingly, these defects are much less severe at later stages of corticogenesis.

      Strengths/weaknesses:

      The findings of this manuscript are clearly presented and are based on detailed analyses. Using a compelling set of experiments, especially the live imaging to monitor interneuron migration, the authors convincingly investigate Kif7's roles and their results support their major claims. The migratory defects in interneurons and the potential role of Shh signalling present novel findings and provide some mechanistic insights but rescue experiments would further support Kif7's role in interneuron migration. Similarly, the mechanism underlying the misprojection which has previously been reported in other cilia mutants remains unexplored. Taken together, this manuscript makes novel contributions to our understanding of the role of primary cilia in forebrain development and to the aetiology of the neural symptons in ciliopathy patients.

      Comments on revisions:

      The authors addressed most of the points I raised in my original review.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Zhuomin Yin and colleagues focuses on the relationship between cell-free HPV (cfHPV) DNA and metastatic or recurrent cervical cancer patients. It expands the application of cfHPV DNA in tracking disease progression and evaluating treatment response in cervical cancer patients. The study is overall well-designed, including appropriate analyses.

      Strengths:

      The findings provide valuable reference points for monitoring drug efficacy and guiding treatment strategies in patients with recurrent and metastatic cervical cancer. The concordance between HPV cfDNA fluctuations and changes in disease status suggests that cfDNA could play a crucial role in precision oncology, allowing for more timely interventions. As with similar studies, the authors used Droplet Digital PCR to measure cfDNA copy numbers, a technique that offers ultrasensitive nucleic acid detection and absolute quantification, lending credibility to the conclusions.

      Weaknesses:

      Despite including 28 clinical cases, only 7 involved recurrent cervical cancer, which may not be sufficient to support some of the authors' conclusions fully. Future studies on larger cohorts could solidify HPV cfDNA's role as a standard in the personalized treatment of recurrent cervical cancer patients.

      Comments on revisions:

      Thanks for your additional efforts and for addressing my concerns.

    1. Reviewer #1 (Public review):

      Summary:

      Chao et al. produced an updated version of the SpliceAI package using modern deep learning frameworks. This includes data preprocessing, model training, direct prediction, and variant effect prediction scripts. They also added functionality for model fine-tuning and model calibration. They convincingly evaluate their newly trained models against those from the original SpliceAI package and investigate how to extend SpliceAI to make predictions in new species. While their comparisons to the original SpliceAI models are convincing on the grounds of model performance, their evaluation of how well the new models match the original's understanding of non-local mutation effects is incomplete. Further, their evaluation of the new calibration functionality would benefit from a more nuanced discussion of what set of splice sites their calibration is expected to hold for, and tests in a context for which calibration is needed.

      Strengths:

      (1) They provide convincing evidence that their new implementation of SpliceAI matches the performance of the original model on a similar dataset while benefiting from improved computational efficiencies. This will enable faster prediction and retraining of splicing models for new species as well as easier integration with other modern deep learning tools.

      (2) They produce models with strong performance on non-human model species and a simple, well-documented pipeline for producing models tuned for any species of interest. This will be a boon for researchers working on splicing in these species and make it easy for researchers working on new species to generate their own models.

      (3) Their documentation is clear and abundant. This will greatly aid the ability of others to work with their code base.

      Weaknesses:

      (1) The authors' assessment of how much their model retains SpliceAI's understanding of "non-local effects of genomic mutations on splice site location and strength" (Figure 6) is not sufficiently supported. Demonstrating this would require showing that for a large number of (non-local) mutations, their model shows the same change in predictions as SpliceAI or that attribution maps for their model and SpliceAI are concordant even at distances from the splice site. Figure 6A comes close to demonstrating this, but only provides anecdotal evidence as it is limited to 2 loci. This could be overcome by summarizing the concordance between ISM maps for the two models and then comparing across many loci. Figure 6B also comes close, but falls short because instead of comparing splicing prediction differences between the models as a function of variants, it compares the average prediction difference as a function of the distance from the splice site. This limits it to only detecting differences in the model's understanding of the local splice site motif sequences. This could be overcome by looking at comparisons between differences in predictions with mutants directly and considering non-local mutants that cause differences in splicing predictions.

