4,412 Matching Annotations
  1. Last 7 days
    1. Reviewer #1 (Public Review):

      Summary:

      Major findings or outcomes include a genome for the wasp, characterization of the venom constituents and teratocyte and ovipositor expression profiles, as well as information about Trichopria ecology and parasitism strategies. It was found that Trichopria cannot discriminate among hosts by age, but can identify previously parasitized hosts. The authors also investigated whether superparasitism by Trichopria wasps improved parasitism outcomes (it did), presumably by increasing venom and teratocyte concentrations/densities. Elegant use of Drosophila ectopic expression tools allowed for functional characterization of venom components (Timps), and showed that these proteins are responsible for parasitoid-induced delays in host development. After finding that teratocytes produce a large number of proteases, experiments showed that these contribute to digestion of host tissues for parasite consumption.<br /> The discussion ties these elements together by suggesting that genes used for aiding in parasitism via different parts of the parasitism arsenal arise from gene duplication and shifts in tissue of expression (to venom glands or teratocytes).

      Strengths:

      The strength of this manuscript is that it describes the parasitism strategies used by Trichopria wasps at a molecular and behavioral level with broad strokes. It represents a large amount of work that in previous decades might have been published in several different papers. Including all of these data in a manuscript together makes for a comprehensive and interesting study.

      Weaknesses:

      The weakness is that the breadth of the study results in fairly shallow mechanistic or functional results for any given facet of Trichopria's biology. Although none of the findings are especially novel given results from other parasitoid species in previous publications, integrating results together provides significant information about Trichopria biology.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Huang et al have investigated the exercise mimetic role of Eugenol (a natural product) in skeletal muscle and whole-body fitness. The authors report that Eugenol facilitates skeletal muscle remodeling to a slower/oxidative phenotype typically associated with endurance. Eugenol also remodels the fat driving browning the WAT. In both skeletal muscle and fat Eugenol promotes oxidative capacity and mitochondrial biogenesis markers. Eugenol also improves exercise tolerance in a swimming test. Through a series of in vitro studies the authors demonstrate that eugenol may function through the trpv1 channel, Ca mobilization, and activation of CaN/NFAT signaling in the skeletal muscle to regulate slow-twitch phenotype. In addition, Eugenol also induces several myokines but mainly IL-15 through which it may exert its exercise mimetic effects. Overall, the manuscript is well-written, but there are several mechanistic gaps, physiological characterization is limited, and some data are mostly co-relative without vigorous testing (e.g. link between Eugenol, IL15 induction, and endurance). Specific major concerns are listed below.

      Strengths:

      A natural product activator of the TRPV1 channel that could elicit exercise-like effects through skeletal muscle remodeling. Potential for discovering other mechanisms of action of Eugenol.

      Weaknesses:

      (1) Figure 1: Histomorphological analysis using immunostaining for type I, IIA, IIX, and IIB should be performed and quantified across different muscle groups and also in the soleus. Fiber type switch measured based on qPCR and Westerns does not sufficiently indicate the extent of fiber type switch. Better images for Fig. 1c should be provided.

      (2) Figure 2: Histomorphological analysis for SDH and NADH-TR should be performed and quantified in different muscle groups. Seahorse or oroborous respirometry experiments should be performed to determine the actually increase in mitochondrial respiratory capacity either in isolated mitochondria or single fibers from vehicle and Eugenol-treated mice. Em for mitochondrial should be added to determine the extent of mitochondrial remodeling. The current data is insufficient to indicate the extent of mitochondrial or oxidative remodeling.

      (3) Figure 2: Gene expression analysis is limited to a few transcriptional factors. A thorough analysis of gene expression through RNA-seq should be performed to get an unbiased effect of Eugenol on muscle transcriptome. This is especially important because eugenol is proposed to work through CaN/NFAT signaling, major transcriptional regulators of muscle phenotype.

      (4) I suggest the inclusion of additional exercise or performance testing including treadmill running, wheel running, and tensiometry. Quantification with a swimming test and measurement of the exact intensity of exercise, etc. is limited.

      (5) In addition to muscle performance, whole-body metabolic/energy homeostatic effects should also be measured to determine a potential increase in aerobic metabolism over anaerobic metabolism.

      (6) For the swimming test and other measurements, only 4 weeks of vehicle vs. Eugenol treatment was used. For this type of pharmacological study, a time course should be performed to determine the saturation point of the effect. Does exercise tolerance progressively increase with time?

      (7) The authors should also consider measuring adaptation to exercise training with or without Eugenol.

      (8) Histomorphological analysis of Wat is also lacking. EchoMRI would give a better picture of lean and fat mass.

      (9) The experiments performed to demonstrate that Eugenol functions through trpv1 are mostly correlational. Some experiments are needed with trpv1 KO or KD instead of inhibitor. Similarly, KD for other trpv channels should be tested (at least 1-4 that seem to be expressed in the muscle). Triple KO or trpv null cells should be considered to demonstrate that eugenol does not have another biological target.

      (10) Eugenol + trpv1 inhibition studies are performed in c2c12 cells and only looks at myofiber genes expression. This is incomplete. Some studies in mitochondrial and oxsphos genes should be done.

      (11) The experiments linking Eugenol to ca handling, and calcineurin/nfat activation are all performed in c2c12 cells. There seems to be a link between Eugenol activation and CaN/NFAT activation and fiber type regulation in cells, however, this needs to be tested in mouse studies at the functional level using some of the parameters measured in aims 1 and 2.

      (12) The myokine studies are incomplete. The authors show a link between Eugenol treatment and myokines/IL-15 induction. However, this is purely co-relational, without any experiments performed to show whether IL-15 mediates any of the effects of eugenol in mice.

      (13) An additional major concern is that it cannot be ruled out that Engenol is uniquely mediating its effects through trpv1. Ideally, muscle-specific trpv1 mice should be used to perform some experiments with Eugenol to confirm that this ion channel is involved in the physiological effects of eugenol.

      Comments on revised version:

      Unfortunately, in the revision the authors have not addressed any of my comments with new experimental data. For example, some of the histological experiments I suggested are quite easy to do or standardize. Other in vitro experiments could also be conducted to show direct mechanistic link. The current revision does not further improve the manuscript from the 1st submission.

    1. Reviewer #1 (Public Review):

      Summary:

      Shakhawat et al., investigated how enhancement of plasticity and impairment could result in the same behavioral phenotype. The authors tested the hypothesis that learning impairments result from saturation of plasticity mechanisms and had previously tested this hypothesis using mice lacking two class I major histocompatibility molecules. The current study extends this work by testing the saturation hypothesis in a Purkinje-cell (L7) specific Fmr1 knockout mouse mice, which have enhanced parallel fiber-Purkinje cell LTD. The authors found that L7-Fmr1 knockout mice are impaired on an oculomotor learning task and both pre-training, to reverse LTD, and diazepam, to suppress neural activity, eliminated the deficit when compared to controls.

      Strengths:

      This study tests the "saturation hypothesis" to understand plasticity in learning using a well-known behavior task, VOR, and an additional genetic mouse line with a cerebellar cell-specific target, L7-Fmr1 KO. This hypothesis is of interest to the community as it evokes novel inquisition into LTD that has not been examined previously.

      Utilizing a cell-specific mouse line that has been previously used as a genetic model to study Fragile X syndrome is a unique way to study the role of Purkinje cells and the Fmr1 gene. This increases the understanding in the field in regards to Fragile X syndrome and LTD.

      The VOR task is a classic behavior task that is well understood, therefore using this metric is very reliable for testing new animal models and treatment strategies. The effects of pretraining are clearly robust and this analysis technique could be applied across different behavior data sets.

      The rescue shown using diazepam is very interesting as this is a therapeutic that could be used in clinical populations as it is already approved.

      All previous comments have been addressed with additional studies, explanations, or analyses. These additions strengthen a very impactful study.

      The authors achieved their study objectives and the results strongly support their conclusion and proposed hypothesis. This work will be impactful on the field as it uses a new Purkinje-cell specific mouse model to study a classic cerebellar task. The use of diazepam could be further analyzed in other genetic models of neurodevelopmental disorders to understand if effects on LTD can rescue other pathways and behavior outcomes.

    1. Reviewer #1 (Public Review):

      In this paper, the effects of two sensory stimuli (visual and somatosensory) on fMRI responsiveness during absence seizures were investigated in GEARS rats with concurrent EEG recordings. SPM analysis of fMRI showed a significant reduction in whole-brain responsiveness during the ictal period compared to the interictal period under both stimuli, and this phenomenon was replicated in a structurally constrained whole-brain computational model of rat brains.

      The conclusion of this paper is that whole-brain responsiveness to both sensory stimuli is inhibited and spatially impeded during seizures.

      The authors have revised this paper with a lot of detail.

    1. Reviewer #1 (Public Review):

      Summary:

      Human Abeta42 inhibits gamma-secretase activity in biochemical assays.

      Strengths:

      Determination of inhibitory concentration human Abeta42 on gamma-secretase activity in biochemical assays.

    1. Reviewer #1 (Public Review):

      Summary:

      The paper investigates the physiological and neural processes that relate to infants' attention allocation in a naturalistic setting. Contrary to experimental paradigms that are usually employed in developmental research, this study investigates attention processes while letting the infants free to play with three toys in the vicinity of their caregiver, which is closer to a common, everyday life context. The paper focuses on infants at 5 and 10 months of age and finds differences in what predicts attention allocation. At 5 months, attention episodes are shorter and their duration is predicted by autonomic arousal. At 10 months, attention episodes are longer, and their duration can be predicted by theta power. Moreover, theta power predicted the proportion of looking at the toys, as well as a decrease in arousal (heart rate). Overall, the authors conclude that attentional systems change across development, becoming more driven by cortical processes.

      Strengths:

      I enjoyed reading the paper, I am impressed with the level of detail of the analyses, and I am strongly in favour of the overall approach, which tries to move beyond in-lab settings. The collection of multiple sources of data (EEG, heart rate, looking behaviour) at two different ages (5 and 10 months) is a key strength of this paper. The original analyses, which build onto robust EEG preprocessing, are an additional feat that improves the overall value of the paper. The careful consideration of how theta power might change before, during, and in the prediction of attention episodes is especially remarkable.

      Weaknesses:

      The levels of EEG noise across age groups and periods of attention allocation are not controlled for. I appreciate the analysis of noise reported in supplementary materials. The analysis focuses on a broad level (average noise in 5-month-olds vs 10-month-olds) but variations might be more fine-grained (for example, noise in 5mos might be due to fussiness and crying, while at 10 months it might be due to increased movements). More importantly, noise might even be the same across age groups, but correlated to other aspects of their behaviour (head or eye movements) that are directly related to the measures of interest. Is it possible that noise might co-vary with some of the behaviours of interest, thus leading to either spurious effects or false negatives? One way to address this issue would be for example to check if noise in the signal can predict attention episodes. If this is the case, noise should be added as a covariate in many of the analyses of this paper.

      Concerning cross-correlation analyses, the authors state that "Interpreting the exact time intervals over which a cross-correlation is significant is challenging". Then, they say that asymmetry is enough to conclude that attention forward predicted theta power more than vice versa. I think it could be useful to add a bit more of explanation before reaching this conclusion, explaining why such statement is correct, and how it is supported by previous work in statistics.

      Finally, the cognitive process under investigation (e.g., attention) and its operationalization (e.g., duration of consecutive looking toward a toy) are not fully distinguished, but conflated instead (e.g., "attention durations"). This does not impact the quality of the work or analyses, but it slightly reduces clarity.

      General Remarks<br /> In general, the authors achieved their aim in that they successfully showed the relationship between looking behaviour (as a proxy of attention), autonomic arousal, and electrophysiology. Two aspects are especially interesting. First, the fact that at 5 months, autonomic arousal predicts the duration of subsequent attention episodes, but at 10 months this effect is not present. Conversely, at 10 months, theta power predicts the duration of looking episodes, but this effect is not present in 5-month-old infants. This pattern of results suggests that younger infants have less control over their attention, which mostly depends on their current state of arousal, but older infants have gained cortical control of their attention, which in turn impacts their looking behaviour and arousal.

    1. Reviewer #1 (Public Review):

      Summary:

      Peterson et al., present a series of experiments in which the Pavlovian performance (i.e. time spent at a food cup/port) of male and female rats is assessed in various tasks in which context/cue/outcome relationships are altered. The authors find no sex differences in context-irrelevant tasks, and no such differences in tasks in which the context signals that different cues will earn different outcomes. They do find sex differences, however, when a single outcome is given and context cues must be used to ascertain which cue will be rewarded with that outcome (Ctx-dep O1 task). Specifically, they find that males acquired the task faster, but that once acquired, performance of the task was more resilient in female rats against exposures to a stressor. Finally, they show that these sex differences are reflected in differential rates of c-fos expression in all three subregions of rat OFC, medial, lateral and ventral, in the sense that it is higher in females than males, and only in the animals subject to the Ctx-dep O1 task in which sex differences were observed.

      Strengths:

      • Well written<br /> • Experiments elegantly designed<br /> • Robust statistics<br /> • Behaviour is the main feature of this manuscript, rather than any flashy techniques or fashionable lab methodologies, and luckily the behaviour is done really well.<br /> • For the most part I think the conclusions were well supported, although I do have some slightly different interpretations to the authors in places.

      Weaknesses:

      The authors have done an excellent job of addressing all previous weaknesses. I have no further comments.

    1. Reviewer #1 (Public Review):

      Summary:

      This study examines a hypothesized link between autism symptomatology and efference copy mechanisms. This is an important question for a number of reasons. Efference copy is both a critical brain mechanism that is key to rapid sensorimotor behaviors, and one that has important implications for autism given recent empirical and theoretical work implicating atypical prediction mechanisms and atypical reliance on priors in ASD.<br /> The authors test this relationship in two different experiments, both of which show larger errors/biases in spatial updating for those with heightened autistic traits (as measured by AQ in neurotypical (NT) individuals).

      Strengths:

      The empirical results are convincing - effects are strong, sample sizes are sufficient, and the authors also rule out alternative explanations (ruling out differences in motor behavior or perceptual processing per se).

      Weaknesses:

      My main residual concern is that the paper should be more transparent about both (1) that this study does not include individuals with autism, and (2) acknowledging the limitations of the AQ.<br /> On the first point, and I don't think this is intentional, there are several instances where the line between heightened autistic traits in the NT population and ASD is blurred or absent. For example, in the second sentence of the abstract, the authors state "Here, we examine the idea that sensory overload in ASD may be linked to issues with efference copy mechanisms". I would say this is not correct because the authors did not test individuals with ASD. I don't see a problem with using ASD to motivate and discuss this work, but it should be clear in key places that this was done using AQ in NT individuals.<br /> For the second issue, the AQ measure itself has some problems. For example, reference 38 in the paper (a key AQ paper) also shows that the AQ is skewed more male than modern estimates of ASD, suggesting that the AQ may not fully capture the full spectrum of ASD symptomatology.<br /> Of course, this does not mean that the AQ is not a useful measure (the present data clearly show that it captures something important about spatial updating during eye movements), but it should not be confused with ASD, and its limitations need to be acknowledged. My recommendation would be to do this in the title as well - e.g. note impaired visuomotor updating in individuals with "heightened autistic traits".

      Suggestions for improvement:<br /> - Figure 5 is really interesting. I think it should be highlighted a bit more, perhaps even with a model that uses the results of both tasks to predict AQ scores.<br /> - Some discussion of the memory demands of the tasks will be helpful. The authors argue that memory is not a factor, but some support for this is needed.<br /> - With 3 sessions for each experiment, the authors also have data to look at learning. Did people with high AQ get better over time, or did the observed errors/biases persist throughout the experiment?

    1. Reviewer #2 (Public Review):

      Summary:

      The authors generated a DNA methylation score in cord blood for detecting exposure to cigarette smoke during pregnancy. They then asked if it could be used to predict height, weight, BMI, adiposity and WHR throughout early childhood.

      Strengths:

      The study included two cohorts of European ancestry and one of South Asian ancestry.

      Weaknesses:

      (1) Numbers of mothers who self-reported any smoking was very low likely resulting in underpowered analyses.

      (2) Although it was likely that some mothers were exposed to second-hand smoke and/or pollution, data on this was not available.

      (3) One of the European cohorts and half of the South Asian cohort had DNA methylation measured on only 2500 CpG sites including only 125 sites previously linked to prenatal smoking.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript by Kim et al. describes a role for axonal transport of Wnd (a dual leucine zipper kinase) for its normal degradation by the Hiw ubiquitin ligase pathway. In Hiw mutants, the Wnd protein accumulates dramatically in nerve terminals compared to the cell body of neurons. In the absence of axonal transport, Wnd levels rise and lead to excessive JNK signaling that makes neurons unhappy.

      Strengths:

      Using GFP-tagged Wnd transgenes and structure-function approaches, the authors show that palmitoylation of the protein at C130 plays a role in this process by promoting golgi trafficking and axonal localization of the protein. In the absence of this transport, Wnd is not degraded by Hiw. The authors also identify a role for Rab11 in the transport of Wnd, and provide some evidence that Rab11 loss-of-function neuronal degenerative phenotypes are due to excessive Wnd signaling. Overall, the paper provides convincing evidence for a preferential site of action for Wnd degradation by the Hiw pathway within axonal and/or synaptic compartments of the neuron. In the absence of Wnd transport and degradation, the JNK pathway becomes hyperactivated. As such, the manuscript provides important new insights into compartmental roles for Hiw-mediated Wnd degradation and JNK signaling control.

      Weaknesses:

      It is unclear if the requirement for Wnd degradation at axonal terminals is due to restricted localization of HIW there, but it seems other data in the field argues against that model. The mechanistic link between Hiw degradation and compartmentalization is unknown.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, Manley and Vaziri investigate whole-brain neural activity underlying behavioural variability in zebrafish larvae. They combine whole brain (single cell level) calcium imaging during the presentation of visual stimuli, triggering either approach or avoidance, and carry out whole brain population analyses to identify whole brain population patterns responsible for behavioural variability. They show that similar visual inputs can trigger large variability in behavioural responses. Though visual neurons are also variable across trials, they demonstrate that this neural variability does not degrade population stimulus decodability. Instead, they find that the neural variability across trials is in orthogonal population dimensions to stimulus encoding and is correlated with motor output (e.g. tail vigor). They then show that behavioural variability across trials is largely captured by a brain-wide population state prior to the trial beginning, which biases choice - especially on ambiguous stimulus trials. This study suggests that parts of stimulus-driven behaviour can be captured by brain-wide population states that bias choice, independently of stimulus encoding.

      Strengths:

      -The strength of the paper principally resides in the whole brain cellular level imaging in a well-known but variable behaviour.

      - The analyses are reasonable and largely answer the questions the authors ask.

      - Overall the conclusions are well warranted.

      Weaknesses:

      A more in-depth exploration of some of the findings could be provided, such as:

      - Given that thousands of neurons are recorded across the brain a more detailed parcelation of where the neurons contribute to different population coding dimensions would be useful to better understand the circuits involved in different computations.

      - Given that the behaviour on average can be predicted by stimulus type, how does the stimulus override the brain-wide choice bias on some trials? In other words, a better link between the findings in Figures 2 and 3 would be useful for better understanding how the behaviour ultimately arises.

      - What other motor outputs do the noise dimensions correlate with?

      The dataset that the authors have collected is immensely valuable to the field, and the initial insights they have drawn are interesting and provide a good starting ground for a more expanded understanding of why a particular action is determined outside of the parameters experimenters set for their subjects.

    1. Reviewer #1 (Public Review):

      Summary:

      This research group has consistently performed cutting-edge research aiming to understand the role of hormones in the control of social behaviors, specifically by utilizing the genetically tractable teleost fish, medaka, and the current work is no exception. The overall claim they make, that estrogens modulate social behaviors in males and females is supported, with important caveats. For one, there is no evidence these estrogens are generated by "neurons" as would be assumed by their main claim that it is NEUROestrogens that drive this effect. While indeed the aromatase they have investigated is expressed solely in the brain, in most teleosts, brain aromatase is only present in glial cells (astrocytes, radial glia). The authors should change this description so as not to mislead the reader. Below I detail more specific strengths and weaknesses of this manuscript.

      Strengths:

      • Excellent use of the medaka model to disentangle the control of social behavior by sex steroid hormones.

      • The findings are strong for the most part because deficits in the mutants are restored by the molecule (estrogens) that was no longer present due to the mutation.

      • Presentation of the approach and findings are clear, allowing the reader to make their own inferences and compare them with the authors'.

      • Includes multiple follow-up experiments, which lead to tests of internal replication and an impactful mechanistic proposal.

      • Findings are provocative not just for teleost researchers, but for other species since, as the authors point out, the data suggest mechanisms of estrogenic control of social behaviors may be evolutionarily ancient.

      Weaknesses:

      • As stated in the summary, the authors attribute the estrogen source to neurons and there isn't evidence this is the case. The impact of the findings doesn't rest on this either.

      • The d4 versus d8 esr2a mutants showed different results for aggression. The meaning and implications of this finding are not discussed, leaving the reader wondering.

      • Lack of attribution of previously published work from other research groups that would provide the proper context of the present study.

      • There are a surprising number of citations not included; some of the ones not included argue against the authors' claims that their findings were "contrary to expectation".

      • The experimental design for studying aggression in males has flaws. A standard test like a resident-intruder test should be used.

      • While they investigate males and females, there are fewer experiments and explanations for the female results, making it feel like a small addition or an aside.

      • The statistics comparing "experimental to experimental" and "control to experimental" aren't appropriate.

    1. Reviewer #1 (Public Review):

      Summary:

      Recent years have seen spectacular and controversial claims that loss of function of the RNA splicing factor Ptbp1 can efficiently reprogram astrocytes into functional neurons that can rescue motor defects seen in 6-hydroxydopamine (6-OHDA)-induced mouse models of Parkinson's disease (PD). This latest study is one of a series that fails to reproduce these observations, but remarkably also reports that neuronal-specific loss of function of Ptbp1 both induces expression of dopaminergic neuronal markers in striatal neurons and rescues motor defects seen in 6-OHDA-treated mice. The claims, if replicated, are remarkable and identify a straightforward and potentially translationally relevant mechanism for treating motor defects seen in PD models. However, while the reported behavioral effects are strong and were collected without sample exclusion, other claims made here are less convincing. In particular, no evidence that Ptbp1 loss of function actually occurs in striatal neurons is provided, and the immunostaining data used to claim that dopaminergic markers are induced in striatal neurons is not convincing. Furthermore, no characterization of the molecular identity of Ptbp1-deficient striatal neurons is provided using single-cell RNA-Seq or spatial transcriptomics, making it difficult to conclude that these cells are indeed adopting a dopaminergic phenotype.

      Overall, while the claims of behavioral rescue of 6-OHDA-treated mice appear compelling, it is essential that these be independently replicated as soon as possible before further studies on this topic are carried out. Insights into the molecular mechanisms by which neuronal-specific loss of function of Ptbp1 induces behavioral rescue are lacking, however. Moreover, the claims of induction of neuronal identity in striatal neurons by Ptbp1 require considerable additional work to be convincing.

      Strengths of the study:

      (1) The effect size of the behavioral rescue in the stepping and cylinder tests is strong and significant, essentially restoring 6-OHDA-lesioned mice to control levels.

      (2) Since the neurotoxic effects of 6-OHDA treatment are highly variable, the fact that all behavioral data was collected blinded and that no samples were excluded from analysis increases confidence in the accuracy of the results reported here.

      Weaknesses of the study:

      (1) Neurons express relatively little Ptbp1. Indeed, cellular expression levels as measured by scRNA-Seq are substantially below those of astrocytes and other non-neuronal cell types, and Ptbp1 immunoreactivity has not been observed in either striatal or midbrain neurons (e.g. Hoang, et al. Nature 2023). This raises the question of whether any recovery of Th expression is indeed mediated by the loss of function of Ptbp1 rather than by off-target effects. AAV-mediated rescue of Ptbp1 expression could help clarify this.

      (2) It is not clear why dopaminergic neurons, which are not normally found in the striatum, are observed following Ptbp1 knockout. This is very similar to the now-debunked claims made in Zhou, et al. Cell 2020, but here performed using the hSyn rather than GFAP mini promoter to control AAV expression. While this is the most dramatic and potentially translationally relevant claim of the study, this claim is extremely surprising and lacks any clear mechanistic explanation for why it might happen in the first place. This observation is even more surprising in light of reports that antisense oligonucleotide-mediated knockdown of Ptbp1, which should have affected both neuronal and glial Ptbp1 expression, failed to induce expression of dopaminergic neuronal markers in the striatum (Chen, et al. eLife 2022). Selective loss of function of Ptbp1 in striatal and midbrain astrocytes likewise results in only modest changes in gene expression It is critically important that this claim be independently replicated, and that additional data be provided to conclusively show that striatal neurons are indeed expressing dopaminergic markers.

      (3) More generally, since multiple spectacular and irreproducible claims of single-step glial-to-neuron reprogramming have appeared in high-profile journals in recent years, a consensus has emerged that it is essential to comprehensively characterize the identity of "transformed" cells using either single-cell RNA-Seq or spatial transcriptomics (e.g. Qian, et al. FEBS J 2021; Wang and Zhang, Dev Neurobiol 2022). These concerns apply equally to claims of neuronal subtype conversion such as those advanced here, and it is essential to provide these same datasets.

      (4) Low-power images are generally lacking for immunohistochemical data shown in Figures 3 and 4, which makes interpretation difficult. DAPI images in Figure 3C do not appear nuclear. Immunostaining for Th, DAT, and Dcx in Figure 4 shows a high background and is difficult to interpret.

