5,827 Matching Annotations
  1. Apr 2024
    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1

      The authors should include experiments such as Cryo-EM and genetically modified animals to demonstrate the physiological importance of the TMEM81 complex.

      While we intend to pursue cryo-EM studies of the putative complex (or subcomplexes thereof), this is clearly not a straightforward endeavor and goes beyond the scope of the present manuscript. Concerning the generation of genetically modified animals, we would like to underline that the majority of the proteins that we used for AlphaFold-Multimer complex predictions were precisely chosen based on the fact that - as detailed in the publications referenced in the Introduction - ablation of the respective genes caused sex-specific infertility due to defects in gamete fusion (the other criterion used for inclusion being structural similarity to IZUMO1 coupled with expression in the testis (IZUMO2-4 and TMEM81), or evidence from other kinds of experiments in the case of human-specific MAIA). Concerning TMEM81, experimental evidence for a direct involvement in gamete fusion is described in the referenced preprint by Daneke et al., which was submitted to bioRxiv concomitantly with the present work.

      Reviewer #2

      I believe that the manuscript would benefit from the authors providing more information about the systematic search (Figure 4). For example, by indicating for each pair tested the average pDock score in a 2D plot (or table) and as raw data in the supplementary information.

      Figure 4 has been modified to report both the top and the mean ranking scores for every interaction. Furthermore, additional metrics for the systematic search summarized in Figure 4, including pDockQ scores, are provided in this manuscript revision as supplementary Table S1.

      A global search, such as including all membrane proteins expressed in eggs or sperm, could not only be more informative but could also allow the reader to understand the pDock score discrimination power for this particular subset.

      The possibility of carrying out a global search was evaluated by performing preliminary computational experiments on an extended ensemble of sperm and egg proteins. In order to do so, we compiled a list of sperm membrane proteins by referring to 4 proteomic datasets (PMIDs 36384108, 36896575, 31824947, 24082039) and identifying ~600 proteins that were found in at least two of them; among these, 250 were single-pass type I or type II membrane proteins, or GPI-anchored proteins. Similarly, a list of 160 egg surface membrane proteins, excluding multipass and secreted ones, was obtained by comparing oocyte cDNA library NIH_MGC_257_N (Express Genomics, USA) with 4 proteomic datasets (PMIDs 35809850, 36042231, 29025019, 27215607). As we briefly commented at the beginning of the section “Prediction of interactions between human proteins associated with gamete fusion” of the revised manuscript, the tests carried out using the resulting list of sperm and egg proteins suggested that interpreting the results of a global search would be severely complicated by a relatively large number of putative false positives. Moreover, the tests showed that performing a complete systematic search would be beyond our current access to computing power. Based on these observations, we preferred to maintain the present study limited to proteins that had been previously clearly implicated in gamete fusion and/or matched specific structural features of IZUMO1.

      Figure 5 could be improved in clarity by schematically indicating to which cell each protein is anchored.

      This has been done in the revised version of the manuscript.

      Reviewer #3

      Major comments

      (1) In Figure 1, how the protein of mouse/human IZUMO1 and JUNO is purified is not mentioned in the main text nor in the Methods. Are the mouse IZUMO1-His and mouse JUNO-His transfected together or separately? Are human JUNO-His and human IZUMO1-Myc transfected together into HEK293 cells? And purified by IMAC?

      Transfection information has been included in the Methods section “Protein expression, purification and analysis” (previously “Protein expression and purification”). Concerning the purification procedure, we had already stated in the legend of Figure 1 that human JUNOE-His/IZUMO1E-Myc had been purified by IMAC before SEC, and have now done the same for mouse JUNOE-His and IZUMO1E-His.

      (2) It would be easier to understand the figure if the author could run a WB to indicate which band above JUNO is specifically IZUMO1-Myc in Figure 1.

      This has been done and reported in a new Figure S1 (with the original Figure S1 having now become Figure S2). Details about the antibodies used for immunoblot have been included in both Methods section “Protein expression, purification and analysis” and the Key Resources Table.

      (3) Figure 4: Analysis of more proteins that have been suggested as possible candidates for sperm-egg interaction will help to highlight the following results. Also, providing a score for the possibility of interaction might help in selecting those proteins in Figures 5 and 6.

      Please refer to the answer to the first question of Reviewer #2.

      (4) Figure 7: The authors take advantage of the latest developments in protein structure and interaction to model protein complex formation. However, some experimental experiments such as Co-IP, pull down to support the prediction to verify some of this predicated interaction is necessary.

      We agree with the reviewer; however, for the reasons we discussed during our comparison of the biochemical properties of the JUNO/IZUMO1 interaction between mouse and human, pursuing this line of inquiry will likely necessitate an extensive set of parallel experiments using proteins from different species. This work is being planned and will be the focus of future studies. However, as we mentioned at the end of the Abstract, one should also consider that some of these complexes are likely to be highly transient. Because of this, while they may have important regulated roles in vivo (function at a specific time and place), they could be very challenging to detect using standard approaches in vitro. We thus see this as a significant advance that structural modeling could contribute to the identification of such functionally important but transient interactions.

      Minor points

      (1) In the abstract, "three sperm (IZUMO1, SPACA6 and TMEM81) "should be "three sperm proteins."

      The Abstract has been condensed to fit within the suggested 200-word limit and, as part of this, the sentence has been changed to “complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9”.

      (2) How do the predictions of the binary complex IZUMO1/CD9 (Figure S1B) or IZUMO1/CD81 (Figure S1C) suggest "the two egg tetraspanins are interchangeable"? Was it because they are quite similar? Please provide more explanation for this speculation. Interchangeable by function or for complex formation? To support the conclusion, biochemical data is required. Otherwise, it needs to be toned down.

      This is because, in the AlphaFold-Multimer predictions of the pentameric complex, CD9 and CD81 are placed in essentially the same way relative to the other subunits.

      We have now clarified this at the end of page 6:

      “(...) suggest that the two egg tetraspanins are interchangeable because they are predicted to bind to the same region of IZUMO1; (...)”

      (3) It would be more reader-friendly if the author could label the name of each protein in the figure in Figure S1, especially when the name is not written in the figure legend.

      This has been done in Figure S2 of the revised manuscript (corresponding to original Figure S1).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study examined a universal fractal primate brain shape. However, the paper does not seem well structured and is not well written. It is not clear what the purpose of the paper is. And there is a lack of explanation for why the proposed analysis is necessary. As a result, it is challenging to clearly understand what novelty in the paper is and what the main findings are.

      We have now restructured the paper, including a summary of the main purpose and findings as follows:

      “Compared to previous literature, we can summarise our main contribution and advance as follows:

      (i) We are showing for the first time that representative primate species follow the exact same fractal scaling – as opposed to previous work showing that they have a similar fractal dimension [Hofman1985, Hofman1991], i.e. slope, but not necessarily the same offset, as previous methods had no consistent way of comparing offsets.

      (ii) Previous work could also not show direct agreement in morphometrics between the coarse-grained brains of primate species and other non-primate mammalian species.

      (iii) Demonstrating in proof-of-principle that multiscale morphometrics, in practice, can have much larger effect sizes for classification applications. This moves beyond our previous work where we only showed the scaling law across [Mota2015] and within species [Wang2016], but all on one (native) scale with comparable effect sizes for classification applications [Wang2021].

      In simple terms: we know that objects can have the same fractal dimension, but differ greatly in a range of other shape properties. However, we demonstrate here, that representative primate brains and mammalian brain indeed share a range of other key shape properties, on top of agreeing in fractal dimension. This suggests a universal blueprint for mammalian brain shape and a common set of mechanisms governing cortical folding. As a practical additional outcome of our study, we could show that our novel method of deriving multiscale metrics of brain shape can differentiate subtle shape changes much better than the metrics we have been using so far at a single native scale.”

      We plan to use the second paragraph as a plain-language summary of our work.

      Additionally, several terms are introduced without adequate explanation and contextualization, further complicating comprehension.

      We have now made sure that potential jargon is introduced with context and explanation. For example in Introduction: “This scaling law, relating powers of cortical thickness and surface area metrics, […]”

      Does the second section, "2. Coarse-graining procedure", serve as an introduction or a method?

      We have now renamed this section to “Coarse-graining Method” to indicate that this is a section about methods. However, to describe the methods adequately, we also expanded this section with introductory texts around the history and motivation of the method to provide context and explanations, as the reviewer rightly requested.

      Moreover, the rationale behind the use of the coarse-graining procedure is not adequately elucidated. Overall, it is strongly recommended that the paper undergoes significant improvements in terms of its structure, explanatory depth, and overall clarity to enhance its comprehensibility.

      To specifically explain the rationale behind the coarse-graining method, we added several clarifications, including the following paragraph:

      “As a starting point for such a coarse-graining procedure, we suggest to turn to a well-established method that measures fractal dimension of objects: the so-called box-counting algorithm [Kochunov2007, Madan2019]. Briefly, this algorithm fills the object of interest (say the cortex in our case) with boxes, or voxels of increasingly larger sizes and counts the number of boxes in the object as a function of box size. As the box size increases, the number of boxes decreases; and in a log-log plot, the slope of this relationship indicates the fractal dimension of the object. In our case, this method would not only provide us with the fractal dimension of the cortex, but, with increasing box size, the filled cortex would also contain less and less detail of the folded shape of the cortex. Intuitively, with increasing box size, the smaller details, below the resolution of a single box, would disappear first, and increasingly larger details will follow -- precisely what we require from a coarse-graining method. We therefore propose to expand the traditional box-counting method beyond its use to measure fractal dimension, but to also analyse the reconstructed cortices as different realisations of the original cortex at the specified spatial scale.”

      Reviewer #2 (Public Review):

      In this manuscript, Wang and colleagues analyze the shapes of cerebral cortices from several primate species, including subgroups of young and old humans, to characterize commonalities in patterns of gyrification, cortical thickness, and cortical surface area. The work builds on the scaling law introduced previously by co-author Mota, and Herculano-Houzel. The authors state that the observed scaling law shares properties with fractals, where shape properties are similar across several spatial scales. One way the authors assess this is to perform a "cortical melting" operation that they have devised on surface models obtained from several primate species. The authors also explore differences in shape properties between the brains of young (~20 year old) and old (~80) humans. My main criticism of this manuscript is that the findings are presented in too abstract a manner for the scientific contribution to be recognized.

      We recognise that our work is at the intersection of complex mathematical concepts and a perplexing biological phenomenon. Therefore, our paper has to strike a balance between scientifically accurate and succinct descriptions whilst giving sufficient space to provide context and explanations.

      Throughout, we have now added text to provide more context, but also repeat key statements in plain-english terms.

      For example, we added the following text to highlight our key contributions.

      “In simple terms: we know that objects can have the same fractal dimension, but differ greatly in a range of other shape properties. However, we demonstrate here, that representative primate brains and mammalian brain indeed share a range of other key shape properties, on top of agreeing in fractal dimension. This suggests a universal blueprint for mammalian brain shape and a common set of mechanisms governing cortical folding. As a practical additional outcome of our study, we could show that our novel method of deriving multiscale metrics of brain shape can differentiate subtle shape changes much better than the metrics we have been using so far at a single native scale.”

      (1) The series of operations to coarse-grain the cortex illustrated in Figure 1, constitute a novel procedure, but it is not strongly motivated, and it produces image segmentations that do not resemble real brains.

      To specifically explain the rationale behind the coarse-graining method, we added several clarifications, including the following paragraph:

      “As a starting point for such a coarse-graining procedure, we suggest to turn to a well-established method that measures fractal dimension of objects: the so-called box-counting algorithm [Kochunov2007, Madan2019]. Briefly, this algorithm fills the object of interest (say the cortex in our case) with boxes, or voxels of increasingly larger sizes and counts the number of boxes in the object as a function of box size. As the box size increases, the number of boxes decreases; and in a log-log plot, the slope of this relationship indicates the fractal dimension of the object. In our case, this method would not only provide us with the fractal dimension of the cortex, but, with increasing box size, the filled cortex would also contain less and less detail of the folded shape of the cortex. Intuitively, with increasing box size, the smaller details, below the resolution of a single box, would disappear first, and increasingly larger details will follow -- precisely what we require from a coarse-graining method. We therefore propose to expand the traditional box-counting method beyond its use to measure fractal dimension, but to also analyse the reconstructed cortices as different realisations of the original cortex at the specified spatial scale.”

      We also note in several places in the text that the coarse-grained brains are not to be understood as exact reconstructions of actual brains, but serve the purpose of a model:

      “[…] nor are the coarse-grained versions of human brains supposed to exactly resemble the location/pattern/features of gyri and sulci of other primates. The similarity we highlighted here are on the level of summary metrics, and our goal was to highlight the universality in such metrics to point towards highly conserved quantities and mechanisms.”

      “Note, of course, that the coarse-grained brain surfaces are an output of our algorithm alone and not to be directly/naively likened to actual brain surfaces, e.g. in terms of the location or shape of the folds. Our comparisons here between coarse-grained brains and actual brains is purely on the level of morphometrics across the whole cortex.”

      The process to assign voxels in downsampled images to cortex and white matter is biased towards the former, as only 4 corners of a given voxel are needed to intersect the original pial surface, but all 8 corners are needed to be assigned a white matter voxel (section S2). This causes the cortical segmentation, such as the bottom row of Figure 1B, to increase in thickness with successive melting steps, to unrealistic values. For the rightmost figure panel, the cortex consists of several 4.9-sided voxels and thus a >2 cm thick cortex. A structure with these morphological properties is not consistent with the anatomical organization of a typical mammalian neocortex.

      Specifically on the point on increasing cortical thickness with increased level of coarse-graining, we have now added the following paragraph:

      “The observation that with increasing voxel sizes, the coarse-grained cortices tend to be smoother and thicker is particularly interesting: the scaling law in Eq. 1 can be understood as thicker cortices (T) form larger folds (or are smoother i.e. less surface area At) when brain size is kept constant (Ae). This way of understanding has also been vividly illustrated by using the analogy of forming paper balls with papers of varying thickness in [Mota2015]: to achieve the same size of a paper ball (Ae), the one that uses thicker paper (T) will show larger folds (or is smoother i.e. less surface area At) than the one using thinner paper. The scaling law can therefore be understood as a physically and biologically plausible statement, and here, we are encouraged that our algorithm yields results in line with the scaling law.”

      (2) For the comparison between 20-year-old and 80-year-old brains, a well-documented difference is that the older age group possesses more cerebral spinal fluid due to tissue atrophy, and the distances between the walls of gyri becomes greater. This difference is born out in the left column of Figure 4c. It seems this additional spacing between gyri in 80-year-olds requires more extensive down-sampling (larger scale values in Figure 4a) to achieve a similar shape parameter K as for the 20-year-olds. A case could be made that the familiar way of describing brain tissue - cortical volume, white matter volume, thickness, etc. - is a more direct and intuitive way to describe differences between young and old adult brains than the obscure shape metric described in this manuscript. At a minimum, a demonstration of an advantage of the Figure 4a and 4b analyses over current methods for interpreting age-related differences would be valuable.

      We have demonstrated the utility of our new shape metrics in a separate paper [Wang2021]. However, we agree with the reviewer that, in this specific instance, it is much easier to understand the key message without considering the less traditional metrics. We have therefore completely revised this part of the Results section to highlight the advantage of multiscale morphometrics, and used the traditional metric of surface area to illustrate the point. The reasoning in surface area is much easier to follow, both visually and conceptually, exactly as the reviewer described.

      (3) In Discussion lines 199-203, it is stated that self-similarity, operating on all length scales, should be used as a test for existing and future models of gyrification mechanisms. First, the authors do not show, (and it would be surprising if it were true) that self-similarity is observed for length scales smaller than the acquired MRI data for any of the datasets analyzed. The analysis is restricted to coarse (but not fine)-graining.

      To clarify this point, we have added a supplementary section and the following sentence: “Note this method has also no direct dependency on the original MR image resolution, as the inputs are smooth grey and white matter surface meshes reconstructed from the images using strong (bio-)physical assumptions and therefore containing more fine-grained spatial information than the raw images (also see Suppl. Text 3).”

      We are indeed sampling at resolutions down to 0.2mm, which is below MR image resolution. The reviewer is, however, correct that we are only coarse-graining, not “fine-graining”. Coarse-graining, here, relates to more coarse than the smooth surface meshes though, not the MR image.

      Therefore, self-similarity on all length scales would seem to be too strong a constraint. Second, it is hard to imagine how this test could be used in practice. Specific examples of how gyrification mechanisms support or fail to support the generation of self-similarity across any length scale, would strengthen the authors' argument.

      We agree that spatial scales much below 0.2mm resolution may not be of interest, as these scales are only measuring the fractal properties, or “bumpiness”, of the surface meshes at the vertex level. We have therefore revised our statement in Discussion and clarified it with an example: “Finally, this dual universality is also a more stringent test for existing and future models of cortical gyrification mechanisms at relevant scales, and one that moreover is applicable to individual cortices. For example, any models that explicitly simulate a cortical surface could be directly coarse-grained with our method and compared to actual human and primate data provided here.”

      Some additional, specific comments are as follows:

      (4) The definition of the term A_e as the "exposed surface" was difficult to follow at first. It might be helpful to state that this parameter is operationally defined as the convex hull surface area.

      We agree and introduced this term now at first use: “The exposed surface area can be thought of as the surface area of a piece of cling film wrapped around the brain. Mathematically, for the remaining paper it is the convex hull of the brain surface.”

      Also, for the pial surface, A_t, there are several who advocate instead for the analysis of a cortical mid-thickness surface area, as the pial surface area is subject to bias depending on the gyrification index and the shape of the gyri. It would be helpful to understand if the same results are obtained from mid-thickness surfaces.

      This point is indeed being investigated independently of this study. Our provisional understanding is that in healthy human brains, at native scale, using the mid (or the white matter) surface introduced a systematic offset shift in the scaling law, but does not affect the scaling slope of 1.25. However, this requires a more in-depth investigation in a range of other conditions, and in the context of the coarse-grained shapes, which is on-going. Nevertheless, the scaling law, at first introduction already, has been using the pial surface area [Mota2015] and all subsequent follow-up studies followed this convention. To make our paper here accessible and directly comparable, we therefore used the same metric. Future work will investigate the utility of other metrics.

      (5) In Figure 2c, the surfaces get smaller as the coarse-graining increases, making it impossible to visually assess the effects of coarse-graining on the shapes. Why aren't all cortical models shown at the same scale?

      The purpose of rescaling the surfaces is to match the scaling plot (Fig 2A) directly, which are showing shrinking surface areas Ae and At with increasing coarse-graining. Here, we are effectively keeping the size of the box constant and resizing the cortical surface instead, which is mathematically equivalent to changing the box size and keeping the cortical surface constant.

      An alternative interpretation of the “shrinking” is, therefore, that with increasingly smaller cortical surfaces, the folding details disappear, as we require from our coarse-graining method. This is also visually apparent, as the reviewer points out. We have added this to the explanation in the text.

      If we, however, changed the box size instead, the scaling law plot would be meaningless: for example, Ae would barely change with coarse-graining. We would therefore have needed to introduce more complexity in our analysis in terms of how we can measure the scaling law. Thus, we opted to present the simpler method and interpretation here.

      Nevertheless, we agree that a direct comparison would be beneficial and have thus added the videos for each species in supplementary under this link: https://bit.ly/3CDoqZQ Upon completed peer-review, we hope to integrate these directly into eLife’s interactive displays for this figure.

      (6) Text in Section 3.2 emphasizes that K is invariant with scale (horizontal lines in Figure 3), and asserts this is important for the formation of all cortices. However, I might be mistaken, but it appears that K varies with scale in Figure 4a, and the text indicates that differences in the S dependence are of importance for distinguishing young vs. old brains. Is this an inconsistency?

      We agree that it may be confusing to emphasise a “constant K” in the first set of results across species, and then later highlight a changing K in the human ageing results. To clarify, in the first set of results, we find a constant K relative to a changing S: the range in K across melted primate brains is less than 0.1, whereas in S it is over 1.2. In other words, S changes are an order of magnitude higher than K changes. Hence, we described K as “constant” relative to S.

      Nevertheless, K shows subtle changes within individuals, which is what we were describing in the human ageing results. These changes are within the range of K values described in the across species results.

      However, in the interest of clarity, we followed the reviewer’s suggestion of simplifying the last set of results on human ageing and therefore the variable K in human ageing now only appears in Supplementary. We have now added clarifications to the supplementary on this point.

      Reviewer #3 (Public Review):

      Summary:

      Through a detailed methodology, the authors demonstrated that within 11 different primates, the shape of the brain matched a fractal of dimension 2.5. They enhanced the universality of this result by showing the concordance of their results with a previous study investigating 70 mammalian brains, and the discordance of their results with other folded objects that are not brains. They incidentally illustrated potential applications of this fractal property of the brain by observing a scale-dependent effect of aging on the human brain.

      Strengths:

      • New hierarchical way of expressing cortical shapes at different scales derived from the previous report through the implementation of a coarse-graining procedure.

      Positioning of results in comparison to previous works reinforcing the validity of the observation.

      • Illustration of scale-dependence of effects of brain aging in the human.

      Weaknesses:

      • The impact of the contribution should be clarified compared to previous studies (implementation of new coarse graining procedure, dimensionality of primate brain vs previous studies, and brain aging observations).

      We have now made these changes, particularly by adding two paragraphs to the start of Discussion. One summarising the main contributions above previous work, and one paraphrasing the former in plain English for accessibility.

      • The rather small sample sizes, counterbalanced by the strength of the effect demonstrated.

      We have now increased the sample size of the human ageing analysis substantially to over 100 subjects and observe the same trends, but with an even stronger effect. We therefore believe that this revision serves as an additional internal validation of our data and methods.

      • The use of either averaged or individual brains for the different sub-studies could be made clearer.

      We have now added this to our Suppl methods: with the exception of the Marmoset, all brain surface data were derived from healthy individual brains.

      • The model discussed hypothetically in the discussion is not very clear, and may not be state-of-the-art (axonal tension driving cortical folding? cf. https://doi.org/10.1115/1.4001683).

      We have now added this citation to our Discussion and given it context:

      “Indeed, our previously proposed model [Mota2015] for cortical gyrification is very simple, assuming only a self-avoiding cortex of finite thickness experiencing pressures (e.g. exerted by white matter pulling, or by CSF pressure). The offset K, or 'tension term', precisely relates to these pressures, leading us to speculate that subtle changes in K correlate with changes in white matter property [Wang2016, Wang2021]. In the same vein of speculation, the scale-dependence of K shown in this work might therefore be related to different types of white matter that span different length scales, such as superficial vs. deep white matter, or U-fibres vs. major tracts. However, there are also challenges to the axonal tension hypothesis [Xu2010]. Indeed, white matter tension differentials in the developed brain may not explain location of folds, but instead white matter tension may contribute to a whole-brain scale 'pressure' during development that drives the folding process overall.”

      Reviewer #3 (Recommendations For The Authors):

      Many thanks to the authors for this elegant article. I will only report here on the cosmetics of the article.

      We thank the reviewer for their kind words and attention to detail and have made all the suggested changes and revised the paper generally for readability, grammar and spelling.

      p2: last line of abstract: 'for a range of conditions in the future'.

      p3 l.37: I would not self-describe this method as elegant as this is a subjective property .

      p3 l.38: 'that will render' -> I wouldn't use the future here.

      p.4 l.59: double spacing before ref [9]?

      p.6 l.99: 'approximate a fractal' -> why is 'a' italicized?

      p.7 fig.2: I would expect the colours to be detailed in the legend. Are there two data points per species because both hemispheres are treated separately?

      p.9 l.134-135: 'similar to and in terms of the universal law 'as valid as' -> please add commas for reading comfort: 'similar to, and, in terms of the universal law, 'as valid as'.

      p.9 l. 141: For all the cortices we analysed.

      p.9 Fig 3: I find the colours a bit confusing in Figs B and C. I find Fig C a bit confusing: what are all the lines representative of, and more specifically, the two lower lines with a different trajectory?

      p.10 l.155: '1̃500' -> '~1500'.

      p.13 l. 209: either 'speculate that' of 'wonder if'.

      p.14 l.232: 'neuron numbers' -> 'number of neurons'.

      p.26 S2 second paragraph: 'gryi' -> 'gyri'.

      p.30 l.3: please refrain from starting a sentence with I.e..

      p.30 last line before S3.2: 'The algorithmic implementation in MATLAB can be found on Zenodo: TBA' - I guess this is linked to you disclosing the code upon acceptance, but please complete before final submission.

      p.34 middle/bottom of page: 'The scheme described in Sec. S3.1' -> double spacing before S3.1?

      p.35 l.1: 'We simply replace' -> 'we simply replace' (no capital).

      p.36 Fig S5.1: explicit the same colouring of the points and boxes in legend

      p.38 Fig. S6.1: briefly describe the use of colours in the legend.

      p.39 Fig. S7.1: detail colours in the legend.

      p.41 Fig. S7.3: detail colours in the legend.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Figure 1

      • The "matched primary tumors" from TCGA include n=424 from cutaneous melanoma; but it is unclear where this is coming from; the PanCan Atlas for melanoma shows n=81 primary and 367 metastatic tumors. There are also additional large cohorts of ICI-treated metastatic tumors with RNAseq data (e.g. a metastatic melanoma cohort with 100+ patients https://doi.org/10.1038/s41591-019-0654-5) that would increase the numbers here.

      We thank the reviewer for their observation. We have replaced references to “primary” cancers as “TCGA” cancers as appropriate. While the TCGA analyses included metastatic samples, the majority of the TCGA tumors in most cohorts correspond to primary cancers or local metastases, a point which we added to the text. We retained Fig. 1D as the representative examples are actual primary samples. We have decided to defer analysis of additional melanoma cohorts for future inquiry.

      Figure 2

      • What is the basis for the split between high and low Dux4 expressing tumors at 1 TPM? Is it arbitrary, or based on some structure in the distribution? (e.g. bimodal distribution)

      Our previous analyses of RNA-seq datasets derived from early embryogenesis samples (PMID: 3132774, 28459457) showed that physiologic levels of DUX4 range from approximately 2 to 10 TPM. We added a description in the methods section, under “Genome annotations, gene expression, and Gene Ontology (GO) enrichment analyses,” of our conservative choice for the threshold: DUX4-positivity defined as expression levels > 1 TPM.

      Figure 3

      • Overall claim is that Dux4 expression is associated with worse survival in metastatic urothelial carcinomas treated with PD-L1 inhibitor. However, the rationale for the choice of split (Dux4 expression < 0.5 and > 1 TPM) to show is unclear (is this the 25th percentile? 75th percentiles?), and the rationale/interpretation of the "partial adjustment" for TMB by removing the bottom quartile of TMB feels non-rigorous and prone to bias. It doesn't feel like Fig 3bc contributes very much; Figure 4 really is the more rigorous analysis.

      We thank the reviewer for these comments and suggestions. We adjusted the analyses in Fig. 3C and Fig. S3 to be consistent with Fig. 1 and Fig. 2, in terms of the choice of split. We also clarified in the text how our initial, crude TMB adjustment served as an important indication for us to pursue more rigorous statistical approaches.

      Figure 4

      • Dux4 expression is independently associated with worse survival considering other clinical and molecular characteristics

      • I would include TGFB in the features considered in the table (in the supplementary but not the main table or forest plots, not sure why not?)

      • The choice of Dux4 expression split ( < 0.25 and > 1 TPM) feels arbitrary and is different than the split in Figure 3; what is the rationale for this? Also, how many patients does this exclude? (TPM between 0.25 and 1). What does the continuous value or median split for Dux4 expression give you for the CoxPH model?

      • Re: building a predictive model, excluding patients (e.g. between <0.25 and > 1 Dux4 TPM) makes the model difficult to apply (e.g. cannot apply to patients with Dux4 levels in the missing interval); a better predictive model would include all patients in the cohort.

      We thank the reviewer for their other suggestions. We have clarified in the text that our choice to define DUX4negative samples as those with DUX4 expression levels < 0.25 TPM was made to preemptively address potential misclassifications due to decreased sensitivity of bulk RNA-seq at very low expression levels (PMID: 18516045). We believe our classifications with the new scheme are more reliable. We have also now specified in the text that our categorization excludes 126 patients. We have decided to not pursue the addition of TGFB or exploration of the use of an alternative split or continuous version of DUX4 expression in the Cox Proportional Hazards analyses but appreciate the suggestions, which we will keep in mind for future studies.

      Figure 5

      • An RSF (randomized survival forest) model predicts survival in Dux4+ vs Dux4- patient, and the Shapley values for landmark time analyses show time-varying effects of different features.

      • In some sense, the authors have already demonstrated that Dux4+ is associated with survival differences in ICI treated patients; so a model that predicts survival applied to Dux4+ and Dux4- patients that shows a difference in survival is unsurprising (even in a training/test set setting given that there is a difference in survival across the entire cohort). The quantified marginal effect (from a predictive perspective) of different features is what is interesting here. In that light, I'd like to see more validation of the model up front, specifically how close the predicted survival is to the actual survival of patients (e.g. the survival curves in Fig 5a but with actual survival of the Dux4- and Dux4+ cohorts superimposed on the predicted probabilities).

      We thank the reviewer for this suggestion. We have added a plot showing the superimposed survival probability estimates over time for the RSF and KM models for patients assigned to either the test or training sets in Fig. 5.

      SFig 5

      • Unclear how the authors got estimates of the # of expected deaths associated with covariates (e.g. "...we measured an increase in the number of predicted deaths associated with DUX4-positivity by approximately 16, over DUX4negative status (Fig S5F-G).") from Shapley values as shown in the indicated figure - is this 16 out of the entire cohort? At a given time point? Would recommend perhaps showing the inferred absolute change in mortality (e.g. 8% absolute increase in mortality)

      Mortality is the expected number of deaths for the cohort over the observation window, measured as the sum of the CHF over time. We have clarified this in the Methods section, under “Random Survival Forest, feature importance, and partial dependence.” We have also changed the quantification to show the absolute mortality differences comparing patients with DUX4-negative and -positive tumors; we thank the reviewer for this suggestion. We have also clarified in the text that adjusted mortality was estimated via partial dependence, which operates using the correct units, as opposed to Shapley values, where attribution is scaled. Finally, we changed the referenced figure when discussing changes in mortality associated with TMB and DUX4 status (Fig. S5H-I); we appreciate the reviewer pointing out this error.

      Figure S1B-C

      • The authors argue that Dux4 expression is not an artifact of FFPE tissue by analyzing a mixed tumor cohort sequenced with both poly-A and hybrid probe capture in matched flash-frozen and FFPE tumor samples, showing that it is 1) detectible both FFPE and flash-frozen tissue and 2) higher levels are detected in polyA sequencing/frozen tissue. However, the reference for this section (D. Robinson et al 2015) is a study of a cohort of prostate cancers with polyA bulk RNAseq sequencing; is this correct/is the data coming from a different study?

      • Analysis of scRNAseq (if available) would strengthen their analyses by better delineating the expression and response of interferon-gamma and downstream (e.g. antigen presentation) pathways in specific cell compartments, and potential differences in cell-cell interactions (e.g. using CellPhoneDB) associated with Dux4+ vs Dux4- tumors.

      • Do the investigators find similar findings in primary and metastatic tumors sequenced the same way (e.g. tcga primary vs met melanoma, albeit most of the met melanoma are Stage III lymph nodes)?

      We thank the reviewer for finding the citation error. We have corrected the manuscript to reflect the correct study we analyzed (PMID: 28783718). We also thank the reviewer for their additional suggestions, which undoubtedly would strengthen the current study. However, we have respectfully decided to defer these additional analyses for future study.

      Reviewer #2:

      It is strange as a statistician to see BIC and AIC represented as barplots, e.g. Figure 4B. There is no knowledge to be gained through this visual representation that would not otherwise be conveyed by just giving the numbers.

      We thank the reviewer for this suggestion. We understand that simply stating the numbers would be equally informative. However, we respectfully decided to retain our current versions of Figures 4 and S4 so that the numbers can be illustrated in a visual manner in the figures, rather than just stated in the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Line 144, after eq. (1). Vectors d_i need to be defined. Are these the mapping of vectors e_i due to the active deformation? It would be useful to state then that d_3 is aligned with r'.

      Thank you for your suggestion, and the definition has been added to lines 146-149 for a better understanding of the model.

      • Line 144.Authors state a_i(0,0,Z)=0. Shouldn't this be true also for any angle, i.e., a_i(0,Theta, Z)=0?

      Thank you, we have revised it in line 144.

      • Line 156. G_0 is defined as Diag(1,g_0(t), 1), which seems to be using cylindrical coordinates. Previously, in line 147, vector argument X of \chi is defined with Cartesian coordinates (X,Y,Z). Shouldn't these be also cylindrical?

      We are very sorry for this error, our initial configuration is defined with cylindrical coordinates, we have revised it in the manuscript line 151.

      • Line 162. "where alpha and beta lie in the range [-pi/2, pi/2]" has already been indicated.

      Thank you for your mention, we have deleted duplicate information in line 166.

      • Line 171. W is defined as the strain energy density, while in equation (2), symbol W is the total energy (which depends on the previous W). Letters for total elastic and strain energy must be distinguished.

      Thank you, we have changed the letter for total energy in Eq.(2).

      • Line 176. "we take advantage of the weakness of" -> "we take advantage of the small value of".

      We have revised it in line 179.

      • Line 177. Why is there a subscript i in p_i? If these do not correspond to penalty p, but to parameters in eqn (3), the latter should have been introduced before this line.

      We have revised this error in line 180.

      • Line 186. "as the overall elongation \zeta". This parameter, axial extension, has not been defined yet.

      Thank you for your mention, the definition of \zeta is now given in line 146.

      • Figure 4. Why are the values of g_0 from the elastic model and equations (30)-(32) so non-smooth? Clarify what is being fit and what is the input in the latter equations. Final external radius R_3? Final internal radius R_1'?

      (1) To mimic the embryo, we consider a multi-layered cylindrical body so that the shear modulus of each layer is different. The continuity of both deformations and stresses is imposed (see Eq.(26)-Eq.(30). This is the usual treatment for complex morpho-elastic systems. Obviously, $g_0$ originates from the actomyosin cortex so it appears only in the corresponding layer. Finally, all physical quantities such as deformations and stresses must be continuous.

      (2) The final outer radius is R_3, which represents the outer radius of C. elegans embryos. In addition to R_3, what we need to consider in this model are R_1’=0.7, R_1’=0.768, R_2=0.8 and R_2’=0.96, these definitions have been added in the caption of Appendix 2—figure 1.

      • Line 663, equation (19). Parameter mu is multiplying penalisation term with p, while in equation (2) mu is only affecting the elastic part.

      These two different ways of expressing the energy function will ultimately affect the value of p, but the two p are not the same quantities, so they will not affect our results. To avoid misunderstandings, we will replace p in equation (19) with q.

      Reviewer #2 (Recommendations For The Authors):

      As mentioned in my public summary, I find the writing really not adequate. I provide here a list of specific points that the authors should in my opinion address. As a general comment, I would delete many instances of 'the'.

      First, here are figures and whole paragraphs that do not seem to bring anything to the understanding of the phenomenon of C. elegans elongation, notably, Figs. 2, 3C-H, 5m, and 6. Figures 6G and 7 are the only figures containing results it seems. Some elements of the figures are repeated, for example, the illustration of the system's cross-section in Figs 3 and 5.

      Thank you for your suggestion, we have made some adjustments to our images to remove some of the duplicate information.

      Second, and this is my most important criticism: the mechanism of elongation by releasing elastic stress introduced by muscle contraction is not explained in clear terms anywhere in the text. At least, I was unable to understand it. On p 10 you write "This energy exchange causes the torsion-bending energy to convert into elongation energy, (...)" How this is done is not explained. I assume that the reference state is somehow changed through muscle contraction. The new reference state probably has a longer axis than the one before, but this would then be a plastic deformation and not purely elastic as claimed by the authors (ll 76: "This work aims to answer this paradox within the framework of finite elasticity without invoking cell plasticity (...)"). Is torsion important for this process or is it 'just' another way to store elastic energy in the system?

      We perfectly explain most of the exchange of energy between bending, torsion and elongation: indeed, we quantify all aspects of this transformation as the elastic elongation energy, and the dissipation processes which will cost energy. The dissipation evaluated here concerns the rotation of the worm due to the muscle geometry and the viscous friction at the inner surface of the egg. Torsion seems to appear in the late stages and only in some cases. As we show, it comes from a torque induced by the muscles which are not vertical. vertical. Finally, our quantitative predictions of the modelling which recovers most of the experimental published results.

      Third, there are a number of strange phrasings and the notation is not helpful in places.

      We feel sorry for that, the manuscript is now more precise.

      Fourth, the title promises to explain how cyclic muscle contractions reinforce acto-myosin motors. I can't see this done in this work.

      The fact that the acto-myosin is reorganized between two sequences of contraction justifies the title. The complete reorganization of the actomyosin network would require a chemico-mechanical model that is not achieved here, perhaps in future work as data become available.

      In addition:

      We have chosen to respond globally rather than point by point to the referee’s recommendations.

      Typographic errors and vocabulary

      All English corrections and typos are now included in the main text.

      Figures and captions:

      Figures and captions have been improved.

      • Figure 1: Make the caption and the illustration more coherent. For example, only two cell types are distinguished; in the caption, you mention lateral cells, in the sketch seam cells. What is the difference between acto-myosin and muscle contraction? Muscle contraction is also auto-myosin-based.

      (1) The caption for Fig.1 is revised.

      (2) From a mechanical point of view, actomyosin bundles in C elegans are orthoradial, whereas muscles are essentially parallel to the main axis of the body are essentially parallel to the main axis of the body, so the geometry is completely different and of extreme importance for deformation. Muscle contractions are quasi-periodic, we do not know the dynamics of the attached molecular motor of myosin. So of course, both contain actin and myosin (not exactly the same proteins), but our model is sensitive to more macroscopic properties.

      • Figure 2: I do not find this figure helpful. I might expect such a figure in a grant proposal, but much less in an article.

      Figure 2 shows the strategy of our work, we hope that readers can see at a glance what kind of analysis has been done through this figure: since our work is divided into several parts, readers can also unravel the logic through this scheme after reading the whole manuscript. So, this diagram is a guide, and it may be helpful and necessary.

      • Figure 3: Figure 3 A, right: What is the dashed line? B You indicate fibers, but your model does not contain fibers, does it? How do I get from the cube to the deformed object? What is the relation of C-H with the rest of the work? Furthermore, you mention seam cells in Fig. 1, but they are absent here. Why can you neglect them? Why introduce them in the first place? E What is a plant vine? F-H What rods are you referring to? Plants do not have muscles, right?

      We have modified this figure, and the original Figure 3 now corresponds to Figures 3 and 4.

      (1) The dashed line is the centerline after deformation.

      (2) The referee is wrong: our model represents the fibers by a higher shear modulus for the actomyosin cortex and for the muscles (see Table Appendix 1) and G_1 reflects the activities of the muscle and actin fibers.

      (3) The cube in Figure 3 is a mathematical 3D volume element that is subjected to stresses. Hyperelasticity modelling is based on such a representation.

      (4) C-H(new version: Fig.4 A-F): These images show similar deformations: bending and torsion as our C. elegans study. These figures indicate that such deformations are quite common in nature, even if the underlying mechanism is different.

      (5) This is a point we have already mentioned: we ignore the difference between the different types of epidermal cells and average their role in the early and second stages of elongation.

      (6) The plant vine is the 'botanical vine', see Goriely's article and book.

      (7) F-H(new version: Fig.4 D-F) do not have fixed rods, we set a curvature and torsion to fit the actual biological behavior.

      (8) Plants do not have muscles, but they grow, and our formalism for growth, pre-strain and material plasticity is very similar to the hyper-elasticity formalism.

      • Figure 4: Fig .4 A: "The central or inner part (0 < 𝑅 < 𝑅2, shear modulus 𝜇𝑖) except the muscles which are stiffer." I do not understand.

      In the new version, this figure corresponds to Fig.5. The shear modulus of the intrinsic part is very small, but the muscles are harder so we have to consider them separately, we have revised this sentence to avoid misunderstanding.

      • Figure 5: Fig 5 A and D: The schematic of the cross-section has appeared already in the previous figure. No need to repeat it here. The same holds for the schematic of the cylindrical embryo. Caption: "But, the yellow region is not an actual tissue layer and it is simply to define the position of muscles." Why do you introduce the yellow region at all? I do not think that it clarifies anything. "Deformation diagram, when left side muscles M_1 and M_2." Something seems to be missing here. Similarly in the next sentence. "the actin fiber orientation changes from the 'loop' to the 'slope'" Do the rings break up and form a helix?

      In the new version, this figure corresponds to Fig.6.

      (1) We have made revisions to these figures.

      (2) The yellow part can show the accurate location of four muscles, which is important for our model and further calculations.

      (3) We have revised this sentence in the caption of Fig. 6.

      (4) Actin rings do not change to a helix pattern, they will be only sloping.

      • Figure 6: Fig 6 A-C These panels do not go beyond Fig 5B. Fig 6D: what are these images supposed to show? They are not really graphs, but microscopy images. The caption is not helpful to understand, what the reader is supposed to see here. Fig 6F: do you really want to plot a linear curve?

      In the new version, Fig.5 and Fig.6 respectively correspond to Fig.6 and Fig.7.

      (1) Fig.6 shows the simulated images, and Fig.7 A-C is the real calculation results, they are different.

      (2) Fig.7 D can show the real condition during C. elegans late elongation, here, we would like to show the torsion of the C. elegans.

      (3) Yes, it is our result.

      Discussions concerning the biological referee questions:

      Ll 75: “how the muscle contractions couple to the acto-myosin activity" Again I find this misleading because muscle contraction relies on auto-myosin activity. Probably, you can find a better expression to refer to the activity of the actomyosin network in the epidermis. Do you propose any mechanism for how muscle contraction increases epidermal contractility? This does not seem to be the mechanism that you propose for elongation, is it?

      The actomyosin activity will not stop because of the muscle contraction. Obviously, these two processes cannot be independent. The energy released by a muscle contraction event can and must contribute to the reorganization of the actomyosin network that occurs during the elongation process. Indeed, despite the fact that the embryo elongates, the density of actin cables appears to be maintained, which automatically requires a redistribution of actin monomers. We propose a scenario in which muscle contraction increases actomyosin contractility via energy conversion. We show that after unilateral contraction there is an energy release for this once all dissipation factors are eliminated. We invite the reviewer to re-examine Figure 2 and invite biologists to seriously evaluate the density of molecular motors attached to the circumferential actin cable throughout the stretch process.

      Ll 133: "we decide to simplify the geometrical aspect because of the mechanical complexity" This is hardly a justification. Why is it appropriate?

      Yes, we would like to offer the reader the simplest modelling with a limiting technicity and a limited number of unknown parameters.

      L 135: "active strains" Why not active stress?

      The two are equivalent, the choice is dictated by the simplicity of deriving quantitative results for comparison with experiments.

      L 170: "hyperelastic" Please, explain this term.

      It is the elasticity of very soft samples subjected to large deformations. For classic references, see the books of Ogden, Holzapfel and Goriely, all of which are mentioned in our paper.

      Major criticism

      Eq. 3 and Ll 227: "𝑝1 is the ratio between the free available myosin population and the attached ones divided by the time of recruitment" Why is the time of recruitment the same for all motors? "inverse of the debonding time" Is it the same as the unbinding rate? Why use the symbol p_2 for it? What is p_3?

      The model proposed to justify the increase in the activity of the actomyosin motors during the first phase is a mean-field model: thus all quantities are averaged: we are not considering the theory of a single molecular motor, but a collection in a dynamic environment, so we do not need stochasticity here. Equation (3) concerns the compressive pre-strain, which by definition is a quantity varying between $0$ and $1$ and $X_g=1-G$. ... The debonding time is not the same as the debonding rate. The term $p_3$ indicates saturation and is derived from the law of mass action. The good agreement with the experimental data is shown in Fig.5 (A) and (B). An equivalent model has been developed by (M. Serra et al.).

      Serra M, Serrano Nájera G, Chuai M, et al. A mechanochemical model recapitulates distinct vertebrate gastrulation modes[J]. Science Advances, 2023, 9(49)

      Ll 275: "This energy exchange causes the torsion-bending energy to convert into elongation energy, leading to a length increase during the relaxation phase, as shown in Fig.1 of Appendix 5." You have posed the puzzle of how contraction leads to elongation, and now that you resolve the puzzle, you simply say that torsion and bending energy are converted into elongation. How? Usually, if I deform an elastic object, it will return to its original configuration after releasing the external forces. Why is this not the case here?

      Furthermore, the central result of your work is presented in an Appendix!?

      We agree with the referee that an elastic object will return to its initial configuration by releasing stress, i.e. by giving up its accumulated elastic energy to the environment. But the elastic energy has to go somewhere, such as heat. We do not dare to say that the temperature of the worm increases during the muscle contractions.

      In fact, the referee's comment also assumes that full relaxation of the stresses is possible, so the object is not a multi-layered specimen and/or it is not enclosed in a box. Most living species are under stress, usually called residual stress. Our skin is under stress. Our fingerprints result from an elastic instability of the epidermis, occurring on foetal life as our brain circumvolutions or our vili. . So, it is obvious that stresses are maintained in multilayered living systems. Closer to the case of C. elegans, the existence of stresses has been demonstrated by experiments with laser ablation fractures in the first stage. The fact that the fractures open proves the existence of stress: if not, there is no opening and only a straight line.

      Ll 379: "Although a special focus is made on late elongation, its quantitative treatment cannot avoid the influence of the first stage of elongation due to the acto-myosin network, which is responsible for a prestrain of the embryo." This statement is made repeatedly through the manuscript, but I do not understand, why you could not use an initial state without pre-strain.

      This is the basic concept of hyperelasticity. The reference state must be free of stress, so we cannot evaluate the first muscle contraction without treating the first elongation stage.

      Grammar, vocabulary and writing errors

      ll 31: "the influence of mechanical stresses (...) becomes more complex to be identified and quantified" Is the influence of mechanical stress too complex or too difficult to be identified/quantified?

      We have revised it in line 31, “The superposition of mechanical stresses, cellular processes (e.g., division, migration), and tissue organization is often too complex to identify and quantify.”

      Ll 41: "The embryonic elongation of C. elegans represents an attractive model of matter reorganization without a mass increase before hatching." Maybe "Embryonic elongation of C. elegans before hatching represents an attractive model of matter reorganization in the absence of growth.".

      We have revised it in line 41.

      L 42: "It happens after the ventral enclosure (...)" Maybe "It happens after ventral enclosure (...)".

      We have revised it in line 42.

      Ll 52: "The transition is well defined since the muscle participation makes the embryo rather motile impeding any physical experiments such as laser ablation (...)" Ablation of what?

      We have revised it in line 53:The transition is well defined, because the muscle involvement makes the embryo rather motile, and any physical experiments such as laser fracture ablation of the epidermis, which could be performed and achieved in the first period (\cite{vuong2017interplay}), become difficult,.

      Ll 59: "a hollow cylinder composed of four parts (seam and dorso-ventral cells)" It is not clear, what the four parts are - in the parenthesis, two are mentioned.

      We have revised it in line 59. Fig.1 shows the whole structure, dorsal, ventral and seam cells form four parts of the epidermis.

      L 78: "several important issues at this stage remain unsettled" At which stage?

      It means the late elongation stage, we have added this information in line 78.

      Ll 85: "but how it works at small scales remains a challenge." Maybe "but how it works at small scales remains to be understood.".

      We have revised it in line 86.

      Ll 99: "the osmolarity of the interstitial fluid" The comes out of the blue. Before you only talked about mechanics, why now osmolarity? Also, the interstitial fluid is only mentioned now. It is important for the dissipative effects that you discuss later, right? If yes, then you should probably introduce it earlier.

      For a better understanding, we have change osmolarity into viscosity in line 99.

      l 120: "The cortex is composed of three distinct cells" Maybe "distinct cell types".

      Thank you, and we have revised it in line 120.

      L 121: "cytoskeleton organization and actin network configurations" What is the difference between cytoskeleton organization and actin network configuration? Also, either both should be plural or both singular, I guess.

      (1) Cytoskeleton (which involves microtubules) forms the epidermis of C. elegans embryos, and the actin network surrounds the epidermis.

      (2) Thank you for your suggestion, we have revised it in line 121.

      L 130: "which will be introduced hereafter" Maybe "which will be used hereafter".

      We have revised it in line 130.

      Ll 148: "The geometric deformation gradient" You usually denote vectors in bold face, so \chi should be bold, right? Define d_i in Eq.(1).

      Yes, we have added this information in line 147.

      L 172: "auxiliary energy density" Please, explain this term.

      We have changed "auxiliary energy density" into "associated energy density" in line 175. Energy density is the amount of energy stored in a given system or region of space per unit volume, the associated energy density in our manuscript can help us to do some calculations.

      Ll 188: "Similar active matter can be found in biological systems, from animals to plants as illustrated in Fig.3(C)-(E), they have a structure that generates internal stress/strain when growing or activity. (...)" Why such a general statement during the presentation of the results? The second part of the sentence seems to be incomplete.

      Answers: We would like to show our method is general, and can be used in many situations. We have revised the wrong sentence in line 192.

      Ll 243: "a bending deformation occurs on the left for active muscles localized on left" Maybe "bending to the left occurs if muscles on the left are activated".

      Thank you, we have revised it in line 247.

      L 250: "we assume them are perfectly synchronous" Maybe "we assume them to contract simultaneously". We have revised it in line 252.

      L 258: "the muscle and acto-myosin activities are assumed to work almost simultaneously." Before it was simultaneously, now only almost!? What does almost mean?

      Sorry, we would like to express the same meaning in theses two sentences, we have deleted the word ‘almost’ in line 261.

      Ll 294: "one can hypothesize several scenarios" After that, only one scenario is described it seems.

      Thank you, we have revised this sentence in line 299.

      L 341: "and then is more viscous than water" Maybe "and that is more viscous than water".

      We have revised it in line 345.

      L 373: "before the egg hatch" Maybe "before the embryo (or larva) hatches"?

      We have revised the sentence in line 367.

      L 409: "elephant trunk elongated" maybe "elephant trunk elongation".

      We have revised it in line 412.

      Ll 417: "As one imagines, it is far from triviality (...)" Does this remake help in any way to understand better C. elegans elongation? Also maybe "it is far from trivial".

      We have revised it in line 423.

      Ll 428: "can map the initial stress-free state B_0 to a state B_1, which reflects early elongation process" Maybe: "maps the initial stress-free state B_0 to a state B_1, which describes early elongation".

      We have revised it in line 428.

      L 429: "After in the residually stressed (...)" Maybe "Subsequently, we impose an incremental strain filed G_1 that maps the state B_1 to the state B_2, which represents late elongation".

      We have revised it in line 429.

      l 763: "Modelling details of without pre-strain case" Maybe "Case without pre-strain" or "Modelling in the absence of pre-strain" Similarly for l 784.

      We have revised them in line 763 and line 784.

      Some questions of definition and understanding

      Ll 71: "We can imagine that once the muscle is activated on one side, it can only contract, and then the contraction forces will be transmitted to the epidermis on this side." I do not understand the sentence. Muscle activation leads to contraction, there is nothing to imagine here. Maybe you hypothesize that the muscles are attached to the epidermis such that muscle contraction leads to epidermis deformation?

      Yes, four muscle bands are attached to the epidermis, as shown in Fig.1. The deformation does not concern only the epidermis but the whole embryo during the bending events. We have modified the sentence to avoid misunderstanding, the sentence change to “Once the muscle is activated on one side, it can only contract, and then the contraction forces will be transmitted to the epidermis on this side.” in line 71.

      Ll 110: "However, it is less widely known that its internal striated muscles share similarities with skeletal muscles found in vertebrates in terms of both function and structure" Is it important for what you report, whether this fact is widely known?

      Yes, it is our opinion.

      Ll 112: "the role of the four axial muscles (...) is nearly contra-intuitive" Is it or is it not? If yes, why?

      Yes it is. Muscles exert contractions, so compressive deformations. Their localization are along the axis of symmetry (up to a small deviation) so they cannot mechanically realize the expected elongation, contrary to the orthoradial actomyosin network.

      However, elongation of the C. elegans is observed experimentally, so yes, we think the result contraintuitive.

      L 116: "fully heterogeneous cylinder" What is this?

      It means that the C. elegans embryo does not have the same elastic properties in different parts (or layers).

      L 129: "will collaborate to facilitate further elongation" To facilitate or to drive? If the former, what drives elongation?

      Contraction of muscles and actin bundles together drive elongation

      Ll 141: "the deformation in each section can be quantified since the circular geometry is lost with the contractions" The deformation could also be quantified if the sections remained circular, right?

      Yes. However, circularity is lost during each bending event.

      Ll 151: "we need to evaluate the influence of the C. elegans actin network during the early elongation before studying the deformation at the late stage. So, the deformation gradient can be decomposed into: (...) where (...) is the muscle-actomyosin supplementary active strain in the late period" I thought you were now studying the early stage?

      In this part, we are outlining how we can study the whole elongation (early and late), not just the early elongation stage. To evaluate the deformation induced by the first contraction of the muscles, we need to know the state of stress of the worm prior to this event, so we also need to recover the early period using the same formalism for the same structure.

      L 160: "When considering a filamentary structure with different fiber directions" Which filamentary structure are you talking about?

      Fig.3 B shows this model and the filamentary structure, which contains the actin and muscle fibers.

      Ll 174: "When the cylinder involves several layers with different shear modulus 𝜇 and different active strains, the integral over 𝑆 covers each layer" I do not understand this sentence. Also, you should probably write 'moduli' instead of modulus.

      This implies that when integrating over the whole cross-section S, we need to take into account each layer independently with its own shear modulus and sum the results.

      L 176: "weakness of 𝜀" Do you mean \epsilon << 1?

      Yes

      Ll 178: "Given that the Euler-Lagrange equations and the boundary conditions are satisfied at each order, we can obtain solutions for the elastic strains at zero order 𝐚(𝟎) and at first order 𝐚(𝟏)." Are you thinking about different orders in an \epsilon expansion or the early and the late stages of elongation?

      Answers: Different orders are considered only for the late elongation study, the early elongation is treated exactly so do not need a correction in \epsilon.

      L 197: "fracture ablation" Please, define.

      This is an experiment in which a laser is used to make a cut in a small-scale object of study and then the internal stresses are obtained based on the morphology of the cut, please see the Ref ‘Assessing the contribution of active and passive stresses in C. elegans elongation’. We have added this definition in line 200.

      Ll 203: What motivated your choice of notations for the radii R_2'? The inner part of the cylinder is fluid? But above you wrote about a solid cylinder. Why should the inner part be compressible?

      (1) We need to define the location of actin cables, which concentrate at the outer periphery.

      (2) Our model is a hollow cylinder, and the inner part of the cylinder contains internal organs, tissues, fluids, and so on, so we consider it to be a compressible extremely soft material (Line 213).

      Ll 212: "𝑟(𝑅) is the radius after early elongation." And during?

      R is variable, r(R) depends on R but also on time t, it represents the radius of C. elegans embryos after the onset of elongation, i.e., after acto-myosin and muscle activities begin.

      L 232: \tau_p is probably t_p?

      Yes.

      L 240: "quite simultaneously" Please, be precise.

      In practice, it is difficult to define the concept of simultaneous occurrence unless there is rigorous experimental data to show it, but all we can get in the Ref ‘Remodelage des jonctions sous stress mécanique’, is that it occurs almost simultaneously, which we define as quite simultaneously.

      Ll 246: "a short period" What does short mean? Why is it relevant?

      From the experimental observations and data, we know that each contraction occurs very rapidly: a few seconds so we define a short period for one contraction.

      L 263: "the bending of the model will be increased" Is it really the model that is bent?

      Yes, the bending deformation predicted by the model, we have revised in line 266.

      Ll 265: "we observed a consistent torsional deformation (Fig.6(E)) that agrees with the patterns seen in the video" In which sense do these configurations agree? I do not see any similarity between panels D and E.

      Both show a torsion deformation.

      L 267: "torsion as the default of symmetry of the muscle axis" I do not understand.

      We discuss two cases in this research, one where the muscle follows the axis of the C. elegans in the initial configuration, and the other where the muscle has a slight angle of deflection, and we have added more information in the manuscript (line 270).

      Ll 274: "Each contraction of a pair increases the energy of the system under investigation, which is then rapidly released to the body." Do you mean the elastic energy stored in the epidermis and central part of the embryo?

      Yes, the whole body.

      Ll 284: "The activation of actin fibers 𝑔𝑎1 after muscle relaxation can be calculated and determined by our model." Have you done it?

      Yes, we can obtain the value of g_a1, and then calculate the elongation.

      Ll 286 I do not understand, why you write about mutants at this place. Am I supposed to have already understood the basic mechanism of elongation? Why do you now write about the first stage?

      I would like to show our formalism can model wild-type and mutant C.elegans, and the comparison results are good.

      L 302: "The result is significantly higher than our actual size 210𝜇𝑚." How was significance assessed? Your actual size is probably more than 210µm.

      Here, we have considered two situations, one is that the accumulated energy is totally applied to the elongation so that the length will be much larger than the experimental result of 210 µm, the length value that we have obtained by calculation. In the other case, we have considered the energy dissipation, which leads to 210 µm.

      L 433: "where 𝜆 is the axial extension due to the pre-strained" Maybe ""where 𝜆 is the axial extension due to the pre-stress".

      In our manuscript, we define the pre-strain, not the pre-stress.

      L 438: "active filamentary tensor" Please, define.

      Active filamentary tensor defines the tensor representing the activities of a cylindrical model composed of different orientations fibers.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this, they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.

      Strengths:

      The strengths of the work are the very careful biochemical analyses and the interesting result for wild-type LRRK2.

      Weaknesses:

      A major unexplained weakness is why the mutant T1343A starts out with so much lower activity--it should be the same as wild-type, non-phosphorylated protein. Also, if a monomer-dimer transition is involved, it should be either all or nothing. Other approaches would add confidence to the findings.

      We thank the reviewer for these suggestions. We are aware that the T1343A has generally a lower activity compared to the wild type. Therefore, we would like to emphasize that this mutant is the only one not showing an increase in Km values after ATP treatment. Other mutants, also having lower kcat values like T1503A, still show this characteristic change in Km. Our favored explanation for the lower kcat of T1343A is that this mutation lays within a critical region, the so-called ploop, of the Roc domain and is very likely structurally not neutral. Concerning the dimer-monomer transition, we are convinced that there is more than one factor involved in this equilibrium. Most likely, including, but not limited to other LRRK2 domains (e.g. the WD40 domain), binding of co-factors (e.g. Rab29/Rab32 or 14-3-3) and membrane binding. Consistently, also with stapled peptides targeting the Roc or Cor domains we were not able to shift the equilibrium completely to the monomer (Helton et al., ACS Chem Biol. 2021, 16:2326-2338; Pathak et al. ACS Chem Neurosci. 2023, 14(11):1971-1980) We have addressed these points in a revised version of the manuscript.

      Reviewer #2 (Public Review):

      This study addresses the catalytic activity of a Ras-like ROC GTPase domain of LRRK2 kinase, a Ser/Thr kinase linked to Parkinson's disease (PD). The enzyme is associated with gain-of-function variants that hyper-phosphorylate substrate Rab GTPases. However, the link between the regulatory ROC domain and activation of the kinase domain is not well understood. It is within this context that the authors detail the kinetics of the ROC GTPase domain of pathogenic variants of LRRK2, in comparison to the WT enzyme. Their data suggest that LRRK2 kinase activity negatively regulates the ROC GTPase activity and that PD variants of LRRK2 have differential effects on the Km and catalytic efficiency of GTP hydrolysis. Based on mutagenesis, kinetics, and biophysical experiments, the authors suggest a model in which autophosphorylation shifts the equilibrium toward monomeric LRRK2 (locked GTP state of ROC). The authors further conclude that T1343 is a crucial regulatory site, located in the P-loop of the ROC domain, which is necessary for the negative feedback mechanism. Unfortunately, the data do not support this hypothesis, and further experiments are required to confirm this model for the regulation of LRRK2 activity.

      Specific comments are below:

      • Although a couple of papers are cited, the rationale for focusing on the T1343 site is not evident to readers. It should be clarified that this locus, and perhaps other similar loci in the wider ROCO family, are likely important for direct interactions with the GTP molecule.

      To clarify this point: We, have not only have focused on this specific locus, but instead systematically mutated all known auto-phosphorylation sites with the RocCOR domain (see. supplemental information). Furthermore, it has been shown that this site, at least in the RCKW (Roc to WD40) construct, is quantitatively phosphorylated (Deniston et al., Nature 2020, 588:344-349). We are aware that the T1343 residue is located within the p-loop and that this can impact nucleotide binding capacities (see response to reviewer 1).

      We have clarified and addressed these points in a revised version of the manuscript.

      • Similar to the above, readers are kept in the dark about auto-phosphorylation and its effects on the monomer/dimer equilibrium. This is a critical aspect of this manuscript and a major conceptual finding that the authors are making from their data. However, the idea that auto-phosphorylation is (likely) to shift the monomer/dimer equilibrium toward monomer, thereby inactivating the enzyme, is not presented until page 6, AFTER describing much of their kinetics data. This is very confusing to readers, as it is difficult to understand the meaning of the data without a conceptual framework. If the model for the LRRK2 function is that dimerization is necessary for the phosphorylation of substrates, then this idea should be presented early in the introduction, and perhaps also in the abstract. If there are caveats, then they should be discussed before data are presented. A clear literature trail and the current accepted (or consensus) mechanism for LRRK2 activity is necessary to better understand the context for these data.

      We agree on the reviewer’s opinion. We have revised the introduction accordingly and added a paragraph on page 3 starting from line 27.

      • Following on the above concepts, I find it interesting that the authors mention monomeric cytosolic states, and kinase-active oligomers (dimers??), with citations. Again here, it would be useful to be more precise. Are dimers (oligomers?) only formed at the membrane? That would suggest mechanisms involving lipid or membrane-attached protein interactions. Also, what do the authors mean by oligomers? Are there more than dimers found localized to the membrane?

      There are multiple studies that have shown that LRRK2 is mainly monomeric in the cytosol while it forms mainly dimeric or higher oligomeric states at membrane (James et al., Biophys. J. 2012, 102, L41–L43; Berger et al., Biochemistry, 2010, 49, 5511–5523). However, we agree with the reviewer that it remains to be determined if the dimeric form is the most active state at the membrane, or a higher oligomeric state. Espescially since a recent study shows that LRRK2 can form active tetramers only when bound to Rab29 (Zhu et al., bioRxiv, 2022, DOI: 10.1101/2022.04.26.489605). We have clarified these points in the introduction of the revised version of the manuscript (page 3, line 27ff).

      • Fig 5 is a key part of their findings, regarding the auto-phosphorylation induced monomer formation of LRRK2. From these two bar graphs, the authors state unequivocally that the 'monomer/dimer equilibrium is abolished', and therefore, that the underlying mechanism might be increased monomerization (through maintenance of a GTP-locked state). My view is that the authors should temper these conclusions with caveats. One is that there are still plenty of dimers in the auto-phosphorylated WT, and also in the T1343A mutant. Why is that the case? Can the authors explain why only perhaps a 10% shift is sufficient? Secondly, the T1343A mutant appears to have fewer overall dimers to begin with, so it appears to readers that 'abolition' is mainly due to different levels prior to ATP treatment at 30 deg. I feel these various issues need to be clarified in a revised manuscript, with additional supporting data. Finally, on a minor note, I presume that there are no statistically significant differences between the two sets of bar graphs on the right panel. It would be wise to place 'n.s.' above the graphs for readers, and in the figure legend, so readers are not confused.

      Starting with the monomer-dimer equilibrium we are convinced that there is more than the phosphorylation of T1343 (see response to reviewer 1). Therefore a 10% shift in our assay most likely underestimate the effect seen in cells. Consistently, the T1343A mutants show a similar increase in Rab10 phosphorylation assay as the G2019S mutant. This thus shows that the identified feedback mechanism plays an important role in a cellular context. We have addressed this point in the revised manuscript on page 6, line 8ff. As long as the significance indicators in the bar charts are concerned, we agree with reviewer. In order not to overload the figure, we finally decided to include all pairwise comparisons (post-hoc tests) in the supplement.

      • Figure 6B, Westerns of phosphorylation, the lanes are not identified and it is unclear what these data mean.

      We apologize for this mistake and have added the correct labeling in the revised version of the manuscript.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The author studies a family of models for heritable epigenetic information, with a focus on enumerating and classifying different possible architectures. The key aspects of the paper are:

      • Enumerate all 'heritable' architectures for up-to 4 constituents.

      • A study of whether permanent ("genetic") or transient ("epigenetic") perturbations lead to heritable changes

      • Enumerated the connectivity of the "sequence space" formed by these heritable architectures

      • Incorporating stochasticity, the authors explore stability to noise (transient perturbations)

      • A connection is made with experimental results on C elegans.

      The study is timely, as there is a renewed interest in the last decade in non-genetic, heritable heterogeneity (e.g., from single-cell transcriptomics). Consequently, there is a need for a theoretical understanding of the constraints on such systems. There are some excellent aspects of this study: for instance, the attention paid to how one architecture "mutates" into another. Unfortunately, the manuscript as a whole does not succeed in formalising nor addressing any particular open questions in the field. Aside from issues in presentation and modelling choices (detailed below), it would benefit greatly from a more systematic approach rather than the vignettes presented.

      Despite being foundational, this work was systematic in that (1) for the simple architectures modeled using ordinary differential equations (ODEs) with continuity assumptions, parameters that support steady states were systematically determined for each architecture and then every architecture was explored using genetic changes exhaustively, although epigenetic perturbations were not examined exhaustively because of their innumerable variety; and (2) for the more realistic modeling of architectures as Entity-Sensor-Property systems, the behavior of systems with respect to architecture as well as parameter space that lead to particular behaviors (persistence, heritable epigenetic change, etc.) was systematically explored. A more extensive exploration of parameter space that also includes the many ways that the interaction between any two entities/nodes could be specified using an equation is a potentially ever-expanding challenge that is beyond the scope of any single paper.

      Specific aspects that remain to be addressed include the application of multiple notions of heritability to real networks of arbitrary size, considering different types of equations for change of each entity/node, and classifying different behavioral regimes for different sets of parameters.

      The key contribution of the paper is an articulation of the crucial questions to ask of any regulatory architecture in living systems rather than the addressing of any question that a field has recognized as ‘open’. Specifically, through the exhaustive listing of small regulatory architectures that can be heritable and the systematic analysis of arbitrary Entity-Sensor-Property systems that more realistically capture regulatory architectures in living systems, this work points the way to constrain inferences after experiments on real living systems. Currently, most experimental biologists engaged in reductionist approaches and some systems biologists examining the function or prevalence of network motifs do not explicitly constrain their models for heritability or persistence. It is hoped that this paper will raise awareness in both communities and lead to more constrained models that minimize biases introduced by incomplete knowledge of the network, which is always the case when analyzing living systems.

      Terminology

      The author introduces a terminology for networks of interacting species in terms of "entities" and "sensors" -- the former being nodes of a graph, and the latter being those nodes that receive inputs from other nodes. In the language of directed graphs, "entities" would seem to correspond to vertices, and "sensors" those vertices with positive indegree and outdegree. Unfortunately, the added benefit of redefining accepted terminology from the study of graphs and networks is not clear.

      The Entities-Sensors-Property (ESP) framework is based on underlying biology and not graph theory, making an ESP system not entirely equivalent to a network or graph, which is much less constrained. The terms ‘entity’, ‘sensor’, and ‘property’ were defined and justified in a previous paper (Jose, J R. Soc. Interface, 2020). While nodes of a network can be parsed arbitrarily and the relationship between them can also be arbitrary, entities and sensors are molecules or collections of molecules that are constrained such that the sensors respond to changes in particular properties of other entities and/or sensors. When considered as digraphs, sensors can be seen as vertices with positive indegree and outdegree. The ESP framework can be applied across any scale of organization in living systems and this specific way of parsing interactions also discretizes all changes in the values of any property of any entity. In short, ESP systems are networks, but not all networks are ESP systems. Therefore, the results of network theory that remain applicable for ESP systems need further investigation.

      The key utility of the ESP framework is that it is aligned with the development of mechanistic models for the functions of living systems while being consistent with heredity. In contrast, widely analyzed networks like protein-interaction networks, signaling networks, gene regulatory networks, etc., are not always constrained using these principles.

      Model

      The model seems to suddenly change from Figure 4 onwards. While the results presented here have at least some attempt at classification or statistical rigour (i.e. Fig 4 D), there are suddenly three values associated with each entity ("property step, active fraction, and number"). Furthermore, the system suddenly appears to be stochastic. The reader is left unsure what has happened, especially after having made the effort to deduce the model as it was in Figs 1 through 3. No respite is to be found in the SI, either, where this new stochastic model should have been described in sufficient detail to allow one to reproduce the simulation.

      The Supplementary Information section titled ‘Simulation of simple ESP systems’ provides the requested detailed information and revisions to the writing provide the biologically grounded justification for parsing interacting regulators as ESP systems.

      Perturbations

      Inspired especially by experimental manipulations such as RNAi or mutagenesis, the author studies whether such perturbations can lead to a heritable change in network output. While this is naturally the case for permanent changes (such as mutagenesis), the author gives convincing examples of cases in which transient perturbations lead to heritable changes. Presumably, this is due the the underlying multistability of many networks, in which a perturbation can pop the system from one attractor to another.

      Unfortunately, there appears to be no attempt at a systematic study of outcomes, nor a classification of when a particular behaviour is to be expected. Instead, there is a long and difficult-to-read description of numerical results that appear to have been sampled at random (in terms of both the architecture and parameter regime chosen). The main result here appears to be that "genetic" (permanent) and "epigenetic" (transient) perturbations can differ from each other -- and that architectures that share a response to genetic perturbation need not behave the same under an epigenetic one. This is neither surprising (in which case even illustrative evidence would have sufficed) nor is it explored with statistical or combinatorial rigour (e.g. how easy is it to mistake one architecture for another? What fraction share a response to a particular perturbation?)

      As an additional comment, many of the results here are presented as depending on the topology of the network. However, each network is specified by many kinetic constants, and there is no attempt to consider the robustness of results to changes in parameters.

      The systematic study of all arbitrary regulatory architectures is beyond the scope of this paper and, indeed, beyond the scope of any one paper. Nevertheless 225,000 arbitrary Entity-Sensor-Property systems were systematically explored and collections of parameters that lead to different behaviors provided (e.g., 78,285 are heritable). These ESP systems more closely mimic regulation in living systems than the coupled ODE-based specification of change in a regulatory architecture.

      The example questions raised here are not only difficult to answer, but subjective and present a moving target for future studies. One, ‘how easy is it to mistake one architecture for another?’. Mistaking one architecture for another clearly depends on the number of different types of experiments one can perform on an architecture and the resolution with which changes in entities can be measured to find distinguishing features. Two, ‘What fraction share a response to a particular perturbation?’. ‘Sharing a response’ also depends on the resolution of the measurement after perturbation.

      DNA analogy

      At two points, the author makes a comparison between genetic information (i.e. DNA) and epigenetic information as determined by these heritable regulatory architectures. The two claims the author makes are that (i) heritable architectures are capable of transmitting "more heritable information" than genetic sequences, and (ii) that, unlike DNA, the connectivity (in the sense of mutations) between heritable architectures is sparse and uneven (i.e. some architectures are better connected than others).

      In both cases, the claim is somewhat tenuous -- in essence, it seems an unfair comparison to consider the basic epigenetic unit to be an "entity" (e.g., an entire transcription factor gene product, or an organelle), while the basic genetic unit is taken to be a single base-pair. The situation is somewhat different if the relevant comparison was the typical size of a gene (e.g., 1 kb).

      Considering every base being the unit of stored information in the DNA sequence results in the maximal possible storage capacity of a genome of given length. Any other equivalence between entity and units within the genome (e.g., 1 kb gene) will only reduce the information stored in the genome.

      Nevertheless, the claim was modified to say that the information content of an ESP system can [italics added] be more extensive than the information content of the genome. This accounts for the possibility of an organism that has an inordinately large genome such that maximal information that can be stored in a particular genome sequence exceeds that stored in a particular configuration of all the contents in a cell.

      I thank the reviewer for providing further explanation of this misunderstanding in the second round of review, which helps draw future readers to the sections in the paper that discusses this important point (also see response to Recommendations for the authors).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I thank the author for their efforts in replying to the comments. I have updated my review accordingly; in particular, I have:

      (1) Removed my complaint that Heritability is nowhere defined

      (2) Removed issues with the presentation of the ODE model in the supplementary information.

      I thank the reviewer for raising these issues and acknowledging the improvements made.

      However, given that the manuscript is broadly unchanged from the initial one, many of my prior comments remain justified. Some key points:

      (1) The manuscript continues to be difficult to read, for the same reasons as I mentioned when reviewing the paper previously.

      (2) The utility of the "ESP" formalism is still unclear.

      • As the author notes, continuous ODEs are of course an idealisation of a system with discrete copy number.