      (2) The utility of the calibration method described is unclear. When thinking about a calibrated model for splicing, the expectation would be that the models' predicted splicing probabilities would match the true probabilities that positions with that level of prediction confidence are splice sites. However, the actual calibration that they perform only considers positions as splice sites if they are splice sites in the longest isoform of the gene included in the MANE annotation. In other words, they calibrate the model such that the model's predicted splicing probabilities match the probability that a position with that level of confidence is a splice site in one particular isoform for each gene, not the probability that it is a splice site more broadly. Their level of calibration on this set of splice sites may very well not hold to broader sets of splice sites, such as sites from all annotated isoforms, sites that are commonly used in cryptic splicing, or poised sites that can be activated by a variant. This is a particularly important point as much of the utility of SpliceAI comes from its ability to issue variant effect predictions, and they have not demonstrated that this calibration holds in the context of variants. This section could be improved by expanding and clarifying the discussion of what set of splice sites they have demonstrated calibration on, what it means to calibrate against this set of splice sites, and how this calibration is expected to hold or not for other interesting sets of splice sites. Alternatively, or in addition, they could demonstrate how well their calibration holds on different sets of splice sites or show the effect of calibrating their models against different potentially interesting sets of splice sites and discuss how the results do or do not differ.

      (3) It is difficult to assess how well their calibration method works in general because their original models are already well calibrated, so their calibration method finds temperatures very close to 1 and only produces very small and hard to assess changes in calibration metrics. This makes it very hard to distinguish if the calibration method works, as it doesn't really produce any changes. It would be helpful to demonstrate the calibration method on a model that requires calibration or on a dataset for which the current model is not well calibrated, so that the impact of the calibration method could be observed.

    1. Reviewer #1 (Public review):

      Summary:

      This fundamental work employed multidisciplinary approaches and conducted rigorous experiments to study how a specific subset of neurons in the dorsal striatum (i.e., "patchy" striatal neurons) modulates locomotion speed depending on the valence of naturalistic contexts.

      Strengths:

      The scientific findings are novel and original and significantly advance our understanding of how the striatal circuit regulates spontaneous movement in various contexts.

      Weaknesses:

      This is extensive research involving various circuit manipulation approaches. Some of these circuit manipulations are not physiological. A balanced discussion of the technical strengths and limitations of the present work would be helpful and beneficial to the field.

    1. Reviewer #1 (Public review):

      Summary:

      The paper describes the initial characterization of Eml3 knockout mice. Eml3 global inactivation leads to delayed embryonic development, perinatal lethality apparently due to failure to inflate lungs, and a cobblestone brain-like phenotype represented by focal neuronal ectopias in the marginal zone or subarachnoid space of dorsal telencephalon. The neural ectopias are associated with interruptions in the pial basal membrane (PBM), which appear around E11.5. The authors also confirmed previously described protein interactions, using coIP-MS experiments of placenta and embryonic tissues (TUBB3, several 14-3-3 proteins, and DYNLL). The authors generated mice carrying a TQT86AAA homozygous mutation in EML3 (a motif required for EML3-DYNLL interactions) that were normal and showed no focal neuronal ectopias, indicating that this particular protein interaction is dispensable. The authors propose Eml3 knockout mice as a model of cobblestone brain malformation.

      Strengths:

      The brain phenotype described in this work is relevant for the neural development field and with potential clinical relevance. The initial phenotyping is appropriate but will require additional experiments to establish the cause of the failure to inflate the lungs. The study shows convincing data regarding the main characteristics of the brain phenotype and data supporting the timing when these abnormalities arise during development.

      Weaknesses:

      The study would benefit from clearer evidence and additional experiments that would help to establish the molecular and cellular mechanisms underlying the brain phenotype, the central topic of the work.

    1. Reviewer #1 (Public review):

      During early Drosophila pupal development, a subset of larval abdominal muscles (DIOMs) is remodelled using an autophagy dependent mechanism.

      To better understand this not very well studied process, the authors have generated a systematic transcriptomics time course using dissected larval abdominal muscles of various stages from wild type and autophagy deficient mutants. The authors have further identified a function for BNIP3 for executing mitophagy during DIOM remodelling.

      Strengths:

      The paper does provide a detailed mRNA time course resource for the DIOM remodelling.