      (5) Insights into the mechanism by which neuronal-specific loss of Ptbp1 function induces either functional recovery, or dopaminergic markers in striatal neurons, is lacking.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Zhang et al., presented an electrophysiology method to identify the layers of macaque visual cortex with high density Neuropixels 1.0 electrode. They found several electrophysiology signal profiles for high-resolution laminar discrimination and described a set of signal metrics for fine cortical layer identification.

      Strengths:

      There are two major strengths. One is the use of high density electrodes. The Neuropixels 1.0 probe has 20 um spacing electrodes, which can provide high resolution for cortical laminar identification. The second strength is the analysis. They found multiple electrophysiology signal profiles which can be used for laminar discrimination. Using this new method, they could identify the most thin layer in macaque V1. The data support their conclusion.

      Weaknesses:

      While this electrophysiology strategy is much easier to perform even in awake animals compared to histological staining methods, it provides an indirect estimation of cortical layers. A parallel histological study can provide a direct matching between the electrode signal features and cortical laminar locations. However, there are technical challenges, for example the distortions in both electrode penetration and tissue preparation may prevent a precise matching between electrode locations and cortical layers. In this case, additional micro wires electrodes binding with Neuropixels probe can be used to inject current and mark the locations of different depths in cortical tissue after recording.

    1. Reviewer #1 (Public Review):

      Using multi-region two-photon calcium imaging, the manuscript meticulously explores the structure of noise correlations (NCs) across the mouse visual cortex and uses this information to make inferences about the organization of communication channels between primary visual cortex (V1) and higher visual areas (HVAs). Using visual responses to grating stimuli, the manuscript identifies 6 tuning groups of visual cortex neurons and finds that NCs are highest among neurons belonging to the same tuning group whether or not they are found in the same cortical area. The NCs depend on the similarity of tuning of the neurons (their signal correlations) but are preserved across different stimulus sets - noise correlations recorded using drifting gratings are highly correlated with those measured using naturalistic videos. Based on these findings, the manuscript concludes that populations of neurons with high NCs constitute discrete communication channels that convey visual signals within and across cortical areas.

      Experiments and analyses are conducted to a high standard and the robustness of noise correlation measurements is carefully validated. However, the interpretation of noise correlation measurements as a proxy from network connectivity is fraught with challenges. While the data clearly indicates the existence of distributed functional ensembles, the notion of communication channels implies the existence of direct anatomical connections between them, which noise correlations cannot measure.

      The traditional view of noise correlations is that they reflect direct connectivity or shared inputs between neurons. While it is valid in a broad sense, noise correlations may reflect shared top-down input as well as local or feedforward connectivity. This is particularly important since mouse cortical neurons are strongly modulated by spontaneous behavior (e.g. Stringer et al, Science, 2019). Therefore, noise correlation between a pair of neurons may reflect whether they are similarly modulated by behavioral state and overt spontaneous behaviors. Consequently, noise correlation alone cannot determine whether neurons belong to discrete communication channels.

      Behavioral modulation can influence the gain of sensory-evoked responses (Niell and Stryker, Neuron, 2010). This can explain why signal correlation is one of the best predictors of noise correlations as reported in the manuscript. A pair of neurons that are similarly gain-modulated by spontaneous behavior (e.g. both active during whisking or locomotion) will have higher noise correlations if they respond to similar stimuli. Top-down modulation by the behavioral state is also consistent with the stability of noise correlations across stimuli. Therefore, it is important to determine to what extent noise correlations can be explained by shared behavioral modulation.

    1. Reviewer #1 (Public Review):

      In this study, Kim et al. investigated the mechanism by which uremic toxin indoxyl sulfate (IS) induces trained immunity, resulting in augmented pro-inflammatory cytokine production such as TNF and IL-6. The authors claim that IS treatment induced epigenetic and metabolic reprogramming, and the aryl hydrocarbon receptor (AhR)-mediated arachidonic acid pathway is required for establishing trained immunity in human monocytes. They also demonstrated that uremic sera from end-stage renal disease (ESRD) patients can generate trained immunity in healthy control-derived monocytes.

      These are interesting results that introduce the important new concept of trained immunity and its importance in showing endogenous inflammatory stimuli-induced innate immune memory. Additional evidence proposing that IS plays a critical role in the initiation of inflammatory immune responses in patients with CKD is also interesting and a potential advance of the field.

      Comments on the revised version:

      In the revised manuscripts, the authors have addressed essentially almost all of the points raised by the reviewers and have revised the manuscript accordingly. The additional comments improved the manuscript and strengthened the overall impact of the paper.

    1. Reviewer #1 (Public Review):

      Summary:

      Thayer et al build upon their prior findings that ASAR long noncoding RNAs (lncRNAs) are chromatin-associated and are implicated in control of replication timing. To explore the mechanism of function of ASAR transcripts, they leveraged the ENCODE RNA binding protein eCLIP datasets to show that a 7kb region of ASAR6-141 is bound by multiple hnRNP proteins. Deletion of this 7kb region resulted in delayed chromosome 6 replication. Furthermore, ectopic integration of the ASAR6-141 7kb region into autosomes or the inactive X-chromosome also resulted in delayed chromosome replication. They then use RNA FISH experiments to show that knockdown of these hnRNP proteins disrupts ASAR6-141 localization to chromatin and in turn replication timing.

      Strengths:

      Given prior publications showing HNRNPU to be important for chromatin retention of XIST and Firre, this work expands upon our understanding on the role of hnRNP proteins in lncRNA function.

      Weaknesses:

      The work presented is mechanistically interesting, however, one must be careful with the over interpretation that hnRNP proteins can regular chromosome replication directly.

    1. Joint Public Review:

      Xie et al. propose that the asymmetric segregation of the NuRD complex is regulated in a V-ATPase-dependent manner, and plays a crucial role in determining the differential expression of the apoptosis activator egl-1 and thus critical for the life/death fate decision.

      Remaining concerns are the following:

      The authors should provide the point-by-point response to the following issues. In particular, authors should provide clear reasoning as to why they did not address some of the following comments in the previous revisions. The next response should be directly answering to the following concerns.

      (1) Discussion should be added regarding the criticism that NuRD asymmetric segregation is simply a result of daughter cell size asymmetry. It is perfectly fine that the NuRD asymmetry is due to the daughter cell size difference (still the nucleus within the bigger daughter would have more NuRD, which can determine the fate of daughter cells). Once the authors add this clarification, some criticisms about 'control' may become irrelevant.

      (2) ZEN-4 is a kinesin that predominantly associates with the midzone microtubules and a midbody during mitosis. Given that midbodies can be asymmetrically inherited during cell division, ZEN-4 is not a good control for monitoring the inheritance of cytoplasmic proteins during asymmetric cell division. Other control proteins, such as a transcriptional factor that predominantly localizes in the cytoplasm during mitosis and enters into nucleus during interphase, are needed to clarify the concern.

      As for pHluorin experiments, symmetric inheritance of GFP and mCherry is not an appropriate evidence to estimate the level of pHluorin during asymmmetric Q cell division. This issue remains unsolved.

      (3) Q-Q plot (quantile-quantile plot) in Figure S10 can be used for visually checking normality of the data, but it does not guarantee that the distribution of each sample is normal and has the standard deviation compared with the other samples. I recommend the authors to show the actual statistical comparison P-values for each case. The authors also need to show the number of replicate experiments for each figure panel.

      The authors left inappropriate graphs in the revised manuscript. In Figure 3E, some error bars are disconnected and the other are stuck in the bars. In Figure S4C, LIN-53 in QR.a/p graph shows lines disconnected from error bars.

      I am bit confused with the error bars in Figure 2B. Each dot represents a fluorescent intensity ratio of either HDA-1 or LIN-53 between the two daughter cells in a single animal. Plots are shown with mean and SEM, but several samples (for example, the left end) exhibit the SEM error bar very close to a range of min and max. I might misunderstand this graph but am concerned that Figure 2B may contain some errors in representing these data sets. I would like to ask the authors to provide all values in a table format so that the reviewers could verify the statistical tests and graph representation.

      (4) The authors still do not provide evidence that the increase in sAnxV::GFP and Pegl-1gfp or the increase in H3K27ac at the egl-1 gene in hda-1(RNAi) and lin-53(RNAi) animals is not a consequence of global effects on development. Indeed, the images provided in Figure S7B demonstrate that there are global effects in these animals. no causal interactions have been demonstrated.

      (5) Figure 4: Due to the lack of appropriate controls for the co-IP experiment (Fig. 4), I remain unconvinced of the claim that the NuRD complex and V-ATPase specifically interact. Concerning the co-IP, the authors now mention that the co-IP was performed three times: "Assay was performed using three biological replicates. Three independent biological replicates of the experiment were conducted with similar results." However, the authors did not use ACT-4::GFP or GFP alone as controls for their co-IP as previously suggested. This is critical considering that the evidence for a specific HDA-1::GFP - V-ATPase interaction is rather weak (compare interactions between HDA-1::GFP and V-ATPase subunits in Fig 4B with those of HDA-1::GFP and subunits of NuRD in Fig S8B).

      (6) Based on Fig 5E, it appears that Bafilomycin treatment causes pleiotropic effects on animals (see differences in HDA-1::GFP signal in the three rows). The authors now state: "Although BafA1-mediated disruption of lysosomal pH homeostasis is recognized to elicit a wide array of intracellular abnormalities, we found no evidence of such pleiotropic effects at the organismal level with the dosage and duration of treatment employed in this study". However, the 'evidence' mentioned is not shown. It is critical that the authors provide this evidence.

    1. Reviewer #2 (Public Review):

      I have read the re-submission of the manuscript "The optimal clutch size revisited: separating individual quality from the parental survival costs of reproduction" by LA Winder and colleagues.

      I have to say that I am quite disappointed not to see any formalisation of the mechanism that the authors have in mind to explain the results they have and to draw general conclusions from it. In my original review, I strongly recommended "improving the theoretical component of the analysis by providing a solid theoretical framework before, from it, drawing conclusions. This, at a minimum, requires [...] most importantly a mechanistic model describing the assumed relationships."

      Without it, it is impossible to follow, agree or disagree with the authors and learn something from the meta-analysis other than: the clutch size-annual survival relationship has opposite slopes for manipulated and natural populations. Such a set of equations (would replace pages of verbose and) is not only necessary for the readers to be able to understand the authors' points and to clearly understand the simplifying assumptions, but also for the authors to ensure they conclusions are sound. For these reasons this is a central part of such studies, see, e.g. (Walker et al., 2008). This is supposedly replaced here by a figure (figure 5), which top-left part reads: "Parental survival costs of reproduction constrain intra-specific reproduction" - "no the effect size on fig 4 is too small". Figure 4 is the output of simulations where the authors have incorporated the mean effect on survival rate per egg from the manipulated populations into a model where they compute R0 for various increases in the annual fertility rate, and related decreases in annual survival rates, showing that along the slow-fast gradient, for balanced survival-reproduction (certainly not far from R0=1), R0 is not affected (or very little) by change in fertility-survival along the trade-off. Nowhere on this figure, do we have any information inferring that survival costs of reproduction do not constrain intra-specific reproduction. It is actually possible to build a simple mechanistic model with a trade-off mechanism that strongly affects the LRS and its variance between individuals and to would produce the exact same figure.

      This is compounded in this manuscript by the constant verbose, imprecisions, outright mistakes, with a general confusion between magnitudes and variation of magnitudes, which makes it very hard to read. Let us just look at two examples illustrating my points. In the abstract, I read: " ... revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the level observed within species, to that seen between species" means nothing: what is the level of reproductive effort seen between species? I suppose the authors mean "forced beyond the maximum level observed within species, to that seen between species" or something like that. Caption figure 4:" Selection differentials (i.e., the difference in lifetime reproductive output between hypothetical control and brood-manipulated populations)" It cannot be how this was calculated however: the difference between equal things is 0, not 1. These errors and all the other imprecisions, lengthy definitions that are for some almost impossible to fathom are the direct result of trying at all costs not to use a single equation, the most important tool in the study of ecology and trade-offs in particular, in a paper on costs of reproduction.

    1. Reviewer #1 (Public Review):

      The manuscript of Davidsen and Sullivan describes an improved tRNA-seq protocol to determine aminoacyl-tRNA levels. The improvements include: (i) optimizing the Whitfeld or oxidation reaction to select aminoacyl-tRNAs from oxidation-sensitive non-acylated tRNAs; (ii) using a splint-assisted ligation to modify the tRNAs' ends for the following RT-PCR reaction; (iii) using an error-tolerating mapping algorithm to map the tRNA sequencing reads that contain mismatches at modified nucleotides.

      The revised manuscript of Davidsen and Sullivan has addressed my concerns in the previous review. The authors performed a end-to-end comparison, which I requested - Fig. 2 and Fig S2. This is exactly what I meant, albeit the differences in each method to perform the comparison of the detectability. The manuscript is a strong methodological improvement of the tRNA quantification protocols!

    1. Joint Public Review:

      In this study, Kashio et al examined the role of TRPV4 in regulating perspiration in mice. They find coexpression of TRPV4 with the chloride channel ANO1 and aquaporin 5, which implies possible coupling of heat sensing through TRPV4 to ion and water excretion through the latter channels. Calcium imaging of eccrine gland cells revealed that the TRPV4 agonist GSK101 activates these cells in WT mice, but not in TRPV4 KO. This effect is reduced with cold-stimulating menthol treatment. Temperature-dependent perspiration in mouse skin, either with passive heating or with ACh stimulation, was reduced in TRPV4 KO mice. Functional studies in mice - correlating the ability to climb a slippery slope to properly regulate skin moisture levels - reveal potential dysregulation of foot pad perspiration in TRPV4 KO mice, which had fewer successful climbing attempts. Lastly, a correlation of TRPV4 to hypohydrosis in humans was shown, as anhidrotic skin showed reduced levels of TRPV4 expression compared to normohidrotic or control skin.

      Overall this is an interesting study on how TRPV4 regulates perspiration.

      (1) The functional relationship between TRPV3 and ANO1 remains correlative.

      (2) Littermate controls were not used, but TRPV4ko were backcrossed onto the WT strain.

      (3) In general, the results support the authors' claims that TRPV4 activity is a necessary component of sweat gland secretion, which may have important implications for controlling perspiration; secretion from other glands where TRPV4 may be expressed remains a possibility given the lack of us of exocrine-specific knockouts.

    1. Reviewer #1 (Public Review):

      In this study, Gu at al., investigated the role of the central noradrenaline system from LC to VLPO in the recovery of consciousness induced by midazolam. Combining pharmacology, optogenetics/chemogenetics, they found that the LC to VLPO NE circuits are essential for consciousness rebooting after midazolam, activation of this circuit strongly speeded up the recovery process, dependent on alpha1 adrenergic receptors in the VLPO neurons. The topic is important and their findings are of some interest.<br /> However, substantial improvements are needed in the language, for grammar, clarity, and layout. There are significant experimental errors (see below 1-2). Further experiments are required to support their main conclusions.

      (1) One major issue arises in Figure 4, the recording of VLPO Ca2+ activity. In Lines 211-215, they stated that they injected AAV2/9-DBH-GCaMP6m into the VLPO, while activating LC NE neurons. As they claimed in line 157, DBH is a specific promoter for NE neurons. This implies an attempt to label NE neurons in the VLPO, which is problematic because NE neurons are not present in the VLPO. This raises concerns about their viral infection strategy since Ca activity was observed in their photometry recording. This means that DBH promoter could randomly label some non-NE neurons. Is DBH promoter widely used? The authors should list references. Additionally, they should quantify the labeling efficiency of both DBH and TH-cre throughout the paper.<br /> (2) A similar issue arises with chemogenetic activation in Fig. 5 L-R, the authors used TH-cre and DIO-Gq virus to label VLPO neurons. Were they labelling VLPO NE or DA neurons for recording? The authors have to clarify this.<br /> (3) Another related question pertains to the specificity of LC NE downstream neurons in the VLPO. For example, do they preferentially modulate GABAergic or glutamatergic neurons?<br /> (4) In Figure 1A-D, in the measurement of the dosage-dependent effect of Mida in LORR, were they only performed one batch of testing? If more than one batch of mice were used, error bar should be presented in 1B. Also, the rationale of testing TH expression levels after Mid is not clear. Is TH expression level change related to NE activation specifically? If so, they should cite references.<br /> (5) Regarding the photometry recording of LC NE neurons during the entire process of midazolam injection in Fig. 2 and Fig. 4, it is unclear what time=0 stands for. If I understand correctly, the authors were comparing spontaneous activity during the four phases. Additionally, they only show traces lasting for 20s in Fig. 2F and Fig. 4L. How did the authors select data for analysis, and what criteria were used? The authors should also quantify the average Ca2+ activity and Ca2+ transient frequency during each stage instead of only quantifying Ca2+ peaks. In line 919, the legend for Figure 2D, they stated that it is the signal at the BLA; were they also recorded from the BLA?

    1. Reviewer #1 (Public Review):

      Summary:

      In this MS, Muenker and colleagues, explore the intracellular mechanics of a range of animal adherent cells. The study is based on the use of an optical tweezer set up, which allows to apply oscillatory forces on endocytosed/phagocytosed glass beads with a large frequency range (from ~1 to 1000 Hz) , allowing to probe cytoplasm material properties at multiple time scales. By switching off the laser trap, the authors also record the positional fluctuations of beads, to extract passive rheological signatures. The combination of both methods allow to fit 6 parameters (from power law fits) that allow to characterize the viscous and elastic nature of the cytoplasm material as well as an effective active energy driven by cellular metabolism. Using these methodologies, the authors first establish/confirm, using HeLa cells, that the cytoplasm is more solid like at short frequencies, and more fluid like at higher frequencies, and that these material states depend on both microtubules and actin cytoskeleton. The manuscript then go on to explore how these parameters evolve in other 6 cell types including muscles, highly migratory and epithelial cells. These results show for instance that muscle cells are much stiffer, while migratory cells are more fluid like with an increased active energy. Finally using statistical methods and principal component analysis, the authors establish some mechanical fingerprints (activity, fluidity and resistance) that allow to distinguish cell's mechanical state and relate it to their particular functions.

      Strengths:

      Overall this is a very well-executed work, which provides a large body of rigorous numbers and data to understand the regulation of cytoplasm mechanics and its relation to cell state/function.

      Weaknesses:

      A limit of the paper is that the biological mechanisms by which intracellular mechanics is modulated (e.g. among cell types) remains unexplored and only briefly discussed. Yet this limit is greatly offset by the rigor of the approach.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Kroll et al. conduct an in-depth behavioral analysis of F0 knockouts of 4 genes associated with late-onset Alzheimer's Disease (AD), together with 3 genes associated with early-onset AD. Kroll and colleagues developed a web application (ZOLTAR) to compare sleep-associated traits between genetic mutants with those obtained from a panel of small molecules to promote the identification of affected pathways and potential therapeutic interventions. The authors make a set of potentially important findings vis-à-vis the relationship between AD-associated genes and sleep. First, they find that loss-of-function in late-onset AD genes universally results in nighttime sleep loss, consistent with the well-supported hypothesis that sleep disruption contributes to Alzheimer's-related pathologies. psen-1, an early-onset associated AD gene, which the authors find is principally responsible for the generation of AB40 and AB42 in zebrafish, also shows a slight increase in activity at night and slight decreases in nighttime sleep. Conversely, psen-2 mutations increase daytime sleep, while appa/appb mutations have no impact on sleep. Finally, using ZOLTAR, the authors identify serotonin receptor activity as potentially disrupted in sorl1 mutants, while betamethasone is identified as a potential therapeutic to promote reversal of psen2 knockout-associated phenotypes.

      This is a highly innovative and thorough study, yet a handful of key questions remain. First, are nighttime sleep loss phenotypes observed in all knockouts for late-onset AD genes in the larval zebrafish a valid proxy for AD risk? For those mutants that cause nighttime sleep disturbances, do these phenotypes share a common underlying pathway? e.g. Do 5-HT reuptake inhibitors promote sleep across all 4 late-onset genes in addition to psen1? Can 5-HT reuptake inhibitors reverse other AD-related pathologies in zebrafish? Can compounds be identified that have a common behavioral fingerprint across all or multiple AD risk genes? Do these modify sleep phenotypes? Finally, the web-based platform presented could be expanded to facilitate comparison of other behavioral phenotypes, including stimulus-evoked behaviors. Finally, the authors propose but do not test the hypothesis that sorl1 might regulate localization/surface expression of 5-HT2 receptors. This could provide exciting / more convincing mechanistic support for the assertion that serotonin signaling is disrupted upon loss of AD-associated genes. Despite these important considerations, this study provides a valuable platform for high-throughput analysis of sleep phenotypes and correlation with small-molecule-induced sleep phenotypes.

      Strengths:

      - Provides a useful platform for comparison of sleep phenotypes across genotypes/drug manipulations.

      - Presents convincing evidence that nighttime sleep is disrupted in mutants for multiple late-onset AD-related genes.

      - Provides potential mechanistic insights for how AD-related genes might impact sleep and identifies a few drugs that modify their identified phenotypes

      Weaknesses:

      - Exploration of potential mechanisms for serotonin disruption in sorl1 mutants is limited.

      - The pipeline developed can only be used to examine sleep-related / spontaneous movement phenotypes and stimulus-evoked behaviors are not examined.

      - Comparisons between mutants/exploration of commonly affected pathways are limited.

    1. Reviewer #1 (Public Review):

      In this study, Hoops et al. showed that Netrin-1 and UNC5c can guide dopaminergic innervation from nucleus accumbens to cortex during adolescence in rodent models. They found that these dopamine axons project to the prefrontal cortex in a Netrin-1 dependent manner and knocking down Netrin-1 disrupted motor and learning behaviors in mice. Furthermore, the authors used hamsters, a seasonal model that is affected by the length of daylight, to demonstrate that the guidance of dopamine axons is mediated by the environmental factor such as daytime length and in sex dependent manner.

      Regarding the cell type specificity of Netrin-1 expression, the authors began by stating "this question is not the focus of the study and we consider it irrelevant to the main issue we are addressing, which is where in the forebrain regions we examined Netrin-1+ cells are present." This statement contradicts the exact issue regarding the specificity issue I raised. They then went on to show the RNAscope data for Netriin-1 in Figure 2, which showed Netrin-1 mRNA was actually expressed quite ubiquitously in anterior cingulate cortex, dorsopeduncular cortex, infralimbic cortex, prelimbic cortex, etc. In addition, contrary to the authors' statement that Netrin-1 is a "secreted protein", the confocal images in Figure 1 in the rebuttal letter actually show Netrin-1 present in "granule-like" organelles inside the cytoplasm of neurons. Finally, the authors presented Figure 7 to indicate the location where virus expressing Netrin-1 shRNA might be located. Again, the brain region targeted was quite focal and most likely did not cover all the Netrin-1+ brain regions in Figure 2. Collectively, these results raised more questions regarding the specificity of Netrin-1 expression in brain regions that are behaviorally relevant to this study.

      With respect to the effectiveness of Netrin-1 knockdown in the animals in this study, the authors cited data in HEK293 cells (Figure 5), which did not include any statistics, and previously published in vivo data in a separate, independent study (Figure 6). They do not provide any data regarding the effectiveness of Netrin-1 knockdown in THIS study.

      Similar concerns regarding UNC5C knockdown (points #6, #7, and #8) were not adequately addressed.

      In brief, while this study provides a potential role of Netrin-1-UNC5C in target innervation of dopaminergic neurons and its behavioral output in risk-taking, the data lack sufficient evidence to firmly establish the cause-effect relationship.

    1. Reviewer #1 (Public Review):

      Summary:

      This study trained a CNN for visual word classification and supported a model that can explain key functional effects of the evoked MEG response during visual word recognition, providing an explicit computational account from detection and segmentation of letter shapes to final word-form identification.

      Strengths:

      This paper not only bridges an important gap in modeling visual word recognition, by establishing a direct link between computational processes and key findings in experimental neuroimaging studies, but also provides some conditions to enhance biological realism.

      Weaknesses:

      The interpretation of CNN results, especially the number of layers in the final model and its relationship with the processing of visual words in the human brain, needs to be further strengthened.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors are looking to assess fragmentomics effects using the Delfi method in exonic regions (Exome sequencing). They argue that this is to make the test more cost effective by extracting this information from exome sequencing.

      Strengths:

      Well written and explained. Different ML approaches tried.

      Weaknesses:

      To assess fragmentomics in WES, it doesn't seem valid to downsample WGS. WES is generated by a different library preparations so to answer this question, it would be necessary to try this in WES samples. The coverage of WES is generally done much higher because this is necessary to assess mutation calls therefore the approach of combining seems flawed because these were not generated by the same experiment.

      The authors do not really show why they included longer fragment sizes in their model that had previously been excluded from the original Delfi publication

      As a proof of concept this is a good idea but really needs a bit of a rethink on the utility and impact.

    1. Reviewer #1 (Public Review):

      Summary:

      The study used root tips from semi-hydroponic tea seedlings. The strategy followed sequential steps to draw partial conclusions.

      Initially, protoplasts obtained from root tips were processed for scRNA-seq using the 10x Genomics platform. The sequencing data underwent pre-filtering at both the cell and gene levels, leading to 10,435 cells. These cells were then classified into eight clusters using t-SNE algorithms. The present study scrutinised cell typification through protein sequence similarity analysis of homologs of cell type marker genes. The analysis was conducted to ensure accuracy using validated genes from previous scRNA-seq studies and the model plant Arabidopsis thaliana. The cluster cell annotation was confirmed using in situ RT-PCR analyses. This methodology provided a comprehensive insight into the cellular differentiation of the sample under study. The identified clusters, spanning 1 to 8, have been accurately classified as xylem, epidermal, stem cell niche, cortex/endodermal, root cap, cambium, phloem, and pericycle cells.