      • However, discussing this is standard fare in any textbook dealing with chemical dynamics and stochastic processes -- see, for instance, the standard textbook by van Kampen.

      • This seems little reason to reject ODEs and implement a poorly defined formalism/simulation scheme.

      (3) The author claims that many questions raised are "beyond the scope of this study". Indeed, answering all of these questions are beyond the scope of any one study. However, as I initially wrote, the paper would be much stronger if it focused on a particular problem rather than the many vignettes depicted.

      The broad scope of this foundational paper necessitates addressing many issues, which may make it a difficult read for some readers. I hope that future work where each paper focuses on one of the aspects raised here will enable the extensive treatment of limited scope as suggested by the reviewer.

      The utility of ODEs is much appreciated and was indeed a computationally efficient way of exploring the vast space of regulatory architectures. As stated in the response to the public reviews, the Entity-Sensors-Property framework provides a biologically grounded way of parsing interacting regulators. This approach is aligned with the development of mechanistic models for the functions of living systems while being consistent with heredity. In contrast, widely analyzed networks like protein-interaction networks, signaling networks, gene regulatory networks, etc., are not always constrained using these principles.

      On a final note, on the subject of the comparison with DNA:

      Perhaps I have misunderstood something. I simply meant that comparing the "maximal information" with 4 HRAs (12.45 bits) is certainly more than the "maximal information" with 4 basepairs (8 bits), but definitely less than the "maximal information" for four 1-kb genes (4^(4000) combinations, so 8000 bits...)

      Perhaps the author means that the growth in information of HRAs is faster than exponential. If so, that should be shown and then remarked on.

      For this reason, I maintain my comment that the comparison is tenuous.

      This issue was addressed once in the results section and again in the discussion section.

      The results section states that “The combinatorial growth in the numbers of HRAs with the number of interactors can thus provide vastly more capacity for storing information in larger HRAs compared to that afforded by the proportional growth in longer genomes.”

      The discussion section states that “Despite imposing heritability, regulated non-isomorphic directed graphs soon become much more numerous than unregulated non-isomorphic directed graphs as the number of interactors increase (125 vs. 5604 for 4 interactors, Table 1). With just 10 interactors, there are >3x1020 unregulated non-isomorphic directed graphs [60] and HRAs are expected to be more numerous. This tremendous variety highlights the vast amount of information that a complex regulatory architecture can represent and the large number of changes that are possible despite sparsity of the change matrix (Fig. 3).”

      Thus, indeed as the reviewer surmises, the combinatorial explosion in information of HRAs with increases in interacting entities is faster than the proportional growth in information of genome sequence with increases in length.

      In summary, I thank the reviewers and editors for their help in improving the paper and would like to make the current manuscript the Version of Record.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The author studies a family of models for heritable epigenetic information, with a focus on enumerating and classifying different possible architectures. The key aspects of the paper are:

      • Enumerate all 'heritable' architectures for up to 4 constituents.

      • A study of whether permanent ("genetic") or transient ("epigenetic") perturbations lead to heritable changes.

      • Enumerated the connectivity of the "sequence space" formed by these heritable architectures.

      -Incorporating stochasticity, the authors explore stability to noise (transient perturbations). - A connection is made with experimental results on C elegans.

      The study is timely, as there has been a renewed interest in the last decade in nongenetic, heritable heterogeneity (e.g., from single-cell transcriptomics). Consequently, there is a need for a theoretical understanding of the constraints on such systems. There are some excellent aspects of this study: for instance:

      • The attention paid to how one architecture "mutates" into another, establishing the analogue of a "sequence space" for network motifs (Fig 3).

      • The distinction is drawn between permanent ("genetic") and transient ("epigenetic") perturbations that can lead to heritable changes.

      • The interplay between development, generational timescales, and physiological time (as in Fig. 5).

      I thank the reviewer for highlighting these aspects of the work.

      The manuscript would be very interesting if it focused on explaining and expanding these results. Unfortunately, as a whole, it does not succeed in formalising nor addressing any particular open questions in the field. Aside from issues in presentation and modelling choices (detailed below), it would benefit greatly from a more systematic approach rather than the vignettes presented.

      This first paper is foundational and therefore cannot be expected to solve all aspects of the problem of heredity. The work was nevertheless systematic in that (1) for the simple architectures modeled using ordinary differential equations (ODEs) with continuity assumptions, parameters that support steady states were systematically determined for each architecture and then every architecture was explored using genetic changes exhaustively, although epigenetic perturbations were not examined exhaustively because of their wide variety; and (2) for the more realistic modeling of architectures as Entity-Sensor-Property systems, the behavior of systems with respect to architecture as well as parameter space that lead to particular behaviors (persistence, heritable epigenetic change, etc.) was systematically explored. A more extensive exploration of parameter space that also includes the many ways that the interaction between any two entities/nodes could be specified using an equation is a potentially ever-expanding challenge that is beyond the scope of any single paper (see response to additional comments below).

      Specific aspects that remain to be addressed include the application of multiple notions of heritability to real networks of arbitrary size, considering different types of equations for change of each entity/node, and classifying different behavioral regimes for different sets of parameters. As is evident from this list of combinatorial possibilities, the space to be explored is vast and beyond the scope of this foundational paper.

      The key contribution of the paper is an articulation of the crucial questions to ask of any regulatory architecture in living systems rather than the addressing of any question that a field has recognized as ‘open’. Specifically, through the exhaustive listing for small regulatory architectures that can be heritable and the systematic analysis of arbitrary Entity-Sensor-Property systems that more realistically capture regulatory architectures in living systems, this work points the way to constrain inferences after experiments on real living systems. Currently, most experimental biologists engaged in reductionist approaches and some systems biologists examining the function or prevalence of network motifs do not explicitly constrain their models for heritability or persistence. It is hoped that this paper will raise awareness in both communities and lead to more constrained models that minimize biases introduced by incomplete knowledge of the network, which is always the case when analyzing living systems.

      Terminology

      The author introduces a terminology for networks of interacting species in terms of "entities" and "sensors" -- the former being nodes of a graph, and the latter being those nodes that receive inputs from other nodes. In the language of directed graphs, "entities" would seem to correspond to vertices, and "sensors" those vertices with positive indegree and outdegree. Unfortunately, the added benefit of redefining accepted terminology from the study of graphs and networks is not clear.

      The Entities-Sensors-Property (ESP) framework is based on underlying biology and not graph theory, making an ESP system not entirely equivalent to a network or graph, which is much less constrained. The terms ‘entity’, ‘sensor’, and ‘property’ were defined and justified in a previous paper (Jose, J R. Soc. Interface, 2020). While nodes of a network can be parsed arbitrarily and the relationship between them can also be arbitrary, entities and sensors are molecules or collections of molecules that are constrained such that the sensors respond to changes in particular properties of other entities and/or sensors. When considered as digraphs, sensors can be seen as vertices with positive indegree and outdegree. The ESP framework can be applied across any scale of organization in living systems and this specific way of parsing interactions also discretizes all changes in the values of any property of any entity. In short, ESP systems are networks, but not all networks are ESP systems. Therefore, the results of network theory that remain applicable for ESP systems need further investigation. This justification is now repeated in the paper.

      The key utility of the ESP framework is that it is aligned with the development of mechanistic models for the functions of living systems while being consistent with heredity. In contrast, widely analyzed networks like protein-interaction networks, signaling networks, gene regulatory networks, etc., are not always constrained using these principles. In addition, the language of digraphs where sensors can be seen as vertices with positive indegree and outdegree has been also added to aid readers who are familiar with graph theory.

      Heritability

      The primary goal of the paper is to analyse the properties of those networks that constitute "heritable regulatory architectures". The definition of heritability is not clearly stated anywhere in the paper, but it appears to be that the steady-state of the network must have a non-zero expression of every entity. As this is the heart of the paper, it would be good to have the definition of heritable laid out clearly in either the main text or the SI.

      I have now defined the term as used in this paper early, which is indeed as surmised by the reviewer simply the preservation of the architecture and non-zero levels of all entities. I have also highlighted additional notions of heredity that are possible, which will be the focus of future work. These can range from precise reproduction of the concentration and the localization of every entity to a subset of the entities being reproduced with some error while the rest keep varying from generation to generation (as illustrated in Fig. 2 of Jose, BioEssays, 2018). Importantly, it is currently unclear which of these possibilities reflects heredity in real living systems.

      Model

      As described in the supplementary, but not in the main text, the author first chooses to endow these networks with simple linear dynamics; something like $\partial_t \vec{x} = A x - T x$, where the vector $x$ is the expression level of each entity, $A$ has the structure of the adjacency matrix of the directed graph, and $T$ is a diagonal matrix with positive entries that determines the degradation or dilution rate of each entity. From a readability standpoint, it would greatly aid the reader if the long list of equations in the SI were replaced with the simple rule that takes one from a network diagram to a set of ODEs.

      I have abridged the description by eliminating the steady state expression for every HRA as suggested and simply pointed to the earlier version of the paper for those readers who might prefer the explicit derivations of these simple expressions. An overview is now provided for going from any network diagram to a set of ODEs.

      The implementation of negative regulation is manifestly unphysical if the "entities" represent the expression level of, say, gene products. For instance, in regulatory network E, the value of the variable z can go negative (for instance, if the system starts with z= and y=0, and x > 0).

      Negative values for any entity were avoided in simulations by explicitly setting all such values to zero. This constraint has been added as a note in the section describing the equations for the change of each node/entity in each regulatory network. Specifically, the levels of each entity/sensor was set to zero during any time step when the computed value for that entity/sensor was less than zero. This bounding of the function allows for any approach to zero while avoiding negative values. I apologize for the omission of this constraint from the supplemental material in the last submission. This constraint was used in all the simulations and therefore this change does not affect any of the results presented. In this way, it is ensured that the presence of negative regulation does not lead to negative values.

      Formally, the promotion or inhibition of an entity or sensor can be modeled using any function that is either increasing (for promotion) or decreasing (for inhibition). This diversity of possibilities is one of the challenges that prevents exhaustive exploration of all functions. In fact, the use of ODEs after assuming a continuous function is an idealization that facilitates understanding of general principles but is not in keeping with the discreteness of entities or step changes in their values (amount, localization, etc.) observed in living systems. Other commonly used continuous functions include Hill functions for the rate of production of y given as xn/(k + xn) for x activating y, which increases to ~1 as x increases, or given as k/(k + xn) for x inhibiting y, which decreases to ~0 as x increases. Increasing values of ‘n’ result in steeper sigmoidal curves. In reality, levels of all entities/sensors are expected to be discretized by measurement in living systems and the form of the function for any regulation needs empirical measurement in vivo (see response to comment below).

      The model seems to suddenly change from Figure 4 onwards. While the results presented here have at least some attempt at classification or statistical rigour (i.e. Fig 4 D), there are suddenly three values associated with each entity ("property step, active fraction, and number"). Furthermore, the system suddenly appears to be stochastic. The reader is left unsure of what has happened, especially after having made the effort to deduce the model as it was in Figs 1 through 3. No respite is to be found in the SI, either, where this new stochastic model should have been described in sufficient detail to allow one to reproduce the simulation.

      While ODEs are easier to simulate and understand, they are less realistic as explained above. I have now added more explanation justifying the need for the subsequent simulation of Entity-Sensor-Property systems. I have also expanded the information provided for each aspect of the model (previously outlined in Fig. 4A and detailed within the code) in a Supplementary Information section titled ‘Simulation of simple ESP systems’.

      Perturbations

      Inspired especially by experimental manipulations such as RNAi or mutagenesis, the author studies whether such perturbations can lead to a heritable change in network output. While this is naturally the case for permanent changes (such as mutagenesis), the author gives convincing examples of cases in which transient perturbations lead to heritable changes. Presumably, this is due the the underlying mutlistability of many networks, in which a perturbation can pop the system from one attractor to another.

      Unfortunately, there appears to be no attempt at a systematic study of outcomes, nor a classification of when a particular behaviour is to be expected. Instead, there is a long and difficult-to-read description of numerical results that appear to have been sampled at random (in terms of both the architecture and parameter regime chosen). The main result here appears to be that "genetic" (permanent) and "epigenetic" (transient) perturbations can differ from each other -- and that architectures that share a response to genetic perturbation need not behave the same under an epigenetic one. This is neither surprising (in which case even illustrative evidence would have sufficed) nor is it explored with statistical or combinatorial rigour (e.g. how easy is it to mistake one architecture for another? What fraction share a response to a particular perturbation?)

      The systematic study of all arbitrary regulatory architectures is beyond the scope of this paper and, as stated earlier, beyond the scope of any one paper. Nevertheless 225,000 arbitrary Entity-Sensor-Property systems were systematically explored and collections of parameters that lead to particular behaviors provided (e.g., 78,285 are heritable). These ESP systems more closely mimic regulation in living systems than the coupled ODE-based specification of change in a regulatory architecture.

      The example questions raised here are not only difficult to answer, but subjective and present a moving target for future studies. One, ‘how easy is it to mistake one architecture for another?’. Mistaking one architecture for another clearly depends on the number of different types of experiments one can perform on an architecture and the resolution with which changes in entities can be measured to find distinguishing features. Two, ‘What fraction share a response to a particular perturbation?’. ‘Sharing a response’ also depends on the resolution of the measurement of entities after perturbation.

      As an additional comment, many of the results here are presented as depending on the topology of the network. However, each network is specified by many kinetic constants, and there is no attempt to consider the robustness of results to changes in parameters.

      The interpretations presented are conservative determinations of heritability based on the topology of the architecture. In other words, architectures that can be heritable for some set of parameters. Of course, parameter sets can be found that make any regulatory architecture not heritable. As stated earlier, exploring all parameters for even one architecture is beyond the scope of a single study because of the infinitely many ways that the interaction between any two entities can be specified.

      DNA analogy

      At two points, the author makes a comparison between genetic information (i.e. DNA) and epigenetic information as determined by these heritable regulatory architectures. The two claims the author makes are that (i) heritable architectures are capable of transmitting "more heritable information" than genetic sequences, and (ii) that, unlike DNA, the connectivity (in the sense of mutations) between heritable architectures is sparse and uneven (i.e. some architectures are better connected than others).

      In both cases, the claim is somewhat tenuous -- in essence, it seems an unfair comparison to consider the basic epigenetic unit to be an "entity" (e.g., an entire transcription factor gene product, or an organelle), while the basic genetic unit is taken to be a single base-pair. The situation is somewhat different if the relevant comparison was the typical size of a gene (e.g., 1 kb).

      Considering every base being the unit of stored information in the DNA sequence results in the maximal possible storage capacity of a genome of given length. Any other equivalence between entity and units within the genome (e.g., 1 kb gene) will only reduce the information stored in the genome.

      Nevertheless, the claim has been modified to say that the information content of an ESP system can [italics added] be more extensive than the information content of the genome. This accounts for the possibility of an organism that has an inordinately large genome such that maximal information that can be stored in a particular genome sequence exceeds that stored in a particular configuration of all the contents in a cell.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript uses an interesting abstraction of epigenetic inheritance systems as partially stable states in biological networks. This follows on previous review/commentary articles by the author. Most of the molecular epigenetic inheritance literature in multicellular organisms implies some kind of templating or copying mechanisms (DNA or histone methylation, small RNA amplification) and does not focus on stability from a systems biology perspective. By contrast, theoretical and experimental work on the stability of biological networks has focused on unicellular systems (bacteria), and neglects development. The larger part of the present manuscript (Figures 1-4) deals with such networks that could exist in bacteria. The author classifies and simulates networks of interacting entities, and (unsurprisingly) concludes that positive feedback is important for stability. This part is an interesting exercise but would need to be assessed by another reviewer for comprehensiveness and for originality in the systems biology literature. There is much literature on "epigenetic" memory in networks, with several stable states and I do not see here anything strikingly new.

      The key utility of the initial part of the paper is the exhaustive enumeration of all small heritable regulatory architectures. The implications for the abundance of ‘network motifs’ and more generally any part of a network proposed to perform a particular function is that all such parts need to be compatible with heredity. This principle is generally not followed in the literature, resulting in incomplete networks being interpreted as having motifs or modules with autonomous function. Therefore, while the need for positive feedback for stability is indeed obvious, it is not consistently applied by all. For example, the famous synthetic circuit ‘the repressilator’ (Elowitz and Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 2000), which is presented as an example of ‘rational network design’, has three transcription factors that all sequentially inhibit the production of another transcription factor in turn forming a feedback loop of inhibitory interactions. Therefore, the contributions of the factors that promote the expression of each entity is unknown and yet essential for heritability. The comprehensive listing of the heritable regulatory architectures that are simple provide the basis for true synthetic biology where the contributing factors for observed behavior of the network are explicitly considered only after constraining for heredity. Using this principle, the minimal autonomous architecture that can implement the repressilator is the HRA ‘Z’ (Fig. 1).

      An interesting part is then to discuss such networks in the framework of a multicellular organism rather than dividing unicellular organisms, and Figure 5 includes development in the picture. Finally, Figure 6 makes a model of the feedback loops in small RNA inheritance in C. elegans to explain differences in the length of inheritance of silencing in different contexts and for different genes and their sensitivity to perturbations. The proposed model for the memory length is distinct from a previously published model by Karin et al. (ref 49).

      I thank the reviewer for appreciating this aspect of the paper.

      Strengths:

      A key strength of the manuscript is to reflect on conditions for epigenetic inheritance and its variable duration from the perspective of network stability.

      I thank the reviewer for appreciating the importance of the overall topic.

      Weaknesses:

      • I found confusing the distinction between the architecture of the network and the state in which it is. Many network components (proteins and RNAs) are coded in the genome, so a node may not disappear forever.

      I have added language to clarify the many states of a network versus its architecture (also illustrated in Fig. 4 for ESP systems). Even loss of expression below a threshold can lead to permanent loss if there is not sufficient noise to induce re-expression. For example, consider the simple case of a transcription factor that binds to its own promoter, requiring 10 molecules for the activation of the promoter and thus production of more of the same transcription factor. If an epigenetic change (e.g., RNA interference) reduces the levels to fewer than 10 molecules and if the noise in the system never results in the numbers of the transcription factor increasing beyond 10, the transcription factor has been effectively lost permanently. In this way, reduction of a regulator can lead to permanent change despite the presence of the DNA. Many papers in the field of RNA silencing in C. elegans have provided strong experimental evidence to support this assertion.

      • From the Supplementary methods, the relationship between two nodes seems to be all in the form of dx/dt = Kxy . Y, which is just one way to model biological reactions. The generality of the results on network architectures that are heritable and robust/sensitive to change is unclear. Other interactions can have sigmoidal effects, for example. Is there no systems biology study that has addressed (meta)stability of networks before in a more general manner?

      Indeed, the relationship between any two entities can in principle be modeled using any function. Extensive exploration of the behavior of any regulatory architecture – even the simplest ones – require simplifications. For example, early work by Stuart Kauffman explored Boolean networks (see ref. 10 in the paper for history and extensive explanations). However, allowing all possible ways of specifying the interactions between components of a network makes analysis both a computational and conceptual challenge.

      • Why is auto-regulation neglected? As this is a clear cause of metastable states that can be inherited, I was surprised not to find this among the networks.

      Auto-regulation in the sense of some molecule/entity ultimately leading to the production of more of itself is present in every heritable regulatory architecture. Specifically, all auto-regulatory loops rely on a sequence of interactions between two or more kinds of molecules. For example, a transcription factor (TF) binding to the promoter of its own gene sequence, resulting in the production of more TF protein is a positive feedback loop that relies on many interacting factors (transcription, translation, nuclear import, etc.) and can be considered as ‘auto-regulation’ as it is sometimes referred to in the literature. In this sense, every HRA (A through Z) includes ‘auto-regulation’ or more appropriately positive feedback loops. For example, in the HRA ‘A’, x ‘auto-regulates’ itself via y.

      • I did not understand the point of using the term "entity-sensor-property". Are they the same networks as above, now simulated in a computer environment step by step (thus allowing delays)?

      Please see response to the other reviewer regarding the need for the Entity-SensorProperty framework and how it is distinct from generic networks. Briefly, the ODE-based simple networks, while easy to analyze, are not realistic because of the assumptions of continuity. In contrast ESP systems are more realistic with measurement discretizing changes in property values as is expected in real living systems.

      • The final part applies the network modeling framework from above to small RNA inheritance in C. elegans. Given the positive feedback, what requires explanation is how fast the system STOPs small RNA inheritance. A previous model (Karin et al., ref. 49) builds on the fact that factors involved in inheritance are in finite quantity hence the different small RNAs "compete" for amplification and those targeting a given gene may eventually become extinct.

      The present model relies on a simple positive feedback that in principle can be modulated, and this modulation remains outside the model. A possibility is to add negative regulation by factors such as HERI-1, that are known to limit the duration of the silencing.

      The duration of silencing differs between genes. To explain this, the author introduces again outside the model the possibility of piRNAs acting on the mRNA, which may provide a difference in the stability of the system for different transcripts. At the end, I do not understand the point of modeling the positive feedback.

      The previous model (Karin et al., Cell Systems, 2023) can describe populations of genes that are undergoing RNA silencing but cannot explain the dynamics of silencing particular genes. Furthermore, this model also cannot explain cases of effectively permanent silencing of genes that have been reported (e.g., Devanapally et al., Nature Communications, 2021 and Shukla et al., Current Biology, 2021). Finally, the observations of susceptibility to, recovery from, and even resistance to trans silencing (e.g., Fig. 5a in Devanapally et al., Nature Communications, 2021) require an explanation that includes modulation of the HRDE-1-dependent positive feedback loop that maintains silencing across generations.

      The specific qualitative predictions regarding the relationship between piRNA-mediated regulation genome-wide and HRDE-1-dependent silencing of a particular gene across generations could guide the discovery of potential regulators of heritable RNA silencing. The equations (4) and (5) in the paper for the extent of modulation needed for heritable epigenetic change provide specific quantitative predictions that can be tested experimentally in the future. I have also revised the title of the section to read ‘Tuning of positive feedback loops acting across generations can explain the dynamics of heritable RNA silencing in C. elegans’ to emphasize the above points.

      • From the initial analysis of abstract networks that do not rely on templating, I expected a discussion of possible examples from non-templated systems and was a little surprised by the end of the manuscript on small RNAs.

      The heritability of any entity relies on regulatory interactions regardless of whether a templated mechanism is also used or not. For example, DNA replication relies on the interactions between numerous regulators, with only the sequence being determined by the template DNA. The field of small RNA-mediated silencing facilitates analysis of epigenetic changes at single-gene resolution (Chey and Jose, Trends in Genetics, 2022). It is therefore likely to continue to provide insights into heritable epigenetic changes and how they can be modulated. Unfortunately, there are currently no known cases of epigenetic inheritance where the role of any templated mechanism has been conclusively excluded. Future research will improve our understanding of epigenetic states and their modulation in terms of changes in positive feedback loops as proposed in this study and potentially lead to the discovery of such mechanisms that act entirely independent of any template-dependent entity.

      Recommendations for the authors:

      I thank the reviewers for their specific suggestions to improve the paper.

      Reviewer #1 (Recommendations For The Authors):

      The paper has many long paragraphs that attempt to explain results, make illustrations, and give intuition. Unfortunately, these are difficult to read. It would aid the reader greatly if these were, say, converted into cartoons (even if only in the SI), or made more accessible in some other way.

      I agree with the importance of making the material accessible to readers in multiple ways. I have now added a figure with schematics in the SI titled ‘Illustrations of key concepts’ (new Fig. S2), which collects concepts that are relevant throughout the paper and might aid some readers.

      The bulk of the supplementary is currently a collection of elementary mathematics results: to whit, pages 26 to 33 of the combined manuscript carry no more information than a quick description of the general model and the diagrams in Fig 1. Similarly, pages 34 to 39 (non-zero dilution rate), and pages 39 through 58 (response to permanent changes) each express a trivial mathematical point that is more than sufficiently made with one illustrative example.

      I agree with the reviewer and have condensed these pages as suggested. I have added a pointer to the earlier version as containing further details for the readers who might prefer the explicit listing of these equations.

      Overall, the paper appears to be a collection of numerical results obtained from different models, united by uncertain terminology that is not fully defined in this paper. The most promising aspects of the paper lie either in (a) combinatorially complete enumeration of all regulatory architectures, or (b) relating experimental manipulations in C. elegans to possible underlying regulatory architectures. Focusing on one or the other might improve the readability of the paper.

      The two sections of the paper are complementary and when presented together help with the integration of concepts rather than the siloed pursuit of theory versus experimental analysis. When this work was presented at meetings before submission, it was clear that different researchers appreciated different aspects. This divergence is also apparent in the two reviews, with each reviewer appreciating different aspects. I have repeated the definitions and justifications from the earlier paper (Jose, J R Soc Interface, 2020) to provide a more fluid transition between the two complementary sections of the paper. Knowing both sides could aid in the development of models that are not only consistent with measurable quantities (e.g., anything that can be considered an entity) but are also logically constrained (e.g., entities matched with sensors while avoiding any entities that do not have a source of production – i.e., avoiding nodes with indegree = 0).

      However, having said that many results of these types are well-known in models of regulatory networks, and it is unclear what precisely warrants the new framework that the author is proposing. Indeed, it would be good to understand in what way the framework here is novel, and how it is distinguished from prior studies of regulatory networks.

      The key novelty of the work is the consideration of heritability for any regulation. With the explicit definition of the heritability for a regulatory architecture and the acknowledgement that there can be more than one notion of heredity, this paper now sets the foundation for examining many real networks in this light. I hope that the added justifications for the current framework in the revised paper strengthen these arguments. Future literature reviews on networks in general and how they address heritability or persistence will better define the prevalence of these considerations. Currently, most experimental biologists engaged in reductionist approaches and some systems biologists examining the function or prevalence of network motifs do not explicitly constrain their models for heritability or persistence. It is hoped that this work will raise awareness in both communities and lead to more constrained models that acknowledge incomplete knowledge of the network, which is always the case when analyzing living systems.

      Reviewer #2 (Recommendations For The Authors):

      Minor points/clarity

      • page 1 line 57: "transgenerational waveforms that preserve form and function" is unclear.

      This phrase was expanded upon in a previous paper (Jose, BioEssays, 2020). I have now added more explanation in this paper for completeness. The section now reads ‘For example, the localization and activity of many kinds of molecules are recreated in successive generations during comparable stages [1-3]. These recurring patterns can change throughout development such that following the levels and/or localizations of each kind of molecule over time traces waveforms that return in phase with the similarity of form and function across generations [2].’

      • page 7 line 3-6: the sentence has an ambiguous structure.

      I have now edited this long sentence to read as follows: ‘For systematic analysis, architectures that could persist for ~50 generations without even a transient loss of any entity/sensor were considered HRAs. Each HRA was perturbed (loss-of-function or gain-of-function) after five different time intervals since the start of the simulation (i.e., phases). The response of each HRA to such perturbations were compared with that of the unperturbed HRA.’

      • page 9 lines 25-27: the sentence is convoluted: are you defining epigenetic inheritance?

      I have simplified this sentence describing prior work by others (Karin et al., Cell Systems, 2023) and moved a clause to the subsequent sentence. This section now reads: ‘Recent considerations of competition for regulatory resources in populations of genes that are being silenced suggest explanations for some observations on RNA silencing in C. elegans [49]. Specifically, based on Little’s law of queueing, with a pool of M genes silenced for an average duration of T, new silenced genes arise at a rate  that is given by M = T’. I have also provided more context by preceding this section with: ‘Although the release of shared regulators upon loss of piRNA-mediated regulation in animals lacking PRG-1 could be adequate to explain enhanced HRDE-1-dependent transgenerational silencing initiated by dsRNA in prg-1(-) animals, such a competition model alone cannot explain the observed alternatives of susceptibility, recovery and resistance (Fig. 6A).’

      • page 13 lines 51-53. This last sentence of the discussion is ambiguous/unclear.

      I have now rephrased this sentence to read: ‘This pathway for increasing complexity through interactions since before the origin of life suggests that when making synthetic life, any form of high-density information storage that interacts with heritable regulatory architectures can act as the ‘genome’ analogous to DNA.’

      • Figure 2: the letters in the nodes are hard to read; the difference between full and dotted lines in the graphs also.

      I have enlarged the nodes and widened the gap in the dotted lines to make them clearer. I have also similarly edited Fig. 1 and Fig. S3 to Fig. S9.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) More explanation/description of Fig 3C and 3D would be helpful for readers, including the color code of 3D and black lines shown in both panels.

      We have added more description to the legend of Figure 3, and we have used the same color code as in Figure 2, which we now specifically note in the figure legend as well.

      (2) Differences between cranial and trunk NCC could be experimentally shown or discussed. Fig 4C shows some differences between these two populations, but in situ, results using Dlc1/Sp5/Pak3 probes in the trunk region may be informative, like Fig 5 supplement 2 for cranial NCCs.

      This is an important point. The focus of our study was on cranial neural crest cells, and the single cell sequencing data is therefore truly reflective of only cranial neural crest cells. We have not functionally tested for the roles of Dlc1/Sp5/Pak3 in trunk neural crest cells, however, based on the expression and loss-of-function phenotypes of Sp5 or Pak3 knockout mice, we predict they individually may not play a significant role. It remains plausible that Dlc1 could play an important role in the delamination of trunk neural crest cells, but we have not tested that definitively. Nonetheless, Sabbir et al 2010 showed in a gene trap mouse mutant that Dlc1 is expressed in trunk neural crest cells. Regarding the similarities and differences between cranial and trunk neural crest cells as noted by the reviewer with respect to Figure 4, it’s important to recognize the temporal differences illustrated in Figure 4. Neural crest cell delamination proceeds in a progressive wave from anterior to posterior, but also that the analysis was designed to quantify cell cycle status before and during neural crest cell delamination. We have compared cranial and trunk neural crest cells in more detail in the discussion and also speculate what might happen in the trunk based on what we know from other species.

      (3) Discussion can be added about the potential functions of Dlc1 for NCC migration and/or differentiation based on available info from KO mice.

      We have added specific details regarding the published Dlc1 knockout mouse phenotype to the discussion, particularly with respect to the craniofacial anomalies which included frontonasal prominence and pharyngeal arch hyperplasia, and defects in neural tube closure and heart development. Although the study didn’t investigate the mechanisms underpinning the Dlc1 knockout phenotype, the craniofacial morphological anomalies would be consistent with a deficit in neural crest cell delamination reducing the number of migrating neural crest cells, as we observed in our Dlc1 knockdown experiments.

      Reviewer #2 (Recommendations For The Authors):

      The authors used the (Tg(Wnt1-cre)11Rth Tg(Wnt1-GAL4)11Rth/J) line but work from the Bush lab (see Lewis et al., 2013) has demonstrated fully penetrant abnormal phenotypes that affect the midbrain neuroepithelium, increased CyclinD1 expression and overt cell proliferation as measured by BrdU incorporation. The authors should explain why they used this mouse line instead of the Wnt1-Cre2 mice (129S4-Tg(Wnt1-cre)1Sor/J) in the Jackson Laboratory (which lacks the phenotypic effects of the original Wnt1-Cre line), or a "Cre-only" control, or at a minimum explain the steps they took to ensure there were no confounding effects on their study, especially since cell proliferation was a major outcome measure.

      This is an important point, and we thank the reviewer for raising it. Yes, it has been reported that the original Wnt1Cre mice exhibit a midbrain phenotype (Ace et al. 2013). However, it has also been noted that Wnt1Cre2 can exhibit recombination in the male germline leading to ubiquitous recombination (Dinsmore et al., 2022). Therefore, to avoid any potential for bias, we used an equal number of cells derived from the Wnt1 and F10N transgenic line embryos in our scRNA-seq, and this included multiple non-Cre embryos. Our scRNA-seq analysis was therefore not dependent upon Wnt1-Cre, but also because we used whole heads not fluorescence sorted cells. However, Wnt1-Cre lineage tracing was advantageous from a computational perspective to help define cells that were premigratory and migratory in concert with Mef2c-lacZ ¬based on their expression of YFP, LacZ or both. We note these specifics more clearly in the methods.

      The Results section (line 122) states that scRNA-seq was performed on dissociated cranial tissues but the Methods section (lines 583-584) implies that whole E8.5 mouse embryos were dissociated. Which was dissociated, whole embryos or just cranial tissues? Obviously, the latter would be a better strategy to enrich for cranial neural crest, but the authors also examine the trunk neural crest. This should be clarified in the text.

      We apologize that some of the details regarding the tissue isolation were confusing and we have clarified this in the methods and the text. For the record, after isolating E8.5 embryos, we then dissected the head from those embryos, and performed scRNA-seq on dissociated cranial tissues. As the reviewer correctly noted, this approach strategically enriches for cranial neural crest cells.

      The authors do not justify why they chose a knockdown strategy, which has its limitations including its systemic injection into the amniotic cavity, its likely global and more variable effects, and its need to be conducted in culture. Why the authors did not instead use a Wnt1-Cre-mediated deletion of Dlc1, which would have been "cleaner" and more specific to the neural crest, is not clear (maybe so they could specifically target different Dcl1 isoforms?). Also, the authors use Sox10 as a marker to count neural crest cells, but Sox10 may only label a subset of neural crest cells and thus some unaffected lineages may not have been counted. The authors should mention what is known about the regulation of Dcl1 by Sox10 in the neural crest. Although the data are persuasive, a second marker for counting neural crest cells following knockdown would make the analysis more robust. Can the authors explain why they did not simply use the Mef2c-F10N-LacZ line and count LacZ-positive cells (if fluorescence signal was required for the quantification workflow, then could they have used an anti-beta Galactosidase antibody to label cells)?

      We thank the reviewer for raising these important considerations. It has previously been noted that although Wnt1-Cre is the gold standard for conditional deletion analyses in neural crest cell development, especially migration and differentiation, it is not a good tool for functional studies of the specification and delamination of neural crest cells due to the timing of Wnt1 expression and Cre activation and excision (see Barriga et al., 2015). Therefore, we chose a knockdown strategy instead, and also because it allows us to more rapidly evaluate gene function. We agree that there are limitations to the approach with respect to variability, however, this is outweighed by the ability to repeatedly perform the knockdown at multiple and more relevant temporal stages such as E7.5 (which is prior to the onset of Wnt1-Cre activity), as well as target different isoforms, and also treat large numbers of embryos for quantitative analyses. The advantage of using Sox10 as a marker for counting neural crest cells is that at the time of analysis, cranial neural crest cells are still migrating towards the frontonasal prominences and pharyngeal arches, and the overwhelming majority of these cells are Sox10 positive. Moreover, we can therefore assay every Dlc1 knockdown embryo for Sox10 expression and count the number of migrating neural crest cells. The limitation of using the Mef2c-F10N-LacZ line is that this transgenic line is maintained as a heterozygote, and thus only half the embryos in a litter could reasonably be expected to be lacZ+. But combining Sox10 and Mef2c-F10N-LacZ fluorescent immunostaining for similar analyses in the future is a great idea.

      Reviewer #3 (Recommendations For The Authors):

      The putative intermediate cells differentially express mRNAs for genes involved in cell adhesion, polarity, and protrusion relative to bona fide premigratory cells (Fig. 2E). This is persuasive evidence, but only differentially expressed genes are shown. Discussing those markers that have not yet changed, e.g. Cdh1 or Zo1 (?), would be instructive and help to clarify the order of events.

      We thank the author for this suggestion and we have provided more detail about adherens junction and tight junctions. Cdh1 is not expressed, and although Myh9 and Myh10 are expressed, we did not detect any significant changes. ZO1 is a tight junction protein encoded by the gene Tjp1, which along with other tight junctions protein encoding genes, is downregulated in intermediate NCCs as shown in the Figure 2E.

      It is unclear whether the two putative intermediate state clusters differ other than their stage of the cell cycle. Based on the trajectory analysis in Fig. 3C-D, the authors state that these two populations form simultaneously and independently but then merge into a single population. However, without further differential expression, it seems more plausible that they represent a single population that is temporarily bifurcated due to cell cycle asynchrony.

      We have addressed the cell cycle question in the discussion by noting that while it is possible the transition states represent a single population that is temporarily bifurcated due to cell cycle asynchrony, if this were true, then we should expect S phase inhibition to eliminate both transition state groups. Instead, our trajectory analyses suggest that the transition states are initially independent, and furthermore, S phase inhibition did not affect delamination of the other population of neural crest cells.

      The authors do not present an in-depth comparison of these neural crest intermediate states to previously reported cancer intermediate states. This analysis would reveal how similar the signatures are and thus how extrapolatable these and future findings in delaminating neural crest are to different types of cancer.

      We have also added more detail to the discussion to address the potential for similarities and differences in neural crest intermediate states compared to previously reported cancer intermediate states. The challenge, however, is that none of the cancer intermediate states have been characterized at a molecular level. Nonetheless, with the limited molecular markers available, we have not identified any similarities so far, but our datasets are now available for comparison with future cancer EMP datasets.

      The reduction in SOX10+ cells may be in part or wholly attributable to inhibition of proliferation AFTER delamination. Showing that there are premigratory NCCs in G2/M at ~E8.0 would bolster the argument that this population is present from the earliest stages.

      The presence of premigratory neural crest cells in G2/M is shown by the scRNA-seq data and cell cycle staining data in the neural plate border.

      Lines 248-249: The pseudo-time analysis in Fig 3C/D does indicate that the two most mature cell clusters (pharyngeal arch and frontonasal mesenchyme) may arise from common or similar migratory progenitors. However, given the decades of controversy about fate restriction of neural crest cells, the statement that "EMT intermediate NCC and their immediate lineages are not fate restricted to any specific cranial NCC derivative at this timepoint" should be toned down so as to not give the impression that they have identified common progenitors of ectomesenchyme and neuro/glial/pigment derivatives.

      We appreciate this comment, because as the reviewer noted, there has been considerable literature and debate about the fate restriction and plasticity of neural crest cells, and indeed we did not intend to imply we have identified common progenitors of ectomesenchyme and neuro/glial/pigment derivatives. That can only be truly functionally demonstrated by clonal lineage tracing analyses. Rather, we interpret our pseudo-time analyses to indicate that irrespective of cell cycle status at the time of delamination, these two populations come together with equivalent mesenchymal and migratory properties, but in the absence of fate determination in the collective of cells. This does not mean that individual cells are common progenitors of both ectomesenchyme and neuro/glial/pigment derivatives. The nuance is important, and we address this more carefully in the text.

      Lines 320-321: "...this overlap in expression was notably not observed in older embryos in areas where EMT had concluded". It is unclear whether the markers no longer overlap in older embryos (i.e. segregate to distinct populations) or are simply no longer expressed.

      The data in Figure 5 demonstrates the dynamic and overlapping expression of Dlc1, Sp5 and Pak3 in the different clusters of cells as they transition from being neuroepithelial to mesenchymal. In contrast to Sp5 and Pak3, Dlc1 is not expressed by premigratory neural crest cells but is expressed at high levels in all EMT intermediate stage neural crest cells. Later as Dlc1 continues to be expressed in migrating neural crest cells, Pak3 and Sp5 are downregulated. But the absence of overlapping expression in the dorsolateral neural plate at the conclusion of EMT coincides with their downregulation in that territory.

      In the final results section on Dlc1, the previously published mutant mouse lines are referenced as having "craniofacial malformation phenotypes". The lack of detail given on what those malformations are (assuming descriptions are available) makes the argument that they may be related to insufficient delamination less persuasive. The degree of knockdown correlates so well with the percentage reduction in migratory neural crest (Fig. 6) that one would imagine a null mutant to have a very severe phenotype.

      The inference from the reviewer is correct and indeed Dlc1 null mutant mice do have a severe phenotype. We have added more specific details regarding the craniofacial and other phenotypes of the Dlc1 mutant mice to the discussion. Of note the frontonasal prominences and the pharyngeal arches are hypoplastic in E10.5 Dlc1 mutant embryos, which would be consistent with a neural crest cell deficit. Although a deficit in neural crest cells can be caused my multiple distinct mechanisms, our Dlc1 knockdown analyses suggest that the phenotype is due to an effect on neural crest cell delamination which diminishes the number of migrating neural crest cells.

      Use the same y-axis for Fig. 4C/D

      This has been corrected.

      Fig. 6C: Please note in the panel which gene is being measured by qPCR

      This has been corrected to denoted Dlc1.

      Lines 108-117: More concise language would be appropriate here.

      As requested, we were more succinct in our language and have shortened this section.

      The SABER-FISH images are very dim. I realize the importance of not saturating the pixels, but the colors are difficult to make out.

      We thank the reviewer for pointing this out and have endeavored to make the SABER-FISH images brighter and easier to see.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on the roles of the axon growth regulator Sema7a in the formation of peripheral sensory circuits in the lateral line system of zebrafish. The evidence supporting the claims of the authors is solid, although further work directly testing the roles of different sema7a isoforms would strengthen the analysis. The work will be of interest to developmental neuroscientists studying circuit formation.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work, Dasguta et al. have dissected the role of Sema7a in fine tuning of a sensory microcircuit in the posterior lateral line organ of zebrafish. They attempt to also outline the different roles of a secreted verses membrane-bound form of Sema7a in this process. Using genetic perturbations and axonal network analysis, the authors show that loss of both Sema7a isoforms causes abnormal axon terminal structure with more bare terminals and fewer loops in contact with presynaptic sensory hair cells. Further, they show that loss of Sema7a causes decreased number and size of both the pre- and post-synapse. Finally, they show that overexpression of the secreted form of Sema7a specifically can elicit axon terminal outgrowth to an ectopic Sema7a expressing cell. Together, the analysis of Sema7a loss of function and overexpression on axon arbor structure is fairly thorough and revealed a novel role for Sema7a in axon terminal structure. However, the connection between different isoforms of Sema7a and the axon arborization needs to be substantiated. Furthermore, an autocrine role for Sema7a on the presynaptic cell is not ruled out as a contributing factor to the synaptic and axon structure phenotypes.

      Finally, critical controls are absent from the overexpression paradigm.

      Comments: Thank you for your valuable comments. We have analyzed the hair cell scRNA transcriptome data of zebrafish neuromasts from published works and have not identified known expression of receptors of the Sema7A protein, particularly PlexinC1 and Integrin β1 molecules (reference 4 and 15) in hair cells. This result suggests that the Sema7A protein molecule, either secreted or membrane-bound, does not possess its cognate receptor to elicit an autocrine function on the hair cells. Moreover, the GPI-anchored Sema7A lacks a cytosolic domain. So it is unlikely that Sema7A signaling directly induces the formation of presynaptic ribbons. We propose that the decrease in average number and area of synaptic aggregates likely reflects decreased stability of the synaptic structures owing to lack of contact between the sensory axons and the hair cells, which has been identified in zebrafish neuromasts (reference 38).

      Thank you for pointing missing critical control experiments. Additional control experiments (lines 333-346) with a new figure (Figure 5) have been added.

      These issues weaken the claims made by the authors including the statement that they have identified differential roles for the GPI-anchored verses secreted forms of Sema7a on synapse formation and as a chemoattractant for axon arborization respectively.

      Comments: We have rephrased our statement and argue in lines 428-430 that our experiments “suggest a potential mechanism for hair cell innervation in which a local Sema7Asec diffusive cue likely consolidates the sensory arbors at the hair cell cluster and the membrane-anchored Sema7A-GPI molecule guides microcircuit topology and synapse assembly.”

      The manuscript itself would benefit from the inclusion of details in the text to help the reader interpret the figures, tools, data, and analysis.

      Comments: We have made significant revisions to the text and figures to improve clarity and consistency of the manuscript.

      Reviewer #2 (Public Review):

      In this work, Dasgupta et al. investigates the role of Sema7a in the formation of peripheral sensory circuit in the lateral line system of zebrafish. They show that Sema7a protein is present during neuromast maturation and localized, in part, to the base of hair cells (HCs). This would be consistent with pre-synaptic Sema7a mediating formation and/or stabilization of the synapse. They use sema7a loss-of-function strain to show that lateral line sensory terminals display abnormal arborization. They provide highly quantitative analysis of the lateral line terminal arborization to show that a number of specific topological parameters are affected in mutants. Next, they ectopically express a secreted form of Sema7a to show that lateral line terminals can be ectopically attracted to the source. Finally, they also demonstrate that the synaptic assembly is impaired in the sema7a mutant. Overall, the data are of high quality and properly controlled. The availability of Sema7a antibody is a big plus, as it allows to address the endogenous protein localization as well to show the signal absence in the sema7a mutant. The quantification of the arbor topology should be useful to people in the field who are looking at the lateral line as well as other axonal terminals. I think some results are overinterpreted though. The authors state: "Our findings demonstrate that Sema7A functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development." However, they have not actually demonstrated which isoform functions in HCs (also see comments below).

      Comments: Thank you for making this point. To investigate the presence of both sema7a transcripts in the hair cells of the lateral-line neuromasts, we used the Tg(myo6b:actb1EGFP) transgenic fish to capture the labeled hair cells by fluorescence-activated cell sorting (FACS) and isolated total RNA. Using transcript specific DNA oligonucleotide primers, we have identified the presence of both sema7a transcript variants in the hair cell of the neuromast. Even though we have not developed transcript specific knockout animals, we speculate that the presence of both transcript variants in the hair cell implies that they function in distinct fashion. We have changed our interpretation in lines 32-34 to “Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.”

      In future we will utilize the CRISPR/Cas9 technique to target the unique C-terminal domain of the GPI-anchored sema7a transcript variant. We believe that this will only perturb the formation of the full-length Sema7A protein and help us determine the role of the membrane-bound Sema7AGPI molecule as well as the Sema7Asec in sensory arborization and synaptic assembly.

      In addition, they have to be careful in interpreting their topology analysis, as they cannot separate individual axons. Thus, such analysis can generate artifacts. They can perform additional experiments to address these issues or adjust their interpretations.

      Comments: Thank you for this insightful comment. In a previous eLife publication from our laboratory, we utilized the serial blockface scanning electron micrograph (SBFSEM) technique to characterize the connectome of the neuromast microcircuit where patterns of innervation of all the individual axons can be delineated in five-days-old larvae (reference 8). However, the collective behavior of all the sensory axons that build the innervation network remained enigmatic, especially in a living animal during development. In this paper we addressed how the sensory-axon collective behaves around the clustered hair cells and build the innervation network in living animals during diverse developmental stages. Our analyses have not only identified how the axons associates with the hair cell cluster as the organ matures, but also discovered distinct topological features in the arbor network that emerges during organ maturation, which may influence assembly of postsynaptic aggregates (lines 384-403, Figure 6G-I). We believe that our quantitative approach to capture collective axonal behaviors and their topological attributes during circuit formation have highlighted the importance of understanding network assembly during sensory organ development.

      Reviewer #3 (Public Review):

      Summary:

      This study demonstrates that the axon guidance molecule Sema7a patterns the innervation of hair cells in the neuromasts of the zebrafish lateral line, as revealed by quantifying gain- and loss-of function effects on the three-dimensional topology of sensory axon arbors over developmental time. Alternative splicing can produce either a diffusible or membrane-bound form of Sema7a, which is increasingly localized to the basolateral pole of hair cells as they develop (Figure 1). In sema7a mutant zebrafish, sensory axon arbors still grow to the neuromast, but they do not form the same arborization patterns as in controls, with many arbors overextending, curving less, and forming fewer loops even as they lengthen (Figure 2,3). These phenotypes only become significant later in development, indicating that Sema7a functions to pattern local microcircuitry, not the gross wiring pattern. Further, upon ectopic expression of the diffusible form of Sema7a, sensory axons grow towards the Sema7a source (Figure 4). The data also show changes in the synapses that form when mutant terminals contact hair cells, evidenced by significantly smaller pre- and post-synaptic punctae (Figure 5). Finally, by replotting single cell RNA-sequencing data (Figure 6), the authors show that several other potential cues are also produced by hair cells and might explain why the sema7a phenotype does not reflect a change in growth towards the neuromast. In summary, the data strongly indicate that Sema7a plays a role in shaping connectivity within the neuromast.

      Strengths:

      The main strength of this study is the sophisticated analysis that was used to demonstrate fine-level effects on connectivity. Rather than asking "did the axon reach its target?", the authors asked "how does the axon behave within the target?". This type of deep analysis is much more powerful than what is typical for the field and should be done more often. The breadth of analysis is also impressive, in that axon arborization patterns and synaptic connectivity were examined at 3 stages of development and in three-dimensions.

      Weaknesses:

      The main weakness is that the data do not cleanly distinguish between activities for the secreted and membrane-bound forms of Sema7a, which the authors speculate may influence axon growth and synapse formation respectively. The authors do not overstate the claims, but it would have been nice to see some additional experimentation along these lines, such as the effects of overexpressing the membrane-bound form,

      Comments: We have accepted this useful suggestion. In lines 333-346 and in Figure 5 we have demonstrated the impact of overexpressing the membrane-bound transcript variant on arborization pattern of the sensory axons.

      Some analysis of the distance over which the "diffusible" form of Sema7a might act (many secreted ligands are not in fact all that diffusible), or

      Comments: We have reported this in lines 311-317 and in Figure 4F,G.

      Some live-imaging of axons before they reach the target (predicted to be the same in control and mutants) and then within the target (predicted to be different).

      Comments: We have accepted this useful suggestion. We demonstrate the dynamics of the sensory arbors that are attracted to an ectopic Sema7Asec source in lines 325-332, Figure 4I,J; Figure 4—figure supplement 2A, and Videos 13-16.

      Clearly, although the gain-of-function studies show that Sema7a can act at a distance, other cues are sufficient. Although the lack of a phenotype could be due to compensation, it is also possible that Sema7a does not actually act in a diffusible manner within its natural context. Overall, the data support the authors' carefully worded conclusions. While certain ideas are put forward as possibilities, the authors recognize that more work is needed. The main shortcoming is that the study does not actually distinguish between the effects of the two forms of Sema7a, which are predicted but not actually shown to be either diffusible or membrane linked (the membrane linkage can be cleaved). Although the study starts by presenting the splice forms, there is no description of when and where each splice form is transcribed.

      Comments: We have utilized the HCR™ RNA-FISH Technology to generate transcript specific probes. To generate transcript-specific HCR probes to distinctly detect the sema7aGPI (NM_001328508) and the sema7asec (NM_001114885) transcripts, Molecular Instruments could design only 11 probes against the sema7aGPI transcript and only one probe against the sema7asec transcript (personal correspondence with Mike Liu, PhD, Head of Operations and Product Development Lead Molecular Instruments, Inc.). The HCR probe against the sema7aGPI transcript showed a very faint signal. Unfortunately, the HCR probe against the sema7asec transcript failed to detect the presence of any transcript. For robust detection of transcripts, the protocol demands a minimum of 20 probes. We believe that the very low number of probes against our transcripts is the primary reason for the absence of a signal.

      We therefore utilized fluorescence-activated cell sorting (FACS) to capture the labeled hair cells and isolated total RNA to perform RT-PCR using transcript specific DNA oligonucleotide primers. We identified the presence of both the secreted and the membrane-bound transcripts at four-days-old neuromasts (lines 80-84, Figure 1B-D).

      Additionally, since the mutants are predicted to disrupt both forms, it is a bit difficult to disentangle the synaptic phenotype from the earlier changes in circuit topology - perhaps the change at the level of the synapse is secondary to the change in topology.

      Comments: Thank you for the insightful suggestion. We have analyzed the relationship between the sensory arbor network topology and the distribution of postsynaptic structures (lines 384-403, Figure 6G-I). We identified that the distribution of the postsynaptic aggregates is closely associated with the topological attributes of the sensory circuit. We further clarify the potential origin of disrupted synaptic assemblies in sema7a-/- mutants in lines 380-382 and lines 417-420.

      Further, the authors do not provide any data supporting the idea that the membrane bound form of Sema7a acts only locally. Without these kinds of data, the authors are unable to attribute activities to either form.

      Comments: We have accepted this useful suggestion and have prepared the Figure 5 with the necessary details.

      The main impact on the field will be the nature of the analysis. The field of axon guidance benefits from this kind of robust quantification of growing axon trajectories, versus their ability to actually reach a target. This study highlights the value of more careful analysis and as a result, makes the point that circuit assembly is not just a matter of painting out paths using chemoattractants and repellants, but is also about how axons respond to local cues. The study also points to the likely importance of alternative splice forms and to the complex functions that can be achieved using different forms of the same ligand.

      Reviewer #4 (Public Review):

      Summary:

      The work by Dasgupta et al identifies Sema7a as a novel guidance molecule in hair cell sensory systems. The authors use the both genetic and imaging power of the zebrafish lateralline system for their research. Based on expression data and immunohistochemistry experiments, the authors demonstrate that Sema7a is present in lateral line hair cells. The authors then examine a sema7a mutant. In this mutant, Sema7a proteins levels are nearly eliminated. Importantly, the authors show that when Sema7a is absent, afferent terminals show aberrant projections and fewer contacts with hair cells. Lastly the authors show that ectopic expression of the secreted form of Sema7a is sufficient to recruit aberrant terminals to non-hair cell targets. The sema7a innervation defects are well quantified. Overall, the paper is extremely well written and easy to follow.

      Strengths:

      (1) The axon guidance phenotypes in sema7a mutants are novel, striking and thoroughly quantified.

      (2) By combining both loss of function sema7a mutants and ectopic expression of the secreted form of Sema7a the authors demonstrate the Sema7a is both necessary and sufficient to guide sensory axons

      Weaknesses:

      (1) Control. There should be an uninjected heatshock control to ensure that heatshock itself does not cause sensory afferents to form aberrant arbors. This control would help support the hypothesis that exogenously expressed Sema7a (via a heatshock driven promoter) is sufficient to attract afferent arbors.

      Comments: Thank you for the suggestion. We have added the uninjected heatshock control experiment in Figure 5 and described experimental details in the text, lines 343-345.

      (2) Synapse labeling. The numbers obtained for postsynaptic labeling in controls do not match up with the published literature - they are quite low. Although there are clear differences in postsynaptic counts between sema7a mutants and controls, it is worrying that the numbers are so low in controls. In addition, the authors do not stain for complete synapses (pre- and post-synapses together). This staining is critical to understand how Sema7a impacts synapse formation.

      Comments: Thank you for raising this issue. We believe the low average numbers of the postsynaptic punctae in control neuromasts arise from lack of formation of postsynaptic aggregates beneath the immature hair cells, which are abundant in early stages of neuromast maturation. We have performed exhaustive analysis on the formation of pre- and postsynaptic structures and have identified how their distribution changes along neuromast development in control larvae. We have further analyzed how such distribution is perturbed in the sema7a-/- mutants. We do not think analyzing the complete synapse structure will add much to our understanding of how Sema7A influence synapse formation and maintenance.

      (3) Hair cell counts. The authors need to provide quantification of hair cell counts per neuromast in mutant and control animals. If the counts are different, certain quantification may need to be normalized.

      Comments: We have added the raw data with the hair cell counts in both control and sema7a-/- mutants across developmental stages. The homozygous sema7a-/- mutants have slightly less hair cells and we have normalized all our topological analyses by the corresponding hair cell numbers for each neuromast in each experiment (lines 669-675).

      (4) Developmental delay. It is possible that loss of Sema7a simply delays development. The latest stage examined was 4 dpf, an age that is not quite mature in control animals. The authors could look at a later age, such as 6 dpf to see if the phenotypes persist or recover.

      Comments: The homozygous sema7a-/- mutants are unviable and die at 6 dpf. We therefore restricted our analysis till 4 dpf. The association of the sensory arbors with the clustered hair cells gradually decreases as the neuromasts mature from 2 dpf to 4dpf in the sema7a-/- mutants (lines 174-176, Figure 2I). Moreover, in the sema7a-/- mutants the sensory axons throw long projections that keep getting farther away from the clustered hair cells as the neuromast matures from 2 dpf to 4 dpf (lines 166-168, Figure 2H; Figure 2—figure supplement 1K,L). These observations suggest that if the phenotypes in the sema7a-/- mutants were due to developmental delays, then we should have seen a recovery of disrupted arborization patterns over time. But instead, we observe a further deterioration of the arborization patterns and other architectural assemblies. These findings confirm that the observed phenotypes in the sema7a-/- mutants are not due to delayed development of the larvae, but a specific outcome for the loss of Sema7A protein.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Major concerns:

      Issue 1: One of the most interesting conclusions in this manuscript is the function of the GPIanchored vs. secreted form of Sema7a in axon structure and synapse formation. In lines 357360 of the discussion (for example) the authors state that they have shown that the GPIanchored form of Sema7a is responsible for contact-mediated synapse formation while the secreted form functions as a chemoattractant for axon arbor structure. "We have discovered dual modes of Sema7A function in vivo: the chemoattractive diffusible form is sufficient to guide the sensory arbors toward their target, whereas the membrane-attached form likely participates in sculpting accurate neural circuitry to facilitate contact-mediated formation and maintenance of synapses." However, the data do not support this conclusion. Specifically, no analysis is done showing unique expression of either isoform in hair cells and no functional analysis is done to conclusively determine which isoform is important for either phenotype.

      Comments: We have shown that both sema7a transcripts are expressed in the hair cells of four-day-old neuromasts (lines 78-84, Figure 1C,D). Ectopic expression of the sema7asec transcript variant robustly attracts the lateral-line sensory arbors toward itself, whereas ectopic expression of the sema7aGPI variant fails to impart sensory guidance from a distance, suggesting that the membrane-bound form likely participates in contact-mediated neural guidance. These experiments decisively show, for the first time in zebrafish, the dual modes of Sema7A function in vivo. However, we agree that the sema7aGPI transcript-specific knockout animal would be essential to conclusively prove that the membrane-attached form is primarily involved in forming accurate neural circuitry and contact-mediated formation and maintenance of synapses. Hence, we have very carefully stated in lines 427-428 that “the membrane-attached form likely participates in sculpting accurate neural circuitry to facilitate contact-mediated formation and maintenance of synapses”. We will follow up on this suggestion in our upcoming manuscript that will incorporate transcript-specific genetic ablations.

      Though the authors present RT-PCR analysis of sema7a isoforms, it is not interpretable. The second reverse primer will also recognize the full-length transcript (from what I can gather) so it does not simply show the presence of the secreted form. Is there a unique 3'UTR for the short transcript that can be used? Additionally, for the GPI-anchored version can you use a forward primer that is not present in the short isoform? This would shed some light on the respective levels of both transcripts.

      Comments: The C-termini of the two transcript variants are distinct and we have designed distinct primers that will selectively bind to each transcript (lines 503-511). Since, we have not performed quantitative polymerase chain reaction (qPCR), relative levels of each transcript are hard to determine.

      Alternatively, and perhaps of more use, in situ hybridization using unique probes for each isoform would allow you to determine which are actually present in hair cells.

      Comments: We have tried this approach and explained the point earlier (refer to lines 203212 of this response letter).

      To decisively state that these isoforms have unique functions in axon terminal structure and synapse formation, other experiments are also essential. For example, RNA-mediated rescue analyses using both isoforms would tell you which can rescue the axonal structure and synapse size/number phenotypes. Overexpression of the GPI-anchored form, like the secreted form in Figure 4, would allow you to determine if only the secreted form can cause abnormal axon extension phenotypes. Expression of both forms in hair cells (using a myo6b promotor for example) would allow assessment of their role in presynapse formation.

      Comments: We have ectopically expressed the sema7aGPI transcript variant near the sensory arbor network and observed that Sema7A-GPI fails to impart sensory axon guidance from a distance.

      Thank you for suggesting the rescue experiments. We are in the process of generating CRISPR/Cas9-mediated transcript-specific knockout animals. We are currently preparing another manuscript that incorporates the above-mentioned rescue experiments to dissect the role of each transcript in regulating arbor topology and synapse formation.

      For the overexpression experiments, expression of mKate alone (with and without heat shock) is also a critical control to include.

      Comments: We have incorporated two control experiments: (1) larvae injected with hsp70:sema7asec-mKate2 plasmid that were not heat shocked and (2) Uninjected larvae that were heatshocked. We think these two controls are sufficient to demonstrate that the abnormal arborization patterns are not artifacts generated due to plasmid injection and heatshocking.

      Issue 2: A second concern is the lack of data showing support cell and hair cell formation and function is unaffected. Analysis of support and hair cell number with loss of Sema7a as well as simple analyses of mechanotransduction (FM4-64) would help alleviate concerns that phenotypes are due to disrupted neuromast formation and basic hair cell function rather than a specific role for Sema7a in this process.

      Comments: We have measured the hair cell numbers in both control and sema7a-/- mutants across developmental stages. We have added this to our submitted raw data.

      We have utilized the styryl fluorophore FM4-64 to test the mechanotransduction function of the hair cells in sema7a-/- mutants. We have detailed our finding in lines 137141 and in Figure 2—figure supplement 1C,D.

      Expression analysis of Sema7a receptors would also help strengthen the argument for a specific effect on lateral line afferent axons.

      Comments: Thank you for this suggestion. Currently, we do not possess an RNA transcriptome dataset for the lateral line ganglion. This deficit limits a systematic screen for lateral-line sensory neuronal gene expressions either through antibody stains or via HCRmediated in situ techniques. In future we plan to develop an RNA transcriptome for the lateral-line ganglion and identify potential binding partners for Sema7A.

      Issue 3: The manuscript could also be improved to include more detail in some areas and less in others. In general, each section has a fairly long lead up but lacks important experimental details that would help the reader interpret the data. For example:

      Figure 1: What is the label for the lateral line axons? Is it a specific transgenic? The legend states that 3 asterisks indicate p<0.0001. What about the other asterisk combinations?

      Comments: We have clarified these issues in lines 118-121 and in lines 906-907.

      Figure 2: For the network analysis, are the traces for all axons that branch to innervate the neuromast?

      Comments: Yes, we have traced the entire arbor containing all the axons that branched from the lateral line nerve and extended toward the clustered hair cells. The three-dimensional traces depict a skeletonized representation of the arbor network.

      Can the tracing method distinguish individual axons?

      Comments: No, our goal is to understand how the axon-collective behave around the clustered hair cells during development.

      How do you know where an end is versus continued looping?

      Comments: We have categorically defined the topological attributes in lines 187-191 and in Figure 3A.

      Also, are all neuromasts similarly affected or is there a divergence based on which organ you are imaging? What neuromast was imaged in this and other figures?

      Comments: Yes, all the neuromasts in the trunk and tail regions were affected similarly by the sema7a mutation. We did not observe any region-specific phenotypic outcome. We consistently imaged the trunk neuromasts, particularly the second, third, and fourth neuromasts.

      Discussion: The short discussion failed to put these findings into context or to discuss how this unique topological arrangement of axon terminals impacts function.

      Comments: We have added a new segment, lines 432-448, in the discussion section which mentions the potential role of the topological features in arranging the distribution pattern of the postsynaptic densities and thereby potentially influencing the network’s ability to gather sensory inputs through properly placed postsynaptic aggregates.

      Can you speculate on how the looping structure may alter number of synaptic contacts per axon for instance? For this, it would be useful to know if normally the synapses form on loops versus bare terminals.

      Comments: Thank you for this insightful suggestion. We have performed detailed analysis, as mentioned in lines 384-397, to characterize the distribution of the postsynaptic densities between the two topological attributes.

      Does this looping facilitate single axons contacting more hair cells of the same polarity? Would that be beneficial?

      Comments: Looping behaviors indeed facilitate the contact between the axons and the hair cells. As we have observed, the primary topological attribute that the sensory arbor network underneath the clustered hair cells adopts is a loop. The bare terminals are predominantly projected transverse to the clustered hair cells and lack contact with them. Whether a single axon, being part of a loop, preferentially contacts hair cells of same polarity is yet to be determined. We can address this question by mosaic labeling a single axon in the arbor network and determine its association with the hair cells. We intend to do these experiments in our upcoming manuscript.

      Minor concerns:

      (1) For the stacked charts quantifying topological features, I found interpreting them challenging. Is it possible to put these into overlapping histograms or line graphs to better compare wild type to mutant directly?

      Comments: Thank you for your suggestion. We tried several ways to represent our data and found that the stacked charts optimally signify our analysis and depict the characteristic phenological differences between the control and the sema7a-/- mutants.

      (2) There are numerous strong statements throughout not directly supported by the data, e.g. lines 110-113; 206-208; 357-360 and others. These should be tempered.

      Comments: For lines 110-113, we have updated this section with new experiments and the new segment is represented in lines 115-126.

      For lines 206-208, we have updated the statement to “This result suggests that the stereotypical circuit topology observed in the mature organ may emerge through transition of individual arbors from forming bare terminals to forming closed loops encircling topological holes” in lines 225-227.

      Reviewer #2 (Recommendations For The Authors):

      The authors should be careful about making any assumptions which form of sema7a is active in NMs. Their RT-PCR demonstrates presence of both isoforms in a whole animal; however, whether they are similarly present in HCs is not investigated here.

      Comments: We have addressed this concern and have updated the manuscript with new experiments, detailed in lines 78-84.

      Also, there is an issue of translation and trafficking to the membrane with subsequent secretion. An important experiment that would address this question is expressing two sema7a isoforms in mutant HCs and asking whether this can suppress the mutant phenotype.

      Comments: Thank you for suggesting the rescue experiments. We are in the process of generating CRISPR/Cas9-mediated transcript-specific knockout animals. We are currently preparing another manuscript that incorporates the above-mentioned rescue experiments to dissect the role of each transcript in regulating arbor topology and synapse formation.

      Presumably, sema7a is trafficked to the membrane during HC maturation. This is consistent with the authors' observation that sema7a localization is changing as NM mature. However, actin-sema7a co-labeling does not actually show whether sema7a is on the membrane. Labeling HCs with a membrane marker (transgene) would be much more convincing. Alternatively, can the authors show sema7a localization actually correlates with the presence of sensory axon terminals? They already have immunos that label both. Thus, this should be pretty straightforward.

      Comments: Thank you for these suggestions. We have addressed these issues in lines 112114, and in lines 119-126.

      Figure 2 should have a control panel, so the reduced sema7a staining can be compared to the control side-by-side.

      Comments: We have depicted Sema7A staining in control neuromasts in multiple images, including Figure 1E, Figure 1H, and in Figure 2—figure supplement 1B. We have kept the control panel in the supplementary figure due to space restrictions in Figure 2.

      Arborization topology: While I appreciate the very careful characterization of the topology for wild-type and mutant NMs, I think it would be much more informative to mark individual axons and then analyze their topology. The main reason is that the authors cannot really distinguish whether some aspects of topology they describe are really due to the densely packed overlapping terminals of multiple axons or these are really characteristic, higher order organization of individual axons. Because of this, they cannot be certain what is really happening with sema7a mutant terminals. Related to the point above. While it is clear that the overall topology is abnormal in the mutant, the authors should be careful in concluding that sema7a regulates specific aspects of it. The overall structure is probably highly interconnected perturbing one parameter would likely affect all the others.

      Comments: Thank you for this comment. In a previous eLife publication from our laboratory, we utilized the serial blockface scanning electron micrograph (SBFSEM) technique to characterize the connectome of the neuromast microcircuit where patterns of innervation of all the individual axons can be delineated in five-days-old larvae (reference number 8). However, the collective behavior of all the sensory axons that build the innervation network remained enigmatic, especially in a living animal during development. In this paper we addressed how the sensory axon-collective behave around the clustered hair cells and build the innervation network in living animals during diverse developmental stages. Our analyses have not only identified how the axon-collective associates itself with the hair cell cluster as the organ matures, but also discovered distinct topological features in the arbor network that emerges during organ maturation, which may influence assembly of postsynaptic aggregates (lines 384-403, Figure 6G-I). We believe that our quantitative approach to capture collective axonal behaviors and their topological attributes during circuit formation have highlighted the importance of understanding network assembly during sensory organ development.

      Experiments with the secreted sema7a isoform would be much more informative if they were compared/contrasted to the GPI anchored isoform.

      Comments: We added a new section, lines 338-351, and a new Figure 5 to address this issue.

      The phenotype of ectopic projections in sema7a overexpression experiments is pretty dramatic, especially given the fact that these were performed in wild-type animals. Does this mean that the phenotype would be even more dramatic in sema7a mutants, as they have more bare axon terminals according to the authors' analysis. Have the authors attempted this type of experiments?

      Comments: That is an interesting suggestion. We have not tested that yet. Our guess is that in the sema7a-/- mutants, the abundant bare terminals will be far more sensitive to an ectopic source of Sema7A. But even in the sema7a-/- mutants, other chemotropic cues are still functional, which may impart certain restrictions on how many bare terminals are allowed to leave the neuromast region.

      Reviewer #3 (Recommendations For The Authors):

      (1) No raw data are shown, such that it is difficult to assess variability across animals or within animals, just the overall trends within the whole dataset. Raw data need to be shown for every measurement, at least in supplemental figures. It would also be useful to reliably show control next to mutant in the same plot, as it is a bit hard to compare across panels, which occurs in several figures.

      Comments: We have uploaded all the raw data related to each experiment.

      (2) Given the focus on the two possible forms of Sema7a, the authors should use HCR or another form of reliable in situ hybridization to show the spatiotemporal pattern of expression of each isoform.

      Comments: We have utilized the HCR™ RNA-FISH Technology to generate transcript specific probes. To generate transcript-specific HCR probes to distinctly detect the sema7aGPI (NM_001328508) and the sema7asec (NM_001114885) transcripts, Molecular Instruments could design only 11 probes against the sema7aGPI transcript and only one probe against the sema7asec transcript (personal correspondence with Mike Liu, PhD, Head of Operations and Product Development Lead Molecular Instruments, Inc.). The HCR probe against the sema7aGPI transcript showed a very faint signal. Unfortunately, the HCR probe against the sema7asec transcript failed to detect the presence of any transcript. For robust detection of transcripts, the protocol demands a minimum of 20 probes. We believe that the very low number of probes against our transcripts is the primary reason for the lack of a signal.

      (3) The authors should explain the criteria used to select the 22 embryos used to analyze the effects of expressing diffusible Sema7a.

      Comments: We have explained this in lines 291-292. We identified 22 mosaic sema7asecmKate2 integration events, in which a single mosaic ectopic integration had occurred near the network of sensory arbors, from a total of almost 100 integrations. We rejected events where the sema7asec-mKate2 integration occurred either farther away from the sensory arbor network or had happened in multiple neighboring cells.

      (4) Although arbors were imaged in live embryos, time is never presented as a variable, so I cannot tell whether axon topology was changing as the images were collected. This needs to be clarified.

      Comments: We imaged the trunk neuromasts of both control and sema7a-/- mutant live zebrsfish larvae at 2, 3, and 4 dpf. We imaged the control and the sema7a-/- mutants of each developmental stage in parallel, within a span of two hours, and repeated these experiments multiple times to gather almost a hundred larvae from each genotype. Even though the sensory arbor network is dynamic, we believe imaging both the genotypes in parallel and within a span of two hours, and averaging almost a hundred larvae from each genotype minimize the temporal variability observed in the arbor architecture.

      (5) Ideally, the authors should use CRISPR/cas-9 to create a mutation in the C-terminus that would prevent production of the GPI-anchored form and not of the diffusible form. I understand if this is too much work to do in a short time, and would be satisfied with another experiment that could distinguish roles for at least one isoform more clearly. For instance, it would be interesting to see an analysis of how far an axon can be from a source to detect diffusible Sema7a (live imaging would be ideal for this) and then to show that the effect is different when the membrane bound form is expressed.

      Comments: Thank you for this comment. We are currently working in generating transcript specific knockout animals.

      We have added live timelapse video microscopy data in lines 330-337, Figure 4H-J, Figure 4—figure supplement 2, Video15,16.

      We have added a new segment analyzing the membrane-bound transcript variant in lines 338-351.

      Reviewer #4 (Recommendations For The Authors):

      Feedback to authors

      Overall, this is a very important and novel study. Currently the manuscript does need revision.

      Major concerns:

      (1) Controls. For the ectoptic expression of Sema7a, injection of a construct expressing Sema7a under a heatshock promoter is used to drive ectopic expression. No heatshock (injected) animal are used as a control. In many systems heatshock can impact neuron morphology. And heatshock proteins are required for normal neurite and synapse formation. Please examine sensory axons in uninjected wildtype animals with heatshock.

      Comments: We have added this control experiment in a new segment, explained in detail in lines 348-350 and Figure 5.

      (2) Synapse staining - regarding Figure 5 and related supplement

      Understanding whether guidance defects ultimately impact synapse formation is an important aspect of this paper. Therefore, is necessary to have accurate measurements of the number of complete synapses, and the overall numbers of pre- and postsynaptic components. Currently the data plotted in Figure 5 is extensive, but the way the data is laid out, the relevant comparisons are challenging to make. Perhaps include this quantification in the supplement, and move the data from the supplement to the main figure? The quantifications in the supplement are easier to follow and easier to compare between genotypes.

      Comments: We have performed exhaustive analysis on the formation of pre- and postsynaptic structures and have identified how their distribution changes along neuromast development in control larvae. We have further analyzed how such distribution is perturbed in the sema7a-/- mutants. We believe that showing only the average numbers will not reveal the changes in the distribution of the synaptic structures during development and across genotypes.

      Looking at the data itself, there seems to be some discrepancies with the synaptic counts compared to published work. While the CTBP numbers seem in order, the Maguk numbers do not. In both mutant and control there are many hair cells without any Maguk puncta/aggregates-leading to 0.75-1 postsynapses per hair cell (Figure 5 supplement H-I). Typically, the numbers should be more comparable to what was obtained for CTBP, 3-4 puncta per cells (Figure 5 supplement B-C), especially by 3-4 dpf. 3-4 CTPB or Maguk puncta per cell is based on previously published immunostaining and EM work.

