Reviewer #3 (Public Review):
In this manuscript, Borsatto et. al. have attempted to identify druggable cryptic pockets in the Non-structural protein 1 (Nsp1) of SARS-CoV-2. The authors analyzed analyzed molecular dynamics simulations of Non-structural protein 1 (Nsp1) of SARS-CoV-2 to search for potential drug binding pockets. The authors analyzed potential drug binding pocket volumes in unbiased simulations and utilized a Hamiltonian replica exchange scheme called SWISH to search for additional cryptic binding sites. The authors utilized conformations from their simulations to conduct a computational screen of potential drug fragments, and experimentally tested their predictions by soaking Nsp1 crystals with predicted fragment hits, and found that 1 of 60 predicted hits binds in a predicted pocket with mM binding affinity, and identified crystal packing contacts that may have prevented additional fragment hit binding. Finally, they ran simulations of Nsp1 in complex with RNA which suggest that ligand binding in pocket 1 may hinder RNA complex formation and run simulations of homologous Nsp1 in additional CoV genera to determine if the identified pockets are conserved.
The authors utilized two approaches for identifying potential drug binding pockets: unbiased MD simulations and the SWISH hamiltonian replica exchange that scales water protein interactions to explore the opening of more hydrophobic binding cavities, which can be stabilized by cosolvent benzene molecules. The authors identify 2 potential pockets (pockets 1 and 2) from unbiased simulations, and identify an additional 2-pockets (pockets 3 and 4) from SWISH simulations. Pockets 2-4 are connected by a shallow groove identified on the x-ray structure, but are substantially deeper than this groove. The authors proceed to use the FTDyn and FTMap programs to search for potential fragment binding spots, and identified that pocket 1 contained the largest number binding hotspots (~50%), and that many predicted binding hotspots were found in the cryptic pockets discovered by SWISH.
The authors proceeded to test their predictions by soaking 60 fragment hits obtained by FTMap and FTDyn, identified a single fragment that binds in Fragment 1, and solved the X-ray structure of this bound fragment. They also utilized microscale thermophoresis and thermal shift assays to measure a Kd value of 2.74 + 2.63mM. The authors then proceeded to analyze crystal packing contacts and identify packing contacts that may have prevented additional fragment hit binding. Finally, they ran simulations of Nsp1 in complex with RNA which suggest that ligand binding in pocket 1 may hinder RNA complex formation and run simulations of homologous Nsp1 in additional CoV genera to determine if the identified pockets are conserved.
The authors were successful in identifying an experimentally verifying a druggable pocket in Nsp1. It is unclear to me however, to what extent the features of the this pocket are cryptic, and if the fragment that was found to bind could have been discovered using only the crystal structure, as this ligand appears to bind to a cavity identified by the Fpocket software from a crystal structure. In a sense the authors have computationally identified and experimentally verified a druggable pocket, and have proposed the presence of 3 additional potentially druggable cryptic pockets with strong computational evidence, but have not experimentally verified the druggablity of the proposed cryptic pockets.
This manuscript represents an excellent demonstration of a state-of-the-art MD based computational methods for druggable pocket discovery on an important drug target. The experimental verification fragment binding to one of the identified sites, and the identification of putative additional sites, provide a foundation for future rational drug discovery campaigns of SARS-CoV-2 and other CoVs.