      Then, the authors performed a pseudo-time analysis to validate the cell cluster annotation by examining the differentiation pathways of the root cells. Lastly, they created a differentiation heatmap from the xylem and epidermal cells and identified the biological functions associated with the highly expressed genes.

      Upon thoroughly analysing the scRNA-seq data, the researchers delved into the cell heterogeneity of nitrate and ammonium uptake, transport, and nitrogen assimilation into amino acids. The scRNA-seq data was validated by in situ RT-PCR. It allows the localisation of glutamine and alanine biosynthetic enzymes along the cell clusters and confirms that both constituent the primary amino acid metabolism in the root. Such investigation was deemed necessary due to the paramount importance of these processes in theanine biosynthesis since this molecule is synthesised from glutamine and alanine-derived ethylamine.

      Afterwards, the authors analysed the cell-specific expression patterns of the theanine biosynthesis genes, combining the same molecular tools. They concluded that theanine biosynthesis is more enriched in cluster 8 "pericycle cells" than glutamine biosynthesis (Lines 271-272). However, the statement made in Line 250 states that the highest expression levels of genes responsible for glutamine biosynthesis were observed in Clusters 1, 3, 4, 6, and 8, leading to an unclear conclusion.

      The regulation of theanine biosynthesis by the MYB transcription factor family is well-established. In particular, CsMYB6, a transcription factor expressed specifically in roots, has been found to promote theanine biosynthesis by binding to the promoter of the TSI gene responsible for theanine synthesis. However, their findings indicate that CsMYB6 expression is present in Cluster 3 (SCN), Cluster 6 (cambium cells), and Cluster 1 (xylem cells) but not in Cluster 8 (pericycle cells), which is known for its high expression of CsTSI. Similarly, their scRNA-seq data indicated that CsMYB40 and CsHHO3, which activate and repress CsAlaDC expression, respectively, did not show high expression in Cluster 1 (the cell cluster with high CsAlaDC expression). Based on these findings, the authors hypothesised that transcription factors and target genes are not necessarily always highly expressed in the same cells. Nonetheless, additional evidence is essential to substantiate this presumption.

      Lastly, the authors have discovered a novel transcription factor belonging to the Lateral Organ Boundaries Domain (LBD) family known as CsLBD37 that can co-regulate the synthesis of theanine and the development of lateral roots. The authors observed that CsLBD37 is located within the nucleus and can repress the CsAlaDC promoter's activity. To investigate this mechanism further, the authors conducted experiments to determine whether CsLBD37 can inhibit CsAlaDC expression in vivo. They achieved this by creating transiently CsLBD37-silenced or over-expression tea seedlings through antisense oligonucleotide interference and generation of transgenic hairy roots. Based on their findings, the authors hypothesise that CsLBD37 regulates CsAlaDC expression to modulate the synthesis of ethylamine and theanine.

      Additionally, the available literature suggests that the transcription factors belonging to the Lateral Organ Boundaries Domain (LBD) family play a crucial role in regulating the development of lateral roots and secondary root growth. Considering this, they confirmed that pericycle cells exhibit a higher expression of CsLBD37. A recent experiment revealed that overexpression of CsLBD37 in transgenic Arabidopsis thaliana plants led to fewer lateral roots than the wild type. From this observation, the researchers concluded that CsLBD37 regulates lateral root development in tea plants. I respectfully submit that the current conclusion may require additional research before it can be considered definitive.

      Further efforts should be made to investigate the signalling mechanisms that govern CsLBD37 expression to arrive at a more comprehensive understanding of this process. In the context of Arabidopsis lateral root founder cells, the establishment of asymmetry is regulated by LBD16/ASL18 and other related LBD/ASL proteins, as well as the AUXIN RESPONSE FACTORs (ARF7 and ARF19). This is achieved by activating plant-specific transcriptional regulators such as LBD16/ASL18 (Go et al., 2012, https://doi.org/10.1242/dev.071928). On the other hand, other downstream homologues of LBD genes regulated by cytokinin signalling play a role in secondary root growth (Ye et al., 2021, https://doi.org/10.1016/j.cub.2021.05.036). It is imperative to shed light on the hormonal regulation of CsLBD37 expression in order to gain a comprehensive understanding of its involvement in the morphogenic process.

      Strength:

      The manuscript showcases significant dedication and hard work, resulting in valuable insights that serve as a fundamental basis for generating knowledge. The authors skillfully integrated various tools available for this type of study and meticulously presented and illustrated every step involved in the survey. The overall quality of the work is exceptional, and it would be a valuable addition to any academic or professional setting.

      Weaknesses:

      In its current form, the article presents certain weaknesses that need to be addressed to improve its overall quality. Specifically, the authors' conclusions appear to have been drawn in haste without sufficient experimental data and a comprehensive discussion of the entire plant. It is strongly advised that the authors devote additional effort to resolving the abovementioned issues to bolster the article's credibility and dependability. This will ensure that the article is of the highest quality, providing readers with reliable and trustworthy information.

    1. Reviewer #1 (Public Review):

      In this study, Sarver and colleagues carried out an exhaustive analysis of the functioning of various components (Complex I/II/IV) of the mitochondrial electron transport chain (ETC) using a real-time cell metabolic analysis technique (commonly referred as Seahorse oxygen consumption rate (OCR) assay). The authors aimed to generate an atlas of ETC function in about 3 dozen tissue types isolated from all major mammalian organ systems. They used a recently published improvised method by which ETC function can be quantified in freshly frozen tissues. This method enabled them to collect data from almost all organ systems from the same mouse and use many biological replicates (10 mice/experiment) required for an unbiased and statistically robust analysis. Moreover, they studied the influence of sex (male and female) and aging (young adult and old age) on ETC function in these organ systems. The main findings of this study are (1) cells in the heart and kidneys have very active ETC complexes compared to other organ systems, (2) the sex of the mice has little influence on the ETC function, and (3) aging undermined the mitochondrial function in most tissue, but surprisingly in some tissue aging promoted the activity of ETC complexes (e.g., Quadriceps, plantaris muscle, and Diaphragm). Although this study provides a comprehensive outlook on the ETC function in various tissues, the main caveat is that it's too technical and descriptive. The authors didn't invest much effort in putting their findings in the context of the biological function of the tissue analyzed, i.e., some tissues might be more glycolytic than others and have low ETC activity. Also, it is unclear what slight changes in the activity of one or the other ETC complex mean in terms of mitochondrial ATP production. Likely, these small changes reported do not affect the mitochondrial respiration. With such a detailed dataset, the study falls short of deriving more functionally relevant conclusions about the heterogeneity of mitochondrial function in various tissues. In the current format, the readers get lost in the large amount of data presented in a technical manner. Also, it is highly recommended that all the raw data and the values be made available as an Excel sheet (or other user-friendly formats) as a resource to the community.

      Major concerns

      (1) In this study, the authors used the method developed by Acin-Perez and colleagues (EMBO J, 2020) to analyze ETC complex activities in mitochondria derived from the snap-frozen tissue samples. However, the preservation of cellular/mitochondrial integrity in different types of tissues after being snap-frozen was not validated. Additionally, the conservation of mitochondrial respiration in snap-frozen tissues might differ, especially in those derived from old mice. For example, quadriceps (young male/female), plantaris (young male/female), intestinal segments (duodenum), and pancreas preparations show almost no activity (nearly flat OCR in Seahorse assays). For such a comprehensive study, the author must at least validate those tissues where the OCR plots looked suboptimal with the mitochondrial preparations derived from the fresh tissue. Since aging has been identified as the most important effector in this study, it is essential to validate how aging affects respiration in various fresh frozen tissues. Such analysis will ensure that the results presented are not due to the differential preservation of the mitochondrial respiration in the frozen tissue. In addition, such validations will further strengthen the conclusions and promote the broad usability of this "new" method.

      (2) In this study, the authors sampled the maximal activity of ETC complex I, II, and IV, but throughout the manuscript, they discussed the data in the context of mitochondrial function. However, it is unclear how the changes in CI, CII, and CIV activity affect overall mitochondrial function (if at all) and how small changes seen in the maximal activity of one or more complexes affect the efficiency and efficacy of ATP production (OxPhos). The authors report huge variability between the activity of different complexes - in some tissues all three complexes (CI, CII, and CIV) and often in others, just one complex was affected. For example, as presented in Figure 4, there is no difference in CI activity in the hippocampus and cerebellum, but there is a slight change in CII and CIV activity. In contrast, in heart atria, there is a change in the activity of CI but not in CII and CIV. However, the authors still suggest that there is a significant difference in mitochondrial activity (e.g., "Old males showed a striking increase in mitochondrial activity via CI in the heart atria....reduced mitochondrial respiration in the brain cortex..." - Lines 5-7, Page 9). Until and unless a clear justification is provided, the authors should not make these broad claims on mitochondrial respiration based on small changes in the activity of one or more complexes (CI/CII/CIV). With such a data-heavy and descriptive study, it is confusing to track what is relevant and what is not for the functioning of mitochondria.

      (3) What do differences in the ETC complex CI, CII, and CIV activity in the same tissue mean? What role does the differential activity of these complexes (CI, CII, and CIV) play in mitochondrial function? What do changes in Oxphos mean for different tissues? Does that mean the tissue (cells involved) shift more towards glycolysis to derive their energy? In the best world, a few experiments related to the glycolytic state of the cells would have been ideal to solidify their finding further. The authors could have easily used ECAR measurements for some tissues to support their key conclusions.

      (4) The authors further analyzed parameters that significantly changed across their study (Figure 7, 98 data points analyzed). The main caveat of such analysis is that some tissue types would be represented three or even more times (due to changes in the activity of all three complexes - CI, CII, and CIV, and across different ages and sexes), and some just once. Such a method of analysis will skew the interpretation towards a few over-represented organ/tissue systems. Perhaps the authors should separately analyze tissue where all three complexes are affected from those with just one affected complex.

      (5) The current protocol does not provide cell-type-specific resolution and will be unable to identify the cellular source of mitochondrial respiration. This becomes important, especially for those organ systems with tremendous cellular heterogeneity, such as the brain. The authors should discuss whether the observed changes result from an altered mitochondria respiratory capacity or if changes in proportions of cell types in the different conditions studied (young vs. aged) might also contribute to differential mitochondrial respiration.

      (6) Another critical concern of this study is that the same datasets were repeatedly analyzed and reanalyzed throughout the study with almost the same conclusion - namely, aging affects mitochondrial function, and sex-specific differences are limited to very few organs. Although this study has considerable potential, the authors missed the chance to add new insights into the distinct characteristics of mitochondrial activity in various tissue and organ systems. The author should invest significant efforts in putting their data in the context of mitochondrial function.

    1. Reviewer #1 (Public Review):

      Summary

      Type 1 diabetes mellitus (T1DM) progression is accelerated by oxidative stress and apoptosis. Eugenol (EUG) is a natural compound previously documented as anti-inflammatory, anti-oxidative, and anti-apoptotic. In this manuscript by Jiang et al., the authors study the effects of EUG on T1DM in MIN6 insulinoma cells and a mouse model of chemically induced T1DM. The authors show that EUG increases nuclear factor E2-related factor 2 (Nrf2) levels. This results in a reduction of pancreatic beta-cell damage, apoptosis, oxidative stress markers, and a recovery of insulin secretion. The authors highlight these effects as indicative of the therapeutic potential of EUG in managing T1DM.

      Strengths

      Relevant, timely, and addresses an interesting question in the field. The authors consistently observe enhanced beta cell functionality following EUG treatment, which makes the compound a promising candidate for T1DM therapy.

      Weaknesses

      The in vivo experiments have too few biological replicates. With an n=3 (as all figure legends indicate) in complex mouse studies such as these, drawing robust conclusions becomes challenging. It is important to reproduce these results in a larger cohort, to validate the conclusions of the authors. Another big concern is the lack of quantifications and statistical analysis throughout the manuscript. Although the authors claim statistical significance in various experiments, the limited information provided makes it difficult to verify. The authors use vague and minimal descriptions of their experiments, which further reduces the reader's comprehension and the reproducibility of the experiments. Finally, the use of Min6 cells as a model for pancreatic beta cells is a strong limitation of this study. Future studies should seek to reproduce these findings in a more translational model and use more relevant in vitro cell systems (eg. Islets).

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors used a coarse-grained DNA model (cgNA+) to explore how DNA sequences and CpG methylation/hydroxymethylation influence nucleosome wrapping energy and the probability density of optimal nucleosomal configuration. Their findings indicate that both methylated and hydroxymethylated cytosines lead to increased nucleosome wrapping energy. Additionally, the study demonstrates that methylation of CpG islands increases the probability of nucleosome formation.

      Strengths:

      The major strength of this method is that the model explicitly includes elastic constraints on the positions of phosphate groups facing a histone octamer, as DNA-histone binding site constraints. The authors claim that their model enhances the accuracy and computational efficiency and allows comprehensive calculations of DNA mechanical properties and deformation energies.

      Weaknesses:

      A significant limitation of this study is that the parameter sets for the methylated and hydroxymethylated CpG steps in the cgNA+ model are derived from all-atom molecular dynamics (MD) simulations that suggest that both methylated and hydroxymethylated cytosines increase DNA stiffness and nucleosome wrapping energy (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 2021). It could predispose the coarse-grained model to replicate these findings. Notably, conflicting results from other all-atom MD simulations, such as those by Ngo T in Nat. Commun. 2016, shows that hydroxymethylated cytosines increase DNA flexibility, contrary to methylated cytosines. If the cgNA+ model was trained on these later parameters or other all-atom force fields, different conclusions might be obtained regarding the effects of methylated and hydroxymethylation on nucleosome formation.

      Despite the training parameters of the cgNA+ model, the results presented in the manuscript indicate that methylated cytosines increase both DNA stiffness and nucleosome wrapping energy. However, when comparing nucleosome occupancy scores with predicted nucleosome wrapping energies and optimal configurations, the authors find that methylated CGIs exhibit higher nucleosome occupancies than unmethylated ones, which seems to contradict their findings from the same paper which showed that increased stiffness should reduce nucleosome formation affinity. In the manuscript, the authors also admit that these conclusions "apparently runs counter to the (perhaps naive) intuition that high nucleosome forming affinity should arise for fragments with low wrapping energy". Previous all-atom MD simulations (Pérez A, et al. Biophys J. 2012; Battistini, et al. PLOS Comput Biol. 202; Ngo T, et al. Nat. Commun. 20161) show that the stiffer DNA upon CpG methylation reduces the affinity of DNA to assemble into nucleosomes or destabilizes nucleosomes. Given these findings, the authors need to address and reconcile these seemingly contradictory results, as the influence of epigenetic modifications on DNA mechanical properties and nucleosome formation are critical aspects of their study.<br /> Understanding the influence of sequence-dependent and epigenetic modifications of DNA on mechanical properties and nucleosome formation is crucial for comprehending various cellular processes. The authors' study, focusing on these aspects, will definitely garner interest from the DNA methylation research community.

    1. Reviewer #1 (Public Review):

      Summary:

      HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase1 is predicted to be involved in Acetyl-CoA metabolic process and mevalonate-cholesterol pathway. To induce diet-induced diabetes, they fed wild-type littermates either a standard chow (Control) or a high fat-high sucrose (HFHG) diet, where the diet composition consisted of 60% fat, 20% protein, and 20% carbohydrate (H10060, Hfkbio, China). The dietary regimen was maintained for 14 weeks. Throughout this period, body weight and fasting blood glucose (FBG) levels were measured on a weekly basis. Although the authors induced diabetes with a diet also rich in fat, the cholesterol concentration or metabolism was not investigated. After the treatment, were the animals with endothelial dysfunction? How was the blood pressure of the animals?

      Strengths:

      To explore the potential role of circHMGCS1 in regulating endothelial cell function, the authors cloned exons 2-7 of HMGCS1 into lentiviral vectors for ectopic overexpression of circHMGCS1 (Figure S2). The authors could use this experiment as a concept proof and investigate the glucose concentration in the cell culture medium. Is the pLV-circ HMGCS1 transduction in HUVEC increasing the glucose release? (Line 163)

      Weaknesses:

      (1) Pg 20. The cells were transfected with miR-4521 mimics, miR-inhibitor, or miR-NC and incubated for 24 hours. Subsequently, the cells were treated with PAHG for another 24 hours.

      Were the cells transfected with lipofectanine? The protocol or the lipofectamine kit used should be described. The lipofectamine protocol suggests using an incubation time of 72 hours. Why did the authors incubate for only 24 hours?

      If the authors did the mimic and inhibitor curves, these should be added to the supplementary figures. Please, describe the miRNA mimic and antagomir concentration used in cell culture.

      (2) Pg 20, line 507. What was the miR-4521 agomiR used to treatment of the animals?

      (3) Figure 1B. The results are showing the RT-qPCR for only 5 circRNA, however, the results show 48 circRNAs were upregulated, and 18 were downregulated (Figure S1D). Why were the other cicRNAs not confirmed? The circRNAs upregulated with high expression are not necessarily with the best differential expression comparing control vs. PAHG groups. Furthermore, Figure 1A and S1D show circRNAs downregulated also with high expression. Why were these circRNAs not confirmed?

      (4) Figure 1B shows the relative circRNAs expression. Were host genes expressed in the same direction?

      (5) Line 128. The circRNA RT-qPCR methodology was not described. The methodology should be described in detail in the Methods Session.

      (6) Line 699. The relative gene expression was calculated using the 2-ΔΔCt method. This is not correct, the expression for miRNA and gene expression are represented in percentage of control.

      (7) Line 630. Detection of ROS for tissue and cells. The methodology for tissue was described, but not for cells.

      (8) Line 796. RNA Fluorescent In Situ Hybridization (RNA-FISH). Figure 1F shows that the RNA-Fluorescence in situ hybridization (RNA-FISH) confirmed the robust expression of cytoplasmic circHMGCS1 in HUVECs (Figure 1F). However, in the methods, lines 804 and 805 described the probes targeting circMAP3K5 and miR-4521 were applied to the sections. Hybridization was performed in a humid chamber at 37{degree sign}C overnight. Is it correct?

      (9) Line 14. Fig 1-H. The authors discuss qRT-PCR demonstrated that circHMGCS1 displayed a stable half-life exceeding 24 h, whereas the linear transcript HMGCS1 mRNA had a half-life less than 8 h (Figure 1H).<br /> Several of the antibodies may contain trace amounts of RNases that could degrade target RNA and could result in loss of RNA hybridization signal or gene expression. Thus, all of the solutions should contain RNase inhibitors. The HMGCS1 mRNA expression could be degraded over the incubation time (0-24hs) leading to incorrect results. Moreover, in the methods is not mentioned if the RNAse inhibitor was used. Please, could the authors discuss and provide information?

      (10) Further experiments demonstrated that the overexpression of circHMGCS1 stimulated the expression of adhesion molecules (VCAM1, ICAM1, and ET-1) (Figures 2B and 2C), suggesting that circHMGCS1 is involved in VED. How were these genes expressed in the RNA-seq?

      (11) Line 256. By contrast, the combined treatment of circHMGCS1 and miR-4521 agomir did not significantly affect the body weight and blood glucose levels. OGTT and ITT experiments demonstrated that miR-4521 agomir considerably enhanced glucose tolerance and insulin resistance in diabetic mice (Figures 5C, 5D, and Figures S5B and S5C). Why didi the miR-4521 agomir treatment considerably enhance glucose tolerance and insulin resistance in diabetic mice, but not the blood glucose levels?

      (12) In the experiments related to pull-down, the authors performed Biotin-coupled miR-4521 or its mutant probe, which was employed for circHMGCS1 pull-down. This result only confirms the Luciferase experiments shown in Figure 4A. The experiment that the authors need to perform is pull-down using a biotin-labeled antisense oligo (ASO) targeting the circHMGCS1 backsplice junction sequence followed by pulldown with streptavidin-conjugated magnetic beads to capture the associated miRNAs and RNA binding proteins (RBPs). Also, the ASO pulldown assay can be coupled to miRNA RT-qPCR and western blotting analysis to confirm the association of miRNAs and RBPs predicted to interact with the target circRNA.

      (13) In Figure 5, the authors showed that the results suggest that miR-4521 can inhibit the occurrence of diabetes, whereas circHMGCS1 specifically dampens the function of miR-4521, weakening its protective effect against diabetes. In this context, what are the endogenous target genes for the miR-4521 that could be regulating diabetes?

      (14) In the western blot of Figure 5, the β-actin band appears to be different from the genes analyzed. Was the same membrane used for the four proteins? The Ponceau S membrane should be provided.

      (15) Why did the authors use AAV9, since the AAV9 has a tropism for the liver, heart, skeletal muscle, and not to endothelial vessels?

    1. Reviewer #1 (Public Review):

      Summary:

      This is a well-written and detailed manuscript showing important results on the molecular profile of 4 different cohorts of female patients with lung cancer.

      The authors conducted comprehensive multi-omic profiling of air-pollution-associated LUAD to study the roles of the air pollutant BaP. Utilizing multi-omic clustering and mutation-informed interface analysis, potential novel therapeutic strategies were identified.

      Strengths:

      The authors used several different methods to identify potential novel targets for therapeutic interventions.

      Weaknesses:

      Statistical test results need to be provided in comparisons between cohorts.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript reports the substrate-bound structure of SiaQM from F. nucleatum, which is the membrane component of a Neu5Ac-specific Tripartite ATP-dependent Periplasmic (TRAP) transporter. Until recently, there was no experimentally derived structural information regarding the membrane components of the TRAP transporter, limiting our understanding of the transport mechanism. Since 2022, there have been 3 different studies reporting the structures of the membrane components of Neu5Ac-specific TRAP transporters. While it was possible to narrow down the binding site location by comparing the structures to proteins of the same fold, a structure with substrate bound has been missing. In this work, the authors report the Na+-bound state and the Na+ plus Neu5Ac state of FnSiaQM, revealing information regarding substrate coordination. In previous studies, 2 Na+ ion sites were identified. Here, the authors also tentatively assign a 3rd Na+ site. The authors reconstitute the transporter to assess the effects of mutating the binding site residues they identified in their structures. Of the 2 positions tested, only one of them appears to be critical to substrate binding.

      Strengths:

      The main strength of this work is the capture of the substrate-bound state of SiaQM, which provides insight into an important part of the transport cycle.

      Weaknesses:

      The main weakness is the lack of experimental validation of the structural findings. The authors identified the Neu5Ac binding site, but only tested 2 residues for their involvement in substrate interactions, which was very limited. The authors tentatively identified a 3rd Na+ binding site, which if true would be an impactful finding, but this site was not tested for its contribution to Na+ dependent transport, and the authors themselves report that the structural evidence is not wholly convincing. This lack of experimental validation undermines the confidence of the findings. However, the reporting of these new data is important as it will facilitate follow-up studies by the authors or other researchers.

    1. Reviewer #1 (Public Review):

      In this manuscript by Wu et al., the authors present the high resolution cryoEM structures of the WT Kv1.2 voltage-gated potassium channel. Along with this structure the authors have solved several structures of mutants or experimental conditions relevant to the slow inactivation process that these channels undergo and which is not yet completely understood.

      One of the main findings is the determination of the structure of a mutant (W366F) that is thought to correspond to the slow inactivated state. These experiments confirm results in similar mutants in different channels from Kv1.2 that indicate that inactivation is associated with an enlarged selectivity filter.

      Another interesting structure is the complex of Kv1.2 with the pore blocking toxin Dendrotoxin 1. The results shown in the revised version indicate that the mechanism of block is similar to that of related blocking-toxins, in which a lysine residue penetrates in the pore. Surprisingly, in these new structures, the bound toxin results in a pore with empty external potassium binding sites.

      The quality of the structural data presented in this revised manuscript is very high and allows for unambiguous assignment of side chains. The conclusions are supported by the data. This is an important contribution that should further our understanding of voltage-dependent potassium channel gating. In the revised version, the authors have addressed my previous specific comments, which are appended below.

      (1) In the main text's reference to Figure 2d residues W18' and S22' are mentioned but are not labeled in the insets.

      (2) On page 8 there is a discussion of how the two remaining K+ ions in binding sites S3 and S4 prevent permeation K+ in molecular dynamics. However, in Shaker, inactivated W434F channels can sporadically allow K+ permeation with normal single-channel conductance but very reduced open times and open probability at not very high voltages.

      (3) The structures of WT in the absence of K+ shows a narrower selectivity filter, however Figure 4 does not convey this finding. In fact, the structure in Figure 4B is constructed in such an angle that it looks as if the carbonyl distances are increased, perhaps this should be fixed. Also, it is not clear how the distances between carbonyls given in the text on page 12 are measured. Is it between adjacent or kitty-corner subunits?

      (4) It would be really interesting to know the authors opinion on the driving forces behind slow inactivation. For example, potassium flux seems to be necessary for channels to inactivate, which might indicate a local conformational change is the trigger for the main twisting events proposed here.

    1. Reviewer #1 (Public Review):

      General comments:

      This paper investigates the pH-specific enzymatic activity of mouse acidic mammalian chitinase (AMCase) and aims to elucidate its function's underlying mechanisms. The authors employ a comprehensive approach, including hydrolysis assays, X-ray crystallography, theoretical calculations of pKa values, and molecular dynamics simulations to observe the behavior of mouse AMCase and explore the structural features influencing its pH-dependent activity.