      The Maguk immunostaining, especially at early stages (2-3 dpf) is challenging. To compound a challenging immunostain, around 2019 Neuromab began to outsource the purification of their Maguk antibody. After this outsourcing our lab was no longer able to get reliable label with the Maguk antibody from Neuromab.

      Millipore sells the same monoclonal antibody and it works well: https://www.emdmillipore.com/US/en/product/Anti-pan-MAGUK-Antibody-clone-K2886,MM_NF-MABN72

      I would recommend this source.

      Comments: Thank you for suggesting the new MAGUK antibody. We have utilized this new MAGUK antibody from Millipore and added a new segment in lines 389-408. In future publication we will utilize this antibody to capture the postsynaptic densities in the sensory arbors.

      The discrepancies in the postsynaptic punctae number in our control larvae may arise due to the reliability of the Neuromab MAGUK antibody. We have utilized this same antibody to stain the sema7a-/- mutants and have observed a significant decrease in MAGUK punctae number and area. On grounds of keeping parity between the control and the sema7a-/- mutants, we have decided to keep our experimental results in the manuscript.

      In addition to a more accurate Maguk label, a combined pre- and post-synaptic label is essential to understand whether synapses pair properly in the sema7a mutants. This can be accomplished using subtype specific antibodies using goat anti-mouse IgG1/Maguk and goat anti-mouse IgG2a/CTBP secondaries.

      Comments: Thank you for suggesting this. We are preparing another manuscript in which we will utilize this technique along with other suggestions to tease apart the role of distinct transcript variants in regulating neural guidance and synapse formation.

      (3) Does sema7a lesion impact the number of hair cells per neuromast? If hair cell numbers are reduced several of the quantifications could be impacted.

      Comments: We have added the raw data with the hair cell counts in both control and sema7a-/- mutants across developmental stages. The homozygous sema7a-/- mutants have slightly less hair cells and we have normalized all our topological analyses by the corresponding hair cell numbers for each neuromast in each experiment (lines 669-675).

      (4) Could innervation just be developmentally delayed in sema7a mutants? At 4 dpf the sensory system is just starting to come online and could still be in the process of refinement. Did you look at slightly older ages, after the sensory system is functional behaviorally, for example, 6 dpf? Do the cores phenotypes (synapse defects and excess arbors) persist at 6 dpf in the sema7a mutants?

      Comments: The homozygous sema7a-/- mutants are unviable and start to die at 6 dpf. We therefore restricted our analysis until 4 dpf. The association of the sensory arbors with the clustered hair cells gradually decreases as the neuromasts mature from 2 dpf to 4dpf in the sema7a-/- mutants (lines 174-176, Figure 2I). Moreover, in the sema7a-/- mutants the sensory axons throw long projections that keep getting farther away from the clustered hair cells as the neuromast matures from 2 dpf to 4 dpf (lines 166-168, Figure 2H; Figure 2—figure supplement 1K,L). These observations suggests that if the phenotypes in the sema7a-/- mutants were due to developmental delays, then we should have seen a recovery of disrupted arborization patterns over time. But instead, we observe a further deterioration of the arborization patterns and other architectural assemblies. These findings confirm that the observed phenotypes in the sema7a-/- mutants are not due to delayed development of the larvae, but a specific outcome for the loss of Sema7A protein.

      Minor comments to address:

      Results

      Page 4 lines 89-91. For the readers, explain why you examined levels in Sema7a in rostral and caudal hair cells. Also, this sentence is, in general, a little bit misleading-initially reading that there is no difference in Sema7a at 1.5-4 dpf.

      Comments: In lines 44-48, we explain that the hair cells in the neuromast contain mechanoreceptive hair cells of opposing polarities that help them detect water currents from opposing directions. In lines 93-106, we tested whether the Sema7A level varies between the two polarities. We observed that the Sema7A level is similar between the two polarities of hair cells, but the average Sema7A intensity increases significantly over the developmental period of 2 dpf to 4 dpf in both rostrally and caudally polarized hair cells.

      Page 10-11 Lines 263-270. What was the frequency of these 2 outcomes- out of the 22 cases with ectopic expression?

      Comments: We have explained this in lines 291-292. We identified 22 mosaic sema7asecmKate2 integration events, in which a single mosaic ectopic integration had occurred near the network of sensory arbors, from a total of almost 100 integrations. We rejected events where the sema7asec-mKate2 integration occurred either farther away from the sensory arbor network or had happened in multiple neighboring cells.

      Discussion

      Page 14 Lines 359-360. There is not enough evidence provided in this work to suggest that the membrane attached form of Sema7a is playing a role. Both the secreted and membrane form are gone in the sema7a mutants. If the membrane attached form was specifically lesioned, and resulted in a phenotype, then there would be sufficient evidence. Currently there is strong evidence for a distinct role for the secreted form. Although the authors qualify the outlined statement with the word 'likely', stating this possibility in the discussion take-home is misleading.

      Comments: In future we will utilize the CRISPR/Cas9 technique to target the unique Cterminal domain of the GPI-anchored sema7a transcript variant. We believe that this will only perturb the formation of the full-length Sema7A protein and help us differentiate between the roles of the membrane-bound Sema7AGPI molecule and the secreted Sema7Asec in sensory arborization and synaptic assembly.

      It might be interesting in either the intro or discussion to reference the role Sema3F in axon guidance in the mouse auditory epithelium. https://elifesciences.org/articles/07830

      Comments: We have added this reference in lines 61-64.

      Figures

      Please indicate on one of your Figures where the mutation is (roughly) in the sema7a mutant (in addition to stating it in the results).

      Comments: We have added this information in Figure 2—figure supplement 1A.

      Either state or indicate in a Figure where the epitope used to make the Sema7a antibody-to show that the antibody is predicted to recognize both isoforms.

      Comments: We have stated the details of the epitope in lines 528-529.

      Figure 2-S1 what is the scale in panel A, is it different between mutant and wildtype?

      Comments: We have updated the images. New images are depicted in Figure 2—figure supplement 1A.

      Methods

      What were the methods used to quantify synapse number and area?

      Comments: We have added a new section in lines 702-708 to explain the measurement techniques.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reply to comments:

      (1) It was not clear why the phylogenetic analysis included non-validated GPCRs that clustered with the validated peptidergic receptors. Would restricting the phylogenetic analyses only to confirmed peptidergic GPCRs alter the topology of the tree and subsequent conclusions of independent expansion?

      Thank you for this comment. In general, phylogenetic analyses become more robust if a larger diversity and fuller complement of sequences are included. With very sparse sampling, sequences that are homologous but not orthologous may be misleadingly grouped together, because intermediate sequences have been left out. For tree building, we thus did not want to focus only on experimentally validated receptors but also on all receptors that are phylogenetically related to the validated receptors. Only this approach can ensure a comprehensive exploration of the relationship of peptidergic receptors. The broader phylogenetic approach was also essential to identify orthologs to the experimentally validated Nematostella receptors across other cnidarian species.

      (2) Clearly, other neuropeptide signaling systems in cnidarians remain to be discovered but this paper represents a huge step forward.

      We appreciate this assessment of the paper. We agree that many systems remain to be discovered. Our paper will also help with the identification of further receptors both in Nematostella as well as other cnidarian species. Please note that we have made specific receptor-ligand predictions for several cnidarian species based on our phylogenetic analysis. Our phylogenies could also help prioritize the study of the remaining orphan Nematostella GPCRs.

      (3) There are limitations in what can be interpreted from single cell transcriptomic data but the data nevertheless provide the foundations for future studies involving i). detailed anatomical analysis of neuropeptide and neuropeptide receptor expression in N. vectensis using mRNA in situ hybridization and/or immunohistochemical methods and ii). functional analysis of the physiological/behavioral roles of neuropeptide signaling systems in N. vectensis

      We fully agree with this comment. The analysis of the available single-cell sequence resources clearly represents only the first step of anatomical and functional analyses. Our aim was to place the identified peptide-receptor interactions into a whole-organism context with cell type resolution, to highlight the potential complexity of peptidergic signaling in this organism and to facilitate the exploration and conceptualisation of our biochemical screen.

      Comments to authors

      (1) In future, when preparing manuscripts, please use page and line numbers; it makes the task below for reviewers much easier!

      We appreciate the suggestion and will do this for future manuscripts.

      (2) In the abstract the term "extensively wired" is used. In the context of neuropeptide mediated volume transmission this may not be an appropriate term to use because use of the word "wired" is likely to be associated with point-to-point type classical synaptic transmission; "extensively connected" would be better.

      Thank you for this comment. We have changed the text in the abstract to “extensively connected”.

      (3) Introduction: Please change "seven-transmembrane proteins and show a slower evolutionary rate than proneuropeptide..." to "seven-transmembrane proteins that show a slower evolutionary rate than proneuropeptide..."

      Changed.

      (4) Under the section "Creation of a Nematostella neuropeptide library, what is meant by "our regular expressions"? This needs to be rephrased to make it clearer what is meant.

      We have now rephrased the relevant sentence to make our approach clearer.

      “This predicted secretome was filtered with regular expressions to detect sequences with the repetitive dibasic cleavage sites (K and R in any combination) and amidation sites, using a custom script from a previous publication (Thiel et al., 2021).”

      and later:

      “Based on the MS data, we included the additional, non-dibasic N-terminal cleavage sites into our script that uses regular expressions to search for repetitive cleavage sites (Thiel et al., 2024) and re-screened the predicted secretome.”

      (5) Under the section "Creation of a Nematostella neuropeptide library" the phrase "differ in the length of their N-terminus" needs to be changed to "differ in the length of their N-terminal region". The N-terminus is, as its name implies, one end of the peptide/protein so it can't have a length as such.

      Changed.

      (6) Under the section "Analysis of metazoan class A GPCRs and selection of N. vectensis neuropeptide-receptor candidates",

      Change:

      "For a more detailed analysis, we then reduced our sampled species to the cnidarian, the bilaterian with experimentally confirmed GPCRs and Petromyzon marinus, and the two placozoan species (Figure 2B)."

      To

      "For a more detailed analysis, we then reduced our sampled species to cnidarians, bilaterians with experimentally confirmed GPCRs and Petromyzon marinus, and two placozoan species (Figure 2B)."

      Changed.

      (7) Under the section "Analysis of metazoan class A GPCRs and selection of N. vectensis neuropeptide-receptor candidates" - change "We re-run" to "We re-ran"

      Changed.

      (8) Throughout the paper reference is made to a variety of neuropeptides that have or are predicted to have an N-terminal pyroglutmate. However, these are referred to without indicating this post-translational modification e.g. QGRFamide.

      This should be corrected throughout the paper, in the text, and figures. Two abbreviations for pyroglutamate are used in the literature:

      pQ, which shows that the encoded amino acid is Q (Glutamine)

      pE, which shows that the post-translationally modified amino-acid is glutamate (E)

      In the neuropeptide field, pQ seems to be more widely used than pE, so our recommendation would be to use pQ.

      In the revised version we now write pyroQ whenever we refer to the actual peptide. We now only use the peptide name without indicating this modification when we refer to the precursor of these peptides.

      (9) The title for Figure 5 is rather short and vague. A title like "Tissue-specific expression of neuropeptide precursors and receptors in Nematostella" seems more appropriate

      We appreciate the reviewer's input, and we have made the change accordingly. The revised figure legend now reads: “Tissue-specific expression of neuropeptide precursors and receptors (GPCRs) in N. vectensis.”

      (10) All of the figures in the paper have been saved in bitmap format (e.g. tiff), which means that the resolution of the figures may end up being poor in the published article. All of the figures in this paper should be saved in vector format (e.g. eps) so that there is no loss of resolution when the size of the file/figure is reduced.

      We have now uploaded all figures in vector format (.eps or .pdf) to prevent any loss of resolution.

      (11) In Figure 3 - supplement 2 - the neuropeptides are referred to here as PRGamides and GPRGamides. Some consistency is needed here. And in Figure B, the G of one of the GPRGamides is not shown in black.

      Thank you for spotting this mistake. We now give the correct peptide sequence in parenthesis as "GPRGamide". We also highlighted the missing GPRGamide in the figure.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript by Chen et al. entitled, "The retina uncouples glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle", the authors look to provide insight on retinal metabolism and substrate utilization by using a murine explant model with various pharmacological treatments in conjunction with metabolomics. The authors conclude that photoreceptors, a specific cell within the explant, which also includes retinal pigment epithelium (RPE) and many other types of cells, are able to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: 1) the mini-Krebs-cycle, fueled by glutamine and branched-chain amino acids; 2) the alanine-generating Cahill-cycle; and 3) the lactate-releasing Cori-cycle. While intriguing if determined to be true, these cell-specific conclusions are called into question due to the ex vivo experimental setup with the inclusion of RPE, the fact that the treatments were not cell-specific nor targeted at an enzyme specific to a certain cell within the retina, and no stable isotope tracing nor mitochondrial function assays were performed. Hence, without significant cell-specific methods and future experimentation, the primary claims are not supported.

      Strengths:

      This study attempts to improve on the issues that have limited the results obtained from previous ex vivo retinal explant studies by culturing in the presence of the RPE, which is a major player in the outer retinal metabolic microenvironment. Additionally, the study utilizes multiple pharmacologic methods to define retinal metabolism and substrate utilization.

      Weaknesses:

      A major weakness of this study is the lack of in vivo supporting data. Explant cultures remove the retina from its dual blood supply. Typically, retinal explant cultures are done without RPE. However, the authors included RPE in the majority of experimental conditions herein. However, it is unclear if the metabolomics samples included the RPE or not. The inclusion of the RPE, which is metabolically active and can be altered by the treatments investigated herein, further confounds the claims made regarding the neuroretina. Considering the pharmacologic treatments utilized with the explant cultures are not cell-specific and/or have significant off-target effects, it is difficult to ascertain that the metabolic changes are secondary to the effects on photoreceptors alone, which the authors claim. Additionally, the explants are taken at a very early age when photoreceptors are known to still be maturing. No mention or data is presented on how these metabolic changes are altered in retinal explants after photoreceptors have fully matured. Likewise, significant assumptions are made based on a single metabolomics experiment with no stable isotope tracing to support the pathways suggested. While the authors use immunofluorescence to support their claims at multiple points, demonstrating the presence of certain enzymes in the photoreceptors, many of these enzymes are present throughout the retina and likely the RPE. Finally, the claims presented here are in direction contradiction to recent in vivo studies that used cell-specific methods when examining retinal metabolism. No discussion of this difference in results is attempted. Response: We agree with the reviewer that in vivo studies could be very interesting indeed. However, technologically it will be extremely difficult to (repeatedly/continuously) sample the retina of an experimental animal and to combine this with an interventional study, with a subsequent metabolomic analysis. We do not currently have access to such technology nor are we aware of any other lab in the world capable of doing such studies. Moreover, virtually all prior studies on retinal metabolism have been done on explanted retina without RPE. This includes the seminal studies by Otto Warburg in the 1920s. As opposed to this, our retinal samples for also all the metabolomic analyses included the RPE, except for the no RPE condition that was used as a comparator for the earlier investigations.

      We note that our metabolomic analysis was done for all five experimental conditions where each condition included at least five independent samples (each derived from different animals).

      The reviewer is correct to say that our organotypic explant cultures are early post-natal, with explantation performed at post-natal day 9 and culturing until day 15. Since our retinal explant system has been validated extremely well over more than three decades of pertinent research (see for instance: Caffe et al., Curr Eye Res. 8:1083-92, 1989), we are confident that photoreceptors mature in vitro in ways that are very similar to the in vivo situation. As far as studies in adult retina (i.e. three months or older) are concerned, this is indeed an important question that will be addressed in future studies. Studies employing stable isotope labelling may also be very informative and are planned for the future, also in order to properly determine fluxes. This will likely require an extension to our NMR hardware with an 15N channel probe, something that we plan on implementing in the future.

      We are aware that a number of questions relating to retinal metabolism are controversial and that the use of other methodology or experimental systems may lead to alternative interpretations. We have now included citations of other studies that use, for example, conditional and/or inducible knock-outs or in vivo blood sampling (e.g. Wang et al., IOVS 38:48-55, 1997; Yu et al., Invest Ophthalmol Vis Sci. 46:4728-33, 2005; Swarup et al., Am J Physiol Cell Physiol. 316:C121-C133, 2019; Daniele et al., FASEB Journal 36:e22428, 2022) and discuss the pros and cons of such approaches (e.g. in Lines 376-384; 454-472).

      Reviewer #2 (Public Review):

      Summary:

      The authors aim to learn about retinal cell-specific metabolic pathways, which could substantially improve the way retinal diseases are understood and treated. They culture ex vivo mouse retinas for 6 days with 2 - 4 days of various drug treatments targeting different metabolic pathways or by removing the RPE/choroid tissue from the neural retina. They then look at photoreceptor survival, stain for various metabolic enzymes, and quantify a broad panel of metabolites. While this is an important question to address, the results are not sufficient to support the conclusions.

      Strengths:

      The questions the authors are exploring at extremely valuable and I commend the authors and working to learn more about retina metabolism. The different sensitivity of the cones to various drugs is interesting and may suggest key differences between rods and cones. The authors also provide a thoughtful discussion of various metabolic pathways in the context of previous publications.

      Weaknesses:

      As the authors point out, ex vivo culture models allow for control over multiple aspects of the environment (such as drug delivery) not available in vivo. Ex vivo cultures can provide good hints as to what pathways are available between interacting tissues. However, there are many limitations to ex vivo cultures, including shifting to a very artificial culture media condition that is extremely different than the native environment of the retina. It is well appreciated that cells have flexible metabolism and will adapt to the conditions provided. Therefore, observations of metabolic responses obtained under culture conditions need to be interpreted with caution, they indicate what the tissue is doing under those specific conditions (which include cells adapting and dying).

      Chen et al use pharmacological interventions to the impact of various metabolic pathways on photoreceptor survival and "long term" metabolic changes. The dose and timing of these drug treatments are not examined though. It is also hard to know how these drugs penetrate the tissue and it needs to be validated that the intended targets are being accurately hit. These relatively long-term treatments should be causing numerous downstream changes to metabolism, cell function, and survival, which makes looking at a snapshot of metabolite levels hard to interpret. It would be more valuable to look at multiple time points after drug treatment, especially easy time points (closer to 1 hr). The authors use metabolite ratios to make conclusions about pathway activity. It would be more valuable to directly measure pathway activity by looking a metabolite production rates in the media and/or with metabolic tracers again in time scales closer to minutes and hours instead of days.

      It is not clear from the text if the ex vivo samples with RPE/choroid intact are analyzed for metabolomics with the RPE/choroid still intact or if this is removed. If it is not removed, the comparison to the retina without RPE/choroid needs to be re-interpreted for the contribution of metabolites from the added tissue. The composition of the tissue is different and cannot be disentangled from the changes to the neural retina specifically.

      While the data is interesting and may give insights into some rod and cone-specific metabolic susceptibility, more work is needed to validate these conclusions. Given the limitations of the model the authors have over-interpreted their findings and the conclusions are not supported by the results. They need to either dramatically limit the scope of their conclusions or validate these hypotheses with additional models and tools.

      Response: We thank the reviewer for the insightful comments and agree that some of our interpretations may have been phrased too determinedly. We have therefore rephrased and toned down our conclusions in many instances in the text, and changed the manuscript title to now read “Retinal metabolism: Evidence for uncoupling of glycolysis and oxidative phosphorylation via Cori-, Cahill-, and mini-Krebs-cycle”.

      Nevertheless, when considering the major known metabolic pathways and their possible impact on metabolite patterns after the experimental manipulations used here, we believe our interpretations to be consistent with the data obtained. Conversely, the previously suggested retinal aerobic glycolysis cannot explain most of the data we have obtained. Even further, also a predominant use of the classical “full” Krebs-cycle/OXPHOS would not explain the metabolite patterns found (e.g. alanine, N-acetylaspartate (NAA)). While this does not in itself mean that our interpretations are all correct, they seem plausible in view of the data at hand and will hopefully stimulate further research on retinal energy metabolism using complementary technologies that were not available to us for the purpose of this study.

      We comment that our organotypic retinal explant cultures, while they do contain their very own, native RPE, do not comprise the choroidal vasculature (in our explantation procedure the RPE readily detaches from the choroid).

      As far as the drugs used on retinal explants are concerned, we note that:

      (1) all three compounds used are extremely well validated, with literally thousands of studies and decades of research to their credit (i.e., 1,9-dideoxyforskolin: >270 publications since 1984; Shikonin: >1000 publications since 1977; FCCP: >2800 publications since 1967),

      (2) all experimental conditions show clear and differential drug effects, as shown, for instance, by the principal component analysis in Figure1I and the cluster analysis in Figure2A,

      (3) the response patterns observed for key metabolites match the anticipated drug effects (e.g. decreased glucose consumption with 1,9-dideoxyforskolin; decreased lactate levels with Shikonin; lactate accumulation with FCCP).

      One can therefore be reasonably certain that these drugs did penetrate the explanted retina and that their respective drug targets were hit. Assessing dose-responses would certainly be interesting, however, the aim of this initial study was not pharmacodynamics but a general manipulation of energy metabolism. Moreover, given the extensive validation of these drugs, off-target effects seem not very likely at the concentrations used.

      We agree with the reviewer that using a longitudinal, time-series type of analysis could give additional insights. We note that each additional time-point will require retinae from 25 animals and a very resource-intensive and time-consuming metabolomic analysis, together with a significantly more complex multivariate analysis (metabolite, experimental condition, time). This is a completely new undertaking that is simply not feasible as an extension of the present study.

      To look at pathway activity in more direct ways is very good idea, to this end we aim to implement in the future an idea put forward by the reviewers, namely 13C-labeling and additionally 15N-labeling and tracing for specific metabolic fuels (e.g. glucose, lactate and anaplerotic amino acids such as glutamate and branched chain amino acids).

      The reviewer is of course correct to say that the culture condition is somewhat artificial and that this may have introduced changes in the metabolism. However, as noted above in the first response to reviewer #1, the organotypic retinal culture system, using a defined medium, free of serum and antibiotics, has been extremely well studied and validated for decades (cf. Caffé et al., Curr Eye Res. 8:1083-92, 1989). Importantly, this system allows to maintain retinal viability, histotypic organization, and function over many weeks in culture. Moreover, most previous studies on retinal metabolism have also used explanted retina – acute or cultured – i.e. experimental approaches that are similar to what we have used and that may be liable to their own artefactual changes in metabolism. This includes the seminal, 1920s studies by Otto Warburg, or the 1980s studies by Barry Winkler, the results of which the reviewers do not seem to doubt.

      We further agree that studying retinal metabolism in a situation closer to in vivo conditions would be thrilling, however to our knowledge to date there is no retina model that fully mimics the complex interplay of the blood metabolome with metabolic tissue activity. This likely means that for each metabolic condition to study (e.g. hyperglycemia, cachexia, etc.), a fairly large number of animals will need to be sacrificed for the molecular investigation of ex vivo retinal biopsies, which would mean a tremendous animal burden.

      We hope the reviewer will appreciate that the revised manuscript now includes numerous improvements, along with new, additional datasets and figures, references to further relevant literature, and – as mentioned above – a more cautious phrasing of our interpretations and conclusions, including a more careful wording for the manuscript title.

      Reviewer #3 (Public Review):

      Summary:

      The neural retina is one of the most energetically active tissues in the body and research into retinal metabolism has a rich history. Prevailing dogma in the field is that the photoreceptors of the neural retina (rods and cones) are heavily reliant on glycolysis, and as oxygen tension at the level of photoreceptors is very low, these specialized sensory neurons carry out aerobic glycolysis, akin to the Warburg effect in cancer cells. It has been found that this unique metabolism changes in many retinal diseases, and targeting retinal metabolism may be a viable treatment strategy. The neural retina is composed of 11 different cell types, and many research groups over the past century have contributed to our current understanding of cell-specific metabolism of retinal cells. More recently, it has been shown in mouse models and co-culture of the mouse neural retina with human RPE cultures that photoreceptors are reliant on the underlying retinal pigment epithelium for supplying nutrients. Chen and colleagues add to this body of work by studying an ex vivo culture of the developing mouse retina that maintained contact with the retinal pigment epithelium. They exposed such ex vivo cultures to small molecule inhibitors of specific metabolic pathways, performing targeted metabolomics on the tissue and staining the tissue with key metabolic enzymes to lay the groundwork for what metabolic pathways may be active in particular cell types of the retina. The authors conclude that rod and cone photoreceptors are reliant on different metabolic pathways to maintain their cell viability - in particular, that rods rely on oxidative phosphorylation and cones rely on glycolysis. Further, their data support multiple mechanisms whereby glycolysis may occur simultaneously with anapleurosis to provide abundant energy to photoreceptors. The data from metabolomics revealed several novel findings in retinal metabolism, including the use of glutamine to fuel the mini-Krebs cycle, the utilization of the Cahill cycle in photoreceptors, and a taurine/hypotaurine shuttle between the underlying retinal pigment epithelium and photoreceptors to transfer reducing equivalents from the RPE to photoreceptors. In addition, this study provides robust quantitative metabolomics datasets that can be compared across experiments and groups. The use of this platform will allow for rapid testing of novel hypotheses regarding the metabolic ecosystem in the neural retina.

      Strengths:

      The data on differences in the susceptibility of rods and cones to mitochondrial dysfunction versus glycolysis provides novel hypothesis-generating conjectures that can be tested in animal models. The multiple mechanisms that allow anapleurosis and glycolysis to run side-by-side add significant novelty to the field of retinal metabolism, setting the stage for further testing of these hypotheses as well.

      Weaknesses:

      Almost all of the conclusions from the paper are preliminary, based on data showing enzymes necessary for a metabolic process are present and the metabolites for that process are also present. However, to truly prove whether these processes are happening, C13 labeling or knock-out or over-expression experiments are necessary. Further, while there is good data that RPE cultures in vitro strongly recapitulate RPE phenotypes in vivo, ex vivo neural retina cultures undergo rapid death. Thus, conclusions about metabolism from explants should either be well correlated with existing literature or lead to targeted in vivo studies. This paper currently lacks both.

      Response: As mentioned above in the first answers to reviewers #1 and #2, we think of our study as a starting point that may provide novel directions for a whole series of investigations into retinal energy metabolism. Especially the use of novel technologies may in the future allow to decipher the different metabolic phenotypes of the 100+ distinct retinal cell types by in situ spatial metabolomics and lipidomics. Currently, we still have to limit the scope of our studies to only certain aspects of this topic. We thus agree that some of our interpretations need to be formulated more carefully and we have done so in the revised version of our manuscript. We also agree with the reviewer that carbon (13C) labelling and tracing studies will be very informative and will engage in such studies in the future. Besides 13C, we aim to further employ 15N labelled substrates, which is especially suitable to study the destiny of amino acids.

      As far as our organotypic retinal explant system is concerned, it is arguably one of the best validated such systems available (see responses to reviewers #1 and #2). While the reviewer is correct to say that the neuroretina without RPE degenerates relatively quickly in vitro, in our system, with the neuroretina and its native RPE cultured together, we can routinely culture the retina for four weeks or more, without major cell loss (Söderpalm et al., IOVS 35:3910-21, 1994; Belhadj et al., JoVE 165, 2020). Thus, our retinal cultures with RPE do not undergo rapid death. Within the time-frame of the present study (6 days in vitro) culturing-induced cell death is minimal and unlikely to influence our analyses. For further, more detailed answers to the reviewers’ questions please see our detailed point-to-point response below.

      We agree with the reviewer that eventually in vivo studies will be important to confirm our interpretations. As mentioned in our initial response to reviewer #1, such studies will be very challenging and new technologies may need to be developed before in vivo investigations can deliver the answers to the questions at hand (see answer to question Rev#3.17 below), especially if the cross-play between substrate availability from the blood metabolome and the retinal metabolic pathway activity shall be studied.

      Recommendations For The Authors

      Reviewer #1 (Recommendations For The Authors):

      Rev#1.1. The animals should be screened for and lack rd8.

      Response: This is a pertinent question from the reviewer. Ever since we first became aware of the presence of rd8 mutations in certain mouse lines from major vendors (e.g. Charles River, Jackson Labs) in around 2010, we have setup regular screening of all our mouse lines for this Crb1 mutation. Accordingly, the mouse lines used in this study were confirmed to be free of the rd8 / Crb1 mutation. A corresponding remark has now been inserted into the SI materials and methods section (Lines 37-38).

      Rev#1.2. GLUT1 looks significantly different from in vivo to in vitro. Recommend co-staining with RHO and cone markers (PNA or CAR) to further delineate where it is being expressed. The in vitro cultures appear to have much shorter outer segments (OS). Considering OS biosynthesis is thought to drive a good deal of metabolic adaptations, how relevant is the in vitro model system to what is truly occurring in vivo?

      Response: The GLUT1 staining shown in Figure 1 displays the in vivo situation. Since may not have been entirely clear from the previous figure legend, we have now labelled this as “in vivo retina” and distinguish it from “in vitro” samples in the legend to Figure 1 (Lines 774-778). As far as the comparison of GLUT1 staining in vivo (Figure 1A3) vs. in vitro (Figure S1C3) is concerned, in both situations a strong RPE labelling is clearly visible, with essentially no GLUT1 label within the neuroretina.

      Nevertheless, to better delineate the expression of GLUT1 in the outer retina, we have now performed an additional co-staining with rhodopsin (RHO) as rod marker and peanut agglutinin (PNA) as cone marker, as suggested by the reviewer (new supplemental Figure S1). In brief, this co-staining confirms the strong expression of GLUT1 in the RPE, while there is essentially no GLUT1 detectable in rod or cone photoreceptors.

      Retinal explants in long-term cultures do indeed have somewhat shorter outer segments compared to same age in vivo counterparts (Caffe et al., Curr Eye Res. 8:1083-1092, 1989). However, in the short-term cultures (6 DIV) and at the age studied here (P15) outer segments have only just started to grow out and are around 10 - 12 µm long, both in vitro and in vivo (cf. LaVail, JCB 58:650-661, 1978). Thus, the metabolism required for outer segment synthesis should be equivalent when in vitro and in vivo situations are compared. For considerations on outer segments in retinal explant cultures see also Rev#3.2 and Rev#3.29.

      Rev#1.3. Also, recent publications have shown that GLUT1 is expressed in the neuroretina including rods, cones, and muller glia. Was GLUT1 not appreciated in these cells in your ex vivo samples and if so, why? Likewise, these same studies previously demonstrated GLUT1 resulted in rod degeneration but not cone. The results presented here differ significantly. Why the difference in results and is it secondary to the in vitro vs. in vivo setting? Furthermore, the authors state that they thought the no RPE situation would be similar to the GLUT1 inhibitor experimental condition but instead, they were vastly different. Is this secondary to the fact that GLUT1 is expressed outside the RPE.

      Response: We are aware that there is a controversy regarding GLUT1 expression in the neuroretina, please see also our response to question Rev#3.1 below. As far as our immunostaining for GLUT1 on in vivo retina is concerned, we find an unambiguous and very marked expression of GLUT1 in RPE cells, at both basal and apical sides. Compared to the RPE, the neuroretina appears devoid of GLUT1 staining. However, at very high gamma values a faint staining in the neuroretina becomes visible, a staining which from its appearance – processes spanning the entire width of the retina – is most compatible with Müller glia cells. Under normal circumstances we would have dismissed such a faint staining as background and false positive. Given the sometimes very contradicting reports in the literature, we cannot fully exclude a weak expression of GLUT1 also in cells other than the RPE, with Müller glial cells perhaps being the most likely candidate. At any rate, GLUT1 expression in the neuroretina can only be much weaker than in the RPE, making its relevance for overall retinal metabolism unclear.

      As far as recent publications studying GLUT1 in the retina are concerned, we know of the study by Daniele et al. (FASEB Journal 36:e22428, 2022), which used a rod-specific, conditional knock-out of GLUT1 and found a relatively slow rod degeneration. We are not aware of a selective GLUT1 knock-out in cones, nor are we aware of conditional GLUT3 knock-outs in the retina. For further discussion of the Daniele et al. study please see Rev#3.13.

      The reviewer is right, initially we were thinking that, since GLUT1 was expressed only (predominantly) in RPE, the metabolic response to GLUT1 inhibition should look similar to the no RPE situation. However, this initial hypothesis did not consider a key fact: The RPE builds the blood retinal barrier and the tight-junction coupled RPE cells are a barrier to any larger molecule, including glucose. Removing the barrier by removing the RPE dramatically increases the availability of glucose to the retina, a phenomenon that is likely exacerbated by the expression of the high affinity/high capacity GLUT3 on photoreceptors (cf. Figure S1A). In other words, when the RPE is removed the outer retina is “flooded” with glucose and we believe that this is probably the main factor that explains why the metabolic response to GLUT1 inhibition (1,9-DDF group) is so different from the no RPE condition.

      We have now included an additional corresponding explanation in the discussion (Lines 422-429). Furthermore, we have added an entire new subchapter to the discussion to debate the expression of glucose transporters in the outer retina (Lines 454-472).

      Rev#1.4. Shikonin's mechanism of action via protein aggregation and lack of specificity for PKM2 vs PKM1 at 4uM is an experimental limitation that needs to be taken into account. All treatments utilized are not cell-specific.

      Response: While the reviewer is correct to say that Shikonin may have multiple cellular targets and a diverse range of possible applications as an anti-inflammatory, antimicrobial, or anticancer agent (cf. Guo et al., Pharmacol. Res. 149:104463, 2019), numerous studies support its specificity for PKM2 over PKM1, at concentrations ranging from 1 – 10 µM (Chen et al., Oncogene 30:4297-306, 2011; Zhao et al., Sci. Rep. 8:14517, 2018; Traxler et al., Cell Metab. 34:1248-1263, 2022). We settled for 4 μM as an intermediate concentration, considering its effectiveness and specificity in previous studies. We have now inserted references detailing the specificity and concentration range of Shikonin into the SI Materials and Methods section (Line 62).

      The concern that “all treatments” are not cell-specific is debatable. Certainly, any given compound may have off-target effects, yet, since the compounds we used in our study have all been studied for decades (see above, initial response to Reviewer #2), their off-target profile is well established and unlikely to play an important role here. Moreover, in our study the cell specificity does not come from the compounds used but from where their targets are expressed. As shown in Figure 1A and in Figure S1C, Shikonin´s target PKM2 is almost exclusively expressed in photoreceptor inner segments. Hence, it seems very reasonable to expect that the vast majority of the metabolomic changes observed by Shikonin treatment are related to photoreceptors. We note that this assertion would still be true even if there was a low-level expression of PKM2 in other retinal cell types and/or if Shikonin had moderate off-target effects on other enzymes since the bulk of the effect on the quantitative metabolomic dataset would still originate from PKM2 inhibition in photoreceptors.

      Rev#1.5. What was the method of cone counting in Figure 1?

      Response: Cones were counted per 100 µm of retinal circumference based on an arrestin-3 staining (cone arrestin, CAR).

      This information is now included in the SI Materials and Methods section under “Microscopy, cell counting, and statistical analysis” (Lines 99-100).

      Rev#1.6. How do you know that FCCP is not altering RPE ox phos, disrupting the outer retinal microenvironment and leading to cell death, and therefore, the effects seen are not photoreceptor-specific but rather downstream from the initial insult in RPE?

      Response: We propose that FCCP will be acting on both photoreceptors and RPE cells (and all other retinal cell types) at essentially the same time, over the experimental time-frame. Thus, OXPHOS should be inhibited in all cells simultaneously. However, FCCP will primarily affect cells that actually use OXPHOS to a large extent, while cells relying on other metabolic pathways (e.g. glycolysis) will hardly be affected.

      We believe the very strong effect of FCCP, seen exclusively in rod photoreceptors, to be a direct drug effect. While we cannot not fully exclude an indirect effect via the RPE – as proposed by the reviewer – we think this to be unlikely because:

      (1) RPE viability was not compromised by FCCP treatment.

      (2) If the reviewer´s hypothesis was correct, then also cone photoreceptors should have been affected (e.g. because now the RPE consumes all glucose, leaving nothing for cones). However, cones were essentially unaffected by the FCCP treatment, making a dependence on RPE OXPHOS unlikely. Especially so, because blocking GLUT1 and glucose import on the RPE with 1,9-DDF had only relatively minor effects on rod photoreceptor viability but strongly affected cones. This indicates that the RPE is mainly shuttling glucose through to photoreceptors, especially to cones, and this function does not seem to be impaired by FCCP treatment.

      (3) We found that enzymes required for Krebs-cycle and OXPHOS activity (i.e. citrate synthase, fumarase, ATP synthase γ) are predominantly expressed in photoreceptors but virtually absent from RPE (Figure 3D, see also answer to following question).

      (4) The density of mitochondria (i.e. the target for FCCP) is far lower in RPE than in photoreceptors, as evidenced also by the COX staining shown in Figure 1A. Hence, photoreceptors are far more likely to be hit by FCCP treatment than RPE cells.

      To accommodate the reviewer´s concern, we have now added a further comment into the discussion (Lines 440-442).

      Rev#1.7. While Figure 3D is interesting, it offers no significant insight into mechanisms as the enzyme levels are not being compared to control nor is mitochondrial fitness in these conditions being assessed, which would provide greater insight than just showing that these enzymes are present in the inner segments, which are known to be rich in mitochondria. Additionally, stating that the low ATP is secondary to decreased Krebs cycle activity and ox phos based on merely ATP levels is not supported by metabolite levels minus citrate nor ox phos enzyme levels or oxygen consumption. Also, citrate is purported to be decreased in the table in Figure 2 in the no RPE condition; however, Supplemental Figure 2 demonstrates this change is not significant then the same data is presented in Supplemental Figure 3 and it is statistically significant again. Why the difference in data and why is the same data being shown multiple times?

      Response: The immunostaining shown in Figure 3D shows the in vivo retina, or in other words the localization of enzymes in the native situation. Since this may not have been obvious in the previous manuscript version, we have added a corresponding comment to the legend of Figure 3 (Line 806). The localization of the Krebs-cycle/OXPHOS enzymes citrate synthase, fumarase, and ATP synthase mainly to photoreceptors, but not (or much less) to RPE, is another piece of evidence supporting the idea that OXPHOS is predominantly performed by photoreceptors (see also answer to previous question Rev#1.6).

      The decreased ATP levels (together with citrate, aspartate, NAA) shown in Figure 3 in the no RPE group, are an indication that photoreceptor Krebs-cycle activity may be decreased but not abolished in the absence of RPE. Importantly, GTP levels are not reduced in the no RPE group (Figure 2). Since large amounts of GTP can only by synthesized by either SUCLG-1 in the Krebs-cycle or by NDK-mediated exchange with ATP, the most plausible interpretation is that Krebs-cycle dependent ATP-synthesis was decreased in the no RPE situation, but that the (mini) Krebs-cycle or Cahill-cycle, notably the step from succinyl-CoA to succinate, was running. Since there is no RPE in this group, this strongly suggests important Krebs-cycle/OXPHOS activity in photoreceptors where the majority of the corresponding enzymes are located (see above).

      We thank the reviewer for pointing out that the information on group comparisons may not have been presented with sufficient clarity. In the figures mentioned by the reviewer the data is shown and compared in different contexts: the table in Figure 2B and the data in Figure S3 (now renumbered to Figure S5) refer to two-way comparisons of treatment condition to control, to elucidate individual treatment effects. Meanwhile Figure S2 (now supplementary Figure S3) refers to a 5-way comparison for a general overview that puts all five groups in context with each other. These differences in comparisons and normalization to the respective common standards entail the use of different statistical tools, resulting in different p-values. The statistical testing approaches and thresholds are now disclosed in the figure legends, and additionally in the SI Materials and Methods section (Lines 145-155).

      Rev#1.8. When were the ex vivo samples taken for metabolomics, and if taken when significant TUNEL staining and cell death have occurred, are the changes in metabolism due to cell death or a true indication of differential metabolism? Furthermore, it is unclear if the metabolomics samples included the RPE or not. Considering these treatments will affect most cells in the retina and the RPE, which is included in the ex vivo samples, it is difficult to ascertain that these changes are secondary to the effects on photoreceptors alone.

      Response: The samples for metabolomics included the RPE (except for the no RPE condition) and were taken at the same time as the tissues for histological preparations and TUNEL assays, i.e. they were all taken at post-natal day 15. This has now been clarified in the SI Materials and Methods section (Lines 108-110).

      We cannot entirely exclude an effect of ongoing cell death caused by the different drug treatments on the retinal metabolome. However, since in the experimental treatments cell death was still comparatively low (even in the FCCP condition, overall cell death was only around 10% of the total retina), and the metabolomic analysis considered the entire tissue, the impact of cell death per se on the total metabolome will be comparatively minor (≤ 10%, i.e. within the typical error margin of the metabolomic analysis).

      As mentioned above, the drug treatments should in principle affect all retinal cells at the same time. However, only cells that express the drug targets (i.e. 1,9-DDF targets GLUT1 in RPE cells, Shikonin targets PKM2 in photoreceptors; cf. Figure 1A) should react to the treatment. Even FCCP, in the paradigm employed, will only affect those cells that rely heavily on OXPHOS. Our data indicates that while this is almost certainly the case for rods; cones, RPE cells, and essentially all of the inner retina, are not affected by FCCP treatment, strongly suggesting that OXPHOS is of minor importance for these cell populations.

      Rev#1.9. Why were the FCCP and no RPE groups compared? If they have similar metabolite patterns as noted in Figure 2, would that suggest that FCCP's greatest effect is on the ox phos of RPE and the metabolite patterns are secondary to alterations in RPE metabolism? Also, the increase in citrate and decrease in NAD may be related to effects on RPE mitochondrial metabolism when comparing these groups, and the disruption of RPE metabolism may then result in PARP staining of photoreceptors.

      Response: The reason for the pair-wise comparison of the no RPE and FCCP groups initially was indeed the similarity in metabolite patterns. This was now rephrased accordingly in the results section “Photoreceptors use the Krebs-cycle to produce GTP” (Lines 218-219). The interpretation that the reviewer proposed here is interesting, but does not conform with the data analysis of this and other group comparisons.

      Instead, the similarity between the metabolic patterns found in the no RPE and FCCP groups further supports the idea that a lack of RPE decreases retinal OXPHOS and increases glycolysis. This interpretation is based on the following observations:

      (1) Mitochondrial density in the RPE is far lower than in photoreceptors (see COX staining in Figure 1A), thus quantitatively the metabolite pattern caused by a disruption of OXPHOS (via FCCP treatment) will be dominated by metabolites generated by photoreceptors. For the same reason the depletion of retinal NAD+, and the concomitant increase in photoreceptor PAR accumulation after FCCP treatment, is unlikely to be due to changes in RPE.

      (2) Similarly, citrate synthase (CS) was found to be almost exclusively expressed in photoreceptor inner segments, with little expression in RPE (Figure 3D). Hence, the quantitative increase of citrate levels after FCCP treatment can only originate in photoreceptors.

      (3) The comparison of the control (with RPE) against the no RPE group suggested an increase in (aerobic) glycolysis in the absence of RPE, evidenced notably by a retinal accumulation of lactate, BCAAs, and glutamate (Figure 3A). The very same metabolite pattern is seen for the FCCP treatment (Figure 1B) indicating a marked upregulation of glycolysis (Figure 6C). The latter observation suggests that photoreceptors, after disruption of OXPHOS switch to an exclusively glycolytic metabolism, which, however, rods cannot sustain (Figure 1C, D).

      (4) Glucose consumption and lactate release is increased in the no RPE group vs. control (new Supplementary Figure 4). A similar increase in glucose consumption and lactate production is seen in the FCCP group suggesting that also the no RPE situation disrupts OXPHOS in photoreceptors.

      Rev#1.10. The conclusions being reached are difficult to interpret secondary to the experimental procedures and the fact that the treatments are not cell-specific and RPE is included with the neuroretina as well. Likewise, stating FCCP is altering the Krebs cycle in the neuroretina is difficult to believe as there are no changes in the Krebs cycle when compared to the control, which also has RPE.

      Response: We agree with the reviewer, that some of the conclusions may have been somewhat speculative. Accordingly, we have toned down our conclusions in several instances in the text, notably in abstract, introduction, and discussion.

      When it comes to Krebs cycle intermediates a key limitation of our study is indeed the lack of carbon-tracing and metabolic flux analysis as noted by the reviewers, a limitation that we now highlight more strongly in the discussion of the revised manuscript (Lines 545-549). While it is highly probable that the flux of Krebs cycle intermediates is altered by FCCP, our steady-state data does not show significant changes in the metabolites citrate, fumarate, and succinate. However, our study does show a highly significant decrease in GTP levels, which as explained above, is a key indicator of Krebs cycle activity/inactivity. Moreover, while GTP levels were reduced also in the no RPE group, GTP was still significantly higher in the no RPE group compared to the FCCP treatment. Our interpretation of this finding is that there is Krebs-cycle/OXPHOS activity in the neuroretina, which is abolished by FCCP.

      Rev#1.11. Supplemental Figure 4C and D states that GAC inhibition affected only photoreceptors, but GAC is expressed throughout the retina and so the inhibition is altering glutamine-glutamate homeostasis throughout the retina. Clearly, based on histology, one can see that the architecture of the retina, especially at the highest dose, is lost likely because all cells are being affected. So it is not photoreceptor-specific and even at low doses one can see that the inner retina is edematous. Moreover, with such a high amount of TUNEL staining in the ONL, are rods more affected than cones?

      Response: In our hands the immunostaining for Glutaminase C (GAC) labelled predominantly cone inner segments, the OPL, and perhaps bipolar cells (Figure S1A). The deleterious effects mentioned by the reviewer are only seen at the highest concentration of the GAC inhibitor compound 968. This concentration (10 µM) is 100-fold higher than the dose that produces a significant loss of cones in the outer retina (0.1 µM). We therefore think that this data points to the extraordinary reliance of cones on glutamine and glutamate. As can be seen from the images (Figure S4C) illustrating the effects of 0.1 and 1 µM Compound 968 treatment, the ONL thickness is not significantly reduced by the GAC inhibitor. This strongly indicates that at these doses the rods are not affected by GAC inhibition.

      Rev#1.12. The no RPE vs 1,9 DDF data may be interpreted as preventing glucose transport in the RPE increases BCAA catabolism by the RPE, which has been shown to utilize BCAA in culture systems. To this end, when the RPE is not present, the BCAA is increased as compared to the control with RPE.

      Response: Our original interpretation of this data was that after GLUT1 inhibition and a correspondingly reduced retinal glucose uptake, the retina switched to an increasing use of anaplerotic substrates, including BCAAs. This is supported by the concomitant upregulation of the Cahill-cycle product alanine and the mini-Krebs-cycle product N-acetylaspartate (NAA). Yet, we agree with the reviewer that BCAAs could also be consumed by the RPE. We have now changed our conclusion at the end of the results chapter “Reduced retinal glucose uptake promotes anaplerotic metabolism“ to also highlight this possibility (Lines 261-262).

      Rev#1.13. It is unclear why so much effort is comparing the no RPE group to the treatment groups and not comparing the control group to the different treatment groups.

      Response: Previous studies – including the seminal studies of Otto Warburg from the early 1920s – had always used retina without RPE. This “no RPE” situation is therefore something of a reference for our entire study, which is why we dedicated more effort to its analysis. We have now inserted a corresponding remark into the manuscript (Lines 182-184).

      Rev#1.14. The conclusions are significantly overstated especially with regards to rods versus cones as these are not cell-specific treatments. For example, the control vs 1,9 DDF vs FCCP clearly shows that there is mitochondrial dysfunction due to decreased NAD, increased AMP/ATP ratio, decreased Asp but increased Gln, and a compensatory increase in lactate production.

      Response: We agree with the reviewer and have tried to phrase our statements in more measured fashion. Notably, we have toned down our statements in the title, abstract, results, discussion, and several of the subchapter headings.

      Rev#1.15. While metabolic conclusions are drawn on serine/lactate ratio, this ratio is driven by the drastic changes in lactate and not so much serine in the treatment conditions as it was rather stable. Likewise, substrates beyond glucose have the potential to fuel the TCA cycle and make GTP via SUCLG1, such as fatty acids, other AAs, etc. Therefore, this ratio may not tell the entire story about anaplerotic metabolism. Furthermore, knowing that RPE utilize BCAAs to fuel their TCA cycle, the no RPE condition may simply have increased BCAAs due to lack of metabolism by the RPE, which drives the GTP/BCAA ratio. To state that the neuroretina was utilizing BCAAs for anaplerosis is not well supported based on the current data. Similarly, what is to say that the GTP/lactate ratio in the no RPE situation is not driven by the fact that the RPE is no longer present to act as acceptor of retinal lactate production or that more glucose is reaching the retina since the RPE is not present to accept and utilize that produced. Glucose uptake was not assessed to further address these issues.

      Response: We agree with reviewer that metabolite ratios may not tell the full story underlying retinal metabolism however based on the robustness of using quantitative and highly reproducible NMR data, they are an important part of the metabolomics toolbox. The reviewer correctly observed that the changes in lactate levels are more dramatic than in serine. Still, also serine was significantly increased in the no RPE, 1,9-DDF, and Shikonin groups. Together with the lactate changes (same or opposite direction) the resulting serine/lactate ratios display marked alterations.

      When it comes to the supply of other potential energy substrates mentioned by the reviewer, i.e. fatty acids or amino acids other than BCAAs, these are only supplied in minimal amounts in the defined, serum free R16 medium (Romijn, Biology of the Cell, 63, 263-268, 1988) and – if used to any important extent – would be rapidly depleted by the retina. Thus, for a culture period of 2 days in vitro between medium changes these energy sources are not available and thus cannot be used by the retina.

      Our conclusion that the retina is using anaplerosis is based not only on the observations made in the no RPE group but also on, for instance, the metabolite ratios seen in the 1,9-DDF treatment group. In this group decreased glycolytic activity may correspond to increased serine synthesis and anaplerosis.

      As far as glucose uptake is concerned, we have analysed the medium samples at P15 (equivalent to the retina tissue collection time point) and now present data that addresses this question more directly via the consumption of glucose from and release of lactate to the culture medium (New Supplementary Figure 4C, D). This new dataset provides another independent observation showing that:

      (1) Glucose consumption/lactate release (i.e. aerobic glycolysis) is high in the no RPE situation but low in the control situation. In other words, retinal aerobic glycolysis is most likely stimulated by the absence of RPE.

      (2) 1,9-DDF treatment decreases glucose consumption/lactate release as would be expected from a GLUT1 blocker. Since ATP and GTP production are high nonetheless, this indicates that other substrates (i.e. anaplerosis) were used for retinal energy production, in agreement with the analysis shown in Figure 6C.

      (3) The FCCP treatment, which disrupts oxidative ATP-production, increases glucose consumption/lactate release in way similar to the no RPE situation. Yet, the no RPE retina can still generate sizeable amounts of GTP but not ATP. Together, this provides further evidence that neuroretinal OXPHOS is decreased in the absence of RPE.

      Rev#1.16. The evidence for the mini-Krebs cycle is intriguing but weak considering it is based on certain enzymes being expressed in the photoreceptors, which had already been shown to be present in other publications, and a single ratio of metabolites that is increased in FCCP. One would expect this ratio to be increased under FCCP regardless. There is no stable isotope tracing with certain fuels to confirm the existence of the mini-Krebs cycle.

      Response: We thank the reviewer for this suggestion. We agree that our evidence for the mini-Krebs-cycle (and the Cahill-cycle) may be to some extent circumstantial and additional technologies would help to obtain further supportive data. Still, here we would like to invite the reviewer to a thought experiment where he/she could try and interpret our data without considering the Cahill- or the mini-Krebs-cycle. At least we ourselves, when we engaged into such thought experiments, were unable to explain the data observed without these alternative energy-producing cycles. Most notably, we were unable to explain the strong accumulation of either alanine or N-acetyl-aspartate (NAA) when only considering glycolysis and (full) Krebs-cycle metabolism. Of course, this may still be considered “weak” evidence, and we expect that future studies including complementary technologies will either confirm or expand our interpretation of the existing data set.

      The suggestion to perform stable isotope-labelled tracing with potential alternative fuels (e.g. glutamate, glutamine, pyruvate, etc.) is very attractive indeed. While such studies are likely to shed further light on the metabolic pathways proposed, this will entail very extensive experimental work, with multiple different conditions and concentrations and variety of analysis methods that is currently not feasible (e.g. a 1.7 mm NMR probe equipped with a 15N channel) as an extension of the present manuscript. Nevertheless, we will certainly consider this approach for future follow-up studies once such techniques are available and will screen for suited collaboration partners. A corresponding comment on such future possibilities has now been inserted into the discussion (Lines 545-549).

      Rev#1.17. The discussion does not mention how this data contradicts a recent in vivo study looking at Glut1 knockout in the retina (Daniele et al. FASEB. 2022) or previous in vivo studies that suggest cones may be less sensitive to changes in glucose levels (Swarup et al. 2019). This is a key oversight.

      Response: We thank the reviewer for pointing this out. We now included these studies in the revised discussion in a new subchapter on the expression of glucose transporters in the outer retina (Lines 454-472). For a critical review of the Daniele et al., 2022 study please also see our more detailed response to question Rev#3.13 below.

      Rev#1.18. GAC is expressed in more than just cones so making cell-specific statements regarding fuel utilization is not well supported.

      Response: Our immunostaining for GAC revealed a strong expression in cone inner segments (Figure S1A3). While this does not exclude (relatively minor) expression in other retinal cell types, cones are likely to be more reliant on GAC activity than other cell types. See also answer above.

      Rev#1.19. Suggesting that rods utilize the mini-Krebs cycle based on AAT2 being seen in the inner segments without at least co-staining for RHO or PNA is weak evidence for such a cycle. AAT looks to be expressed in the inner segments of all photoreceptors.

      Response: We have taken up this suggestion from the reviewer and now provide an additional co-staining for AAT1 and AAT2 with rhodopsin. Note that in response to a pertinent comment from Reviewer #3 we have changed the abbreviation for aspartate aminotransferase from “AAT” to the more commonly used “AST” throughout the manuscript.

      New images showing a co-staining for AST1 and AST2 with rhodopsin now replace the former image set in Figure 7D. In brief, the new images show the expression of both AST1 and AST2 across the retina, with, notably an expression in the inner segments of photoreceptors but not in the outer segments, where rhodopsin is expressed.

      Reviewer #3 (Recommendations For The Authors):

      Rev#3.1. The staining for the glucose transporters GLUT1 and GLUT3 does not reflect what has previously been published by two different groups that were validated by cell-specific knockout mice. As mentioned by the author GLUT1 and GLUT3 have differences in transport kinetics, which would affect their metabolism. Therefore, the lack of GLUT1 in photoreceptors would suggest that photoreceptor metabolism is not faithfully replicated in this system. This difference from the previous literature should be discussed in the discussion.

      Response: As the reviewer pointed out, the expression of GLUT1 in the retina is somewhat controversial, with much older literature showing expression on the RPE, while some more recent studies claim GLUT1 expression in photoreceptors. For a brief discussion of our GLUT1 immunostaining please see also our answer to question Rev#1.3 above.

      Although the retinal expression of GLUT1 was besides the focus of our study, we feel we must address this point in more detail: In the brain the generally accepted setup for GLUT1 and GLUT3 expression is that low-affinity GLUT1 (Km = 6.9 mM) is expressed on glial cells, which contact blood vessels, while high-affinity GLUT3 (Km = 1.8 mM) is expressed on neurons (Burant & Bell, Biochemistry 31:10414-20, 1992; Koepsell, Pflügers Archiv 472, 1299–1343, 2020). This setup matches decreasing glucose concentration with increasing transporter affinity, for an efficient transport of glucose from blood vessels, to glial cells, to neurons. In the retina, the cells that contact the choroidal blood vessels are the tight-junction-coupled RPE cells. As shown by us and many others, RPE cells strongly express GLUT1 (cf. Figure 1A-3.). To warrant an efficient glucose transport from the RPE to photoreceptors, photoreceptors must express a glucose transporter with higher glucose affinity than GLUT1. We show that this is indeed the case with photoreceptors expressing GLUT3 (cf. Supplemental Figure 1-5.). While a part teleological explanation does not per se prove that our data is correct, at least our data is plausible. In contrast, the glucose transporter setup sometimes claimed in the literature is biochemically implausible, i.e. for the flow of metabolites (glucose) to go against a gradient of transporter affinities, and we are not aware of an example of such a setup occurring anywhere in nature.

      However, at this point we cannot exclude low levels of GLUT1 expression on Müller glia cells or even photoreceptors. This expression could, for instance, be relevant in cases where cells were shuttling excess glucose – perhaps produced through gluconeogenesis – onwards to other retinal cells. Still, GLUT1 expression can only be minor when compared to RPE since a major expression would destroy the glucose affinity gradient (see above) required for efficient glucose shuttling into the energy hungry photoreceptors.

      To address this request by the reviewer (and also reviewer #1) we now discuss the question of glucose transporter expression in the outer retina in a new subchapter of the discussion (Lines 454-472).

      Rev#3.2. Photoreceptor metabolism and aerobic glycolysis are tied to photoreceptor function, as demonstrated by Dr. Barry Winkler. The authors should provide data or mention (if previously published) about photoreceptor OS growth and function in this system.

      Response: The studies of Barry Winkler (e.g. Winkler, J Gen Physiol. 77, 667-692, 1981) confirmed the original work of Otto Warburg and expanded on the idea that the neuroretina was using aerobic glycolysis. Importantly, Winkler used a very similar experimental setup as Warburg has used, namely explanted rat retina without RPE. In light of our data where we compare metabolism of mouse retina with and without RPE – where retina cultured without RPE confirms the data of Warburg and Winkler – it appears most likely that the purported aerobic glycolysis occurs mostly in the absence of RPE but only to a lower extent in the native retina.

      Photoreceptor outer segment outgrowth is somewhat slower in the organotypic retinal explant cultures compared to the in vivo situation (cf. Caffe et al., Curr Eye Res. 8:1083-1092, 1989 with LaVail, JCB 58:650-661, 1978; see also answer to reviewer #1). Importantly, organotypic retinal explant cultures and their photoreceptors are fully functional and remain so for extended periods in culture (Haq et al., Bioengineering 10:725, 2023; Tolone et al., IJMS 24:15277, 2023). This information has now been added to the manuscript discussion section, into the new subchapter “The retina as an experimental system for studies into neuronal energy metabolism” (Lines 367-395).

      Rev#3.3. It is unclear from the description of the experiment in both the results and methods if 1,9DDF, Shikonin, and FCCP were added to both apical and basal media compartments or one or the other and should be specified. The details of what was on the apical compartment would be helpful, as the model is supposed to allow for only nutrients from the basal compartment (as indicated by the authors themselves). Is the apical compartment just exposed to air? How does this affect survival?

      Response: In organotypic retinal explant cultures the RPE rests on the permeable culturing membrane such that the basal side is contact with the membrane and the medium below (far schematic drawing see Figure S1B), while the apical side is covered by a thin film of medium created by the surface tension of water (Caffe et al., Curr Eye Res. 1989; Belhadj et al., JoVE, 2020). This thin liquid film ensures sufficient oxygenation and is an important factor that allows the retinal explant to remain viable for several weeks in culture. If the retinal cultures were submerged by the medium, their viability – especially that of the photoreceptors – would drop dramatically and would typically be below 3-5 days. Therefore, in the retinal organotypic explant cultures used here, the nutrients and the drugs applied do indeed reach the outer retina from the basal side, i.e. similar as they would in vivo.

      To address this question from the reviewer, corresponding clarifications have been inserted into the SI Materials and Methods section (Lines 64-66).

      Rev#3.4. As the metabolomic data obtained was quantitative, several metabolites discussed should be analyzed in terms of ratios, for example, Glutathione and glutathione disulfide should be reported as a ratio. In addition as ATP, ADP, and AMP were measured, they can used to calculate the energy charge of the tissue.

      Response: We thank the reviewer for these suggestions and have created corresponding graphs for GSH / GSSG ratio and energy charge. These new graphs have now been added to the SI datasets, to the new Supplementary Figure 4. To accommodate other requests from the Reviewers, this new Figure also contains additional new datasets on glucose and lactate concentrations (see further comments above and below). Please note that all later SI Figures have been renumbered accordingly.

      In brief, the ratios for GSH/GSSG show no significant changes between control and the different experimental groups. Meanwhile, the adenylate energy charge of the retinal tissues show a significant decrease in the energy charge for the Shikonin group and the FCCP group. Note that in the new Supplementary Figure 4A, the dotted lines indicate the energy charge window typical for most healthy cells (0.7 – 0.95).

      Rev#3.5. I think a missed opportunity when discussing the possible taurine/hypotaurine shuttle would be the impact on the osmosis of the subretinal space as taurine has been hypothesized as a major osmolyte.

      Response: This is another interesting recommendation from the reviewer. To address this point, we have now introduced a corresponding paragraph and references in the discussion of the manuscript (Lines 503-504; 512-514).

      Rev#3.6. In Figure 3, the distribution of these enzymes should also be studied under the no RPE condition as the culture treatment took several days for these metabolic changes to occur.

      Response: The images shown in Figure 3D are from the in vivo retina. Since this may not have been very clear in the previous manuscript version, we have now added a corresponding explanation to the legend of Figure 3. As far as we can tell, the expression and localization of neuroretinal enzymes does not change in cultured retina, during the culture period (compare Figure 1A with Supplementary Figure S1C). However, when it comes to the metabolite taurine its production (localization) changes dramatically in the no RPE situation where taurine is essentially undetectable by immunostaining (not shown but see metabolite data in Figure 2A, Figure 3A).

      Rev#3.7. In Figures 4 and 5, it is unclear why the experimental groups were not compared to the control and requires further explanation. Furthermore, the authors should justify the concentrations of drugs used as the cell death could have risen from toxicity to the drugs and not due to disruption of metabolism.

      Response: The reviewer is right, the rationale for these comparisons may not have been laid out with sufficient clarity. In Figure 4 the no RPE and FCCP groups are compared because both groups showed similar metabolite changes towards the control situation. The no RPE to FCCP comparison thus focussed on the details of the – at first seemingly minor – differences between these two groups. This has now been clarified in the corresponding part of the results (Lines 218-219).

      In Figure 5A, B we compare the no RPE and 1,9-DDF groups with each other, notably because the data obtained seemingly contradicted our initial expectation that these two groups should show similar metabolite patterns. Also here, we have now inserted an additional explanation for this choice of comparisons (Lines 252-253).

      In Figure 5C, D we compare the Shikonin and FCCP groups with each other. The idea behind this comparison was that in the 1st group glycolysis was blocked while in the 2nd group OXPHOS was inhibited, or in other words here were compared what happened when the two opposing ends of energy metabolism were manipulated in opposite directions. This reasoning is now given in the results section (Lines 265-268).

      As far as the choice of drugs and concentrations is concerned, we used only compounds that have been extremely well validated through up to five decades of scientific research (see initial response to Reviewer #2 above). We therefore are confident that at the concentrations employed the results obtained stem from drug effects on metabolism and not from generic, off-target toxicity. Then again, as we show, prolonged (i.e. 4 days) block of energy metabolism pathways does cause cell death.

      Rev#3.8. In line 203, the authors discuss GTP as being primarily a mitochondrial metabolite, however, photoreceptors would require a localized source of GTP synthesis in the outer segments as part of phototransduction, and therefore GTP in photoreceptors cannot be a mitochondrial-specific reaction in photoreceptors. Furthermore, the authors mentioned NDK as being a possible source of GTP, but they do not show NDK localization despite it being reported in the literature to be localized in the OS.

      Response: The question as to the source of GTP in photoreceptor outer segments is indeed highly relevant. For GTP production in mitochondria see the answer to the next question below (Rev#3.9). An early study showed nucleoside-diphosphate kinases (NDK) to be expressed on the rod outer segments of bovine retina (Abdulaev et al., Biochemistry 37:13958-13967, 1998). More recently NDK-A was shown to be strongly expressed in photoreceptor inner segments (Rueda et al., Molecular Vision 22:847-885, 2016). We now refer to both studies in the results section of the manuscript (Line 227-228).

      Rev#3.9. In the "Impact on glycolytic activity, serine synthesis pathway, and anaplerotic metabolism" section, the authors claim in the no RPE group glycolytic activity was higher due to a depressed GTP-to-lactate ratio. However, this reviewer is under the impression that GTP production in photoreceptors is not mitochondrial specific, so this ratio doesn't make sense (I could be mistaken, however). A better ratio would have been pyruvate/lactate or glucose/lactate when discussing increased glucose consumption.

      Response: We appreciate the reviewers’ comment, yet we do indeed believe we can show that GTP-production in our experimental context is mainly mitochondrial. As explained in the manuscript results section (“Photoreceptors use the Krebs-cycle to produce GTP”), there are essentially only two possibilities for a photoreceptor to produce sizeable amounts of GTP. In the mitochondria via SUCLG1 – i.e. an enzyme highly expressed in photoreceptor inner segments (Figure 5D) – and the cytoplasm via NDK from excess ATP. The claim about the depressed GTP-to-lactate ratio in the no RPE situation takes this into account. Importantly, since in the no RPE situation ATP-levels are significantly lower than GTP, here GTP can only be produced via SUCLG1 and OXPHOS. Moreover, this contrasts with the FCCP group where mitochondrial OXPHOS is disrupted and both ATP and GTP are depleted.

      As far as ratios with pyruvate and glucose are concerned, we agree that these could potentially be very interesting to analyse. Unfortunately, in our retinal tissue 1H-NMR spectroscopy- based metabolomics analysis the levels of both pyruvate and glucose were below the detection limits which likely reflects their rapid metabolic turnover (cf. table S1). While this might be attributable to the marked consumption of these metabolites within the tissue, it does not allow for us to calculate the suggested ratios to lactate. Then again, in the supernatant medium which was collected at the same time point as the retina tissue, we can readily detect glucose and lactate levels, for this data please see the new Supplementary Figure 4.

      Rev#3.10. Aspartate aminotransferase should be abbreviated as AST, as it is more commonly noted.

      Response: In response to this comment from the reviewer, we have changed the abbreviation for aspartate aminotransferase from AAT to AST throughout the manuscript.

      Rev#3.11. In the discussion the assumptions of the ex vivo culture systems should be clearly stated. One that was not mentioned, but affects the implications of the data, is that the retinas used in this study are from the developing mouse eye. Another important assumption that was made in this paper was that the changes in retinal metabolism were due to photoreceptors even though the whole neural retina was included.

      Response: The reviewer is correct; we have added these two points to the discussion section of the manuscript. Notably, we now included a new subchapter “The retina as an experimental system for studies into neuronal energy metabolism” (Lines 367-395) to present different in vitro and in vivo test systems.

      Rev#3.12. Starting at line 347: As the authors know, the RPE has been shown to be highly reliant on mitochondrial function, and disruption of RPE mitochondrial metabolism leads to photoreceptor degeneration (numerous papers have shown this). Furthermore, the lower levels of lactate detected in their explants when RPE was present suggests that lactate is actively transported out of the neural retina by the RPE.

      Response: The reviewer is right about lactate being exported from the retina to the blood stream in vivo, or, in our in vitro study, to the culture medium. In the new dataset showing glucose and lactate concentrations in the culture medium (new Supplementary Figure 4C, D), we show that without RPE (no RPE group) and the retina releases more significantly lactate into the medium than control retina with RPE. At the same time the no RPE retina consumes more glucose than control retina.

      Rev#3.13. Line 360: Again, in mouse photoreceptors (by bulk RNAseq and scRNAseq), there is no GLUT3 expression (encoded by slc2a3). It was also recently shown by Dr. Nancy Philp's lab that rod photoreceptors express GLUT1, encoded by slc2a1 (PMCID: PMC9438481). The differences reported in this study and previous studies should be discussed.

      Response: Although this comment may not make us very popular, we are somewhat sceptical of RNAseq data (especially single cell RNAseq) since the underlying methodology – at the current level of technological development – is notoriously unreliable when it comes to the assessment of low abundance transcripts and suffers from apoor batch reproducibility, compared to NMR based metabolomics. Due to methodological constraints RNAseq have a propensity to display erroneously high or low expression. Moreover, and perhaps even more important, dissociated cells in scRNAseq studies undergo rapid gene expression changes that can significantly falsify the image obtained (Rajala et al., PNAS Nexus 2:1-12, 2023). Finally, it cannot be emphasized enough that mRNA expression profiles DO NOT equate protein expression and there are numerous examples for divergent expression profiles when mRNA and protein is compared.

      The Daniele et al. study (FASEB Journal 36:e22428, 2022; PMCID: PMC9438481) used in situ hybridization to study the mRNA expression of GLUT1 (slc2a1) and GLUT3 (slc2a3). In line with our comment just above, the Daniele et al. study may provide for an example of divergence between mRNA and protein expression, since it seemingly showed only minor expression of GLUT1/slc2a1 in the RPE, i.e. precisely in the one cell type that is well-known for its very strong GLUT1 protein expression.

      Furthermore, Daniele et al. used a conditional GLUT1 knock-out in photoreceptors induced by repeated Tamoxifen injections. The photoreceptor GLUT1 knock-out led to a relatively mild phenotype with only about 45% of the outer nuclear layer lost over a 4-months time-course. This is in stark contrast with the FCCP or the 1,9-DDF treatment, which would ablate nearly all rod photoreceptors in under one or two weeks, respectively.

      As a side note, Tamoxifen is an oestrogen receptor antagonist (with partial agonistic behaviour) with a long history of causing retinal and photoreceptor damage. Notably, oestrogen receptor signalling is important for maintaining photoreceptor viability (Nixon & Simpkins, IOVS 53:4739-47, 2012; Xiong et al., Neuroscience 452:280-294, 2021). Therefore, the relatively minor effects of the conditional GLUT1 KO in photoreceptors found in Daniele et al. may have been confounded by direct tamoxifen photoreceptor toxicity. On a wider level, this possible confounding factor related to the use of Tamoxifen points to general problems associated with certain forms of genetic manipulations.

      We now mention the controversy around the expression of glucose transporters in the retina, including the Daniele et al. study in a new subchapter of the discussion on "Expression of glucose transporters in the outer retina” (Lines 454-472).

      Rev#3.14. Lines 370-372: FCCP caused a strong cell death phenotype in rods, however under stress rods upregulate the secretion of RdCVF, which leads to cone photoreceptor survival by the upregulation of aerobic glycolysis in cones. The data should be re-interpreted in the context of this previous literature.

      Response: We thank the reviewer for this comment; however, we could not find a reference that would state that “…under stress rods upregulate the secretion of RdCVF”. What we did find was a reference stating that similar factors such as thioredoxins (TRX80) are secreted from blood monocytes under stress (Sahaf & Rosén, Antioxid Redox Signal 2:717-26, 2000). However, we consider these cells to be too dissimilar to rod photoreceptors to warrant a corresponding comment. Moreover, the research group who discovered RdCVF originally showed that rod-secreted RdCVF cannot prevent cone degeneration if the corresponding Nxnl1 gene is knocked-out in cones, arguing for a cell-autonomous mechanism of RdCVF -dependent cone protection (Mei et al., Antioxid Redox Signal. 24:909-23, 2016).

      Since it is very possible that we may have missed the correct reference(s), we would welcome further guidance by the reviewer.

      Rev#3.15. Line 374: 1,9-DDF caused a 90% loss of cones, however, previous studies by Dr. Nancy Philp have shown glucose deprivation in the outer retina affects primarily rod photoreceptors. The differences should be discussed.

      Response: We thank the reviewer for directing us to these studies. As mentioned above (Rev#3.13.) the Daniele et al. 2022 study yielded only relatively mild effects for a rod-specific conditional GLUT1 KO on photoreceptor viability. Similarly, in an earlier study (Swarup et al., Am J Physiol Cell Physiol. 316: C121–C133, 2019) the Philp group found that also a GLUT1 KO in the RPE caused only a minor phenotype in the photoreceptor layer. We would argue that if glucose, and by extension aerobic glycolysis, were indeed of major importance for (rod) photoreceptor survival, the degenerative effect of these genetic GLUT1 ablations should have been devastating and should have destroyed most of the outer retina in a matter of days. The fact that this was not seen in both studies is another piece of independent evidence that rod photoreceptors do not rely to any major extent on glycolytic metabolism.

      The two studies from the Philp lab (Swarup et al., 2019; Daniele et al., 2022) are now cited in the discussion (Lines 417-419 and 458-460).

      Rev#3.16. Line 375: Yes Dr. Claudio Punzo and Dr. Leveillard Thierry along with other groups have shown glycolysis is required to maintain cone survival when under stress, however, the authors should emphasize that it is under stress that this is observed.

      Response: In response to this comment we have now specifically extended our corresponding remark in the discussion of the manuscript (Lines 446-447).

      Rev#3.17. The section "Cone photoreceptors use the Cahill-cycle". The presence of ALT in photoreceptors was surprising and suggests alternatives to the Cori reaction. However, previous measurements of glucose and lactate from localized in vivo cannulation of animal eyes suggest the majority of glucose taken up by the retina is released back to the blood as lactate. Again, this section should discuss this idea in terms of the previous literature.