      The paper does find an interesting BNIP3 loss of function phenotype, a block of mitophagy during muscle remodelling and hence identifies a specific linker between mitochondria and the core autophagy

      machinery. This adds to the mechanism how mitochondria are degraded.

      Sophisticated fly genetics demonstrates that the larval muscle mitochondria are, to a large extend, degraded by autophagy during DIOM remodelling.

      Quantitative electron microscopy data show that BNIP3 is required for initiating mito-phagosomes. It needs either its LIR and MER domain for function.

      Weakness:

      Mitophagy during DIOM remodelling is not novel (earlier papers from Fujita et al.).

      Other weaknesses have been eliminated during the revision.

    1. Reviewer #1 (Public review):

      Summary:

      This work uses a novel, ethologically relevant behavioral task to explore decision-making paradigms in C. elegans foraging behavior. By rigorously quantifying multiple features of animal behavior as they navigate in a patch food environment, the authors provide strong evidence that worms exhibit one of three qualitatively distinct behavioral responses upon encountering a patch: (1) "search", in which the encountered patch is below the detection threshold; (2) "sample", in which animals detect a patch encounter and reduce their motor speed, but do not stay to exploit the resource and are therefore considered to have "rejected" it; and (3) "exploit", in which animals "accept" the patch and exploit the resource for tens of minutes. Interestingly, the probability of these outcomes varies with the density of the patch as well as the prior experience of the animal. Together, these experiments provide an interesting new framework for understanding the ability of the C. elegans nervous system to use sensory information and internal state to implement behavioral state decisions.

      Strengths:

      The work uses a novel, neuroethologically-inspired approach to studying foraging behavior

      The studies are carried out with an exceptional level of quantitative rigor and attention to detail

      Powerful quantitative modeling approaches including GLMs are used to study the behavioral states that worms enter upon encountering food, and the parameters that govern the decision about which state to enter

      The work provides strong evidence that C. elegans can make 'accept-reject' decisions upon encountering a food resource

      Accept-reject decisions depend on the quality of the food resource encountered as well as on internally represented features that provide measurements of multiple dimensions of internal state, including feeding status and time.

    1. Joint Public Review:

      In this manuscript, Wafer and Tandon et al. present a thoughtful and well-designed genetic screen for regulators of adipose remodeling using zebrafish as a model system. The authors cross-referenced several human adipocyte-related transcriptomic and genetic association datasets to identify candidate genes, which they then tested in zebrafish. Importantly, the authors devised an unbiased microscopy-based screening platform to document quantitative adipose phenotypes with whole animal imaging, while also employing rigorous statistical methods. From their screen, the authors identified 6 genes that resulted in robust adipose phenotypes out of a total of 25 that were tested. Overall, this work will be a useful resource for the field because of both the genes identified and the quantitative, rigorous screening pipeline. However, there are limitations that preclude a definitive distinction between developmental and remodeling effects that should be acknowledged and discussed, or addressed with new experiments.

      Strengths:

      (1) This work combines multiple omic datasets to identify candidate genes that informed a CRISPR-based screen to identify genes underlying adipose tissue development and adaptation. This approach offers a new avenue to improve our understanding and testing of new genetic mechanisms underlying the development of obesity.

      (2) Using a clever screening approach, this study identifies new genes that are associated with adipose tissue lipid droplet size change. Importantly, the study provides further validation using a stable CRISPR line to show the phenotype in basal and high-fat diet conditions.

      (3) The experiments are well-designed and rigorous. Sample sizes are large. Statistical analyses are highly rigorous, contributing to a high-quality study.

      Weaknesses:

      (1) The image quantification established in Figures 3 and 4 and used in CRISPR screening showed the relationship among zebrafish development, adipose tissue size, and lipid droplet size. Although adipose tissue development patterning is linked with adipose tissue adaptation, as shown by the evidence provided in this paper, it will be more powerful if the imaging method and pipeline were established to directly access the adipose tissue plasticity rather than just the developmental patterning. Furthermore, the authors should perform additional analysis of their existing data to more accurately determine lipid droplet size along the AP axis in response to HFD.

      (2) In the absence of tissue-specific manipulations, definitively establishing the mechanisms underlying the genetic regulation of adipose tissue physiology presents limitations.