      The study's key findings include determining kinetic parameters (Kcat and Km) under a broad range of pH conditions, spanning from strong acid to neutral. The results reveal pH-dependent changes in enzymatic activity, suggesting that mouse AMCase employs different mechanisms for protonation of the catalytic glutamic acid residue and the neighboring two aspartic acids at the catalytic motif under distinct pH conditions.<br /> The novelty of this research lies in the observation of structural rearrangements and the identification of pH-dependent mechanisms in mouse AMCase, offering a unique perspective on its enzymatic activity compared to other enzymes. By investigating the distinct protonation mechanisms and their relationship to pH, the authors reveal the adaptive nature of mouse AMCase, highlighting its ability to adjust its catalytic behavior in response to varying pH conditions. These insights contribute to our understanding of the pH-specific enzymatic activity of mouse AMCase and provide valuable information about its adaptation to different physiological conditions.<br /> Overall, the study enhances our understanding of the pH-dependent activity and catalytic properties of mouse AMCase and sheds light on its adaptation to different physiological pH environments.

      Comments on revised version:

      In their revised manuscript, the authors have made significant efforts to address the reviewers' comments.

    1. Reviewer #1 (Public Review):

      This study offers valuable insights into host-virus interactions, emphasizing the adaptability of the immune system. Readers should recognize the significance of MDA5 in potentially replacing RIG-I and the adversarial strategy employed by 5'ppp-RNA SCRV in degrading MDA5 mediated by m6A modification in different species, further indicating that m6A is a conservational process in the antiviral immune response.

      However, caution is warranted in extrapolating these findings universally, given the dynamic nature of host-virus dynamics. The study provides a snapshot into the complexity of these interactions, but further research is needed to validate and extend these insights, considering potential variations across viral species and environmental contexts. Additionally, it is noted that the main claims put forth in the manuscript are only partially supported by the data presented.

    1. Reviewer #1 (Public Review):

      This manuscript presents a pipeline incorporating a deep generative model and peptide property predictors for the de novo design of peptide sequences with dual antimicrobial/antiviral functions. The authors synthesized and experimentally validated three peptides designed by the pipeline, demonstrating antimicrobial and antiviral activities, with one leading peptide exhibiting antimicrobial efficacy in animal models. However, the manuscript as it stands, has several major limitations on the computational side.

      Major issues:

      (1) The choice of GAN as the generative model. There are multiple deep generative frameworks (e.g., language models, VAEs, and diffusion models), and GANs are known for their training difficulty and mode collapse. Could the authors elaborate on the specific rationale behind choosing GANs for this task?

      (2) The pipeline is supposed to generate peptides showing dual properties. Why were antiviral peptides not used to train the GAN? Would adding antiviral peptides into the training lead to a higher chance of getting antiviral generations?

      (3) For the antimicrobial peptide predictor, where were the contact maps of peptides sourced from?

      (4) Morgan fingerprint can be used to generate amino acid features. Would it be better to concatenate ESM features with amino acid-level fingerprints and use them as node features of GNN?

      (5) Although the number of labeled antiviral peptides may be limited, the input features (ESM embeddings) should be predictive enough when coupled with shallow neural networks. Have the authors tried simple GNNs on antiviral prediction and compared the prediction performance to those of existing tools?

      (6) Instead of using global alignment to get match scores, the authors should use local alignment.

      (7) How novel are the validated peptides? The authors should run a sequence alignment to get the most similar known AMP for each validated peptide, and analyze whether they are similar.

      (8) Only three peptides were synthesized and experimentally validated. This is too few and unacceptable in this field currently. The standard is to synthesize and characterize several dozens of peptides at the very least to have a robust study.

    1. Reviewer #1 (Public Review):

      Summary:

      This work shows, based on basic laboratory investigations of in vitro grown bacteria as well as human bone samples, that conventional bacterial culture can substantially underrepresent the quantity of bacteria in infected tissues. This has often been mentioned in the literature, however, relatively limited data has been provided to date. This manuscript compares culture to a digital droplet PCR approach, which consistently showed greater levels of bacteria across the experiments (and for two different strains).

      Strengths:

      Consistency of findings across in vitro experiments and clinical biopsies. There are real-world clinical implications for the findings of this study.

      Weaknesses:<br /> No major weaknesses. Only 3 human samples were analyzed, although the results are compelling.

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript by Vuong and colleagues reports a study that pooled data from 3 separate longitudinal study that collectively spanned an observation period of over 15 years. The authors examined for correlation between viraemia measured at various days from illness onset with thrombocytopaenia and severe dengue, according to the WHO 2009 classification scheme. The motivation for this study is both to support the use of viraemia measurement as a prognostic indicator of dengue and also to, when an antiviral drug becomes licensed for use, guide the selection of patients for antiviral therapy. They found that the four DENVs show differences in peak and duration of viraemia and that viraemia levels before day 5 but not those after from illness onset correlated with platelet count and plasma leakage at day 7 onwards. They concluded that the viraemia kinetics call for early measurement of viraemia levels in the early febrile phase of illness.

      Strengths:

      This is a unique study due to the large sample size and longitudinal viraemia measurements in the study subjects. The data addresses a gap in information in the literature, where although it has been widely indicated that viraemia levels are useful when collected early in the course of illness, this is the first time anyone has systematically examined this notion. The inclusion of correlation between rate of viraemia decline and risk of severe dengue/plasma leakage further strengthens the relevance of this paper to those interested in anti-dengue therapeutic research and development.

      Weaknesses:

      The study only analysed data from dengue patients in Vietnam. Moreover, the majority of these patients had DENV-1 infection; few had DENV-4 infection. The data could thus be skewed by the imbalance in the prevalence of the different types of DENV during the period of observation. The use of patient-reported time of symptom onset as a reference point for viraemia measurement is pragmatic although there is subjectivity and thus noise in the data.

    1. Reviewer #1 (Public Review):

      Summary:

      Authors previously demonstrated that species-specific variation in primate CD4 impacts its ability to serve as a functional receptor for diverse SIVs. Here, Warren and Barbachano-Guerrero et al. perform population genetics analyses and functional characterization of great ape CD4 with a particular focus on gorillas, which are natural hosts of SIVgor. They first used ancestral reconstruction to derive the ancestral hominin and hominid CD4. Using pseudotyped viruses representing a panel of envelopes from SIVcpz and HIV strains, they find that these ancestral reconstructions of CD4 are more similar to human CD4 in terms of being a broadly susceptible entry receptor (in the context of mediating entry into Cf2Th cells stably expressing human CCR5). In contrast, extant gorilla and chimpanzee CD4 are functional entry receptors for a narrower range of HIV and SIVcpz isolates. Based on these differences, authors next surveyed gorilla sequences and identified several CD4 haplotypes, specifically in the region encoding the CD4 D1 domain, which directly contacts the viral glycoprotein and thus may impact the interaction. Consistent with this possibility, authors demonstrated that gorilla CD4 haplotypes are, on average, less capable of supporting entry than human CD4, and that some are largely unable to function as SIV entry receptors. Interestingly, individual residues found at key positions in the gorilla CD4 D1 when tested in the context of human CD4 reduce entry of some virions pseudotyped with diverse SIVcpz envelopes, suggesting that individual amino acids can in part explain the observed differences across gorilla CD4 haplotypes. Finally, the authors perform statistical tests to infer that CD4 from great apes with endemic SIV (i.e., chimpanzees and gorillas) but not non-reservoirs (i.e., orangutans, bonobos) or recent spillover hosts (i.e., humans), have been subject to selection as a result of pressure from endemic SIV.

      The conclusions of this paper are mostly well supported by data.

      Strengths:

      (1) The functional assays are appropriate to test the stated hypothesis, and the authors use a broad diversity of envelopes from HIV and SIVcpz strains. Authors also partially characterize one potential mechanism of gorilla CD4 resistance - receptor glycosylation at the derived N15 found in 5/6 gorilla haplotypes.

      (2) Ancestral reconstruction provides a particularly interesting aspect of the study, allowing authors to infer the ancestral state of hominid CD4 relative to modern CD4 from gorillas and chimpanzees. This, coupled with evidence supporting SIV-driven selection of gorilla CD4 diversity and the characterization of functional diversity of extant haplotypes provides several interesting findings.

      Weaknesses:

      (3). The major inference of the work is that SIV infection of gorillas drove the observed diversity in gorilla CD4. This is supported by the majority of SNPs being localized to the CD4 D1, which directly interacts with envelope, and the demonstrated functional consequences of that diversity for viral entry. However, SIVgor (to the best of my knowledge) only infects Western lowland gorillas (Gorilla gorilla gorilla), and one Gorilla gorilla diehli and three Gorilla beringei graueri individuals were included in the haplotype and allele frequency analyses. The presence of these haplotypes or the presence of similar allele frequencies in Eastern lowland and mountain gorillas would impact this conclusion. It would be helpful for the authors to clarify this point.

      (4) The authors appear to use a somewhat atypical approach to assess intra-population selection to compensate for relatively small numbers of NHP sequences (Fig. 6). However, they do not cite precedence for the robustness of the approach or the practice of grouping sequences from multiple species for the endemic vs other comparison. They also state in the methods that some genes encoded in the locus were removed from the analysis "because they have previously been shown to directly interact with a viral protein." This seems to undercut the analysis, and prevents alternative explanations for the observed diversity in CD4 (e.g., passenger mutations from selection at a neighboring locus).

      (5) Data in Figure 5 is graphed as % infected cells instead of virus titer (TDU/mL). It's unclear why this is the case, and prevents a comparison to data in Figure 2 and Figure 4.

      (6) The lack of pseudotyping with SIVgor envelope is a surprising omission from this study, that would help to contextualize the findings. Similarly, building gorilla CD4 haplotype SNPs onto the hominin ancestor (as opposed to extant human CD4) may provide additional insights that are meaningful towards understanding the evolutionary trajectory of gorilla CD4.

      Comments on revised version:

      In the revised manuscript, the authors more appropriately contextualize conclusions that can be made based on their data versus inferences, which are now much more clearly described in the discussion. The authors also included more references to substantiate claims, additional description of methodology, and provided well-reasoned responses to the weaknesses described in my primary review.

      Re: #3. As the authors point out, we do not know if eastern gorillas were at one time exposed to SIV. The authors use a variety of phylogenetic and functional approaches to infer that SIVcpz is the selective pressure-shaping gorilla CD4. While I agree this is a highly likely scenario, the allelic diversity of CD4 across gorilla subpopulations raises multiple evolutionary scenarios consistent with the data.

      Re: #4. The explanation provided by the authors is reasonable. However, a demonstration that this approach is robust to potential factors that might skew the data (e.g., recombination) is argued but not tested. Part of the concern here is that the study is limited by very small sample sizes, and to the best of my knowledge, grouping sequences from multiple species to make claims about selection is not an established practice. The authors note in their response that they confirmed the existence of CD4 alleles in this study with those identified in 100 gorilla individuals from Russell et al. 2021 (unavailable to the authors at the time of submission) - a re-analysis that includes that data from Russell et al. 2021 would have strengthened the analyses.

    1. Joint Public Review:

      The premise of this work carries great potential. Namely, developing a humanized mouse system in which features of adaptive immunity that contribute to inflammatory demyelination can be interrogated will allow for traction into therapeutics currently unavailable to the field. Immediate questions stemming from the current study include the potential effect of ex vivo activation of PBMCs (or individual T and B cells) in vitro prior to transfer as well as the TCR and BCR repertoire of CNS vs peripheral lymphocytes before and after immunization. This group has been thoughtful and clever about their approach (e.g. use of subjects treated with natalizumab), which gives hope that fundamental aspects of pathogenesis will be uncovered by this form of modeling MS disease.

      Multiple sclerosis is an inflammatory and demyelinating disease of the central nervous system where immune cells play an important role in disease pathobiology. Increased incidence of disease in individuals carrying certain HLA class-II genes plus studies in animal models suggests that HLA-DRB1*15 restricted CD4 T cells might be responsible for disease initiation, and other immune cells such as B cells, CD8 T cells, monocytes/macrophages, and dendritic cells (DC) also contribute to disease pathology. However, a direct role of human immune cells in disease is lacking to a lag between immune activation and the first sign of clinical disease. Therefore, there is an emphasis on understanding whether immune cells from HLA-DR15+ MS patients differ from HLA-DR15+ healthy controls in their phenotype and pro-inflammatory capacity. To overcome this, authors have used severely immunodeficient B2m-NOG mice that lack B, T cells and NK cells and have defective innate immune responses and engrafted PBMCs from 3 human donors (HLA-DR15+ MS and HI donors, HLA-DR13+ MS donor) in these B2m-NOG mice to determine whether they can induce CNS inflammation and demyelination like MS.

      The study's strength is the use of PBMCs from HLADRB1-typed MS subjects and healthy control, the use of NOG mice, the characterization of immune subsets (revealing some interesting observations), CNS pathology etc. Weaknesses are lack of phenotype in mice and no disease phenotype even in humanized mice immunized for disease using standard disease induction protocol employed in an animal model of MS, and lack of mechanistic data on why CD8 T cells are more enriched than CD4+ T cells. The last point is important as postmortem human MS patients' brain tissue had been shown to have more CD8+ T cells than CD4+ T cells.

      Thus, this work is an important step in the right direction as previous humanized studies have not used HLA-DRB1 typed PBMCs however the weaknesses as highlighted above are limitations in the model.

    1. Reviewer #1 (Public Review):

      I'll begin by summarizing what I understand from the results presented, and where relevant how my understanding seems to differ from the authors' claims. I'll then make specific comments with respect to points raised in my previous review (below), using the same numbering. Because this is a revision I'll try to restrict comments here to the changes made, which provide some clarification, but leave many issues incompletely addressed.

      As I understand it the main new result here is that certain recurrent network architectures promote emergence of coordinated grid firing patterns in a model previously introduced by Kropff and Treves (Hippocampus, 2008). The previous work very nicely showed that single neurons that receive stable spatial input could 'learn' to generate grid representations by combining a plasticity rule with firing rate adaptation. The previous study also showed that when multiple neurons were synaptically connected their grid representations could develop a shared orientation, although with the recurrent connectivity previously used this substantially reduced the grid scores of many of the neurons. The advance here is to show that if the initial recurrent connectivity is consistent with that of a line attractor then the network does a much better job of establishing grid firing patterns with shared orientation.

      Beyond this point, things become potentially confusing. As I understand it now, the important influence of the recurrent dynamics is in establishing the shared orientation and not in its online generation. This is clear from Figure S3, but not from an initial read of the abstract or main text. This result is consistent with Kropff and Treves' initial suggestion that 'a strong collateral connection... from neuron A to neuron B... favors the two neurons to have close-by fields... Summing all possible contributions would result in a field for neuron B that is a ring around the field of neuron A.' This should be the case for the recurrent connections now considered, but the evidence provided doesn't convincingly show that attractor dynamics of the circuit are a necessary condition for this to arise. My general suggestion for the authors is to remove these kind of claims and to keep their interpretations more closely aligned with what the results show.

      Major (numbered according to previous review)

      (1) Does the network maintain attractor dynamics after training? Results now show that 'in a trained network without feedforward Hebbian learning the removal of recurrent collaterals results in a slight increase in gridness and spacing'. This clearly implies that the recurrent collaterals are not required for online generation of the grid patterns. This point needs to be abundantly clear in the abstract and main text so the reader can appreciate that the recurrent dynamics are important specifically during learning.<br /> (2) Additional controls for Figure 2 to test that it is connectivity rather than attractor dynamics (e.g. drawing weights from Gaussian or exponential distributions). The authors provide one additional control based on shuffling weights. However, this is far from exhaustive and it seems difficult on this basis to conclude that it is specifically the attractor dynamics that drive the emergence of coordinated grid firing.<br /> (3) What happens if recurrent connections are turned off? The new data clearly show that the recurrent connections are not required for online grid firing, but this is not clear from the abstract and is hard to appreciate from the main text.<br /> (4) This is addressed, although the legend to Fig. S2D could provide an explanation / definition for the y-axis values.<br /> (5) Given the 2D structure of the network input it perhaps isn't surprising that the network generates 2D representations and this may have little to do with its 1D connectivity. The finding that the networks maintain coordinated grids when recurrent connections are switched off supports my initial concern and the authors explanation, to me at least, remain confusing. I think it would be helpful to consider that the connectivity is specifically important for establishing the coordinated grid firing, but that the online network does not require attractor dynamics to generate coordinated grid firing.<br /> (6) Clarity of the introduction. This is somewhat clearer, but I wonder if it would be hard for someone not familiar with the literature to accurately appreciate the key points.<br /> (7) Remapping. I'm not sure why this is ill posed. It seems the proposed model can not account for remapping results (e.g. Fyhn et al. 2007). Perhaps the authors could just clearly state this as a limitation of the model (or show that it can do this).

      Previous review:

      This study investigates the impact of recurrent connections on grid fields generated in networks trained by adjusting the strength of feedforward spatial inputs. The main result is that if the recurrent connections in the network are given a 1D continuous attractor architecture, then aligned grid firing patterns emerge in the network following training. Detailed analyses of the low dimensional dynamics of the resulting networks are then presented. The simulations and analyses appear carefully carried out.

      The feedforward model investigated by the authors (previously introduced by Kropff & Treves, 2008) is an interesting and important alternative to models that generate grid firing patterns through 2-dimensional continuous attractor network (CAN) dynamics. However, while both classes of model generate grid fields, in making comparisons the manuscript is insufficiently clear about their differences. In particular, in the CAN models grid firing is a direct result of their 2-D architecture, either a torus structure with a single activity bump (e.g. Guanella et al. 2007, Pastoll et al. 2013), or sheet with multiple local activity bumps (Fuhs & Touretzky, Burak & Fiete, 2009). In these models, spatial input can anchor the grid representations but is not necessary for grid firing. By contrast, in the feedforward models neurons transform existing spatial inputs into a grid representation. Thus, the two classes of model implement different computations; CANs path integrate, while the feedforward models transform spatial representations. A demonstration that a 1D CAN generates coordinated 2D grid fields would be surprising and important, but its less clear why coordination between grids generated by the feedforward mechanism would be surprising. As written, it's unclear which of these claims the study is trying to make. If the former, then the conclusion doesn't appear well supported by the data as presented, if the latter then the results are perhaps not so unexpected, and the imposed attractor dynamics may still not be relevant.

      Whichever claim is being made, it could be helpful to more carefully evaluate the model dynamics given predictions expected for the different classes of model. Key questions that are not answered by the manuscript include:

      - At what point is the 1D attractor architecture playing a role in the models presented here? Is it important specifically for training or is it also contributing to computation in the fully trained network?

      - Is an attractor architecture required at all for emergence of population alignment and gridness? Key controls missing from Figure 2 include training on networks with other architectures. For example, one might consider various architectures with randomly structured connectivity (e.g. drawing weights from exponential or Gaussian distributions).

      - In the trained models do the recurrent connections substantially influence activity in the test conditions? Or after training are the 1D dynamics drowned out by feedforward inputs?

      - What is the low dimensional structure of the input to the network? Can the apparent discrepancy between dimensionality of architecture and representation be resolved by considering structure of the inputs, e.g. if the input is a 2 dimensional representation of location then is it surprising that the output is too?

      - What happens to representations in the trained networks presented when place cells remap? Is the 1D manifold maintained as expected for CAN models, or does it reorganise?

    1. Reviewer #1 (Public Review):

      Summary:

      This study examined the role of statistical learning in pain perception, suggesting that individuals' expectations about a sequence of events influence their perception of pain intensity. They incorporated the components of volatility and stochasticity into their experimental design and asked participants (n = 27) to rate the pain intensity, their prediction, and their confidence level. They compared two different inference strategies: Bayesian inference vs. heuristic-employing Kalman filters and model-free reinforcement learning. They showed that the expectation-weighted Kalman filter best explained the temporal pattern of participants' ratings. These results provide evidence for a Bayesian inference perspective on pain, supported by a computational model that elucidates the underlying process.

      Strengths:

      - Their experimental design included a wide range of input intensities and the levels of volatility and stochasticity. With elaborated computational models, they provide solid evidence that statistical learning shapes pain.

      Weaknesses:

      - Relevance to clinical pain: While the authors underscore the relevance of their findings to chronic pain, they did not include data pertaining to clinical pain.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper investigates the neural population activity patterns of the medial frontal cortex in rats performing a nose poking timing task using in vivo calcium imaging. The results showed neurons that were active at the beginning and end of the nose poking and neurons that formed sequential patterns of activation that covaried with the timed interval during nose poking on a trial-by-trial basis. The former were not stable across sessions, while the latter tended to remain stable over weeks. The analysis on incorrect trials suggests the shorter non-rewarded intervals were due to errors in the scaling of the sequential pattern of activity.

      Strengths:

      This study measured stable signals using in vivo calcium imaging during experimental sessions that were separated by many days in animals performing a nose poking timing task. The correlation analysis on the activation profile to separate the cells in the three groups was effective and the functional dissociation between beginning and end, and duration cells was revealing. The analysis on the stability of decoding of both the nose poking state and poking time was very informative. Hence, this study dissected a neural population that formed sequential patterns of activation that encoded timed intervals.

      Weaknesses:

      It is not clear whether animals had enough simultaneously recorded cells to perform the analyzes of Figures 2-4. In fact, rat 3 had 18 responsive neurons which probably is not enough to get robust neural sequences for the trial-by-trial analysis and the correct and incorrect trial analysis. In addition, the analysis of behavioral errors could be improved. The analysis in Figure 4A could be replaced by a detailed analysis on the speed, and the geometry of neural population trajectories for correct and incorrect trials. In the case of Figure 4G is not clear why the density of errors formed two clusters instead of having a linear relation with the produce duration. I would be recommendable to compute the scaling factor on neuronal population trajectories and single cell activity or the computation of the center of mass to test the type III errors.

      Due to the slow time resolution of calcium imaging, it is difficult to perform robust analysis on ramping activity. Therefore, I recommend downplaying the conclusion that: "Together, our data suggest that sequential activity might be a more relevant coding regime than the ramping activity in representing time under physiological conditions."

    1. Reviewer #1 (Public Review):

      Summary:

      This work studies spatio-temporal patterns of structure-function coupling in developing brains, using a large set of imaging data acquired from children aged 5-22. Magnetic resonance imaging data of brain structure and function were obtained from a publicly available database, from which structural and functional features and measures were derived. The authors examined the spatial patterns of structure-function coupling and how they evolve with brain development. This work further sought correlations of brain structure-function coupling with behavior and explored evolutionary, microarchitectural and genetic bases that could potentially account for the observed patterns.

      Strength:

      The strength of this work is the use of currently available state-of-the-art analysis methods, along with a large set of high-quality imaging data, and comprehensive examinations of structure-function coupling in developing brains. The results are comprehensive and illuminating.

      Weakness:

      As with most other studies, transcriptomic and cellular architectures of structure-function coupling were characterized only on the basis of a common atlas in this work.

      The authors have achieved their aims in this study, and the findings provide mechanistic insights into brain development, which will inspire further basic and clinical studies along this line.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors provide a new computational platform called Vermouth to automate topology generation, a crucial step that any biomolecular simulation starts with. Given a wide arrange of chemical structures that need to be simulated, varying qualities of structural models as inputs obtained from various sources, and diverse force fields and molecular dynamics engines employed for simulations, automation of this fundamental step is challenging, especially for complex systems and in case that there is a need to conduct high-throughput simulations in the application of computer-aided drug design (CADD). To overcome this challenge, the authors develop a programing library composed of components that carry out various types of fundamental functionalities that are commonly encountered in topological generation. These components are intended to be general for any type of molecules and not to depend on any specific force field and MD engines. To demonstrate the applicability of this library, the authors employ those components to re-assemble a pipeline called Martinize2 used in topology generation for simulations with a widely used coarse-grained model (CG) MARTINI. This pipeline can fully recapitulate the functionality of its original version Martinize but exhibit greatly enhanced generality, as confirmed by the ability of the pipeline to faithfully generate topologies for two high-complexity benchmarking sets of proteins.

      Strengths:

      The main strength of this work is the use of concepts and algorithms associated with induced subgraph in graph theory to automate several key but non-trivial steps of topology generation such as the identification of monomer residue units (MRU), the repair of input structures with missing atoms, the mapping of topologies between different resolutions, and the generation of parameters needed for describing interactions between MRUs. In addition, the documentation website provided by the authors is very informative, allowing users to get quickly started with Vermouth.

      Weaknesses:

      Although the Vermouth library is designed as a general tool for topology generation for molecular simulations, only its applications with MARTINI have been demonstrated in the current study. Thus, the claimed generality of Vermouth remains to be exmained. The authors may consider to point out this in their manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors demonstrate with a simple stochastic model that the initial composition of the community is important in achieving a target frequency during the artificial selection of a community.

      Strengths:

      To my knowledge, the intra-collective selection during artificial selection has not been seriously theoretically considered. However, in many cases, the species dynamics during the incubation of each selection cycle are important and relevant to the outcome of the artificial selection experiment. Stochasticity from birth and death (demographic stochasticity) plays a big role in these species' abundance dynamics. This work uses a simple framework to tackle this idea meticulously.

      This work may or may not be related to hysteresis (path dependency). If this is true, maybe it would be nice to have a discussion paragraph talking about how this may be the case. Then, this work would even attract the interest of people studying dynamic systems.

      Weaknesses:

      (1) Connecting structure and function

      In typical artificial selection literature, most of them select the community based on collective function. Here in this paper, the authors are selecting a target composition. Although there is a schematic cartoon illustrating the relationship between collective function (y-axis) and the community composition in the main Figure 1, there is no explicit explanation or justification of what may be the origin of this relationship. I think giving the readers a naïve idea about how this structure-function relationship arises in the introduction section would help. This is because the conclusion of this paper is that the intra-collective selection makes it hard to artificially select a community that has an intermediate frequency of f (or s). If there is really evidence or theoretical derivation from this framework that indeed the highest function comes from the intermediate frequency of f, then the impact of this paper would increase because the conclusions of this stochastic model could allude to the reasons for the prevalent failures of artificial selection in literature.