      Response: Here, we believe the reviewer is referring to studies performed in the late 1990s where, in anaesthetized cats, the lactate concentration in blood samples obtained from choroidal vein cannulation was compared against that in blood samples obtained from femoral arteries (Wang et al., IOVS 38:48-55, 1997). We note that a more relevant in vivo measurement of retinal glucose consumption and lactate production would likely require the simultaneous cannulation of the central retinal artery (CRA) and the central retinal vein (CRV). This would need to be combined with repeated (online) blood sampling, drug applications, and subsequent metabolomic analysis. We are not aware of any in vivo studies where such procedures have been successfully performed and further miniaturization and increased sensitivity of metabolomic analytic equipment will likely be required before such an undertaking may become feasible. Even so, such studies may not be feasible in small rodents (mice, rats) and may instead require larger animal species (e.g. dog, monkey) to overcome limitations in eye and blood sample size.

      We have now extended the discussion of our manuscript with a new subchapter on “The retina as an experimental system for studies into neuronal energy metabolism”. Within this new subchapter we now present two different in vivo experimental approaches that addressed retinal energy metabolism (Lines 376-384). Moreover, we now present new data on retinal lactate release to the culture medium, showing, for instance, a strong increase in lactate release in the no RPE condition compared to control (new Supplementary Figure 4).

      Rev#3.18. Lines 431-433: The study cited suggested that the mitochondrial AST was detected in other cells, in agreement with the data shown. However, the authors' statements in this section are misleading as they do not take into consideration the contribution of AST from other cell types.

      Response: The reviewer is right, we found both AST1 and AST2 to be expressed not only in photoreceptor inner segments but also in the inner retina, especially in the inner plexiform layer (new Figure 6D). Since this might indicate mini-Krebs-cycle activity also in retinal synapses, we have added a corresponding comment to the discussion (Lines 540-543).

      Grammatical and wording fixes:

      Rev#3.19. Line 98 - "the recycling of the photopigment, retinal."

      Response: We have inserted a comma after “photopigment”.

      Rev#3.20. Results section and Figure 1 start without providing context for the model system where staining is being done.

      Response: We have added this information to the beginning of the results section (Lines 105-106).

      Rev#3.21. Supplementary Figure 2 is not mentioned in the main text - there is no context for this figure.

      Response: Supplementary Figure 2 was originally referenced in the legend to Figure 2. We now mention supplementary figure 2 (now renumbered to supplementary figure S3) also in the main text, in the results section under “Experimental retinal interventions produce characteristic metabolomic patterns” (Line 148).

      Rev#3.22. Volcano plot in Supplementary Figures 3, 5, 6, 7, and 8 don't indicate what Log2(FC) is in reference to.

      Response: The log2 fold change (FC) is calculated as follows: log2 (fold change) = log2 (mean metabolite concentration in condition A) - log2 (mean metabolite concentration in condition B) where condition A and condition B are two different experimental groups being compared. This is now explained in the SI Materials and Methods (Lines 145-147) and indicated in abbreviated form in the figure legends. Please note that supplemental figures have now been renumbered due to the insertion of an additional, new Figure.

      Rev#3.23. Line 331 - –a“d allowed to analyze the..." ”s incorrect phrasing.

      Response: This phrasing was changed.

      Rev#3.24. Line 343 "c“cled" ”

      Response: This phrasing was changed.

      Rev#3.25. Line 446 is misworded.

      Response: This phrasing was changed.

      Technical questions:

      Rev#3.26. At what point after explant was the IHC done in Supplemental Figure 1? If early, but experiments are done later, there's’a chance things are more disorganized at the end of the experiment.

      Response: Staining and metabolomics analysis were both done at the end of each experiment, at the same time, at P15. This is now mentioned in the SI materials and methods section (Lines 67, 108-110).

      Rev#3.27. FCCP affects plasma membrane permeability, which is particularly critical in neurons that undergo repolarization and depolarization - –ow do we know FCCP on cell death via metabolism? See: https://www.sciencedirect.com/science/article/pii/S2212877813001233

      Response: The reviewer is correct, a significant permeabilization of cell membranes in general would likely cause extensive neuronal cell death, unrelated to a disruption of OXPHOS. However, the FCCP concentration used here (5 µM) is at the lower end of what was used in the mentioned Kenwood et al. study (Mol Metab. 3:114-123, 2014) and the effect on cell membrane permeability in tissue culture is likely to be rather small, as opposed to what was seen by Kenwood et al. in cultures of individual cells. This view is supported by the fact that in our FCCP treatments, we did not observe any significant increases of cell death in any retinal cell type (including RPE) other than in rod photoreceptors. Together with the fact that only photoreceptors strongly express Krebs-cycle/OXPHOS related enzymes, this strongly suggests that the FCCP effects seen by us were due to disruption of OXPHOS.

      Rev#3.28. Numerous metabolite comparisons are being made throughout the manuscript – what type of multiple hypothesis testing corrections are utilized? Only certain figures mention multiple hypothesis testing (e.g. Figure 6).

      Response: In general, in this manuscript we used two different statistical methods: 1) For two-group comparisons, we used an unpaired, two-tailed t-test, which reports a p-value with 95% confidence interval without additional multiple hypothesis testing (e.g. in Figure 2, Suppl. Figures 4, 6, 7, 8). 2) For multiple group comparisons we used a one-way ANOVA analysis with Tukey’s multiple comparisons post-hoc test (except suppl. Figure 9 where Fisher´s LSD post-hoc test was used). The information on which statistical test was used for what dataset is now given in the figure legends and in the SI Material and Methods section.

      Rev#3.29. For Figure 3, how do we know that the removal of RPE is causing the metabolite changes due to RPE-PR coupling? How do you rule out the fact that it isn’t just: I – a thicker physical barrier between media and the neural retina that is causing the changes, or II – removal of RPE from PR causes OS shearing and a stress response that alters metabolism?

      Response: We believe these concerns can be ruled out: The RPE cells are linked by tight junctions and are not “just a thicker barrier” but a barrier that is almost impermeable for most metabolites unless they are carried by specific transporters. Outer segment shearing via RPE removal would indeed be a concern if we had used adult retina. However, we explanted that retina at P9 when it does not possess any sizeable outer segments yet. As a matter of fact, photoreceptors grow out outer segments only after P9.

      Rev#3.30. While 1,9-dideoxyforskolin blocks GLUT1, it is known to have other effects, including on potassium channels. How do we know the effects of 1,9-dideoxyforskolin are specific to GLUT1? Utilizing a GLUT1 KO and showing no additional effects when adding 1,9-dideoxyforskolin would be helpful as a control.

      Response: This is a good suggestion from the reviewer. We note that this is technically not easy to achieve as it would require an RPE-specific knock-out that should be inducible at a given experimental time-point, in a quantitative manner. The study by Swarup et al. (see above Rev#3.13.) used an RPE specific knock-out that was, however, not inducible. Moreover, if the corresponding inducible knock-out animals could be generated, then the stochastic nature of the inducing treatment would probably affect only a limited number of cells within a given cell population. In our experimental context, a less than quantitative knock-out would significantly complicate interpretation of results, even to the point that no additional insight might be gained.

      Rev#3.31. The analysis in Figure 6, even with attempts to control drug treatments, is highly speculative. One really needs animals with predominately cones vs. predominately rods to do this analysis (e.g. with NRL mice).

      Response: The reviewer is right, the analysis shown in Figure 6 was an explorative approach to try and deduce features of rod and cone metabolism. This is now mentioned in the results section (Lines 282-284). Since the experiments were not initially intended to address such questions, by necessity the interpretations remain speculative. The comparison of mouse mutants in which there are either no cones (e.g. cpfl1 mouse) or no rods (e.g. NRL knock-out mouse) may allow to disentangle the metabolic contributions of rods and cones. We appreciate the suggestion from the reviewer and have now inserted a relating suggestion for future studies into the discussion section (Lines 450-452).

      Rev#3.32. Overall, much of the paper suggests intriguing pathways, but without C13 tracing or relevant genetic knock-outs, the pathways would have to be speculative rather than definitive.

      Response: We agree with the reviewer that further research, including 13C and 15N-tracing studies, will be necessary to evaluate which pathway(s) are used by what retinal cell type under what condition. Still, the high robustness and quantitative nature of the NMR metabolomics data allows us to draw pathway conclusions based on metabolites that are unique to specific pathways/cell types or using ratios. We now relate to the advantages of such carbon-tracing studies in the discussion of the manuscript (Lines 545-549).

      Stylistic suggestions:

      Rev#3.33. This is a very dense paper to read. It would be helpful for each figure to have a summary diagram of the relevant metabolite changes and how they fit together. Further, for those not metabolism-inclined, defining the mini-Kreb’s, Cahill, and Cori cycles and their brief implications at some point early in the manuscript would be helpful.

      Response: We have been thinking a lot about how we could add in the suggested summary diagrams into each figure. Unfortunately, whatever idea we contemplated would have significantly increased the complexity of the figures, while the actual benefit in terms of improved understandability was unclear.

      However, we did include the suggestion from the reviewer to present the terms Cori, Cahill-, and mini-Krebs-cycle already in the introduction and we hope that this has improved the understandability of the manuscript overall (Lines 79-92).

      Rev#3.34. More discussion about the step-by-step ways that the mini-Kreb’s reaction “uncouples” glycolysis from the Kreb’s cycle would be helpful. What do you mean by “uncouple” in this context?

      Response: We thank the reviewer for this suggestion. Uncoupling in this context means that glycolysis and Krebs cycle are not metabolically coupled to each other via pyruvate. Instead both pathways can run independently from each other and in parallel, as long as the Krebs-cycle uses glutamate, BCAAs or other amino acids as fuels. We now also address this point already in the introduction of the manuscript (Lines 87-90).

      Conceptual questions:

      Rev#3.35. As the proposal that PR undergo heavy amounts of OXPHOS is controversial, it would be helpful for the authors to review the literature on lactate production by the retina and what studies have shown previously about retina use of lactate, specifically lactate making its way into TCA cycle intermediates, suggesting OXPHOS, in PRs.

      Response: In response to this question we have added several new references to the introduction and discussion of the manuscript. The question of lactate production (aerobic glycolysis) vs. the use of OXPHOS is now discussed in Lines 77-81, Lines 367-384.

      Rev#3.36. Why would cones die more in the no RPE condition? The authors suggest this has something to do with GLUT1 expression on RPE and the transport of glucose to cones. Even if we accept that cones are highly glycolytic, loss of RPE should expose the neural retina to even more glucose in your experimental set-up.

      Response: This is a very interesting question from the reviewer. Indeed, loss of the RPE and blood-retinal barrier function should increase photoreceptor access to glucose, even more so if they are expressing high affinity GLUT3. In the discussion (Lines 420-424), we speculate that this may trigger the Crabtree effect, shutting down OXPHOS and causing the cells to exclusively rely on glycolysis. This, however, will likely not yield sufficient ATP to maintain their viability, so that they “starve” to death even in the presence of ample glucose. Since cones require at least twice as much ATP as rods, they may be more sensitive to a Crabtree-dependent shut-down of OXPHOS. However, if this speculation was correct then the question remains why the FCCP treatment, which abolishes OXPHOS more directly, does not cause cone death. Here, we again can only speculate that high glucose may have additional toxic effects on cones that are independent of OXPHOS. We now try to present this reasoning in the discussion (Lines 426-429).

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers and editors for their comments, as well as for the time dedicated to make useful suggestions that have contributed to improve the manuscript. We have responded to the concerns raised by the reviewers, and after that, we have also responded to the different points highlighted in the Recommendations for the authors:

      Reviewer #1

      While in vivo injury was used to assess regeneration from subsets of PNS neurons, different in vitro neurite growth or explant assays were used for further assessments. However, the authors did not assess whether the differential "regenerative" responses in vivo could be recapitulated in vitro. Such results will be important in interpreting the results.

      We included a supplementary figure evaluating the neurite extension in vitro and updated the text accordingly.

      Intriguingly, even in individual groups of PNS neurons, not all neurons regenerate to the same extent. It is known that the distance between the cell body and the lesion site affects neuronal injury responses. It would be interesting to test this in the observed regeneration.

      Although it is true that the distance can affect the outcome, here we used a physiological model where all neurons are lesioned at the same point in the nerve. Not only distance is different for motoneurons, but also the microenvironment surrounding their somas and therefore the direct comparison of these neurons with sensory neurons is limited. We extended the discussion on this matter in the new manuscript.

      Fig 1: The authors quantified the number of regenerating axons at two different time points. However, the total numbers of neurons/axons in each subset are different. The authors should use these numbers to normalize their regenerative axons.

      Figure 1D shows the normalization of data from figure 1C (normalized against the number of control axons in each neuron type). This has been clarified in the text.

      Fig 2-5: In explaining differential regeneration of individual groups of neurons, there are at least two possibilities: (1). Each group of neurons has different injury/regenerative responses; (2). The same set of injury/regenerative responses are differentially activated. Some data in this manuscript suggested the latter possibility. But some other data point in the opposite direction. It would be informative for the authors to analyze/discuss this further.

      From our point of view, these two options can be considered differential response to injury and could be potentially used for the modulation of regeneration. However, if the second possibility is correct, the regenerative program could be more influenced by the time chosen to study the response. Given the importance of this, we added some discussion about this topic.

      Fig 6: Is it possible to assess the regenerative effects of knockdown Med12 after in vivo injury?

      It is possible, but it is out of the scope of this work. Here, we aimed to describe the regenerative response and validate our data by testing a potential target for specific regeneration. Future studies will focus on the modulation of this specific regeneration both in vitro and in vivo.

      Reviewer #2

      It seems that the most intriguing outcome of this paper revolves around the role of Med12 in nerve regeneration. The authors should prioritize this finding. Drawing a conclusion regarding Med12's role in proprioceptor regeneration based solely on this in vitro model may be insufficient. This noteworthy result requires further investigation using more animal models of nerve regeneration.

      The main goal of this work was to compare the regenerative responses of different neuron subpopulations. We modulated Med12 to validate our data and the potential of our findings. Unfortunately, investigating in depth the role of Med12 in regeneration is out of the scope of this paper. For this reason, we did not prioritise this finding here. As this finding was striking, we strongly agree that the next step should be studying how it modulates regeneration.

      One critique revolves around the authors' examination of only a single time point within the dynamic and continuously evolving process of regeneration/reinnervation. Given that this process is characterized by dynamic changes, some of which may not be directly associated with active axon growth during regeneration, and encompasses a wide range of molecular alterations throughout reinnervation, concentrating solely on a single time point could result in the omission of critical molecular events.

      We agree that this is probably the main limitation of this study, as we discussed in the text. We chose 7 days postinjury as a standard time point widely described in literature and to have a correlate with our histological data. Although the main aim was to compare populations, analyzing an additional time point after injury could add valuable information.

      Reviewer #3

      No concerns were expressed by that reviewer.

      Recommendations for the authors:

      The authors should assess whether the differential "regenerative" responses in vivo could be recapitulated in vitro.

      We included a supplementary figure evaluating the neurite extension in vitro and updated the text accordingly.

      Optional:

      It will be interesting to test if the distances between the cell body and the lesion site contribute to the observed differences in individual subsets of PNS neurons.

      Figure 1D shows the normalization of data from figure 1C (normalized against the number of control axons in each neuron type). This has been clarified in the text.

      Fig 2-5: In explaining differential regeneration of individual groups of neurons, there are at least two possibilities: (1). Each group of neurons has different injury/regenerative responses; (2). The same set of injury/regenerative responses are differentially activated. Some data in this manuscript suggested the latter possibility. But some other data point in the opposite direction. At least the authors should discuss these.

      From our point of view, these two options can be considered differential response to injury and could be potentially used for the modulation of regeneration. However, if the second possibility is correct, the regenerative program could be more influenced by the time chosen to study the response. Given the importance of this, we added some discussion about this topic.

      While the paper is technically well-executed, the conclusions and some of the findings appear to be incomplete and challenging to draw meaningful conclusions from. This manuscript presents some interesting findings, but the title is quite broad and may suggest that the authors have unveiled fundamental mechanisms explaining the varying regenerative abilities of peripheral axons. However, the results do not substantiate such a conclusion. Further comments and suggestions follow.

      We eliminated the word “regenerative (response)” from the title, as it could lead to think that all changes seen in these neurons are related only to regeneration. We think that “Neuron-specific RNA-sequencing reveals different responses in peripheral neurons after nerve injury” highlights the differences between neurons that we found without misleading towards thinking that we described regenerative mechanisms in all neurons.

      What's notably absent here is the validation of certain genes found with the ribosomes, especially those highlighted in the subsequent figures. The question arises as to whether the changes depicted in the figures align with changes in the DRGs in vivo. Is there concordance between the presence of these genes and their transcriptional changes? It would greatly enhance the study's value if the authors could show evidence of upregulation or downregulation of certain genes over time in tissue sections, utilizing techniques such as in situ hybridization or immunocytochemistry.

      We selected some factors that were specifically upregulated in subsets of neurons to corroborated by immunohistochemistry these findings. Changes in the immunofluorescence of P75 in motoneurons and ATF2 in cutaneous mechanoreceptors, were evaluated in controls and animals that received a nerve crush one week before. Supplementary figures with the images have been added.

      The authors discovered intriguing distinctions, such as the presence of specific signaling pathways unique to neurons projecting to muscle as opposed to those projecting to the skin. Among these pathways were those associated with receptor tyrosine kinases like VEGF, erbB, and neurotrophin signaling among others. The question now arises: do these pathways play a role in natural peripheral regeneration processes? To answer this, it is imperative to conduct in vivo studies. However, the authors employed an in vitro DRG neurite outgrowth assay to demonstrate that various types of neurons exhibit different responses to the presence of different neurotrophins. This does not reflect what actually happens in vivo. While neurotrophins indeed play a role in neuron survival and axon extension during development, their role in postnatal periods changes over time, and it remains unclear whether they play any role in the natural regenerative processes of the peripheral nerve. Therefore, this experiment may not be directly relevant in this case, especially during the early axon extension period of the regenerating axons. if the authors aim to establish a causal link with neurotrophin signaling, it becomes crucial to conduct in vivo experiments by manipulating the expression of key molecules like the receptors.

      It has been widely described that different types of peripheral neurons have a differential expression of Trk receptors, even in the adult, and that these respond differentially to neurotrophins. In our study, we do not stablish a causal relationship between the expression of Trk and neurite extension, but instead we show (as many others) that distinct neurons respond differentially to these neurotrophins. The fact that in vivo studies fail to show a clear effect does not necessarily mean that neurotrophins are not specific. It might mean that their effect is not strong enough to be a useful guide in the complex microenvironment found after an injury. For instance, NGF acts on TrkA (present in some neurons), but in vivo it has been shown to accelerate the clearance of myelin debris in Schwann cells (Li et al., 2020), which could facilitate regeneration of all type of axons, masking any potential specific effect on the subtypes of neurons expressing TrkA. In contrast, in an in vitro setting on neuronal cultures, the specific neuronal effect can be more evident.

      Additionally, it's worth noting that another paper utilizing the same methodology and experimental setup (PMID: 29756027, "Translatome Regulation in Neuronal Injury and Axon Regrowth" by Rozenbaum et al.) exists. Are there any significant differences or shared findings with that study?

      This study shows the transcriptomic response after an injury 4, 12 and 24 hours after an injury in a very similar experimental setup. They focus on comparing the neuronal vs the glial response to the injury, using a Ribotag line that tags ribosomes from all neurons in the DRG rather than specific neuron subtypes. As the time postinjury (24h vs 7 days) and the cell types studied are different, we could not directly compare our results. We did see an upregulation in both datasets of previously described growth-associated genes (Jun, Atf3, Sox11, Sprr1a, Gal…). We included the article in the references for its relevance in the topic.

      It would be helpful for readers to illustrate the finding of the fastest axon regeneration of nociceptors by showing fluorescence micrographs of the nerve samples in addition to the graphs shown in Fig. 1 C/D.

      In figure 1B, we show fluorescence micrographs of the nerves 7 days postinjury. As explained in the results, we counted the number of axons at 2 distances from the injury, we did not analyse the fastest axon. This is due to technical reasons: 7 days after the injury the fastest axon has surpassed our evaluation point, which was the further distance that we could assess in our experimental setting in a consistent manner. If the reviewer thinks that we need to include more images from our evaluations (from 9 dpi for example), we could prepare a new figure.

      The labeling in Fig. 2B is confusing. Is the CHAT immunoreactivity shown in the last panel illustrated by green or red signals? Is the red signal counterstaining with beta-tubulin?

      The labelling was changed in the figure to increase clarity.

      The references to the supplementary data throughout the manuscript are confusing. For example, where can the "Supp data 2" be found? (mention on p. 14 in the merged pdf file). Are they referring to the Excel spreadsheets?

      We divided the supplementary material in supplementary figures/table (found in the pdf) and supplementary data. Supplementary data refers to excel spreadsheets found outside the pdf file. We hope this will be clearer after the final formatting of the article.

      What does the following statement on p. 14 mean?: "The caveat in these analyses was that molecular classification by these approaches may be arbitrary, and not reflective of protein repurposing." This reviewer notes that these databases consider the fact that components participate in different pathways.

      Indeed, we aimed to explain that many proteins participate in different pathways, and this is a limitation of the enrichment analysis. We modified the sentence in the text.

      First paragraph on p. 15: The PPAR and AMPK pathways have much broader roles, and are not only "related to fatty acid metabolism". This factual inaccuracy should be corrected in the manuscript.

      The sentence has been corrected.

      The authors should consider showing increased TGF-beta signaling in their neurons after downregulation of Med12 given the previous implication of TGF-beta signaling in axon regeneration.

      We tried to demonstrate the effect of our knockdown in TGF-beta pathway by analyzing the expression of typical targets from this pathway by qPCR in our cultures. However, we could not detect any difference. We think that this can have two explanations: (1) as only a few cells upregulate Med12 whereas many cells downregulate it, the effect is masked (presumably only proprioceptors will have a significant difference in this pathway and, thus, it would be very difficult to see the effect), or (2) Med12 is not exerting its effect through this pathway. We added a supplementary figure with these data and discussed it in the manuscript.

      It would be helpful to eliminate typos and improve syntax/grammar/style.

      We revised the text to improve style.

    1. Author Response

      Public Reviews:

      Reviewer #1

      Strengths:

      Overall, the work is novel and moves the field of Alzheimer's disease forward in a significant way. The manuscript reports a novel concept of aberrant activity in VIP interneurons during the early stages of AD thus contributing to dysfunctions of the CA1 microcircuit. This results in the enhancement of the inhibitory tone on the primary cells of CA1. Thus, the disinhibition by VIP interneurons of Principal Cells is dampened. The manuscript was skillfully composed, and the study was of strong scientific rigor featuring well-designed experiments. Necessary controls were present. Both sexes were included.

      We express our gratitude to the reviewer for their keen appreciation of our efforts and their enthusiasm for the outcomes of this research.

      Limitations:

      (1) The authors attributed aberrant circuit activity to the accumulation of "Abeta intracellularly" inside IS-3 cells. That is problematic. 6E10 antibody recognizes amyloid plaques in addition to Amyloid Precursor Protein (APP) as well as the C99 fragment. There are no plaques at the ages 3xTg mice were examined. Thus, the staining shown in Figure 1a is of APP/C99 inside neurons, not abeta accumulations in neurons. At the ages of 3-6 months, 3xTg starts producing abeta oligomers and potentially tau oligomers as well (Takeda et al., 2013 PMID: 23640054; Takeda et al., 2015 PMID: 26458742 and others). Emerging literature suggests that abeta and tau oligomers disrupt circuit function. Thus, a more likely explanation of abeta and tau oligomers disrupting the activity of VIP neurons is plausible.

      The Reviewer correctly points out that 3xTg-AD mice typically do not exhibit plaques before 6 months of age, with limited amounts even up to 12 months, particularly in the hippocampus. To the best of our knowledge, the 6E10 antibody binds to an epitope in APP (682-687) that is also present in the Abeta (3-8) peptide. Consequently, 6E10 detects full-length APP, α-APP (soluble alpha-secretase-cleaved APP), and Abeta (LaFerla et al., 2007). Nonetheless, we concur with the Reviewer's observation that the detected signal includes Abeta oligomers and the C99 fragment, which is currently considered an early marker of AD pathology (Takasugi et al., 2023; Tanuma et al., 2023). Studies have demonstrated intracellular accumulation of C99 in 3-month-old 3xTg mice (Lauritzen et al., 2012), and its binding to the Kv7 potassium channel family, which results in inhibiting their activity (Manville and Abbott, 2021). If a similar mechanism operates in IS-3 cells, it could explain the changes in their firing properties observed in our study. Consequently, we will revise the manuscript to include this crucial information in both the Results and Discussion sections.

      (2) Authors suggest that their animals do not exhibit loss of synaptic connections and show Figure 3d in support of that suggestion. However, imaging with confocal microscopy of 70micron thick sections would not allow the resolution of pre- and post-synaptic terminals. More sensitive measures such as electron microscopy or array tomography are the appropriate techniques to pursue. It is important for the authors to either remove that data from the manuscript or address the limitations of their technique in the discussion section. There is a possibility of loss of synaptic connections in their mouse model at the ages examined.

      We appreciate the Reviewer’s perspective on the techniques used for imaging synaptic connections. While we acknowledge the limitations of confocal microscopy for resolving pre- and post-synaptic structures in thick sections, we respectfully disagree regarding the exclusive suitability of electron microscopy (EM). Our approach involved confocal 3D image acquisition using a 63x objective at 0.2 um lateral resolution and 0.25 Z-step, providing valuable quantitative insights into synaptic bouton density. Despite the challenges posed by thick sections, this method together with automatic analysis allows for careful quantification. Although EM offers unparalleled resolution, it presents challenges in quantification. We will ensure to include the important details regarding image acquisition and analysis in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The submitted manuscript by Michaud and Francavilla et al., is a very interesting study describing early disruptions in the disinhibitory modulation exerted by VIP+ interneurons in CA1, in a triple transgenic model of Alzheimer's disease. They provide a comprehensive analysis at the cellular, synaptic, network, and behavioral level on how these changes correlate and might be related to behavioral impairments during these early stages of the disease.

      Main findings:

      3xTg mice show early Aß accumulation in VIP-positive interneurons.

      3xTg mice show deficits in a spatially modified version of the novel object recognition test. - 3xTg mice VIP cells present slower action potentials and diminished firing frequency upon current injection.

      3xTg mice show diminished spontaneous IPSC frequency with slower kinetics in Oriens / Alveus interneurons.

      3xTg mice show increased O/A interneuron activity during specific behavioral conditions.

      3xTg mice show decreased pyramidal cell activity during specific behavioral conditions.

      Strengths:

      This study is very important for understanding the pathophysiology of Alzheimer´s disease and the crucial role of interneurons in the hippocampus in healthy and pathological conditions.

      We are thankful to the reviewer for their insightful recognition of our efforts and their enthusiasm for the results of this research.

      Weaknesses:

      Although results nicely suggest that deficits in VIP physiological properties are related to the differences in network activity, there is no demonstration of causality.

      RE: We completely agree with the reviewer's observation regarding the lack of demonstration of causality in our results. Investigating causality in the relationship between deficits in VIP physiological properties and differences in network activity is indeed a crucial aspect of this project. However, achieving this goal will require a significant amount of time and dedicated manipulations in a new mouse model (VIP-Cre-3xTg). We appreciate the importance of this line of investigation and consider it as a priority for our future research endeavors.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study provides an unprecedented understanding of the roles of different combinations of NaV channel isoforms in nociceptors' excitability, with relevance for the design of better strategies targeting NaV channels to treat pain. Although the experimental combination of electrophysiological, modeling, imaging, molecular biology, and behavioral data is convincing and supports the major claims of the work, some conclusions need to be strengthened by further evidence or discussion. The work may be of broad interest to scientists working on pain, drug development, neuronal excitability, and ion channels.

      Reviewer #1 (Public Review):

      Summary:

      In this work, Xie, Prescott, and colleagues have reevaluated the role of Nav1.7 in nociceptive sensory neuron excitability. They find that nociceptors can make use of different sodium channel subtypes to reach equivalent excitability. The existence of this degeneracy is critical to understanding neuronal physiology under normal and pathological conditions and could explain why Nav subtype-selective drugs have failed in clinical trials. More concretely, nociceptor repetitive spiking relies on Nav1.8 at DIV0 (and probably under normal conditions in vivo), but on Nav1.7 and Nav1.3 at DIV4-7 (and after inflammation in vivo).

      The conclusions of this paper are mostly well supported by data, and these findings should be of broad interest to scientists working on pain, drug development, neuronal excitability, and ion channels.

      Strengths:

      (1.1) The authors have employed elegant electrophysiology experiments (including specific pharmacology and dynamic clamp) and computational simulations to study the excitability of a subpopulation of DRGs that would very likely match with nociceptors (they take advantage of using transgenic mice to detect Nav1.8-expressing neurons). They make a strong point showing the degeneracy that occurs at the ion channel expression level in nociceptors, adding this new data to previous observations in other neuronal types. They also demonstrate that the different Nav subtypes functionally overlap and are able to interchange their "typical" roles in action potential generation. As Xie, Prescott, and colleagues argue, the functional implications of the degenerate character of nociceptive sensory neuron excitability need to be seriously taken into account regarding drug development and clinical trials with Nav subtype-selective inhibitors.

      Weaknesses:

      (1.2) The next comments are minor criticisms, as the major conclusions of the paper are well substantiated. Most of the results presented in the article have been obtained from experiments with DRG neuron cultures, and surely there is a greater degree of complexity and heterogeneity about the degeneracy of nociceptors excitability in the "in vivo" condition. Indeed, the authors show in Figures 7 and 8 data that support their hypothesis and an increased Nav1.7's influence on nociceptor excitability after inflammation, but also a higher variability in the nociceptors spiking responses. On the other hand, DRG neurons targeted in this study (YFP (+) after crossing with Nav1.8-Cre mice) are >90% nociceptors, but not all nociceptors express Nav1.8 in vivo. As shown by Li et al., 2016 ("Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity"), there is a high heterogeneity of neuron subtypes within sensory neurons. Therefore, some caution should be taken when translating the results obtained with the DRG neuron cultures to the more complex "in vivo" panorama.

      We agree that most but not all Nav1.8+ DRG cells are nociceptors and that not all nociceptors express Nav1.8. We targeted small neurons that also express (or at some point expressed) Nav1.8, thus excluding larger neurons that express Nav1.8. This allowed us to hone in on a relatively homogeneous set of neurons, which is crucial when testing different neurons to compare between conditions (as opposed to testing longitudinally in the same neuron, which is not feasible). We expect all neurons are degenerate but likely on the basis of different ion channel combinations. Indeed, even within small Nav1.8+ neurons, other channels that we did not consider likely contribute to the degenerate regulation (as now better reflected in the revised Discussion).

      That said, there are multiple sources of heterogeneity. We suspect that heterogeneity is more increased after inflammation than after axotomy because all DRG neurons experience axotomy when cultured whereas neurons experience inflammation differently in vivo depending on whether their axon innervates the inflamed area (now explained on lines 214-215). This is not so much about whether the insult occurs in vivo or in vitro, but about how homogeneously neurons are affected by the insult. Granted, neurons are indeed more likely to be heterogeneously affected in vivo since conditions are more complex. But our goal in testing PF-71 in behavioral tests (Fig. 8) was to show that changes observed in nociceptor excitability in Figure 7, despite heterogeneity, were predictive of changes in drug efficacy. In short, we establish Nav interchangeability by comparing neurons in culture (Figs 1-6), but we then show that similar Nav shifts can develop in vivo (Fig 7) with implications for drug efficacy (Fig 8). Such results should alert readers to the importance of degeneracy for drug efficacy (which is our main goal) even without a complete picture of nociceptor degeneracy or DRG neuron heterogeneity. Additions to the Discussion (lines 248-259, 304-308) are intended to highlight these considerations.

      (1.3) Although the authors have focused their attention on Nav channels, it should be noted that degeneracy concerning other ion channels (such as potassium ion channels) could also impact the nociceptor excitability. The action potential AHP in Figure 1, panel A is very different comparing the DIV0 (blue) and DIV4-7 examples. Indeed, the conductance density values for the AHP current are higher at DIV0 than at DIV7 in the computational model (supplementary table 5). The role of other ion channels in order to obtain equivalent excitability should not be underestimated.

      We completely agree. We focused on Nav channels because of our initial observation with TTX and because of industry’s efforts to develop Nav subtype-selective inhibitors, whose likelihood of success is affected by the changes we report. But other channels are presumably changing, especially given observed changes in the AHP shape (now mentioned on lines 304-308). Investigation should be expanded to include these other channels in future studies.

      Reviewer #2 (Public Review):

      Summary:

      The authors have noted in preliminary work that tetrodotoxin (TTX), which inhibits NaV1.7 and several other TTX-sensitive sodium channels, has differential effects on nociceptors, dramatically reducing their excitability under certain conditions but not under others. Partly because of this coincidental observation, the aim of the present work was to re-examine or characterize the role of NaV1.7 in nociceptor excitability and its effects on drug efficacy. The manuscript demonstrates that a NaV1.7-selective inhibitor produces analgesia only when nociceptor excitability is based on NaV1.7. More generally and comprehensively, the results show that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes (NaV 1.3/1.7 and 1.8). This can cause widespread changes in the role of a particular subtype over time. The degenerate nature of nociceptor excitability shows functional implications that make the assignment of pathological changes to a particular NaV subtype difficult or even impossible.

      Thus, the analgesic efficacy of NaV1.7- or NaV1.8-selective agents depends essentially on which NaV subtype controls excitability at a given time point. These results explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

      Strengths:

      (2.1) The above results are clearly and impressively supported by the experiments and data shown. All methods are described in detail, presumably allow good reproducibility, and were suitable to address the corresponding question. The only exception is the description of the computer model, which should be described in more detail.

      We failed to report basic information such as the software, integration method and time step in the original text. This information is now provided on lines 476-477. Notably, the full code is available on ModelDB plus all equations including the values for all gating parameters are provided in Supplementary Table 5 and values for maximal conductance densities for DIV0 and DIV7 models are provided in Supplementary Table 6. Changes in conductance densities to simulate different pharmacological conditions are reported in the relevant figure legends (now shown in red). We did not include model details in the main text to avoid disrupting the flow of the presentation, but all the model details are reported in the Methods, tables and/or figure legends.

      (2.2) The results showing that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and expression of different NaV subtypes are of great importance in the fields of basic and clinical pain research and sodium channel physiology and pharmacology, but also for a broad readership and community. The degenerate nature of nociceptor excitability, which is clearly shown and well supported by data has large functional implications. The results are of great importance because they may explain, at least in part, the poor clinical outcomes with the use of subtype-selective NaV inhibitors and therefore have major implications for the future development of Nav-selective analgesics.

      In summary, the authors achieved their overall aim to enlighten the role of NaV1.7 in nociceptor excitability and the effects on drug efficacy. The data support the conclusions, although the clinical implications could be highlighted in a more detailed manner.

      Weaknesses:

      As mentioned before, the results that nociceptors can achieve equivalent excitability through changes in differential NaV inactivation and NaV expression of different NaV subtypes are impressive. However, there is some "gap" between the DRG culture experiments and acutely dissociated DRGs from mice after CFA injection. In the extensive experiments with cultured DRG neurons, different time points after dissociation were compared. Although it would have been difficult for functional testing to examine additional time points (besides DIV0 and DIV47), at least mRNA and protein levels should have been determined at additional time points (DIV) to examine the time course or whether gene expression (mRNA) or membrane expression (protein) changes slowly and gradually or rapidly and more abruptly.

      Characterizing the time course of NaV expression changes is worthwhile but, insofar as such details are not necessary to establish that excitability is degenerate, it was not include in the current study. Furthermore, since mRNA levels do not parallel the functional changes in Nav1.7 (Figure 6A), we do not think it would be helpful to measure mRNA levels at intermediate time points. Measuring protein levels would be more informative, however, as now explained on lines 362-369, neurons were recorded at intermediate time points in initial experiments and showed a lot of variability. Methods that could track fluorescently-tagged NaV channels longitudinally (i.e. at different time points in the same cell) would be well suited for this sort of characterization, but will invariably lead to more questions about membrane trafficking, phosphorylation, etc. We agree that a thorough characterization would be interesting but we think it is best left for a future study.

      It would also be interesting to clarify whether the changes that occur in culture (DIV0 vs. DIV47) are accompanied by (pro-)inflammatory changes in gene and protein expression, such as those known for nociceptors after CFA injection. This would better link the following data demonstrating that in acutely dissociated nociceptors after CFA injection, the inflammationinduced increase in NaV1.7 membrane expression enhances the effect of (or more neurons respond to) the NaV1.7 inhibitor PF-71, whereas fewer CFA neurons respond to the NaV1.8 inhibitor PF-24.

      These are some of the many good questions that emerge from our results. We are not particularly keen to investigate what happens over several days in culture, since this is not so clinically relevant, but it would be interesting to compare changes induced by nerve injury in vivo (which usually involves neuroinflammatory changes) and changes induced by inflammation. Many previous studies have touched on such issues but we are cautious about interpreting transcriptional changes, and of course all of these changes need to be considered in the context of cellular heterogeneity. It would be interesting to decipher if changes in NaV1.7 and NaV1.8 are directly linked so that an increase in one triggers a decrease in the other, and vice versa. But of course many other channels are also likely to change (as discussed above), and they too warrant attention, which makes the problem quite difficult. We look forward to tackling this in future work.

      The results shown explain, at least in part, the poor clinical outcomes with the use of subtypeselective NaV inhibitors and therefore have important implications for the future development of Nav-selective analgesics. However, this point, which is also evident from the title of the manuscript, is discussed only superficially with respect to clinical outcomes. In particular, the promising role of NaV1.7, which plays a role in nociceptor hyperexcitability but not in "normal" neurons, should be discussed in light of clinical results and not just covered with a citation of a review. Which clinical results of NaV1.7-selective drugs can now be better explained and how?

      We wish to avoid speculating on which particular clinical results are better explained because our study was not designed for that. Instead, our take-home message (which is well supported; see Discussion on lines 309-321) is that NaV1.7-selective drugs may have a variable clinical effect because nociceptors’ reliance on NaV1.7 is itself variable – much more than past studies would have readers believe. At the end of the results (line 235), which is, we think, what prompted the reviewer’s comment, we point to the Discussion. The corollary is that accounting for degeneracy could help account for variability in drug efficacy, which would of course be beneficial. The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is difficult. We certainly don’t have all the answers, but we hope our results will point readers in a new direction to help answer such questions.

      Another point directly related to the previous one, which should at least be discussed, is that all the data are from rodents, or in this case from mice, and this should explain the clinical data in humans. Even if "impediment to translation" is briefly mentioned in a slightly different context, one could (as mentioned above) discuss in more detail which human clinical data support the existence of "equivalent excitability through different sodium channels" also in humans.

      We are not aware of human data that speak directly to nociceptor degeneracy but degeneracy has been observed in diverse species; if anything, human neurons are probably even more degenerate based on progressive expansion of ion channel types, splice variants, etc. over evolution. Of course species differences extend beyond degeneracy and are always a concern for translation, because of a species difference in the drug target itself or because preclinical pain testing fails to capture the most clinically important aspects of pain (which we mention on line 35). Line 39 now reiterates that these explanations for translational difficulties are not mutually exclusive, but that degeneracy deserves greater consideration that is has hitherto received. Indeed, throughout our paper we imply that degeneracy may contribute to the clinical failure of Nav subtype-specific drugs, but those failures are certainly not evidence of degeneracy. In the Discussion (line 320-321), we now cite a recent review article on degeneracy in the context of epilepsy, and point out how parallels might help inform pain research. We wish we had a more direct answer to the reviewer’s request; in the absence of this, we hope our results motivate readers to seek out these answers in future research.

      Although speculative, it would be interesting for readers to know whether a treatment regimen based on "time since injury" with NaV1.7 and NaV1.8 inhibitors might offer benefits. Based on the data, could one hypothesize that NaV1.7 inhibitors are more likely to benefit (albeit in the short term) in patients with neuropathic pain with better patient selection (e.g., defined interval between injury and treatment)?

      We like that our data prompt this sort of prediction. However, this is potentially complicated since the injury may be subtle, which is to say that the exact timing may not be known. There are scenarios (e.g. postoperative pain) where the timing of the insult is known, but in other cases (e.g. diabetic neuropathy) the disease process is quite insidious, and different neurons might have progressed through different stages depending on how they were exposed to the insult. Our own experiments with CFA are a case in point. Notwithstanding the potential difficulties about gauging the time course, any way of predicting which Nav subtype is dominant could help more strategically choose which drug to use.

      Reviewer #3 (Public Review):

      Summary:

      In this study, the authors used patch-clamp to characterize the implication of various voltagegated Na+ channels in the firing properties of mouse nociceptive sensory neurons. They report that depending on the culture conditions NaV1.3, NaV1.7, and NaV1.8 have distinct contributions to action potential firing and that similar firing patterns can result from distinct relative roles of these channels. The findings may be relevant for the design of better strategies targeting NaV channels to treat pain.

      Strengths:

      The paper addresses the important issue of understanding, from an interesting perspective, the lack of success of therapeutic strategies targeting NaV channels in the context of pain. Specifically, the authors test the hypothesis that different NaV channels contribute in a plastic manner to action potential firing, which may be the reason why it is difficult to target pain by inhibiting these channels. The experiments seem to have been properly performed and most conclusions are justified. The paper is concisely written and easy to follow.

      Weaknesses:

      (1) The most critical issue I find in the manuscript is the claim that different combinations of NaV channels result in equivalent excitability. For example, in the Abstract it is stated that: "...we show that nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8". The gating properties of these channels are not identical, and therefore their contributions to excitability should not be the same. I think that the culprit of this issue is that the authors reach their conclusion from the comparison of the (average) firing rate determined over 1 s current stimulation in distinct conditions. However, this is not the only parameter that determines how sensory neurons convey information. For instance, the time dependence of the instantaneous frequency, the actual firing pattern, may be important too. Moreover, the use of 1 s of current stimulation might not be sufficient to characterize the firing pattern if one wants to obtain conclusions that could translate to clinical settings (i.e., sustained pain). A neuron in which NaV1.7 is the main contributor is expected to have a damping firing pattern due to cumulative channel inactivation, whereas another depending mainly on NaV1.8 is expected to display more sustained firing. This is actually seen in the results of the modelling.

      This concern seems to boil down to how equivalent is equivalent? The spike shape or the full inputoutput curve for a DIV0 neuron (Nav1.8-dominant) is never equivalent to what’s seen in a DIV47 neuron (Nav1.7-dominant), but nor are any two DIV0 neurons strictly equivalent, and likewise for any two DIV4-7 neurons. Our point is that DIV0 and DIV4-7 neurons are a far more similar (less discriminable) in their excitability than expected from the qualitative difference in their TTX sensitivity (and from repeated claims in the literature that Nav1.7 is necessary for spike generation in nociceptors). Nav isoforms need not be identical to operate similarly; for instance, Nav1.8 tends to activate at “suprathreshold” voltages, but this depends on the value of threshold; if threshold increases, Nav1.8 can activate at subthreshold voltages (see Fig 5). We have modified lines 155- 175 to help clarify this.

      We completely agree that firing rate is not the only way to convey sensory information, and of course injecting current directly into the cell body via a patch pipette is not a natural stimulus. These are all factors to keep in mind when interpreting our data. Nonetheless, our data show that excitability is similar between DIV0 and DIV 4-7, so much so that data from any one neuron (without pharmacological tests or capacitance measurements) would likely not reveal if that cell is DIV0 or DIV4-7; this “indiscriminability” qualifies as “equivalent” for our purposes, and is consistent with phrasing used by other authors studying degeneracy. Notably, not every DIV4-7 neuron exhibits spike height attenuation (see Fig. 1A), likely because of concomitant changes in the AHP that were not captured in our computer model or directly tested in our experiments. This highlights that other channel changes may also contribute to degeneracy and the maintenance of repetitive spiking.

      (2) In Fig. 1, is 100 nM TTX sufficient to inhibit all TTX-sensitive NaV currents? More common in literature values to fully inhibit these currents are between 300 to 500 nM. The currents shown as TTX-sensitive in Fig. 1D look very strange (not like the ones at Baseline DIV4-7). It seems that 100 nM TTX was not enough, leading to an underestimation of the amplitude of the TTXsensitive currents.

      As now summarized in Supplementary Table 3 (which is newly added), 100 nM TTX is >20x the EC50 for Nav1.3 and Nav1.7 (but is still far below the EC50 for Nav1.8). Based on this, TTXsensitive channels are definitely blocked in our TTX experiments.

      (3) Page 8, the authors conclude that "Inflammation caused nociceptors to become much more variable in their reliance of specific NaV subtypes". However, how did the authors ensure that all neurons tested were affected by the CFA model? It could be that the heterogeneity in neuron properties results from distinct levels of effects of CFA.

      We agree with the reviewer. We also believe that variable exposure to CFA is the most likely explanation for the heightened variability in TTX-sensitivity reported in Figure 7 (now more clearly explained on lines 214-215). One could try co-injecting a retrograde dye with the CFA to label cells innervating the injection site, but differential spread of the CFA and dye are liable to preclude any good concordance. Alternatively, a pain model involving more widespread (systemic) inflammation might cause a more homogeneous effect. But, our main goal with CFA injections was to show that a Nav1.8®Nav1.7 switch can occur in vivo (and is therefore not unique to culturing), and that demonstration is true even if some neurons do not switch. Subsequent testing in Figure 8 shows that enough neurons switch to have a meaningful effect in terms of the behavioral pharmacology. So, notwithstanding tangential concerns, we think our CFA experiments succeeded in showing that Nav channels can switch in vivo and that this impacts drug efficacy.

      Recommendations for the authors:

      All reviewers agreed that these results are solid and interesting. However, the reviewers also raised several concerns that should be addressed by the authors to improve the strength of the evidence presented. Revisions considered to be essential include:

      (1) Discuss how degeneracy concerning other ion channels (such as potassium ion channels) could also impact nociceptor excitability (reviewer #1). Additionally, the translation of results from DRG neuron cultures to "in vivo" nociceptors should be better discussed.

      We have added a new paragraph to the Discussion (line 248-259) to remind readers that despite our focus on Nav channels, other ion channels likely also change (and that these changes involve diverse regulatory mechanisms that require further investigation). Likewise, despite our focus on the changes caused by culturing neurons, we remind readers that subtler, more clinically relevant in vivo perturbations can likewise cause a multitude of changes. We end that paragraph by emphasizing that although accounting for all the contributing components is required to fully understand a degenerate system, meaningful progress can be made by studying a subset of the components. We want to emphasize this because there is some middle ground between focusing on one component at a time (which is the norm) vs. trying to account for everything (which is an infeasible ideal). Additional text on lines 304-308 also addresses related points.

      (2) Discuss how different combinations of NaV channels result in equivalent excitability, in the context of the experimental conditions used (see main comment by reviewer #3). It should also be discussed in more detail which human clinical data support the existence of "equivalent excitability through different sodium channels" also in humans (reviewer #2).

      Regarding the first part of this comment, reviewer 3 wrote in the public review that “The gating properties of these channels are not identical, and therefore their contributions to excitability should not be the same.” Differences in gating properties are commonly used to argue that different Nav subtypes mediate different phases of the spike, for example, that Nav1.7 initiates the spike whereas Nav1.8 mediates subsequent depolarization because Nav1.7 and Nav1.8 activate at perithreshold and suprathrehold voltages, respectively (see lines 134-135, now shown in red). But such comparison is overly simplistic insofar as it neglects the context in which ion channels operate. For instance, if Nav1.7 is not expressed or fully inactivates, voltage threshold will be less negative, enabling Nav1.8 to contribute to spike initiation; in other words, previously “suprathreshold” voltages become “perithreshold”. Figure 5 is dedicated to explaining this context-sensitivity; specifically, we demonstrate with simulations how Nav1.8 takes over responsibility for initiating a spike when Na1.7 is absent or inactivated. Text on lines 155- 184 has been edited to help clarify this. Regarding the second part of this comment, we are not aware of any direct evidence from human sensory neurons that different sodium channels produce equivalent excitability, but that is certainly what we expect. We suggest that failure of Nav subtype-specific drugs is, at least in part, because of degeneracy, but such failures do not demonstrate degeneracy unless other contributing factors can be excluded (which they can’t). Recognizing degeneracy is difficult, and so variability that might be explained by degeneracy will go unexplained or attributed to other factors unless, by design or serendipity, experiments quantify the effects of degeneracy (as we have attempted to do here). We now cite a recent review article on degeneracy and epilepsy (line 320), which addresses relevant themes that might help inform pain research; for instance, most existing antiseizure medications act on multiple targets whereas more recently developed single-target drugs have proven largely ineffective. This is similar to but better documented than for analgesics. With this in mind, we revised the text to emphasize the circumstantial nature of existing evidence and the need to test more directly for degeneracy (lines 320-323).

      (3) Extend the discussion about the poor clinical outcomes with the use of subtype-selective NaV inhibitors. In particular, the promising role of NaV1.7, which plays a role in nociceptor hyperexcitability but not in "normal" neurons, should be discussed in light of clinical results and not just covered with a citation of a review. Which clinical results of NaV1.7-selective drugs can now be better explained and how? (reviewer #2)

      As discussed above, we are cautious avoid speculating on which clinical results are attributable to degeneracy. Instead, our take-home message (see Discussion, lines 309-323) is that NaV1.7selective drugs may have a variable clinical effect because nociceptors’ reliance on NaV1.7 is itself variable – much more than past studies would have readers believe. The corollary is that accounting for degeneracy could help account for variability in drug efficacy, which would of course be beneficial. The challenge (as highlighted in the Abstract, lines 21-22) is that identifying the dominant Nav subtype to predict drug efficacy is not trivial. Interpreting clinical data is also complicated by the fact that we are either dealing with genetic mutations (with unclear compensatory changes) or pharmacological results (where NaV1.7-selective drugs have a multitude of problems that might contribute to their lack of efficacy, separate from effects of degeneracy). We have striven to contextualize our results (e.g. last paragraph of results, lines 222-235). We think this is the most we can reasonably say based on the limitations of existing clinical data.

      (4) Provide a clearer and more detailed description of the computational model (reviewers #2 and #3).

      We added important details on line 476-477 but, in our honest opinion, we think our computational model is thoroughly explained. The issue seems to boil down to whether details are included in the Results vs. being left for the Methods, tables and figure legends. We prefer the latter.

      (5) Better clarify the effects of the CFA model, to provide further evidence relating inflammation with nociceptors variability (reviewers #2 and #3)

      As explained in response to a specific point by reviewer #3, we believe that variable exposure to CFA explains the heightened variability in TTX-sensitivity reported in Figure 7 (now explained on lines 214-215). One could try co-injecting a retrograde dye with the CFA to label cells innervating the injection site, but differential spread of the inflammation and dye are liable to preclude any good concordance. Alternatively, a pain model involving more widespread (systemic) inflammation might cause a more homogeneous effect. But, our main goal with CFA injections was to show that a Nav1.8®Nav1.7 switch can occur in vivo (and is therefore not unique to culturing); that demonstration holds true even if some neurons do not switch. Subsequent testing (Fig 8) shows that enough neurons switch to drug efficacy assessed behaviorally. This is emphasized with new text on lines 225-227. Overall, we think our CFA experiments succeed in showing that Nav channels can switch in vivo and, despite variability, that this occurs in enough neurons to impact drug efficacy.

      (6) Revise the text according to all recommendations raised by the reviewers and listed in the individual reviews.

      Detailed responses are provided below for all feedback and changes to the text were made whenever necessary, as identified in our responses.

      Reviewer #1 (Recommendations For The Authors):

      Minor points/recommendations:

      Protein synthesis inhibition by cercosporamide could be the direct cause of a smaller-thanexpected increase in Nav1.7 levels at DIV5. But for Nav1.8, there is a mitigation in the increased levels at DIV5, that only could be explained by several indirect mechanisms, including membrane trafficking and posttranslational modifications (phosphorylation, SUMOylation, etc.) on Nav1.8 or protein regulators of Nav1.8 channels. The authors suggest that "translational regulation is crucial", but also insinuate that other processes (membrane trafficking, etc.) could contribute to the observed outcome. It is difficult to assess the relative importance of these different explanations without knowing the exact mechanisms that are acting here.

      We agree. We relied on electrophysiology (and pharmacology) to measure functional changes, but we wanted to verify those data with another method. We expected mRNA levels to parallel the functional changes but, when that did not pan out, we proceeded to look at protein levels. Perhaps we should have stopped there, but by blocking protein translation, we show that there is not enough Nav1.7 protein already available that can be trafficked to the membrane. That does not explain why Nav1.8 levels drop. Our immunohistochemistry could not tease apart membrane expression from overall expression, which limits interpretation. We have enhanced the text to discuss this (lines 200-204), but further experiments are needed. Though admittedly incomplete, our initial finding help set the stage for future experiments on this matter.

      Page 15, typo: "contamination from genomic RNA" -> "contamination from genomic DNA" (appears twice).

      This has been corrected on lines 420 and 421.

      Page 17: I could not find the computer code at ModelDB (http://modeldb.yale.edu/267560). It seems to be an old web link. It should be available at some web repository.

      We confirmed that the link works. Entry is password-protected (password = excitability; see line 476). Password protection will be removed once the paper is officially published.

      Page 19, reference 36, typo: "Inhibitio of" -> "Inhibition of".

      This has been corrected (line 557).

      Page 33, typo: "are significantly larger than differences at DIV1" -> "are significantly larger than differences at DIV0".

      This has been corrected (line 796).

      Page 35, figure 6 legend. The number of experiments (n) is not indicated for panel C data.

      N = 3 is now reported (line 828).

      Reviewer #2 (Recommendations For The Authors):

      p. 3/4 and Data of Fig. 6: It should be commented on why days 1-3 were not investigated. An investigation of the time course (by higher frequency testing) would certainly have an added value because it would be possible to deduce whether the changes develop slowly and gradually, or whether the excitability induced by different NaVs changes suddenly. At least mRNA and protein levels should be determined at additional time points to examine the time course or whether gene expression (mRNA) or membrane expression (protein) changes slowly and gradually or rapidly and more abruptly. It would also be interesting to clarify whether the changes that occur in culture (DIV0 vs. DIV4-7) are accompanied by (pro-)inflammatory changes in gene and protein expression, such as those known for nociceptors after CFA injection. Or is the latter question clear in the literature?

      We now explain (lines 362-369) that intermediate time points (DIV1-3) were tested in initial current clamp recordings. Those data showed that TTX-sensitivity stabilized by DIV4 and differed from the TTX-insensitivity observed at DIV0. TTX-sensitivity was mixed at DIV1-3 and crosscell variability complicated interpretation. Subsequent experiments were prioritized to clarify why NaV1.7 is not always critical for nociceptor excitability, contrary to past studies. Our efforts to measure mRNA and protein levels were primarily to validate our electrophysiological findings; we are also interested in deciphering the underlying regulatory processes but this is an entire study on its own. Unfortunately, the existing literature does not help or point to an explanation for the Nav1.7/1.8 shift we observed.

      Our evidence that mRNA levels do not parallel functional changes argues against pursuing transcriptional changes in Nav1.7, though transcriptional changes in other factors might be important. Interpretation of immuno quantification would be complicated by the high variability we observed with the physiology at intermediate time points and, furthermore, we cannot resolve surface expression from overall expression based on available antibodies. Methods conducive to longitudinal measurements would be more appropriate (as now mentioned on line 367-369). In short, a lot more work is required to understand the mechanisms involved in the switch, but we think the existing demonstration suffices to show that NaV1.7 and NaV1.8 protein levels vary, with crucial implications for which Nav subtype controls nociceptor excitability, and important implications for drug efficacy. Explaining why and how quickly those protein levels change will be no small feat is best left for a future study.

      p. 4 and following: In order to enable the interpretation of the used concentration of PF-24, PF71, and ICA, the respective IC50 should be indicated.

      A table (now Supplementary Table 3; line 861) has been added to report EC50 values for all drugs for blocking NaV1.7, NaV1.8 and NaV1.3. The concentrations we used are included on that table for easy comparison.

      p. 5, end of the middle paragraph: Here it should be briefly explained -for less familiar readers- why NaV1.1 cannot be causative (ICA inhibits NaV1.1 and 1.3).

      We now explain (lines 117-120) that NaV1.1 is expressed almost exclusively in medium-diameter (A-delta) neurons whereas NaV1.3 is known to be upregulated in small-diameter neurons, and so the effect we observe in small neurons is most likely via blockade NaV1.3.

      p. 6, lines 4/5: At least once it should read computer model instead of model.

      “Computer” has been added the first time we refer to DIV0 or DIV4-7 computer models (lines 138-139)

      p. 6: the difference between Fig. 4B and Fig. 4 - Figure suppl. 1 should be mentioned briefly.

      We now explain (lines 150-154) that Fig. 4B involves replacing a native channel with a different virtual channel (to demonstrate their interchangeability) whereas and Fig. 4 - Figure supplement 1 involves replacing a native channel with the equivalent virtual channel (as a positive control).

      p. 6/7: the text and the conclusions regarding Figure 5 are difficult to follow. Somewhat more detailed explanations of why which data demonstrate or prove something would be helpful.

      The text describing Figure 5 (lines 155-175) has been revised to provide more detail.

      p. 7, last sentence of the first paragraph: How is this supported by the data? Or should this sentence be better moved to the discussion?

      This sentence (now lines 182-184) is designed as a transition. The first half – “a subtype’s contribution shifts rapidly (because of channel inactivation)” – summarizes the immediately preceding data (Figure 5). The second half – “or slowly (because of [changes in conductance density])” – introduces the next section. The text show in square brackets has been revised. We hope this will be clearer based on revisions to the associated text.

      p. 7, second paragraph, line 3: Please delete one "at both".

      Corrected

      p. 7, second paragraph: Please explain why different time points (DIV4-7, DIV5, or DIV7) were used or studied.

      Initial electrophysiological experiments determined that TTX sensitivity stabilized by DIV 4 (see response to opening point) and we did not maintain neurons longer than 7 days, and so neurons recorded between DIV4 and 7 were pooled. If non-electrophysiological tests were conducted on a specific day within that range, we report the specific day, but any day within the DIV4-7 range is expected to give comparable results. This is now explained on lines 365-367.

      p. 8: the text regarding Fig. 7 should also include the important data (e.g. percentage of neurons showing repetitive spinking) mentioned in the legend.

      This text (lines 216-220) has been revised to include the proportion of neurons converted by PF71 and PF-24 and the associated statistical results.

      Fig. 1: third panel (TTX-sensitive current...) of D & Fig. 2 subpanel of A (Nav1.8 current...). These panels should be explained or mentioned in the text and/or legends.

      We now explain in the figure legends (lines 708-710; 714-715; 736-738) how those currents are found through subtraction.

      Fig. 2 - figure supplement 2. One might consider taking Panel A to Fig. 2 so that the comparison to DIV0 is apparent without switching to Suppl. Figs.

      We left this unchanged so that Figures 2 and 3 are equivalently organized, with negative control data left to the supplemental figures. Elife formatting makes it easy to reach the supplementary figure from the main figure, so we hope this won’t be an impediment to readers.

      Fig. 6 C, middle graph (graph of Nav1.7): Please re-check, whether DIV5 none vs. 24 h and none vs. 120 h are really significantly different with such a low p-value.

      We re-checked the statistics and the difference pointed out by the reviewer is significant at p=0.007. We mistakenly reported p<0.001 for all comparisons, and so this p value has been corrected; all the other p values are indeed <0.001. Notably, the data are summarized as median ± quartile because of their non-Gaussian distribution; this is now explained on line 827 (as a reminder to the statement on lines 461-462). Quartiles are more comparable to SD than to SEM (in that quartiles and SD represent the distribution rather than confidence in estimating the mean, like SEM), and so medians can differ very significantly even if quartiles overlap, as in this case.

      Reviewer #3 (Recommendations For The Authors):

      (1) A critical issue in the manuscript is the use of teleological language. It is likely that this is not the intention, but careful revision of the language should be done to avoid the use of expressions that confer purpose to a biological process. Please, find below a list of statements that I consider require correction.

      • In the Abstract, the first sentence: "Nociceptive sensory neurons convey pain signals to the CNS using action potentials". Neurons do not really "use" action potentials, they have no will or purpose to do so. Action potentials are not tools or means to be "used" by neurons. Other examples of misuse of the verb "use" are found in several other sentences:

      "...nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8"

      "Flexible use of different NaV subtypes - an example of degeneracy - compromises..."

      "Nociceptors can achieve equivalent excitability using different sodium channel subtypes" "...degeneracy - the ability of a biological system to achieve equivalent function using different components..."

      "...nociceptors can achieve equivalent excitability using different sodium channel subtypes..."

      "Our results show that nociceptors can achieve similar excitability using different NaV channels" "...the spinal dorsal horn circuit can achieve similar output using different synaptic weight combinations..."

      "Contrary to the view that certain ion channels are uniquely responsible for certain aspects of neuronal function, neurons use diverse ion channel combinations to achieve similar function" "In summary, our results show that nociceptors can achieve equivalent excitability using different NaV subtypes"

      “Use” can mean to put into action (without necessarily implying intention). Based on definitions of the word in various dictionaries, we feel we are well within the realm of normal usage of this term. In trying to achieve a clear and succinct writing style, we have stuck with our original word choice.

      • At the end of page 5 and in the legend of Fig. 7, the word "encourage" is not properly used in the sentence "The ability of NaV1.3, NaV1.7 and NaV1.8 to each encourage repetitive spiking is seemingly inconsistent with the common view...". Encouraging is really an action of humans or animals on other humans or animals.

      Like for “use”, we verified our usage in various dictionaries and we do not think that most readers will be confused or disturbed by our word choice. We use “encourage” to explain that increasing NaV1.3, NaV1.7 or NaV1.8 can increase the likelihood of repetitive spiking; we avoided “cause” because the probability of repetitive spiking is not raised to 100%, since other factors must always be considered.

      • In the Abstract and other places in the manuscript, the word "responsibility" seems to be wrongly employed. It is true that one can say, for instance, on page 4 last paragraph "we sought to identify the NaV subtype responsible for repetitive spiking at each time point". However, to confer channels with the human quality of having "responsibility" for something does not seem appropriate. See also page 8 last paragraph, the first paragraph of the Discussion, and the three paragraphs of page 11.

      Again, we must respectfully disagree with the reviewer. We appreciate that this reviewer does not like our writing style but we do not believe that our style violates English norms.

      (2) In the first sentence of the Abstract, nociceptive sensory neurons do not convey "pain signals". Pain is a sensation that is generated in the brain.

      “Pain” is used as an adjective for “signal” and is used to help identify the type of signal. Nonetheless, since the word count allowed for it, we now refer to “pain-related signals” (line 10).

      (3) I do not see the point of plotting the firing rate as a function of relative stimulus amplitude (normalized to the rheobase, e.g., Fig. 1A bottom panels, Fig. 2B, bottom-right, Fig. 2 Supp2A right, Fig. 3 B bottom panels, etc) instead of as a function of the actual stimulus amplitude. I have the impression that this maneuver hides information. This is equivalent to plotting the current amplitudes as a function of the voltage normalized by the voltage threshold for current activation, which is obviously not done.

      This is how the experiments were performed, so it would be impossible to perform the statistical analysis using the absolute amplitudes post-hoc; specifically, stimulus intensities were tested at increments defined relative to rheobase rather than in absolute terms. There are pros and cons to each approach, and both approaches are commonly used. Notably, we report the value of rheobase on the figures so that readers can, with minimal arithmetic, convert to absolute stimulus intensities. No information is hidden by our approach.

      (4) On page 4 it is stated that "We show later that similar changes develop in vivo following inflammation with consequences for drug efficacy assessed behaviourally (see Fig. 8), meaning the NaV channel reconfiguration described above is not a trivial epiphenomenon of culturing". However, what happens in culture may have nothing in common with what happens in vivo during inflammation. Thus, the latter data may not serve to answer whether the culture conditions induce artifacts or not. I suggest tuning down this statement by changing "meaning" to "suggesting".

      On line 97, we now write “suggesting”.

      (5) Page 5, first paragraph, I miss a clear description of the mathematical models. Having to skip to the Methods section to look for the details of the models as the artifices introduced to simulate different conditions is rather inconvenient.

      So as not to disrupt the flow of the presentation with methodological details, we only provide a short description of the model in the Results. We have slightly expanded this to point out that the conductance-based model is also single-compartment (line 111). We provide a very thorough description of our model in the Methods, especially considering all the details provided in Supplementary Tables 1, 5 and 6. We also report conductance densities and % changes in figure legends (lines 722, 747-748; now shown in red). This is also true for Figure 3-figure supplement 2 (lines 756-759). We tried very hard to find a good balance that we hope most readers will appreciate.

      (6) Page 6, second paragraph, simulations do not serve to "measure" currents.

      The sentence been revised to indicate that simulations were used to “infer” currents during different phases of the spike (line 155).

      (7) Page 7, regarding the tile of the subsection "Control of changes in NaV subtype expression between DIV0 and DIV4-7", the authors measured the levels of expression, but not really the mechanisms "controlling" them. I suggest writing "changes in NaV subtype expression between DIV0 and DIV4-7"

      We have removed “control of” from the section title (line 185)

      (8) What was the reason for adding a noise contribution in the model?

      We now explain that noise was added to reintroduce the voltage noise that is otherwise missing from simulations (line 474). For instance, in the absence of noise, membrane potential can approach voltage threshold very slowly without triggering a spike, which does not happen under realistically noisy conditions. Of course membrane potential fluctuates noisily because of stochastic channel opening and a multitude of other reasons. This is not a major issue for this study, and so we think our short explanation should suffice.

      (9) Please, define the concept of degeneracy upon first mention.

      Degeneracy is now succinctly defined in the abstract (line 20).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This paper represents important findings when identifying untargeted metabolomics and its differences between metabolomes of different biological samples. GromovMatcher is the fantasy name for the soft development. The main idea behind it is built on the assumption of featuring and matching complex datasets. Although the manuscript reflects a solid analysis, it remains incomplete for validation with putative non-curated datasets.

      We are grateful to the eLife editor for taking the time and effort to assess our manuscript.

      We are however unsure of what the editor means by “it remains incomplete for validation with putative non-curated datasets”. As noted by Reviewer 2, manually curated datasets that could be used for validation are scarce. Most publicly available datasets do not contain sufficient information to establish a ground truth matching on which GromovMatcher, M2S, or metabCombiner can be tested. Even in the case where such a ground truth matching can be established, it must be performed by-hand through a manual matching process which is extremely time-consuming and requires very specific expertise. This, in our opinion, only highlights the need for automatic alignment methods such as metabCombiner, M2S or GromovMatcher.

      We do agree that the performance of GromovMatcher (and its competitors) needs to be validated further, and we plan to continue validating GromovMatcher as additional data becomes available in EPIC and other cohorts. With that in mind, the lack of publicly available validation data is the reason why we conducted such an extensive simulation study, arguably more comprehensive than previous validations, exploring challenging settings that we believe reflect real-life scenarios (main text “Validation on ground-truth data” and Appendix 3). We would like to stress that this allows us to highlight previously ignored limitations of the previously published methods, metabCombiner and M2S.

      We wish to thank the editor and reviewers for their time and efforts in reviewing our manuscript which led to many significant additions to our paper. Namely we:

      • Performed an additional sensitivity analysis (Appendix 3) exploring how an imbalance in the number of features or samples between two studies being matched (e.g. the dataset split), affects the quality of matchings found by GromovMatcher, metabCombiner, and M2S.

      • Investigated how changing or removing the reference dataset (Appendix 5) in the EPIC study (main text “Application to EPIC data”), affects the results of GromovMatcher.

      • Improved alignment matrix visualizations in Fig. 3a for all four methods tested on the validation data, to highlight more clearly which feature matches were correctly identified or missed.

      The revised paper is uploaded as the file “main_elife_revision.pdf” where all revisions are highlighted in blue as well as a copy “main_elife_revision_nohighlights.pdf” where revisions are not highlighted.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors have implemented the Optimal Transport algorithm in GromovMatcher for comparing LC/MS features from different datasets. This paper gains significance in the proteomics field for performing meta-analysis of LC/MS data.

      Strengths:

      The main strength is that GromovMatcher achieves significant performance metrics compared to other existing methods. The authors have done extensive comparisons to claim that GromovMatcher performs well.

      Weaknesses:

      There are two weaknesses.

      (1) When the number of features is reduced the precision drops to ~0.8.

      We would like to clarify that this drop in precision occurs in the challenging setting where only a small proportion of metabolites are shared between both datasets (e.g., the overlap – or proportion of shared features - was 25% in our simulation study). When two untargeted metabolic datasets share only 25% of their features, this is a challenging setting for any automated matching method as the vast majority 75% of the features in both datasets must remain unmatched.

      In such settings, the reviewer correctly observes that the precision of GromovMatcher algorithms (GM and GMT) drops within the range of 0.80 - 0.85 (Figure 3b, top left panel). Such a precision of 0.8 or larger is still competitive compared with the alternative methods MetabCombiner (mC) and M2S whose precisions drop below 0.8 (see main text Fig. 3b, top left panel).

      Precision is measured as the number of metabolite pairs correctly matched divided by all matches identified by a method. In other words, even in the challenging setting when the number of shared features (true matches) between both datasets is small (e.g. low 25% overlap), upwards of 80% of the feature matches found by GromovMatcher are correct which is a very encouraging result.

      (2) How applicable is the method for other non-human datasets?

      We thank the reviewer for raising this question. The crux of the matter concerning the application to animal data revolves around the hypothesis that correlations between metabolites in two different studies are preserved. Theoretically, the metabolome operates under similar principles in humans, governed by an underlying network of biochemical reactions. Consequently, in comparable human populations, the GM hypothesis is likely to hold to some extent.

      However, in practice, application to animal data is more complicated. Animal studies tend to have smaller sample sizes and often stem from intervention-driven scenarios, such as mice subjected to specific diets or chemicals. This results in deliberate alterations in metabolic structures which makes finding two comparable animal studies less likely. To investigate the reviewer’s question, we have searched through the two predominant LC-MS dataset repositories (MetaboLights and NIH Metabolomics Workbench) but did not find any pairs of comparable animal studies due to the reasons mentioned above. One potential strategy to navigate this issue could entail regressing the metabolic intensities against the variables that notably differ between the two animal populations and running GM using the residual intensities. This would be an interesting direction for future research and additional validation would be needed to test the robustness of GM in this setting.

      Reviewer #2 (Public Review):

      Summary:

      The goal of untargeted metabolomics is to identify differences between metabolomes of different biological samples. Untargeted metabolomics identifies features with specific mass-to-charge ratio (m/z) and retention time (RT). Matching those to specific metabolites based on the model compounds from databases is laborious and not always possible, which is why methods for comparing samples on the level of unmatched features are crucial.

      The main purpose of the GromovMatcher method presented here is to merge and compare untargeted metabolomes from different experiments. These larger datasets could then be used to advance biological analyses, for example, for the identification of metabolic disease markers. The main problem that complicates merging different experiments is m/z and RT vary slightly for the same feature (metabolite).

      The main idea behind the GromovMatcher is built on the assumption that if two features match between two datasets (that feature I from dataset 1 matches feature j from dataset 2, and feature k from dataset 1 matches feature l from dataset 2), then the correlations or distances between the two features within each of the datasets (i and k, and j and l) will be similar. The authors then use the Gromov-Wasserstein method to find the best matches matrix from these data.

      The variation in m/z between the same features in different experiments is a user-defined value and it is initially set to 0.01 ppm. There is no clear limit for RT deviations, so the method estimates a non-linear deviation (drift) of RT between two studies. GromovMatcher estimates the drift between the two studies and then discards the matching pairs where the drift would deviate significantly from the estimate. It learns the drift from a weighted spline regression.

      The authors validate the’performance of their GromovMatcher method by a validation experiment using a dataset of cord blood. They use 20 different splits and compare the GromovMatcher (both its GM and GMT iterations, whereby the GMT version uses the deviation from estimated RT drift to filter the matching matrix) with two other matching methods: M2S and metabCombiner.

      The second validation was done using a (scaled and centered) dataset of metabolics from cancer datasets from the EPIC cohort that was manually matched by an expert. This dataset was also used to show that using automatic methods can identify more features that are associated with a particular group of samples than what was found by manual matching. Specifically, the authors identify additional features connected to alcohol consumption.

      Strengths:

      I see the main strength of this work in its combination of all levels of information (m/z, RT, and higher-order information on correlations between features) and using each of the types of information in a way that is appropriate for the measure. The most innovative aspect is using the Gromov-Wasserstein method to match the features based on distance matrices.

      We thank the reviewer for acknowledging this strength of our proposed GromovMatcher method.

      The authors of the paper identify two main shortcomings with previously established methods that attempt to match features from different experiments: a) all other methods require fine-tuning of user-defined parameters, and, more importantly, b) do not consider correlations between features. The main strength of the GromovMatcher is that it incorporates the information on distances between the features (in addition to also using m/z and RT).