    1. Reviewer #1 (Public review):

      Summary:

      Two important factors in visual performance are the resolving power of the lens and the signal-to-noise ratio of the photoreceptors. These both compete for space: a larger lens has improved resolving power over a smaller one, and longer photoreceptors capture more photons and hence generate responses with lower noise. The current paper explores the tradeoff of these two factors, asking how space should be allocated to maximize eye performance (measured as encoded information).

      The revisions, to my read, have greatly improved the paper. Most of this was due to setting clear expectations from the start of the paper. Nice work!

    1. Reviewer #1 (Public review):

      The objectives of this research are to understand how key selector transcription factors, Tal1, Gata2, Gata3, determine GABAergic vs glutamatergic neuron fate from the rhombencephalic V2 precursor domain and how their spatiotemporal expression is controlled by upstream regulators. Toward these goals, the authors have generated an impressive array of scRNA, scATAC-seq, and CUT&Tag datasets obtained from dissociated E12.5 ventral R1 dissections. The rV2 was subsetted with well-known markers. The authors use an extensive set of computational approaches to identify temporal patterns of chromatin accessibility, TF motif binding activities (footprints), gene expression and regulatory motifs at the different selector gene loci. These analyses are used to predict upstream regulators, candidate accessible CREs, and DNA binding motifs through which the selectors may be controlled in rV2 by upstream regulators. Further analyses predict auto- and cross-regulatory interactions for maintenance of selector expression and the downstream effectors of alternative transmitter identities controlled by the selectors. The authors have achieved their aim of making predictions about upstream and downstream selector TF regulatory networks; their conclusions and predictions are largely well supported. The work clearly illustrates the daunting gene regulatory complexity likely at play in controlling rV2 transmitter fate.

      This is data-rich study and a valuable resource for future hypothesis testing, through perturbation approaches, of the many putative regulators and motifs identified in the study. The strengths of this work are the overall high quality of the datasets and in depth analyses. Through its comprehensive data and predictions, it is likely to have impact in advancing the understanding of GABAergic vs glutamatergic neuron fate decisions. The authors present a "simplified" gene regulatory model. However, the model does not illustrate the complexity of potential stage-specific upstream TF interactions with Tal1 and Vsx2 selector genes uncovered in TF footprinting analyses. While this seems nearly impossible to achieve given the plethora of potential functional TF inputs, the authors should consider assembling a focussed model by selectively illustrating the most robust, evidence-backed upstream TF input predictions, which are considered the strongest candidates for future hypothesis-driven perturbation experiments. It seems Insm1, Sox4, E2f1, Ebf1 and Tead2 TFs might be the strongest upstream candidates for future testing of Tal1 activation given the extensive analyses of their spatiotemporal expression patterns relative to Tal1, presented in Fig 4.

    1. Reviewer #1 (Public review):

      Summary:

      In the present manuscript, Mashiko and colleagues describe a novel phenotype associated with deficient SLC35G3, a testis-specific sugar transporter that is important in glycosylation of key proteins in sperm function. The study characterizes a knockout mouse for this gene and the multifaceted male infertility that ensues. The manuscript is well-written and describes novel physiology through a broad set of appropriate assays.

      Strengths:

      Robust analysis with detailed functional and molecular assays

      Weaknesses:

      (1) The abstract references reported mutations in human SLC35G3, but this is not discussed or correlated to the murine findings to a sufficient degree in the manuscript. The HEK293T experiments are reasonable and add value, but a more detailed discussion of the clinical phenotype of the known mutations in this gene and whether they are recapitulated in this study (or not) would be beneficial.

      (2) Can the authors expand on how this mutation causes such a wide array of phenotypic defects? I am surprised there is a morphological defect, a fertilization defect, and a transit defect. Do the authors believe all of these are present in humans as well?

    1. Reviewer #1 (Public review):

      Summary:

      GPR3 is an orphan receptor that plays a crucial role in central nervous system development and cold-induced thermogenesis, with potential implications for treating neurodegenerative and metabolic diseases. Although previous structural studies of GPR3 have been reported, Qiu et al. presented both active and inactive structures of GPR3 in its dimeric form. Notably, they identified AF64394 as a negative allosteric modulator that binds at the dimerization interface. This interface, primarily formed by transmembrane helices TM5 and TM6, is significantly larger than the dimerization interfaces previously reported for class A GPCRs. The authors further elucidate GPR3's activation mechanism and propose that dimerization may serve as a regulatory feature of GPR3 function. Overall, the study is well-executed, and the conclusions are sound.