      (2) Explain intra-collective and inter-collective selection better for readers.

      The abstract, the introduction, and the result section use these terms or intra-collective and inter-collective selection without much explanation. A clear definition in the beginning would help the audience grasp the importance of this paper, because these concepts are at the core of this work.

      (3) Achievable target frequency strongly depending on the degree of demographic stochasticity.

      I would expect that the experimentalists would find these results interesting and would want to consider these results during their artificial selection experiments. The main Figure 4 indicates that the Newborn size N0 is a very important factor to consider during the artificial selection experiment. This would be equivalent to how much bottleneck is imposed on the artificial selection process in every iteration step (i.e., the ratio of serial dilution experiment). However, with a low population size, all target frequencies can be achieved, and therefore in these regimes, the initial frequency now does not matter much. It would be great for the authors to provide what the N0 parameter actually means during the artificial selection experiments. Maybe relative to some other parameter in the model. I know this could be very hard. But without this, the main result of this paper (initial frequency matters) cannot be taken advantage of by the experimentalists.

      (4) Consideration of environmental stochasticity.

      The success (gold area of Figure 2d) in this framework mainly depends on the size of the demographic stochasticity (birth-only model) during the intra-collective selection. However, during experiments, a lot of environmental stochasticity appears to be occurring during artificial selection. This may be out of the scope of this study. But it would definitely be exciting to see how much environmental stochasticity relative to the demographic stochasticity (variation in the Gaussian distribution of F and S) matters in succeeding in achieving the target composition from artificial selection.

      (5) Assumption about mutation rates

      If setting the mutation rates to zero does not change the result of the simulations and the conclusion, what is the purpose of having the mutation rates \mu? Also, is the unidirectional (S -> F -> FF) mutation realistic? I didn't quite understand how the mutations could fit into the story of this paper.

      (6) Minor points

      In Figure 3b, it is not clear to me how the frequency difference for the Intra-collective and the Inter-collective selection is computed.

      In Figure 5b, the gold region (success) near the FF is not visible. Maybe increase the size of the figure or have an inset for zoom-in. Why is the region not as big as the bottom gold region?

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Kume et al examined the role of the protein Semaphorin 4a in steady-state skin homeostasis and how this relates to skin changes seen in human psoriasis and imiquimod-induced psoriasis-like disease in mice. The authors found that human psoriatic skin has reduced expression of Sema4a in the epidermis. While Sema4a has been shown to drive inflammatory activation in different immune populations, this finding suggested Sema4a might be important for negatively regulating Th17 inflammation in the skin. The authors go on to show that Sema4a knockout mice have skin changes in key keratinocyte genes, increased gdT cells, and increased IL-17 similar to differences seen in non-lesional psoriatic skin, and that bone marrow chimera mice with WT immune cells and Sema4a KO stromal cells develop worse IMQ-induced psoriasis-like disease, further linking expression of Sema4a in the skin to maintaining skin homeostasis. The authors next studied downstream pathways that might mediate the homeostatic effects of Sema4a, focusing on mTOR given its known role in keratinocyte function. As with the immune phenotypes, Sema4a KO mice had increased mTOR activation in the epidermis in a similar pattern to mTOR activation noted in non-lesional psoriatic skin. The authors next targeted the mTOR pathway and showed rapamycin could reverse some of the psoriasis-like skin changes in Sema4a KO mice, confirming the role of increased mTOR in contributing to the observed skin phenotype.

      Strengths:

      The most interesting finding is the tissue-specific role for Sema4a, where it has previously been considered to play a mostly pro-inflammatory role in immune cells, this study shows that when expressed by keratinocytes, Sema4a plays a homeostatic role that when missing leads to the development of psoriasis-like skin changes. This has important implications in terms of targeting Sema4a pharmacologically. It also may yield a novel mouse model to study mechanisms of psoriasis development in mice separate from the commonly used IMQ model. The included experiments are well-controlled and executed rigorously.

      Weaknesses:

      A weakness of the study is the lack of tissue-specific Sema4a knockout mice (e.g. in keratinocytes only). The authors did use bone marrow chimeras, but only in one experiment. This work implies that psoriasis may represent a Sema4a-deficient state in the epidermal cells, while the same might not be true for immune cells. Indeed, in their analysis of non-lesional psoriasis skin, Sema4a was not significantly decreased compared to control skin, possibly due to compensatory increased Sema4a from other cell types. Unbiased RNA-seq of Sema4a KO mouse skin for comparison to non-lesional skin might identify other similarities besides mTOR signaling. Indeed, targeting mTOR with rapamycin reveres some of the skin changes in Sema4a KO mice, but not skin thickness, so other pathways impacted by Sema4a may be better targets if they could be identified. Utilizing WTKO chimeras in addition to global KO mice in the experiments in Figures 6-8 would more strongly implicate the separate role of Sema4a in skin vs immune cell populations and might more closely mimic non-lesional psoriasis skin.

    1. Reviewer #1 (Public Review):

      Summary:

      This study investigated the role of CD47 and TSP1 in extramedullary erythropoiesis by utilization of both global CD47-/- mice and TSP1-/- mice.

      Strengths:

      Flow cytometry combined with spleen bulk and single cell transcriptomics were employed. The authors found that stress-induced erythropoiesis markers were increased in CD47-/- spleen cells, particularly genes that are required for terminal erythroid differentiation. Moreover, CD47 dependent erythroid precursors population was identified by spleen scRNA sequencing. In contrast, the same cells were not detected in TSP1-/- spleen. These findings provide strong evidence to support the conclusion that differential role of CD47 and TSP1 in extramedullary erythropoiesis in mouse spleen. Furthermore, the relevance of the current finding to the prevalent side effect (anemia) of anti-CD47 mediated cancer therapy has been discussed in the Discussion section.

    1. Reviewer #1 (Public Review):

      Summary:

      This study by Wang et al. identifies a new type of deacetylase, CobQ, in Aeromonas hydrophila. Notably, the identification of this deacetylase reveals a lack of homology with eukaryotic counterparts, thus underscoring its unique evolutionary trajectory within the bacterial domain.

      Strengths:

      The manuscript convincingly illustrates CobQ's deacetylase activity through robust in vitro experiments, establishing its distinctiveness from known prokaryotic deacetylases. Additionally, the authors elucidate CobQ's potential cooperation with other deacetylases in vivo to regulate bacterial cellular processes. Furthermore, the study highlights CobQ's significance in the regulation of acetylation within prokaryotic cells.

      Weaknesses:

      While the manuscript is generally well-structured, some clarification and some minor corrections are needed.

    1. Reviewer #1 (Public Review):

      Summary:

      Plasmodium vivax can persist in the liver of infected individuals in the form of dormant hypnozoites, which cause malaria relapses and are resistant to most current antimalarial drugs. This highlights the need to develop new drugs active against hypnozoites that could be used for radical cure. Here, the authors capitalize on an in vitro culture system based on primary human hepatocytes infected with P. vivax sporozoites to screen libraries of repurposed molecules and compounds acting on epigenetic pathways. They identified a number of hits, including hydrazinophthalazine analogs. They propose that some of these compounds may act on epigenetic pathways potentially involved in parasite quiescence. To provide some support to this hypothesis, they document DNA methylation of parasite DNA based on 5-methylcytosine immunostaining, mass spectrometry, and bisulfite sequencing.

      Strengths:<br /> -The drug screen itself represents a huge amount of work and, given the complexity of the experimental model, is a tour de force.<br /> -The screening was performed in two different laboratories, with a third laboratory being involved in the confirmation of some of the hits, providing strong support that the results were reproducible.<br /> -The screening of repurposing libraries is highly relevant to accelerate the development of new radical cure strategies.

      Weaknesses:

      -The manuscript is composed of two main parts, the drug screening itself and the description of DNA methylation in Plasmodium pre-erythrocytic stages. Unfortunately, these two parts are loosely connected. First, there is no evidence that the identified hits kill hypnozoites via epigenetic mechanisms. The hit compounds almost all act on schizonts in addition to hypnozoites, therefore it is unlikely that they target quiescence-specific pathways. At least one compound, colforsin, seems to selectively act on hypnozoites, but this observation still requires confirmation. Second, while the description of DNA methylation is per se interesting, its role in quiescence is not directly addressed here. Again, this is clearly not a specific feature of hypnozoites as it is also observed in P. vivax and P. cynomolgi hepatic schizonts and in P. falciparum blood stages. Therefore, the link between DNA methylation and hypnozoite formation is unclear. In addition, DNA methylation in sporozoites may not reflect epigenetic regulation occurring in the subsequent liver stages.

      -The mode of action of the hit compounds remains unknown. In particular, it is not clear whether the drugs act on the parasite or on the host cell. Merely counting host cell nuclei to evaluate the toxicity of the compounds is probably acceptable for the screen but may not be sufficient to rule out an effect on the host cell. A more thorough characterization of the toxicity of the selected hit compounds is required.

      -There is no convincing explanation for the differences observed between P. vivax and P. cynomolgi. The authors question the relevance of the simian model but the discrepancy could also be due to the P. vivax in vitro platform they used.

      -Many experiments were performed only once, not only during the screen (where most compounds were apparently tested in a single well) but also in other experiments. The quality of the data would be increased with more replication.

      -While the extended assay (12 days versus 8 days) represents an improvement of the screen, the relevance of adding inhibitors of core cytochrome activity is less clear, as under these conditions the culture system deviates from physiological conditions.

    1. Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors established an in vitro triple co-culture BBB model and demonstrated its advantages compared with the mono or double co-culture BBB model. Further, the authors used their established in vitro BBB model and combined it with other methodologies to investigate the specific mechanism that co-culture with astrocytes but also neurons enhanced the integrity of endothelial cells.

      Strengths:

      The results persuasively showed the established triple co-culture BBB model well mimicked several important characteristics of BBB compared with the mono-culture BBB model, including better barrier function and in vivo/in vitro correlation. The human-derived immortalized cells used made the model construction process faster and more efficient, and have a better in vivo correlation without species differences. This model is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.

      Based on the previous experimental results, detailed studies investigated how co-culture with neurons and astrocytes promoted claudin-5 and VE-cadherin in endothelial cells, and the specific signaling mechanisms were also studied. Interestingly, the authors found that neurons also released GDNF to promote barrier properties of brain endothelial cells, as most current research has focused on the promoting effect of astrocytes-derived GDNF on BBB. Meanwhile, the author also validated the functions of GDNF for BBB integrity in vivo by silencing GDNF in mouse brains. Overall, the experiments and data presented support their claim that, in addition to astrocytes, neurons also have a promoting effect on the barrier function of endothelial cells through GDNF secretion.

      Weaknesses:

      Although the authors demonstrated a highly usable for predicting the BBB permeability, recorded TEER measurements are still far from the human BBB in vivo reported measurements of TEER, and expression of transporters was not promoted by co-culture, which may lead to the model being unsuitable for studying drug transport mediated by transporters on BBB.

    1. Reviewer #1 (Public Review):

      Cheng et al explore the utility of analyte ratios instead of relative abundance alone for biological interpretation of tissue in a MALDI MSI workflow. Utilizing the ratio of metabolites and lipids that have complimentary value in metabolic pathways, they show the ratio as a heat map which enhances the understanding of how multiple analytes relate to each other spatially. Normally, this is done by projecting each analyte as a unique color but using a ratio can help clarify visualization and add to biological interpretability. However, existing tools to perform this task are available in open-source repositories, and fundamental limitations inherent to MALDI MSI need to be made clear to the reader. The study lacks rigor and controls, i.e. without quantitative data from a variety of standards (internal isotopic or tissue mimetic models for example), the potential delta in ionization efficiencies of different species subtracts from the utility of pathway analysis using metabolite ratios.

    1. Reviewer #1 (Public Review):

      The paper has shown the expression of RGS10 is related to the molecular subtype, distant metastasis, and survival status of breast cancer. The study utilizes bioinformatic analyses, human tissue samples, and in vitro and in vivo experiments which strengthen the data. RGS10 was validated to inhibit EMT through a novel mechanism dependent on LCN2 and miR-539-5p, thereby reducing cancer cell proliferation, colony formation, invasion, and migration. The study elaborated on the function of RGS10 in influencing the prognosis and biological behavior which could be considered as a potential drug target in breast cancer.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper is focused on the role of Cadherin Flamingo (Fmi) - also called Starry night (stan) - in cell competition in developing Drosophila tissues. A primary genetic tool is monitoring tissue overgrowths caused by making clones in the eye disc that express activated Ras (RasV12) and that are depleted for the polarity gene scribble (scrib). The main system that they use is ey-flp, which makes continuous clones in the developing eye-antennal disc beginning at the earliest stages of disc development. It should be noted that RasV12, scrib-i (or lgl-i) clones only lead to tumors/overgrowths when generated by continuous clones, which presumably creates a privileged environment that insulates them from competition. Discrete (hs-flp) RasV12, lgl-i clones are in fact out-competed (PMID: 20679206), which is something to bear in mind.

      The authors show that clonal loss of Fmi by an allele or by RNAi in the RasV12, scrib-i tumors suppresses their growth in both the eye disc (continuous clones) and wing disc (discrete clones). The authors attributed this result to less killing of WT neighbors when Myc over-expressing clones lacking Fmi, but another interpretation (that Fmi regulates clonal growth) is equally as plausible with the current results. Next, the authors show that scrib-RNAi clones that are normally out-competed by WT cells prior to adult stages are present in higher numbers when WT cells are depleted for Fmi. They then examine death in RasV12, scrib-i ey-FLP clones, or in discrete hs-FLP UAS-Myc clones. They state that they see death in WT cells neighboring RasV12, scrib-i clones in the eye disc (Figures 4A-C). Next, they write that RasV12, scrib-I cells become losers (i.e., have apoptosis markers) when Fmi is removed. Neither of these results are quantified and thus are not compelling. They state that a similar result is observed for Myc over-expression clones that lack Fmi, but the image was not compelling, the results are not quantified and the controls are missing (Myc over-expressing clones alone and Fmi clones alone). They then want to test whether Myc over-expressing clones have more proliferation. They show an image of a wing disc that has many small Myc overexpressing clones with and without Fmi. The pHH3 results support their conclusion that Myc overexpressing clones have more pHH3, but I have reservations about the many clones in these panels (Figures 5L-N). They show that the cell competition roles of Fmi are not shared by another PCP component and are not due to the Cadherin domain of Fmi. The authors appear to interpret their results as Fmi is required for winner status. Overall, some of these results are potentially interesting and at least partially supported by the data, but others are not supported by the data.

      Strengths:

      Fmi has been studied for its role in planar cell polarity, and its potential role in competition is interesting.

      Weaknesses:

      (1) In the Myc over-expression experiments, the increased size of the Myc clones could be because they divide faster (but don't outcompete WT neighbors). If the authors want to conclude that the bigger size of the Myc clones is due to out-competition of WT neighbors, they should measure cell death across many discs of with these clones. They should also assess if reducing apoptosis (like using one copy of the H99 deficiency that removes hid, rpr, and grim) suppresses winner clone size. If cell death is not addressed experimentally and quantified rigorously, then their results could be explained by faster division of Myc over-expressing clones (and not death of neighbors). This could also apply to the RasV12, scrib-i results.

      (2) This same comment about Fmi affecting clone growth should be considered in the scrib RNAi clones in Figure 3.

      (3) I don't understand why the quantifications of clone areas in Figures 2D, 2H, 6D are log values. The simple ratio of GFP/RFP should be shown. Additionally, in some of the samples (e.g., fmiE59 >> Myc, only 5 discs and fmiE59 vs >Myc only 4 discs are quantified but other samples have more than 10 discs). I suggest that the authors increase the number of discs that they count in each genotype to at least 20 and then standardize this number.

      (4) There is a typo when referring to Figures 3C-D. It should be Figure 2C-D.

      (5) Figure 4 - shows examples of cell death. Cas3 is written on the figure but Dcp-1 is written in the results. Which antibody was used? The authors need to quantify these results. They also need to show that the death of cells is part of the phenotype, like an H99 deficiency, etc (see above).

      (6) It is well established that clones overexpressing Myc have increased cell death. The authors should consider this when interpreting their results.

      (7) A better characterization of discrete Fmi clones would also be helpful. I suggest inducing hs-flp clones in the eye or wing disc and then determining clone size vs twin spot size and also examining cell death etc. If such experiments have already been done and published, the authors should include a description of such work in the preprint.

      (8) We need more information about the expression pattern of Fmi. Is it expressed in all cells in imaginal discs? Are there any patterns of expression during larval and pupal development?

      (9) Overall, the paper is written for specialists who work in cell competition and is fairly difficult to follow, and I suggest re-writing the results to make it accessible to a broader audience.

    1. Reviewer #1 (Public Review):

      Summary:

      This study shows a new mechanism of GS regulation in the archaean Methanosarcina maze and clarifies the direct activation of GS activity by 2-oxoglutarate, thus featuring another way in which 2-oxoglutarate acts as a central status reporter of C/N sensing.

      Mass photometry and single particle cryoEM structure analysis convincingly show the direct regulation of GS activity by 2-OG promoted formation of the dodecameric structure of GS. The previously recognized small proteins GlnK1 and Sp26 seem to play a subordinate role in GS regulation, which is in good agreement with previous data. Although these data are quite clear now, there remains one major open question: how does 2-OG further increase GS activity once the full dodecameric state is achieved (at 5 mM)? This point needs to be reconsidered.

      Strengths:

      Mass photometry reveals a dynamic mode of the effect of 2-OG on the oligomerization state of GS. Single particle Cryo-EM reveals the mechanism of 2-OG mediated dodecamer formation.

      Weaknesses:

      It is not entirely clear, how very high 2-OG concentrations activate GS beyond dodecamer formation.

      The data presented in this work are in stark contrast to the previously reported structure of M. mazei GS by the Schumacher lab. This is very confusing for the scientific community and requires clarification. The discussion should consider possible reasons for the contradictory results.

      Importantly, it is puzzling how Schumacher could achieve an apo-structire of dodecameeric GS? If 2-OG is necessary for dodecameric formation, this should be discussed. If GlnK1 doesn't form a complex with the dodecameric GS, how could such a complex be resolved there?

      In addition, the text is in principle clear but could be improved by professional editing. Most obviously there is insufficient comma placement.

    1. Reviewer #1 (Public Review):

      The paper meticulously explores various conformations and states of the ribosome-translocon complex. Employing advanced techniques such as cryoEM structural determination and AlphaFold modeling, the study delves into the dynamic nature of the ribosome-translocon complex. The findings from these analyses unveil crucial insights, significantly advancing our understanding of the co-translational translocation process in cellular mechanisms.

      To begin with, the authors employed a construct comprising the first two transmembrane domains of rhodopsin as a model for studying protein translocation. They conducted in vitro translation, followed by the purification of the ribosome-translocon complex, and determined its cryoEM structures. An in-depth analysis of their ribosome-translocon complex structure revealed that the nascent chain can pass through the lateral gate of translocon Sec61, akin to the behavior of a Signaling Peptide. Additionally, Sec61 was found to interact with 28S rRNA helix 24 and the ribosomal protein uL24. In summary, their structural model aligns with the through-pore model of insertion, contradicting the sliding model.

      Secondly, the authors successfully identified RAMP4 in their ribosome-translocon complex structure. Notably, the transmembrane domain of RAMP4 mimics the binding of a Signaling Peptide at the lateral gate of Sec61, albeit without unplugging. Intriguingly, RAMP4 is exclusively present in the non-multipass translocon ribosome-translocon complex, not in those containing multipass translocon. This observation suggests that co-translational translocation specifically occurs in the Sec61 channel that includes bound RAMP4. Additionally, the authors discovered an interaction between the C-tail of ribosomal proteins uL22 and the translocon Sec61, providing valuable insights into the nascent chain's behavior.

      Moving on to the third point, the focused classification unveiled TRAP complex interactions with various components. The authors propose that the extra density observed in their novel ribosome-translocon complex can be attributed to calnexin, a major binder of TRAP according to previous studies. Furthermore, the new structure reveals a TRAP-OSTA interaction. This newly identified TRAP-OSTA interaction offers a potential explanation for why patients with TRAP delta defects exhibit congenital disorders of glycosylation.

      In conclusion, this paper presents a robust contribution to the field with its thorough structural and modeling analyses. The significance of the findings is evident, providing valuable insights into the intricate mechanisms of protein co-translational translocation. The well-crafted writing, meticulous analyses, and clear figures collectively contribute to the overall strength of the paper.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors have previously described a way to boost WNT/CTNNB1 signaling in a tissue-specific manner, by directing an RSPO2 mutant protein (RSPO2RA) to a liver-specific receptor (ASGR1/2). This is done by fusing the RSPO2RA to an antibody that binds ASGR1/2.

      Here the authors describe two new antibodies, 8M24 and 8G8, with similar effects. 8M24 shows specificity for ASGR1, while 8G8 has broader affinity for mouse/human ASGR1/2.<br /> The authors resolve and describe the crystal structure of the hASGR1CRD:8M24 complex and the hASGR2CRD:8G8 complex in great detail, which help explain the specificities of the 8M24 and 8G8 antibodies. Their epitopes are non-overlapping.<br /> Upon fusion of the antibodies to an RSPO2RA (an RSPO mutant), these antibodies are able to enhance WNT signaling by promoting the ASGR1-mediated clearance of ZNRF3/RNF43, thereby increasing cell surface expression of FZD. This has previously also been shown to be the case for RSPO2RA fused to an anti-ASGR1 antibody 4F3 - and the paper also tests how the antibodies compare to the 4F3 fusion.

      Strengths:

      (1) One challenge in treating diseases, is the fact that one would like therapeutics to be highly specific - not just in terms of their target (e.g. aimed at a specific protein of interest) but also in terms of tissue specificity (i.e. affecting only tissue X but leaving all others unaffected). This study broadens the collection of antibodies that can be used for this purpose and thus expands a potential future clinical toolbox.

      (2) The authors have addressed questions raised after a first round of review, e.g. by showing that ASGR1 is itself indeed ubiquitinated.

      Weaknesses:

      (1) Some questions remain as to how 8M24 and 8G8 compare to 4F3.

      (2) Some questions remain as to the specificity of the approach: the initial goal was not to also downregulate ASGR1 per se, so this targeting to a specific receptor/membrane protein is not trivial and/or neutral.

    1. Reviewer #1 (Public Review):

      The manuscript presents novel results on the regulation of Drosophila wing growth by the protocadherins Ds and Fat. The manuscript performs a more careful analysis of disc volume, larval size, and the relationship between the two, in normal and mutant larvae, and after localized knockdown or overexpression of Fat and Ds. Not all of the results are equally surprising given the previous work on Fat, Ds, and their regulation of disc growth, pupariation, and the Hippo pathway, but the presentation and detail of the presented data is new. The most novel results concern the scaling of gradients of Fat and Ds protein during development, a largely unstudied gradient of Fat protein, and using overexpression of Ds to argue that changes in the Ds gradient do not underlie the slowing and halting of cell divisions during development.

    1. Reviewer #1 (Public Review):

      Muscle models are important tools in the fields of biomechanics and physiology. Muscle models serve a wide variety of functions, including validating existing theories, testing new hypotheses, and predicting forces produced by humans and animals in health and disease. This paper attempts to provide an alternative to Hill-type muscle models that includes contributions of titin to force enhancement over multiple time scales. Due to the significant limitations of Hill-type models, alternative models are needed and therefore the work is important and timely.

      The effort to include a role for titin in muscle models is a major strength of the methods and results. The results clearly demonstrate the weaknesses of Hill models and the advantages of incorporating titin into theoretical treatments of muscle mechanics. Another strength is to address muscle mechanics over a large range of time scales.

      The authors succeed in demonstrating the need to incorporate titin in muscle models, and further show that the model accurately predicts in situ force of cat soleus (Kirsch et al. 1994; Herzog & Leonard, 2002) and rabbit posts myofibrils (Leonard et al. 2010). However, it remains unclear whether the model will be practical for use with data from different muscles or preparations. Several ad hoc modifications were described in the paper, and the degree to which the model requires parameter optimization for different muscles, preparations and experiment types remains unclear.

    1. Reviewer #1 (Public Review):

      Summary:<br /> In the paper by Choi et al., the authors aimed to develop base editing strategies to convert CAG repeats to CAA repeats in the huntingtin gene (HTT), which causes Huntington's disease (HD). They hypothesized that this conversion would delay disease onset by shortening the uninterrupted CAG repeat. Using HEK-293T cells as a model, the researchers employed cytosine base editors and guide RNAs (gRNAs) to efficiently convert CAG to CAA at various sites within the CAG repeat. No significant indels, off-target edits, transcriptome alterations, or changes in HTT protein levels were detected. Interestingly, somatic CAG repeat expansion was completely abolished in HD knock-in mice carrying CAA-interrupted repeats.

      Strengths:<br /> This study represents the first proof-of-concept exploration of the cytosine base editing technique as a potential treatment for HD and other repeat expansion disorders with similar mechanisms.

      Weaknesses:<br /> Given that HD is a neurodegenerative disorder, it is crucial to determine the efficiency of the base editing strategies tested in this manuscript and their feasibility in relevant cells affected by HD and the brain, which needed to be improved in this manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, the authors used a multi-alternative decision task and a multidimensional signal-detection model to gain further insight into the cause of perceptual impairments during the attentional blink. The model-based analyses of behavioural and EEG data show that such perceptual failures can be unpacked into distinct deficits in visual detection and discrimination, with visual detection being linked to the amplitude of late ERP components (N2P and P3) and discrimination being linked to the coherence of fronto-parietal brain activity.