      Weaknesses:

      The first, minor, weakness I could identify is that there seem not to be plenty of manually curated datasets that could be used for validation.

      We thank the reviewer for raising this issue concerning manually curated validation data.

      Manually curated datasets available for validation purposes are indeed scarce. This stems from the laborious nature of matching features across diverse studies, hence the need for automatic matching methods. Our future strategy involves further validation of the GromovMatcher approach as more data becomes accessible in EPIC and other cohorts.

      The scarcity of real-life publicly available datasets that can be used for validation purpose is the reason why we conducted an extensive simulation study (main text “Validation on ground-truth data” and Appendix 3). It is notably thorough, arguably more comprehensive than previous validations, utilizes real-life untargeted data, and imitates situations where data originates from distinct untargeted metabolomics studies, complete with realistic noise parameters encompassing RT, mz, and feature intensities. Our validation study comprehensively explores the performance of GromovMatcher, M2S, and metabCombiner, including in challenging realistic settings where there is a nonlinear drift in retention times, varying levels of feature overlaps between studies, normalizations of feature intensities, as well as imbalances in the number of features and samples present in the studies being matched.

      The second is also emphasized by the authors in the discussion. Namely, the method as it is set up now can be directly used only to compare two datasets.

      This is indeed a limitation that is common to all three methods considered in this paper. However, all these methods, GromovMatcher, M2S, and metabCombiner, can still be used to compare and pool multiple datasets using a multi-step procedure. Namely, this can be done by designating a 'reference' dataset and aligning all studies to it one by one. We take this exact approach in our paper when aligning the CS, HCC, and PC studies of the EPIC data in positive mode (main text “Application to EPIC data”). Namely, the HCC and PC studies are both aligned to the CS study by running GromovMatcher twice, and after obtaining these matchings, our analysis is restricted to those features in HCC and PC that are present in the CS study.

      After the reviewer’s comment, we have added an additional sensitivity analysis in Appendix 5, to compare the results produced by GromovMatcher depending on the choice of the reference study. Namely, setting the reference study to either the CS study or the HCC study, GromovMatcher identified 706 and 708 common features respectively, with an overlap of 640 features. This highlights that the choice of reference does matter to some extent. In our original analysis of the EPIC data, choosing CS as the reference was motivated by the fact that CS had the largest sample size (compared to HCC and PC) and a subset of features in HCC and PC were already matched by experts to the CS study which we could use for validation (see Loftfield et al. (2021). J Natl Cancer Inst.).

      As mentioned in the discussion section of our manuscript, the recently proposed multimarginal Gromov-Wasserstein algorithm (Beier, F., Beinert, R., & Steidl, G. (2023). Information and Inference) could potentially allow multiple metabolomic studies to be matched using one optimization routine (e.g. without the designation of a ‘reference study’ for matching). We have not explored this possibility in depth yet as fast numerical methods for multimarginal GW are still in their infancy. Also, such multimarginal methods rely on the computation and storage of coupling or matching matrices that are tensors where the number of dimensions is equal to the number of datasets being matched. Therefore, multimarginal methods have large memory costs, which currently precludes their application for the matching of multiple metabolomics datasets.

      Reviewer #2 (Recommendations For The Authors):

      (1) I was struggling with the representation used in Figure 3a. The gray points overlayed over the green points on a straight line are difficult to visually quantify. I found that my eyes mainly focused on the pattern of the red dots.

      Figure 3a has been modified to improve visual clarity. Namely we have consistently reordered the rows and columns of the coupling matrices such that the true positive matches (green points) are spatially separated from the false negative matches (red points). Now the fraction of true positive and false negative matches can be appreciated much more clearly by eye in Figure 3a.

      (2) I would also like to add the caveat that I cannot judge whether the authors used the other two methods that they compare with GromovMatcher (the M2S and metabCombiner) optimally. But I also do not see any evidence that they did not. Hopefully one of the other reviewers can address that.

      We appreciate the reviewer for highlighting the comparison of our approach GromovMatcher to the other existing methods M2S and MetabCombiner (mC). Both M2S and mC depend on tens of hyperparameters each with a discrete or continuous set of values that must be properly optimized to infer accurate matchings between dataset features. We detail in Appendix 2 how the hyperparameters of the M2S and mC methods are optimally tuned to achieve the best possible performance on the validation ground-truth data. Namely, both in the simulation study and on EPIC data, we grid-search over all important hyperparameters in the M2S and mC methods and choose those parameter combinations that result in the highest F1 score, averaged over 20 random trials. We remark that no such hyperparameter optimization was performed for our GromovMatcher method. As shown in Figures 3 and 4 of the main text, we find that GromovMatcher outperforms M2S and mC even in these cases when the hyperparameters of M2S and mC are tuned to predict optimal feature matchings.

      Given the large combinatorial space of hyperparameter choices, we believe we have thoroughly tested the important hyperparameter combinations that users of M2S and mC would be likely to explore in their own research.

      (3) Validation

      (3a) The first validation is done on a split cord blood dataset. I could not clearly see from the paper how sensitive the result is to the dataset split.

      We are grateful for the reviewer’s question and have included new experiments in Appendix 3 which show how the results of GromovMatcher, M2S, and MetabCombiner are affected by the dataset split. In our original manuscript, our validation ground-truth experiment began with an untargeted metabolomic dataset consisting of n = 499 samples and p = 4,712 metabolic features which is split equally into two datasets consisting of an equal number of samples n1 = n2 and an equal number of metabolic features p1 = p2. The features of these equal-sized datasets would then be matched by our method.

      Now in Appendix 3 (Figs. 1-3) we show the sensitivity of all three alignment methods (GromovMatcher, M2S, and MetabCombiner) when we vary the fraction of samples in dataset 1 over dataset 2 given by n1/ n2, the overlap in shared features between both datasets, and the fraction of metabolic features in dataset 1 that are not present in dataset 2 which affects the feature sizes of both datasets p1/ p2. We find that all alignment methods are able to maintain a consistent precision and recall score when these three dataset split parameters are varied. GromovMatcher achieves a higher precision and recall than M2S and MetabCombiner for all choices of dataset split, agreeing with the validation experiment results from the main text (see main text Fig. 3). All three methods tested decrease in precision (without dropping in recall) when dataset 1 and dataset 2 contain an equal number of unshared features (e.g. when p1 = p2). Therefore, these sensitivity experiments in Appendix 3 show that our results in the main text are performed in the most challenging setting for the dataset split.

      (3b) The second validation was done using a (scaled and centered) dataset of metabolics from cancer datasets from the EPIC cohort that was manually matched by an expert. Here the authors observe that metabCombiner has good precision, but lags in recall. And M2S has a very similar performance to GromovMatcher. The authors explain this by the fact that the drift in RT between the two experiments is mostly linear and thus does not affect the M2S performance. Can the authors find a different validation dataset where the drift in RT is not linear? If yes, it would be interesting to add it to the paper.

      We thank the reviewer for raising this question. As mentioned above, curated validation datasets such as the EPIC study analyzed in our paper are very rare and we do not currently have a validation study with a nonlinear retention time drift.

      Nevertheless, we performed an additional analysis of simulated data (reported in Appendix 2 – “M2S hyperparameter experiments” and Appendix 2 – Table 1) that demonstrates the decrease in M2S performance when the simulated drift is nonlinear. As presented in Appendix 2 – Table 1, in a low overlap setting with a linear drift which corresponds to the EPIC data, precision and recall were 0.831 and 0.934 respectively, instead of 0.769 and 0.905 in the main analysis where the drift was nonlinear.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We want to thank the reviewers for their thoughtful analysis and questions.

      A brief overview of the changes to the manuscript is provided here, with individual responses to the reviewer comments following.

      The methods section has been expanded to better explain the techniques used in our analyses. CTCF binding data section has likewise been expanded, to include more detail on the dataset and our analysis of its contents. All other requested clarifications have been added to areas of the results.

      Beyond specific requests from the reviewers, we made the following changes.

      We felt that a particular terminology choice on our part resulted in some confusion: the use of “SNPs” to refer to genetic variants within our Diversity Outbred samples. While we used SNPs that lay closest to the center of our haplotype predictions as our representative loci for each linkage disequilibrium block, this was done for computational purposes only. We did not focus most of our analyses on the haplotypes themselves, because of the uncertainty of which variants within an LD block actually participated in the genetic-epigenetic interactions we imputed.

      Thus, we edited the text to remove mention of “SNPs” unless our analysis did directly and deliberately profile SNPs themselves. In all other cases, we now refer to “haplotypes”, “genetic variants”, or “variants”. This should help increase clarity in the manuscript as a whole.

      A small error was discovered within the labelling and processing of regression model outputs in chromosome 14. A consistency check was run on all chromosomes, finding that only Chr 14 was affected. Chr 14 was rerun in its entirety to verify its results, with the previous results now archived within our databases uploaded on Synapse (see Methods for a link). All relevant calculations and figures were regenerated, resulting in an average shift of 1% or less across the manuscript. All analyses remain highly statistically significant.

      Responses to comments from Reviewer #1

      Methods

      • Sequencing depth was retrieved from the original publication on the primary multiomics dataset. (Line 105-106)

      • A line was added regarding initial mouse genome alignment for the original publication: we explain the GigaMUGA genotyping array, used for the DO mESC samples. For our ChIP-seq data, we reword to specify: we used liftovers from imputed strain-specific genomes to B6 mm10. (Lines 108-110; 116-120; 168-170)

      • Aneuploidy removal is expanded upon in a similar fashion: the original QC identified chromosome-level gene expression differences to remove aneuploid samples. (Line 111)

      • Mention of the pre-publication use of an alternative null model has been removed, given its lack of relevance to the rest of the text. While it was interesting to compare to the standard null model, it amounts to a side note that distracts from the focus of the paper. (Line 137-139).

      • Descriptive subheadings have been added.

      Results - Line 179 (now Line 191) now points to Methods.

      • Line 189-200 (now Line 188-204): language altered to better explain our intent: We wished to perform an intrachromosomal scan across the whole genome for non-additive genetic-epigenetic interactions. However, there were computational limits to how many possible combinations of gene, haplotype, and ATAC-seq peak we could feasibly test. We thus generated a random subset of possible combinations. This was also performed to identify target regions for focused analyses.

      • Line 195 (now line 206, expanded on in Line 210): Clarification added on the significance of our result: if non-additive genetic-epigenetic interactions were not a significant explanatory factor for gene expression, we would expect to see no enrichment of low p-value results. Instead, we see 0.07% of our models coming in at adj. p < 1x10-7.

      • Line 199 (now Line 216): The requested calculations were run, and are now included in table S3. We found that within 4 Mb of a given gene, less than 10% of variants and ATAC peaks within clustered closer to each other than they did to the gene they affected.

      Please note that this figure has a level of uncertainty due to linkage disequilibrium. Thus, rather than precisely answering the question “[are there haplotype-ATAC pairs] that are in the same locality but further away from the gene?”, we asked "is the ATAC peak closer than the gene to the point where we have the highest confidence of correctly calling the interacting genotype?". The relevant code has been deposited in our Synapse repository (see Methods for link).

      • Line 205 (now restructured in Line 221-228): The text has been edited to specify our intent. We are referring to a set of TAD-focused regression models we generated (see Methods) that comprehensively included all possible interactions between genes, and all haplotypes and ATAC peaks within +/- 1 TAD of the gene.

      • (Line 227): We specified that the previously-published TAD boundary dataset we used was retrieved from the Bing Ren lab’s Hi-C projects, which imputed locations of TAD boundaries in B6 mESCs.

      • We have relabeled Figure 1 and tweaked the surrounding text to clear up some confusing aspects. The Euler plots in Figure 1D-E reflect the fact that each ATAC-seq peak and haplotype can be in multiple relationships with local genes and regulatory factors. Some of these relationships will be simple correlation between their presence and gene expression, while others may co-regulate alongside independent regulatory factors, or engage in non-additive regulatory interactions.

      Because these non-additive regulatory interactions have not been comprehensively studied, we wished to determine whether there were any regulatory factors within our data that would not be detected as significant via more conventional methods, such as correlation analysis, mediation analysis, or regression analysis without an interaction term. Our Euler plots show that there are large subsets of both ATAC-seq peaks and haplotypes that are exclusively found in non-additive interactions. Thus, our justification for focusing on non-additive interactions for the rest of the paper.

      • Line 256 (now Line 252-255): We further clarified the above in this section: correlation and mediation analyses were previously completed by the team which initially analyzed the DO mESC dataset (Skelly et al. 2020, Cell Stem Cell). They performed a correlation analysis between open chromatin and gene expression (Skelly et al. Fig. 2A), and identified expression quantitative trait loci (eQTL) (Skelly et al. Fig. 2E). We felt that more direct comparisons to the Skelly et al. data would distract readers from our focus on genetic-epigenetic interactions. Thus, we limited our discussion of non-interacting regulatory relationships to Figures 1-2, and a brief mention in Figure 5.

      • Line 290 (now Line 337): We pulled promoter locations from the FANTOM5 database of mouse promoters, and included analysis in both the text and Figure S4A-B.

      • (Line 475-476): we clarified “DO founder SNPs” to “SNPs from the non-reference DO founder strains”.

      • Line 472 (restructured in Lines 531-564): We have expanded on this section, including answers to the reviewer’s questions regarding ChIP-seq peak counts, overlap with the TAD map we used for our other analyses, and expanded upon strain-specific CTCF binding we identified in our ChIP-seq analysis.

      Responses to comments from Reviewer #2:

      (1) Typo corrected.

      (2) Lines 194-195 (now line 206, expanded on in Line 210): We have expanded upon the intent and expectations of our analysis. In summary: if non-additive genetic-epigenetic interactions were not a significant explanatory factor for gene expression, we would expect to see no enrichment of low p-value results. Thus, we would expect 0.0000001% of results to reach adj. p < 1x10-7. Instead, we see 0.07% of our models coming in at adj. p < 1x10-7, four orders of magnitude greater than expected.

      (3) Lines 226-230 (Expanded on in Lines 252-276): We have relabeled Figure 1 and tweaked the surrounding text to clear up some confusing aspects. The percentages in the text are derived from the data summarized in the Euler plots in Figure 1D-E. These plots reflect the fact that each ATAC-seq peak and haplotype can be in multiple relationships with local genes and regulatory factors. Some of these relationships will be simple correlation between their presence and gene expression, while others may co-regulate alongside independent regulatory factors, or engage in non-additive regulatory interactions.

      (4) Line 261-263 (now lines 299-300): A companion to Figure 2B has been added (Fig. S3), which provides interaction counts for each ATAC-seq peak that contributed to Figure 2B. A horizontal line is included to highlight the locations of the highly-interacting ATAC peaks.

      (5) Analysis regarding Figure 3B had been removed from its original context. It has now been restored to the manuscript (Line 368-371).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendation for the authors)

      I only have one comment for improvement of this study and it has to do with the comparison of simulators that they conducted. There are many other simulators around now, including scDesign3, spaSim, SPIDER, SRTSIM, etc. Are any of those methods worth including in the comparison?

      Indeed, many of the mentioned simulators did not exist when we initially developed synthspot, and upon closer examination, they are not directly comparable to our tool.

      • scDesign3: The runtime of scDesign3 is quite long as a result of its generative model. The example provided in its tutorial only simulates 183 genes and takes over seven minutes when using four cores on a system with Intel Xeon E5-2640 CPUs running at 2.5GHz. In a small downsampling analysis, we simulated 10, 50, 100, and 150 genes with scDesign3 and observed runtimes of 30, 130, 245, and 360 seconds, respectively. This seems to indicate a linear relationship between the number of genes and the runtime, therefore rendering it unsuitable for simulating whole-transcriptome datasets for deconvolution.

      • spaSim: spaSim focuses on modelling cell locations in different tissue structures but does not provide gene expression data. It is designed for testing cell colocalization capabilities rather than simulating gene expression.

      • SPIDER: Although SPIDER appears to have some overlap with our work, it seems to be in the early stages of development. The GitHub repository contains only two scripts without any documentation, and the preprint does not provide instructions on how to use the tool.

      • SRTSim: SRTSim explicitly states in its publication that it is not suitable for evaluating cell type deconvolution, as its focus is on simulating gene expression data without modelling cell type composition.

      • scMultiSim: scMultiSim, like scDesign3, is limited in its capability to model the entire transcriptome.

      Nonetheless, the inherent modularity of our Nextflow framework makes it possible for users to simply run the deconvolution methods on data that has been simulated by other simulators if need be.

      Additionally, we have added the following rationale for why we developed synthspot in “Synthspot allows simulation of artificial tissue patterns”:

      “On the other hand, general-purpose simulators are typically more focused on other inference tasks, such as spatial clustering and cell-cell communication, and are unsuitable for deconvolution. For instance, generative models and kinetic models like those of scDesign3 and scMultiSim are computationally intensive and unable to model entire transcriptomes. SRTSim focuses on modeling gene expression trends and does not explicitly model tissue composition, while spaSim only models tissue composition without gene expression.”

      The other aspect of the simulation comparison that I'm missing is some kind of spatial metric. There are metrics about feature correlation, sample-sample correlation, library size, etc. But, what about spatial correlation (e.g., Moran's I or similar). Perhaps comparing the distribution of Moran's I across genes in a simulated and real dataset would be a good first start.

      We would like to clarify that synthspot does not actually simulate the spatial location of spots, but synthetic regions where spots from the same region share similar compositions. Hence, incorporating a spatial metric in the comparison is not feasible. However, as RCTD is the only method that explicitly uses spot locations in its model (Supplementary Table 2, "Location information"), we believe that generating synthetic datasets with actual coordinates would not significantly impact the conclusions of the study.

      Reviewer #2 (Public Review)

      On the other hand, the authors state that in silver standard datasets one half of the scRNA-seq data was used for simulation and the other half was used as a reference for the algorithms, but the method of splitting the data, i.e., at random or proportionally by cell type, was not specified.

      The data was split proportionally by cell type. To clarify this, we have included an additional sentence in the main text under the first paragraph of “Cell2location and RCTD perform well in synthetic data”, as well as in Figure S2.

      Reviewer #2 (Recommendation for the authors)

      Figure legends in Figures 3, 4 and across most Supplementary material are almost illegible. Please consider increasing font size for better readability.

      Thank you for bringing this to our attention. The font size has been increased for all main and supplementary figures. Additionally, the supplementary figures have also been exported in higher resolution.

      Supplementary Notes Figure 2c reads "... total count per sampled multiplied by..."

      This has been adapted, as well as the captions of Supplementary Notes Figure 3c and 4c which had the same typo.

      Review #3 (Public review)

      The simulation setup has a significant weakness in the selection of reference single-cell RNAseq datasets used for generating synthetic spots. It is unclear why a mix of mouse and human scRNA-seq datasets were chosen, as this does not reflect a realistic biological scenario. This could call into question the findings of the "detecting rare cell types remains challenging even for top-performing methods" section of the paper, as the true "rare cell types" would not be as distinct as human skin cells in a mouse brain setting as simulated here.

      We appreciate the reviewer’s concern and would like to clarify that within one simulated dataset, we never mix mouse and human scRNA-seq data together. The synthetic spots generated for the silver standards are always sampled from a single scRNA-seq or snRNA-seq dataset. Specifically, for each of the seven public scRNA-seq datasets, we generate synthetic datasets with one of nine abundance patterns, resulting in a total of 63 synthetic datasets. These abundance patterns only affect the sampling priors that are used—the spots are still created with combinations of cells sampled from the same dataset.

      Furthermore, it is unclear why the authors developed Synthspot when other similar frameworks, such as SRTsim, exist. Have the authors explored other simulation frameworks?

      While there are other simulation frameworks available now, synthspot was designed to specifically address the requirements of our study, offering unique capabilities that make it suitable for deconvolution evaluation. Moreover, many of the simulators did not exist when we initially developed our tool. We have added the following rationale for why we developed synthspot in “Synthspot allows simulation of artificial tissue patterns”:

      “On the other hand, general-purpose simulators are typically more focused on other inference tasks, such as spatial clustering and cell-cell communication, and are unsuitable for deconvolution. For instance, generative models and kinetic models like those of scDesign3 and scMultiSim are computationally intensive and unable to model entire transcriptomes. SRTSim focuses on modeling gene expression trends and does not explicitly model tissue composition, while spaSim only models tissue composition without gene expression.”

      In our response to Reviewer 1 copied below, we also outline specific reasons why other simulators were not suitable for our benchmark:

      • scDesign3: The runtime of scDesign3 is quite long as a result of its generative model. The example provided in its tutorial only simulates 183 genes and takes over seven minutes when using four cores on a system with Intel Xeon E5-2640 CPUs running at 2.5GHz. In a small downsampling analysis, we simulated 10, 50, 100, and 150 genes with scDesign3 and observed runtimes of 30, 130, 245, and 360 seconds, respectively. This seems to indicate a linear relationship between the number of genes and the runtime, therefore rendering it unsuitable for simulating whole-transcriptome datasets for deconvolution.

      • spaSim: spaSim focuses on modelling cell locations in different tissue structures but does not provide gene expression data. It is designed for testing cell colocalization capabilities rather than simulating gene expression.

      • SPIDER: Although SPIDER appears to have some overlap with our work, it seems to be in the early stages of development. The GitHub repository contains only two scripts without any documentation, and the preprint does not provide instructions on how to use the tool.

      • SRTSim: SRTSim explicitly states in its publication that it is not suitable for evaluating cell type deconvolution, as its focus is on simulating gene expression data without modelling cell type composition.

      • scMultiSim: scMultiSim, like scDesign3, is limited in its capability to model the entire transcriptome.

      Finally, we would have appreciated the inclusion of tissue samples with more complex structures, such as those from tumors, where there may be more intricate mixing between cell types and spot types.

      We acknowledge the reviewer's suggestion and have incorporated a melanoma dataset from Karras et al. (2022) in response to this suggestion. This study profiled melanoma tumors by using both scRNA-seq and spatial technologies. The scRNA-seq consists of eight immune cell types and seven melanoma cell states. We have included this study as an additional silver standard and case study, the latter of which is presented in a separate section following the liver analysis (and a corresponding section in Methods).

      We found that method performances on synthetic datasets generated from this melanoma dataset follow previous trends (Figure S3-S5). However, the inclusion of the case study led to the following changes in the overall rankings: cell2location and RCTD are now tied for first place (previously RCTD ranked first), and Seurat and SPOTlight have swapped places. Despite these changes, the core messages and conclusions of our paper remain unchanged. All relevant figures (Figures 1a, 2, 3a, 4a, 6b, 7a, S3-S6, S9) have been updated to incorporate these new analyses and results.

      Review #3 (Recommendation for the authors)

      To maintain consistency in the results, it is recommended to exclude the human scRNAseq set when generating synthetic spots. Furthermore, addressing the other significant weaknesses mentioned earlier would be beneficial.

      Please refer to our response to the public review where we address the same remark.

      It is essential to differentiate this work from previous benchmarking and simulation frameworks.

      In addition to the rationale on why we developed our own framework (see response to the public review), we have included the following text in the discussion that highlights our versatile approach when using a real spatial dataset for evaluation:

      “In the case studies, we demonstrated two approaches for evaluating deconvolution methods in datasets without an absolute ground truth. These approaches include using proportions derived from another sequencing or spatial technology as a proxy, and leveraging spot annotations, e.g., zonation or blood vessel annotations, that typically have already been generated for a separate analysis.”

      Furthermore, we conducted an extra analysis in the liver case study, generating synthetic datasets with one experimental protocol and using the remaining two as separate references (Figure S13). This further illustrates the usefulness of our simulation framework, which we mentioned by appending this sentence in the discussion:

      “As in our silver standards, users can select the abundance pattern most resembling the real tissue to generate the synthetic spatial dataset, as we have also demonstrated in the liver case study.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      (1) Since you only included patients with early-onset preeclampsia in the study, I suggest revising the title to "Identification of novel syncytiotrophoblast membrane extracellular vesicle derived protein biomarkers in early-onset preeclampsia...."

      We have changed our title to early-onset preeclampsia.

      (2) Under methods, you state that placenta was obtained from women undergoing elective cesarean section. Was this because all the study patients were delivered before the onset of labor? Or were laboring patients specifically excluded from the study?

      Indeed, labor influences the extracellular vesicles (EVs) generated. To ensure consistency in our samples and avoid this variable, we chose placentas obtained from elective cesarean sections (CS) for our study.

      (3) In Table 1 on page 10, the 8th row (Birth weight grams) needs to be reformatted. The mean birthweights for normal pregnancy and preeclampsia should be the same.

      We have reformatted the table and using ranges instead of brackets.

      (4) In the legend for Table 1, the sentence beginning on page 10, line 227, and continuing onto page 11, line 228, does not make sense. Part of the sentence was omitted inadvertently.

      We have modified this sentence to :

      Detergent treatment, which could break down EVs, with NP-40 confirmed that the majority (99%) of our samples were largely vesicular since only 0.1 ± 0.12% of BODIPY FL N-(2-aminoethyl)-maleimide and PLAP double-positive events were detected (a reduction of 99%) (Figure 1E and 1H).'

      (5) As you acknowledge, the sample size (12 patients) was small. This is understandable because early-onset preeclampsia occurs in <1% of parturients. You could collaborate with other centers in future studies to increase the sample size.

      Thank you very much for your comment. We are willing to cooperate on future research and will try to expand our sample size in subsequent studies.

      Reviewer #2 (Recommendations For The Authors):

      (1) This is one of the many "catalogue" papers where placental exosome proteins in preeclampsia are profiled. Thus, the manuscript lacks novelty. The only novelty factor is the authors have isolated exosomes by a different method and even separated the small and large exosomes. However, there is no mention of how these exosomes differ from each other in terms of their functionality. Thus it is hard to judge the biological significance of this work.

      We appreciate your insights regarding the novelty of our study. While numerous papers have profiled placental exosome proteins in preeclampsia, our methodology for enriching sSTB-EVs (exosomes) offers a distinct perspective. We believe that the separation of sSTB-EVs (exosomes) and medium/large STB-EVs (microvesicles) introduces a differentiation that extends beyond mere profiling, with implications for their functionality. There are previous studies showed that the different sizes of placenta EVs have distinct characteristics (Zabel RR, et al. Enrichment and characterization of extracellular vesicles from ex vivo one-sided human placenta perfusion. Am J Reprod Immunol. 2021 Aug;86(2)). Furthermore, the way cells internalize and respond to EVs may depend on the size of the EV (Zhuang X et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011 Oct;19(10).) Therefore, it would be important for future studies to distinguish different sizes of EVs for the research.

      (2) The authors must demonstrate that these two types of EVs are also produced in vivo by detecting them in the serum of women.

      Thank you for the comment. Many previous studies have shown the two types of placental EVs in women's blood. Nakahara et al.'s (PMCID: PMC7755551) extensive review compiles studies that have specifically isolated various subtypes of placenta-derived EVs from maternal circulation. We have also readdressed it in the introduction.

      (3) The authors must compare the proteomes of serum-derived placental exosomes and the proteome of the STBs isolated from the perfusion experiments to judge how overlapping the outcomes are from those produced naturally and those produced under ex vivo conditions.

      We appreciate the reviewer's suggestion to compare the proteomes of serum-derived placental sSTB-EVs (exosomes) with those from STBs isolated through perfusion experiments. Indeed, such a comparison would provide valuable insights into the similarities and differences between naturally produced and ex vivo-generated sSTB-EVS (exosomes). However, isolating placental EVs from maternal circulation for comprehensive proteomic profiling presents challenges. It requires a significant amount of serum or plasma sample that will be sufficient to enable the isolation of placenta-specific EVs amongst numerous EVs in the circulation. In addition, it will require multiple intricate steps such as ultracentrifugation followed by immunoprecipitation. Each of these steps can potentially lead to the loss of EVs. Additionally, given the high concentration of lipoproteins in plasma relative to EVs, there's a significant risk of obtaining low-purity isolates from the outset. These challenges might compromise the comparability of results between placenta-specific EVs from maternal circulation and those from ex vivo perfusion. Nevertheless, we acknowledge the value of such an endeavor and will consider incorporating this aspect in future studies as the EV and proteomic methodology and technology improve and become more sensitive.

      (4) I have a major issue with the chosen study subjects. While the study title and the manuscript mention preeclampsia, as per the inclusion criteria mentioned in lines 88-90, the patients will be HELLP syndrome. Please clarify what was used and modify the manuscript accordingly.

      Thank you very much for finding this error. Our patients had none of the features that would qualify them for HELLP syndrome. We have edited to:

      PE was defined as new (after 20 weeks) systolic blood pressure of 140 mmHg or diastolic pressure of 90 mmHg, proteinuria (protein/creatinine ratio of 30 mg/mmol or more). None of our patients had maternal acute kidney injury, liver dysfunction, neurological features, hemolysis, or thrombocytopenia.

      (5) It is hard to reconcile how only 15 proteins were identified in the placental extract while 300+ in EVs. There is a methodological issue in the mass spec or extraction. With such widely different denominators in the total proteins identified, it is hard to compare the outcomes in terms of the three sample types.

      We acknowledge the reviewer's concerns regarding the disparity in protein counts between the placental extract and the EVs. Ultimately, more is not necessarily better. Several factors might contribute to this discrepancy. Firstly, it is plausible that certain proteins exhibit selective affinity to varying sizes of EVs, leading to a more diverse range of proteins than the placental extract. We were also stringent in our analysis to enable us to select proteins whose biological differences are more likely to be reproducible with a different validatory method like a western blot. Additionally, although the placental extract might contain a higher total protein concentration, it doesn't necessarily translate to a richer diversity of disease-specific proteins. Considering these nuances when comparing protein outcomes across sample types is helpful.

      (6) I am unable to understand the terms least differentially expressed and most differentially expressed. Do the authors mean upregulated and downregulated? Please clarify and use the terms appropriately by providing fold change values.

      We appreciate the reviewer's request for clarification. We intended to provide a relative measure of expression for the terms 'least differentially expressed' and 'most differentially expressed'. The terms are roughly equitable to down- and upregulated. Regarding EVs, we avoid using the terms 'upregulated' and 'downregulated' as EVs act as transporters and do not possess regulatory functions per se. However, for the placenta, we recognize the relevance of these terms.

      (7) The data presented is very superficial and lacks methodological details. The authors should provide the total number of targets achieved after mass spec. The cutoffs used the FDRs and other details.

      We apologize for the omission. We have added these details to the method section.

      (8) It is not clear how were these differentially abundant proteins identified. What was the cutoff used? Was it identified in all the replicates?

      We apologize for the omission. We have added these details to the method section.

      (9) How many samples were subjected to the discovery cohort, and how many were in the validation cohort? Were they the same or different? If the samples were different, how many PE samples had differentially abundant proteins by both methods?

      The study utilized 12 samples for initial discovery and another 12 for western blot validation. The validation samples specifically targeted proteins of interest, rather than undergoing another comprehensive mass spectrometry analysis.

      (10) It is striking that the authors report the expression of prostatic acid phosphatase in the placenta. In my understanding of placental biology, this gene or protein is not known to be expressed by the placenta. Please perform immunofluorescence to demonstrate that this protein is indeed produced in the STBs

      Research has revealed that even though it's called prostate-specific antigen, it's created in tissues other than the prostate, such as the placenta. Here are a couple of references to support this claim: PMID: 10634405, PMID: 7533063, PMID: 8939403, and PMID: 8945610. Hence it is likely not beneficial to demonstrate what many researchers have already demonstrated.

      (11) Please validate the differential abundance of these proteins in the exosomes isolated from the plasma of women with and without preeclampsia. A serial measurement will be of high value to determine how early as compared to hypertension, these biomarkers can predict preeclampsia.

      We are validating each EV-carried marker individually in the circulation (plasma or serum), localizing them in the placenta, and performing downstream functional analysis. This article is already lengthy and would likely be too cumbersome to include the details of all individual proteins in this manuscript. However, we have already published papers on Siglec 6 (PMID: 32998819) and Neprilysin (PMID: 30929513), and others will be published soon. We agree that there will be a lot of value to serial measurement, not just in terms of how early as compared to hypertension, these biomarkers can predict preeclampsia but also as potentially a more sensitive or specific test. This would be the subject of subsequent papers.

      (12) The authors are recommended to carry out immunofluorescence to localize the differentially abundant proteins in the placental sections and show that they are specific to STBs.

      We have already provided a similar response earlier (see response to point 11). In addition, while it is preferable, the biomarkers don't necessarily need to be specific to STB. Not all biomarkers are mechanistic agents/targets, and not all mechanistic agents are biomarkers. However, mechanistic agents should preferably be placental-specific. For example, the total sFLT1, the most studied biomarker, is not exclusively synthesized in the placenta, even though the placental-specific isoform represents a small fraction of the total sFLT-1. For example, in the non-placental world, alkaline phosphatase (ALP) is not exclusively produced by the liver but is a ‘biomarker’ of cholestatic disease.

      (13) Table 1 should give the range and SD could be given as + instead of the bracket.

      Thank you for your suggestion. We have edited it accordingly.

      (14) It is necessary to provide the gestational age of the onset of hypertension to get a judgment of how long these women were preeclamptic, culminating in HELLP.

      We want to emphasize that none of our patients experienced HELLP syndrome. In the results section, we have included the gestational age at the time of diagnosis in the table for preeclampsia. It's crucial to understand that the gestational age at diagnosis is distinct from the gestational age when hypertension initially appeared. Detecting the exact gestational age of hypertension onset would be challenging, and it would likely require a prospective or randomized clinical trial with continuous monitoring, possibly on a daily basis. However, our study is retrospective. Thus we can only comment on the gestational age at diagnosis

      (15) For newborns the term Sex is used and not gender

      Thank you for your suggestion. We have edited it accordingly.

      (16) Figure 2 is stretched and hard to read

      Thank you for your suggestion. We have edited it accordingly by creating two separate images to promote readability.

      (17) Line 278 change the sentence "there fifteen (15) proteins in the placenta" to "there were fifteen (15) proteins in the placenta"

      Thank you for your suggestion. We have edited it accordingly.

      (18) Line 288 you mean least and not lease

      Thank you for your suggestion. We have edited it accordingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study advances our knowledge of how parasites evade the host complement immune system. The new cryo-EM structure of the trypanosome receptor ISG65 bound to complement component C3b is highly compelling and well-supported by biochemical experiments. This work will be of broad interest to parasitologists, immunologist, and structural biologists.

      We thank the reviewers and editorial team for this assessment of our work.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors set out to use structural biology (cryo-EM), surface plasmon resonance, and complement convertase assays to understand the mechanism(s) by which ISG65 dampens the cytoxicity/cellular clearance to/of trypanosomes opsonised with C3b by the innate immune system.

      The cryo-EM structure adds significantly to the author's previous crystallographic data because the latter was limited to the C3d sub-domain of C3b. Further, the in vitro convertase assay adds an additional functional dimension to this study.

      The authors have achieved their aims and the results support their conclusions.

      The role of complement in immunity to T. brucei (or lack thereof) has been a significant question in molecular parasitology for over 30 years. The identification of ISG65 as the C3 receptor and now this study providing mechanistic insights represents a major advance in the field.

      Reviewer #2 (Public Review):

      This is an excellent paper that uses structural work to determine the precise role of one of the few invariant proteins on the surface of the African trypanosome. This protein, ISG65, was recently determined to be a complement receptor and specifically a receptor of C3, whose binding to ISG65 led to resistance to complement-mediated lysis. But the molecular mechanism that underlies resistance was unknown.

      Here, through cryoEM studies, the authors reveal the interaction interface (two actually) between ISG65 and C3, and based on this, make inferences regarding downstream events in the complement cascade. Specifically, they suggest that ISG65 preferably binds the converted C3b (rather than the soluble C3). Moreover, while conversion to a C3bB complex is not blocked, the ability to bind complement receptors 1 and 3 is likely blocked.

      Of course, all this is work on proteins in isolation and the remaining question is - can this in fact happen on the membrane? The VSG-coated membrane is supposed to be incredibly dense (packed at the limits of physical density) and so it is unclear whether the interactions that are implied by the structural work can actually happen on the membrane of a live trypanosome. This is not necessarily a dig but it should be addressed in the manuscript perhaps as a caveat.

      We thank the reviewer for their positive response our work. We fully agree with the reviewer about the caveats which come from this work being done in a biochemical context. We have addressed this in lines 223-24 and 327-333.

      Reviewer #3 (Public Review):

      The authors investigate the mechanisms by which ISG65 and C3 recognize and interact with each other. The major strength is the identification of eco-site by determining the cryoEM structure of the complex, which suggests new intervention strategies. This is a solid body of work that has an important impact on parasitology, immunology, and structural biology.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      A paper by Sulzen et al was published online on 27th April in Nature Communications that has a similarity (the cryo-EM structure) to this paper. This does not detract from the value of this paper. The authors should, however, include a "compare and contrast" section in this paper to explain similarities and differences in the conclusions. For example, while this paper demonstrates that ISG65 does not prevent C3 convertase activity, the Sulzen paper suggests it does prevent C5 convertase activity. The compatibility of these conclusions should be discussed.

      Two studies of ISG65 were published shortly after submission of this manuscript (Sulzen et al and Lorenzen et al) and we have added a brief comparison of the conclusions of these papers here. These mentions include lines 151, 155-6, 201-2, 274-278, 292-93 and 321-323. For a more in-depth comparison we have published an opinion piece in Trends in Parasitology, which discusses all three of these papers and which we also now reference here.

      Could the authors comment as to whether they think the association of C3b with the unstructured region of ISG65 comes about via S-S shuffling? I.e., is C3B first thioester linked to VSG and then this rearranges to ISG65 through C3b-ISG65 proximity?

      We thank the reviewer for the interesting suggestion. However, we are not aware of evidence showing that C3b, which has been conjugated to a target protein through its covalent ester bond, then becomes transferred to a second target protein. As ISG65 can bind to C3 as well as C3b, we think that the conjugate could form when ISG65-bound C3 converts to C3b, becomes reactive and, through proximity, is most likely to conjugate to ISG65. Whether this occurs to a substantial degree in trypanosomes, or whether it is more likely that ISG65 interacts with C3b which is already VSG-conjugated, requires further experiments. We have edited lines 217-222 to make this point more clearly.

      Reviewer #3 (Recommendations For The Authors):

      The authors previously reported that ISG65 C-terminus is so flexible and is not resolved in their 2022 ISG65-C3d (TED of C3b) crystal structure, which is the same case here in the cryo-EM structure of ISG65-C3b. Thus, I am wondering how C3b might find the flexible C-terminus and form a covalent bond.

      We think that the answer to the reviewer’s question relates to local concentration. When two reactive compounds are not attached together, then they diffuse freely in three-dimensions and their likelihood of colliding and reacting is subject to the randomness of Brownian motion. However, if they bind together through an interaction distinct from the reactive residues, then this increases their relative local concentration and the likelihood of collision and reaction taking place. In the case of ISG65, this is coupled with the ability of ISG65 to bind to C3 before it converts to C3b and becomes reactive. The interaction of ISG65 with C3/C3b will therefore bring together the reactive residues and increases the probability that they will collide and form a conjugate. Our control with BSA, which does not bind to C3/C3b, and does not form these conjugates supports this conclusion. We have edited lines 217-222 to clarify.

      I also find it puzzling that deleting L2 or L3 in ISG65, which they found forming additional contracts with CUB domain of C3b (12 times binding tighter), does not affect the ISG65-C3b conjugate formation in the in vitro C3 convertase formation assay.

      When we consider the affinities that the L2 and L3 loop deletions variants have for ISG65, and the concentration of ISG65 in the C3 convertase assay, we would predict that the conjugates still form with the L2 and L3 variants. This binding would therefore increase the relative local concentration of the reactive residues and ensure preferential conjugate formation, as we observe.

      (1) Page 2 bottom line, "In particular, loop 2 forms a direct contact with the CUB domain of ISG65, centered around an electrostatic", ISG65 should be C3b.

      We thank the reviewer for spotting this. It has been corrected.

      (2) Page 4, "We found that ISG65 does not complete with either factor B or Factor D and does not block the binding of factor Bb (Figure 3b). This suggests that the C3 convertase can form in the presence of ISG65", "complete" should be "compete".

      It has been corrected.

      (3) Page 4, "revealed that in the presence of ISG65 a high molecular weight band appeared, which we identified through mass spectrometry to be a conjugate of ISG65 with C3b". There is no mass spectrometry data in the manuscript to support this.

      We agree with the reviewer that this data should be included in the paper and have now added it as Supplementary Table 3.

      (4) Page 5, "By inhibiting binding of CR2 to C3d, ISG65 will reduce the likelihood that B-cell receptor binding to trypanosome antigens will result in B-cell activation and antibody production." - this sentence is a bit confusing.

      We have clarified this point in lines 243-245.

      (5) Related to Figure 2a. "This structure reveals the two distinct interfaces formed between ISG65 and C3b (Figure 2a)." It would be clearer to label where interface 1 and interface 2 are in Figure 2a.

      We have now labelled interfaces 1 and 2 above the insets in Figure 2a.

      (6) Related to Figure 2C. I suggest mutagenesis to validate ISG65 L2/L3 - C3b CUB domain interaction, i.e. mutate ISG65 (N188, R187, Y190) and perform SPR with C3b.

      We agree with the reviewer that this experiment was a valuable validation of our structural data. To achieve this aim, we changed our SPR assay, coupling C3 variants to the chip surface in an orientation which would match their conjugation to a pathogen and allowing us to reliably compare the affinities of ISG65 variants. We then assessed the binding of ISG65, ISG65∆L2, and the ISG65L2N188A,H189A,Y190A proposed by the reviewer. As predicted from the structure, both loop 2 deletion and mutation reduced the affinity for C3b but did not affect the affinity for C3d, suggesting that the difference in affinity of ISG65 for C3b and C3d is due to the observed interface 2. This new data is described in lines 150-168 and is presented in Figure 2c.

      (7) Related to Figure 3a. Is the C3b only structure in the presence of ISG65 the real C3b only? Discussion can be added.

      Our cryoEM analysis of the ISG65-C3b mixture yielded three dimensional classes which contained clear density for ISG65 and those in which there was no density for ISG65. While the reviewer is technically correct, and we cannot be 100% sure that there is not an entirely disordered ISG65 attached to these ‘unbound’ C3b, we think that this is extremely unlikely. In either case, these ‘unbound’ C3b are indistinguishable from other structures of C3b and the argument in the paper stands. We have added a clause in lines 178-179 to make this point.

      (8) Related to Figure 3e. There is no label for WT and deletion mutants. Also, L1 and L3 deletion does not seem to show on the gel.

      We have added these labels.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the Reviewing Editor and two additional reviewers for the insightful input they gave us on the first version of our manuscript on allosteric activity regulation of the anaerobic ribonucleotide reductase from Prevotella copri. We have revised the manuscript in the light of the reviewers' comments. In particular, we have added additional experiments using hydrogen-deuterium exchange mass spectrometry (HDX-MS) to probe the accessibility and mobility of different parts of the protein structure in the apo-state and in the presence of dATP/CTP and ATP/CTP. The results strongly confirm the binding of nucleotides to the activity and specificity sites, as seen biochemically and structurally. In the question of mobility of the glycyl radical domain the HDX-MS experiments suggest an increased mobility in the presence of dATP, though the results are not as clear-cut as for the nucleotide binding. The HDX-MS analyses are complicated by the fact that they reflect all species in solution, which are evidently multiple for all states of PcNrdD. Finally, we have rephrased key parts of the results and discussion, and modified the title, to avoid any implication that we believe the glycyl radical domain becomes extensively disordered, rather that it becomes more mobile to the extent that it cannot be seen in the cryo-EM structures.

      eLife assessment

      This study advances our understanding of the allosteric regulation of anaerobic ribonucleotide reductases (RNRs) by nucleotides, providing valuable new structural insight into class III RNRs containing ATP cones. The cryo-EM structural characterization of the system is solid, but other aspects of the manuscript, which are incomplete, could be improved by including additional functional characterization and more evidence for the proposed mechanism of inhibition by dATP. The work will be of interest to biochemists and structural biologists working on ribonucleotide reductases and other allosterically regulated enzymes.

      Public Reviews:

      Reviewer #1 (Public Review):

      The goal of this study is to understand the allosteric mechanism of overall activity regulation in an anaerobic ribonucleotide reductase (RNR) that contains an ATP-cone domain. Through cryo-EM structural analysis of various nucleotide-bound states of the RNR, the mechanism of dATP inhibition is found to involve order-disorder transitions in the active site. These effects appear to prevent substrate binding and a radical transfer needed to initiate the reaction.

      Strengths of the manuscript include the comprehensive nature of the work - including numerous structures of different forms of the RNR and detailed characterization of enzyme activity to establish the parameters of dATP inhibition. The manuscript could be improved, however, by performing additional experiments to establish that the mechanism of inhibition can be observed in other contexts and it is not an artifact of the structural approach. Additionally, some of the presentations of biochemical data could be improved to comply with standard best practices.

      The work is impactful because it reports initial observations about a potentially new mode of allosteric inhibition in this enzyme class. It also sets the stage for future work to understand the molecular basis for this phenomenon in more detail.

      We thank the editor and reviewers for their positive evaluation of the potential impact of our work. We completely agree that hypotheses based on structural data require orthogonal experimental verification. However, the number and consistency of the cryo-EM structures speak in favour of the data being representative of conditions in solution. We feel that in particular cryo-EM data should be relatively free of artefacts, e.g. biased or incorrect relative domain orientations, compared to crystallography, where crystal packing effects can affect these parameters. As we write in response to Reviewer #2, it has been difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and only partly ordered in the dATP-bound tetramers. Further verification experiments will be performed in future but are outside the scope of the present article.

      We will improve the presentation of the biochemical data in a revised version.

      General comments:

      (1) It would be ideal to perform an additional experiment of some type to confirm the orderdisorder phenomena observed in the cryo-EM structures to rule out the possibility that it is an artifact of the structure determination approach. Circular dichroism might be a possibility?

      Circular dichroism reports only on the approximate relative proportions of helix, sheet and loop structure in a protein, thus we believe that it would not be a sensitive enough tool to distinguish between ordered and disordered states. We are considering what alternative methods might be appropriate.

      (2) Does the disordering phenomenon of one subunit in the ATP-bound structures have any significance - could it be related to half-of-sites activity? Does this RNR exhibit half-of-sites activity?

      Half-of-sites activity has not been biochemically proven in any ribonucleotide reductase in spite of the fact that it was first suggested in 1987 (PMID: 3298261). However, strong structural indication was recently published in the form of the holo-complex of the class Ia ribonucleotide reductase from Escherichia coli, which is highly asymmetrical and in which productive contacts forming an intact proton-coupled electron transfer pathway are only formed between one of two pairs of monomers (PMID: 32217749). We have not been able to prove half-of-sites activity for PcNrdD due to low overall radical content, but the structural results are indeed consistent with such an activity.

      (3) Does the disordering of the GRD with dATP bound have any long-term impact on the stability of the Gly radical? I realize that the authors tested the ability to form the Gly radical in the presence of dATP in Fig. 4 of the manuscript. But it looks like they only analyzed the samples after 20 min of incubation. Were longer time points analyzed?

      Radical content was measured after 5 min and 20 min incubation; 5 min incubations (not included in the manuscript) consistently gave higher radical content compared to 20 min incubation. Longer time points were not analysed, as we assumed that the radical content would be even lower after 20 min.

      (4) Did the authors establish whether the effect of dATP inhibition on substrate binding is reversible? If dATP is removed, can substrates rebind?

      This is an interesting question. We measured KDs for dATP in the micromolar range and are hence confident that dATP binding is reversible. Our measurements do not, however, directly prove that inhibition of the enzyme is reversible. Nevertheless, it is worth noting that the protein as purified was precipitated and analysed by the UV-visible spectrum. The aspurified PcNrdD contained 30% nucleotide contamination. The as-purified sample was then analysed by HPLC and we identified a major peak, corresponding to dATP/dADP. Therefore, purification conditions had to be optimised to remove the nucleotides. This is evidence that PcNrdD that has “seen” dATP can subsequently bind substrates in the presence of ATP. We will describe the purification more clearly in a revision.

      (5) In some figures (Fig. 6e, for example), the cryo-EM density map for the nucleotide component of the model is not continuous over the entire molecule. Can the authors comment on the significance of this phenomenon? Were the ligands validated in any way to ensure that the assignments were made correctly?

      Indeed we sometimes saw discontinuous density for the nucleotides, both in the active site and in the specificity site. However, the break was almost always near the C5’ carbon atom, which is common to all nucleotides. While we cannot readily explain this phenomenon, the nucleotides refined well with full occupancy, giving B-factors similar to those of the surrounding protein atoms. The identity of the nucleotide could always be inferred from a) the size of the base (purine or pyrimidine); b) the known nucleotide combinations added to the protein before grid preparation; c) prior knowledge on the combinations of effector and substrate that have been found valid for all RNRs since the first studies of allosteric specificity regulation.

      Reviewer #2 (Public Review):

      This manuscript describes the functional and structural characterization of an anaerobic (Class III) ribonucleotide reductase (RNR) with an ATP cone domain from Prevotella copri (PcNrdD). Most significantly, the cryo-EM structural characterization revealed the presence of a flap domain that connects the ATP cone domain and the active site and provides structural insights about how nucleotides and deoxynucleotides bind to this enzyme. The authors also demonstrated the catalytic functions and the oligomeric states. However, many of the biochemical characterizations are incomplete, and it is difficult to make mechanistic conclusions from the reported structures. The reported nucleotide-binding constants may not be accurate because of the design of the assays, which complicates the interpretation of the effects of ATP and dATP on PcNrdD oligomeric states. Importantly, statistical information was missing in most of the biochemical data. Also, while the authors concluded that the dATP binding makes the GRD flexible based on the absence of cryo-EM density for GRD in the dATP-bound PcNrdD, no other supports were provided. There was also a concern about the relevance of the proposed GRD flexibility and the stability of Gly radical. Overall, the manuscript provides structural insights about Class III RNR with ATP cone domain and how it binds ATP and dATP allosteric effectors. However, ambiguity remains about the molecular mechanism by which the dATP binding to the ATP cone domain inhibits the Class III RNR activity.

      Strengths:

      (1) The manuscript reports the first near-atomic resolution of the structures of Class III RNR with ATP domain in complex with ATP and dATP. These structures revealed the NxN flap domain proposed to form an interaction network between the substrate, the linker to the ATP cone domain, the GRD, and loop 2 important for substrate specificity. The structures also provided insights into how ATP and dATP bind to the ATP cone domain of Class III RNR. Also, the structures suggested that the ATP cone domain is directly involved in the tetramer formation by forming an interaction with the core domain in the presence of dATP. These observations serve as an important basis for future study on the mechanism of Allosteric regulation of Class III RNR.

      (2) The authors used a wide range of methodologies including activity assays, nucleotide binding assays, oligomeric state determination, and cryo-EM structural characterization, which were impressive and necessary to understand the complex allosteric regulation of RNR.

      (3) The activity assays demonstrated the catalytic function of PcNrdD and its ability to be activated by ATP and low-concentration dATP and inhibited by high-concentration dATP.

      (4) ITC and MST were used to show the ability of PcNrdD to bind NTP and dATP.

      (5) GEMMA was used successfully to determine the oligomeric state of PcNrdD, which suggested that PcNrdD exists in dimeric and tetrameric forms, whose ratio is affected by ATP and/or dATP.

      Weaknesses:

      (1) Activity assays.

      The activity assays were performed under conditions that may not represent the nucleotide reduction activity. The authors initiated the Gly radical formation and nucleotide reduction simultaneously. The authors also showed that the amount of Gly radical formation was different in the presence of ATP vs dATP. Therefore, it is possible that the observed Vmax is affected by the amount of Gly radical. In fact, some of the data fit poorly into the kinetic model. Also, the number of biological and technical replicates was not described, and no statistical information was provided for the curve fitting.

      The highest turnover activity of PcNrdD measured in presence of ATP was 1.3 s-1 (470 nmol/min/mg), a kcat comparable to recently reported values for anaerobic and aerobic RNRs from Neisseria bacilliformis, Leeuwenhoekiella blandensis, Facklamia ignava, Thermus virus P74-23, and Aquifex aeolicus (PMID: 25157154, PMID: 29388911, PMID: 30166338, PMID: 34314684, PMID: 34941255). The general trend illustrated in Figure 1 is that ATP has an activating effect on enzyme activity, whereas high concentrations of dATP have an inactivating effect on activity, which cannot be explained by suboptimal assay conditions since our EPR results consistently show that more radical is formed in incubations with dATP compared to incubations with ATP. Curve fitting methods used are listed in Materials and Methods (as specified in the Figure 1 legend), and standard errors for all specified curve fitting results (from triplicate experiments) are shown in Figure 1.

      (2) Binding assays.

      The interpretation of the binding assays is complicated by the fact that dATP binds both a- and s-sites and ATP binds a- and active sites. dATP may also bind the active site as the product. It is unknown if ATP binds s-site in PcNrdD. Despite this complexity, the binding assays were performed under the condition that all the binding sites were available.

      Therefore, it is not clear which event these assays are reporting.

      Both ITC and MST experiments involving ATP and dATP binding to the a-site were performed in the presence of at least 1 mM GTP substrate (5 mM in MST) to fill the active site, and 1 mM dTTP effector to fill the s-site (specified in the legend to Figure 2). These conditions enable binding of ATP or dATP only to the a-site in the ATP-cone.

      (3) Oligomeric states.

      Due to the ambiguity in the kinetic parameters and the binding constants determined above, the effects of ATP and dATP on the oligomeric states are difficult to interpret. The concentrations of ATP used in these experiments (50 and 100 uM) were significantly lower than KL determined by the activity assays (780 uM), while it is close to the Kd values determined by ITC or MST (~25 uM). Since it is unclear what binding events ITC and MST are reporting, the data in Figure 3 does not provide support for the claimed effects of ATP binding. For the effects of dATP, the authors did not observe a significant difference in oligomeric states between 50 or 100 uM dATP alone vs 50 uM dATP and 100 uM CTP. The former condition has dATP ~ 2x higher than the Kd and KL (Figure 1b) and therefore could be considered as "inhibited". On the other hand, NrdD should be fully active under the latter condition. Therefore, these observations show no correlation between the oligomeric state and the catalytic activity.

      The results in Figure 3 show that at in presence of 100 µM ATP plus 100 µM CTP the oligomeric equilibrium is 64% dimers plus 36% tetramers, and in presence of 50-100 µM dATP the oligomeric equilibrium is 32% dimers and 68% tetramers. We agree that there is no clear and strong correlation between oligomeric state and inhibition. We will also try to make it clearer in a revised version. Meanwhile, in order to add some clarity to our observations, SEC experiments at higher nucleotide concentrations will be done to strengthen our observations.

      (4) Effects of dATP binding on GRD structure

      One of the key conclusions of this manuscript is that dATP binding induces the dissociation of GRD from the active site. However, the structures did not provide an explanation for how the dATP binding affects the conformation of GRD or whether the dissociation of GRD is a direct consequence of dATP binding or it is due to the absence of nucleotide substrate. Also, Gly radical is unlikely to be stable when it is not protected from the bulk solvent. Therefore, it is unlikely that the GRD dissociates from the active site unless the inhibition by dATP is irreversible. Further evidence is needed to support the proposed mechanism of inhibition by dATP.

      We admit that it has been difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and that the linker can only be partly modelled in the dATP-bound tetramers. Most likely dATP binding causes a change in the dynamics of the linker region and NxN flap that directly affects substrate binding and simultaneously causes disorder of the GRD, given that all are part of a connected system (described as “nexus” in the manuscript). The structures determined in the presence of dATP and CTP show that CTP cannot bind in the absence of an ordered NxN flap.

      In any case a major conclusion of the work is that dATP does not inhibit the anaerobic RNR by prevention of glycyl radical formation but by prevention of its subsequent transfer. We agree that further evidence is required to support the proposed mechanism, but given the extent of the data already presented in the manuscript, we feel that such studies should be the subject of a future publication.

      (5) Functional support for the observed structures.

      Evidence for connecting structural observations and mechanistic conclusions is largely missing. For example, the authors proposed that the interactions between the ATP cone domain and the core domain are responsible for tetramer formation. However, no biochemical evidence was provided to support this proposal. Similarly, the functional significance of the interaction through the NxN flap domain was not proved by mutagenesis experiments.

      We did actually make mutants to verify the observed interactions, but several of them did not behave well in our hands, e.g. with regard to protein stability. Since we have no evidence that oligomerisation is coupled to inhibition, and since we did not observe any conservation between protein sequences in the interaction area, we chose not to pursue this point further. The main merit of the tetramer structures is that they allowed a high-resolution view of dATP binding to the ATP-cone and a comparison to previously-observed ATP-cones. Nevertheless, mutation experiments, also including the NxN flap, could be the subject of future work.

      Reviewer #3 (Public Review):

      The manuscript by Bimai et al describes a structural and functional characterization of an anaerobic ribonucleotide reductase (RNR) enzyme from the human microbe, P. copri. More specifically, the authors aimed to characterize the mechanism by how (d)ATP modulates nucleotide reduction in this anaerobic RNR, using a combination of enzyme kinetics, binding thermodynamics, and cryo-EM structural determination. One of the principal findings of this paper is the ordering of a NxN 'flap' in the presence of ATP that promotes RNR catalysis and the disordering of both this flap and the glycyl radical domain (GRD) when the inhibitory effector, dATP, binds. The latter is correlated with a loss of substrate binding, which is the likely mechanism for dATP inhibition. It is important to note that the GRD is remote (>30 Ang) from the binding site of the dATP molecule, suggesting long-range communication of the structural (dis)ordering. The authors also present evidence for a shift in oligomerization in the presence of dATP. The work does provide evidence for new insights/views into the subtle differences of nucleotide modulation (allostery) of RNR through long-range interactions.

      The strengths of the work are the impressive, in-depth structural analysis of the various regulated forms of PcRNR by (d)ATP using cryo-EM. The authors present seven different models in total, with striking differences in oligomerization and (dis)ordering of select structural features, including the GRD that is integral to catalysis. The authors present several, complementary biochemical experiments (ITC, MST, EPR, kinetics) aimed at resolving the binding and regulatory mechanism of the enzyme by various nucleotides. The authors present a good breadth of the literature in which the focus of allosteric regulation of RNRs has been on the aerobic orthologues.

      Given the resolution of some of the structures in the remote regions that appear to be of importance, the rigor of the work could have been improved by complementing this experimental studies with molecular dynamics (MD) simulations to reveal the dynamics of the GRD and loops/flaps at the active site.

      We have discussed with expert colleagues the possibility of carrying out MD simulations on the different states in order to study the differential effects of ATP and dATP binding on the dynamics of the GRD. However, they felt that the chance of obtaining meaningful results was low, particularly since some structural elements are missing from the models for both forms, in particular the linker between the ATP-cone and the core.

      The biochemical data supporting the loss of substrate binding with dATP association is compelling, but the binding studies of the (d)ATP regulatory molecules are not; the authors noted less-than-unity binding stoichiometries for the effectors.

      Most of the methods used measure only binding strength, not the number of binding sites (N), whereas ITC also measures number of sites. N is dependent on the integrity of the protein, i.e. the number of protein molecules in a preparation that are involved in binding, and quite often gives lower values than the theoretical number of binding sites.

      Also, the work would benefit from additional support for oligomerization changes using an additional biochemical/biophysical approach.

      SEC (chromatography), GEMMA (mass spectrometry) and cryo-EM were used to study oligomerization. Since each method has restrictions on nucleotide concentrations as well as protein concentrations that can be used, the results are not directly comparable, but all three methods indicate nucleotide dependent oligomerization changes. The SEC results will be included in a revised version.

      Overall, the authors have mostly achieved their overall aims of the manuscript. With focused modifications, including additional control experiments, the manuscript should be a welcomed addition to the RNR field

      Recommendations for the authors: Reviewer #1 (Recommendations For The Authors):

      (1) The last sentence of the abstract is not complete. The structures implicate a complex network of interactions in ... ? What do they implicate?

      A couple of words seem to have been missed from the abstract. We have rewritten the end of the abstract to emphasise better that the dynamical transitions involve a linked network of interactions and not just the GRD.

      (2) A reference is needed in the second sentence of the introduction.

      We have added a reference as requested.

      (3) Page 2, paragraph 2. The authors state "two beta subunits (NrdB) harboring a stable radical." This is not accurate. First of all, each beta subunit harbors its own cysteine oxidant.

      And in several subclasses, that oxidant is not a stable radical but an oxidized metal cluster. Please revise to improve accuracy and also provide appropriate references.

      We have revised the description and added a recent reference.

      (4) Page 4, Fig. 1, panels C and D. The fit of the curve to the data is pretty poor. Is there an explanation? Could the data be improved in some way? In general, it is also best practice nowadays to show the individual data points in addition to the error bars in plots like the ones shown in Figure 1. Please modify the plots to include the individual data points in this figure - and probably also the subsequent figures showing binding data.

      We have modified relevant panels in Figures 1, 2 and 5 as requested.

      (5) Page 12, first paragraph. The authors state that one of the monomers in the ATP-CTP structure is well ordered and the other is less ordered. It would be ideal to show in a figure the basis for this conclusion using the cryo-EM maps. The "less ordered" monomer appears to be fully modeled.

      Since the 2-fold axis of the dimer is vertical, the GRD of the left-hand monomer is hidden from view at the back of the molecule in Figure 6. For this monomer there was a small amount of density that allowed modelling of part of the glycyl radical loop (though not the tip containing the radical Gly itself) and the NxN flap, albeit with significantly higher mobility. We have illustrated this through an additional supplement for Figure 6 (figure supplement 2) in which the B-factors of the residues are shown both as a ribbon with radius proportional to the B-factor and through colouring. We hope that the four views in Figure 6 (figure supplement 2) together illustrate the relative mobility of different parts of the dimer.

      It would also be ideal to show the basis for the conclusion that the entire GRD is disordered in the dATP-bound dimer structure.

      Thank you for this suggestion. We have added a fifth supplement to Figure 8 in which we show the cryo-EM reconstruction for the dATP-bound dimer in two orientations, with the ATP-CTP-bound structure superimposed, which clearly shows that the entire GRD, the ATPcones, linker and NxN flap are all disordered in both monomers.

      Reviewer #2 (Recommendations For The Authors):

      (1) Units to describe enzyme activity.

      • The unit for the specific activity in the main text (nmol/min•mg) is unusual. It is most likely a typo of nmol/min/mg or nmol/(min•mg).

      We have changes to nmol/min/mg in the text.

      • The unit for the Vmax is unusual and should not be confused with the specific activity. By definition, Vmax is the velocity of a reaction at a defined enzyme concentration/amount. For example, if an assay of 10 mg enzyme yielded 470 nmol of product in 1 min, Vmax is 470 nmol/min, whereas the specific activity is 47 nmol/min/mg.

      The velocity as calculated above is ca 1.3 s-1. We have added kcat values to accompany the specific activities given.

      (2) Steady-state kinetic analysis.

      • The steady-state kinetic analysis in Figure 1 needs to be repeated. While the nonlinear curve fitting for Figure 1a is reasonable, those in Figures 1b, 1c, and 1d were outside the error range. Consequently, the reported kinetic parameters are unlikely accurate. The authors should repeat the assays with different enzyme preparation to account for all the errors. If the fit curve is still outside the error range, the kinetic model is likely incorrect, and the authors need to investigate different kinetic models.

      The replotted Figure 1 now includes two different experiments for 1b (four replicates in total).

      • The authors should report the number of replicates and the statistical data for the curve fitting.

      The figure legend has been updated with statistical data for all curve fits, and the number of replicates has been added.

      • The authors should report Vmax, Ki, and KL for Figure 1d.

      Results in Figures 1c and 1d are less straightforward than those in Figures 1a and 1b where the s-site is filled with dTTP, favouring binding of GTP to the active site. The curve fit in Figure 1c is disturbed at high concentrations of ATP, which plausibly competes with the CTP substrate and results in inhibition by formed dATP. The curve fit in Figure 1d is less certain since reduction of substrate is low due to intrinsic CTP reduction in absence of effector and partially overlapping activation and inhibition effects of dATP.

      • The authors should consider presenting the data in a log scale because of the complex nature of the activation/inhibition at the lower concentrations of dATP.

      Log scale plots are included as insets in Figures 1b and 1d.

      • The basal level of CPT reduction in the absence of an effector nucleotide should be reported with an error.

      The error value has been added in the figure legend for the basal level of CTP reduction in the absence of effector.

      (3) Equations for the kinetic analysis.

      -The equations should be numbered and referred to in the Figure 1 legend.

      All equations are specified and numbered in Materials and Methods. The equation used for each curve fit in the panels in Figure 1 is specified in the figure legend.

      -KL must be defined in the main text. I suppose this is Kd for ATP or dATP. The equation for KL determination is missing brackets for dNTP.

      KL (the concentration of an allosteric effector that gives half maximal enzyme activity) is defined in Materials and Methods where the equation is described. KL is not the same as KD (the dissociation constant for a ligand and its receptor). Brackets have been added to equation 1.

      • I believe dNTP in the first equation is incorrect because ATP was the ligand for Figures 1A and 1C.

      [dNTP] in the first equation has been changed to [NTP/dNTP] to indicate that both ribonucleotides and deoxyribonucleotides can bind.

      • The second equation can be expressed as dATP as I believe this is the only ligand that inhibits the enzyme.

      We prefer to keep the more general [dNTP] in the equation.

      • The equation used for the fitting in Figure 1d must be defined more clearly than "a combination of the two equations".

      The equation used for the curve fit in Figure 1d has been specified as equation 3 in Materials and Methods.

      (4) Design of the activity assays

      It is not clear if the activity assays report the rate of glycyl radical formation or nucleotide reduction. The authors mixed NrdD and NrdG and initiated the reaction by adding formate (essential for nucleotide reduction) and dithionite (Gly radical formation). The Gly radical formation is slow (in min time scale). The authors reported that ATP/dATP affected the rate of Gly radical formation and in the presence of ATP, Gly radical formation was incomplete even after 20 min. Therefore, it is possible that within the timescale of the activity assays (5 min), the reactions could be partially limited by the Gly radical formation, which may be the reason for the poor curve fitting.

      Activity assays were performed with 5 min pre-incubation without dithionite and formate (no glycyl radical formation) and 10 min incubation after addition of dithionite and formate (glycyl radical formation plus substrate reduction). During earlier tests, NrdD and NrdG were first preincubated in the presence of dithionite (glycyl radical formation) and after addition of formate the substrate reduction was monitored during 20 min. These experiments resulted in lower enzyme activity, whereas higher activity was achieved only upon formate addition to the preincubation reaction. We suppose that the presence of dithionite, which is a strong reducing agent, affected NrdD stability and the reaction was stabilised by the presence of formate at an earlier stage of the reaction. For the EPR conditions used in the paper, 5 min incubation gave higher radical content compared to 20 min, and the reported activity assay gave highest activity after 10 min incubation; kcat of 1.3 s-1.

      (5) Methods section for the activity assays.

      • The concentration of dTTP, ATP, and dATP used in the assays must be described.

      We thank the reviewer for pointing out this omission and we have now specified the concentrations used.

      • Although the authors mentioned that they changed the concentration of dTTP, such data were not presented. Is this correct? Did the authors fix the dTTP concentration for the GTP reduction?

      We apologise for the ambiguity and have specified that the dTTP concentration was fixed at 1 mM in the GTP experiments and that only the ATP or dATP concentrations were varied.

      (6) Discrepancy between Ki/KL and Kd.

      • There is a significant ambiguity remaining about the binding event that the ITC and MST results are reporting. Although dATP binds to both a- and s-sites and ATP binds to both active site and a-site, only a single binding event was observed in both cases. To distinguish the dATP binding to a- and s-sites and the active site, the authors should perform binding assays using mutant enzymes with only one of the binding sites available for dATP/ATP binding.

      MST and ITC were performed in presence of substrate (1 mM GTP) and s-site effector (1 mM dTTP in ITC experiments, and 5 mM dTTP in MST experiments), thus dATP is blocked from binding to the s-site and ATP from binding to the active site.

      • There are significant differences between Kd determined by MST or ITC and Ki/KL determined by the activity assays. Kd measurements were performed in the absence of the substrate nucleotides, while the assays required substrates. There may be complications from the presence of NrdG and the Gly radical formation. The authors must clearly describe all these complications and the discrepancy between Kd and Ki/KL.

      MST, ITC and enzyme assays were all performed in the presence of substrate, and enzyme assays also contained NrdG, which was not present in the MST and ITC analyses. While KD is a thermodynamic constant representing the affinity of ligand to its binding site - in our case an effector nucleotide to the ATP-cone, KL is a kinetic constant (the allosteric effector concentration that gives half maximal activity) representing the relationship between the effector concentration and the reaction speed and is affected by the enzyme turnover number (kcat). The relationship between KD, KL and Ki is further complicated by conformational and possibly oligomeric state changes of NrdD upon binding of allosteric effectors, which occurs on a slower time scale than the rapid exchange of nucleotides in allosteric sites.

      • The results of ATP/dATP copurification experiments shown in Figure 2 - figure supplement 1 show the preference of dATP binding over ATP. However, the results do not necessarily support the competition between ATP and dATP for binding to the ATP cone domain. It is still possible that dATP binding to the s-site diminishes the binding of ATP to the a-site.

      Our aim was to exclude the possibility that ATP and dATP can bind to the ATP-cone at the same time and not to study competition between the two. Nevertheless, to eliminate the possibility that dATP binding to the s-site could affect nucleotide binding to the a-site, in two out of three conditions described in the supplementary figure, the experiments were performed in the presence of dTTP to prevent binding of dATP to the s-site.

      (7) Oligomeric states.

      • The authors must present the GEMMA results without ATP or dATP. Otherwise, the effects of ATP and dATP on the oligomeric state are not clear.

      We cannot report GEMMA results without ATP or dATP because apo-PcNrdD was unstable in the GEMMA buffer and clogged the capillaries. Instead, SEC analysis was performed on apo-PcNrdD in a more suitable buffer and showed a homogeneous peak corresponding to a dimer (included as Figure 3 - figure supplement 1).

      • Figure 3 does not support the induction of a2 upon ATP binding. The concentrations of ATP used in these experiments (50 and 100 uM) were significantly lower than KL determined by the activity assays (780 uM), while it is close to the Kd values determined by ITC or MST (~25 uM). Since it is unclear what binding events ITC and MST are reporting, the data in Figure 3 does not provide support for the claimed effects of ATP binding.

      MST and ITC were performed in the presence of substrate (1 mM GTP) and s-site effector (1 mM dTTP in ITC experiments, and 5 mM dTTP in MST experiments), and they thus measure binding of ATP or dATP to the ATP cone. SEC analysis with 2 µM apo-PcNrdD and higher nucleotide concentrations (1 mM) was performed, confirming the presence of both dimers and tetramers in solution at different ratios depending on the addition of ATP or dATP. The SEC analysis, included as Figure 3 - figure supplement 1, confirms the existence of an equilibrium in solution.

      • The effects of dATP must be presented more clearly. The authors did not observe a significant difference in oligomeric states between 50 or 100 uM dATP vs 50 uM dATP and 100 uM CTP. The former condition has dATP ~ 2x higher than the Kd and KL (Figure 1b) and therefore could be considered as "inhibited". On the other hand, NrdD should be fully active under the latter condition. The absence of difference in the oligomeric states between these two different conditions suggested to me that the oligomeric state does not regulate the NrdD activity. The authors seemed to indicate the same conclusion, but did not describe it clearly.

      We agree that the oligomeric state most likely does not regulate the NrdD activity and hope to have explained this better in the revised version.

      • Figure 3 legend mentioned a and b, but the figure was not labeled.

      We have corrected this.

      • The authors should triplicate the analysis and report the errors.

      Five scans were added for each trace to increase the signal-to-noise level (included in figure legend).

      (8) EPR characterization of Gly radical

      • The amount of Gly radical must be quantified by EPR. The authors must report how much NrdD has Gly radical.

      The concentration of NrdD (1 µM) in the activity assays is too low to be quantified by EPR. In the EPR experiment the glycyl radical content is given in the figure legend.

      • The authors claim that the Gly radical environment was similar based on the doublet feature. However, the double feature comes from the hyperfine splitting with α proton whose orientation relative to the radical p-orbital would not be affected by the conformation or the environment. Thus, this conclusion is incorrect and must be removed.

      We thank the reviewer for the clarifying comment and have removed our suggestion in the text.

      (9) Gly711 should be shown in Fig. 6e to help readers understand the last paragraph on page 12.

      The figure reference has been changed to Fig. 7, where this is shown more clearly. In Fig. 6e, inclusion of Gly711 would obscure other important information.

      (10) GRD structure with dATP

      The disorder of GRD in the presence of dATP does not agree with the formation of Gly radical under the same conditions. Gly radical is unlikely stable if it is extensively exposed to solvent. Most likely, the observed cryo-EM structures represent the conformation irrelevant to Gly radical formation.