      Strengths:

      Reported a unique dimerization interface of GPR3 and identified AF64394 as a negative allosteric modulator that binds at the dimerization interface.

      Weaknesses:

      There are some minor issues in the figure presentation.

    1. Reviewer #1 (Public review):

      Summary:

      D. Fuller et al. set out to study the molecular partners that cooperate with ATG2A, a lipid transfer protein essential for phagophore elongation, during the process of autophagy. Through a series of experiments combining microscopy and biochemistry, the authors identify ARFGAP1 and Rab1A as components of early autophagic membranes, which accumulate at the periphery of aberrant pre-autophagosomal structures induced by loss of ATG2. While ARFGAP1 has no apparent function in autophagy, the authors show that RAB1A is implicated in autophagy, although the mechanisms are not explored in the manuscript.

      Strengths:

      The work presented by Fuller et al. provides new insights into the composition of early autophagic membranes. The authors provide a series of MS experiments identifying proteins in close proximity to ATG2A, which is a valuable dataset for the field. Furthermore, they show for the first time the interaction between ATG2A and RAB1A, both in fed and starved conditions, which extends the characterisation of the pre-autophagosomal structures observed in ATG2 DKO cells.

      Weaknesses:

      The authors claim that this study elucidates the role of early secretory membranes in phagophore formation. However, this work is largely observational, which presents compelling evidence on the association between RAB1A GTPase and ATG2A without providing mechanistic insights into the functional relevance of this interaction. It remains unclear whether Rab1A depletion phenocopies ATG2A depletion in terms of autophagy progression or accumulation of pre-autophagosomal structures.

      Furthermore, this research is conducted exclusively in HEK293 cells. Including at least one additional cell line would significantly strengthen the main findings (i.e., effects on LC3-II accumulation observed for RAB1A/B knockdown, given the previously published data on this topic).

      A notable weakness of this manuscript, in this reviewer's opinion, lies in the discussion of the data in the context of existing literature. The discussion is rather short, mostly focused on the phenotype observed in ATG2 DKO cells. While this phenotype is certainly intriguing, it feels the discussion overlooks some important aspects, as outlined in the comments to the authors.

    1. Reviewer #1 (Public review):

      Summary:

      In this lovely paper, McDermott and colleagues tackle an enduring puzzle in the cognitive neuroscience of perceptual prediction. Though many scientists agree that top-down predictions shape perception, previous studies have yielded incompatible results - with studies showing 'sharpened' representations of expected signals, and others showing a 'dampening' of predictable signals to relatively enhance surprising prediction errors. To deepen the paradox further, it seems like there are good reasons that we would want to see both influences on perception in different contexts.

      Here, the authors aim to test one possible resolution to this 'paradox' - the opposing process theory (OPT). This theory makes distinct predictions about how the timecourse of 'sharpening' and 'dampening' effects should unfold. The researchers present a clever twist on a leading-trailing perceptual prediction paradigm, using AI to generate a large dataset of test and training stimuli, so that it is possible to form expectations about certain categories without repeating any particular stimuli. This provides a powerful way of distinguishing expectation effects from repetition effects - a perennial problem in this line of work.

      Using EEG decoding, the researchers find evidence to support the OPT. Namely, they find that neural encoding of expected events is superior in earlier time ranges (sharpening-like) followed by a relative advantage for unexpected events in later time ranges (dampening-like). On top of this, the authors also show that these two separate influences may emerge differently in different phases of learning - with superior decoding of surprising prediction errors being found more in early phases of the task, and enhanced decoding of predicted events being found in the later phases of the experiment.

      Strengths:

      As noted above, a major strength of this work lies in important experimental design choices. Alongside removing any possible influence of repetition suppression mechanisms in this task, the experiment also allows us to see how effects emerge in 'real time' as agents learn to make predictions. This contrasts with many other studies in this area - where researchers 'over-train' expectations into observers to create the strongest possible effects, or rely on prior knowledge that was likely to be crystallised outside the lab.