      Strengths:

      The main strength of this paper lies in the fact that it presents a novel perspective on the cause of perceptual failures during the attentional blink. The multidimensional signal-detection modelling approach is explained clearly, and the results of the study show that this approach offers a powerful method to unpack behavioural and EEG data into distinct processes of detection and discrimination.

      Weaknesses:

      While the model-based analyses are compelling, the paper also features some analyses that seem misguided, or, at least, insufficiently motivated and explained. Specifically, in the introduction, the authors raise the suggestion that the attentional blink could be due to a reduction in sensitivity or a response bias. The suggestion that a response bias could play a role seems misguided, as any response bias would be expected to be constant across lags, while the attentional blink effect is only observed at short lags. Thus, it is difficult to understand why the authors would think that a response bias could explain the attentional blink.

      A second point of concern regards the way in which the measures for detection and discrimination accuracy were computed. If I understand the paper correctly, a correct detection was defined as either correctly identifying T2 (i.e., reporting CW or CCW if T2 was CW or CCW, respectively, see Figure 2B), or correctly reporting T2's absence (a correct rejection). Here, it seems that one should also count a misidentification (i.e., incorrect choice of CW or CCW when T2 was present) as a correct detection, because participants apparently did detect T2, but failed to judge/remember its orientation properly in case of a misidentification. Conversely, the manner in which discrimination performance is computed also raises questions. Here, the authors appear to compute accuracy as the average proportion of T2-present trials on which participants selected the correct response option for T2, thus including trials in which participants missed T2 entirely. Thus, a failure to detect T2 is now counted as a failure to discriminate T2. Wouldn't a more proper measure of discrimination accuracy be to compute the proportion of correct discriminations for trials in which participants detected T2?

      My last point of critique is that the paper offers little if any guidance on how the inferred distinction between detection and discrimination can be linked to existing theories of the attentional blink. The discussion mostly focuses on comparisons to previous EEG studies, but it would be interesting to know how the authors connect their findings to extant, mechanistic accounts of the attentional blink. A key question here is whether the finding of dissociable processes of detection and discrimination would also hold with more meaningful stimuli in an identification task (e.g., the canonical AB task of identifying two letters shown amongst digits). There is evidence to suggest that meaningful stimuli are categorized just as quickly as they are detected (Grill-Spector & Kanwisher, 2005; Grill-Spector K, Kanwisher N. Visual recognition: as soon as you know it is there, you know what it is. Psychol Sci. 2005 Feb;16(2):152-60. doi: 10.1111/j.0956-7976.2005.00796.x. PMID: 15686582.). Does that mean that the observed distinction between detection and discrimination would only apply to tasks in which the targets consist of otherwise meaningless visual elements, such as lines of different orientations?

    1. Reviewer #1 (Public Review):

      Summary:

      This manuscript from So et al. describes what is suggested to be an improved protocol for single-nuclei RNA sequencing (snRNA-seq) of adipose tissue. The authors provide evidence that modifications to the existing protocols result in better RNA quality and nuclei integrity than previously observed, with ultimately greater coverage of the transcriptome upon sequencing. Using the modified protocol, the authors compare the cellular landscape of murine inguinal and perigonadal white adipose tissue (WAT) depots harvested from animals fed a standard chow diet (lean mice) or those fed a high-fat diet (mice with obesity).

      Strengths:

      Overall, the manuscript is well-written, and the data are clearly presented. The strengths of the manuscript rest in the description of an improved protocol for snRNA-seq analysis. This should be valuable for the growing number of investigators in the field of adipose tissue biology that are utilizing snRNA-seq technology, as well as those other fields attempting similar experiments with tissues possessing high levels of RNAse activity.

      Moreover, the study makes some notable observations that provide the foundation for future investigation. One observation is the correlation between nuclei size and cell size, allowing for the transcriptomes of relatively hypertrophic adipocytes in perigonadal WAT to be examined. Another notable observation is the identification of an adipocyte subcluster (Ad6) that appears "stressed" or dysfunctional and likely localizes to crown-like inflammatory structures where pro-inflammatory immune cells reside.

      Weaknesses:

      Analogous studies have been reported in the literature, including a notable study from Savari et al. (Cell Metabolism). This somewhat diminishes the novelty of some of the biological findings presented here. Moreover, a direct comparison of the transcriptomic data derived from the new vs. existing protocols (i.e. fully executed side by side) was not presented. As such, the true benefit of the protocol modifications cannot be fully understood.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper by Beath et. al. identifies a potential regulatory role for proteins involved in cytoplasmic streaming and maintaining the grouping of paternal organelles: holding sperm contents in the fertilized embryos away from the oocyte meiotic spindle so that they don't get ejected into the polar body during meiotic chromosome segregation. The authors show that by time-lapse video, paternal mitochondria (used as a readout for sperm and its genome) is excluded from yolk granules and maternal mitochondria, even when moving long distances by cytoplasmic streaming. To understand how this exclusion is accomplished, they first show that it is independent of both internal packing and the engulfment of the paternal chromosomes by maternal endoplasmic reticulum creating an impermeable barrier. They then test whether the control of cytoplasmic steaming affects this exclusion by knocking down two microtubule motors, Katanin and kinesis I. They find that the ER ring, which is used as a proxy for paternal chromosomes, undergoes extensive displacement with these treatments during anaphase I and interacts with the meiotic spindle, supporting their hypothesis that the exclusion of paternal chromosomes is regulated by cytoplasmic streaming. Next, they test whether a regulator of maternal ER organization, ATX-2, disrupts sperm organization so that they can combine the double depletion of ATX-2 and KLP-7, presumably because klp-7 RNAi (unlike mei-1 RNAi) does not affect polar body extrusion and they can report on what happens to paternal chromosomes. They find that the knockdown of both ATX-2 and KLP-7 produces a higher incidence of what appears to be the capture of paternal chromosomes by the meiotic spindle (5/24 vs 1/25). However, this capture event appears to halt the cell cycle, preventing the authors from directly observing whether this would result in the paternal chromosomes being ejected into the polar body.

      Strengths:

      This is a useful, descriptive paper that highlights a potential challenge for embryos during fertilization: when fertilization results in the resumption of meiotic divisions, how are the paternal and maternal genomes kept apart so that the maternal genome can undergo chromosome segregation and polar body extrusion without endangering the paternal genome? In general, the experiments are well-executed and analyzed. In particular, the authors' use of multiple ways to knock down ATX-2 shows rigor.

      Weaknesses:

      The paper makes a case that this regulation may be important but the authors should do some additional work to make this case more convincing and accessible for those outside the field. In particular, some of the figures could include greater detail to support their conclusions, they could explain the rationale for some experiments better and they could perform some additional control experiments with their double depletion experiments to better support their interpretations. Also, the authors' inability to assess the functional biological consequences of the capture of the sperm genome by the oocyte spindle should be discussed, particularly in light of the cell cycle arrest that they observe.

    1. Joint Public Review:

      Summary:

      The study identified biallelic variants of DNAH3 in four unrelated Han Chinese infertile men through whole-exome sequencing, which contributes to abnormal sperm flagellar morphology and ultrastructure. To investigate the importance of DNAH3 in male infertility, the authors generated crispant DNAH3 knockout (KO) male mice. They observed that KO mice are also infertile, showing a severe reduction in sperm movement with abnormal IDA (inner dynein arms) and mitochondrion structure. Moreover, nonfunctional DNAH3 expression decreased the expression of IDA-associated proteins in the spermatozoa of patients and KO mice, which are involved in the disruption of sperm motility. Interestingly, the infertility of patients and KO mice was rescued by intracytoplasmic sperm injection (ICSI). Taken together, the authors propose that DNAH3 is a novel pathogenic gene for asthenoterozoospermia and male infertility.

      Strengths:

      This work investigates the role of DNAH3 in sperm mobility and male infertility and utilised gold-standard molecular biology techniques, showing strong evidence of its role in male infertility. All aspects of the study design and methods are well described and appropriate to address the main question of the manuscript. The conclusions drawn are consistent with the analyses conducted and supported by the data.

      Weaknesses:

      (1) The manuscript lacks a comparison with previous studies on DNAH3 in the Discussion section.

      (2) The variants of DNAH3 in four infertile men were identified through whole-exome sequencing. Providing an overview of the WES data would be beneficial to offer additional insights into whether other variants may contribute the infertility. This could also help explain why ICSI only works for two out of four patients with DNAH3 variants.

      (3) Quantification of images would help substantiate the conclusions, particularly in Figures 2, 3, 4, and 6. Improved images in Figures 3A, 4B, and 4C, would help increase confidence in the claims made.

    1. Reviewer #1 (Public Review):

      The goal of Knudsen-Palmer et al. was to define a biological set of rules that dictate the differential RNAi-mediated silencing of distinct target genes, motivated by facilitating the long-term development of effective RNAi-based drugs/therapeutics. To achieve this, the authors use a combination of computational modeling and RNAi function assays to reveal several criteria for effective RNAi-mediated silencing. This work provides insights into how (1) cis-regulatory elements influence the RNAi-mediated regulation of genes; (2) it is determined that genes can "recover" from RNAi-silencing signals in an animal; and 3) pUGylation occurs exclusively downstream of the dsRNA trigger sequence, suggesting 3º siRNAs are not produced. In addition, the authors show that the speed at which RNAi-silencing is triggered does not correlate with the longevity of the silencing. These insights are significant because they suggest that if we understand the rules by which RNAi pathways effectively silence genes with different transcription/processing levels then we can design more effective synthetic RNAi-based therapeutics targeting endogenous genes. The conclusions of this study are mostly supported by the data, but there are some aspects that need to be clarified.

      (1) The methods do not describe the "aged RNAi plates feeding assay" in Figure 2E. The figure legend states that "aged RNAi plates" were used to trigger weaker RNAi, but the detail explaining the experiment is insufficient. How aged is aged? If the goal was to effectively reduce the dsRNA load available to the animals, why not quantitatively titrate the dsRNA provided? Were worms previously fed on the plates, or was simply a lawn of bacteria grown until presumably the IPTG on the plate was exhausted?

      (2) Is the data presented in Figure 2F completed using the "aged RNAi plates" to achieve the partial silencing of dpy-7 observed? Clarification of this point would be helpful.

      (3) Throughout the manuscript the authors refer to "non-dividing cells" when discussing animals' ability to recover from RNA silencing. It is not clear what the authors specifically mean with the phrase "non-dividing cells", but as this is referred to in one of their major findings, it should be clarified. Do they mean the cells are somatic cells in aged animals, thus if they are "non-dividing" the siRNA pools within the cells cannot be diluted by cell division? Based on the methods, the animals of RNAi assays were L4/Young adults that were scored over 8 days after the initial pulse of dsRNA feeding. If this is the case, wouldn't these animals be growing into gravid adults after the feeding, and thus have dividing cells as they grew?

      (4) What are the typical expression levels/turnover of unc-22 and bli-1? Based on the results from the altered cis-regulatory regions of bli-1 and unc-22 in Figure 5, it seems like the transcription/turnover rates of each of these genes could also be used as a proof of principle for testing the model proposed in Figure 4. The strength of the model would be further increased if the RNAi sensitivity of unc-22 reflects differences in its transcription/turnover rates compared to bli-1.

    1. Reviewer #1 (Public Review):

      Summary:

      Clostridium thermocellum serves as a model for consolidated bioprocess (CBP) in lignocellulosic ethanol production, but yet faces limitations in solid contents and ethanol titers achieved by engineered strains thus far. The primary ethanol production pathway involves the enzyme aldehyde-alcohol dehydrogenase (AdhE), which forms long oligomeric structures known as spirosomes, previously characterized via the 3.5 Å resolution E. coli AdhE structure using single-particle cryo-EM. The present study describes the cryo-EM structure of the C. thermocellum ortholog, sharing 62% sequence identity with E. coli AdhE, resolved at 3.28 Å resolution. Detailed comparative structural analysis, including the Vibrio cholerae AdhE structure, was conducted. Integrating cryo-EM data with molecular dynamics simulations indicated that the aldehyde intermediate resides longer in the channel of the extended form, supporting the hypothesis that the extended spirosome represents the active form of AdhE.

      Strengths:

      The study conducts a comprehensive structural comparative analysis of oligomerization interfaces and the acetaldehyde channel across compact and extended conformations. Structural and computational results suggest the extended spirosome as the most likely active state of AdhE.

      Weaknesses:

      The overall resolution of the C. thermocellum structure is similar to the E. coli ortholog, which shares 62% sequence identity, and the oligomerization interfaces and the acetaldehyde channel were previously described.

    1. Reviewer #1 (Public Review):

      In their paper, Kang et al. investigate rigidity sensing in amoeboid cells, showing that, despite their lack of proper focal adhesions, amoeboid migration of single cells is impacted by substrate rigidity. In fact, many different amoeboid cell types can durotax, meaning that they preferentially move towards the stiffer side of a rigidity gradient.

      The authors observed that NMIIA is required for durotaxis and, building on this observation, they generated a model to explain how durotaxis could be achieved in the absence of strong adhesions. According to the model, substrate stiffness alters the diffusion rate of NMAII, with softer substrates allowing for faster diffusion. This allows for NMAII accumulation at the back, which, in turn, results in durotaxis.

      The experiments support the main message of the paper regarding durotaxis by amoeboid cells. In my opinion, a few clarifications on the mechanism proposed to explain this phenomenon could strengthen this research:

      (1) According to your model, the rear end of the cell, which is in contact with softer substrates, will have slower diffusion rates of MNIIA. Does this mean that bigger cells will durotax better than smaller cells because the stiffness difference between front and rear is higher? Is it conceivable to attenuate the slope of the durotactic gradient to a degree where smaller cells lose their ability to durotact, while longer cells retain their capacity for directional movement?

      (2) Where did you place the threshold for soft, middle, and stiff regions (Figure 6)? Is it possible that you only have a linear rigidity gradient in the center of your gel and the more you approach the borders, the flatter the gradient gets? In this case, cells would migrate randomly on uniform substrates. Did you perform AFM over the whole length of the gel or just in the central part?

      (3) In which region (soft, middle, stiff) did you perform all the cell tracking of the previous figures?

      (4) What is the level of confinement experienced by the cells? Is it possible that cells on the soft side of the gels experience less confinement due to a "spring effect" whereby the coverslips descending onto the cells might exert diminished pressure because the soft hydrogels act as buffers, akin to springs? If this were the case, cells could migrate following a confinement gradient.

    1. Reviewer #1 (Public Review):

      Summary:

      The authors address cellular mechanisms underlying the early stages of Sjogren's syndrome, using a mouse model in which 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) is applied to stimulate the interferon gene (STING) pathway. They show that, in this model, salivary secretion in response to neural stimulation is greatly reduced, even though individual secretory cell calcium responses were enhanced. They attribute the secretion defect to reduced activation of Ca2+ -activated Cl- channels (TMEM16a), due to an increased distance between Ca2+ release channels (IP3 receptors) and TMEM16a which is expected to reduce the [Ca2+] sensed by TMEM16a. A variety of disruptions in mitochondria were also observed after DMXAA treatment, including reduced abundance, altered morphology, depolarization, and reduced oxygen consumption rate. The results of this study shed new light on some of the early events leading to the loss of secretory function in Sjogren's syndrome, at a time before inflammatory responses cause the death of secretory cells.

      Strengths:

      Two-photon microscopy enabled Ca2+ measurements in the salivary glands of intact animals in response to physiological stimuli (nerve stimulation). This approach has been shown previously by the authors as necessary to preserve the normal spatiotemporal organization of calcium signals that lead to secretion under physiological conditions.

      Superresolution (STED) microscopy allowed precise measurements of the spacing of IP3R and TMEM16a and the cell membranes that would otherwise be prevented by the diffraction limit. The measured increase of distance (from 84 to 155 nm) would be expected to reduce [Ca2+] at the TMEM16a channel.

      The authors effectively ruled out a variety of alternative explanations for reduced secretion, including changes in AQP5 expression, TMEM16a expression, localization, and Ca2+ sensitivity as indicated by Cl- current in response to defined levels of Ca2+.

      Weaknesses:

      While the Ca2+ distribution in the cells was less restricted to the apical region in DMXAA-treated cells, it is not clear that this is relevant to the reduced activation of TMEM16a. The way in which the change in Ca2+ distribution is quantified (apical/basal ratio) is not informative, as this is not what activates TMEM16a, but rather the local [Ca2+] at the channel.

      Despite the decreased level of secretion, Ca2+ signal amplitudes were higher in the treated cells, raising the question of how much this might compensate for the increased distance between IP3R and TMEM16a. The authors assume that the increased separation of IP3R and TMEM16a (and the resulting decrease in local [Ca2+]) outweighed the effect of higher global [Ca2+], but this important point was not addressed.

      The description of mitochondrial changes in abundance, morphology, membrane potential, and oxygen consumption rate were not well integrated into the rest of the paper. While they may be a facet of the multiple effects of STING activation and may occur during Sjogren's syndrome, their possible role in reducing secretion was not examined. As it stands, the mitochondrial results are largely descriptive and there is no evidence here that they contribute to the secretory phenotype.

  2. May 2024
    1. Reviewer #1 (Public Review):

      Summary:

      The current manuscript provides an extensive in vivo analysis of two guidance pathways identifying multiple mechanisms that shape the bifurcation of DRG axons when forming the dorsal funiculus in the DREZ.

      Strengths:

      Multiple mouse mutant lines were used, together with complementary techniques; the results are very clear and compelling.<br /> The findings are very significant and clearly move forward our understanding of the regulation of axonal development at the DREZ.

      Weaknesses:

      No major weaknesses were found. As it is I have no recommendations that would increase the clarity or quality of the manuscript.

    1. Reviewer #2 (Public Review):

      The authors sought to establish the role played by N343 glycosylation on the SARS-CoV-2 S receptor binding domain structure and binding affinity to the human host receptor ACE2 across several variants of concern. The work includes both computational analysis in the form of molecular dynamics simulations and experimental binding assays between the RBD and ganglioside receptors.

      The work extensively samples the conformational space of the RBD beginning with atomic coordinates representing both the bound and unbound states and computes molecular dynamics trajectories until equilibrium is achieved with and without removing N343 glycosylation. Through comparison of these simulated structures, the authors are able to demonstrate that N343 glycosylation stabilizes the RBD. Prior work had demonstrated that glycosylation at this site plays an important role in shielding the RBD core and in this work the authors demonstrate that removal of this glycan can trigger a conformational change to reduce water access to the core without it. This response is variant dependent and variants containing interface substitutions which increase RBD stability, including Delta substitution L452R, do not experience the same conformational change when the glycan is removed. The authors also explore structures corresponding to Alpha and Beta in which no structure-reinforcing substitutions were identified and two Omicron variants in which other substitutions with an analogous effect to L452R are present.

      The authors experimentally assessed these inferred structural changes by measuring the binding affinity of the RBD for the oligosaccharides of the monosialylated gangliosides GM1os and GM2os with and without the glycan at N343. While GM1os and GM2os binding is influenced by additional factors in the Beta and Omicron variants, the comparison between Delta and Wuhan-hu-1 is clear: removal of the glycan abrogated binding for Wuhan-hu-1 and minimally affected Delta as predicted by structural simulations.

      In summary, these findings suggest, in the words of the authors, that SARS-CoV-2 has evolved to render the N-glycosylation site at N343 "structurally dispensable". This study emphasizes how glycosylation impacts both viral immune evasion and structural stability which may in turn impact receptor binding affinity and infectivity. Mutations which stabilize the antigen may relax the structural constraints on glycosylation opening up avenues for subsequent mutations which remove glycans and improve immune evasion. This interplay between immune evasion and receptor stability may support complex epistatic interactions which may in turn substantially expand the predicted mutational repertoire of the virus relative to expectations which do not take into account glycosylation.

    1. Reviewer #1 (Public Review):

      Summary:

      The study by Seo et al highlights knowledge gaps regarding the role of cerebellar complex spike (CS) activity during different phases of learning related to optokinetic reflex (OKR) in mice. The novelty of the approach is twofold: first, specifically perturbing the activity of climbing fibers (CFs) in the flocculus (as opposed to disrupting communication between the inferior olive (IO) and its cerebellar targets globally); and second, examining whether disruption of the CS activity during the putative "consolidation phase" following training affects OKR performance.

      The first part of the results provides adequate evidence supporting the notion that optogenetic disruption of normal CF-Purkinje neuron (PN) signaling results in the degradation of OKR performance. As no effects are seen in OKR performance in animals subjected to optogenetic irradiation during the memory consolidation or retrieval phases, the authors conclude that CF function is not essential beyond memory acquisition. However, the manuscript does not provide a sufficiently solid demonstration that their long-term activity manipulation of CF activity is effective, thus undermining the confidence of the conclusions.

      Strengths:

      The main strength of the work is the aim to examine the specific involvement of the CF activity in the flocculus during distinct phases of learning. This is a challenging goal, due to the technical challenges related to the anatomical location of the flocculus as well as the IO. These obstacles are counterbalanced by the use of a well-established and easy-to-analyse behavioral model (OKR), that can lead to fundamental insights regarding the long-term cerebellar learning process.

      Weaknesses:

      The impact of the work is diminshed by several methodological shortcomings.

      Most importantly, the key finding that prolonged optogenetic inhibition of CFs (for 30 min to 6 hours after the training period) must be complemented by the demonstration that the manipulation maintains its efficacy. In its current form, the authors only show inhibition by short-term optogenetic irradiation in the context of electrical-stimulation-evoked CSs in an ex vivo preparation. As the inhibitory effect of even the eNpHR3.0 is greatly diminished during seconds-long stimulations (especially when using the yellow laser as is done in this work (see Zhang, Chuanqiang, et al. "Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition." BMC biology 17.1 (2019): 1-17. ), we remain skeptical of the extent of inhibition during the long manipulations. In short, without a demonstration of effective inhibition throughout the putative consolidation phase (for example by showing a significant decrease in CS frequency throughout the irradiation period), the main claim of the manuscript of phase-specific involvement of CF activity in OKR learning can not be considered to be based on evidence.

      Second, the choice of viral targeting strategy leaves gaps in the argument for CF-specific mechanisms. CaMKII promoters are not selective for the IO neurons, and even the most precise viral injections always lead to the transfection of neurons in the surrounding brainstem, many of which project to the cerebellar cortex in the form of mossy fibers (MF). Figure 1Bii shows sparsely-labelled CFs in the flocculus, but possibly also MFs. While obtaining homogenous and strong labeling in all floccular CFs might be impossible, at the very least the authors should demonstrate that their optogenetic manipulation does not affect simple spiking in PNs.

      Finally, while the paper explicitly focuses on the effects of CF-evoked complex spikes in the PNs and not, for example, on those mediated by molecular layer interneurons or via direct interaction of the CF with vestibular nuclear neurons, it would be best if these other dimensions of CF involvement in cerebellar learning were candidly discussed.

    1. Reviewer #1 (Public Review):

      Summary:

      In this paper, the authors used target agnostic MBC sorting and activation methods to identify B cells and antibodies against sexual stages of Plasmodium falciparum. While they isolated some Mabs against PFs48/45 and PFs230, two well-known candidates for "transmission blocking" vaccines, these antibodies' efficacies, as measured by TRA, did not perform as well as other known antibodies. They also isolated one cross-reactive mAb to proteins containing glutamic acid-rich repetitive elements, that express at different stages of the parasite life cycle. They then determined the structure of the Fab with the highest protein binder they could determine through protein microarray, RESA, and observed homotypic interactions.

      Strengths:

      - Target agnostic B cell isolation (although not a novel methodology).<br /> - New cross-reactive antibody and mechanism (homotypic interactions) as demonstrated by structural data and other biophysical data.

      Weaknesses:

      The paper lacks clarity at times and could benefit from more transparency (showing all the data) and explanations.<br /> In particular:<br /> -define SIFA<br /> -define TRAbs<br /> -it is not possible to read the Supplementary Figure 6B and C panels.

    1. Reviewer #1 (Public Review):

      Throughout the paper, the authors do a fantastic job of highlighting caveats in their approach, from image acquisition to analysis. Despite this, some conclusions and viewpoints portrayed in this study do not appear well-supported by the provided data. Furthermore, there are a few technical points regarding the analysis that should be addressed.

      (1) Analysis of signaling traces

      - Relevance of "modeled signaling level": It is not clear whether this added complexity and potential for error (below) provides benefits over a more simple analysis such as taking the derivative (shown in Figure 3C). Could the authors provide evidence for the benefits? For example, does the "maximal response" given a simpler metric correlate less well with cell fate than that calculated from the fitted response?

      - Assumptions for "modeled signaling level": According to equation (1) Kaede levels are monotonically increasing. This is assumed given the stability of the fluorescent protein. However, this only holds for the "totally produced Kaede/fluorescence". Other metrics such as mean fluorescence can very well decrease over time due to growth and division. Does "intensity" mean total fluorescence? Visual inspection of the traces shown in Figure 2 suggests that "fluorescence intensity" can decrease. What does this mean for the inferred traces?

      - Estimation of Kaede reporter half-live: It is not clear how the mRNA stability of Kaede is estimated. It sounds like it was just assessed visually, which seems not entirely appropriate given the quantitative aspects of the rest of the study. Also, given that Shh signaling was inhibited on the level of Smoothened, it is not obvious how the dynamics of signaling shutdown affect the estimate. Most results in Figure 7 seem to be quite robust to the estimate of the half-live. That they are, might suggest that the whole analysis is unnecessary in the first place. However, not all are. Thus, it would be important to make this estimate more quantitative.