      We agree that the glycyl radical is unlikely to be stable if exposed to solvent. We believe that the GRD is not completely disordered but most likely made more mobile through rigid body movements of the domain to an extent that makes it invisible in the cryo-EM maps. It is most likely still in the vicinity of the active site, shielding the glycyl radical. Our new HDX-MS results show a small but tangible increase in mobility of the GRD in the presence of dATP compared to ATP. Of course the differences in dynamics remain to be confirmed. It is worth noting that the group of Catherine Drennan at MIT published a conference abstract more than a year ago that suggested a similar pattern of ordered/dynamic GRDs, based on crystal structures, though the details have not yet been published (https://doi.org/10.1096/fasebj.2022.36.S1.R3407).

      We also agree that the cryo-EM structures do not show the GRD conformation relevant to Gly radical formation, as this has been shown spectroscopically for the GRE pyruvate formate lyase to require large conformational changes in the GRD and also the presence of the activase. However, revealing this conformation would be a completely different project. We postulate that inactivation proceeds by prevention of radical transfer to the substrate, not by prevention of its formation.

      We have altered the wording in several places in the revised manuscript, including the title, to avoid using the term “disorder”, as this may imply (partial) unfolding, and we certainly do not wish to imply that.

      (11) The difference between dATP and ATP binding

      From the presented structures, it was not clear how the absence of 2'-OH affects the oligomeric state and the structure of the GRD. The low resolution of the ATP-bound structure precluded the comparison between the ATP and dATP-bound structures.

      We agree that a detailed analysis of the differences between ATP- and dATP-bound structures requires higher resolution structures, particularly of the ATP-bound form. This will be the subject of future studies.

      (12) Conclusion about the disordered GRD.

      -The authors should describe the reason why the dATP binding affected the structure of GRD. The authors did not discuss why dATP binding affected the folding or mobility of GRD. Since this is the key conclusion of this manuscript and the authors are making this conclusion based on the absence of the ordered GRD structure (hence the negative results), the authors should carefully describe why the dATP binding does not allow the binding/folding of GRD in the position observed in the ATP-bound structure.

      As mentioned in our response to point 4 in this reviewer’s Public Review, it is difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and that the linker cannot be completely modelled even in the dATP-bound tetramers. Our first hypotheses were that the ATP-cone might work by a steric occlusion mechanism, but the reality appears more complex. Most likely dATP binding causes a change in the dynamics of the linker region and NxN flap that directly affects substrate binding and simultaneously causes higher mobility of the GRD, given that all are part of a connected system. The structures determined in the presence of dATP and CTP show that CTP cannot bind in the absence of an ordered NxN flap. We hope that future structural studies of NrdDs from other organisms may shed further light on this mechanism.

      • The authors should test if the dATP inhibition is reversible for PcNrdD. If dATP binding induces dissociation of GRD from the active site and makes GRD flexible, Gly radical would most likely be quenched by formate or other components in the assay solution. If dATP inhibition is reversible, it is hard to believe that Gly radical dissociates completely from the active site.

      As-purified PcNrdD contains dATP and can after removal of bound nucleotides bind substrate in presence of ATP. The as-purified PcNrdD protein contained 30% nucleotide contamination. After precipitation, HPLC analysis identified a major peak corresponding to dATP/dADP. Purification conditions were optimised to remove the nucleotides and we have added this information to the purification description.

      (13) Functional support for the observed structures.

      Similar to X-ray crystallography, cryo-EM is a highly selective method that requires the selection of particles that can be analyzed with sufficient resolution. This means that the analysis could be biased towards the protein conformations stable on the cryo-EM grid. Consequently, testing the structural observations by functional characterization of mutant enzymes is critical. However, the authors did not perform such functional characterizations and made conclusions purely based on the structural observations.

      We acknowledge this limitation. We constructed several mutations located at the tetrameric interface between the ATP-cone and the core protein based on the cryo-EM structure of dATP loaded NrdD. Unfortunately, these mutant proteins were unstable and led to protein cleavage.

      (14) Other minor points:

      • In the introduction, the authors stated "The presence and function of the ATP-cone domain distinguish anaerobic RNRs from the other members of the large glycyl radical enzyme (GRE) family that are otherwise structurally and mechanistically related (Backman et al., 2017)." This statement is misleading because GREs are functionally diverse.

      We have removed the words “and mechanistically” to reduce ambiguity.

      • p. 12, e.g. should be removed.

      We are not sure what is meant here. Does the reviewer mean p. 21 “The interactions are mostly hydrophobic but are reinforced by several H-bonds, e.g. between Gln3D-Gln458A, Ser53D–Gln458A, Arg11D-Asp468A, the main chain amide of Ile12D and Tyr557A.”?

      Reviewer #3 (Recommendations For The Authors):

      Overall, the work presents an impressive and in-depth structural view of the conformational changes stemming from the interactions of (d)ATP allosteric effector molecules that are interrelated to RNR function. The manuscript is written clearly and provides a solid overview of RNR chemistry. The cryo-EM data show striking differences between ATP and dATP bound forms, though in select regions, the resolution is not good enough for strong interpretations of the finer details.

      (1) In cryo-EM structures, dATP appears to shift the oligomerization equilibrium from nearly all dimeric forms (absence of dATP) to a mixture of both dimeric and tetrameric species (presence of dATP). The examination of the oligomeric composition in solution using the GEMMA - a mass spectral technique - showed somewhat similar trends, though given the magnitude of the differences, it was less compelling. Have the authors considered a complementary solution technique, such as analytical SEC or dynamic light scattering that could provide further support for the change in oligomerization as observed in the cryo-EM?

      SEC analysis with 2 µM apoPcNrdD and higher nucleotide concentrations (1 mM) was performed, confirming the presence of both dimer and tetramer in solution at different ratios depending on the addition of ATP or dATP. The SEC analysis, included as Figure 3 - figure supplement 1, confirms the existence of an equilibrium in solution.

      (2) The protein as isolated from the final SEC shows a predominant peak corresponding to aggregate protein. It would be helpful if the authors ran an analytical SEC on the protein sample that is more refined to see how much soluble dimer/tetramer vs. aggregate protein there is. This could impact the kinetic and thermodynamic analysis of effector interactions. Further, the second major peak is labeled as 'monomer'. Is the protein isolated as a monomer and then forms dimer upon effector binding? It is unclear. The authors should consider presenting the SEC standards for the given column and buffer condition so that a reasonable estimate of the oligomerization status of the isolated protein can be assigned.

      Can the reviewer possibly have believed that Figure 1 - supplementary figure 2a shows PcNrdD rather than PcNrdG? The figure supplement corresponds to the as-isolated SEC analysis of the activase (PcNrdG), which shows the presence of two main peaks of aggregates and monomer. The monomeric peak was reinjected and showed no presence of further aggregation states. Currently it is not known which oligomeric state the activase harbours upon binding to PcNrdD and glycyl radical formation. None of the other SEC figures in the MS has any predominant peak corresponding to aggregated protein.

      (3) More details are needed for the ITC section. The ITC methods are not clear. What is the exact composition of the ligand solution being titrated into the protein solution? It is unclear how the less-than-unity binding stoichiometry was determined and what it means. Is the n value for the monomer, dimer, or tetramer forms? It is concerning that n < 1 is observed for dATP binding in the ITC whereas there are 3 dATP bound/subunit in the cryo-EM. For completeness, titration of a buffer into protein solution (no ligand) should be conducted and presented to demonstrate that the heats produced in Figure 2 correspond to the ligand only (and not a buffer mismatch).

      ITC experiments were performed in the presence of 1 mM GTP (c-site) and 1 mM dTTP (ssite). Unlike other parameters in ITC analyses, the N value is usually the least accurate of all fitted parameters and strongly depends on the concentration of the active protein in the sample. N values described in the current study are in the same range as values reported for ATP-cones in other RNRs and NrdR (Rozman Grinberg & al 2018a, 2018b, 2022 McKethan and Spiro 2013). The results most likely reflect two high-affinity binding sites for dATP and one high affinity binding site for ATP. Different nucleotide concentrations were used in the cryoEM and ITC experiments.

      (4) It is intriguing that the binding of dATP doesn't quell the glycyl radical. In fact, it appears that, as the authors suggest, the amount of glycyl radical might be increased in these samples. However, the cryo-EM data indicates that the GRD is disordered. It is unclear how these would be correlated, as one would not expect a disordered structural element to maintain such a potent oxidant.

      As already written above, we do not wish to imply that the GRD is completely or even highly disordered, just that its dynamics increase in the presence of dATP. Otherwise we completely agree that a very exposed Gly radical is incompatible with its stability. It could be that the amount of disorder is exaggerated somewhat by the vitrification process in cryo-EM. We have tried to reword some of the text to emphasise higher mobility rather than disorder.

      It has been difficult to propose a direct structural mechanism for transmission of the allosteric signal from the a-site in the ATP-cone to the active site and GRD given that the ATP-cones and linker are disordered in the dATP-bound dimers and that the linker can not be completely modelled even in the dATP-bound tetramers. We initially thought that a steric occlusion mechanism might be at play, but the reality appears more complex. Most likely dATP binding causes a change in the dynamics of the linker region and NxN flap that directly affects substrate binding and simultaneously causes higher mobility of the GRD, given that all are part of a connected system. The structures determined in the presence of dATP and CTP show that CTP cannot bind in the absence of an ordered NxN flap. We hope that future structural studies of NrdDs from other organisms may shed further light on this mechanism.

      (5) It is a bit difficult to keep track of the myriad of structural information and differences amongst the various nucleotide-dependent conditions. It would be useful for the authors to add a summary figure that depicts the various oligomers, orientations, and (dis)ordered structural elements with cartoon representations.

      Thank you for this suggestion. It has been added as Figure 11.

      (6) The mechanism by which (d)ATP binding changes the (dis)ordering of select loops based on the current cryo-EM data is unclear (even the authors agree). The addition of molecular dynamics (MD) simulations on two different structures to reveal the network or structural communication would be a great addition to the work and validate the structural data.

      We have discussed this with a colleague who is an expert in MD. Their advice was that such simulations would be very difficult given that some amino-acids are missing in both of the relevant starting structures (ATP-CTP and dATP-CTP dimer) and could give very variable results. Thus we chose to do complementary experiments with hydrogen-deuterium exchange mass spectrometry (HDX-MS) instead. The results are included in the revised manuscript.

      Minor points

      (1) There are some conflicting reports as to whether P. copri is considered a human 'pathogen'. According to Yeoh, et al Scientific Reports 2022, P. copri is one of the predominant microbes in the human gut and is linked to a positive impact on metabolism. Perhaps the addition of a citation that provides support for it as a pathogen would clarify the statement on p. 3.

      We have added a recent reference (Nii T, Maeda Y, Motooka D, et al. (2023) Genomic repertoires linked with pathogenic potency of arthritogenic Prevotella copri isolated from the gut of patients with rheumatoid arthritis. Ann Rheum Dis 82: 621-629. doi: 10.1136/annrheumdis-2022-222881).

      (2) In Figure 3, the number of dimers/tetramers for dATP (100 uM) does not add up to 100.

      What is the other 2%?

      Thank you for pointing this out - it has been corrected.

      (3) The data in Figures 5C and D do show slight changes that could be fit and interpreted as a 'weak' interaction. Thus, the statement on p 9 "where dATP-loaded PcNrdD could bind neither GTP nor CTP" should be changed to indicate that the interactions are weak (or that the nucleotides weakly associate).

      The text and the figure have been changed according to the reviewer’s suggestion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      Firstly, the authors place a great deal of emphasis on the impact of the Hif1-a inhibitor PX-478. The literature surrounding this inhibitor and its mode of action indicates that it is not a direct inhibitor of activity but that its greatest impact is on the production of Hif1-a. The authors do include another inhibitor as a control, Echinomycin, but it does not appear to be as biologically active and the panel of experiments conducted with this is extremely limited. I would be more comfortable with a full Seahorse experimental panel for Echinomycin, similar to SFig 2.G as performed with PX-478.

      We thank the reviewer for their comment highlighting the different mechanisms of action of the HIF-1α inhibitors used in this article. While echinomycin inhibits the binding of HIF-1α to the hypoxia response element (HRE) thereby blocking HIF-1a DNA binding capability, PX-478 inhibits HIF-1α deubiquitination, decreases HIF-1α mRNA expression, and reduces HIF-1α translation. We have included a paragraph explaining this phenomenon in the new version of the manuscript (page 9). In addition, we extended the panel of experiments performed with echinomycin, which confirmed a marked inhibition of the glycolytic pathway when DCs were stimulated with irradiated Mtb in the presence of echinomycin as assessed by SCENITH (new Figure S3H).

      Similarly, it would be of value to have Seahorse profiling that directly excludes FAO from the metabolic profile through the use of Etomoxir as an inhibitor of fatty acid oxidation, which one would assume would have no impact on the metabolic response.

      In order to estimate the contribution of FAO towards fueling protein synthesis in DCs stimulated with iMtb, the FAO inhibitor etomoxir was incorporated to the SCENITH method as previously described (Adamik et al., 2022). Overall, FAO dependence was found to be less than 10% in DCs, regardless of their activation state. While mitochondrial dependence is reduced after iMtb stimulation, there is no difference in FAO dependence, suggesting that OXPHOS is primarily driven by glucose in iMtb-stimulated cells. This is consistent with HIF1α-induced increase of glucose metabolism-related genes. We have adjusted the results section to include this new result (new Figure S1).

      Aside from these minor points, I believe this to be a rigorous study.

      Reviewer #2 (Recommendations For The Authors):

      In Fig. 1 and Fig. 2, the authors conclude that Mtb rewires the metabolism of Mo-DCs and induces both glycolysis and OXPHOS. The data shows that infection with iMtb or Mtb increases glucose uptake and lactate release, suggesting an increase in glycolysis. However, an increase in lactate is not a measure of glycolysis. Lactate is a byproduct of glycolysis; the end product of glycolysis is pyruvate.

      We are grateful for the reviewer's comment, as it gives us the opportunity to explain the conceptual framework on which we based our study. Traditionally, pyruvate has been considered to be the end product of glycolysis when oxygen is present and lactate the end product under hypoxic conditions. Numerous studies have shown that lactate is produced even under aerobic conditions (Brooks, 2018). Therefore, we frame this work in accordance with this view that states that glycolysis begins with glucose as its substrate and terminates with the production of lactate as its main end product (Rogatzki, Ferguson, Goodwin, & Gladden, 2015; Schurr, 2023; Schurr & Schurr, 2017).

      Secondly, since the authors have access to the Agilent Extracellular Flux Analyzer, they should have performed detailed ECAR/OCR measurements to conclusively demonstrate that both glycolysis and OXPHOS are increased in Mo. This is especially important for OXPHOS because the only readout shown for OXPHOS is an increase in mitochondrial mass (figure 1 G, H), which is not acceptable. Overall, the data does not indicate that Mtb triggers OXPHOS in the dendritic cells. It only indicates dead iMtb increases the mass of mitochondria in DCs.

      The reviewer’s advice is well appreciated. However, we would like to clarify what may be a misunderstanding; that is, the assays alluded to by the reviewer were not performed on monocytes but on DCs. As advised by the reviewer, we now include the OCR measurements by Seahorse and describe the figures according to their order of appearance in the new version of the manuscript.

      What happens to the mitochondrial mass when infected with live Mtb?

      In response to the reviewer’s question, we determined the mitochondrial mass in infected DCs with live Mtb. In contrast to DCs treated with irradiated Mtb, those infected with live bacteria showed a clear reduction of their mitochondrial mass (modified Figure 1G). This result indicates that, although both Mtb-infected and irradiated Mtb-exposed DCs show a clear increase in their glycolytic activity, divergent responses are observed in terms of mitochondrial mass.

      It will be best if the authors indicate in the figure headings that dead Mtb was used.

      We agree with the reviewer. For figures 1-3, we applied the term “Mtb” in the figure headings since both irradiated and viable bacteria were used for the corresponding experiments. In figures 4-5, the term “iMtb” (alluding to irradiated Mtb) was used in the figure headings as suggested by the reviewer. For the remaining figures, the term “iMtb” was indicated in their legends when dead bacteria weres used to stimulate DCs.

      E.g., Figure 1F; what does live Mtb do to GLUT1 levels etc etc?

      In response to the reviewer’s question, we included new data about Glut1 expression in DCs infected with live Mtb in the latest version of the manuscript. In line with the increase in glucose uptake shown in figure 1B, we observed an increase in the percentage of Glut1 positive DCs upon Mtb infection (new Figure 1F, lower panels). The increase in Glut1 expression strengthens the notion that DCs activates their glycolytic activity in response to the infection, as demonstrated by the elevated release of lactate, glucose consumption, HIF-1α expression, LDHA expression (Figure 1) and glycolytic activity (Figure 2, SCENITH results with viable Mtb). Therefore, these data strongly support the induction of glycolysis by Mtb (either viable or irradiated) in DCs.

      Also, we found that they were still able to activate CD4+ T cells from PPD+ donors in response to iMtb. This activation of CD4 T cells with iMtb in the presence of a HIF-1alpha inhibitor is expected, as iMtb is dead and not virulent. What happens when the cells are infected with live virulent Mtb?

      We would like to clarify the main purpose of the DC-T cells co-culture assays in the presence of the HIF-1α inhibitors. To characterize the impact of HIF-1α on DC functionality, we assessed the capacity of DCs to activate autologous CD4+ T cells when stimulated with iMtb in the presence of HIF-1α inhibitors. To this end, we used iMtb merely as a source of antigens to load DCs and evaluate the effect of HIF-1α inhibition on the activation of antigen-specific T cell. The use of viable Mtb may introduce confounding factors, such as pathogen-triggered inhibitory mechanisms (e.g., EsxH secretion by Mtb, (Portal-Celhay et al., 2016)), which would prevent us from reaching conclusions about the role of HIF-1α. Thus, we consider that the use of live bacteria for this experiment is out of the scope of this manuscript.

      The authors demonstrated that CD16+ monocytes from TB patients have higher glycolytic capacity than healthy controls Fig 7. The authors should differentiate TB patient monocytes into DCs and measure their bioenergetics to test if infection alters their glycolysis and OXPHOS.

      In agreement with the reviewer, the determination of metabolic pathways in DCs differentiated from monocytes of TB patients is a key aspect of this work. Accordingly, the bioenergetic determinations of DCs generated from monocytes from TB patients versus healthy subjects are now illustrated in Figures 6F (lactate release) and 6G (SCENITH profile).

      In the discussion, the authors state that "pathologically active glycolysis in monocytes from TB patients leads to poor glycolytic induction and migratory capacities of monocyte-derived DCs." However, the data from Fig. 1 and 2 show that treatment with iMtb or Mtb induces glycolysis in MoDCs. How do the authors explain these contrasting results?

      We thank the reviewer for pointing out this issue. Figures 1 and 2 show DCs differentiated from monocytes of healthy donors (HS). In this case, DCs from HS respond to Mtb by inducing a glycolytic and migratory profile. Yet, in the case of monocytes isolated from TB patients, these cells exhibit an early glycolytic profile from the beginning of differentiation, ultimately yielding DCs with low glycolytic capacity and low migratory activity in response to Mtb. We included this explanation in the discussion (page 18) to better clarify this issue.

      Also, the term "pathological" active glycolysis (Introduction and Discussion) is an inappropriate term.

      As requested by the reviewer, we excluded the term “pathological” to describe the phenomenon reported in this study.

      Lastly, it should be shown whether the DCs generated from CD16+ monocyte from TB patients generate tolerogenic and/or aberrant DCs, which have lower glycolytic and migration capacity compared to the CD16- monocyte population. In Figure 7B, the authors should discuss why the CD16+ monocyte population has lower glycolytic capacity compared to CD16- monocytes in healthy donors. Furthermore, in contrast to the TB patients, do DCs generated from CD16+ monocyte in healthy donors have increased glycolytic and migration capacity compared to CD16- monocyte (because these monocytes showed lower glycolytic capacity)? Furthermore, if there is no difference in glycolytic capacity among the three monocyte populations in TB patients, on what basis was it concluded that DCs generated only from the CD16+ monocyte population may be the cause of lower migration capacity? The authors state in Figure 7F that the DMOG pretreatment matches the situation where the Mo-DCs from TB patients showed reduced migration. Did the authors check the Hif-1alpha levels in monocytes obtained from TB patients?

      We appreciate this in-depth analysis by the reviewer because it allows us to clarify some interpretations of the SCENITH results in Figure 7B. It is important to keep in mind that with the SCENITH technique we can only infer about the relative contributions between the metabolic pathways, without alluding to the absolute magnitudes of such contributions. In this regard, it is key to note that the amount of lactate released during the first hours of the TB monocyte culture is much higher than that released by monocytes from healthy subjects (HS, Figure 7A), even when most of monocytes, which are CD14+ CD16-, have comparable glycolytic capacities between HS and TB. Another example to illustrate how to interpret SCENITH results can be found in Figure 2, where a lower mitochondrial dependence is observed in iMtb-stimulated DCs (Figure 2A), while the absolute ATP production associated to OXPHOS is indeed higher as measured by Seahorse (Figure 2D). Therefore, the glycolytic capacity is not a direct readout of the magnitude of glycolysis, but of its contribution to total metabolism. The low levels of lactate released from HS monocytes likely reflects their low activation state and low metabolic activity compared to TB monocytes. In this regard, we have previously demonstrated that monocytes from pulmonary TB patients display an activated phenotype (Balboa et al., 2011). The fact that there is no difference between the glycolytic capacities of TB and HS CD16- monocytes indicates that their proportional contributions to protein synthesis are comparable (again, without inferring about their absolute values, which may be very different).

      Beyond the previous clarification, the reviewer's proposal to isolate subsets of monocytes is a very interesting idea. However, the experimental approach is very difficult based on the amount of blood we can obtain from patients. The cohort of patients included in this work comprises very severe patients and we are given up to 15-20 ml of peripheral blood from each. This volume of blood yields up to 10 million PBMC with approximately 1 million monocytes. If we separate the monocyte subsets, the recovered cells per condition will be insufficient to perform the intended assays.

      Nevertheless, we incorporate new evidence that TB disease is associated with an increased activation and glycolytic profile of circulating CD16+ monocytes.

      i) First, we show that the baseline glycolytic capacity of CD16+ monocytes correlates with time since the onset of TB-related symptoms (new Figure 7C).

      ii) Second, we performed high-throughput GeneSet Enrichment Analysis (GSEA) on transcriptomic data (GEO accession number: GSE185372) of CD14+CD16-, CD14+CD16+ and CD14dimCD16+ monocytes isolated from individuals with active TB, latent TB (IGRA+), as well as from TB negative healthy controls (IGRA-). We found enrichments that, unlike oxidative phosphorylation, glycolysis tends to increase in active TB in both CD14+CD16+ and CD14dimCD16+ monocytes (new Figure 7D).

      iii) We measured the expression of HIF-1α in monocyte subsets by FACS and found that this transcription factor is expressed at higher levels in CD16+ monocyte subsets from TB patients compared to their counterparts from healthy donors (new Figure 8 A). We consider this result justifies the assays shown in Figure 8B-C, in which we prematurely activated HIF-1α in healthy donor monocytes during early differentiation to DCs and measured its impact on the migration of the generated DCs.

      In the Discussion, the authors mention that circulating monocytes from TB patients differentiate from DCs with low immunogenic potential. However, the authors have not shown any immunological defect in any of their data with monocytes from TB patients. In the proxy model mentioned in Figure 7, they have in fact shown that these preconditioned DCs have higher CD86 expression. Can the authors explain/show data to justify the statement in the first paragraph of the Discussion?

      We agree with the reviewer on this observation. Our findings are limited to the generation of DCs with low migratory potential (low chemotactic activity towards CCL21 of DC differentiated from TB patient monocytes shown in figure 6H and of DC generated from pre-conditioned monocytes shown in figure 8C). We have modified that part of the discussion to better clarify this point, replacing migratory with immunogenic.

      The authors should note that oxamate is a competitive inhibitor of the enzyme lactate dehydrogenase and not glycolysis. Also, LDHA catalyzes the conversion from pyruvate to lactate and not the other way around (Results, page 6).

      This comment relates to the first one by the reviewer, in which the dogma of glycolysis was discussed. According to the new conception of glycolysis, it begins with glucose as its substrate and terminates with the production of lactate as its main end product.

      The following statements by the authors on page 6 are incorrect: "Because irradiated and viable Mtb induced comparable activation of glycolysis, we subsequently performed all our assays with irradiated Mtb only in the rest of the study due to biosafety reasons." and: "To our knowledge, this is the first study addressing the metabolic status and migratory activity of Mo-DCs from TB patients."

      We deleted the first sentence and reworded the second sentence as "To our knowledge, this is the first study to address how the metabolic status of monocytes from TB patients influences the migratory activity of further differentiated DCs".

      The Discussion reads as if live Mtb was used in the experiments, which is not the case. This should be corrected.

      We changed Mtb for iMtb when it was the case in the discussion. In some cases, Mtb stimulation was used instead of Mtb infection.

      Minor Comments:

      (1) In Figure 1F legend "Quantification of Glut1+ cells plotted to the right". The underlined part should be "plotted below".

      It was corrected.

      (2) In Figure 1H. Please describe the quantitation method and describe how many cells or the number/size of fields were used to quantitate mitochondria.

      For mitochondrial morphometric analysis, TEM images were quantified with the ImageJ “analyze particles” plugin in thresholded images, with size (μm2) settings from 0.001 to infinite. For quantification, 8–10 cells of random fields (1000x magnification) per condition were analyzed. We included this information in the methods section of the new version of the manuscript.

      (3) Please mention the number of independent experimental repeats for each experimental data set and figure.

      In each figure, the number of independent experiments is indicated by individual dots.

      (4) In Figure 2A legend, "PER; left panel" should be PER; lower panel and "OCR; right panel" should be OCR; upper panel.

      It was corrected.

      References for reviewers

      Adamik, J., Munson, P. V., Hartmann, F. J., Combes, A. J., Pierre, P., Krummel, M. F., … Butterfield, L. H. (2022). Distinct metabolic states guide maturation of inflammatory and tolerogenic dendritic cells. Nature Communications 2022 13:1, 13(1), 1–19. https://doi.org/10.1038/s41467-022-32849-1

      Balboa, L., Romero, M. M., Basile, J. I., Sabio y Garcia, C. A., Schierloh, P., Yokobori, N., … Aleman, M. (2011). Paradoxical role of CD16+CCR2+CCR5+ monocytes in tuberculosis: efficient APC in pleural effusion but also mark disease severity in blood. Journal of Leukocyte Biology. https://doi.org/10.1189/jlb.1010577

      Brooks, G. A. (2018). Cell Metabolism The Science and Translation of Lactate Shuttle Theory. Cell Metab. https://doi.org/10.1016/j.cmet.2018.03.008

      Portal-Celhay, C., Tufariello, J. M., Srivastava, S., Zahra, A., Klevorn, T., Grace, P. S., … Philips, J. A. (2016). Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4+ T-cell activation. Nature Microbiology, 2, 16232. https://doi.org/10.1038/NMICROBIOL.2016.232

      Rogatzki, M. J., Ferguson, B. S., Goodwin, M. L., & Gladden, L. B. (2015). Lactate is always the end product of glycolysis. Frontiers in Neuroscience, 9(FEB), 125097. https://doi.org/10.3389/FNINS.2015.00022/BIBTEX

      Schurr, A. (2023). From rags to riches: Lactate ascension as a pivotal metabolite in neuroenergetics. Frontiers in Neuroscience, 17, 1145358. https://doi.org/10.3389/FNINS.2023.1145358/BIBTEX

      Schurr, A., & Schurr, A. (2017). Lactate, Not Pyruvate, Is the End Product of Glucose Metabolism via Glycolysis. Carbohydrate. https://doi.org/10.5772/66699

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Thank you for your continued review and for providing insightful suggestions. Below, I share some unpublished new findings related to the MYRF ChIP, comment on the potential interplay between myrf-1 and myrf-2, and describe the modifications we've implemented to address the reviewers' comments.

      (1) MYRF-1 ChIP

      Our collaboration with the modERN (Model Organism Encyclopedia of Regulatory Networks) project has recently yielded MYRF ChIP data. The results demonstrate clear and consistent MYRF binding across samples, notably on the lin-4 promoter. Given the significant detail and extensive description required to adequately present these findings, we have decided it is impractical to include them in the current paper. These results will be more suitably published in a separate ongoing study focused on MYRF's regulatory targets during larval development.

      (2) Inter-regulation between myrf-1 and myrf-2

      We acknowledge the interpretation that myrf-2 may act as a genetic antagonist to myrf-1, as suggested by the delayed arrest in myrf-1; myrf-2 double mutants and a trend towards increased lin-4 expression in myrf-2 mutants. Additionally, our unpublished data suggest an elevated myrf-2 expression peak in myrf-1 null mutants during the L1-L2 transition, indicating a potential mutual repressive interaction between myrf1 and myrf-2.

      On the other hand, myrf-1 and myrf-2 exhibit functional redundancy in DD synaptic rewiring and lin-4 expression. A gain of function in myrf-2 promotes early DD synaptic rewiring. Furthermore, three independent co-immunoprecipitation analyses targeting myrf-1::gfp, myrf-2::gfp, and pan-1::gfp confirm a tight association between myrf-1 and myrf-2 in vivo. These findings challenge the notion of myrf-2 primarily antagonizing myrf-1, or vice versa.

      We propose a model where myrf-1 and myrf-2 collaborate and are functionally redundant, with compensatory elevated expression when one paralog is absent. For instance, the loss of myrf-1 triggers upregulation of myrf-2, which, though insufficient on its own, accelerates the transcriptional program and exacerbates system deterioration, leading to accelerated death. How exactly this takes place is currently unclear. We notice the MYRF binding on both myrf-1 and myrf-2 genes in MYRF-ChIP.

      Given the complexity of these interactions, we have chosen not to delve deeply into this discussion in the paper without more direct evidence, which would require detailed analysis.

      (3) Revisions Addressing Reviewer Suggestions

      (a) We have revised our interpretation of the mScarlet signal changes in myrf-1(ybq6) and myrf-2(ybq42) mutants to reflect a more nuanced understanding of their potential genetic relationship, as highlighted in the main text.

      “The mScarlet signals exhibit a marked reduction in the putative null mutant myrf-1(ybq6) (Figure 1D, E). Intriguingly, in the putative null myrf-2(ybq42) mutants, there is a noticeable trend towards increased mScarlet signals, although this increase does not reach statistical significance (Figure 2C, D).”

      (b) In response to feedback on Figure 2 and the characterization of lin-4(umn84) mutants, we've included a new series of images showing lin-4(umn84)/+ and lin-4(umn84) signals through larval stages, presented as Figure 2 Figure Supplement 2. This addition clarifies the functional status of lin-4 nulls in our study.

      “Our observations revealed that mScarlet signals were not detected early L1 larvae (Figure 2C-F; Figure 2 Figure Supplement 2).”

      (c) To improve the clarity of Fig 6, we've added indicator arrows in the red, green, and merge channels, enhancing the visualization of the signals.

      We appreciate the opportunity to clarify these points and hope that our revisions and additional data address the concerns raised.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      The very detailed insights gained by the authors into allosteric regulation require very specialized techniques in this study. This poses a challenge to communicate the methods, the results, and the meaning of the results to a broader audience. In some places, the authors overcome this challenge better than in others.

      Following this reviewer’s suggestions, we have extensively revised the text, making the text more understandable to a broader audience.

      The manuscript does not show up on BioRxiv.

      The manuscript is now deposited in Biorxv (doi: 10.1101/2023.09.12.557419)

      Fig3: GS-ES2 transition: the changes appear minimal in the illustration.

      As suggested by this reviewer, we have re-examined the GS-ES2 transition and clearly defined the structural characteristics of the conformationally excited state 2 (ES2) state. As shown in the revised Fig.3 of the main text, the ground state (GS) features a π-π packing between the aromatic rings of F100 and Y156, as well as a cation-π stacking between R308 and F102. In the ES2 state, these above interactions are disrupted, while a new π-π packing interaction is formed between F100 and F102. We added new comments in the main text clarifying these structural interactions that characterize each state.

      GS-ES1 transition: how is the K72-E91 salt bridge disrupted? How do you define the formation/disruption of a salt bridge? The current figure does not make this very clear and the K72-E91 salt bridge appears to be intact in ES1. Maybe the authors could replace the dotted K72-E91 line with a dotted line and distance?

      As stated above, we revised Fig. 3 highlighting the differences between the two states. The K72 and E91 salt bridge is formed when the distance between Nε of K72 and Oε of E91 is shorter than 4.0 Å (the typical cutoff for a salt bridge). In the ES1 state, the outward movement of the αC helix increases the distance over 4.5 Å, disrupting the salt bridge.

      L251: Could the authors remind the reader why they are only comparing V104 and I150? Could they give a little context as to why they consider the agreement to be good? It appears that they would be statistically different, so a little context for what comprises a good agreement in the literature may be helpful.

      Our mutagenesis studies show that V104 and I150 are key residues for allosteric communication, and if mutated, result in well-folded but inactive kinases (Sci Adv. doi: 10.1126/sciadv.1600663). Importantly, V104 and I150 show two distinct populations in the CEST experiments that can be directly related to the GS and ES states. Regarding the fitting of these residues, we obtained a good agreement with the direction of the chemical shifts, which supports the hypothesized GS -> ES structural transition. The lack of a quantitative agreement between the chemical shifts of the experimental and simulated excited state is not surprising for two reasons a) all state-of-the art simulations fall short in sampling slow conformational interconversions, and b) the uncertainty of the SHIFTX algorithm for the prediction of 13C chemical shifts of methyl groups is quite large. Finally, we would like to point out that most NMR relaxation-dispersion experiments (CEST and CPMG) are performed for the backbone 15N, 13Calpha and 1H resonances, which have been used to calculate the structures of the intermediate states (Neudecker, P. et. al Science, 2012, 336,doi: 10.1126/science.1214203) and yield reasonable agreement with the prediction for metastable states derived from Markov Models (Olsson, S. J. Am. Chem. Soc., 2017,139,doi:10.1021/jacs.6b09460). To the best of our knowledge, there is no literature reporting on calculations of the 13C CEST profiles for methyl groups from MD simulations, and remarkably, we found a reasonably good agreement between experimental and predicted chemical shifts (see Fig.5C).

      Just to clarify: the calculated CS values are informed by experimental CS values that were used in the calculation?

      We used the backbone chemical shifts as the restraints only in the metadynamics simulations. We used the chemical shifts of the methyl groups and their corresponding excited states to verify the ES2 state.

      Figure 8: in its current form this potentially exciting result is lost on the average reader.

      we modified Fig. 8 of the main text, making the intra- and inter-residue correlations visible to the reader.

      Reviewer #2:

      While the alphaC-beta4 loop is a conserved feature of protein kinases, the residues within this loop vary across various kinase families and groups, enabling group and family-specific control of activity through cis and trans acting elements. F102 in PKA interacts with co-conserved residues in the C-tail, which has been proposed to function as a cis regulatory element. The authors should elaborate on the conformational changes in the C-tail, particularly in the arginine that packs against F102, in the results and discussion. This would further extend the impact and scope of the manuscript, which is currently confined to PKA.

      As suggested by this reviewer, we re-analyzed the time-dependent interactions between F102 and R308 at the C-tail. As this reviewer suspected, these interactions differentiate the ES2 from the GS state. In the GS state, there is a stable cation-π interaction between F102 and R308, which becomes transient in the ES2 state (Fig. 3). For the F100A mutant, the interactions between F102 and R308 have lower occurrence relative to the WT enzyme, i.e., a weaker interaction between the αC-β4 loop and the C-tail (see new Figure 6 - figure supplement 1). The latter supports our conclusion that the structural coupling between the C-tail and the two lobes of the enzyme decreases for the F100A mutant. We added more comments in the main text.

      FAIR standards of making the data accessible and reproducible are not directly addressed.

      We have deposited all our NMR data on the Data Repository Site at the University of Minnesota, DRUM (https://hdl.handle.net/11299/261043).

      The MD data and conformational states would be a valuable resource for the community and should be shared via some open-source repositories.

      Due to the large size of the simulations (>500 GB), we could not deposit them in the Data Repository Site at the University of Minnesota (DRUM). We are actively working with the personnel at DRUM to upload all the trajectories in an alternate site. However, these data will be available to the public immediately upon request.

      The authors state that ES1 and ES2 states are novel and not observed in previous crystal structures. The authors should quantify this through comparisons with PKA inactive states and with other AGC kinases.

      We apologize for the confusion. We now clarify that the ES1 is a well-known inactivation pathway. As suggested by this reviewer, we now report a few examples of active and inactive conformations of PKA-C and other kinases (see new Figure 3 – figure supplement 2.). Briefly, ES1 corresponds to the typical αC-out conformation found for PKA-C bound to inhibitors or in R194A mutant. A similar conformation is present for Src, Abl, and CDK2. The C-out conformation features a disrupted β3K-αCE salt bridge, which is key for active kinases. In contrast, the transition GS-ES2 is not present in the inactive conformations deposited in the PDB.

      Based on the results, can the authors speculate on the impact of oncogenic mutations in the alphaCbeta4 loop mutations in PKA?

      We now include additional comments and another citation that further supports our findings. In short, the activation of a kinase is generated by mutation insertions that stabilize the αC-β4 loop as pointed out by Kannan and Zhang (see references 28, 30, and 68). In contrast, mutations that destabilize this allosteric site (e.g., F100A) are inactivating, disrupting the structural couplings of the two lobes (our work).

      Reviewer #3:

      The manuscript is somewhat difficult to read even for kinase experts, and even harder for the layman. The difficulty partially arises from mixing technical description of the simulations with structural interpretation of the results, which is more intuitive, and partially arises from the assumption that readers are familiar with kinase architecture and its key elements (the aC helix, the APE motif, etc).

      We revised the text and modified Fig. 1 in the main text to make the paper more accessible to the general audience.

      The authors haven't done a good job describing the ES2 state intuitively. From my examination of the figures, it appears that in the ES2 state, the kinase domain is more elongated and the N and the C lobes are relatively less engaged than in the ground state. This may or may not be exactly, but a more intuitive description of the ES2 state is needed.

      As suggested by this reviewer, we include a better description of the ES2 state of the kinase and the structural details of the inactivation pathway. Also, we checked the radius of gyration of the two lobes for GS and ES2. ES2 is slightly more elongated with an Rg of 20.3 ± 0.1 Å as compared to the GS state (20.0 ± 0.2 Å). This marginal difference is consistent with our characterization of the local packing around the C-4 loop, in which the lack of stable interaction with E and C-tail in the ES2 state makes the overall structure less compact.

      The authors need to introduce and give a brief description of technical terms such as CV (collective variable), PC (principal component) etc.

      We now specify both collective variables and principal components and include those definitions in the Method section. Briefly, to characterize the complex conformational transitions of PKA-C, we utilize collective variables (Figure 2 – figure supplement 1). We chose these variables based on structural motifs described in the literature to define local and global structural transitions (Camilloni C., Vendruscolo, M, Biochemistry, 2015,54,7470; Kukic, P. et al. Structure, 2015,23, 745). On the other hand, we utilized the principal component analysis to compare the conformational changes of the kinase in the same two-dimensional space, revealing the two lowest frequencies that define the global motions of the enzyme (Figures 7C, D, and E).

      The following paper should be discussed as it discussed similar ATP/substrate binding of Src kinase based on an extensive network that largely overlaps with the discussed PKA network. Foda, et al. "A dynamically coupled allosteric network underlies binding cooperativity in Src kinase." Nature communications 6.1 (2015): 5939.

      We apologize for missing this citation. Indeed, it makes our finding more general as allosteric cooperativity is key in other kinases such as Src and ERK2. We included this in the Discussion section.

      The CHESCA analysis appears to be an add-on that doesn't add much value. It is difficult to direct. I'd suggest considering removing it to the SI.

      We understand this concern. We rewrote part of the paper to make the NMR analysis of the correlated chemical shifts described by the CHESCA matrices linked to the MD calculations.

    1. Author Response

      Reviewer #1 (Public Review):

      Theoretical principles of viscous fluid mechanics are used here to assess likely mechanisms of transport in the ER. A set of candidate mechanisms is evaluated, making good use of imaging to represent ER network geometries. Evidence is provided that the contraction of peripheral sheets provides a much more credible mechanism than the contraction of individual tubules, junctions, or perinuclear sheets.

      The work has been conducted carefully and comprehensively, making good use of underlying physical principles. There is a good discussion of the role of slip; sensible approximations (low volume fraction, small particle size, slender geometries, pragmatic treatment of boundary conditions) allow tractable and transparent calculations; clear physical arguments provide useful bounds; stochastic and deterministic features of the problem are well integrated.

      We thank the reviewer for their positive assessment of our work.

      There are just a couple of areas where more discussion might be warranted, in my view.

      (1) The energetic cost of tubule contraction is estimated, but I did not see an equivalent estimate for the contraction of peripheral sheets. It might be helpful to estimate the energetic cost of viscous dissipation in generated flows at higher frequencies.

      This is a good point. We will also include an energetic cost estimate for the contractions of peripheral sheets in the revised manuscript.

      The mechanism of peripheral sheet contraction is unclear: do ATP-driven mechanisms somehow interact with thermal fluctuations of membranes?

      The new energetic estimates in the revision might help constrain possible hypotheses for the mechanism(s) driving peripheral sheet contraction, and suggest if a dedicated ATP-driven mechanism is required.

      (2) Mutations are mentioned in the abstract but not (as far as I could see) later in the manuscript. It would be helpful if any consequences for pathologies could be developed in the text.

      We are grateful for this suggestion. The need to rationalise pathology associated with the subtle effects of ER-morphogens’ mutations is indeed pointed out as one factor motivating the study of the interplay between ER structure and performance. In the revised manuscript, we plan to include a brief discussion potentially linking ER morphogenes’ malfunction to luminal transport, integrating additional freshly published data.

      Reviewer #2 (Public Review):

      Summary:

      This study explores theoretically the consequences of structural fluctuations of the endoplasmic reticulum (ER) morphology called contractions on molecular transport. Most of the manuscript consists of the construction of an interesting theoretical flow field (physical model) under various hypothetical assumptions. The computational modeling is followed by some simulations

      Strengths:

      The authors are focusing their attention on testing the hypothesis that a local flow in the tubule could be driven by tubular pinching. We recall that trafficking in the ER is considered to be mostly driven by diffusion at least at a spatial scale that is large enough to account for averaging of any random flow occurring from multiple directions [note that this is not the case for plants].

      We thank the reviewer. We have indeed explored here the possibilities of active transport, focusing especially on transport over the length scale of single tubules, as a result of structural fluctuations, and found tubular pinching to be ineffective compared to e.g. peripheral sheets fluctuations. In the revised version we plan to add text mentioning what is known about the ER in plants.

      Weaknesses:

      The manuscript extensively details the construction of the theoretical model, occupying a significant portion of the manuscript. While this section contains interesting computations, its relevance and utility could be better emphasized, perhaps warranting a reorganization of the manuscript to foreground this critical aspect.

      Overall, the manuscript appears highly technical with limited conclusive insights, particularly lacking predictions confirmed by experimental validation. There is an absence of substantial conclusions regarding molecular trafficking within the ER.

      We sought to balance the theoretical/computational details of our model with the biophysical conclusions drawn from its predictions. Given the model's complexity and novelty, it was essential to elucidate the theoretical underpinnings comprehensively, in order to allow others to implement it in the future with additional, or different, parameters. To maintain clarity and focus in the main text, we have judiciously relegated extensive technical details to the methods section or supplementary materials, and divided the text into stand-alone section headings allowing the reader to skip through to conclusions.

      The primary focus of our manuscript is to introduce and explore, via our theoretical model, the interplay between ER structure dynamics and molecular transport. Our approach, while in silico, generates concrete predictions about the physical processes underpinning luminal motion within the ER. For instance, our findings challenge the previously postulated role of small tubular contractions in driving luminal flow, instead highlighting the potential significance of local flat ER areas—empirically documented entities—for facilitating such motion.

      Furthermore, by deducing what type of transport may or may not occur within the range of possible ER structural fluctuations, our model offers detailed predictions designed to bridge the gap between theoretical insight and experimental verification. These predictions detail the spatial and temporal parameters essential for effective transport, delineating plausible values for these parameters. We hope that the model’s predictions will invite experimentalists to devise innovative methodologies to test them. We plan to introduce text edits to the revised version to clarify these.

    1. Author Response

      eLife assessment

      The authors report that optogenetic inhibition of hippocampal axon terminals in retrosplenial cortex impairs the performance of a delayed non-match to place task. The significance of findings elucidating the role of hippocampal projections to the retrosplenial cortex in memory and decision-making behaviors is important. However, the strength of evidence for the paper's claims is currently incomplete.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is a study on the role of the retrosplenial cortex (RSC) and the hippocampus in working memory. Working memory is a critical cognitive function that allows temporary retention of information for task execution. The RSC, which is functionally and anatomically connected to both primary sensory (especially visual) and higher cognitive areas, plays a key role in integrating spatial-temporal context and in goal-directed behaviors. However, the specific contributions of the RSC and the hippocampus in working memory-guided behaviors are not fully understood due to a lack of studies that experimentally disrupt the connection between these two regions during such behaviors.

      In this study, researchers employed eArch3.0 to silence hippocampal axon terminals in the RSC, aiming to explore the roles of these brain regions in working memory. Experiments were conducted where animals with silenced hippocampal axon terminals in the RSC performed a delayed non-match to place (DNMP) task. The results indicated that this manipulation impaired memory retrieval, leading to decreased performance and quicker decision-making in the animals. Notably, the authors observed that the effects of this impairment persisted beyond the light-activation period of the opsin, affecting up to three subsequent trials. They suggest that disrupting the hippocampal-RSC connection has a significant and lasting impact on working memory performance.

      Strengths:

      They conducted a study exploring the impact of direct hippocampal inputs into the RSC, a region involved in encoding spatial-temporal context and transferring contextual information, on spatial working memory tasks. Utilizing eArch3.0 expressed in hippocampal neurons via the viral vector AAV5-hSyn1-eArch3.0, they aimed to bilaterally silence hippocampal terminals located at the RSC in rats pre-trained in a DNMP task. They discovered that silencing hippocampal terminals in the RSC significantly decreased working memory performance in eArch+ animals, especially during task interleaving sessions (TI) that alternated between trials with and without light delivery. This effect persisted even in non-illuminated trials, indicating a lasting impact beyond the periods of direct manipulation. Additionally, they observed a decreased likelihood of correct responses following TI trials and an increased error rate in eArch+ animals, even after incorrect responses, suggesting an impairment in error-corrective behavior. This contrasted with baseline sessions where no light was delivered, and both eArch+ and control animals showed low error rates.

      Weaknesses:

      While I agree with the authors that the role of hippocampal inputs to the RSC in spatial working memory is understudied and merits further investigation, I find that the optogenetic experiment, a core part of this manuscript that includes viral injections, could be improved. The effects were rather subtle, rendering some of the results barely significant and possibly too weak to support major conclusions.

      We thank Reviewer#1 for carefully and critically reading our manuscript, and for the valuable comments provided. The judged “subtlety” of the effects stems from a perspective according to which a quantitatively lower effect bears less biological significance for cognition. We disagree with this perspective and find it rather reductive for several reasons.

      Once seen in the context of the animal’s ecology, subtle impairments can be life-threatening precisely because of their subtlety, leading the animal to confidently rely on a defective capacity, for such events as remembering the habitual location of a predator, or food source.

      Also, studies in animal cognition often undertake complete, rather than graded, suppression of a given mechanism (in the same sense as that of “knocking out” a gene that is relevant for behaviour), leading to a gravelly, rather that gradually, impaired model system, to the point of not allowing a hypothetical causal link to be mechanistically revealed beyond its mere presence. This often hinders a thorough interpretation of the perturbed factor’s role. If a caricatural analogy is allowed, it would be as if we were to study the role of an animal’s legs by chopping them both off and observing the resulting behaviour.

      In our study we conclude that silencing HIPP inputs in RSC perturbs cognition enough to impair behaviour while not disabling the animal entirely, as such allowing for behaviour to proceed, and for our observation of graded, decreased (not absent), proficiency under optogenetic silencing. So rather than weak, we would say the results are statistically significant, and biologically realistic.

      Additionally, no mechanistic investigation was conducted beyond referencing previous reports to interpret the core behavioral phenotypes.

      We fully agree with this being a weakness, as we wish we could have done more mechanistic studies to find out exactly what is Arch activation doing to HIPP-RSC transmission, which neurons are being affected, and perhaps in the future dissect its circuit determinants. We have all these goals very present and hope we can address them soon.

      Reviewer #2 (Public Review):

      The authors examine the impact of optogenetic inhibition of hippocampal axon terminals in the retrosplenial cortex (RSP) during the performance of a working memory T-maze task. Performance on a delayed non-match-to-place task was impaired by such inhibition. The authors also report that inhibition is associated with faster decision-making and that the effects of inhibition can be observed over several subsequent trials. The work seems reasonably well done and the role of hippocampal projections to retrosplenial cortex in memory and decision-making is very relevant to multiple fields. However, the work should be expanded in several ways before one can make firm conclusions on the role of this projection in memory and behavior.

      We thank Reviewer#2 for carefully and critically reading our manuscript, and for the valuable comments provided.

      (1) The work is very singular in its message and the experimentation. Further, the impact of the inhibition on behaviour is very moderate. In this sense, the results do not support the conclusion that the hippocampal projection to retrosplenial cortex is key to working memory in a navigational setting.

      As we have mentioned in response to Reviewer#1, the judged “very moderate” effect stems from a perspective according to which a quantitatively lower effect bears less biological significance for cognition, precluding its consideration as “key” for behaviour. We disagree with this perspective and find it rather reductive for several reasons. Once seen in the context of the animal’s ecology, quantitatively lower impairments in working memory are no less key for this cognitive capacity, and can be life-threatening precisely because of their subtlety, leading the animal to confidently rely on a defective capacity, for such events as remembering the habitual location of a predator, or food source. Furthermore, studies in animal cognition often undertake complete, rather than graded, suppression of a given mechanism (in the same sense as “knocking out” a gene that is relevant for behaviour), leading to a gravelly, rather that gradually, impaired model system, to the point of not allowing a hypothetical causal link to be mechanistically revealed beyond its mere presence. This often hinders a thorough interpretation of its role.

      In our study we conclude that silencing HIPP inputs in RSC perturbs behaviour enough to impair behaviour while not disabling the animal entirely, as such allowing for behaviour to proceed, and our observation of graded, decreased (not absent), proficiency under optogenetic silencing. So rather than weak, we would say the results are statistically significant, and biologically realistic.

      (2) There are no experiments examining other types of behavior or working memory. Given that the animals used in the studies could be put through a large number of different tasks, this is surprising. There is no control navigational task. There is no working memory test that is non-spatial. Such results should be presented in order to put the main finding in context.

      It is hard to gainsay this point. The more thorough and complete a behavioural characterization is, the more informative is the study, from every angle you look at it. While we agree that other forms of WM would be quite interesting in this context, we also cannot ignore the fact that DNMP is widely tested as a WM task, one that is biologically plausible, sensitive to perturbations of neural circuitry know to be at play therein, and fully accepted in the field. Faced with the impossibility of running further studies, for lack of additional funding and human resources, we chose to run this task.

      A control navigational task would, in our understanding, be used to assess whether silencing HIPP projections to RSC would affect (spatial?) navigation, rather than WM, thus explaining the observed impairment. To this we have the following to say: Spatial Navigation is a very basic cognitive function, one that relies on body orientation relative to spatial context, on keeping an updated representation of such spatial context, (“alas”, as memory), and on guiding behaviour according to acquired knowledge about spatial context. Some of these functions are integral to spatial working memory, as such, they might indeed be affected.

      Dissecting the determinants of spatial WM is indeed an ongoing effort, one that was not the intention of the current study, but also one that we have very present, in hope we can address in the future.

      A non-spatial WM task would indeed vastly solidify our claims beyond spatial WM, onto WM. We have, for this reason, changed the title of the manuscript which now reads “spatial working memory”.

      (3) The actual impact of the inhibition on activity in RSP is not provided. While this may not be strictly necessary, it is relevant that the hippocampal projection to RSP includes, and is perhaps dominated by inhibitory inputs. I wonder why the authors chose to manipulate hippocampal inputs to RSP when the subiculum stands as a much stronger source of afferents to RSP and has been shown to exhibit spatial and directional tuning of activity. The points here are that we cannot be sure what the manipulation is really accomplishing in terms of inhibiting RSP activity (perhaps this explains the moderate impact on behavior) and that the effect of inhibiting hippocampal inputs is not an effective means by which to study how RSP is responsive to inputs that reflect environmental locations.

      We fully agree that neural recordings addressing the effect of silencing on RSC neural activity is relevant. We do wish we could have provided more mechanistic studies, to find out exactly what is Arch activation doing to HIPP-RSC transmission, which neurons are being affected, and thus dissecting its circuit determinants. We have all these goals very present and hope we can address them soon. Subiculum, which we mention in the Introduction, is indeed a key player in this complex circuitry, one whose hypothetical influence is the subject of experimental studies which will certainly reveal many other key elements.

      (4) The impact of inhibition on trials subsequent to the trial during which optical stimulation was actually supplied seems trivial. The authors themselves point to evidence that activation of the hyperpolarizing proton pump is rather long-lasting in its action. Further, each sample-test trial pairing is independent of the prior or subsequent trials. This finding is presented as a major finding of the work, but would normally be relegated to supplemental data as an expected outcome given the dynamics of the pump when activated.

      We disagree that this finding is “trivial”, and object to the considerations of “normalcy”, which we are left wondering about.

      In lack of neurophysiological experiments (for the reasons stated above) to address this interesting finding, we chose to interpret it in light of (the few) published observations, such being the logical course of action in scientific reporting, given the present circumstances.

      Evidence for such a prolonged effect in the context of behaviour is scarce (to our knowledge only the one we cite in the manuscript). As such, it is highly relevant to report it, and give it the relevance we do in our manuscript, rather than “relegating it to supplementary data”, as the reviewer considers being “normal”.

      In the DNMP task the consecutive sample-test pairs are explicitly not independent, as they are part of the same behavioural session. This is illustrated by the simple phenomenon of learning, namely the intra-session learning curves, and the well-known behavioral trial-history effects. The brain does not simply erase such information during the ITI.

      (5) In the middle of the first paragraph of the discussion, the authors make reference to work showing RSP responses to "contextual information in egocentric and allocentric reference frames". The citations here are clearly deficient. How is the Nitzan 2020 paper at all relevant here?

      Nitzan 2020 reports the propagation of information from HIPP to CTX via SUB and RSC, thus providing a conduit for mnemonic information between the two structures, alternative to the one we target, thus providing thorough information concerning the HIPP-RSC circuitry at play during behaviour.

      Alexander and Nitz 2015 precisely cite the encoding, and conjunction, of two types of contextual information, internal (ego-) and external (allocentric).

      The subsequent reference is indeed superfluous here.

      We thank the Reviewer#2 for calling our attention to the fact that references for this information are inadequate and lacking. We have now cited (Gill et al., 2011; Miller et al., 2019; Vedder et al., 2017) and refer readers to the review (Alexander et al., 2023) for the purpose of illustrating the encoding of information in the two reference frames. In addition, we have substantially edited the Introduction and Discussion sections, and suppressed unnecessary passages.

      (6) The manuscript is deficient in referencing and discussing data from the Smith laboratory that is similar. The discussion reads mainly like a repeat of the results section.

      Please see above. We thank Reviewer#2 for this comment, we have now re-written the Discussion such that it is less of a summary of the Results and more focused on their implications and future directions.

    1. Author Response

      The following is the authors’ response to the current reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Hats off to the authors for taking time to decipher the seemingly subtle but important differences between the Gnai2/3 double mutant and Ptx mutant phenotypes. These results further illustrate the dynamic requirement of Gnai/0 in hair bundle establishment. I have some minor suggestions for the authors to consider and it is up to the authors to decide whether to incorporate them:

      We decided to make the current (revised) version the version of record, and we explain why below. Please include these comments in the review+rebuttal material.

      (1) The abstract could be modified to reflect the revised interpretations of the results.

      Response: the abstract is high-level and the changes in interpretation in the revised manuscript do not modify the message there. Briefly, the abstract only states that Gnai2; Gnai3 double mutants recapitulate two defects previously only observed with pertussis toxin. There is no claim about the timing or dose of GNAI proteins involved.

      (2) The three rows of OHCs are like a different beast from each other. Mireille Montcouquiol's lab has demonstrated that there is a differential requirement for Gnai3 in hair bundle orientation among the three rows of OHCs. The results described in this manuscript support this notion as well.

      To clarify, Gnai3 inactivation does not affect OHC orientation. Only pertussis toxin, and in this work Gnai2; Gnai3 double mutants, do. The Montcouquiol lab showed different degree of OHC1, OHC2 and OHC3 misorientation upon use of pertussis toxin in vitro using cochlear explants (Ezan et al 2013). We showed the same thing in vivo using transgenic models (Tarchini et al 2013; Tarchini et al 2016). The different OHC responses by row and corresponding citations are mentioned in several locations in the manuscript, including first on line 112 in the Introduction and in Fig. 1C in a graphical summary.

      (3) I wonder if "compensate" or "redundancy" may be a better term to use than "rescue" in the Discussion and figure.

      Use of “rescue” in the Discussion is line 603 and 604. We think that “rescue” is appropriate to refer to the ability of GNAI2 to compensate for the loss of GNAI1 and GNAI3 in mutant context. We would argue that these different wordings are largely interchangeable and do not change the message.


      Author Response

      The following is the authors’ response to the original reviews.

      We really appreciate the time the reviewers spent reading and commenting on the original manuscript. Although they were positive already, we decided to spend some time to address the main comments with new experiments as thoroughly as possible in a new manuscript version. We also heavily edited some sections accordingly.: 1) we delayed pertussis toxin activation in hair cells with Atoh1-Cre to show that the resulting misorientation phenotype is delayed compared to FoxG1-Cre results, as also seen in Gnai2; Gnai3 double mutants. It follows that Gnai2; Gnai3 and pertussis mutants do share a similar misorientation profile, and that GNAI proteins are required to normally reverse OHC1-2 (from medial to lateral), but also to maintain the lateral orientation, at least transiently. 2) We experimentally verified that one of our GNAI antibodies can indeed detect GNAI1, and consequently that absence of signal in Gnai2; Gnai3 double mutants is evidence that GNAI1 is not involved in apical hair cell polarization. We believe these changes strengthen the manuscript and its conclusions.

      Reviewer #1 (Public Review):

      A subclass of inhibitory heterotrimeric guanine nucleotide-binding protein subunits, GNAI, has been implicated in sensory hair cell formation, namely the establishment of hair bundle (stereocilia) orientation and staircase formation. However, the former role of hair bundle orientation has only been demonstrated in mutants expressing pertussis toxin, which blocks all GNAI subunits, but not in mutants with a single knockout of any of the Gnai genes, suggesting that there is a redundancy among various GNAI proteins in this role. Using various conditional mutants, the authors concluded that GNAI3 is the primary GNAI proteins required for hair bundle morphogenesis, whereas hair bundle orientation requires both GNAI2 and GNAI3.

      Strength

      Various compound mutants were generated to decipher the contribution of individual GNAI1, GNAI2, GNAI3 and GNAIO in the establishment of hair bundle orientation and morphogenesis. The study is thorough with detailed quantification of hair bundle orientation and morphogenesis, as well as auditory functions.

      Weakness

      While the hair bundle orientation phenotype in the Foxg1-cre; Gnai2-/-; Gnai3 lox/lox (double mutants) appear more severe than those observed in Ptx cKO mutants, it may be an oversimplification to attribute the differences to more GNAI function in the Ptx cko mutants. The phenotypes between the double mutants and Ptx cko mutants appear qualitatively different. For example, assuming the milder phenotypes in the Ptx cKO is due to incomplete loss of GNAI function, one would expect the Ptx phenotype would be reproducible by some combination of compound mutants among various Gnai genes. Such information was not provided. Furthermore, of all the double mutant specimens analyzed for hair bundle orientation (Fig. 8), the hair bundle/kinocilium position started out normally in the lateral quadrant at E17.5 but failed to be maintained by P0. This does not appear to be the case for Ptx cKO, in which all affected hair cells showed inverted orientation by E17.5. It is not clear whether this is the end-stage of bundle orientation in Ptx cKO, and the kinocilium position started out normal, similar to the double mutants before the age of analysis at E17.5. Understanding these differences may reveal specific requirements of individual GNAI subunits or other factors are being affected in the Ptx mutants.

      This criticism was very useful and prompted new experiments as well as a change in data presentation and a fundamental rewrite regarding hair cell orientation. These changes are detailed below. Of note, however, please let us clarify that the original manuscript did show that the ptxA orientation phenotype is reproduced to some extent in Gnai2; Gnai3 double mutants (previously Fig. 8 and corresponding text line 505). We showed that OHC1-2 are also inverted in the double mutant, although at a later differentiation stage. We recognize that similarities in hair cell misorientation between ptxA and Gnai2; Gnai3 DKO were not explained and discussed well enough. This part of the manuscript has been re-worked extensively, and we hope that along with new results, comparisons between mutant models are easier to follow and understand. We notably fully adopted the idea that there are qualitative differences between ptxA and Gnai2; Gnai3 mutants, and not only a difference in the remaining “dose” of GNAI activity.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Comments related to clarification of the weakness:

      (1) In general, hair bundle orientation in the double mutants is established in the lateral quadrant of the cochlea before being inverted (Fig. 8). These results are intriguing because the lateral orientation is the correct position for these hair bundles normally and Gnai proteins are thought to be required to get the kinocilium to the lateral position. This process appears to proceed normally in the double mutants but the kinocilium reverted to the medial default position over time, which suggests that Gnai2 and Gnai3 are only required for the maintenance and not the establishment of the kinocilium in the lateral position. Is this phenotype qualitatively similar in the Ptx cKO?

      We addressed these issues with two types of modifications to the data:

      (1) We modified the eccentricity threshold used at E17.5 in Fig. 8 (orientation) to be more stringent, using 0.4 (instead of 0.25 previously) in both controls and mutants. This means that we now only graph the orientation of cells where eccentricity is more marked. The rationale is that at early stages, it is challenging to distinguish immature vs defective near-symmetrical cells. We kept a threshold of 0.25 at P0 when the hair cell apical surface is larger and better differentiated (Fig. 8C-D). Importantly, the dataset remains rigorously identical. This change usefully highlights that a large proportion of OHC1 is in fact inverted (oriented medially) at E17.5 in Gnai2; Gnai3 double mutants at the cochlear mid, as also seen in the ptxA model at the same stage and position (see new Fig. 8A). At the E17.5 base (Fig. 8B), a slightly more mature position, the outcome is unchanged (the majority of OHC1 are inverted using either a 0.25 or 0.4 threshold in double mutants and in ptxA).

      Interestingly however, the orientation trend is unchanged for OHC2: OHC2 remain oriented largely laterally (i.e. normally) at the E17.5 mid and base in Gnai2; Gnai3 double mutants even with a raised eccentricity thresholds, whereas by contrast OHC2 in ptxA are inverted at these stage and positions. In the double mutant, OHC2 only become inverted at the P0 base (Fig. 8D). This suggests that there are similarities (OHC1) but also differences (OHC2s) between the two mouse models, and that double mutants show a delay in adopting an inverted orientation compared to ptxA. Of note, OHC2 have been shown to differentiate later than OHC1 (for example, Anniko 1983 PMID:6869851).

      (2) To directly test the idea that the misorientation phenotype (inverted OHC1-2) is comparable between the two models but delayed in Gnai2; Gnai3 mutants, we performed a new experiment and added new results in the manuscript. We delayed ptxA action by using Atoh1-Cre (postmitotic hair cells) instead of FoxG1-Cre (otic progenitors). Remarkably, this produced a pattern of OHC1-2 misorientation more similar to Gnai2; Gnai3 mutants: at the E17.5 base and P0 apex, OHC2 were still largely oriented laterally (normally) in Atoh1-Cre; ptxA as in Gnai2; Gnai3 mutants whereas at the P0 base a large proportion of OHC2 were inverted (Fig. 8 Supp 1B). OHC1 were inverted at all stages and positions in the Atoh1-Cre as in the FoxG1-Cre; ptxA model. For Atoh1-Cre; ptxA, we only illustrated OHC1 and OHC2 and did not add E17.5 mid or P0 mid results because other cell types and stage/positions did not provide additional insight. In addition, we are well aware that the full FoxG1-Cre; ptxA and Gnai2; Gnai3 results for 4 cells types (IHC, OHC1-3) and 5 stages/positions is already a lot of data for cell orientation.

      These results suggest that:

      (a) The normal reversal of OHC1-2 to adopt a lateral orientation needs to be maintained, at least transiently, and that maintenance also relies on GNAI/O (Results starting line 529. Disussion line 621).

      (b) ptxA is more severe than Gnai2; Gnai3 when it comes to OHC1-2 orientation (Figure 9, role b). Oppositely, Gnai2; Gnai3 is obviously more severe when it comes to symmetry-breaking (Fig. 9, role a) and hair bundle morphogenesis (Fig. 9, c). It follows that the two early GNAI/O activities are qualitatively different and not just based on dose. This is essentially what this Reviewer correctly pointed out, and we have fully edited both Results and Discussion accordingly. We now speculate that the difference may lie in the identity of the necessary GNAI/O protein for each role. Any GNAI/O proteins acting as a switch downstream of the GPR156 receptor may relay orientation information (Fig. 9, role b), making ptxA a particularly effective disruption strategy since it downregulates all GNAI/O proteins. In contrast, symmetry-breaking may rely more specifically on GNAI2 and GNAI3, and ptxA is not expected to achieve a loss-of-function of GNAI2 and GNAI3 as extensive as a double targeted genetic inactivation of the corresponding genes. Please see new Results starting line 526 and Discussion starting line 603. We consequently abandoned the notion that increased doses of GNAI/O is required for each role, and we also clarify that symmetry-breaking (a) and orientation (b) occur at the same time (Fig. 9).

      (2) P0 may not be late enough a stage to access phenotype maturity in the double mutants. For example, it is not clear from the basal PO results whether the IHC will acquire an inverted phenotype or just misorientation in the lateral side.

      For context, the OHC1-2 misorientation pattern in the ptxA model at P0 does represent the end stage, as the same pattern is observed in adults (illustrated in Fig. 2A). In addition, OHC1-2 that express ptxA are inverted as soon as they break planar symmetry, and this was established at E16.5 in a previous publication where ptxA and Gpr156 misorientation patterns were compared and shown to be identical (Kindt et al., 2021 Supp. fig. 5C-D). However, we clearly failed to mention these important results in the original manuscript. We now cite Figure 2 for adult defects (line 522), and provide a citation for OHC1-2 inversion being observed from earliest stage of hair cell differentiation (Kindt et al., 2021) (line 519).

      The vast majority of Gnai2; Gnai3 double mutants die before weaning but the single specimen we managed to collect at P21 also showed inverted OHC1-2 (representative example in Fig. 2A). Again, we previously failed to point out this important result. We now do so line 214 and 555. This is another evidence that OHC1-2 misorientation is in fact similar in the ptxA and Gnai2; Gnai3 models (but milder and delayed in the latter).

      When it comes to IHCs and OHC3s however, the situation is less clear. These cell types are mildly misoriented in ptxA and Gpr156 mutants, but IHCs in particular appear severely misoriented in Gnai2; Gnai3 mutants based on the position of the basal body (Fig. 8). However, very dysmorphic hair bundles can pull on the basal body via the kinocilium and affect its position, which obscures hair cell orientation inferred from the basal body and subsequent interpretations. We do not delve on IHC and OHC3 and their orientation in Gnai2; Gnai3 mutants in the revision since we do not observe similar orientation defects in a different mouse model and lack sufficient adult data.

      Suggestions to improve upon the manuscript for readers:

      (1) Line 294, indicate on the figure the staining in bare zone and tips of stereocilia on row 1.

      Pertains to Figure 4. In A, we now point out the bare zone and stereocilia tips with arrow and arrowheads, respectively (as in other figures).

      (2) Fig.8 schematic diagram, the labels of the line and 90o side by side is misleading.

      We added black ticks for 0, 90, 180, 270 degree references. In contrast, the hair cell angle represented was switched to magenta.

      (3) Fig. 7 legend, redundancy towards the end of the paragraph.

      Thank you for catching this issue. A large portion of the legend was indeed accidentally repeated and is now deleted.

      (4) Line 490-493, Another plausible explanation is that other factors besides Gnai2 and Gnai3 are involved in breaking symmetry during bundle establishment.

      We now acknowledge that other proteins besides GNAI/O may be involved (Discussion line 614). That said, the notion that we do not achieve sufficient and/or early enough GNAI loss is supported for example by the Beer-Hammer 2018 study where no defects in symmetry-breaking or orientation were reported in their Gnai2 flox/flox; Gnai3 flox/flox model (Discussion new Line 637).

      (5) Line 518, the base were largely inverted (Figure 8B). Should Fig 8A be cited instead of 8B?

      Fig. 8B has graphs for the E17.5 cochlear base where OHC1-2 are inverted in both ptxA and Gnai2;3 DKO models. Fig. 8A has graphs of the E17.5 cochlear mid (less differentiated hair cells) where an inversion was not obvious previously, but is now clear although only partial in Gnai2; Gnai3 DKO (see above; raised eccentricity threshold). In the context of the previous text, this citation was thus correct. However, this section has been heavily modified to better compare Gnai2; Gnai3 DKO and ptxA and is hopefully less confusing in the revised version.

      Reviewer #2 (Public Review):

      Jarysta and colleagues set out to define how similar GNAI/O family members contribute to the shape and orientation of stereocilia bundles on auditory hair cells. Previous work demonstrated that loss of particular GNAI proteins, or inhibition of GNAIs by pertussis toxin, caused several defects in hair bundle morphogenesis, but open questions remained which the authors sought to address. Some of these questions include whether all phenotypes resulting from expression of pertussis toxin stemmed from GNAI inhibition; which GNAI family members are most critical for directing bundle development; whether GNAI proteins are needed for basal body movements that contribute to bundle patterning. These questions are important for understanding how tissue is patterned in response to planar cell polarity cues.

      To address questions related to the GNAI family in auditory hair cell development, the authors assembled an impressive and nearly comprehensive collection of mouse models. This approach allowed for each Gnai and Gnao gene to be knocked out individually or in combination with each other. Notably, a new floxed allele was generated for Gnai3 because loss of this gene in combination with Gnai2 deletion was known to be embryonic lethal. Besides these lines, a new knockin mouse was made to conditionally express untagged pertussis toxin following cre induction from a strong promoter. The breadth and complexity involved in generating and collecting these strains makes this study unique, and likely the authoritative last word on which GNAI proteins are needed for which aspect of auditory hair bundle development.

      Appropriate methods were employed by the authors to characterize auditory hair bundle morphology in each mouse line. Conclusions were carefully drawn from the data and largely based on excellent quantitative analysis. The main conclusions are that GNAI3 has the largest effect on hair bundle development. GNAI2 can compensate for GNAI3 loss in early development but incompletely in late development. The Gnai2 Gnai3 double mutant recapitulates nearly all the phenotypic effects associated with pertussis toxin expression and also reveals a role for GNAIs in early movement of the basal body. Although these results are not entirely unexpected based on earlier reports, the current results both uncover new functions and put putative functions on more solid ground.

      Based on this study, loss of GNAI1 and GNAO show a slight shortening of the tallest row of stereocilia but no other significant changes to bundle shape. Antibody staining shows no change in GNAI localization in the Gnai1 knockout, suggesting that little to no protein is found in hair cells. One caveat to this interpretation is that the antibody, while proposed to cross-react with GNAI1, is not clearly shown to immunolabel GNAI1. More than anything, this reservation mostly serves to illustrate how challenging it is to nail down every last detail. In turn, the comprehensive nature of the current study seems all the more impressive.

      (1) The original manuscript quantified stereocilia properties in Gnai1 and Gnai2 single mutants, and in Gnai1; Gnai2 double mutants using non-parametric t-tests (Mann-Whitney) for comparisons. This approach indeed suggested subtle reduction in row 1 height in IHCs in all 3 mutants. We did not quantify stereocilia features in Gnao1 mutants but could not observe defects (new Fig. 2 Supp. 1E-F). In fact, we could not observe defects in Gnai1 and Gnai2 single mutants, and in Gnai1; Gnai2 double mutants either. For this reason we have been ambivalent about reporting defects for Gnai1 and Gnai2 single and Gnai1; Gnai2 double mutants.

      In the revision, we applied a nested (hierarchical) t-test to avoid pseudo-replication (Eisner 2021; PMID: 33464305; https://pubmed.ncbi.nlm.nih.gov/33464305/). In our data, the nested t-tests structure measurements by animal instead of having all stereocilia or other cell measurements treated as independent values. This more stringent approach no longer finds row 1 height reduction significant in single Gnai1 or Gnai2 mutants, or in Gnai1; Gnai2 double mutants. We modified the text accordingly in Results and Discussion. Nested t-tests were applied uniformly across the manuscript and, besides IHC measurements in Fig. 2, now also apply to bare zone surface area in Fig. 6 and eccentricity in Fig. 7. For these experiments in contrast, previous conclusions are not changed. We think that this more careful statistical treatment is a closer representation of the data in term of the conclusions we can safely make.