      Weaknesses:

      This study reveals a great deal about how certain neural representations are altered by expectation and learning on shorter and longer timescales, so I am loath to describe certain limitations as 'weaknesses'. But one limitation inherent in this experimental design is that, by focusing on implicit, task-irrelevant predictions, there is not much opportunity to connect the predictive influences seen at the neural level to perceptual performance itself (e.g., how participants make perceptual decisions about expected or unexpected events, or how these events are detected or appear).

    1. Reviewer #1 (Public review):

      Summary:

      The issue of how the brain can maintain the serial order of presented items in working memory is a major unsolved question in cognitive neuroscience. It has been proposed that this serial order maintenance could be achieved thanks to periodic reactivations of different presented items at different phases of an oscillation, but the mechanisms by which this could be achieved by brain networks, as well as the mechanisms of read-out, are still unclear. In an influential 2008 paper, the authors have proposed a mechanism by which a recurrent network of neurons could maintain multiple items in working memory, thanks to `population spikes' of populations of neurons encoding for the different items, occurring at alternating times. These population spikes occur in a specific regime of the network and are a result of synaptic facilitation, an experimentally observed type of synaptic short-term dynamics with time scales of order hundreds of ms.

      In the present manuscript, the authors extend their model to include another type of experimentally observed short-term synaptic plasticity termed synaptic augmentation, which operates on longer time scales on the order of 10s. They show that while a network without augmentation loses information about serial order, augmentation provides a mechanism by which this order can be maintained in memory thanks to a temporal gradient of synaptic efficacies. The order can then be read out using a read-out network whose synapses are also endowed with synaptic augmentation. Interestingly, the read-out speed can be regulated using background inputs.

      Strengths:

      This is an elegant solution to the problem of serial order maintenance that only relies on experimentally observed features of synapses. The model is consistent with a number of experimental observations in humans and monkeys. The paper will be of interest to a broad readership, and I believe it will have a strong impact on the field.

      Weaknesses:

      (1) The network they propose is extremely simple. This simplicity has pros and cons: on the one hand, it is nice to see the basic phenomenon exposed in the simplest possible setting. On the other hand, it would also be reassuring to check that the mechanism is robust when implemented in a more realistic setting, using, for instance, a network of spiking neurons similar to the one they used in the 2008 paper. The more noisy and heterogeneous the setting, the better.

      (2) One major issue with the population spike scenario is that (to my knowledge) there is no evidence that these highly synchronized events occur in delay periods of working memory experiments. It seems that highly synchronized population spikes would imply (a) a strong regularity of spike trains of neurons, at odds with what is typically observed in vivo (b) high synchronization of neurons encoding for the same item (and also of different items in situations where multiple items have to be held in working memory), also at odds with in vivo recordings that typically indicate weak synchronization at best. It would be nice if the authors at least mention this issue, and speculate on what could possibly bridge the gap between their highly regular and synchronized network, and brain networks that seem to lie at the opposite extreme (highly irregular and weakly synchronized). Of course, if they can demonstrate using a spiking network simulation that they can bridge the gap, even better.

    1. Reviewer #1 (Public review):

      Summary:

      The authors introduce a novel algorithm for the automatic identification of long-range axonal projections. This is an important problem as modern high-throughput imaging techniques can produce large amounts of raw data, but identifying neuronal morphologies and connectivities requires large amounts of manual work. The algorithm works by first identifying points in three-dimensional space corresponding to parts of labelled neural projections, these are then used to identify short sections of axon using an optimisation algorithm and the prior knowledge that axonal diameters are relatively constant. Finally, a statistical model that assumes axons tend to be smooth is used to connect the sections together into complete and distinct neural trees. The authors demonstrate that their algorithm is far superior to existing techniques, especially when a dense labelling of the tissue means that neighbouring neurites interfere with the reconstruction. Despite this improvement, however, the accuracy of reconstruction remains below 90%, so manual proof-reading is still necessary to produce accurate reconstructions of axons.

      Strengths:

      The new algorithm combines local and global information to make a significant improvement on the state-of -the-art for automatic axonal reconstruction. The method could be applied more broadly and might have applications to reconstructions of electron microscopy data, where similar issues of high-throughput imaging and relatively slow or inaccurate reconstruction remain.