      (2) Assignment of fates and correlations

      - Error estimate for cell-type assignment: Trying to correlate signaling traces to cell fate decisions requires accurate cell fate assignment post-tracking. The provided protocol suggests a rather manual, expert-directed process of making those decisions. Can the authors provide any error-bound on those decisions, for example comparing the results obtained by two experts or something comparable? I am particularly concerned about the results regarding the higher degree of variability in the correlation between signaling dynamics and cell fate in the posterior neural tube. Here, the expression of Olig2 does not seem to segregate between different assigned fates, while it does so nicely in the anterior neural tube. This would suggest to me that cells in the posterior neural tube might not yet be fully committed to a fate or that there could be a relatively high error rate in assigning fates. Thus, the results could emerge from technical errors or differences in pure timing. Could the authors please comment on these possibilities?

      - Clustering and fates: One approach the authors use to analyze the correlation between signaling and fate is clustering of cell traces and comparison of the fate distributions in those clusters. There is a large number of clusters with only single traces, suggesting that the data (number of traces) might not be sufficient for this analysis. Furthermore, I am skeptical about clustering cells of different anterior-posterior identities together, given potential differences in the timing of signal reception and signaling. I am not convinced that this analysis reveals enough about how signaling maps to fate given the heterogeneity in traces in large clusters and the prevalence of extremely small clusters.

      - Signaling vector and hand-picked metrics: As an alternative approach, that might be better suited for their data, the authors then pick three metrics (based on their model-predicted signaling dynamics) and show that the maximal response is a very good predictor of fate for different anterior-posterior identities. Previous information-theoretic analysis of signaling dynamics has found that a whole time-vector of signaling can carry much more information than individual metrics (Selimkhanov et al, 2014, PMID: 25504722). Have the authors tried to use approaches that make use of the whole trace (such as simple classifiers (Granados et al, 2018, PMID: 29784812), or can comment on why this is not feasible for their data? The authors should at least make clear that their results present a lower bound to how accurately cells can make cell-fate decisions based on signaling dynamics.

      (3) Consequences of signaling heterogeneity

      The authors focus heavily on portraying that signaling dynamics are highly variable, which seems visually true at first glance. However, there is no metric used or a description given of what this actually means. Mainly, the variability seems to relate to the correlation between signaling and fate. However, given the data and analysis, I would argue that the decoding of signaling dynamics into fate is surprisingly accurate. So signaling dynamics that seem quite noisy and variable by visual inspection can actually be very well discriminated by cells, which to me appears very exciting.

      Indeed, simple features of signaling traces can predict cell fate as well as position (for anterior progenitors). Given that signaling should be a function of position, it naively seems as if signaling read-out could be almost perfect. It might be interesting to plot dorsal-ventral position vs the signaling metrics, to also investigate how Shh concentration/position maps to signaling dynamics, this would give an even more comprehensive view of signal transmission.

      There remains the discrepancy between signaling traces and fate in the posterior neural tube. The authors point towards differences in tissue architecture and difficulties in interpreting a "small" Shh gradient. However, the data seems consistent with differences in timing of cell-fate decisions between anterior and posterior cells. The authors show that fate does initially not correlate well with position in the posterior neural tube. So, signaling dynamics should likely also not, as they should rather be a function of position, given they are downstream of the Shh gradient. As mentioned above, not even Olig2 expression does segregate the assigned fates well. All this points towards a difference in the time of fate assignment between the anterior and posterior. Given likely delays in reporter protein production and maturation, it can thus not be expected that signaling dynamics correlate better with cell fate than the reporter "83%". Can the authors please discuss this possibility in the paper?

      Thus, while this paper represents an example of what the community needs to do to gain a better understanding of robust patterning under variability, the provided data is not always sufficient to make clear conclusions regarding the functional consequences of signaling dynamics.

    1. Reviewer #1 (Public Review):

      Summary:

      There is a long-standing idea that choices influence evaluation: options we choose are re-evaluated to be better than they were before the choice. There has been some debate about this finding, and the authors developed several novel methods for detecting these re-evaluations in task designs where options are repeatedly presented against several alternatives. Using these novel methods the authors clearly demonstrate this re-evaluation phenomenon in several existing datasets.

      Strengths:

      The paper is well-written and the figures are clear. The authors provided evidence for the behaviour effect using several techniques and generated surrogate data (where the ground truth is known) to demonstrate the robustness of their methods.

      Weaknesses:

      The description of the results of the fMRI analysis in the text is not complete: weakening the claim that their re-evaluation algorithm better reveals neural valuation processes.

    1. Reviewer #1 (Public Review):

      Summary:

      Drosophila is one of the most studied model organisms to understand how neural circuits form and function to control intricate animal behaviors. The ventral nerve cord (VNC) part of the fly's CNS serves as a sensory processing and motor output center just like our spinal cord. Over the last decade, the VNC has become a fruitful platform to understand neural circuits responsible for motor behavior such as walking and flying. The missing resource was the complete connectome of the VNC neurons. This study provides this needed resource. The authors documented their approaches on how to generate the data from tissue preparation to computer-assisted reconstruction in a simple manner and left the in-depth analysis of the network features of the connecting neurons to two other well-written companion articles.

      Strengths:<br /> Unlike many other previously published EM datasets, the authors presented a ready-to-view connectome dataset of the adult fly VNC. Readers, without needing permission, can access the dataset to find their neurons of interest and determine their synaptic partners with a few clicks. The authors also share their novel approaches in a detailed manner for others to reproduce similar EM volumes for other tissues.

      Weaknesses:

      The reconstruction completion, around 50%, might be considered a weakness. However, the data appear to have ~ %50 completion across all different neuropils suggesting that sampling is homogenous and does not induce bias. Nevertheless, a higher percentage will give a more complete picture.

    1. Reviewer #1 (Public Review):

      This is an important and very well conducted study providing novel evidence on the role of zinc homeostasis for the control of infection with the intracellular bacterium S. typhimurium also disentangling the underlying mechanisms and providing clear evidence on the importance of spatio-temporal distribution of (free) zinc within the cell.

      Comments:

      It would be important to provide more information on the genotype of mice. It is rather unlikely that C57Bl6 mice survive up to two weeks after i.p. injection of 1x10E5 bacteria.

      To be sure that macrophages Slc30A1 fl/fl LysMcre mice really have an impaired clearance of bacteria it would be important to rule out an effect of Slc30A1 deletion of bacterial phagocytosis and containment (f.e. evaluation of bacterial numbers after 30 min of infection).

      Does the addition of zinc to macrophages negatively affect iNOS transcription as previously observed for the divalent metal iron and is a similar mechanism also employed (CEBPß/NF-IL6 modulation) (Dlaska M et al. J Immunol 1999)?

      How does Zinc or TPEN supplementation to bacteria in LB medium affect the log growth of Salmonella?

    1. Reviewer #1 (Public Review):

      Sertonin is an important neurotransmitter and it synaptic concentration is controlled by re-uptake by the sodium-coupled serotonin transporter SERT. In this paper, some 6000 mutations of SERT were made and tested for surface expression and uptake of a serotonin analogue APP+. The SERT mutants were analysed and compared to the SERT structure and dynamics based on MD simulations. The authors have concluded that mutations located on surface exposed regions are tolerated whilst those involved in packing and structural integrity are not. Gain-of-function mutations map onto regions that in most cases favour opening of a solvent-exposed intracellular vestibule. Closure of the intracellular gate is thought to be rate-limiting to the transport cycle, and thus the evolutionary-based screen is consistent with the clustering of gain-of-function mutations.

      Strengths:<br /> This paper using a large unbiased data-set to probe the evolution of the serotonin transporter SERT for the substrate APP+. They have been able to compare both localisation and transport data, which is an interesting data-set. Using MD simulations they are further able to provide some rationale basis for the gain-of-function mutants.

      Weaknesses:<br /> They can only detect surface expression of myc-tagged SERT based on conjugation with a fluorescent anti-myc antibody. As such, they cannot distinguish between SERT mutants that abolish expression vs. those that are no longer trafficking to the plasma membrane. This is a downside, as it would have been interesting to know the fraction of SERT mutations disrupt trafficking. Indeed, the relationship between misfolding and targeting is poorly understood beyond the calnexin- calreticulin cycle. Furthermore, there seems to be a gap between the large-scale mutagenesis data and the MD simulations in which the main mechanistic conclusions seem to be based on (carried out in a separate publication). Thus, overall while the mutation data-set is impressive its not clear how this aids to our mechanistic understanding of SERT.

    1. Reviewer #1 (Public Review):

      The authors report a high-quality genome assembly for a member of Xenacoelomorpha, a taxon that is at the center of the last remaining great controversies in animal evolution. The taxon and the species in question have "jumped around" the animal tree of life over the past 25 years, and seemed to have found their place as a sister-group to all remaining bilaterians. This hypothesis posits that the earliest split within Bilateria includes Xenacoelomorpha on the one hand and a clade known as Nephrozoa (Protostomia + Deuterostomia) on the other, and is thus referred to as the Nephrozoa hypothesis. Nephrozoa is supported by phylogenomic evidence, by a number of synapomorphic morphological characters in the Nephrozoa (namely, the presence of nephridia) and lack of some key bilaterian characters in Xenacoelomorpha, and by the presence of unique miRNAs in Nephrozoa.

      The Nephrozoa hypothesis has been challenged several times by the authors' groups who alternatively suggest placing Xenacoelomorpha within Deuterostomia as a sister group to a clade known as Ambulacraria. This hypothesis (the Xenambulacraria hypothesis) is supported by alternative phylogenomic datasets and by the shared presence of a number of unique molecular signatures. In this contribution, the authors aim to strengthen their case by providing full genome data for Xenoturbella bocki.<br /> The actual sequencing and analysis are technically and methodologically excellent. Some of the analyses were done several years ago using approaches that may now seem obsolete, but there is no reason not to include them. As a detailed report of a newly sequenced genome, the manuscript meets the highest standards.

      The authors emphasize a number of key findings. One is the fact that the genome is not as simple as one might expect from a "basal" taxon, and is on par with other bilaterian genomes and even more complex than the genome of secondarily simplified bilaterians. There is an implicit expectation here that the sister group to all Bilateria would represent the primitive state. This is of course not true, and the authors are aware of this, but it sometimes feels as though they are using this implicit assumption as a straw dog argument to say that since the genome is not as simple as expected, X. bocki must be nested within Bilateria. The authors get around this by acknowledging that their finding is consistent with a "weak version of the Nephrozoa hypothesis", which is essentially the Nephrozoa phylogenetic hypothesis without implicit assumptions of simplicity.

      Another finding is a refutation of the miRNA data supporting Nephrozoa. This is an important finding although it is somewhat flogging a dead horse, since there is already a fair amount of skepticism about the validity of the miRNA data (now over 20 years old) for higher-level phylogenetics.

      The finding that the authors feel is most important is gene presence-absence data that recovers a topology in which X. bocki is sister to Abulacraria. The problem is that the same tree does not support the monophyly of Xenacoelomorpha. This may be an artifact of fast evolving acoel genomes, as the authors suggest, but it still raises questions about the robustness of the data.

      In sum, the authors' results and analyses leave an open window for the Xenambulacraria hypothesis, but do not refute the Nephrozoa hypothesis. The manuscript is a valuable contribution to the debate but does not go a significant way towards its resolution.<br /> The manuscript has gone through several rounds of review and revision on a preprint server and is thus fairly clear of typos, inconsistencies and lack of clarity. The authors are honest and open in their interpretation of the results and their strengths.

    1. Reviewer #1 (Public Review):

      Rubin et al. study chondrocyte columns in the prenatal and postnatal growth plate in 3D for the first time, using a novel analysis pipeline in which Confetti clones in the murine growth plate are analysed morphometrically. Prenatal chondrocytes were found not to be organised in columns parallel to the main orientation of the long bone, but rather, prenatal chondrocytes were commonly organised perpendicular to the main direction of growth. In the postnatal (P40) growth plate there was a diverse arrangement of columns, but more of the columns were vertically aligned

      I enjoyed reading the work and the analysis is rigorous. However, I think that it is not valid to state that columns do not form in the embryo. The data only supports the finding that strictly vertical columns do not form in the embryo, as the cells are still organised into columns, albeit with a range of orientations. I do not like the term "typically" aligned, as how can we know what is "typical" when orientation has never before been assessed in 3D... And the authors' data demonstrates that it is certainly not "typical" for chondrocyte to organise into vertical columns prenatally.

      It would be very interesting to delve deeper into the reason for the change in orientation of columns between pre- and post-natal. For example, does more circumferential growth happen prenatally as compared to postnatally? Is the rate of circumferential vs longitudinal growth different between prenatal and postnatal, and could the change in column orientation be responsible for a (possible) shift in the balance between longitudinal vs circumferential growth before vs after birth? The first sentence of the Discussion refers to the role of chondrocyte columns in driving bone elongation, but aren't they also involved in driving bone morphology?

      I feel describing the activity of the cells as "mis-rotations" which implies the orientations are not intentional. It is likely not accidental or mistaken that the chondrocytes align in the ways they do- the diaphysis is largely for longitudinal growth while the epiphyses, and lateral expansion of the joint is also important. I find the data in Figure 4 fascinating, especially the variation in orientations between the regions of the growth plate (from proximal to distal), with the most lateral orientation at the most proximal and distal ends- it would be nice to see more discussion of these variations and what they may be contributing to.

      The abstract focuses solely on the analysis of columns prenatally and would benefit from the inclusion of the data from the postnatal growth plate and from the chondrocyte rotations.

    1. Reviewer #1 (Public Review):

      This manuscript presents, for the first time, the utilization of PRV viral transneuronal tracing to elucidate the central coding and control mechanisms governing sympathetic nervous system (SNS) efferent signals to bone. This groundbreaking work not only holds promising research prospects but also establishes a robust foundation for understanding the neural regulation of bone metabolism.

    1. Reviewer #1 (Public Review):

      Garcia-Saldivar and colleagues present a manuscript investigating connections between diffusion-weighted imaging (DWI) parameters and paced finger tapping measures. A cohort of human participants (n=32) performed a paced finger tapping task with a synchronization-continuation paradigm, in which they were required to listen to a paced metronome, begin tapping in synchrony with it, and then continue tapping at the same rate without it. Both auditory and visual metronomes were used, at a range of intervals. All subjects received structural scans measuring DWI, with an emphasis on superficial and deep white matter structures. This latter analysis was the most innovative, as it allowed the authors to examine microstructural effects in short-range cortical connections.

      Behaviorally, the authors replicated some well-known effects in paced finger tapping, with better performance for auditory over visual rhythms, negative lag-1 autocorrelations, and best performance at a range of ~1.5Hz. For the DWI analyses, a large number of correlations were observed across a wide variety of connections with various brain regions. The most salient effects observed were a connection between asynchrony, only for the auditory condition, and connections between the right auditory and motor systems, around the duration of peak performance, as well as a "chronotopic" organization across parts of the corpus callosum, most notably in areas linking motor regions between hemispheres.

      Overall, this paper provides a critical missing link between measures of structural connectivity and rhythmic tapping abilities, pointing to some interesting possibilities for how tapping synchronization (at least for auditory intervals) is carried out. Negative aspects of the paper come from the largely exploratory aspects of the analysis, as well as potential biases from the low sample size.

    1. Reviewer #1 (Public Review):

      The manuscript demonstrates an analysis of the synaptic organization within the motor thalamus, emphasizing the interplay between the ventrolateral (VL) and ventroanterior (VA) nuclei and their respective inputs. The primary aim is to unravel the complexities of synaptic interactions among the motor cortex's layer 5 (M1L5), the cerebellum (Cb), and the basal ganglia output nuclei (GPi and SNr), which converge upon the VA/VL nuclei of the motor thalamus. This examination is executed using a combination of anatomical tracing, optogenetics, and electrophysiological recordings in mouse brain slices, which together yield novel insights into the motor control circuitry.

      The study uncovers that contrary to traditional models that presumed segregation, some motor thalamic neurons simultaneously integrate inputs from the cerebellum and basal ganglia. Furthermore, a subset of these neurons also receive convergent inputs from M1L5 and basal ganglia, underscoring the complexity of these synaptic networks. Notably, the study reveals that both M1L5 and Cb inputs exhibit driver-type synaptic properties, suggesting a significant impact on thalamic relay neurons.

      The functional implications of this synaptic convergence suggest a complex gating mechanism by the inhibitory outputs of the basal ganglia, which could modulate information flow within the motor thalamus. This modulation is significant not only for transthalamic information processing but also for the integration of cerebellar inputs to the motor cortex. The study also highlights direct projections from M1L5 to the motor thalamus, indicating a potential direct influence on thalamic activity, in addition to the known indirect influence through the cortico-basal ganglia-thalamo-cortical loop.

      The manuscript suggests that the traditional understanding of motor thalamic connectivity requires reconsideration, and it emphasizes the necessity of further investigation to understand fully the functional implications of this synaptic convergence. Future research may focus on more direct demonstrations of triple-input convergence and its behavioral consequences, as well as cross-species comparative studies to enhance the findings' applicability.

      While the study provides valuable contributions to our knowledge of the motor thalamus, illuminating the intricate synaptic architecture of the motor thalamus and setting the stage for future explorations that will deepen our comprehension of motor control and thalamic function.

    1. Reviewer #1 (Public Review):

      This manuscript presents an exciting new method for separating insulin secretory granules using insulator-based dielectrophoresis (iDEP) of immunolabeled vesicles. The method has the advantage of being able to separate vesicles by subtle biophysical differences that do not need to be known by the experimenter, and hence could in principle be used to separate any type of organelle in an unbiased way. Any individual organelle ("particle") will have a characteristic ratio of electrokinetic to dielectrophoretic mobilities (EKMr) that will determine where it migrates in the presence of an electric field. Particles with different EKMr will migrate differently and thus can be separated. The present manuscript is primarily a methods paper to show the feasibility of the iDEP technique applied to insulin vesicles. Experiments are performed on cultured cells in low or high glucose, with the conclusion that there are several distinct subpopulations of insulin vesicles in both conditions, but that the distributions in the two conditions are different. As it is already known that glucose induces release of mature insulin vesicles and stimulates new vesicle biosynthesis and maturation, this finding is not necessarily new, but is intended as a proof of principle experiment to show that the technique works. This is a promising new technology based on solid theory that has the possibility to transform the study of insulin vesicle subpopulations, itself an emerging field. The technique development is a major strength of the paper. Also, cellular fractionation and iDEP experiments are performed well, and it is clear that the distribution of vesicle populations is different in the low and high glucose conditions. However, more work is needed to characterize the vesicle populations being separated, leaving open the possibility that the separated populations are not only insulin vesicles, but might consist of other compartments as well. It is also unclear whether the populations might represent immature and mature vesicles, distinct pools of mature vesicles such as the readily releasable pool and the reserve pool, or vesicles of different age. Without a better characterization of these populations, it is not possible to assess how well the iDEP technique is doing what is claimed.

      Major comments:

      (1) There is no attempt to relate the separated populations of vesicles to known subpopulations of insulin vesicles such as immature and mature vesicles, or the more recently characterized Syt9 and Syt7 vesicle subpopulations that differ in protein and lipid composition (Kreutzberger et al. 2020). Given that it is unclear exactly what populations of vesicles will be immunolabeled (see point #2 below), it is also possible that some of the "subpopulations" are other compartments being separated in addition to insulin vesicles. It will be important to examine other markers on these separated populations or to perform EM to show that they look like insulin vesicles.

      (2) An antibody to synaptotagmin V is used to immunolabel vesicles, but there has been confusion between synaptotagmins V and IX in the literature and it isn't clear what exactly is being recognized by this antibody (this reviewer actually thinks it is Syt 9). If it is indeed recognizing Syt 9, it might already be labeling a restricted population of insulin vesicles (Kreutzberger et al. 2020). The specificity of this antibody should be clarified. Furthermore, Figure 2 is not convincing at showing that this synaptotagmin antibody specifically labels insulin vesicles nor is there convincing colocalization of this synaptotagmin antibody with insulin vesicles. In the image shown, several cells show very weak or no staining of both insulin and the synaptotagmin. The highlighted cell appears to show insulin mainly in a perinuclear structure (probably the Golgi) rather than in mature vesicles (which should be punctate), and insulin is not particularly well-colocalized with the synaptotagmin. Other cells in the image appear to have even less colocalization of insulin and synaptotagmin, and there is no quantification of colocalization. It seems possible that this antibody is recognizing other compartments in the cell, which would change the interpretation of the populations measured in the iDEP experiments. It would also be good to perform synaptotagmin staining under glucose-stimulating conditions, in case this alters the localization.

      (3) The EKMr values of the vesicle populations between the low and high glucose conditions don't seem to precisely match. It is unclear if this just a technical limitation in comparing between experiments or instead suggests that glucose stimulation does not just change the proportion of vesicles in the subpopulations (i.e. the relative fluorescent intensities measured), but rather the nature of the subpopulations (i.e. they have distinct biophysical characteristics). This again gets to the issue of what these vesicle subpopulations represent. If glucose stimulation is simply converting immature to mature vesicles, one might expect it to change the proportion of vesicles, but not the biophysical properties of each subpopulation.

      (4) The title of the paper promises "isolation" of insulin vesicles, but the manuscript only presents separation and no isolation of the separated populations. Isolation of the separated populations is important to be able to better define what these populations are (see point #1 above). Isolation is also critical if this is to be a valuable technique in the future. Yet the paper is unclear on whether it is actually technically feasible to isolate the populations separated by iDEP. In line 367, it states "this method provides a mechanism for the isolation and concentration of fractions which show the largest difference between the two population patterns for further bioanalysis (imaging, proteomics, lipidomics, etc.)." However, in line 361 it says "developing the capability to port the collected individual boluses will enable downstream analyses such as mass spectrometry or electron microscopy," suggesting that true isolation of these populations is not yet feasible. This should be clarified.

    1. Reviewer #1 (Public Review):

      Summary:

      The manuscript describes a model based on 5-state cellular automata of development of an infection. The model is motivated and qualitatively justified by time-resolved measurements of expression levels of viral, interferon-producing, and antiviral genes. The model is set up in such a way that the crucial difference in outcomes (infection spreading vs. confinement) depends on the initial fraction of special virus-sensing cells. Those cells (denoted as 'type a') cannot be infected and do not support the propagation of infection, but rather inhibit it in a somewhat autocatalytic way. Presumably, such feedback makes the transition between two outcomes very sharp: a minor variation in concentration of 'a' cells results in qualitative change from one outcome to another. As in any percolation-like system, the transition between propagation and inhibition of infection goes through a critical state with all its attributes, including a power-law distribution of the cluster size (corresponding to the fraction of infected cells) with a fairly universal exponent and a cutoff at the upper limit of this distribution.

      Strengths:

      The proposed model suggests a well-justified explanation for the frequently observed yet puzzling diversity of outcomes of viral infections such as COVID.

      Weaknesses:

      None.

    1. Reviewer #1 (Public Review):

      This paper can be seen as an extension of a recent study by two of the same authors [1]. In the previous paper, the authors considered two variants of the Moran process, labelled Model A and Model B, and examined differences between the evolutionary dynamics of these two models. They further described the site frequency spectra, expected allele counts, and expected singleton counts of these models, building on analytical results from prior studies, and used numerical simulations to investigate the models' evolutionary dynamics. Finally, they compared the site frequency spectra of the two models (using numerical simulations) to spectra derived from a small breast cancer data set (two sets of three samples).

      In the new paper, the authors consider the same two Moran process variants (Model A and Model B) and some related branching processes. As before, they compare the site frequency spectra and various summary statistics of these models, but here they present only numerical simulations (except that some prior analytical results are summarized in Appendix A, which are never referred to in the main text and seem unconnected to the study). They then compare the site frequency spectra of these models (again using numerical simulations) to those derived from the same breast cancer samples as before and thus infer some evolutionary parameters.

      The first main conclusion is that the critical branching process and the Moran process models behave similarly and generate similar site frequency spectra. This finding is unsurprising (indeed, the authors acknowledge that the result "has been expected"). For a reasonably large population size, the population size in the critical branching process has been shown to vary relatively little over time and the model is thus essentially a continuous time Moran process (see, for example, Equation 8.55 in ref 2). Nor is it surprising that the authors see stronger similarities when they select only the subset of branching process replicates in which the final population size is particularly close to the initial population size (this is because, in these replicates, the population size likely varies even less than usual).

      The second main conclusion is that, although "the mutational SFS alone is not adequate" to quantify the strength of selection, "All fitted values for the selective disadvantage of passenger mutations are nonzero, supporting the view that they exert deleterious selection during tumorigenesis". Although the question of whether mildly deleterious mutations play an important role in cancer evolution is of considerable interest, it's debatable whether the results presented here help resolve the issue.

      Many prominent researchers have called into question whether cancer evolutionary parameters can be reliably inferred from site frequency spectra (e.g., [3-7]), even using sophisticated statistical methods. The statistical approach used here (though not named as such in the paper) is a crude kind of approximate Bayesian computation. To improve the accuracy of the results, it would have been better to have set reasonably vague priors for the uncertain mutation rates, rather than fixing them arbitrarily. It would also have been better to have chosen a likelihood function explicitly based on an analysis of the sampling and error distributions, rather than just summing the absolute logged deviations. It is well known that "Checking the model is crucial to statistical analysis" and "A good Bayesian analysis, therefore, should include at least some check of the adequacy of the fit of the model to the data and the plausibility of the model for the purposes for which the model will be used" [8]. The authors' failure to describe any attempt to validate or check their model, using simulated data or otherwise, casts doubt on the reliability of their inferences.