      (2) The reviewer's criticism about antibody specificity is accurate and fair, and is fully addressed in the revised manuscript. First, we provide a phylogeny cartoon as Figure 1A to compare the GNAI/O proteins and highlight how closely related they are in sequence. To validate the assumption that our approach would detect GNAI1 if it were present in hair cells, we took a new dual experimental approach in the revision. First, we electroporated Gnai1, Gnai2 and Gnai3 expression constructs in the E13.5 inner ear and tested whether the two GNAI antibodies used in the study can detect ectopic GNAI1 in Kolliker organ. This revealed that “ptGNAI2” detects GNAI1 very well (in addition to GNAI2), but that “scbtGNAI3” does not detect GNAI1 efficiently (although it does detect GNAI3 very well). To verify in vivo that “ptGNAI2” can detect endogenous GNAI1, we immunolabeled the gallbladder epithelium in Gnai1 mutants and littermate controls using the “ptGNAI2” antibody. Based on IMPC consortium data* about the Gnai1 LacZ mouse strain, Gnai1 is specifically expressed in the adult gallbladder. We could verify that signals detected in the Gnai1 mutants were visually reduced in comparison to littermate controls. We now added this validation step in Results line 309 and the data in Fig. 4 Supp. 1A-B).

      *https://www.mousephenotype.org/data/genes/MGI:95771

      Reviewer #2 (Recommendations For The Authors):

      Minor comments that may marginally improve clarity.

      Abstract line 24: delete "nor polarized" because polarization cannot be assessed since the protein is undetectable.

      This is a fair point, now deleted.

      Consider revising: Lines 80-82; 188-202 (the order in which the mutants were presented was hard to follow for me); 239-240.

      Lines 80-82: Used to read as "Ptx recapitulates severe stereocilia stunting and immature-looking hair bundles observed when GPSM2 or both GNAI2 and GNAI3 are inactivated."

      Line 88: Was now changed to "Ptx provokes immature-looking hair bundles with severely stunted stereocilia, mimicking defects in Gpsm2 mutants and Gnai2; Gnai3 double mutants".

      Lines 188-202: This was the first paragraph describing adult stereocilia defects in the different Gnai/o mouse strains. We completely rewrote the entire section to reflect the order in which the strains appear in Figure 2, hopefully making the text easier to follow because it better matches panels in Fig. 2 . We also made several other modifications to streamline comparisons and better introduce the orientation defects that are later detailed at neonate stages.

      Lines 239-240: Used to read "GNAI2 makes a clear contribution since stereocilia defects increase in severity when GNAI loss extends from GNAI3 to both GNAI2 and GNAI3".

      Line 247: Was now changed for "GNAI2 makes a clear contribution since Gnai3neo stereocilia defects dramatically increase in severity when GNAI2 is absent as well in Gnai2; Gnai3 double mutants."

      Line 164: hardwired is unclear. Conserved?

      We modified this sentence as follows: Line 171: "We reasoned that apical HC development is probably highly constrained and less likely to be influenced by genetic heterogeneity compared to susceptibility to disease, for example."

      Line 299: It is not clear why GNAI1 is a better target than GNAI3. This phrase is repeated in line 303, I suspect inadvertently. Is there evidence that this antibody detects GNAI1, perhaps in another tissue? Line 308: GNAI1 may also not be detected by this antibody.

      Please see point 2 above. We removed these hypothetical statements entirely and we instead now experimentally show that one of the two commercial antibodies used can readily detect GNAI1 (yet does not detect signal in hair cells when GNAI2 and GNAI3 are absent in Fig. 4F).

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Public Review):

      Major Weaknesses:

      The assertion that MOCAT can be rapidly applied in hospital pathology departments seems overstated due to the limited availability of light-sheet microscopes outside research labs. In the first rebuttal letter, authors explain the limitations of other microscopes more readily available in hospitals. This explanation relies on your own investigations and practical experience on the matter, so including them in some part of the manuscript would be beneficial.

      We appreciate the reviewer's comments and have added a discussion on the limitations of microscopes that are more readily available in hospitals in our text:

      Revised manuscript, line 305-316:

      “3.3 Microscopy options for imaging centimeter-sized specimens

      Optical sectioning techniques are crucial for obtaining high-quality volumetric images. Techniques such as confocal microscopes, multi-photon microscopy, and light-sheet microscopy filter out-of-focus signals, resulting in sharp images of individual planes. In our study, we used light-sheet microscopy and multi-point confocal (i.e., spinning disc) for imaging centimeter-sized specimens because of their scanning speeds. While two-photon and confocal microscopy offer high-resolution imaging of smaller volumes, they are not ideal for scanning entire tissues because of their prolonged scanning times.”

      Non-optical sectioning wide-field fluorescence microscopes, like the Olympus BX series or ZEISS Axio imager series, can also be used to scan samples up to about 3.5mm thick with long working distance objective lenses. In these cases, deconvolution algorithms are required to eliminate out-of-focus signals. However, it should be noted that the epifluorescence system might reduce fluorescent intensity in deeper regions within the samples.”

      Refractive index matching is a critical point in the protocol, the one providing final transparency. Authors utilized the commercial solutions NFC1 and NFC2 (Nebulem, Taiwan) with a known refractive index, but for which its composition is non-disclosable. My knowledge on the organic chemistry around refractive index matching is limited, but if users don't really know what is going on in this final step, the whole protocol would rely on a single world-wide provider and troubleshooting would be fishing. I suggest that you try to validate the approach with solutions of known composition, or at least provide the solutions sold by other providers.

      We appreciate the reviewer's suggestions. Based on our experience, the CUBIC-R solution developed by Ueda's team also serves as an effective RI-matching solution in the MOCAT pipeline. Its only drawback is the potential reddening of the specimen, likely due to the light-responsive component, antipyrine. We have now added this information to the Methods section:

      Revised manuscript, line 492-496:

      “Refractive index (RI) matching. Before imaging, the specimens were RI-matched by being immersed in NFC1 (RI = 1.47) and NFC2 (RI = 1.52) solutions (Nebulum, Taipei, Taiwan). Each immersion lasted for one day at room temperature. Alternatively, RI-matching can also be accomplished by immersing specimens in a 1:1 dilution of CUBIC-R[28] for one day, followed by pure CUBIC-R for an additional day.“

      Reviewer #2 (Recommendations For The Authors):

      A comment on the name of the protocol, MOCAT. I am sorry to bring this now, and not before. But, I strongly recommend another name for the procedure. My concern is that the present name "MOCAT" refers to the problem, and NOT to the actual solution provided by you. See, the problem to solve is: to perform Multiplex labeling Of Centimeter-sized Archived Tissue (MOCAT), but it says nothing about HOW you did it: heat-induced antigen retrieval and Tween20-delipidation for centimeter-scale FFPE specimens. In summary, I strongly recommend that the acronym of the procedure refers more to the "solution" than to the "problem", and for me this is important because otherwise the acronym is not fair with present and future techniques pretending to provide a novel solution to the same problem. Another way to put it is that researchers can own their proposed solutions, but they do not own the problem to be solved.

      We appreciate the reviewer's suggestions. In response to their concerns, we have renamed the procedure presented in this study as Heat-Induced FFPE-based Tissue Clearing, with the acronym HIF-Clear. This change reflects the critical step in our procedure. Corresponding updates have also been made in the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      This manuscript aims to understand the biological mechanisms underlying neuropsychiatric symptoms in Parkinson's disease by characterizing subtypes of neurons in the dorsal raphe nucleus and defining their susceptibility to the degeneration of dopaminergic and adrenergic systems in the brain. This study was well-designed, the results were presented beautifully, and the manuscript was well-written. Here are some comments that may help to improve the overall quality of this work.

      We thank the reviewer for the kind comments.

      Major concerns:

      The current study utilized an intrastriatal 6-OHDA injection, which raises the possibility that the observed electrophysiological and morphological changes of DRN5-HT and DRNDA neurons (Figs 3-6) may be due to the direct effects of 6-OHDA to DRN5-HT and DRNDA neurons projecting to the dorsal striatum (at least for DRN5-HT neurons). This possibility requires further clarification and discussion.

      6-OHDA is a catecholamine neurotoxin with low selectivity for serotonin neurons. However, changes in the levels of serotonin have been observed with high doses of 6OHDA. In our study, we used lower concentrations of 6-OHDA, which did not affect the levels of serotonin (Suppl. Fig 4D), or the number of DRN5-HT neurons (Suppl. Fig. 5B). Concerning the possible effect of 6-OHDA on DRNDA neurons, we did not observe any modification in the number of these cells in response to the administration of 6-OHDA (Suppl. Fig. 5C), (lines 170-175).

      How does the loss of nigrostriatal dopamine neurons affect the electrophysiology and morphology of DRNDA neurons (Figs. 5-6)? What are the potential circuit mechanisms?

      The dopaminergic system in the midbrain and the DRN constitute two highly interconnected nuclei and hence there are multiple possible circuit mechanisms that could explain how loss of nigrostriatal dopaminergic neurons affects DRNDA neurons: First, DRNDA neurons are directly innervated by dopaminergic neurons in the SNc and VTA and hence loss of SNc inputs might evoke acute as well as homeostatic changes in DRNDA (Lin et al., 2020; Pinto et al., 2019). Second, midbrain dopaminergic neurons are in turn innervated by the DRN (Watabe-Uchida et al., 2012) and loss of postsynaptic dopaminergic neurons might affect all neuron types in the DRN that target the midbrain. Finally, GABAergic populations in the midbrain have been shown to target DRN5-HT neurons and might potentially also target other local cell types such as DRNDA (Li et al., 2019). Another possible pathway is the bidirectional connection between the striatum and the DRN (Pollak-Dorocic et al, 2014). DA depletion in the striatum may affect the GABAergic projection to the DRN and in turn modify the properties of postsynaptic DRN neurons.

      The potential circuit mechanisms are now included in the introduction (lines 58-59).

      Whether these intrastriatal 6-OHDA mice exhibited nonmotor deficits (e.g., anxiety) that may be related to the observed changes in the DRN? Such behavioral data would enhance the overall conclusions of this work.

      The PD model utilized in this study displays non-motor deficits, including depression- and anxiety-like behavior (Masini et al. 2021, Ztaou et al., 2018). This is now highlighted in the manuscript (lines 167-169).

      Minor issues:

      The panels of Fig. 2 should be re-labelled to match the descriptions in the main text (L. 142-158).

      Fig.2 now matches the descriptions in the main text.

      Fig 4D was missing from the figure, which does not match the descriptions in the main text (L. 193-204:)

      Fig. 4D includes the parameters describing the dendritic branching and starts with the last graph on the right in the second row of the panel.

      Line 409: Extra "as" after "average"

      Corrected in revised manuscript.

      Fig 3G: Missed asterisks.

      Corrected in revised manuscript (Fig. 3G)

      Details of how action parameters were quantified should be stated and specified in the methods.

      We have now added a section called ‘Quantification of electrophysiological parameters’ in the methods where we explain how the electrophysiological properties are defined and quantified (lines 407-439).

      "Parkinson's disease" in the title should be revised to "parkinsonism"

      Corrected in revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      (1) Throughout the paper, there are numerous inaccuracies and inconsistencies in the figures, which impede the clear understanding of this paper. For example, there are discrepancies between the labeling of the main figures (sub-panels) and the corresponding manuscript (Figure 2, Figure 4).

      Corrected in the revised manuscript.

      The statistical presentations are inaccurate in several figures (Figure 3E, 3G), making it difficult to distinguish which data is statistically meaningful. Furthermore, the number of cells presented in each figure is ambiguous in the figure legend. It would be better to avoid expressions such as 'n = 28 - 43 cells per group', as in line 456 (Figure 1I). Please provide the exact number of cells for each graph.

      We agree with the reviewer, and we have now added the precise n numbers for each panel in the corresponding legends in Fig 1, Fig 3, and Fig 5. Please note that some analysis was restricted to recordings where neurons fired close to their average spontaneous firing frequency (e.g. 1Hz for DRN5-HT) to allow for a fair comparison of the data across groups and that therefore the n numbers vary in different panels.

      In some figures, the value of n in the graph seems different from the value of n in the figure legends (Figure 2G-I, Figure 4, Figure 6). Collectively, these inaccurate figures and the manuscript weaken the general credibility of the data presented.

      We apologize for the misunderstanding, but in the type of chosen graph, equal values are overlapped. The numbers described in the figure legend are correct.

      (2) Some of the authors' claims in this paper are not supported by quantitative analysis, but only by sample recording traces or simple descriptions. For example, in line 97, the authors mentioned, "no differences when comparing TH-positive to TH-negative neurons".

      But there are no data actually analyzing these two groups in Supplementary Figure 2A.

      In addition, in line 103, there is a claim that "DRN DA neurons showed that they share several properties characteristics of other DA populations located in the SNc and the ventral tegmental area". However, this claim is backed up only by a few sample traces in Figure 1E.

      The statement (lines 110-111), "a relative constant action potential (AP) amplitude", is also not supported by appropriate quantitative analysis but only by sample recording traces.

      In our study we found a small subset of DAT-tdTomato positive neurons which did not stain positive for TH after the slice recordings. In 5 of 6 of these neurons (recorded in sham), the electrophysiological properties did not differ from other TH-positive neurons. This is visualized in Suppl. Fig 2A. The absence of any statistical difference was also confirmed by a Mann Whiteny U test comparing the TH negative to the TH positive DRNDA neurons (no significant differences in all 6 of 6 properties shown in Suppl. Fig 2A). Additionally, all these cells were DAT-positive, further supporting their classification as dopaminergic neurons. Therefore, we suspect that the lack of TH staining is likely caused by the tissue processing itself. Please note that all our immunohistochemistry was run on slices after several hours of patch-clamping procedures. Finally, including or excluding this small subset of neurons in the present study does not change any of the results presented and data was therefore pooled. We have now clarified this in more detail in the results section and in Suppl. Fig 2A (lines 100-103).

      We have moved the comparison of hallmark properties found in DRNDA neurons as well as in dopaminergic neurons in the midbrain from the results section to the discussion (lines 281-283).

      The claim that DRN5HT neurons have a comparatively constant action potential amplitude compared to DRNDA neurons is supported by quantitative analysis shown in Fig 1I (left panel, “AP drop rate”), while the representative example traces are shown in Fig 1G.

      (3) In the legend of Figure 2, the mouse used in this experiment is mentioned with two different names (wild-type mice in line 463 and sham-lesion mice in line 465). Is this a mistake? Or did the authors intentionally use the brain samples from sham-lesion mice for Figure 2?

      Figure 2 shows data in control conditions (Sham-lesion in our case), both from wild-type and Dat-Tomato. The text has been changed to avoid misunderstandings.

      (4) While the primary claim of this paper is the differential alterations of DRN 5-HT and DA neurons in a mouse PD model, the observed changes in the DRN neurons of the 'DA only lesion model' are comparatively minor to the 'DA and NA lesions model'. Therefore, it looks like NA depletion has a more critical role in the DRN neurons of 6OHDA-lesion mice than DA depletion. To understand the results of this paper better, it would be great if the authors can provide additional data from the 'NA only lesion model'.

      We agree with the reviewer, and we have now added a new set of experiments in which we selectively lesioned noradrenergic cells by injecting 6-OHDA unilaterally into the LC. The new data are presented in supplementary figure 6 in the revised manuscript. We find that selective lesioning of the NA system affects DRNDA and DRN5-HT neurons mildly, suggesting that the concomitant lesion of the DA and NA systems is particularly impactful (possibly because of interactions between these two systems).

      (5) In Figure 3B and Figure 5B, only the 6-OHDA+DMI group shows significant differences from the sham group. This finding might be attributed to the effect of DMI itself, not to the nigrostriatal DA degeneration without NA degeneration. Thus, adding the 'DMI-only group' in all experiments will strengthen the conclusion of this paper.

      The effect of one acute administration of desipramine was temporally limited to the stereotactic intervention (line 373-375), which was performed several weeks before the electrophysiological and morphological analyses. Given that the half-life of desipramine is approximately 24 hrs (Nagy and Johansson, 1975), we believe that its impact was limited to the neuroprotection of NA-neurons from 6-OHDA toxicity.

      (6) DRN 5-HT neurons are known to exhibit cellular heterogeneity, and in particular their electrophysiological properties are quite heterogeneous (Bernat Kocsis. 2006; J.V. Schweimer. et al. 2011). Furthermore, 5-HT neurons in the distinct subregions of the DRN display different membrane properties (LaTasha K. Crawford, 2010). Therefore, not all DRN 5-HT neurons can be regarded as electrophysiologically identical. Given that the molecular identity of all recorded cells was confirmed with neurobiotin in this paper, it would be better to show that recorded cells are not biased toward certain subregions of DRN.

      In addition, providing more comprehensive descriptions of the electrophysiological features used in PCA analysis would be beneficial in understanding the electrophysiological profiling of DRN neurons explained in this paper.

      Although several studies have revealed electrophysiological and molecular heterogeneity within the DRN5-HT population, we did not observe any significant differences within the DRN5-HT neurons recorded in this study. We compared the properties of DRN5HT neurons recorded more anterior to those recorded in the posterior

      DRN as well as neurons found in more ventral locations to those in more dorsal locations (data not shown). We would like to point out that the largest differences within serotonergic neuron populations described by previous studies were often found when comparing those located in the medial raphe nucleus (MRN) to those found in the DRN. Calizo et al., (2011) showed for example significant differences in the input resistance and AHP amplitude between MRN5HT and DRN5HT neurons. These two properties as well as the AP amplitude, AP threshold, AP duration, and tau did however not differ between DRN subregions in their study - and neither in ours. We extended our Suppl. Fig 1 and mapped the location of DRN5HT and DRNDA neurons recorded in sham (Suppl. Fig 1D).

      Overall, we’ve sampled neurons along the anterior-posterior and dorsal-ventral axes of the DRN, while on the medial-lateral axis, recorded DRN neurons were located medially.

      We agree with the reviewer that a comprehensive description of the electrophysiological features was missing in the manuscript, and we have therefore added a new section in the materials and methods where we explain in detail how each parameter was measured and analyzed (‘Quantification of electrophysiological parameters’, lines 407-439). This section also provides detailed information about the five properties underlying the PCA shown in figure 1 (i.e. delay to the first action potential, action potential drop rate, action potential rise time, duration of the afterhyperpolarization, and capacitance).

      (7) Some sample images presented in this paper contain information that can conflict with the previous research. In Figures 4B and 6B, TH expression was significantly increased in the DMI pretreatment group compared to the control group. However, several studies have shown that the administration of DMI decreases TH expression levels (Komori et al.1992; Nestler et al.1990). Therefore, it would be great if the authors further explained how the pretreatment of DMI with 6-OHDA affects TH level within the DRN.

      Figure 4B and 6B do not show any quantification of TH expression. The difference observed in the representative pictures is casual and due to the variable expression of TH across the slice. Moreover, as mentioned in the response to point 5, mice were subjected to a single injection of DMI immediately preceding the stereotactic intervention (line 373375). In contrast, the increase in TH expression reported by Komori et al. 1992 and Nestler et al. 1990 was observed in response to chronic (two weeks) administration of DMI.

      (8) This paper lacks direct evidence to demonstrate whether DMI pretreatment could effectively protect against NA depletion. Therefore, in addition to TH expression levels, it is important to provide data to confirm the intact NA levels (or NA axons) after DMI treatment.

      NA levels in the striatum were measured by Enzyme-linked immunosorbent assay and reported in Suppl.Fig.4 in the revised manuscript.

      (9) It would be great if the authors specifically explained why 6-OHDA was injected into the striatum (neither MFB nor SNc) to make a mouse model of PD.

      Mice were injected in the dorsal striatum to produce a partial bilateral lesion of the dopamine and noradrenaline systems. This model reproduces the initial stages of PD and also recapitulates several non-motor symptoms of PD, including affective disorders, which may be related to changes in serotonergic and dopaminergic transmission in the dorsal raphe. In contrast, injections in the MFB and SNc quickly produce a severe motor phenotype closer to a late stage of the disease and cannot be done bilaterally. <br /> The striatal model has been successfully used in other publications (Kravitz et al., 2010, Masini et al., 2021, Ztaou et al., 2018, Chen et al., 2014, Branchi et al., 2008, Marques et al. 2019, Tadaiesky et al., 2008, Matheus et al., 2016, Silva et al., 2016).

      (10) Supplementary Figures 2 and 3 were erroneously cut on the right side. These figure images should be replaced with the correct ones.

      We thank the reviewer for noticing and we have now replaced the figures with the correct ones.

      (11) There should be more explanations about tdTomato-positive but non-TH neurons in Supplementary Figure 2. It is strange to regard TH-negative neurons as DA neurons although these neurons have DA neuron-like electrophysiological properties. If these tdTomato-positive but non-TH neurons cannot release DA, can we say these are DA neurons?

      In our study we found a small subset of DAT-tdTomato positive neurons which did not stain positive for TH afterwards. In 5 of 6 of these neurons (recorded in sham), the electrophysiological properties did not differ from other TH-positive neurons. This is visualized in Suppl. Fig 2A. The absence of any statistical difference was also confirmed by a Mann Whiteny U test comparing the TH-negative to the TH-positive DRNDA neurons (no significant differences in all 6 of 6 properties shown in SF2A). Additionally, all these cells were DAT-positive, further supporting their classification as dopaminergic neurons. Therefore, we suspect that the lack of TH staining is likely caused by the tissue processing itself. Please note that all our immunohistochemistry was run on slices after several hours of patch-clamping procedures. Finally, including or excluding this small subset of neurons in the present study does not change any of the results presented and data was therefore pooled. We have now clarified this in more detail in the results section and in Suppl. Fig 2A (lines 100-103).

      Reviewer #3 (Recommendations For The Authors):

      The authors report using a parametric statistical test, the t-test. The t-test makes the assumption that the data are normally distributed. Most biological data is not distributed normally, and with smaller datasets, it is difficult to say whether the underlying distribution would be normally distributed. I would recommend using the non-parametric versions of the same test (eg Mann-Whitney U test), which is likely to give a similar result while being more conservative given the potential for non-normal distribution.

      All electrophysiological data were first tested for normality before running the corresponding statistical test (either t-test for normal distributed data or Mann-Whitney U test for non-normally distributed data). The morphological data are now analyzed by the Mann-Whitney U test (lines 484-494).

      The authors state that mice were treated with 6-OHDA at 3 months, then brain slices were prepared 3 weeks later, making them about 4 months old. I could not find the age of sham/control mice and 6-OHDA/desipramine mice in the methods section. Were sham/controls and 6-OHDA slices prepared in an interleaved fashion?

      Sham and 6-OHDA+DMI mice underwent surgery at 3 months and the brain slices were prepared 3 weeks later, as the 6-OHDA mice. We have now clarified this in the methods (line 381).

      While desipramine is relatively selective as a norepinephrine reuptake inhibitor, it also can prevent serotonin reuptake. Could this mechanism also protect DRN neurons from the effects of 6-OHDA?

      Even if desipramine has some affinity for the serotonin reuptake, this affinity is 100-fold less than the one described for the noradrenaline reuptake (Richelson and Pfenning, 1984, Gillman, 2007). Moreover, in our study the 6-OHDA injection in the dorsal striatum did not cause any direct damage to the DRN5-HT, as shown by the 5-HT measurement and DRN5-HT counting (Suppl. Fig. 4D, Suppl. Fig. 5A,B), so we can exclude that the effects observed in the DMI+6-OHDA group are related to a protection of the serotonergic system exerted by a single injection of desipramine.

      On line 168, the authors use the abbreviation NA for noradrenergic. Was this abbreviation previously defined in the manuscript?

      Yes, the abbreviation is defined in the introduction (line 73).

      On line 45, the authors cite that the DRN-5HT subpopulation accounts for 30-50% of the DRN neurons. It would be helpful to know approximately what percentage of the DRN neurons belong to the DRNDA subpopulation as well.

      To the best of our knowledge, there is unfortunately no detailed analysis of the prevalence of DRNDA neurons in mice available. Previous studies in rats have estimated that this population comprises around 1000 neurons (Descarries et al., 1986). According to Calizo et al. (2011), the number of any non-serotonergic neuron population (releasing dopamine or other neurotransmitters) in the DRN is one third to one tenth less than the number of DRN5-HT neurons. But please note that this study was also performed in rats (line 55).

      While I appreciate that the authors did not over-interpret their findings, it would be useful to comment (in the Discussion) on how their findings could/should be used in interpreting other studies using 6-OHDA, as well as the relationship of their findings to loss of 5-HT and/or DRN neurons in Parkinson's Disease itself.

      In the manuscript, we refer to the utility of the 6-OHDA model for the study of a wide range of non-motor symptoms. We have now described, in this model, how the loss of midbrain dopaminergic and noradrenergic neurons affects the electrophysiological and morphological properties of DRN5-HT and DRNDA neurons. This information will allow for a more precise assessment of the mechanisms involved in the affective and cognitive aspects of PD symptomatology (lines 354-356).

    1. Author Response

      We are writing this response letter with regards to the insightful feedback you provided on our manuscript titled: "A metabolic modeling-based framework for predicting trophic dependencies in native rhizobiomes of crop plants" submitted for consideration in eLife.

      We sincerely appreciate the thorough and constructive reviews, seeing and fitting the intentions behind our work. We intend to fully address all points raised by the reviewers in our revised manuscript. Specifically, we plan to incorporate targeted revisions to address concerns raised during the review process, with focus on process benchmarking and validation of our framework to enhance its reliability and accuracy.

      We believe that the current revision would improve the consistency and quality of the framework, making it a suitable tool for the characterization of microbial trophic interactions in diverse biological landscapes.

      Thank you once again for both your time and dedication in reviewing our manuscript, as well as the constructive review.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study provides insights into the IDA peptide with dual functions in development and immunity. The approach used is solid and helps to define the role of IDA in a two-step process, cell separation followed by activation of innate defenses. The main limitation of the study is the lack of direct evidence linking signaling by IDA and its HAE receptors to immunity. As such the work remains descriptive but it will nevertheless be of interest to a wide range of plant cell biologists.

      We thank the reviewers for thoroughly reading our manuscript. We have used their comments and suggestions- to improve the manuscript. Below is a response to the reviewer's comments.

      Public Reviews:

      Reviewer #1 (Public Review):

      The paper titled 'A dual function of the IDA peptide in regulating cell separation and modulating plant immunity at the molecular level' by Olsson Lalun et al., 2023 aims to understand how IDAHAE/HSL2 signalling modulates immunity, a pathway that has previously been implicated in development. This is a timely question to address as conflicting reports exist within the field. IDL6/7 have previously been shown to negatively regulate immune signalling, disease resistance and stress responses in leaf tissue, however IDA has been shown to positively regulate immunity through the shedding of infected tissues. Moreover, recently the related receptor NUT/HSL3 has been shown to positively regulate immune signalling and disease resistance. This work has the potential to bring clarity to this field, however the manuscript requires some additional work to address these questions. This is especially the case as it contracts some previous work with IDL peptides which are perceived by the same receptor complexes.

      Can IDA induce pathogen resistance? Does the infiltration of IDA into leaf tissue enhance or reduce pathogen growth? Previously it has been shown that IDL6 makes plants more susceptible. Is this also true for IDA? Currently cytoplasmic calcium influx and apoplastic ROS as overinterpreted as immune responses - these can also be induced by many developmental cue e.g. CLE40 induced calcium transients. Whilst gene expression is more specific is also true that treatment with synthetic peptides, which are recognised by LRR-RKs, can induce immune gene expression, especially in the short term, even when that is not there in vivo function e.g. doi.org/10.15252/embj.2019103894.

      We thank the reviewer for the concerns raised and agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and we plan for such experiments in future work. We have however, modified the discussion to include the possible role of IDA induced Ca2+ and ROS during development. We have recently published a preprint (accepted for publication in JXB) ( (Galindo-Trigo et al., 2023, https://doi.org/10.1101/2023.09.12.557497)) strengthening the link between IDA and defense by identifying WRKY transcription factors that regulate IDA expression through a Y1H assay.

      This paper shows that receptors other than hae/hsl2 are genetically required to induce defense gene expression, it would have been interesting to see what phenotype would be associated with higher order mutants of closely related haesa/haesa-like receptors. Indeed recently HSL1 has been shown to function as a receptor for IDA/IDL peptides. Could the triple mutant suppress all response? Could the different receptors have distinct outputs? For example for FRK1 gene expression the hae hsl2 mutant has an enhanced response. Could defence gene expression be primarily mediated by HSL1 with subfunctionalisation within this clade?

      We agree that it would be interesting to also include HSL1 in our studies. However, the focus of this study has been on HAE and HSL2 and we wanted to explore their role in IDA induced defense responses. Including HSL1 in these studies will require generation of multiple transgenic lines and repeating most of the experiments and are experiments we will consider in a follow up study together with pathogen assays (that would also address the main concern raised in the comment above). We have however, modified the text to include the known function of HSL1 and discuss the possibility of subfunctionalisation of this receptor clade.

      One striking finding of the study is the strong additive interaction between IDA and flg22 treatment on gene expression. Do the authors also see this for co-treatment of different peptides with flg22, or is this unique function of IDA? Is this receptor dependent (HAE/HSL1/HSL2)?

      This is a good question. Since our study focuses on the IDA signaling pathway we preferentially tested if the additive effect observed between flg22 and mIDA was also observed when mIDA was combined with another peptide involved in defense. The endogenous peptide PIP1, has previously been shown to amplify flg22 signaling (Hou et al 2014, doi:10.1371/journal.ppat.1004331 ). In this study it is shown that co-treatment with flg22 and PIP1 gives increased resistance to Pseudomonas PstDC3000 compared to when plants are treated with each peptide separately. In the same study, the authors also show reduced flg22 induce transcriptional activity of two defense related genes WRKY33 and PR in the receptor like kinase7 (rlk7) mutant (the receptor perceiving PIP1) (). To investigate whether PIP1 would give the same additive effect with mIDA as that observed between flg22 and mIDA, we co-treated seedlings with PIP1 and mIDA. We observed no enhanced transcriptional activity of FRK1, MYB51 and PEP3 in tissue from plants treated with both PIP1 and mIDA peptides compared to single exposure. These results are presented in supplementary figure 11. In conclusion we do not think mIDA acts as a general amplifier of all immune elicitors in plants.

      It is interesting how tissue specific calcium responses are in response to IDA and flg22, suggesting the cellular distribution of their cognate receptors. However, one striking observation made by the authors as well, is that the expression of promoter seems to be broader than the calcium response. Indicating that additional factors are required for the observed calcium response. Could diffusion of the peptide be a contributing factor, or are only some cells competent to induce a calcium response?

      It is interesting that the authors look for floral abscission phenotypes in cngc and rbohd/f mutants to conclude for genetic requirement of these in floral abscission. Do the authors have a hypothesis for why they failed to see a phenotype for the rbohd/f mutant as was published previously? Do you think there might be additional players redundantly mediating these processes?

      It is a possibility that diffusion of the peptide plays a role in the observed response. In a biological context we would assume that the local production of the peptides plays an important role in the cellular responses. In our experimental setup, we add the peptide externally and we can therefore assume that the overlaying cells get in contact with the peptide before cells in the inner tissues and this could be affecting the response recorded However, our results show that there is a differences between flg22 and mIDA induced responses even when the application of the peptides is performed in the same manner, indicating that the difference in the response is not primarily due to the diffusion rate of the peptides but is likely due to different factors being present in different cells. To acquire a better picture of the distribution of receptor expression in the root tissue and to investigate in which cells the receptors have an overlapping expression pattern, we have included results in figure 6 showing plant lines co-expressing transcriptional reporters of FLS2 and HAE or HSL2.

      Can you observe callose deposition in the cotyledons of the 35S::HAE line? Are the receptors expressed in native cotyledons? This is the only phenotype tested in the cotyledons.

      We thank the reviewer for this valuable comment. We have now conducted callose deposition assay on the 35S:HAE line. And Indeed, we observe callose depositions when cotyledons from a 35S:HAE line is treated with mIDA. We have included these results in figure 4 and have adjusted the text regarding the callose assay accordingly. In addition, we have analyzed the promoter activity of pHAE in cotelydons and we observe weak promoter activity. These results are included as supplementary figure 1d.

      Are flg22-induced calcium responses affected in hae hsl2?

      The experiment suggested by the reviewer is an important control to ensure that the hae hsl2-Aeq line can respond to a Ca2+ inducing peptide signaling through a different receptor than HAE or HSL2. One would expect to see a Ca2+ response in this line to the flg22 peptide. We performed this experiment and surprisingly we could not detect a flgg22 induced Ca2+ signal in the hae hsl2 mutnt. As it is unlikely that the Ca2+ response triggered by flg22 is dependent on HAE and HSL2 we have to assume that the lack of response is due to a malfunction of the Aeq sensor in this line. As a control to measure the amount of Aeq present in the cells we treat the Aeq seedlings with 2 M CaCl2 and measure the luminescence constantly for 180 seconds (Ranf et al., 2012, DOI10.1093/mp/ssr064). The CaCl2 treatment disrupts the cells and releases the Aeq sensor into the solution where it will react with Ca2+ and release the total possible response in the sample (Lmax) in form of a luminescent peak. When treating the hae hsl2-Aeq line with CaCl2we observe a luminescent peak, indicating the presence of the sensor, however, the response is reduced compared to WT seedlings expressing Aeq. Given the sensitivity of FLS2 to flg22 one would still expect to see a Ca2+ peak in the hae hsl2-Aeq line even if the amount of sensor is reduced. Given that this is not the case, we have to assume that localization or conformation of the sensor is somehow affected in this line or that there is another biological explanation that we cannot explain at the moment.

      We have therefore opted on omitting the results using the hae hsl2 Aeq lines from the manuscript and are in the process of mutating HAE and HSL2 by CRISPR-Cas9 in the Aeq background to verify that the mIDA triggered Ca2+ response is dependent on HAE and HSL2.

      Reviewer #2 (Public Review):

      Lalun and co-authors investigate the signalling outputs triggered by the perception of IDA, a plant peptide regulating organs abscission. The authors observed that IDA perception leads to a transient influx of Ca2+, to the production of reactive oxygen species in the apoplast, and to an increase accumulation of transcripts which are also responsive to an immunogenic epitope of bacterial flagellin, flg22. The authors show that IDA is transcriptionally upregulated in response to several biotic and abiotic stimuli. Finally, based on the similarities in the molecular responses triggered by IDA and elicitors (such as flg22) the authors proposed that IDA has a dual function in modulating abscission and immunity. The manuscript is rather descriptive and provide little information regarding IDA signalling per se. A potential functional link between IDA signalling and immune signalling remains speculative.

      We thank the reviewer for the concerns raised and agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and plan for such experiments in future work.

      Reviewer #3 (Public Review):

      Previously, it has been shown the essential role of IDA peptide and HAESA receptor families in driving various cell separation processes such as abscission of flowers as a natural developmental process, of leaves as a defense mechanism when plants are under pathogenic attack or at the lateral root emergence and root tip cell sloughing. In this work, Olsson et al. show for the first time the possible role of IDA peptide in triggering plant innate immunity after the cell separation process occurred. Such an event has been previously proposed to take place in order to seal open remaining tissue after cell separation to avoid creating an entry point for opportunistic pathogens.

      The elegant experiments in this work demonstrate that IDA peptide is triggering the defenseassociated marker genes together with immune specific responses including release of ROS and intracellular CA2+. Thus, the work highlights an intriguing direct link between endogenous cell wall remodeling and plant immunity. Moreover, the upregulation of IDA in response to abiotic and especially biotic stimuli are providing a valuable indication for potential involvement of HAE/IDA signalling in other processes than plant development.

      We are pleased that the reviewer finds our findings linking IDA to defense interesting and would like to thank the reviewer for this positive feedback.

      Strengths:

      The various methods and different approaches chosen by the authors consolidates the additional new role for a hormone-peptide such as IDA. The involvement of IDA in triggering of the immunity complex process represents a further step in understanding what happens after cell separation occurs. The Ca2+ and ROS imaging and measurements together with using the haehsl2 and haehsl2 p35S::HAE-YFP genotypes provide a robust quantification of defense responses activation. While Ca2+ and ROS can be detected after applying the IDA treatment after the occurrence of cell separation it is adequately shown that the enzymes responsible for ROS production, RBOHD and RBOHF, are not implicated in the floral abscission.

      Furthermore, IDA production is triggered by biotic and abiotic factors such as flg22, a bacterial elicitor, fungi, mannitol or salt, while the mature IDA is activating the production of FRK1, MYB51 and PEP3, genes known for being part of plant defense process.

      Thank you.

      Weaknesses:

      Even though there is shown a clear involvement of IDA in activating the after-cell separation immune system, the use of p35S:HAE-YFP line represent a weak point in the scientific demonstration. The mentioned line is driving the HAE receptor by a constitutive promoter, capable of loading the plant with HAE protein without discriminating on a specific tissue. Since it is known that IDA family consist of more members distributed in various tissues, it is very difficult to fully differentiate the effects of HAE present ubiquitously.

      We agree on this statement. Nevertheless, it is important to note that the responses we have observed are not detectable in WT plants that do not (over)express the HAE receptors. Suggesting that the ROS and callose deposition are induced by the addition of mIDA peptide and not the potential presence of the endogenous IDL peptides.

      The co-localization of HAE/HSL2 and FLS2 receptors is a valuable point to address since in the present work, the marker lines presented do not get activated in the same cell types of the root tissues which renders the idea of nanodomains co-localization (as hypothetically written in the discussion) rather unlikely.

      Thank you for raising an important aspect of our study. It is true that not all cells in the root which have promoter activity for FLS2 also exhibit promoter activity for either HAE or HSL2. However, we have observed that certain cells in the roots show promoter activity for both receptors. In the revised version of the manuscript, we have included plants expression a transcriptional promoter for both FLS2 and HAE or HSL2 using different fluorescent proteins. We have investigated overlapping promoter activity both at sites of lateral roots, in the tip of the primary root and in the abscission zone. Our results show overlapping expression of the transcriptional reporters in certain cells, indicating that FLS2 and HAE or HSL2 are likely to be found in some of the same cells during plant development. We also observe cells where only one or none of the promoters are active.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Supplementary Figure 3: re-labelling of y axis; 200 than 200,00 for clarity.

      This has been addressed.

      Supplementary Figure 2: It would be good to include the age of the seedlings used to study calcium influx in the legend.

      This has been addressed.

      Supplementary Figure 1: rephrase 'IDA induces ROS production in Arabidopsis'.

      This has been addressed.

      The use of chelating agents to establish the need of calcium from extracellular space is a clear experiment supporting the calcium response phenotype specific to IDA treatment in seedlings. Removing the last asparagine (N) and using it as a peptide that fails to elicit calcium response could simply be because of the peptide is smaller in length or different chemical properties. Therefore, a scrambled sequence would have been a better control.

      We thank the reviewer for the suggestion of using a scrambled peptide as a negative control, however we find it unlikely that mIDA∆N69 could induce any activity based on previous work. Results from crystal structure of mIDA bound to the HAE receptor and ligand-receptor interaction studies (10.7554/eLife.15075 ) show that the last asparagine in the mIDA peptide is essential for detectable binding to the HAE receptor and that a peptide lacking this amino acid does not have any activity. We will however, in future experiments also include a scrambled version of the peptide as an additional control.

      Reviewer #2 (Recommendations For The Authors):

      Please find below specific comments:

      (1) Most of the molecular outputs triggered by IDA can be considered as common molecular marks of plant peptides signalling, they do not represent strong evidences of a potential function of IDA in modulating immunity. For instance, perception of CIF peptides, which control the establishment of the Casparian strips, regulate the production of reactive oxygen species, and the transcription of genes associated with immune responses (Fujita et al., The EMBO Journal 2020). It should also be considered that FRK1, whose function remains unknown, may be involved in both immunity and abscission and that the upregulation of FRK1 upon IDA treatment is not indicative of active modulation of immune signalling by IDA.

      This is a fair point raised by the reviewer and we now address in the manuscript that ROS and Ca2+ are hallmarks of both plant development and defense. The function of FRK1 is not known however, it is unlikely that the upregulation of FRK1 in response to mIDA plays a role in the developmental progression of abscission as it is not temporally regulated during the abscission process, thus making it an unlikely candidate in the regulation of cell separation (Cai & Lashbrook, 2008, https://doi.org/10.1104/pp.107.110908). We do however agree that further experiments including pathogen assays would strengthen the link between IDA signaling and immunity and plan for such experiments in future work.

      (2) It remains unknown whether IDA modulate immunity. For instance, does IDA perception promote resistance to bacteria (bacterial proliferation, disease symptoms)? Is IDA genetically required for plant disease resistance immunity? Is the IDA signalling pathway genetically required for transcriptional changes induced by flg22, such as increase in FRK1 transcripts? In addition, the authors propose that the proposed function of IDA in modulating immune signalling prevents bacterial infection in tissue exposed to stress(es). Does loss of function of IDA or of its corresponding receptors leads to changes in the ability of bacteria to colonise plant root upon stress(es)?

      Please see the comment above regarding pathogen assays.

      (3) Several aspects of the work appear to correspond to preliminary investigation. For instance, the authors analyse loss of function mutant for genes encoding for Ca2+ permeable channels (CNGCs) which are transcriptionally active during the onset of abscission (Sup. Figure 5). None of the single mutants present an abscission defect. These observations provide no information regarding the identity of the channel(s) involved in IDA-induced calcium influx.

      We agree with the reviewer that we have not been able to identify the channels responsible for the IDA-induced calcium influx. Given the redundancy for many of the members of this multigenic family a future approach to identify proteins responsible for the IDA triggered calcium response could be to create multiple KO mutants by CRISPR Cas9.

      (4) Using H2DCF-DA, the authors observed a decrease in ROS accumulation in the abscission zone of rbohd/rbohf double KO line (Sup Figure 5c) but describe in the text that ROS production in this zone does not depend on RBOHD and RBOHF (L220). Please clarify.

      This has now been clarified in the text.

      (5) The authors describe that rbohd/rbohf double KO present a lower petal break-strength, which they describe as an indication of premature cell wall loosening, and that petals of rbohd/rbohf abscised one position earlier than in WT. Yet, the authors postulate that IDA-induced ROS production does not regulate abscission but may regulate additional responses. Instead the data seems to indicate that ROS production by RBOHD and RBOHF regulate the timing of abscission. In addition, it would have been interesting to test whether IDA signalling pathway regulate ROS production in the abscission zone.

      The rbohd and rbohf double mutants show several phenotypes associated to developmental stress, the mild phenotype observed with regards to premature abscission (by one position) could be caused by the phenotype of the double mutant rather than related to ROS production. Indeed, it has been suggested that the lignified brace in the AZ dependent on ROS production by the aforementioned RBOHs in necessary for the correct concentration of cell modifying enzymes (Lee et al., 2018, https://doi.org/10.1016/j.cell.2018.03.060). The precocious abscission in this double mutant clearly shows this not to be the case. We have tried to do a ROS burst assay on AZ tissue/flowers with the mIDA peptide but have not been successful with this approach. A ROS sensor expressed in AZ tissue would be a valuable tool to address whether IDA signalling regulates ROS production in AZs.

      (6) In Sup. Figure5a, it would be of interest to have a direct comparison of the transcript accumulation of the presented CNGCs and RBOHDs with other of these multigenic families.

      The CNGCs and RBOH gene expression profile shown in the figure are the family members expressed during the developmental progress of floral abscission in stamen AZs. Since there is no difference in the temporal expression of the other family members (and most are either not expressed or very weakly expressed in this tissue) it is not possible to do this comparison (Cai & Lashbrook, 2008, https://doi.org/10.1104/pp.107.110908).

      (7) L251-253, since IDAdeltaN69 cannot be perceived by its receptors, the absence of induction of pIDA::GUS by IDAdeltaN69 compared to flg22 cannot be seen as a sign of specificity in peptideinduced increase in IDA promotor activity.

      We have rephased this in the text

      (8) Please provide quantitative and statistical analysis of the calcium measurement presented in sup figure 3.

      This has been addressed.

      (9) L339-341; This sentence is unclear to me, please rephrase.

      We have rephased this in the text

      Reviewer #3 (Recommendations For The Authors):

      (1) In order to assess the role of CNGCs in abscission process, it would be more interesting to see the effect on the Ca2+ pattern and ROS signaling after application of mIDA on cngc and rbohf rbohd mutants.

      We agree in this statement and the studies on mIDA induced ROS and Ca2+ on these mutants will provide valuable information to the regulation of the response. We are in the process of making the lines needed to be able to perform these experiments. However, since it requires crossing of genetically encoded sensors into each mutant, and generation of higher order mutants this is a long process.

      (2) With regard to the ROS production (Sup Fig. 1), the application of mIDA can trigger ROS in p35S::HAE:YFP lines, but not in the wild-type plant, which is according to the text "most likely due to the absence of HAE expression" in leaves. The experiment on callose deposition is performed in wild-type cotyledons where no callose deposition could be observed after mIDA treatment (Fig. 4a,b). The conclusion from text is that IDA "is not involved in promoting deposition of callose as a long-term defence response". It appears more likely that neither ROS nor callose can be observed in wild-type plants due to the lack of HAE expression. Therefore, the callose experiment should include the p35S::HAE:YFP lines. The experiment as it is does not allow to draw any conclusion on HAE/IDA involvement in callose formation.

      We fully agree with this comment, thank you for pinpointing this out. We have now performed the callose experiment with the 35S:HAE lines. Please see our answer to reviewer #1.

      (3) Between Sup Fig. 3 and Sup Fig. 5 two different systems were used to asses the floral stage. An adjustment of the floral stages would be easier to convey the levels of HAE/HSL2 expression and hence potentially with the onset of cell-wall degradation.

      We now used the same system to assess floral stages throughout the whole manuscript.

      (4) For the Fig. 1 and 2, it will be helpful to mention the genotype used for imaging/quantification of Ca2+.

      This has been addressed.

      (5) Some of the abbreviations are not introduced as full-text at their first time use in the text, such as: mIDA (Line 68), Ef-Tu (line 85), NADPH (line 77).

      The abbreviations have now been introduced.

      (6) In the legend of Fig. 5 (lines 897 and 898)- in the figure description, the box plots are identified as light gray and dark gray, while in the panel a of the figure the box plots are colored in red and blue.

      Thank you for pointing this out, this has now been corrected.

      (7) In figure 1 and 2. the authors write that the number of replicates is 10 (n=10) but data represents a single analysis. Please provide the quantitative ROI analysis, demonstrating that the observed example is representative. This is particularly important since the authors claim very specific changes in pattern of Ca signaling between mIDA and FLG22 treatments (Line 148).

      (8) Figure 4: please use alternative scaling on the Y axis instead of breaks.

      This has now been fixed.

      (9) Figure 5: it is not clear what n=4 refers to when the authors state three independent replicates. In figure 6 they state 4 technical reps and 3 biological reps. Please ensure this is similar across all descriptions.

      We have now ensured the correct information in all descriptions.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on Legionella pneumophila effector proteins that target host vesicle trafficking GTPases during infection and more specifically modulate ubiquitination of the host GTPase Rab10. The evidence supporting the claims of the authors is solid, although it remains unclear how modification of the GTPase Rab10 with ubiquitin supports Legionella virulence and the impact of ubiquitination during LCV formation. The work will be of interest to colleagues studying animal pathogens as well as cell biologists in general.

      We greatly appreciate the positive and valuable feedback from the editors and the reviewers. According to their suggestions, we added many new experimental data and implications of our findings in Legionella virulence in terms of the biological process of its replication niche. Please find our point-to-point responses below.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Kubori and colleagues characterized the manipulation of the host cell GTPase Rab10 by several Legionella effector proteins, specifically members of the SidE and SidC family. They show that Rab10 undergoes both conventional ubiquitination and noncanonical phosphoribose-ubiquitination, and that this posttranslational modification contributes to the retention of Rab10 around Legionella vacuoles.

      Strengths

      Legionella is an emerging pathogen of increasing importance, and dissecting its virulence mechanisms allows us to better prevent and treat infections with this organism. How Legionella and related pathogens exploit the function of host cell vesicle transport GTPases of the Rab family is a topic of great interest to the microbial pathogenesis field. This manuscript investigates the molecular processes underlying Rab10 GTPase manipulation by several Legionella effector proteins, most notably members of the SidE and SidC families. The finding that MavC conjugates ubiquitin to SdcB to regulate its function is novel, and sheds further light into the complex network of ubiquitin-related effectors from Lp. The manuscript is well written, and the experiments were performed carefully and examined meticulously.

      Weaknesses

      Unfortunately, in its current form this manuscript offers only little additional insight into the role of effector-mediated ubiquitination during Lp infection beyond what has already been published. The enzymatic activities of the SidC and SidE family members were already known prior to this study, as was the importance of Rab10 for optimal Lp virulence. Likewise, it had previously been shown that SidE and SidC family members ubiquitinate various host Rab GTPases, like Rab33 and Rab1. The main contribution of this study is to show that Rab10 is also a substrate of the SidE and SidC family of effectors. What remains unclear is if Rab10 is indeed the main biological target of SdcB (not just 'a' target), and how exactly Rab10 modification with ubiquitin benefits Lp infection.

      Reviewer #1 (Recommendations for The Authors):

      Major points of concern

      (1) The authors show that SdcB increases Rab10 levels on LCVs at later times of infection and conclude that this is its main biological role. An alternative explanation may be that Rab10 is not 'the main' target of SdcB but merely 'a' target, which may explain why the effect of SdcB on Rab10 accumulation on LCV is only detectable after several hours of infection. An unbiased omics-based approach to identify the actual host target(s) of SdcB may be needed to confirm that Rab10 modification by SdcB is biologically relevant.

      We totally agree with your comment that SdcB should have multiple targets considering the abundance of ubiquitin observed on the LCVs when SdcB was expressed (Figure 3). However, the effect of SdcB on Rab10 accumulation at the later time point (7 h) (current Figure 4e) was well supported by the new data showing that the SdcB-mediated ubiquitin conjugation to Rab10 was highly detected at this time point (new Figure 4c). We have tried the comprehensive search of interaction partners of the ANK domain of SdcB. This analysis is planned to be included in our on-going study. We therefore decided not to add the data in this manuscript.

      (2) The authors show that Rab10 within cell lysate is ubiquitinated and conclude that ubiquitination of Rab10 is directly responsible for its retention on the LCV. What is the underlying molecular mechanism for this retention? Are GAP proteins prevented from binding and deactivating Rab10. This may be worth testing.

      It would be a fantastic hypothesis that a Rab10GAP is involved in the regulation of Rab10 localization on the LCV. However, as far as we know, GAP proteins against Rab10 have not been identified yet. It should be an important issue to be addressed when a Rab10GAP will be found.

      (3) Related to this, an alternative explanation would be that Rab10 retention is an indirect effect where inactivators of Rab10, such as host cell GAP proteins, are the main target of SidE/C family members and sent for degradation (see point #1). Can the authors show that Rab10 on the LCV is indeed ubiquitinated?

      The possible involvement of a putative Rab10GAP is currently untestable as it is not known. To address whether Rab10 located on the LCV is ubiquitinated nor not, we conducted the critical experiments using active Rab10 (QL) and inactive Rab10 (TN) (new Figure 4a, new Figure 4-figure supplement 1). As revealed for Rab1 (Murata et al., Nature Cell Biol. 2006; Ingmundson et al., Nature 2007), Rab10 is expected to be recruited to the LCV as a GDPbound inactive form and converted to a GTP-bound active form on the LCV. The new results clearly demonstrated that GTP-locked Rab10QL is preferentially ubiquitinated upon infection, strongly supporting the model; Rab10 is ubiquitinated “on the LCV” by the SidE and SidC family ligases.

      (4) Also, on what residue(s) is Rab10 ubiquitinated? Jeng et. al. (Cell Host Microbe, 2019, 26(4): 551-563)) suggested that K102, K136, and K154 of Rab10 are modified during Lp infection. How does substituting those residues affect the residency of Rab10 on LCVs? Addressing these questions may ultimately help to uncover if the growth defect of a sidE gene cluster deletion strain is due to its inability to ubiquitinate and retain Rab10 on the LCV.

      Thank you for the suggestion. We conducted mutagenesis of the three Lys residues of Rab10 and applied the derivative on the ubiquitination analysis (new Figure 1-figure supplement 1). The Lys substitution to Ala residues did not abrogate the ubiquitination upon Lp infection. This result indicates that ubiquitination sites are present in the other residue(s) including the PR-ubiquitination site(s), raising possibility that disruption of sidE genes would be detrimental for intracellular growth of L. pneumophila because of failure of Rab10 retention.

      (5) The authors proposed that "the SidE family primarily contributes towards ubiquitination of Rab10". In this case, what is the significance of SdcB-mediated ubiquitination of Rab10 during Lp infection?

      We found that the major contribution of SdcB is retention of Rab10 until the late stage of infection. This claim was supported by our new data (new Figure 4c) as mentioned above (response to comment #1).

      (6) The contribution of SdcB to ubiquitination of Rab10 relative to SidC and SdcA is unclear. SidC is shown to be unaffected by MavC. In this case, SidC can ubiquitinate Rab10 regardless of the regulatory mechanism of SdcB by MavC. This is not further being examined or discussed in the manuscript.

      The effect of intrinsic MavC is apparent at the later stage (9 h) of infection (Figure 7c) when SdcB gains its activity (see above). We therefore do not think that the contribution of MavC on the SidC/SdcA activities, which are effective in the early stage, would impact on Rab10 localization. However, without specific experiments addressing this issue, possible MavC effects on SidC/SdcA would be beyond the scope in this manuscript.

      (7) When is Rab10 required during Lp infection? The authors showed that Rab10 levels at LCV are rather stable from 1hr to 7hr post infection. If MavC regulates the activity of SdcB, when does this occur?

      While the Rab10 levels on the LCV (~40 %) are stable during 1-7 h post infection (Figure 2b), it reduced to ~20% at 9 h after infection (Figure 7c) (the description was added in lines 304-306). Rab10 seems to be required for optimal LCV biogenesis over the early to late stages, but may not be required at the maturation stage (9 h). We validated the effect of MavC on the Rab10 localization at this time point (Figure 7c). These observations allowed us to build the scheme described in Figure 7d. We revised the illustration in new Figure 7d according to the helpful suggestions from both the reviewers.

      (8) Previous analyses by MS showed that ubiquitination of Rab10 in Lp-infected cells decreases over time (from 1 hpi to 8 hpi - Cell Host Microbe, 2019, 26(4): 551-563). How does this align with the findings made here that Rab10 levels on the LCV and likely its ubiquitination levels increase over time?

      We carefully compared the Rab10 ubiquitination at 1 h and 7 h after infection (new Figure 1figure supplement 1b). This analysis showed that the level of its ubiquitination decreased over time in agreement with the previous report. Nevertheless, Rab10 was still significantly ubiquitinated at 7 h, which we believe to cause the sustained retention of Rab10 on the LCV at this time point. We added the observation in lines 146-148.

      (9) Polyubiquitination of Rab10 was not detected in cells ectopically producing SdcB and SdeA lacking its DUB domain (Figure 7 - figure supplement 2). Does SdcB actually ubiquitinate Rab10 (see also point #5)? Along the same line, it is curious to find that the ubiquitination pattern of Rab10 is not different for LpΔsidC/ΔsdcA compared to LpΔsidC/dsdcA/dsdcB (Figure 1C). The actual contribution of SdcB to ubiquitinating Rab10 compared to SidC/SdcA thus needs to be clarified.

      Thank you for the important point. We currently hypothesize that SidC/SdcA/SdcB-mediated ubiquitin conjugation can occur only in the presence of PR-ubiquitin on Rab10 (either directly on the PR-ubiquitin or on other residue(s) of Rab10). Failure to detect the polyubiquitination in the transfection condition (Figure 7-figure supplement 2) suggests that this specific ubiquitin conjugation can occur in the restricted condition, i.e. only “on the LCV”. We added this description in the discussion section (lines 334-335). No difference between the ΔsidCΔsdcA and ΔsidCΔsdcAΔsdcB strains (Figure 1C, 1h infection) can be explained by the result that SdcB gains activity at the later stages (see above).

      Minor comments In Figure 4b and 7b, the authors show a quantification of "Rab10-positive LCVs/SdcBpositive LCVs". Whys this distinction? It begs the question what the percentile of Rab10positive/SdcB-negative LCVs might be?

      We took this way of quantification as we just wanted to see the effect of SdcB on the Rab10 localization. To distinguish between SdcB-positive and negative LCVs, we would need to rely on the blue color signals of DAPI to visualize internal bacteria, which we thought to be technically difficult in this specific analysis.

      The band of FLAG-tagged SdcB was not detected by immunoblot using anti-FLAG antibody (Figure 5). The authors hypothesized that "disappearance of the SdcB band can be caused by auto-ubiquitination, as SdcB has an ability to catalyze auto-ubiquitination with a diverse repertoire of E2 enzymes. This can be easily confirmed by using MG-132 to inhibit proteasomal degradation of polyubiquitinated substrates.

      We conducted the experiment using MG-132 as suggested and found that proteasomal degradation is not the cause of the disappearance of the band (new Figure 5-figure supplement 2, added description in lines 228-233). SdcB is actually not degraded. Instead, its polyubiquitination causes its apparent loss by distributing the SdcB bands in the gel.

      In Figure 5F, the authors mentioned that "HA-UbAA did not conjugate to SdcB", whereas "shifted band detected by FLAG probing plausibly represents conjugation of cellular intrinsic Ub". The same argument was made in Figure 6B. These claims should be confirmed by immunoblot using anti-Ub antibody.

      Thank you. We added the data using anti-Ub antibody (P4D1) (Figure 6f, new third panel).

      Figure 7A: In cell producing MavC, SdcB is clearly present on LCV. However, in Figure 5A, SdcB was not detected by immunoblot in cells ectopically expressing MavC-C74A. What is the interpretation for these results?

      SdcB was not degraded in the cells, but just its apparent molecular weight shift occurred by polyubiquitination (see above). The detection of SdcB in the IF images (Figure 7a) supported this claim.

      Reviewer #2 (Public Review):

      This manuscript explores the interplay between Legionella Dot/Icm effectors that modulate ubiquitination of the host GTPase Rab10. Rab10 undergoes phosphoribosyl-ubiquitination (PR-Ub) by the SidE family of effectors which is required for its recruitment to the Legionella containing vacuole (LCV). Through a series of elegant experiments using effector gene knockouts, co-transfection studies and careful biochemistry, Kubori et al further demonstrate that:

      (1) The SidC family member SdcB contributes to the polyubiquitination (poly-Ub) of Rab10 and its retention at the LCV membrane.

      (2) The transglutaminase effector, MavC acts as an inhibitor of SdcB by crosslinking ubiquitin at Gln41 to lysine residues in SdcB.

      Some further comments and questions are provided below.

      (1) From the data in Figure 1, it appears that the PR-Ub of Rab10 precedes and in fact is a prerequisite for poly-Ub of Rab10. The authors imply this but there's no explicit statement but isn't this the case?

      Yes, we think that it is the case. We revised the description in the text accordingly (lines 326327).

      (2) The complex interplay of Legionella effectors and their meta-effectors targeting a single host protein (as shown previously for Rab1) suggests the timing and duration of Rab10 activity on the LCV is tightly regulated. How does the association of Rab10 with the LCV early during infection and then its loss from the LCV at later time points impact LCV biogenesis or stability? This could be clearer in the manuscript and the summary figure does not illustrate this aspect.

      Thank you for pointing the important issue. Association of Rab10 with the LCV is thought to be beneficial for L. pneumophila as it is the identified factor which supports bacterial growth in cells (Jeng et al., 2019). We speculate that its loss from the LCV at the later stage of infection would also be beneficial, since the LCV may need to move on to the maturation stage in which a different membrane-fusion process may proceed. As this is too speculative, we gave a simple modification on the part of discussion section (lines 356-358). We also modified the summary figure (revised Figure 7d) as illustrated with the time course.

      (3) How do the activities of the SidE and SidC effectors influence the amount of active Rab10 on the LCV (not just its localisation and ubiquitination)

      We agree that it is an important point. We tested the active Rab10 (QL) and inactive Rab10 (TN) for their ubiquitination and LCV-localization profiles (new Figure 4ab, new Figure 4figure supplement 1 and 2). These analyses led us to the unexpected finding that the active form of Rab10 is the preferential target of the effector-mediated manipulation. See also our response to Reviewer 1’s comment #3. Thank you very much for your insightful suggestion.

      (4) What is the fate of PR-Ub and then poly-Ub Rab10? How does poly-Ub of Rab10 result in its persistence at the LCV membrane rather than its degradation by the proteosome?

      We have not revealed the molecular mechanism in this study. We believe that it is an important question to be solved in future. We added the sentence in the discussion section (lines 376378).

      (5) Mutation of Lys518, the amino acid in SdcB identified by mass spec as modified by MavC, did not abrogate SdcB Ub-crosslinking, which leaves open the question of how MavC does inhibit SdcB. Is there any evidence of MavC mediated modification to the active site of SdcB?

      The active site of SdcB (C57) is required for the modification (Figure 5b), but it is not likely to be the target residue, as the MavC transglutaminase activity restricts the target residues to Lys. It would be expected that multiple Lys residues on SdcB can be modified by MavC to disturb the catalytic activity.

      (6) I found it difficult to understand the role of the ubiquitin glycine residues and the transglutaminase activity of MavC on the inhibition of SdcB function. Is structural modelling using Alphafold for example helpful to explain this?

      We conducted the Alphafold analysis of SdcB-Ub. Unfortunately, when the Glycine residues of Ub was placed to the catalytic pocket of SdcB, Q41 of Ub did not fit to the expected position of SdcB (K518). Probably, the ternary complex (MavC-Ub-SdcB) would cause the change of their entire conformation. A crystal structure analysis or more detailed molecular modeling would be required to resolve the issue.

      (7) Are the lys mutants of SdbB still active in poly-Ub of Rab10?

      We performed the experiment and found that K518R K891R mutant of SdcB still has the E3 ligase activity of similar level with the wild-type upon infection (new Figure 6-figure supplement 2) (lines 283-284). The level was actually slightly higher than that of the wildtype. This result may suggest that the blocking of the modification sites can rescue SdcB from MavC-mediated down regulation.

      Reviewer #2 (Recommendations For The Authors):

      see above

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study applies voltage clamp fluorometry to provide new information about the function of serotonin-gated ion channels 5-HT3AR. The authors convincingly investigate structural changes inside and outside the orthosteric site elicited by agonists, partial agonists, and antagonists, helping to annotate existing cryo-EM structures. This work confirms that the activation of 5-HT3 receptors is similar to other members of this well-studied receptor superfamily. The work will be of interest to scientists working on channel biophysics but also drug development targeting ligand-gated ion channels.

      Public Reviews:

      All reviewers agreed that these results are solid and interesting. However, reviewers also raised several concerns about the interpretation of the data and some other aspects related to data analysis and discussion that should be addressed by the authors. Essential revisions should include:

      (1) Please try to explicitly distinguish between a closed pore and a resting or desensitized state of the pore, to help in clarity.

      (2) Add quantification of VCF data (e.g. sensor current kinetics, as suggested by reviewer #2) or better clarify/discuss the VCF quantitative aspects that are taken into account to reach some conclusions (reviewer #3).

      (3) Review and add relevant foundational work relevant to this study that is not adequately cited.

      (4) Revise the text according to all recommendations raised by the reviewers and listed in the individual reviews below.

      We have revised the text to address all four points. See the answers to referees’ recommendations.

      Reviewer #1 (Public Review):

      Summary:

      This study brings new information about the function of serotonin-gated ion channels 5-HT3AR, by describing the conformational changes undergoing during ligands binding. These results can be potentially extrapolated to other members of the Cys-loop ligand-gated ion channels. By combining fluorescence microscopy with electrophysiological recordings, the authors investigate structural changes inside and outside the orthosteric site elicited by agonists, partial agonists, and antagonists. The results are convincing and correlate well with the observations from cryo-EM structures. The work will be of important significance and broad interest to scientists working on channel biophysics but also drug development targeting ligand-gated ion channels.

      Strengths:

      The authors present an elegant and well-designed study to investigate the conformational changes on 5-HT3AR where they combine electrophysiological and fluorometry recordings. They determined four positions suitable to act as sensors for the conformational changes of the receptor: two inside and two outside the agonist binding site. They make a strong point showing how antagonists produce conformational changes inside the orthosteric site similarly as agonists do but they failed to spread to the lower part of the ECD, in agreement with previous studies and Cryo-EM structures. They also show how some loss-of-function mutant receptors elicit conformational changes (changes in fluorescence) after partial agonist binding but failed to produce measurable ionic currents, pointing to intermediate states that are stabilized in these conditions. The four fluorescence sensors developed in this study may be good tools for further studies on characterizing drugs targeting the 5-HT3R.

      Weaknesses:

      Although the major conclusions of the manuscript seem well justified, some of the comparison with the structural data may be vague. The claim that monitoring these silent conformational changes can offer insights into the allosteric mechanisms contributing to signal transduction is not unique to this study and has been previously demonstrated by using similar techniques with other ion channels.

      The referee emphasizes that “some of the comparison with the structural data may be vague”. To better illustrate the structural reorganizations seen in the cryo-EM structures and that are used for VCF data interpretation, we added a new supplementary figure 3. It shows a superimposition of Apo, setron and 5-HT bond structures, with reorganization of loop C and Cys-loop consistent with VCF data.

      Reviewer #2 (Public Review):

      Summary:

      This study focuses on the 5-HT3 serotonin receptor, a pentameric ligand-gated ion channel important in chemical neurotransmission. There are many cryo-EM structures of this receptor with diverse ligands bound, however assignment of functional states to the structures remains incomplete. The team applies voltage-clamp fluorometry to measure, at once, both changes in ion channel activity, and changes in fluorescence. Four cysteine mutants were selected for fluorophore labeling, two near the neurotransmitter site, one in the ECD vestibule, and one at the ECD-TMD junction. Agonists, partial agonists, and antagonists were all found to yield similar changes in fluorescence, a proxy for conformational change, near the neurotransmitter site. The strength of the agonist correlated to a degree with propagation of this fluorescence change beyond the local site of neurotransmitter binding. Antagonists failed to elicit a change in fluorescence in the vestibular the ECD-TMD junction sites. The VCF results further turned up evidence supporting intermediate (likely pre-active) states.

      Strengths:

      The experiments appear rigorous, the problem the team tackles is timely and important, the writing and the figures are for the most part very clear. We sorely need approaches orthogonal to structural biology to annotate conformational states and observe conformational transitions in real membranes- this approach, and this study, get right to the heart of what is missing.

      Weaknesses:

      The weaknesses in the study itself are overall minor, I only suggest improvements geared toward clarity. What we are still missing is application of an approach like this to annotate the conformation of the part of the receptor buried in the membrane; there is important debate about which structure represents which state, and that is not addressed in the current study.

      Reviewer #3 (Public Review):

      Summary:

      The authors have examined the 5-HT3 receptor using voltage clamp fluorometry, which enables them to detect structural changes at the same time as the state of receptor activation. These are ensemble measurements, but they enable a picture of the action of different agonists and antagonists to be built up.

      Strengths:

      The combination of rigorously tested fluorescence reporters with oocyte electrophysiology is a solid development for this receptor class.

      Weaknesses:

      The interpretation of the data is solid but relevant foundational work is ignored. Although the data represent a new way of examining the 5-HT3 receptor, nothing that is found is original in the context of the superfamily. Quantitative information is discussed but not presented.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Here are some suggestions that may help to improve the manuscript: - Page 6, point 2), typo: "L131W is positioned more profound in each ECD, its side chain (...)"

      “profound” have been corrected into “profoundly”

      • Fig 1C: Why not compare 5-HT responses for the four sensors studied? If the reason is the low currents elicited by 5-HT on I160C/Y207W sensor, could you comment on this effect that is not observed for the other full agonist tested (mCPBG)?

      The point of this figure (Fig 1G) is to show currents that desensitize to follow the evolution of the fluorescence signal during desensitization, that’s why for the I160C/Y207W sensor where 5-HT become a partial agonist we have judge more appropriate to use mCPBG acting as a more potent agonist to elicit currents with clear desensitization component. We have added a sentence in the legend of the figure to explain this choice more clearly.

      • Page 9, paragraph 2: "However, concentration-response curves on V106C/L131W show a small yet visible decorrelation of fluorescence and current (...)" Statistical analysis on EC50c and EC50f will help to see this decorrelation.

      Statistical analysis (unpaired t test) has been added to figure 3 panel A.

      • Page 10, paragraph 1: the authors describe how "different antagonists promote different degrees of local conformational changes". Does it have any relation to the efficacy or potency of these antagonists? Is there any interpretation for this result?

      Since setrons are competitive antagonists, the concept of efficacy of these molecules is unclear. Concerning potency, no correlation between affinity and fluorescence variation is observed. For instance, ondansetron and alosetron bind with similar nanomolar affinity to the 5-HT3R (Thompson & Lummis Curr Pharm Des. 2006;12(28):3615-30) but elicit different fluorescence variations on both S204C and I160C/Y207W sensors.

      • Fig. 1 panel A, graph to far right: axis label is cut ("current (uA)/..."). Colors of graph A - right are not clearly distinguishable e.g. cyan from green.

      The fluorescent green color that describes the mutant has been changed into limon color which is more clearly distinguishable from cyan.

      • Why is R219C/F142W not selected in the study? Are the signals comparable to the chosen R219C/F142W?

      We have chosen not to select R219C/F142W because the current elicited by this construct was lower than the current elicited by the construct R219C/Y140W. Moreover, the residue F142 belongs to the FPF motif from Cys-loop that is essential for gating (Polovinkin et al, 2018, Nature).

      • Fig. 1 legend typo: "mutated in tryptophan”

      “in” has been changed by “into”

      • Fig. 2: yellow color (graphs in panel B) is very hard to read.

      Yellow color has been darkened to yellow/brown to allow easy reading.

      • Fig. 4 is too descriptive and undermines the information of the study. It could be improved e.g. by representing specific structures or partial structures involved. As an additional minor comment, some colors in the figure are hard to differentiate, e.g. magenta and purple.

      We have added relevant specific structures involved, namely loop C, the Cys-loop and pre-M1 loop to clarify. The intensity of magenta and purple has been increased to help differentiate the two sensor positions.

      • Fig S1C: it is confusing to see the same color pattern for the single mutants without the W. I would recommend to label each trace to make it clearer.

      Labelling of the traces corresponding to the single mutants has been added.

      • Fig S2: Indicating the statistical significance in the graph for the mutants with different desensitization properties compared to the WT receptor will help its interpretation.

      The statistical significance of the difference in the desensitization properties has been added to Figure S2.

      Reviewer #2 (Recommendations For The Authors):

      Overall comments for the authors:

      Selection of cysteine mutants and engineered Trp sites is clear and logical. VCF approach with controls for comparing the functionality of WT vs. mutants, and labeled with unlabeled receptor, is well explained and satisfying. The finding that desensitization involves little change in ECD conformation makes sense. It is somewhat surprising, at least superficially, to find that competitive antagonists promote changes in fluorescence in the same 'direction' and amplitude as strong agonists, however, this is indeed consistent with the structural biology, and with findings from other groups testing different labeling sites. Importantly, the team finds that antagonist-binding changes in deltaF do not spread beyond the region near the neurotransmitter site. The finding that most labeling sites in the ECD, in particular those not in/near the neurotransmitter site, fail to report measurable fluorescence changes, is noteworthy. It contrasts with findings in GlyR, as noted by the authors, and supports a mechanism where most of each subunit's ECD behaves as a rigid body.

      Specific questions/comments:

      I am confused about the sensor current kinetics. Results section 2) states that all sensors share the same current desensitization kinetics, while Results section 5) states that the ECD-TMD site and the vestibule site sensors exhibit faster desensitization. SF1C, right-most panel of R219C suggests the mutation and/or labeling here dramatically changes apparent activation and deactivation rates measured by TEVC. Both activation and deactivation upon washout appear faster in this one example. Data for desensitization are not shown here but are shown in aggregate in earlier panels. It is a bit surprising that activation and deactivation would both change but no effect on desensitization. Indeed, it looks like, in Fig. 1G, that desensitization rate is not consistent across all constructs. Can you please confirm/clarify?

      TEVC and VCF recordings in this study show a significant variability concerning both the apparent desensitization and desactivation kinetics. This is illustrated concerning desensitization in TEVC experiments in figure S2, where the remaining currents after 45 secondes of 5-HT perfusion and the rate constants of desensitization are measured on different oocytes from different batches. Therefore, the differences in desensitization kinetics shown in fig 1.G are not significant, the aim of the figure being solely to illustrate that no variation of fluorescence is observed during the desensitization phase. A sentence in the legend of fig 1.G has been added to precise this point. We also revised the first paragraph of result section 5, clearly stating that the slight tendency of faster desensitization of V106C/L131W and R219C/Y140W sensors is not significant.

      An alternative to the conclusion-like title of Results section 2) is that the ECD (and its labels) does not undergo notable conformational changes between activated and desensitized states.

      This is a good point and we have added a sentence at the end of results section 2 to present this idea.