      Weaknesses:

      There are three weaknesses with the algorithm and manuscript.

      (1) The best reconstruction accuracy is below 90%, which does not fully solve the problem of needing manual proof-reading.

      (2) The 'minimum information flow tree' model the authors use to construct connected axonal trees has the potential to bias data collection. In particular, the assumption that axons should always be as smooth as possible is not always correct. This is a good rule-of-thumb for reconstructions, but real axons in many systems can take quite sharp turns and this is also seen in the data presented in the paper (Fig 1C). I would like to see explicit acknowledgement of this bias in the current manuscript and ideally a relaxation of this rule in any later versions of the algorithm.

      (3) The writing of the manuscript is not always as clear as it could be. The manuscript would benefit from careful copy editing for language, and the Methods section in particular should be expanded to more clearly explain what each algorithm is doing. The pseudo code of the Supplemental Information could be brought into the Methods if possible as these algorithms are so fundamental to the manuscript.

      Comments on revisions: I have no further comments or recommendations.

    1. Reviewer #1 (Public review):

      Summary:

      The authors tried to identify the relationships between gut microbiota, lipid metabolites and the host in type 2 diabetes (T2DM) by using spontaneously developed T2DM in macaques, considered among the best human models.

      Strengths:

      The authors compared comprehensively the gut microbiota, plasma fatty acids between spontaneous T2DM and the control macaques, and tried verified the results with macaques in high-fat diet-fed mice model.

      Weaknesses:

      The observed multi-omics on macaques can be done on humans, which weakens the conclusion of the manuscript, unless the observation/data on macaques could cover during the onset of T2DM that would be difficult to obtain from humans.<br /> Regarding the metabolomic analysis on fatty acids, the authors did not include the results obtained form the macaque fecal samples which should be important considering the authors claimed the importance of gut microbiota in the pathogenesis of T2DM. Instead, the authors measured palmitic acid in the mouse model and tried to validate their conclusions with that.

      In murine experiments, palmitic acid-containing diet were fed to mice to induce diabetic condition, but this does not mimic spontaneous T2DM in macaques, since the authors did not measure in macaque feces (or at least did not show the data from macaque feces of) palmitic acid or other fatty acids; instead, they assumed from blood metabolome data that palmitic acid would be absorbed from the intestine to affect the host metabolism, and added palmitic acid in the diet in mouse experiments. Here involves the probable leap of logic to support their conclusions and title of the study.

      In addition, the authors measured omics data after, but not before, the onset of spontaneous T2DM of macaques. This can reveal microbiota dysbiosis driven purely by disease progression, but does not support the causative effect of gut microbiota on T2DM development that the authors claims.

    1. Reviewer #1 (Public review):

      Summary:

      Cheong et al. use a synapse-resolution wiring map of the fruit fly nerve cord to comprehensively investigate circuitry between descending neurons (DNs) from the brain and motor neurons (MNs) that enact different behaviours. These neurons were painstakingly identified, categorised, and linked to existing genetic driver lines; this allows the investigation of circuitry to be informed by the extensive literature on how flights walk, fly, and escape from looming stimuli. New motifs and hypotheses of circuit function were presented. This work will be a lasting resource for those studying nerve cord function.

      Strengths:

      The authors present an impressive amount of work in reconstructing and categorising the neurons in the DN to MN pathways. There is always a strong link between the circuitry identified and what is known in the literature, making this an excellent resource for those interested in connectomics analysis or experimental circuits neuroscience. Because of this, there are many testable hypotheses presented with clear predictions, which I expect will result in many follow-up publications. Most MNs were mapped to the individual muscles that they innervate by linking this connectome to pre-existing light microscopy datasets. When combined with past fly brain connectome datasets (Hemibrain, FAFB) or future ones, there is now a tantalising possibility of following neural pathways from sensory inputs to motor neurons and muscle.

      Weaknesses:

      As with all connectome datasets, the sample size is low, limiting statistical analyses. Readers should keep this in mind, but note that this is the current state-of-the-art. Some figures are weakened by relying too much on depictions of wiring diagrams without additional quantification of connectivity. Readers may find the length of this work challenging, particularly the initial anatomical descriptions of the dataset, which span many figures and may not be of interest to those outside of the subfield.