      Putting aside the potential biassing effects of sampling error, measurement error, and the limitations of the authors' statistical method, it is well established that both population growth and spatial structure profoundly alter the shape of site frequency spectra in ways that can mimic the effects of selection (e.g. [9-11]). Indeed, Figures 3, 4 and 5 show that the critical and super-critical branching processes generate markedly different site frequency spectra. It follows that if the population dynamics and spatial structure of the mathematical model used for inference don't match those of the biological process that produced the data then any inferred evolutionary parameter values will be unreliable. Breast cancer has two indisputable ecological features that shape its evolutionary dynamics: the cell population expands by many orders of magnitude from a single cell, and the population is spatially structured. In the authors' mathematical model, the population size is initially 100 cells and either remains constant or varies little, and there is no spatial structure. These profound mismatches between model and data cast further doubt on what is supposed to be the paper's most important biological finding.

      In this paper the authors offer no justification for their decision to model breast cancer as a non-growing, non-spatial cell population. Nor do they engage with the extensive recent literature on the challenges of inferring evolutionary parameters from cancer site frequency spectra (they cite none of the many relevant papers listed at https://www.sottorivalab.org/neutral-evolution.html). Their 2022 paper [1] claims that, "it sometimes makes sense to consider cancer growth in the framework of constant-population models. Our models correspond to the situation in which a constant population of N "healthy" stem cells is gradually replaced by a growing clone of transformed cells with increasing fitness." No evidence was presented to support this hypothesis regarding breast cancer progression. On the other hand, a wealth of evidence supports the consensus view that, in breast cancer and other human solid tumours, the number of cells with unlimited proliferative potential is several orders of magnitude greater than 100 and grows over time (e.g. [12]).

      Analytic expressions for the site frequency spectra with neutral mutations are already known. It is well known that the site frequency spectrum of an exponentially growing population has a tail following a power law S_k ~ k^(-2) [13, 14]. Similarly, it is known that for the critical branching process or the Moran process, the site frequency spectrum at equilibrium is S_k ~ k^(-1) [13, 15]. Especially noteworthy yet uncited studies that use those results about site frequency spectra to make inferences based on sequencing data include ref 16, in which selection is inferred, and ref 17, in which evolutionary parameters of constant populations (healthy cell populations) are inferred.

      Although the paper is well written, the figures are ineffective in communicating the results. As others have put it, "A figure is meant to express an idea or introduce some facts or a result that would be too long (or nearly impossible) to explain only with words" and "If your figure is able to convey a striking message at first glance, chances are increased that your article will draw more attention from the community" [18]. On the contrary, Figures 3, 4, 5 and 6 are bewilderingly complicated, crowded, and repetitive. These figures comprise no fewer than fifty-six plots, each containing numerous curves or histograms, spread across four pages. To compare the results of different scenarios, the reader is presumably expected to put these figures side by side and try to spot the differences, hampered by inconsistent axis ranges, absence of axis labels, absence of titles, absence of legends, and unreliable captions ("cyan" seems to refer to pale blue, and "orange" to something closer to red). For example, the only notable difference between Figures 3 and 4 is in the shape of a single green curve in panel I. In the main text of a published paper, one would expect fewer, more carefully curated figures drawing attention to salient features, so that the reader can infer the main results with minimal effort. The rest can be put in supplementary figures.

      In summary, this paper adds somewhat to our understanding of some standard mathematical models; whether it tells us anything new about cancer is open to debate.

      References<br /> (1) Kurpas, Monika K., and Marek Kimmel. "Modes of selection in tumors as reflected by two mathematical models and site frequency spectra." Frontiers in Ecology and Evolution 10 (2022): 889438.<br /> (2) Bailey, Norman TJ. The elements of stochastic processes with applications to the natural sciences. John Wiley & Sons, 1964.<br /> (3) Tarabichi, Maxime, et al. "Neutral tumor evolution?." Nature Genetics 50.12 (2018): 1630-1633.<br /> (4) McDonald, Thomas O., Shaon Chakrabarti, and Franziska Michor. "Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution." Nature Genetics 50.12 (2018): 1620-1623.<br /> (5) Balaparya, Abdul, and Subhajyoti De. "Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data." Nature Genetics 50.12 (2018): 1626-1628.<br /> (6) Noorbakhsh, Javad, and Jeffrey H. Chuang. "Uncertainties in tumor allele frequencies limit power to infer evolutionary pressures." Nature Genetics 49.9 (2017): 1288-1289.<br /> (7) Bozic, Ivana, Chay Paterson, and Bartlomiej Waclaw. "On measuring selection in cancer from subclonal mutation frequencies." PLoS Computational Biology 15.9 (2019): e1007368.<br /> (8) Neher, Richard A., and Oskar Hallatschek. "Genealogies of rapidly adapting populations." Proceedings of the National Academy of Sciences 110.2 (2013): 437-442.<br /> (9) Gelman, Andrew, et al. Bayesian data analysis (Third Edition). Chapman and Hall/CRC, 2014.<br /> (10) Fusco, Diana, et al. "Excess of mutational jackpot events in expanding populations revealed by spatial Luria-Delbrück experiments." Nature Communications 7.1 (2016): 12760.<br /> (11) Noble, Robert, et al. "Spatial structure governs the mode of tumour evolution." Nature Ecology & Evolution 6.2 (2022): 207-217.<br /> (12) Lawson, Devon A., et al. "Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells." Nature 526.7571 (2015): 131-135.<br /> (13) Gunnarsson, Einar B., Leder, Kevin, and Foo Jasmine. "Exact site frequency spectra of neutrally evolving tumors: A transition between power laws reveals a signature of cell viability" Theoretical Population Biology 142 (2021) 67-90<br /> (14) Durrett, Richard "Branching Process Models of Cancer" Springer (2015)<br /> (15) Durrett, Richard "Probability Models for DNA Sequence Evolution" Springer Science & Business media (2008)<br /> (16) Williams, Mark J. et al. "Quantification of subclonal selection in cancer from bulk sequencing data." Nature Genetics 50 (6). 895-903 (2018)<br /> (17) Moeller, Marius E. et al. "Measures of genetic diversification in somatic tissues at bulk and single-cell resolution" eLife (2024) 12:RP89780<br /> (18) Rougier, Nicolas P., Michael Droettboom, and Philip E. Bourne. "Ten simple rules for better figures." PLoS Computational Biology 10.9 (2014): e1003833.

    1. Reviewer #1 (Public Review):

      Summary:

      This study offers a new perspective. ACTL7A and ACTL7B play roles in epigenetic regulation in spermiogenesis. Actin-like 7 A (ACTL7A) is essential for acrosome formation, fertilization, and early embryo development. ACTL7A variants cause acrosome detachment responsible for male infertility and early embryonic arrest. It has been reported that ACTL7A is localized on the acrosome in mouse sperms (Boëda et al., 2011). Previous studies have identified ACTL7A mutations (c.1118G>A:p.R373H; c.1204G>A:p.G402S, c.1117C>T:p.R373C), All these variants were located in the actin domain and were predicted to be pathogenic, affecting the number of hydrogen bonds or the arrangement of nearby protein structures (Wang et al., 2023; Xin et al., 2020; Zhao et al., 2023; Zhou et al., 2023). This work used AI to model the role of ACTL7A/B in the nucleosome remodeling complex and proposed a testis-specific conformation of SCRAP complex. This is different from previous studies.

      Strengths:

      This study provides a new perspective to reveal the additional roles of these proteins.

      Weaknesses:

      The results section contains a substantial background description. However, the results and discussion sections require streamlining. There is a lack of mutual support for data between the sections, and direct data to support the authors' conclusions are missing.

    1. Reviewer #2 (Public Review):

      Summary:

      The goals of this study were to develop a genetic approach that would specifically and comprehensively target axo-axonic cells (AACs) throughout the brain and then to describe the patterns and characteristics of the targeted AACs in multiple, selected brain regions. The investigators have been successful in providing the most complete description of the regional distribution of putative (pAACs) throughout the brain to date. The supporting evidence is convincing, and the findings should serve as a guide for more detailed studies of AACs within each brain region and lead to new insights into their connectivity and functional organization of this important group of GABAergic interneurons.

      Strengths:

      The study has numerous strengths. A major strength is the development of a unique intersectional genetic strategy that uses cell lineage (Nkx2.1) and molecular (Unc5b or Pthlh) markers to identify AACs specifically and, apparently, nearly completely throughout the mouse brain. While AACs have been described previously in the cerebral cortex, hippocampus and amygdala, there has been no specific genetic marker that selectively identifies all AACs in these regions.

      Importantly, the current genetic strategy labels pAACs in additional brain regions, including the claustrum-insular complex, extended amygdala, and several olfactory centers in which AACs have not been previously recognized. In general, the findings provide support for the specificity of the methods for targeting AACs and include several examples of labeling near markers of axon initial segments, providing validation of their AAC identity.

      The descriptions and numerous low magnification images of the brain provide a roadmap for subsequent, detailed studies of AACs in numerous brain regions. The overview and summaries of the findings in the Abstract, Introduction and Discussion are particularly clear and helpful in placing the extensive regional descriptions of AACs in context.

      Weaknesses:

      Considering the unique and striking characteristics of AACs, it would have been ideal to include a clear, high resolution confocal image of an AAC from the Unc5b;Nkx2.1 mouse that would display the beauty of these cells with their numerous cartridges of axon terminals, emanating from a single AAC. While several cells are illustrated, the processes are often obscured by other labeling or the background created by the blue Dapi labeling. A high-resolution image of an isolated cell would not only support the identity of the cells as AACs but also demonstrate the potential advantages of their labeling for more detailed anatomical and neurophysiological studies. High magnification views of the axon terminals adjacent to AnkG-labeled axon initial segments are included and provide strong support for the identity of the cells. However, they cannot convey the extensiveness and patterns of the axonal arborizations of these cells.

      The intersectional genetic methods included use of the lineage marker Nkx2.1 with either Unc5b or Pthlh as the molecular marker. As described, the mice with intersectional targeting of Nkx2.1 and Unc5b appear to show the most specific brain-wide labeling for AACs, and the majority of the descriptions are from these mice. The targeting with Nkx2.1 and Pthlh is less convincing and there appears to be a disconnect between the descriptions and the images. While the descriptions emphasize that the labeling is very similar in the two types of mice, the images suggest distinct differences, including labeling of non AACs in striatum and layer 4 of the cortex in the Pthlh;Nkx2.1 mouse, as described in the manuscript. In addition, the Pthlh;Nkx2.1 mouse has higher cell targeting in some regions and fewer labeled cells in others. Perhaps it would be more accurate to present the Pthlh;Nkx2.1 mouse as differing from the Unc5b;Nkx2.1 mouse, but useful for AAC labeling in select regions and under some conditions, such as following tamoxifen administration at specific ages. As currently presented, the inclusion of the Pthlh;Nkx2.1 detracts from the otherwise convincing argument that the Unc5b;Nkx2.1 mouse provides a specific and comprehensive way to identify AACs.

    1. Reviewer #1 (Public Review):

      Summary:

      In this study, Rosenblum et al introduce a novel and automatic way of calculating sleep cycles from human EEG. Previous results have shown that the slope of the non-oscillatory component of the power spectrum (called the aperiodic or fractal component) changes with the sleep stage. Building on this, the authors present an algorithm that extracts the continuous-time fluctuations in the fractal slope and propose that peaks in this variable can be used to identify sleep cycle limits. Cycles defined in this way are termed "fractal cycles". The main focus of the article is a comparison of fractal and classical, manually defined sleep cycles in numerous datasets.

      Strengths:

      The manuscript amply illustrates through examples the strong overlap between fractal and classical cycle identification. Accordingly, a high percentage (81%) can be matched one-to-one between methods and sleep cycle duration is well correlated (around R = 0.5). Moreover, the methods track certain global changes in sleep structure in different populations: shorter cycles in children and longer cycles in patients medicated with REM-suppressing anti-depressants. Finally, a major strength of the results is that they show similar agreement between fractal and classical sleep cycle length in 5 different data sets, showing that it is robust to changes in recording settings and methods.

      These results suggest that the fractal cycle methodology could provide a valuable new method to study sleep architecture and avoid the time-consuming steps of manual cycle identification. Moreover, it has the potential to be applied to animal studies which rarely deal with sleep cycle structure.

      Weaknesses:

      The match between fractal and classical cycles is not one-to-one. For example, the fractal method identifies a correlation between age and cycle duration in adults that is not apparent with the classical method. This raises the question as to whether differences are due to one method being more reliable than another or whether they are also identifying different underlying biological differences. It is not clear for example whether the agreement between the two methods is better or worse than between two human scorers, which generally serve as a gold standard to validate novel methods. The authors provide some insight into differences between the methods that could account for differences in results. However, given that the fractal method is automatic it would be important to clearly identify criteria for recordings in which it will produce similar results to the classical method.

    1. Reviewer #1 (Public Review):

      Summary:

      This paper shows that E. coli exhibits a chemotactic response to potassium by measuring both the motor response (using a bead assay) and the intracellular signaling response (CheY phosporylation level via FRET) to step changes in potassium concentration. They find increase in potassium concentration induces a considerable attractant response, with amplitude comparable to aspartate, and cells can quickly adapt (and generally over-adapt). The authors propose that the mechanism for potassium response is through modifying intracellular pH; they find both that potassium modifies pH and other pH modifiers induce similar attractant responses. It is also shown, using Tar- and Tsr-only mutants, that these two chemoreceptors respond to potassium differently. Tsr has a standard attractant response, while Tar has a biphasic response (repellent-like then attractant-like). Finally, the authors use computer simulations to study the swimming response of cells to a periodic potassium signal secreted from a biofilm and find a phase delay that depends on the period of oscillation.

      Strengths:

      The finding that E. coli can sense and adapt to potassium signals and the connection to intracellular pH is quite interesting and this work should stimulate future experimental and theoretical studies regarding the microscopic mechanisms governing this response. The evidence (from both the bead assay and FRET) that potassium induces an attractant response is convincing, as is the proposed mechanism involving modification of intracellular pH. The updated manuscript controls for the impact of pH on the fluorescent protein brightness that can bias the measured FRET signal. After correction the response amplitude and sharpness (hill coefficient) are comparable to conventional chemoattractants (e.g. aspartate), indicating the general mechanisms underlying the response may be similar. The authors suggest that the biphasic response of Tar mutants may be due to pH influencing the activity of other enzymes (CheA, CheR or CheB), which will be an interesting direction for future study.

      Weaknesses:

      The measured response may be biased by adaptation, especially for weak potassium signals. For other attractant stimuli, the response typically shows a low plateau before it recovers (adapts). In the case of potassium, the FRET signal does not have an obvious plateau following the stimuli of small potassium concentrations, perhaps due to the faster adaptation compared to other chemoattractants. It is possible cells have already partially adapted when the response reaches its minimum, so the measured response may be a slight underestimate of the true response. Mutants without adaptation enzymes appear to be sensitive to potassium only at much larger concentrations, where the pH significantly disrupts the FRET signal; more accurate measurements would require the development of new mutants and/or measurement techniques.

      Note added after the second revision: The authors made a reasonable argument regarding the effects of adaptation, which were estimated to be small.

    1. Reviewer #1 (Public Review):

      In this paper, the authors evaluate the utility of brain-age derived metrics for predicting cognitive decline by performing a 'commonality' analysis in a downstream regression that enables the different contribution of different predictors to be assessed. The main conclusion is that brain-age derived metrics do not explain much additional variation in cognition over and above what is already explained by age. The authors propose to use a regression model trained to predict cognition ('brain cognition') as an alternative suited to applications of cognitive decline. While this is less accurate overall than brain age, it explains more unique variance in the downstream regression.

      Comments on revised version:

      I thank the authors for the revision of the manuscript and for being more explicit about the inherent conceptual limitations of Brain Age / Brain Cognition. I have no further comments.

    1. Reviewer #1 (Public Review):

      In this work the authors propose a new regulatory role for one the most abundant circRNAs, circHIPK3. They demonstrate that circHIPK3 interacts with an RNA binding protein (IGF2BP2), sequestering it away from its target mRNAs. This interaction is shown to regulates the expression of hundreds of genes that share a specific sequence motif (11-mer motif) in their untranslated regions (3'-UTR), identical to one present in circHIPK3 where IGF2BP2 binds. The study further focuses on the specific case of STAT3 gene, whose mRNA product is found to be downregulated upon circHIPK3 depletion. This suggests that circHIPK3 sequesters IGF2BP2, preventing it from binding to and destabilizing STAT3 mRNA. The study presents evidence supporting this mechanism and discusses its potential role in tumor cell progression. These findings contribute to the growing complexity of understanding cancer regulation and highlight the intricate interplay between circRNAs and protein-coding genes in tumorigenesis.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of circHIPK3 which is not mediated by sequestering miRNAs but rather a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of studies. They provide both genome-wide analysis and a specific case (STAT3) which is relevant for cancer progression. Overall, the authors have significantly improved their manuscript in their revised version.

      Weaknesses:

      There are seemingly contradictory effects of circHIPK3 and STAT3 depletion in cancer progression. However, the authors have addressed these issues in their revised manuscript, incorporating potential reasons that might explain such complexity.

    1. Reviewer #1 (Public Review):

      This paper describes RNA-sensing guide RNAs for controlled activation of CRISPR modification. This works by having an extended guide RNA with a sequence that folds back onto the targeting sequence such that the guide RNA cannot hybridise to its genomic target. The CRISPR is "activated" by the introduction of another RNA, referred to as a trigger, that competes with this "back folding" to make the guide RNA available for genome targeting. The authors first confirm the efficacy of the approach using several RNA triggers and a GFP reporter that is activated by dCas9 fused to transcriptional activators. A major potential application of this technique is the activation of CRISPR in response to endogenous biomarkers. As these will typically be longer than the first generation triggers employed by the authors they test some extended triggers, which also work though not always to the same extent. They then introduce MODesign which may enable the design of bespoke or improved triggers. After that, they determine that the mode of activation by the RNA trigger involves cleavage of the RNA complexes. Finally, they test the potential for their system to work in a developmental setting - specifically zebrafish embryos. There is some encouraging evidence, though the effects appear more subtle than those originally obtained in cell culture.

      Overall, the potential of a CRISPR system that can be activated upon sensing an RNA is high and there are a myriad of opportunities and applications for it. This paper represents a reasonable starting point having developed such a system in principle.<br /> The weakness of the study is that it does not demonstrate that the system can be used in a completely natural setting. This would require an endogenous transcript as the RNA trigger with a clear readout. The authors now acknowledge this limitation in their revised manuscript. Future studies and experiments should focus on these aspects in order for the system to be employed to its full and intended potential.

    1. Reviewer #1 (Public Review):

      In the presence of predators, animals display attenuated foraging responses and increased defensive behaviors that serve to protect them from potential predatory attacks. Previous studies have shown that the basolateral nucleus of the amygdala (BLA) and the periaqueductal gray matter (PAG) are necessary for the acquisition and expression of conditioned fear responses. However, it remains unclear how BLA and PAG neurons respond to predatory threats when animals are foraging for food. To address this question, Kim and colleagues conducted in vivo electrophysiological recordings from BLA and PAG neurons and assessed approach-avoidance responses while rats search for food in the presence of a robotic predator.

      The authors observed that rats exhibited a significant increase in the latency to obtain the food pellets and a reduction in the pellet success rate when the predator robot was activated. A subpopulation of PAG neurons showing increased firing rate in response to the robot activation didn't change their activity in response to food pellet retrieval during the pre- or post-robot sessions. Optogenetic stimulation of PAG neurons increased the latency to procure the food pellet in a frequency- and intensity-dependent manner, similar to what was observed during the robot test. Combining optogenetics with single-unit recordings, the authors demonstrated that photoactivation of PAG neurons increased the firing rate of 10% of BLA cells. A subsequent behavioral test in 3 of these same rats demonstrated that BLA neurons responsive to PAG stimulation displayed higher firing rates to the robot than BLA neurons nonresponsive to PAG stimulation. Next, because the PAG does not project monosynaptically to the BLA, the authors used a combination of retrograde and anterograde neural tracing to identify possible regions that could convey robot-related information from PAG to the BLA. They observed that neurons in specific areas of the paraventricular nucleus of the thalamus (PVT) that are innervated by PAG fibers contained neurons that were retrogradely labeled by the injection of CTB in the BLA. In addition, PVT neurons showed increased expression of the neural activity marker cFos after the robot test, suggesting that PVT may be a mediator of PAG signals to the BLA.

      Overall, the idea that the PAG interacts with the BLA via the midline thalamus during a predator vs. foraging test is new and quite interesting. The authors have used appropriated tools to address their questions.

      In this revised version of the manuscript, the authors have made important modifications in the text, inserted new data analyses, and incorporated additional references, as recommended by the reviewers. These modifications have significantly improved the quality of the manuscript.

    1. Reviewer #1 (Public Review):

      Summary:

      This work describes a new protein factor required for filamentous phage assembly. The protein PSB15 binds to the packaging signal of the ssDNA, Trx and cardiolipin. A mechanism how the phage DNA is targeted to the assembly site in the bacterial inner membrane is discussed.

      Strengths:

      The work describes a clever way to detect factors required for phage propagation by looking at the plaque size of pseudorevertants that arise after infection of a phage with a directed mutation in the packaging signal. This led to the detection of a phage protein expressed from ORF9, the PSB15.

      The authors convincingly show that PSB15 is expressed in infected cells and can complement a phage with a mutated orf9.

      Weaknesses:

      Given the fact that the phage LF-UK is not well explored, many open questions should be mentioned in the introduction. For the study, it is important to know if the phageLF-UK has a mimick or homolog of gV and gXI, and if not, whether PSB15 could take their role.

      I am not convinced of the proposition of their term "checkpoint". The truth is that the authors do not know the real purpose of PSB15. I do not see an advantage for a checkpoint that only adds an additional step to enter the phage assembly site. There must be a biochemical reason for the action of PSB15. Looking at Figure 7, the step from "Release" to "Loading" is just adding many unknowns, e.g. how to transfer the DNA, how to dispose of PSB15 and Trx? Also, in the previous step are three question marks that do not add any solid information.

      The in vivo study of subcellular localization is very questionable. Why is there a single fluorescent dot if there are thousands of PSB15 molecules expressed in the cell? I have my doubts that the conclusions the authors make here are correct and meaningful. The movies do not add anything significant.

    1. Joint Public Review:

      Summary

      This manuscript explores the transcriptomic identities of olfactory ensheathing cells (OECs), glial cells that support life-long axonal growth in olfactory neurons, as they relate to spinal cord injury repair. The authors show that transplantation of cultured, immunopurified rodent OECs at a spinal cord injury site can promote injury-bridging axonal regrowth. They then characterize these OECs using single-cell RNA sequencing, identifying five subtypes and proposing functional roles that include regeneration, wound healing, and cell-cell communication. They identify one progenitor OEC subpopulation and also report several other functionally relevant findings, notably, that OEC marker genes contain mixtures of other glial cell type markers (such as for Schwann cells and astrocytes), and that these cultured OECs produce and secrete Reelin, a regrowth-promoting protein that has been disputed as a gene product of OECs.

      This manuscript offers an extensive, cell-level characterization of OECs, supporting their potential therapeutic value for spinal cord injury and suggesting potential underlying repair mechanisms. The authors use various approaches to validate their findings, providing interesting images that show the overlap between sprouting axons and transplanted OECs, and showing that OEC marker genes identified using single-cell RNA sequencing are present in vivo, in both olfactory bulb tissue and spinal cord after OEC transplantation.

      Despite the breadth of information presented, however, further quantification of results and explanation of experimental approaches would be needed to support some of the authors' claims. Additionally, a more thorough discussion is needed to contextualize their findings relative to previous work.

      (1) Important quantification is lacking for the data presented. For example, multiple figures include immunohistochemistry or immunocytochemistry data (Figures 1, 5, 6), but they are presented without accompanying measures like fractions of cells labeled or comparisons against controls. As a result, for axons projecting via OEC bridges in Figure 1, it is unclear how common these bridges are in the presence or absence of OECs. For Figure 6., it is unclear whether cells having an alternative OEC morphology coincide with progenitor OEC subtype marker genes to a statistically significant degree. Similar quantification is missing in other types of data such as Western blot images (Fig. 9) and OEC marker gene data (for which p-values are not reported; Table S2).

      The addition of quantitative measures and, where appropriate, statistical comparisons with p-values or other significance measures, would be important for supporting the authors' claims and more rigorously conveying the results.

      (2) Some aspects of the experimental design that are relevant to the interpretation of the results are not explained. For example, OECs appear to be collected from only female rats, but the potential implications of this factor are not discussed.

      Additionally, it is unclear from the manuscript to what degree immunopurified cells are OECs as opposed to other cell types. The antibody used to retain OECs, nerve growth factor receptor p75 (Ngfr-p75), can also be expressed by non-OEC olfactory bulb cell types including astrocytes [1-3]. The possible inclusion of Ngfr-p75-positive but non-OEC cell types in the OEC culture is not sufficiently addressed. Such non-OEC cell types are also not distinguished in the analysis of single-cell RNA sequencing data (only microglia, fibroblasts, and OECs are identified; Figure 2). Thus, it is currently unclear whether results related to the OEC subtype may have been impacted by these experimental factors.

      (3) The introduction, while well written, does not discuss studies showing no significant effect of OEC implantation after spinal cord injury. The discussion also fails to sufficiently acknowledge this variability in the efficacy of OEC implantation. This omission amplifies bias in the text, suggesting that OECs have significant effects that are not fully reflected in the literature. The introduction would need to be expanded to properly address the nuance suggested by the literature regarding the benefits of OECs after spinal cord injury. Additionally, in the discussion, relating the current study to previous work would help clarify how varying observations may relate to experimental or biological factors.

      (a) Cragnolini, A.B. et al., Glia, (2009), doi: 10.1002/glia.20857.<br /> (b) Vickland H. et al., Brain Res., (1991), doi: 10.1016/0006-8993(91)91659-O.<br /> (c) Ung K. et al., Nat Commun., (2021), doi: 10.1038/s41467-021-25444-3.