    1. Reviewer #1 (Public review):

      Summary:

      Advances in machine vision and computer learning have meant that there are now state-of-the-art and open-source toolboxes that allow for animal pose estimation and action recognition. These technologies have the potential to revolutionize behavioral observations of wild primates but are often held back by labor intensive model training and the need for some programming knowledge to effectively leverage such tools. The study presented here by Fuchs et al unveils a new framework (ASBAR) that aims to automate behavioral recognition in wild apes from video data. This framework combines robustly trained and well tested pose estimate and behavioral action recognition models. The framework performs admirably at the task of automatically identifying simple behaviors of wild apes from camera trap videos of variable quality and contexts. These results indicate that skeletal-based action recognition offers a reliable and lightweight methodology for studying ape behavior in the wild and the presented framework and GUI offer an accessible route for other researchers to utilize such tools.

      Given that automated behavior recognition in wild primates will likely be a major future direction within many subfields of primatology, open-source frameworks, like the one presented here, will present a significant impact on the field and will provide a strong foundation for others to build future research upon.

      Strengths:

      Clearly articulated the argument as to why the framework was needed and what advantages it could convey to the wider field.

      For a very technical paper it was very well written. Every aspect of the framework the authors clearly explained why it was chosen and how it was trained and tested. This information was broken down in a clear and easily digestible way that will be appreciated by technical and non-technical audiences alike.

      The study demonstrates which pose estimation architectures produce the most robust models for both within context and out of context pose estimates. This is invaluable knowledge for those wanting to produce their own robust models.

      The comparison of skeletal-based action recognition with other methodologies for action recognition are helpful in contextualizing the results.

      Weaknesses:

      While I note that this is a paper most likely aimed at the more technical reader, it will also be of interest to a wider primatological readership, including those who work extensively in the field. When outlining the need for future work I felt the paper offered almost exclusively very technical directions. This may have been a missed opportunity to engage the wider readership and suggest some practical ways those in the field could collect more ASBAR friendly video data to further improve accuracy.

      Comments on latest version:

      I think the new version is an improvement and applaud the authors on a well-written article that conveys some very technical details excellently. The authors have addressed my initial comments about reaching out to a wider, sometimes less technical, primatological audience by encouraging researchers to create large annotated datasets and make these publicly accessible. I also agree that fostering interdisciplinary collaboration is the best way to progress this field of research. These additions have certainly strengthened the paper but I still think some more practical advice for the actual collection of high-quality training data used to improve the pose estimates and behavioral classification in tough out-of-context environments could have been added. This doesn't detract from the quality of the paper though.

    1. Reviewer #1 (Public review):

      Summary:

      This work by Ding et al uses agent-based simulations to explore the role of the structure of molecular motor myosin filaments in force generation in cytoskeletal structures. The focus of the study is on disordered actin bundles which can occur in the cell cytoskeleton and can be investigated with in vitro purified protein experiments. A key finding is that the force generation depends on the number of myosin motor heads and the spatial distribution of the myosin thick filaments in relation to passive crosslinkers.

      Strengths:

      The work develops a model where the detailed structure of the myosin motor filaments with multiple heads is represented. This allows the authors to test the dependence of myosin-generated forces on the number of myosin heads and their spatial distribution.

      The work highlights that forces from multiple myosin motors within a disordered actin bundle may not simply add up, but depend on their spatial distribution in relation to passive crosslinkers.

      This may explain prior experimental observations in in vitro reconstituted actomyosin bundles that the tension developed in the bundle was proportional to the number of myosin motor heads per filament rather than the number of myosin filaments. More generally, this type of modeling can guide fundamental understanding of the relationship between structure and mechanical force production.

      Weaknesses:

      The work focuses on the structure of myosin filaments but ignores other processes that may determine contractility of actomyosin structures such as the dynamics of crosslinker binding/unbinding and actin polymerization/depolymerization.

      The authors did not vary the relative concentration of myosin motors and passive crosslinkers. This would have revealed interesting competing effects between motor and crosslink density and distribution, that their model and other studies suggest are important.

      Given the above factors and the lack of direct quantitative comparisons with the experiment, the physiological significance of the work remains hard to ascertain.