      I find the discussion paragraph on partial agonist mechanisms, starting with "However," to be particularly important but at times hard to follow. Please try to revise for clarity. I am particularly excited to understand how we can understand/improve assignments of cryo-EM structures using the VCF (or other) approaches. As examples of where I struggled, near the top of p. 11, related to the partial agonist discussion, there is an assumption about the pore being either activated, or resting. Is it not also possible that partial agonists could stabilize a desensitized state of the pore? Strictly speaking, the labeling sites and current measurements do not distinguish between pre-active resting and desensitized channel conformations/states. However, the cryo-EM structures can likely help fill in the missing information there- with all the normal caveats. Please try to explicitly distinguish between a closed pore and a resting or desensitized state of the pore, to help in clarity.

      We have revised the section, and hope it is clearer now. We notably state more explicitly the argument for annotation of partial agonist bound closed structures as pre-active, mainly from kinetic consideration of VCF experiments. We also mention and cite a paper by the Chakrapani group published the 4th of January 2024 (Felt et al, Nature Communication), where they present the structures of the m5HT3AR bound to partial agonists, with a set of conformations fully consistent with our VCF data.

      This statement likely needs references: "...indirect experiments of substituted cysteine accessibility method (SCAM) and VCF experiments suggested that desensitization involves weak reorganizations of the upper part of the channel that holds the activation gate, arguing for the former hypothesis."

      Reference Polovinkin et al, Nature, 2018, has been added.

      I respectfully suggest toning down this language a little bit: "VCF allowed to characterize at an unprecedented resolution the mechanisms of action of allosteric effectors and allosteric mutations, to identify new intermediate conformations and to propose a structure-based functional annotation of known high-resolution structures." This VCF stands strongly without unclear claims about unprecedented resolution. What impresses me most are the findings distinguishing how agonists/partial agonists/antagonists share a conserved action in one area and not in another, the observations consistent with intermediate states, and the efforts to integrate these simultaneous current and conformation measurements with the intimidating array of EM structures.

      We thank the referee for his positive comments. We have removed “unprecedented resolution” and revised the sentences.

      It is beyond the scope of the current study, but I am curious what the authors think the hurdles will be to tracking conformation of the pore domain- an area where non-cryo-EM based conformational measurements are sorely needed to help annotate the EM structures.

      We fully agree with the referee that structures of the TMD are very divergent between the various conditions depending on the membrane surrogate. We are at the moment working on this region by VCF, incorporating the fluorescent unnatural amino acid ANAP.

      Minor:

      (1) P. 5, m5-HT3R: Please clarify that this refers to the mouse receptor, if that is correct.

      OK, “mouse” has been added.

      (2) Fig. 1D, I suggest moving the 180-degree arrow to the right so it is below but between the two exterior and vestibular views.

      Ok, it has been done.

      (3) Please add a standard 2D chemical structure of MTS-TAMRA, and TAMRA attached to a cysteine, to Fig 1.

      A standard chemical structure has been added for the two isomers of MTS-TAMRA.

      (4) Please label subpanels in Fig. 1G with the identity of the label site.

      The subpanels have been labelled.

      Reviewer #3 (Recommendations For The Authors):

      This is solid work but I mainly have suggestions about placing it in context.

      (1) Abstract "Data show that strong agonists promote a concerted motion of all sensors during activation, "

      The concept of sensors here is the fluorescent labels? I did not find this meaningful until I read the significance statement.

      We have specified “fluorescently-labelled” before sensors in the abstract.

      (2) p4 "each subunit in the 5-HT3A pentamer...." this description would be identical for any pentameric LGIC so the authors should beware of a misleading specificity. This goes for other phrases in this paragraph. However, the summary of the 5HT specific results is very good.

      About the description of the structure, we added “The 5-HT3AR displays a typical pLGIC structure, where….”.

      (3) This paper is very nicely put together and generally explains itself well. The work is rigorous and comprehensive. But the meaning of quenching (by local Trp) seems straightforward, but it is not made explicit in the paper. Why doesn't simple labelling (single Cys) at this site work? And can we have a more direct demonstration of the advantage of including the Trp (not in the supplementary figure?) All this information is condensed into the first part of figure 1 (the graph in Figure 1A). Figure 1 could be split and the principle of the introduced quenching could be more clearly shown

      detailed in a few more sentences the principle of the TrIQ approach. In addition, to be more explicit, the significative differences of fluorescence comparing sensors with and without tryptophan have been added in Figure 1, panel screening and a sentence have been added in the legend of this figure.

      (4) p10 "VCF measurements are also remarkably coherent with the atomic structures showing an open pore (so called F, State 2 and 5-HT asymmetric states), "

      This statement is intriguing. What do these names or concepts represent? Are they all the same thing? Where do the names come from? What is meant here? Three different concepts, all consistent? Or three names for the same concept?

      We have tried to clarify the statement by making reference to the PDB of the structures.

      (5) "Fluorescence and VCF studies identified similar intermediate conformations for nAChRs, ⍺1-GlyRs and the bacterial homolog GLIC(21,32-35). "

      Whilst this is true, the motivation for such ideas came from earlier work identifying intermediates from electrophysiology alone (such as the flip state (Burzomato et al 2004), the priming state (Mukhatsimova 2009) and the conformational wave in ACh channels grosman et al 2000). It would be appropriate to mention some of this earlier work.

      We have incorporated and described these references in the discussion. Of note, we fully quoted these references in our previous papers on the subject (Menny 2017, Lefebvre 2021, Shi 2023), but the referee is right in asking to quote them again.

      (6) "A key finding of the study is the identification of pre-active intermediates that are favored upon binding of partial agonists and/or in the presence of loss-of-function mutations. "

      Even more fundamental, the idea of a two-state equilibrium for neurotransmitter receptors was discarded in 1957 according to the action of partial agonists.

      DEL CASTILLO J, KATZ B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci

      So to discover this "intermediate" - that is, bound but minimal activity - in the present context seems a bit much. It is a big positive of this paper that the results are congruent with our expectations, but I cannot see value in posing the results as an extension of the 2-state equilibrium (for which there are anyway other objections).

      As for intermediates being favoured by loss of function mutations, this concept is already well established in glycine receptors (Plested et al 2007, Lape et al 2012) and doubtless in other cases too.

      I do get the point that the authors want to establish a basis in 5-HT3 receptors, but these previous works suggest the results are somewhat expected. This should be commented on.

      We also agree. We replace “key finding” by “key observation”, quote most of the references proposed, and explicitly conclude that “The present work thus extends this idea to the 5HT3AR, together with providing structural blueprints for cryo-EM structure annotation”.

      (7) "In addition, VCF data allow a quantitative estimate of the complex allosteric action of partial agonists, that do not exclusively stabilize the active state and document the detailed phenotypes of various allosteric mutations."

      Where is this provided? If the authors are not motivated to do this, I have some doubts that others will step in. If it is not worth doing, it's probably not worth mentioning either.

      Language has been toned down by “In addition, VCF data give insights in the action of partial agonists, that do not exclusively stabilize the active state and document the phenotypes of various allosteric mutations."

      (8) Figure 1G please mark which construct is which.

      This has been added into Figure 1G

    1. Author Response

      Provisional response

      We would like to thank the reviewers for taking the time to review our manuscript, for providing useful suggestions for improvement, and for highlighting the significance of our approach.

      Reviewer #1 (Public Review):

      Summary:

      The authors demonstrate that it is possible to carry out eQTL experiments for the model eukaryote S. cerevisiae, in "one pot" preparations, by using single-cell sequencing technologies to simultaneously genotype and measure expression. This is a very appealing approach for investigators studying genetic variation in single-celled and other microbial systems, and will likely inspire similar approaches in non-microbial systems where comparable cell mixtures of genetically heterogeneous individuals could be achieved.

      Strengths:

      While eQTL experiments have been done for nearly two decades (the corresponding author's lab are pioneers in this field), this single-cell approach creates the possibility for new insights about cell biology that would be extremely challenging to infer using bulk sequencing approaches. The major motivating application shown here is to discover cell occupancy QTL, i.e. loci where genetic variation contributes to differences in the relative occupancy of different cell cycle stages. The authors dissect and validate one such cell cycle occupancy QTL, involving the gene GPA1, a G-protein subunit that plays a role in regulating the mating response MAPK pathway. They show that variation at GPA1 is associated with proportional differences in the fraction of cells in the G1 stage of the cell cycle. Furthermore, they show that this bias is associated with differences in mating efficiency.

      We thank the reviewer for recognizing the strengths of our overall approach and our dissection of the functional consequences of the W82R variant of GPA1.

      Weaknesses:

      While the experimental validation of the role of GPA1 variation is well done, the novel cell cycle occupancy QTL aspect of the study is somewhat underexploited. The cell occupancy QTLs that are mentioned all involve loci that the authors have identified in prior studies that involved the same yeast crosses used here. It would be interesting to know what new insights, besides the "usual suspects", the analysis reveals. For example, in Cross B there is another large effect cell occupancy QTL on Chr XI that affects the G1/S stage. What candidate genes and alleles are at this locus?

      We thank the reviewer for this suggestion. We plan to expand the section on cell cycle occupancy QTL in our revision.

      And since cell cycle stages are not biologically independent (a delay in G1, could have a knock-on effect on the frequency of cells with that genotype in G1/S), it would seem important to consider the set of QTLs in concert.

      We thank the reviewer for this suggested clarification. In our revision, we will clarify that the cell cycle occupancy phenotype represents the proportion of cells assigned to a given stage. As the reviewer correctly notes, a change in the proportion of cells in one stage may alter the proportion of cells in other stages, and this could result in cell cycle occupancy QTL for multiple stages. We will make efforts to consider the cell cycle occupancy QTLs in concert in the revised manuscript.

      Reviewer #2 (Public Review):

      Boocock and colleagues present an approach whereby eQTL analysis can be carried out by scRNA-Seq alone, in a one-pot-shot experiment, due to genotypes being able to be inferred from SNPs identified in RNA-Seq reads. This approach obviates the need to isolate individual spores, genotype them separately by low-coverage sequencing, and then perform RNA-Seq on each spore separately. This is a substantial advance and opens up the possibility to straightforwardly identify eQTLs over many conditions in a cost-efficient manner. Overall, I found the paper to be well-written and well-motivated, and have no issues with either the methodological/analytical approach (though eQTL analysis is not my expertise), or with the manuscript's conclusions.

      We thank the reviewer for recognizing the significant contributions our work makes to the field.

      393 segregant experiment:

      For the experiment with the 393 previously genotyped segregants, did the authors examine whether averaging the expression by genotype for single cells gave expression profiles similar to the bulk RNA-Seq data generated from those genotypes? Also, is it possible (and maybe not, due to the asynchronous nature of the cell culture) to use the expression data to aid in genotyping for those cells whose genotypes are ambiguous? I presume it might be if one has a sufficient number of cells for each genotype, though, for the subsequent one-pot experiments, this is a moot point.

      We thank the reviewer for this comment. While we could expand the analysis along these lines, this is not relevant for the subsequent one-pot eQTL experiments, as the reviewer notes, and is therefore beyond the scope of the manuscript. We will make the data available so that anyone interested can try these analyses.

      Figure 1B:

      Is UMAP necessary to observe an ellipse/circle - I wouldn't be surprised if a simple PCA would have sufficed, and given the current discussion about whether UMAP is ever appropriate for interpreting scRNA-Seq (or ancestry) data, it seems the PCA would be a preferable approach. I would expect that the periodic elements are contained in 2 of the first 3 principal components. Also, it would be nice if there were a supplementary figure similar to Figure 4 of Macosko et al (PMID 26000488) to indeed show the cell cycle dependent expression.

      We thank the reviewer for this comment. We too have been following the debate on the utility of UMAP for scRNA-seq, and in our revision we will provide an alternative visualization of the cell cycle. We will also generate a supplementary figure similar to Figure 4 of Macosko et al. to visualize cell-cycle-dependent gene expression.

      Aging, growth rate, and bet-hedging:

      The mention of bet-hedging reminded me of Levy et al (PMID 22589700), where they saw that Tsl1 expression changed as cells aged and that this impacted a cell's ability to survive heat stress. This bet-hedging strategy meant that the older, slower-growing cells were more likely to survive, so I wondered a couple of things. It is possible from single-cell data to identify either an aging, or a growth rate signature? A number of papers from David Botstein's group culminated in a paper that showed that they could use a gene expression signature to predict instantaneous growth rate (PMID 19119411) and I wondered if a) this is possible from single-cell data, and b) whether in the slower growing cells, they see markers of aging, whether these two signatures might impact the ability to detect eQTLs, and if they are detected, whether they could in some way be accounted for to improve detection.

      We thank the reviewer for this comment and suggested analyses. We are not sure whether one can see gene expression signatures of aging in yeast scRNA-seq data. We believe that such analyses are beyond the scope of this work, but we will make the data available so that anyone interested can try them.

      AIL vs. F2 segregants:

      I'm curious if the authors have given thought to the trade-offs of developing advanced intercross lines for scRNA-Seq eQTL analysis. My impression is that AIL provides better mapping resolution, but at the expense of having to generate the lines. It might be useful to see some discussion on that.

      We thank the reviewer for their comment. We will include some discussion of the trade-offs of different experimental designs in our revision.

      10x vs SPLit-Seq

      10x is a well established, but fairly expensive approach for scRNA-Seq - I wondered how the cost of the 10x approach compares to the previously used approach of genotyping segregants and performing bulk RNA-Seq, and how those costs would change if one used SPLiT-Seq (see PMID 38282330).

      We will provide some ballpark estimates of the costs, and we will discuss the trade-offs of different scRNA-seq technologies in our revision

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are very grateful to both Reviewers, the Reviewing Editor and the Senior Editor for carefully reviewing our manuscript and for providing useful comments and suggestions that further improved the quality of our work. We appreciate that our work is perceived to substantially advance the understanding of osteoblast migration and that the experiments are found to be rigorous and to provide conclusive evidence. We also look forward to reaching a broad audience in the field. Below we provide a point-by-point response to each suggestion made by the reviewers and explain how we included their recommendations in the revised manuscript.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      The authors were trying to achieve that Tgif1 expression is regulated by EAK1/2 and PTH in a timedependent manner, and its roles in suppressing Pak3 for facilitating osteoblast adhesion. The authors further tried to show that the Tgif1- Pak3 signaling plays a significant role in osteoblast migration to the site of bone repair and bone remodeling.

      Strengths:

      • In a previous study, it was demonstrated that Tgif1 is a target gene of PTH, and the absence of Tgif1 failed to increase bone mass by PTH treatment (Saito et al., Nat Commun., 2019). In this study, the authors found that Tgif1-Pak3 signaling prompts osteoblast migration through osteoblast adhesion to prompt bone regeneration. This novel finding provides a better understanding of how Tgif1 expression in osteoblasts regulates adherence, spreading, and migration during bone healing and bone remodeling.

      • The authors demonstrated that ERK1/2 and PTH regulate Tgif1 expression in a time-dependent manner and its role in suppressing Pak3 through various experimental approaches such as luciferase assay, ChIP assay, and gene silencing. These results contribute to the overall strength of the article.

      We thank the reviewer for acknowledging the novelty of our findings as well as the strength of the manuscript.

      Weaknesses:

      • The authors need to further justify why they focused on Pak3 in the introduction by mentioning its known function for cell adhesion.

      We thank the reviewer for this suggestion. We mention in the introduction that we further investigated Pak3 due to its implication in cell adhesion (page 6, lines 7-8).

      • Some results indicated statistically significant but small changes. The authors need to explain in the discussion part why they believe this is the major mechanism or why there may be some other possible mechanisms.

      We agree with this comment. We are confident that our work identified an important mechanism by which Tgif1 regulates cellular features of osteoblasts. However, it is certainly possible that other mechanisms may exist as well. We discuss this point in the revised manuscript (page 18, lines 16-17).

      • The study does not include enough in vivo data to claim that this mechanism is crucial for bone healing and bone remodeling in vivo.

      Re: We agree with this point and have modified the abstract accordingly by replacing “crucial” with “implicated in” as well as the text by changing “crucial” to “important” (page 2, line 9). Furthermore, we discuss this limitation in the revised manuscript (page 18, lines 9-14).

      Reviewer #2 (Public Review):

      Summary:

      Bolamperti S. et al. 2023 investigate whether the expression of TG-interacting factor (Tgif1) is essential for osteoblastic cellular activity regarding morphology, adherence, migration/recruitment, and repair. Towards this end, germ-line Tgif1 deletion (Tgif1-/-) mice or male mice lacking expression of Tgif1 in mature osteoblastic and osteocytic cells (Dmp1-Cre+; Tgif1fl/fl) and corresponding controls were studied in physiological, bone anabolic, and bone fracture-repair conditions. Both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl exhibited decreased osteoblasts on cancellous bone surfaces and adherent to collagen I-coated plates. Tgif1-/- mice exhibit impaired healing in the tibial midshaft fracture model, as indicated by decreased bone volume (BV/Cal.V), osteoid (OS/BS), and low osteoblasts (number and surface). Likewise, both Tgif1-/- and Dmp1-Cre+; Tgif1fl/fl show impaired PTH 1-34, (100µg/kg, 5x/wk for 3 wks) osteoblast activation in vivo, as detected by increases in quiescent bone surfaces. Mechanistic in vitro studies then utilized primary osteoblasts isolated from Tgif1-/- mice and siRNA Tgif1 knockdown OCY454 cells to further investigate and identify the downstream Tgif1 target driving these osteoblastic impairments. In vitro, Tgif1-/- osteoblastic and Tgif1 knockdown OCY454 cells exhibit decreased migration, abnormal morphology, and decreased focal adhesions/cells. Unexpectantly though, localization assays revealed Tgif1 to primarily concentrate in the nucleus and not to co-localize with focal adhesions (paxillin, talin). Also, the expression of major focal adhesion components (paxillin, talin, FAK, Src, etc.) or the Cdc42 family was not altered by loss of Tgif1 expression. In contrast, PAK3 expression is markedly upregulated by loss of Tgif1. In silico analysis followed by mechanistic molecular assays involving ChIP, siRNA (Tgif1, PAK3), and transfection (rat PAK3 promoter) techniques show that Tgif1 physically binds to a specific site in the PAK3 promoter region. Further, the knockdown of PAK3 rescues the Tgif1-deficient abnormal morphology in OCY454 cells. This is the first study to identify the novel transcriptional repression of PAK3 by Tgif1 as well as the specific Tgif1 binding site within the PAK3 promoter.

      Strengths:

      This work has a plethora of strengths. The co-authors achieved their aim of eliciting the role of Tgif1 expression in osteoblastic cellular functions (morphology, spreading/attachment, migration).

      Further, this work is the first to depict the novel mechanism of Tgif1 transcriptional repression of PAK3 by a thorough usage of mechanistic molecular assays (in silico analysis, ChIP, siRNA, transfection etc.). The conclusions are well supported and justified by these findings, as the appropriate controls, sample sizes (statistical power), statistics, and assays were fully utilized. The claims and conclusions are justified by the data.

      Re: We are grateful to this reviewer for recognizing the novelty, strengths, and rigor of our study and for acknowledging that the data convincingly support the conclusions drawn.

      Weaknesses:

      The discussion section could be expanded with a few sentences regarding limitations to the current study and potential future directions.

      Re: In the revised manuscript, we are discussing limitations of the work and describe possible future directions (page 18, line 9-14).

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The cell spreading and migration assay is quite artificial. Trypsinized osteoblasts and quiescent osteoblasts are totally different. The authors need to cite papers from other groups to justify whether the cell spreading and migration assay is appropriate to achieve the goals of this study.

      Re: The reviewer is right that in vitro assays are often artificial and do not necessarily fully reflect in vivo situations. We have taken this aspect into account and discuss it in the revised manuscript (page 18, lines 9-10). In addition, we have included references from other groups who have used similar assays to study cell spreading and migration (Dejaeger M et al., 2017 and Dang et al., 2018).

      (2) Page 13 Line 15: The statement "Osteoblasts are greatly impaired in the ability to migrate into the repair zone" is an overstatement. The experiments in Figure 5 do not necessarily reflect osteoblast migration activities. The authors need to rephrase the sentence or need to show observation of earlier time points (e.g., 1 week after fracture) in their bone healing experiments. The number of osteoblasts/surface in Tgif1+/+ and Tgif1-/- mice at different time points during bone healing should be a good indicator for the migration of osteoblasts to the repair site.

      Re: We understand the critique that a time course or lineage tracing experiments would provide better evidence for the statement of osteoblast migration into the repair zone. To avoid overinterpretations we have removed the sentence from the revised manuscript.

      (3) Page 14, Line 24: Regarding the sentence "The observation that Tgif1 is crucial for osteoblast adherence, spreading, and migration", the authors need to clearly mention this statement is based on the in vitro experiments. The animal studies are not enough to claim that the mechanism is crucial for adherence, spreading, and migration.

      Re: We thank the reviewer for pointing out this limitation. We have clarified that the finding that Tgif1 is crucial for osteoblast adherence, spreading and migration was made in vitro (page 14, line 22).

      (4) The authors need to demonstrate the suppression of Pak3 expression in PTH-treated mice in vivo, in addition to the in vitro culture system (Fig. 7C and 7D).

      Re: We agree with the reviewer that this experiment would be very insightful. However, this is beyond the scope of the current work. Nevertheless, to take this valid point into consideration, we mention it in the discussion as potential future direction (page 18, lines 11-14).

      (5) The authors need to demonstrate that the pharmacologic suppression of Pak3 in Tgif1-/- mice reduces the % of quiescent surface/BS in vivo.

      Re: This point is also well taken, and we agree that a suppression of Pak3 in Tgif1-deficient mice would be very informative to support our in vitro findings. However, this may also be part of future investigations. This is emphasized in the discussion of the revised manuscript (page 18, lines 11-14).

      Figures (Minor)

      Fig. 1:

      Fig. 1A

      Arrows need to indicate a more precise position.

      Re: The position of the arrows has been optimized.

      Fig. 1DE

      What are blue/red bars (genotypes)?

      Re: The colors indicate the genotypes. A legend has been added to the revised figure.

      Fig. 1K

      Quantification data is needed.

      Re: Thank you for this suggestion. We added a quantification of the data (Fig. 1L, M; page 8, lines 3-4; page 21, lines 5-6)

      Fig. 2A

      Show the representative high-magnification image of round (non-spread) cells.

      Re: Representative high-magnification images (insets) are provided in the revised figure 2A.

      Fig. 5

      Red arrows need to indicate a more precise position.

      Re: The arrows have been repositioned.

      Fig. 6A, C

      Red arrows need to indicate a more precise position.

      Re: The arrows have been repositioned.

      Reviewer #2 (Recommendations For The Authors):

      (1) The microscopy images and analyses are excellent.

      Re: We thank the reviewer for acknowledging the quality of our microscopy studies.

      (2) Since the Tgif1-/- mouse has low osteoclast numbers, is it possible that this is a contributing factor to the delays/impairment in bone healing, given that resorption also has a role in fracture repair? Since the focus of these studies is on osteoblastic cells, this point is a little out of scope. However, would the authors consider exploring this further in the discussion section?

      Re: This point is well taken by the reviewer, and we agree that osteoclasts could certainly play a role in the impaired fracture healing. To acknowledge this aspect, we followed the recommendation and discuss this aspect in the revised manuscript (page 16, lines 22-24).

      Revisions

      Would the authors consider slightly re-wording the title? Tgif1 suppresses PAK3 expression; however, Tgif1-deficiency leads to the unregulated elevation of PAK3 expression.

      Re: Thank you for pointing this out. We agree with the reviewer and adapted the title accordingly.

      Suggestions

      (1) Is it possible that apoptosis and/or anoikis is being induced by Tgif1 deficiency in osteoblastic cells?

      Re: We do not have data towards this direction and although Tgif1-deficient osteoblasts are overall viable and well expanding, we cannot fully exclude this possibility.

      (2) For the fracture study, any differences in overall callus size? Would it be possible to perform micro-CT imaging with some of these samples?

      Re: There is no difference in non-mineralized callus size between Tgif1+/+ and Tgif1-/- mice. However, there is less mineralized bone per callus area in Tgif1-/- mice, confirming an impaired osteoblast phenotype. As suggested by the reviewer, we added representative micro-CT images and the respective information to the revised manuscript (Fig 5F; pages 19-20).

      (3) Fracture repair experiment-is PAK3 expression downregulated with fracture injury; and/or, is PAK3 upregulated by loss of Tgif1 expression?

      Re: Unfortunately, we do not have data to answer this very interesting question and it would need to be addressed in future studies. This is mentioned in the revised discussion (page 18, lines 12-14).

      (4) Fig 7F. within PTH treated cells, is the light blue SCR sphericity statistically different than the light green siTgif1 + siPAK3 ? While the statement of the "lack of both, Tgif1 and PAK3 prevented PTH-induced decrease in cell sphericity" is supported by the lack of differences between dark green vs. light green; is it also possible that this is due to the siPAK3 returning sphericity to control (scr) levels? (i.e. hitting a floor limit of detection).

      Re: We thank the reviewer for this thoughtful question. There is no statistically significant difference between light blue and light green. Silencing PAK3 restores the impaired capacity to spread that occurs in the absence of Tgif1 to the level of scr controls (significant difference between dark and light red vs. dark and light green and no difference between either dark or light blue vs. dark or light green). However, unlike in the (scr) controls, in the absence of both Tgif1 and PAK3, the cells do not respond to PTH (statistically significant difference between dark and light blue, no difference between dark and light green). Based on the data, cells can reach sphericity of less than 0.2 and thus it is unlikely that sphericity is “hitting the floor level of detection” in these groups.

    1. Author Response

      We would like to thank the reviewers for their positive comments and valuable suggestions for improvements to the manuscript. We intend to revisit the discussion to clarify our interpretation of how azithromycin resistance mutations impact the transmission potential of P. falciparum and expand on the differences between mouse and human malaria. Additionally, we intend to adjust the title to better align with the revised interpretation of the main findings. These changes will be reflected in the revised manuscript to be submitted as the eLife Version of Record.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The current study aims to quantify associations between the regular use of proton-pump inhibitors (PPI) - defined as using PPI most days of the week during the last 4 weeks at one cross-section in time - with several respiratory outcomes up to several years later in time. There are 6 respiratory outcomes included: risk of influenza, pneumonia, COVID-19, other respiratory tract infections, as well as COVID-19 severity and mortality).

      Strengths:

      Several sensitivity analyses were performed, including i) estimation of the e-value to assess how strong unmeasured confounders should be to explain observed effects, ii) comparison with another drug with a similar indication to potentially reduce (but not eliminate) confounding by indication.

      Thank you for pointing out the strengths of our article. We also sincerely thank the reviewer for raising several concerns and providing significant suggestions to improve our manuscript. We will revise our manuscript according to our provisional responses.

      Weaknesses:

      (1) The main exposure of interest seems to be only measured at one time-point in time (at study enrollment) while patients are considered many years at risk afterwards without knowing their exposure status at the time of experiencing the outcome. As indicated by the authors, PPI are sometimes used for only short amounts of time. It seems biologically implausible that an infection was caused by using PPI for a few weeks many years ago.

      We agree with the reviewer, and this is one of the limitations of the UK Biobank data. We might identify potential long-term PPI users by defining the users that have certain indications, since they tend to regularly take PPI for a long period rather than only short amounts of time. We will evaluate the effect modification for the subgroup of potential long-term PPI users.

      (2) Previous studies have shown that by focusing on prevalent users of drugs, one often induces several biases such as collider stratification bias, selection bias through depletion of susceptible, etc.

      Due to the limitations of the data from the UK Biobank, including the lack of information on the initiation of medications and close follow-up, we can only use prevalent user design to evaluate the associations between PPI use and respiratory outcomes. We will further discuss it in the limitation section.

      (3) It seems Kaplan Meier curves are not adjusted for confounding through e.g. inverse probability weighting. As such the KM curves are currently not informative (or the authors need to make clearer that curves are actually adjusted for measured confounding).

      We will provide Kaplan Meier curves adjusted for confounding by inverse probability weighting according to the reviewer’s suggestion.

      (4) Throughout the manuscript the authors seem to misuse the term multivariate (using one model with e.g. correlated error terms to assess multiple outcomes at once) when they seem to mean multivariable.

      We will correct the misused terms throughout the manuscript according to the reviewer’s suggestions.

      (5) Given multiple outcomes are assessed there is a clear argument for accounting for multiple testing, which following the logic of the authors used in terms of claiming there is no association when results are not significant may change their conclusions. More high-level, the authors should avoid the pitfall of stating there is evidence of absence if there is only an absence of evidence in a better way (no statistically significant association doesn't mean no relationship exists).

      We will revise our interpretation of the results, especially for those without statistically significant associations based on the reviewer’s advice.

      (6) While the authors claim that the quantitative bias analysis does show results are robust to unmeasured confounding, I would disagree with this. The e-values are around 2 and it is clearly not implausible that there are one or more unmeasured risk factors that together or alone would have such an effect size. Furthermore, if one would use the same (significance) criteria as used by the authors for determining whether an association exists, the required effect size for an unmeasured confounder to render effects 'statistically non-significant' would be even smaller.

      We agree with the reviewer that there might still exist one or more unmeasured risk factors that have effect sizes larger than 2. Therefore, we could not state that the results are robust to unmeasured confounding based on the current analysis, and this would be a limitation of our study. We will add the above information to the discussion section.

      (7) Some patients are excluded due to the absence of follow-up, but it is unclear how that is determined. Is there potentially some selection bias underlying this where those who are less healthy stop participating in the UK biobank?

      We will provide the details for the determination of absence of follow-up in the UK Biobank and illustrate whether it potentially induced selection bias.

      (8) Given that the exposure is based on self-report how certain can we be that patients e.g. do know that their branded over-the-counter drugs are PPI (e.g. guardium tablets)? Some discussion around this potential issue is lacking.

      In the data collection of the UK Biobank, the participants can enter the generic or trade name of the treatment on the touchscreen to match the medications they used. We will discuss this important issue in the discussion section.

      (9) Details about the deprivation index are needed in the main text as this is a UK-specific variable that will be unfamiliar to most readers.

      We will provide details about the deprivation index in the manuscript.

      (10) It is unclear how variables were coded/incorporated from the main text. More details are required, e.g. was age included as a continuous variable and if so was non-linearity considered and how?

      Age was included as a continuous variable. We will provide information on whether non-linearity was considered in our manuscript.

      (11) The authors state that Schoenfeld residuals were tested, but don't report the test statistics. Could they please provide these, e.g. it would already be informative if they report that all p-values are above a certain value.

      We will provide the test statistics for the Schoenfeld residuals.

      (12) The authors would ideally extend their discussion around unmeasured confounding, e.g. using the DAGs provided in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832226/, in particular (but not limited to) around severity and not just presence/absence of comorbidities.

      We will use the DAGs provided by the article (PMC7832226) to extend our discussion around unmeasured confounding, especially the severity of comorbidities.

      (13) The UK biobank is known to be highly selected for a range of genetic, behavioural, cardiovascular, demographic, and anthropometric traits. The potential problems this might create in terms of collider stratification bias - as highlighted here for example: https://www.nature.com/articles/s41467-020-19478-2 - should be discussed in greater detail and also appreciated more when providing conclusions.

      We agree with the reviewer that the highly selective nature of the UK Biobank might create collider stratification bias for the evaluation of COVID-19-related outcomes. We will further discuss this in detail and be cautious when generating conclusions.  

      Reviewer #2 (Public Review):

      Summary:

      Zeng et al investigate in an observational population-based cohort study whether the use of proton pump inhibitors (PPIs) is associated with an increased risk of several respiratory infections among which are influenza, pneumonia, and COVID-19. They conclude that compared to non-users, people regularly taking PPIs have increased susceptibility to influenza, pneumonia, as well as COVID-19 severity and mortality. By performing several different statistical analyses, they try to reduce bias as much as possible, to end up with robust estimates of the association.

      Strengths:

      The study comprehensively adjusts for a variety of critical covariates and by using different statistical analyses, including propensity-score-matched analyses and quantitative bias analysis, the estimates of the associations can be considered robust.

      We thank the reviewer for demonstrating the strengths of our articles. We will further revise our manuscript according to the reviewer’s suggestions.

      Weaknesses:

      As it is an observational cohort study there still might be bias. Information on the dose or duration of acid suppressant use was not available, but might be of influence on the results. The outcome of interest was obtained from primary care data, suggesting that only infections as diagnosed by a physician are taken into account. Due to the self-limiting nature of the outcome, differences in health-seeking behavior might affect the results.

      We will try to adjust or provide discussions about the above factors, including the dose/duration of PPI use, outcome assessment, and health-seeking behavior.

    1. Author Response

      eLife assessment

      In this study, the authors offer a theoretical explanation for the emergence of nematic bundles in the actin cortex, carrying implications for the assembly of actomyosin stress fibers. As such, the study is a valuable contribution to the field actomyosin organization in the actin cortex. While the theoretical work is solid, experimental evidence in support of the model assumptions remains incomplete. The presentation could be improved to enhance accessibility for readers without a strong background in hydrodynamic and nematic theories.

      To address the weaknesses identified in this assessment, we plan to expand the description of the theoretical model to make it more accessible to a broader spectrum of readers. We will discuss in more detail the relation between the different mathematical terms and physical processes at the molecular scale, as well as the experimental evidence supporting the model assumptions. We will also discuss more explicitly how our results are relevant to different systems exhibiting actomyosin nematic bundles beyond stress fibers.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this article, Mirza et al developed a continuum active gel model of actomyosin cytoskeleton that account for nematic order and density variations in actomyosin. Using this model, they identify the requirements for the formation of dense nematic structures. In particular, they show that self-organization into nematic bundles requires both flow-induced alignment and active tension anisotropy in the system. By varying model parameters that control active tension and nematic alignment, the authors show that their model reproduces a rich variety of actomyosin structures, including tactoids, fibres, asters as well as crystalline networks. Additionally, discrete simulations are employed to calculate the activity parameters in the continuum model, providing a microscopic perspective on the conditions driving the formation of fibrillar patterns.

      Strengths:

      The strength of the work lies in its delineation of the parameter ranges that generate distinct types of nematic organization within actomyosin networks. The authors pinpoint the physical mechanisms behind the formation of fibrillar patterns, which may offer valuable insights into stress fiber assembly. Another strength of the work is connecting activity parameters in the continuum theory with microscopic simulations.

      We thank the referee for these comments.

      Weaknesses:

      This paper is a very difficult read for nonspecialists, especially if you are not well-versed in continuum hydrodynamic theories. Efforts should be made to connect various elements of theory with biological mechanisms, which is mostly lacking in this paper. The comparison with experiments is predominantly qualitative.

      We agree with the referee that the manuscript will benefit from a better description of the theoretical model and the results in relation with specific molecular and cellular mechanisms. We will further emphasize how a number of experimental observations in the literature support our model assumptions and can be explained by our results. A quantitative comparison is difficult for several reasons. First, many of the parameters in our theory have not been measured, and in fact estimates in the literature often rely on comparison with hydrodynamic models such as ours. Second, the effective physical properties of actomyosin gels can vary wildly between cells, which may explain the diversity of forms, dynamics and functions. For these reasons, we chose to delineate regimes leading to qualitatively different emerging architectures and dynamics. In the revised manuscript, we will make this point clearer and will further study the literature to seek quantitative comparison.

      It is unclear if the theory is suited for in vitro or in vivo actomyosin systems. The justification for various model assumptions, especially concerning their applicability to actomyosin networks, requires a more thorough examination.

      We thank the referee for this comment. Our theory is applicable to actomyosin in living cells. To our knowledge, reconstituted actomyosin gels currently lack the ability to sustain the dynamical steady-states involved in the proposed self-organization mechanism, which balance actin flows with turnover. In addition to actomyosin gels in living cells, in vitro systems based on encapsulated cell extracts can also sustain such dynamical steady states [e.g. https://doi.org/10.1038/s41567-018-0413-4], and therefore our theory may be applicable to these systems as well. Of course, with advancements in the field of reconstituted systems, this may change in the near future. We will explicitly discuss this point in the revised manuscript.

      The classification of different structures demands further justification. For example, the rationale behind categorizing structures as sarcomeric remains unclear when nematic order is perpendicular to the axis of the bands. Sarcomeres traditionally exhibit a specific ordering of actin filaments with alternating polarity patterns.

      We agree and will avoid the term “sarcomeric”.

      Similarly, the criteria for distinguishing between contractile and extensile structures need clarification, as one would expect extensile structures to be under tension contrary to the authors' claim.

      We plan to clarify this point by representing in a main figure the stress profiles across dense nematic structures (currently in Supp Fig 2), along with a more detailed description. In short, depending on the parameter regime, the competition between active and viscous stresses in the actin gel determine whether the emergent structures are extensile or contractile. In our system tension is positive in all directions at all times. However, in “contractile” structures, tension is larger along the bundle, whereas in “extensile” structures, tension is larger perpendicular to the bundle. This is consistent with the common expression for active stress of incompressible nematic systems [see e.g. https://doi.org/10.1038/s41467-018-05666-8], that takes the form –zQ, where z is positive for an extensile system, showing that in this case active tension is negative along the nematic direction. This point, also been raised by another referee, will be clarified and connected to existing literature.

      Additionally, its unclear if the model's predictions for fiber dynamics align with observations in cells, as stress fibers exhibit a high degree of dynamism and tend to coalesce with neighboring fibers during their assembly phase.

      In the present work, we focus on the self-organization of a periodic patch of actomyosin gel. However, in adherent cells boundary conditions play an essential role, e.g. with inflow at the cell edge as a result of polymerization and exclusion at the nucleus. In ongoing work, we are studying with the present model the dynamics of assembly and reconfiguration of dense nematic structures in domains with boundary conditions mimicking in adherent cells, as suggested by the referee. We would like to note, however, that the prominent stress fibers in cells adhered to stiff substrates, so abundantly reported in the literature, are not the only instance of dense nematic actin bundles, and may not be representative of physiologically relevant situations. In the present manuscript, we emphasize the relation of the predicted organizations with those found in different in vivo contexts not related to stress fibers, such as the aligned patterns of bundles in insects (trachea, scales in butterfly wings), in hydra, or in reproductive organs of C elegans; the highly dynamical network of bundles observed in C elegans early embryos; or the labyrinth patters of micro-ridges in the apical surface of epidermal cells in fish. We will further emphasize these points in the revised manuscript.

      Finally, it seems that the microscopic model is unable to recapitulate the density patterns predicted by the continuum theory, raising questions about the suitability of the simulation model.

      We thank the referee for raising this question, which needs further clarification. The goal of the microscopic model is not to reproduce the self-organized patterns predicted by the active gel theory. The microscopic model lacks essential ingredients, notably a realistic description of hydrodynamics and turnover. Our goal with the agent-based simulations is to extract the relation between nematic order and active stresses for a small homogeneous sample of the network. This small domain is meant to represent the homogeneous active gel prior to pattern formation, and it allows us to substantiate key assumptions of the continuum model leading to pattern formation, notably the dependence of isotropic and deviatoric components of the active stress on density and nematic order (Eq. 7) and the active generalized stress promoting ordering.

      We should mention that reproducing the range of out-of-equilibrium mesoscale architectures predicted by our active gel model with agent-based simulations seems at present not possible, or at least significantly beyond the state-of-the-art. We note for instance that parameter regimes in which agent-based simulations of actin gels display extended contractile steady-states are non-generic, as these simulations often lead to irreversible clumping (as do many reconstituted contractile systems), see e.g. https://doi.org/10.1038/ncomms10323 or https://doi.org/10.1371/journal.pcbi.1005277. Very few references report sustained actin flows or the organization of a few bundles (https://doi.org/10.1371/journal.pcbi.1009506). While agent-based cytoskeletal simulations are very attractive because they directly connect with molecular mechanisms, active gel continuum models are better suited to describe out-ofequilibrium emergent hydrodynamics at a mesoscale. We believe that these two complementary modeling frameworks are rather disconnected in the literature, and for this reason, we have attempted substantiate our continuum modeling with discrete simulations. In the revised manuscript, we will better frame the relationship between them.

      Reviewer #2 (Public Review):

      Summary:

      The article by Waleed et al discusses the self organization of actin cytoskeleton using the theory of active nematics. Linear stability analysis of the governing equations and computer simulations show that the system is unstable to density fluctuations and self organized structures can emerge. While the context is interesting, I am not sure whether the physics is new. Hence I have reservations about recommending this article.

      We thank the referee for these comments. In the revised manuscript, we will highlight the novelty of the paper in terms of the theoretical model, the mechanism of patterning of dense nematic structures, the nature and dynamics of the resulting architectures, their relation with the experimental record, and the connection with microscopic models.

      We will emphasize the fact that nematic architectures in the actin cytoskeleton are characterized by a co-localization of order and density (and strong variations in each of these fields), that recent work shows that isotropic and nematic organizations coexist and are part of a single heterogeneous network, that the emergence and maintenance of nematic order requires active contraction, and that the assembly and maintenance of dense nematic bundles involves convergent flows. None of these key features can be described by the common incompressible models of active nematics. To address this, we develop here a compressible and density dependent model for an active nematic gel. We will carefully justify that the proposed model is meaningful for actomyosin gels, and we will highlight the commonalities and differences with previous models of active nematics.

      Strengths:

      (i) Analytical calculations complemented with simulations (ii) Theory for cytoskeletal network

      Weaknesses:

      Not placed in the context or literature on active nematics.

      We agree with the referee that the manuscript requires a better contextualization of the work in relation with the very active field of active nematics. In the revised manuscript, we will clearly describe the relation of our model with existing ones.

      Reviewer #3 (Public Review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripelike patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the conclusions drawn from continuum simulations.

      The paper is well written, figures are mostly clear and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not yet stated this way by the authors, I would argue that combining these two is of the key ingredients that distinguishes this theoretical paper from similar ones. The diversity of patterning processes experimentally observed is nicely elaborated on in the introduction of the paper, though other closely related previous work could also have been included in these references (see below for examples).

      We thank the referee for these comments and for the suggestion to emphasize the interplay of isotropic and anisotropic active tension, which is possible only in a compressible gel. We thank the suggestions of the referee to better connect with existing literature.

      To introduce the continuum model, the authors exclusively cite their own, unpublished pre-print, even though the final equations take the same form as previously derived and used by other groups working in the field of active hydrodynamics (a certainly incomplete list: Marenduzzo et al (PRL, 2007), Salbreux et al (PRL, 2009, cited elsewhere in the paper), Jülicher et al (Rep Prog Phys, 2018), Giomi (PRX, 2015),...). To make better contact with the broad active liquid crystal community and to delineate the present work more compellingly from existing results, it would be helpful to include a more comprehensive discussion of the background of the existing theoretical understanding on active nematics. In fact, I found it often agrees nicely with the observations made in the present work, an opportunity to consolidate the results that is sometimes currently missed out on. For example, it is known that self-organised active isotropic fluids form in 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019), just as shown and discussed in Fig. 2. It is also known that extensile nematics, \kappa<0 here, draw in material laterally of the nematic axis and expel it along the nematic axis (the other way around for \kappa>0, see e.g. Doostmohammadi et al, Nat Comm, 2018 "Active Nematics" for a review that makes this point), consistent with all relative nematic director/flow orientations shown in Figs. 2 and 3 of the present work.

      We thank the referee for these suggestions. Indeed, in the original submission we had outsourced much of the justification of the model and the relevant literature to a related pre-print, but this is not reasonable. In the revised manuscript, we will discuss our model in the context of the state-of-the-art, emphasizing connections with existing results.

      The results of numerical simulations are well-presented. Large parts of the discussion of numerical observations - specifically around Fig. 3 - are qualitative and it is not clear why the analysis is restricted to \kappa<0. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (https://arxiv.org/abs/2309.04224). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      We thank the referee for these comments. We will expand the description of the results around Figure 3. We are reluctant to extend the detailed analysis of emergent architectures and dynamics to the case \kappa > 0 as it leads to architectures not observed, to our knowledge, in actin networks. We will expand the characterization of emergent contractile/extensile networks by describing the distribution of the different components of the stress tensor across the bundles and will place our results in the context of related recent work.

      I compliment the authors for trying to gain further mechanistic insights into this conclusion with microscopic filament simulations that are diligently performed. It is rightfully stated that these simulations only provide plausibility tests and, within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 (which is dropped ad-hoc from Fig. 3 onward) microscopically, in which the continuum theory does also predict the formation of stripe patterns - besides the short comment at the very end? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa?

      We thank the referee for this compliment. We think that the point raised by the referee is very interesting. It is reasonable to expect that the sign of \kappa will not be a constant but rather depend on S and \rho. Indeed, for a sparse network with low order, the progressive bundling by crosslinkers acting on nearby filaments is likely to produce a large active stress perpendicular to the nematic direction, whereas in a dense and highly ordered region, myosin motors are more likely to effectively contract along the nematic direction whereas there is little room for additional lateral contraction by additional bundling. In the revised manuscript, we envision to further deepen in this issue in two ways. First, we plan to perform additional agent-based simulations in a regime leading to kappa > 0. Second, we will modify the active gel model such that kappa < 0 for low density/order, so that a fibrillar pattern is assembled, and kappa > 0 for high density/order, so that the emergent fibers are highly contractile.

      Overall, the paper represents a valuable contribution to the field of active matter and, if strengthened further, might provide a fruitful basis to develop new hypothesis about the dynamic self-organisation of dense filamentous bundles in biological systems.

    1. Author Response

      We would like to thank the editorial board and the reviewers for their assessment of our manuscript and their constructive feedback that we believe will make our manuscript stronger and clearer. Please find below our provisional response to the public reviews; these responses outline our plan to address the concerns of the reviewers for a planned resubmission. Our responses are written in red.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Misic et al showed that white matter properties can be used to classify subacute back pain patients that will develop persisting pain.

      Strengths:

      Compared to most previous papers studying associations between white matter properties and chronic pain, the strength of the method is to perform a prediction in unseen data. Another strength of the paper is the use of three different cohorts. This is an interesting paper that provides a valuable contribution to the field.

      We thank the reviewer for emphasizing the strength of our paper and the importance of validation on multiple unseen cohorts.

      Weaknesses:

      The authors imply that their biomarker could outperform traditional questionnaires to predict pain: "While these models are of great value showing that few of these variables (e.g. work factors) might have significant prognostic power on the long-term outcome of back pain and provide easy-to-use brief questionnaires-based tools, (21, 25) parameters often explain no more than 30% of the variance (28-30) and their prognostic accuracy is limited.(31)". I don't think this is correct; questionnaire-based tools can achieve far greater prediction than their model in about half a million individuals from the UK Biobank (Tanguay-Sabourin et al., A prognostic risk score for the development and spread of chronic pain, Nature Medicine 2023).

      We agree with the reviewer that we might have under-estimated the prognostic accuracy of questionnaire-based tools, especially, the strong predictive accuracy shown by Tangay-Sabourin 2023. In the revised version, we will change both the introduction and the discussion to reflect the the questionnaires based prognostic accuracy reported in the seminal work by TangaySabourin. We do note here, however, that the latter paper while very novel is unique in showing the power of questionnaires. In addition, the questionnaires we have tested in our cohort did not show any baseline differences suggestive of prognostic accuracy.

      Moreover, the main weakness of this study is the sample size. It remains small despite having 3 cohorts. This is problematic because results are often overfitted in such a small sample size brain imaging study, especially when all the data are available to the authors at the time of training the model (Poldrack et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews in Neuroscience 2017). Thus, having access to all the data, the authors have a high degree of flexibility in data analysis, as they can retrain their model any number of times until it generalizes across all three cohorts. In this case, the testing set could easily become part of the training making it difficult to assess the real performance, especially for small sample size studies.

      The reviewer raises a very important point of limited sample size and of the methodology intrinsic of model development and testing. We acknowledge the small sample size in the “Limitations” section of the discussion. In the resubmission, we will acknowledge the degree of flexibility that is afforded by having access to all the data at once. However, we will also note that our SLF-FA based model is a simple cut-off approach that does not include any learning or hidden layers and that the data obtained from Open Pain were never part of the “training” set at any point at either the New Haven or the Mannheim site. Regarding our SVC approach we follow standard procedures for machine learning where we never mix the training and testing sets. The models are trained on the training data with parameters selected based on crossvalidation within the training data. Therefore, no models have ever seen the test data set. The model performances we reported reflect the prognostic accuracy of our model. Finally, as discussed by Spisak et al., 1 the key determinant of the required sample size in predictive modeling is the ” true effect size of the brain-phenotype relationship” which we think is the determinant of the replication we observe in this study. As such the effect size in the New Haven and Mannheim data is Cohen’s d >1.

      Even if the performance was properly assessed, their models show AUCs between 0.65-0.70, which is usually considered as poor, and most likely without potential clinical use. Despite this, their conclusion was: "This biomarker is easy to obtain (~10 min 18 of scanning time) and opens the door for translation into clinical practice." One may ask who is really willing to use an MRI signature with a relatively poor performance that can be outperformed by self-report questionnaires?

      The reviewer is correct, the model performance is poor to fair which limits its usefulness for clinical translation. We wanted to emphasize that obtaining diffusion images can be done in a short period of time and, hence, as such models predictive accuracy improves, clinical translation becomes closer to reality. In addition, our findings are based on old diffusion data and limited sample size coming from different sites and different acquisition sequences. This by itself would limit the accuracy especially that evidence shows that sample size affect also model performance (i.e. testing AUC)1. In the revision, we will re-word the sentence mentioned by the reviewer to reflect the points discussed here. This also motivates us to collect a more homogeneous and larger sample.

      Overall, these criticisms are more about the wording sometimes used and the inference they made. I think the strength of the evidence is incomplete to support the main claims of the paper.

      Despite these limitations, I still think this is a very relevant contribution to the field. Showing predictive performance through cross-validation and testing in multiple cohorts is not an easy task and this is a strong effort by the team. I strongly believe this approach is the right one and I believe the authors did a good job.

      We thank the reviewer for acknowledging that our effort and approach were the right ones.

      Minor points:

      Methods:

      I get the voxel-wise analysis, but I don't understand the methods for the structural connectivity analysis between the 88 ROIs. Have the authors run tractography or have they used a predetermined streamlined form of 'population-based connectome'? They report that models of AUC above 0.75 were considered and tested in the Chicago dataset, but we have no information about what the model actually learned (although this can be tricky for decision tree algorithms).

      We apologize for the lack of clarity; we did run tractography and we did not use a predetermined streamlined form of the connectome. We will clarify this point in the methods section.

      Finding which connections are important for the classification of SBPr and SBPp is difficult because of our choices during data preprocessing and SVC model development: (1) preprocessing steps which included TNPCA for dimensionality reduction, and regressing out the confounders (i.e., age, sex, and head motion); (2) the harmonization for effects of sites; and (3) the Support Vector Classifier which is a hard classification model2. Such models cannot tell us the features that are important in classifying the groups. Our model is considered a black-box predictive model like neural networks.

      Minor:

      What results are shown in Figure 7? It looks more descriptive than the actual results.

      The reviewer is correct; Figure 7 and supplementary Figure 4 are both qualitatively illustrating the shape of the SLF.

      Reviewer #2 (Public Review):

      The present study aims to investigate brain white matter predictors of back pain chronicity. To this end, a discovery cohort of 28 patients with subacute back pain (SBP) was studied using white matter diffusion imaging. The cohort was investigated at baseline and one-year follow-up when 16 patients had recovered (SBPr) and 12 had persistent back pain (SBPp). A comparison of baseline scans revealed that SBPr patients had higher fractional anisotropy values in the right superior longitudinal fasciculus SLF) than SBPp patients and that FA values predicted changes in pain severity. Moreover, the FA values of SBPr patients were larger than those of healthy participants, suggesting a role of FA of the SLF in resilience to chronic pain. These findings were replicated in two other independent datasets. The authors conclude that the right SLF might be a robust predictive biomarker of CBP development with the potential for clinical translation.

      Developing predictive biomarkers for pain chronicity is an interesting, timely, and potentially clinically relevant topic. The paradigm and the analysis are sound, the results are convincing, and the interpretation is adequate. A particular strength of the study is the discovery-replication approach with replications of the findings in two independent datasets.

      We thank reviewer 2 for pointing to the strength of our study.

      The following revisions might help to improve the manuscript further.

      Definition of recovery. In the New Haven and Chicago datasets, SBPr and SBPp patients are distinguished by reductions of >30% in pain intensity. In contrast, in the Mannheim dataset, both groups are distinguished by reductions of >20%. This should be harmonized. Moreover, as there is no established definition of recovery (reference 79 does not provide a clear criterion), it would be interesting to know whether the results hold for different definitions of recovery. Control analyses for different thresholds could strengthen the robustness of the findings.

      The reviewer raises an important point regarding the definition of recovery. To address the reviewers concern we will add a supplementary figure showing the results in the Mannheim data set if a 30% reduction is used as a recovery criterion. We would like to emphasize here several points that support the use of different recovery thresholds between New Haven and Mannheim. The New Haven primary pain ratings relied on visual analogue scale (VAS) while the Mannheim data relied on the German version of the West-Haven-Yale Multidimensional Pain Inventory. In addition, the Mannheim data was pre-registered with a definition of recovery at 20% and is part of a larger sub-acute to chronic pain study with prior publications from this cohort using the 20% cut-off3. Finally, a more recent consensus publication4 from IMMPACT indicates that a change of at least 30% is needed for a moderate improvement in pain on the 0-10 Numerical Rating Scale but that this percentage depends on baseline pain levels.

      Analysis of the Chicago dataset. The manuscript includes results on FA values and their association with pain severity for the New Haven and Mannheim datasets but not for the Chicago dataset. It would be straightforward to show figures like Figures 1 - 4 for the Chicago dataset, as well.

      We welcome the reviewer’s suggestion; we will therefore add these analyses to the results section of our manuscript upon resubmission

      Data sharing. The discovery-replication approach of the present study distinguishes the present from previous approaches. This approach enhances the belief in the robustness of the findings. This belief would be further enhanced by making the data openly available. It would be extremely valuable for the community if other researchers could reproduce and replicate the findings without restrictions. It is not clear why the fact that the studies are ongoing prevents the unrestricted sharing of the data used in the present study.

      Reviewer #3 (Public Review):

      Summary:

      Authors suggest a new biomarker of chronic back pain with the option to predict the result of treatment. The authors found a significant difference in a fractional anisotropy measure in superior longitudinal fasciculus for recovered patients with chronic back pain.

      Strengths:

      The results were reproduced in three different groups at different studies/sites.

      Weaknesses:

      The number of participants is still low.

      We have discussed this point in our replies to reviewer number 1.

      An explanation of microstructure changes was not given.

      The reviewer points to an important gap in our discussion. While we cannot do a direct study of actual tissue micro-structure, we will explore further the changes observed in the SLF by calculating diffusivity measures and discuss possible explanations of these changes.

      Some technical drawbacks are presented.

      We are uncertain if the reviewer is suggesting that we have acknowledged certain technical drawbacks and expects further elaboration on our part. We kindly request that the reviewer specify what particular issues they would like us to address so that we can respond appropriately.

      (1) Spisak T, Bingel U, Wager TD. Multivariate BWAS can be replicable with moderate sample sizes. Nature 2023;615:E4-E7.

      (2) Liu Y, Zhang HH, Wu Y. Hard or Soft Classification? Large-margin Unified Machines. J Am Stat Assoc 2011;106:166-177.

      (3) Loffler M, Levine SM, Usai K, et al. Corticostriatal circuits in the transition to chronic back pain: The predictive role of reward learning. Cell Rep Med 2022;3:100677.

      (4) Smith SM, Dworkin RH, Turk DC, et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020;161:2446-2461.

    1. Author Response

      eLife assessment

      The authors used electrophysiology in brain slices and computer modeling and suggest that layer 2/3 pyramidal neurons of the mouse cortex express functional HCN channels, despite little evidence in the past that they are present. The study is useful at the present time, but results are incomplete because the methods, data, and analyses do not always support the conclusions.

      Public Reviews:

      Reviewer #1 (Public Review):

      The manuscript by Oleh et al. uses in vitro electrophysiology and compartmental modeling (via NEURON) to investigate the expression and function of HCN channels in mouse L2/3 pyramidal neurons. The authors conclude that L2/3 neurons have developmentally regulated HCN channels, the activation of which can be observed when subjected to large hyperpolarizations. They further conclude via blockade experiments that HCN channels in L2/3 neurons influence cellular excitability and pathway-specific EPSP kinetics, which can be neuromodulated. While the authors perform a wide range of slice physiology experiments, concrete evidence that L2/3 cells express functionally relevant HCN channels is limited. There are serious experimental design caveats and confounds that make drawing strong conclusions from the data difficult. Furthermore, the significance of the findings is generally unclear, given modest effect sizes and a lack of any functional relevance, either directly via in vivo experiments or indirectly via strong HCN-mediated changes in known operations/computations/functions of L2/3 neurons.

      Specific points:

      (1) The interpretability and impact of this manuscript are limited due to numerous methodological issues in experimental design, data collection, and analysis. The authors have not followed best practices in the field, and as such, much of the data is ambiguous and/or weak and does not support their interpretations (detailed below). Additionally, the authors fail to appropriately explain their rationale for many of their choices, making it difficult to understand why they did what they did. Furthermore, many important references appear to be missing, both in terms of contextualizing the work and in terms of approach/method. For example, the authors do not cite Kalmbach et al 2018, which performed a directly comparable set of experiments on HCN channels in L2/3 neurons of both humans and mice. This is an unacceptable omission. Additionally, the authors fail to cite prior literature regarding the specificity or lack thereof of Cs+ in blocking HCN. In describing a result, the authors state "In line with previous reports, we found that L2/3 PCs exhibited an unremarkable amount of sag at 'typical' current commands" but they then fail to cite the previous reports.

      We thank the reviewer for the thorough examination of our manuscript; however, we strongly disagree with many of the raised concerns for several reasons, as detailed in an initial response below:

      To address the lack of certain citations, we would like to emphasize that in the introduction section, we did focus on a several decades-long line of investigation into the HCN channel content of layer 2/3 pyramidal cells (L2/3 PCs), where there has undoubtedly been some controversy as to their functional contribution. We did not explicitly cite papers that claimed to find no/little HCN channels/sag- although this would be a significant list of pubs from some excellent senior investigators, as we wanted to avoid shining a negative light on otherwise excellent publications. However, we plan to address this more clearly in the upcoming revision.

      Just to take an example: in the publication mentioned by the reviewer (Kalmbach et al 2018), the investigators did not carry out voltage clamp recordings. Furthermore, the reported input resistance values in the aforementioned paper were far above other reports in mice (Routh et al. 2022, Brandalise et al 2022, Hedrick et al 2012; which were similar and our findings here), suggesting that recordings in Kalmbach were carried out at membrane potentials where HCN activation is less available (Routh, Brager and Johnston 2022).

      Another reason for some mixed findings in the field is undoubtedly due to the small/nonexistent sag in L2/3 current clamp recordings in mice. We also found a small sag, and that we have shown to be explained by the following: The ‘sag’ potential is a biphasic voltage response emerging from a relatively fast passive membrane response and a slower Ih activation. In L2/3 PCs, hyperpolarization-activated currents are apparently faster than previously described and are located proximally (our findings here). Therefore, their recruitment in mouse L2/3 PCs is on a similar timescale as the passive membrane response, resulting in a more monophasic response. Again, we plan to include a full set of citations in the updated introduction section, to highlight the importance of HCN channels in L2/3 PCs in mice and other species. The justification for using cesium (i.e., ‘best practices’) is detailed in the next paragraph.

      (2) A critical experimental concern in the manuscript is the reliance on cesium, a nonspecific blocker, to evaluate HCN channel function. Cesium blocks HCN channels but also acts at potassium channels (and possibly other channels as well). The authors do not acknowledge this or attempt to justify their use of Cs+ and do not cite prior work on this subject. They do not show control experiments demonstrating that the application of Cs+ in their preparation only affects Ih. Additionally, the authors write 1 mM cesium in the text but appear to use 2 mM in the figures. In later experiments, the authors switch to ZD7288, a more commonly used and generally accepted more specific blocker of HCN channels. However, they use a very high concentration, which is also known to produce off-target effects (see Chevaleyre and Castillo, 2002). To make robust conclusions, the authors should have used both blockers (at accepted/conservative concentrations) for all (or at least most) experiments. Using one blocker for some experiments and then another for different experiments is fraught with potential confounds.

      To address the concerns regarding the usage of cesium to block HCN channels, we would like to state that neither cesium nor ZD-7288 are without off-target effects, however in our case the potential off-target effects of external cesium were deemed less impactful, especially concerning AP firing output experiments. Extracellular cesium has been widely accepted as a blocker of HCN channels (Lau et al. 2010, Wickenden et al. 2009, Rateau and Ropert 2005, Hemond et al. 2009, Yang et al. 2015, Matt et al. 2010). However, it is known to act on potassium channels as well, which has mostly been demonstrated with intracellular application (Puil et al. 1981, Fleidervish et al. 2008, Williams et al. 1991, 2008). However, we acknowledge off-target effects and we will better cite the appropriate literature in our manuscript in the revision.

      Although we performed internal control experiments during the recordings, these were not included in the manuscript- which we plan to correct in the revision. These are detailed as follows: during our recordings cesium had no significant effect on action potential halfwidth, ruling out substantial blocking of potassium channels, nor did it affect any other aspects of suprathreshold activity. Furthermore, we observed similar effects on passive properties (resting membrane potential, input resistance) following ZD-7288 as with cesium, which we will also update in our figures. We did acknowledge that ZD-7288 is a widely accepted blocker of HCN, and for this reason we carried out some of our experiments using this pharmacological agent instead of cesium. However, these experiments were always supported by complementary findings using external cesium. For example, the effect of ZD-7288 on EPSPs was confirmed by similar synaptic stimulation experiments using cesium. This is important, as synaptic inputs of L2/3 PCs are modulated by both dendritic sodium (Ferrarese et al. 2018) and calcium channels (Landau 2022), therefore the application of ZD-7288 alone may have been difficult to interpret in isolation.

      On the other hand, ZD-7288 suffers from its own side effects, such as a substantial effect on sodium channels (Wu et al. 2012) and calcium channels (Sánchez-Alonso et al. 2008, Felix et al. 2003). As our aim was to provide functional evidence for the importance of HCN channels, we deemed these effects unacceptable in experiments where AP firing output (e.g., in cell-attached experiments) was measured.

      (3) A stronger case could be made that HCN is expressed in the somatic compartment of L2/3 cells if the authors had directly measured HCN-isolated currents with outside-out or nucleated patch recording (with appropriate leak subtraction and pharmacology). Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work. It has been shown to produce erroneous results over and over again in the field due to well-known space clamp problems (see Rall, Spruston, Williams, etc.). The authors could have also included negative controls, such as recordings in neurons that do not express HCN or in HCN-knockout animals. Without these experiments, the authors draw a false equivalency between the effects of cesium and HCN channels, when the outcomes they describe could be driven simply by multiple other cesium-sensitive currents. Distortions are common in these preparations when attempting to study channels (see Williams and Womzy, J Neuro, 2011). In Fig 2h, cesium-sensitive currents look too large and fast to be from HCN currents alone given what the authors have shown in their earlier current clamp data. Furthermore, serious errors in leak subtraction appear to be visible in Supplementary Figure 1c. To claim that these conductances are solely from HCN may be misleading.

      We disagree with the argument that “Whole-cell voltage-clamp in neurons with axons and/or dendrites does not work”. Although this method is not without its confounds (i.e. space clamp), it is still a useful initial measure as demonstrated countless times in the literature. However, the reviewer is correct that the best approach to establish the somatodendritic distribution of ion channels is by direct somatic and dendritic outside-out patches. Due to the small diameter of L2/3 PC dendrites, these experiments haven’t been carried out yet in the literature for any other ion channel either to our knowledge. Mapping this distribution may be outside the scope of the current manuscript, but it was hard for us to ignore the sheer size of the Cs+ sensitive hyperpolarizing currents in whole cell. Thus, we will opt to report this data.

      Also, we should point out that space clamp-related errors manifest in the overestimation of frequency-dependent features, such as activation kinetics, and underestimation of steady-state current amplitudes. The activation time constant of our measured currents are somewhat faster than previously reported- reducing major concerns regarding space clamp errors. Furthermore, we simply do not understand what “too large… to be from HCN currents” means. We would like to ask the reviewer to point out what the “serious errors in leak subtraction” are, as the measured currents are similar in shape and correction artifacts to previously reported HCN currents (Meng et al. 2011, Li 2011, Zhao et al. 2019, Yu et al. 2004, Zhang et al. 2008, Spinelli et al. 2018, Craven et al. 2006, Ying et al. 2012, Biel et al. 2009).

      Furthermore, we would be grateful if the reviewer would mention the other possible ion channels that are activated at hyperpolarized voltages, have the same voltage dependence as HCN currents, do not show inactivation, influence both input resistance and resting membrane potential, and are blocked by low concentration extracellular cesium.

      (4) The authors present current-clamp traces with some sag, a primary indicator of HCN conductance, in Figure 2. However, they do not show example traces with cesium or ZD7288 blockade. Additionally, the normalization of current injected by cellular capacitance and the lack of reporting of input resistance or estimated cellular size makes it difficult to determine how much current is actually needed to observe the sag, which is important for assessing the functional relevance of these channels. The sag ratio in controls also varies significantly without explanation (Figure 6 vs Figure 7). Could this variability be a result of genetically defined subgroups within L2/3? For example, in humans, HCN expression in L2/3 varies from superficial and deep neurons. The authors do not make an effort to investigate this. Regardless of inconsistencies in either current injection or cell type, the sag ratio appears to be rather modest and similar to what has already been reported previously in other papers.

      We thank the reviewer for pointing out that our explanation for the modest sag ratio might have not been sufficient to properly understand why this measurement cannot be applied to layer 2/3 pyramidal cells. We will clarify this section in the results section. Briefly: sag potential emerges from a relatively (compared to Ih) fast passive membrane response and a slower HCN recruitment. The opposing polarity and different timescales of these two mechanisms results in a biphasic response called “sag” potential. However, if the timescale of these two mechanisms is similar, the voltage response is not predicted to be biphasic. We have shown that hyperpolarization activated currents in our preparations are fast and proximal, therefore they are recruited during the passive response (see Figure 2g.). This means that although a substantial amount of HCN currents are activated during hyperpolarization, their activation will not result in substantial sag. Therefore, sag ratio measurement is not necessarily applicable to approximate the HCN content of L2/3 PCs. We would like to emphasize that sag ratio measurements are correct in case of other cell types, and our aim is not to discredit the method, but rather to show that it cannot be applied in case of mouse L2/3 PCs.

      Our own measurements, similar to others in the literature show that L2/3 PCs exhibit modest sag ratios, however, this does not mean that HCN is not relevant. Ih activation in L2/3 PCs does not manifest in large sag potential but rather in a continuous distortion of steady-state responses (Figure 2b.). The reviewer is correct that L2/3 PCs are non-homogenous, therefore we sampled along the entire L2/3 axis. This yielded some variability in our results (i.e., passive properties); yet we did not observe any cells where hyperpolarizing-activated/Cs+-sensitive currents could not be resolved. As structural variability of L2/3 cells does result in variability in cellular capacitance, we compensated for this variability by injecting cellular capacitance-normalized currents. Our measured cellular capacitances were in accordance with previously published values, in the range of 50-120 pF. Therefore, the injected currents were not outside frequently used values. Together, we would like to state that whether substantial sag potential is present or not, initial estimates of the HCN content for each L2/3 PC should be treated with caution.

      (5) In the later experiments with ZD7288, the authors measured EPSP half-width at greater distances from the soma. However, they use minimal stimulation to evoke EPSPs at increasingly far distances from the soma. Without controlling for amplitude, the authors cannot easily distinguish between attenuation and spread from dendritic filtering and additional activation and spread from HCN blockade. At a minimum, the authors should share the variability of EPSP amplitude versus the change in EPSP half-width and/or stimulation amplitudes by distance. In general, this kind of experiment yields much clearer results if a more precise local activation of synapses is used, such as dendritic current injection, glutamate uncaging, sucrose puff, or glutamate iontophoresis. There are recording quality concerns here as well: the cell pictured in Figure 3a does not have visible dendritic spines, and a substantial amount of membrane is visible in the recording pipette. These concerns also apply to the similar developmental experiment in 6f-h, where EPSP amplitude is not controlled, and therefore, attenuation and spread by distance cannot be effectively measured. The outcome, that L2/3 cells have dendritic properties that violate cable theory, seems implausible and is more likely a result of variable amplitude by proximity.

      To resolve this issue, we will make a supplementary figure showing elicited amplitudes, which showed no significant distance dependence and minimal variability. We thank the reviewer for suggesting an amplitude-halfwidth comparison control. To address the issue of the non-visible spines, we would like to note that these images are of lower magnification. The presence of dendritic spines was confirmed in every recorded pyramidal cell observed using 2P microscopy.

      We would like to emphasize that although our recordings “seemingly” violated the cable theory, this is only true if we assume a completely passive condition. As shown in our manuscript, cable theory was not violated, as the presence of NMDA receptor boosting explained the observed ‘non-Rallian’ phenomenon. We plan to clarify this in the fully revised manuscript.

      (6) Minimal stimulation used for experiments in Figures 3d-i and Figures 4g-h does not resolve the half-width measurement's sensitivity to dendritic filtering, nor does cesium blockade preclude only HCN channel involvement. Example traces should be shown for all conditions in 3h; the example traces shown here do not appear to even be from the same cell. These experiments should be paired (with and without cesium/ZD). The same problem appears in Figure 4, where it is not clear that the authors performed controls and drug conditions on the same cells. 4g also lacks a scale bar, so readers cannot determine how much these measurements are affected by filtering and evoked amplitude variability. Finally, if we are to believe that minimal stimulation is used to evoke responses of single axons with 50% fail rates, NMDA receptor activation should be minimal to begin with. If the authors wish to make this claim, they need to do more precise activation of NMDA-mediated EPSPs and examine the effects of ZD7288 on these responses in the same cell. As the data is presented, it is not possible to draw the conclusion that HCN boosts NMDA-mediated responses in L2/3 neurons.

      As stated in the figure legends, the control and drug application traces are from the same cell, both in figure 3 and figure 4, and the scalebar is not included as the amplitudes were normalized for clarity. We have address the effects of dendritic filtering above in answer (5), and cesium blockade above in answer (2). To reiterate, dendritic filtering alone cannot explain our observations, and cesium is often a better choice for blocking HCN channels compared to ZD-7288, which blocks sodium channels as well. When an excitatory synaptic signal arrives onto a pyramidal cell in typical conditions, neurotransmitter sensitive receptors transmit a synaptic current to the dendritic spine. This dendritic spine is electrically isolated by the high resistance of the spine neck and due to the small membrane surface of the spine, the synaptic current elicits remarkably large voltage changes. These voltage changes can be large enough to depolarize the spine close to zero millivolts upon even single small inputs (Jayant et al. 2016). Therefore, to state that single inputs arriving to dendritic spines cannot be large enough to recruit NMDA receptor activation is incorrect. This is further exemplified by the substantial literature showing ‘miniature’ NMDA recruitment via stochastic vesicle release alone.

      (7) The quality of recordings included in the dataset has concerning variability: for example, resting membrane potentials vary by >15-20 mV and the AP threshold varies by 20 mV in controls. This is indicative of either a very wide range of genetically distinct cell types that the authors are ignoring or the inclusion of cells that are either unhealthy or have bad seals.

      Although we are aware of the diversity of L2/3 PCs, resolving further layer depth differences is outside the scope of our current manuscript. However, as shown in Kalmbech et al, resting membrane potential can greatly vary (>15-20 mV) in L2/3 PCs depending on distance from pia. We acknowledge that the variance in AP threshold is large and could be due to genetically distinct cell types. Therefore, we plan to present AP peak/width information in the revision, which showed a significantly smaller variability, therefore validating our recording conditions.

      (8) The authors make no mention of blocking GABAergic signaling, so it must be assumed that it is intact for all experiments. Electrical stimulation can therefore evoke a mixture of excitatory and inhibitory responses, which may well synapse at very different locations, adding to interpretability and variability concerns.

      We thank the reviewer for pointing out our lack of detail regarding the GABAergic signaling blocker SR 95531. We did include this drug in our recordings of signal summation, so GABAergic responses did not contaminate our recordings. We plan to clarify in the revision.

      (9) The investigation of serotonergic interaction with HCN channels produces modest effect sizes and suffers the same problems as described above.

      We do not agree with the reviewer that 50% drop in neuronal AP firing responses (Figure 7b) was a modest effect size. Thus we plan to keep this data in the manuscript.

      (10) The computational modeling is not well described and is not biologically plausible. Persistent and transient K channels are missing. Values for other parameters are not listed. The model does not seem to follow cable theory, which, as described above, is not only implausible but is also not supported by the experimental findings.

      The model was downloaded from the Cell Type Database from the Allen Institute, with only minor modifications including the addition of dendritic HCN channels and NDMA receptors- which were varied along a wide parameter space to find a ‘best fit’ to our observations. These additions were necessary to recapitulate our experimental findings. We agree the model likely does not fully recapitulate all aspects of the dendrites, which as we hope to convey in this manuscript, are not fully resolved in mouse L2/3 PCs. This is a published neuronal model, and despite its potential shortcomings, is one among a handful of open-source neuronal models of fully reconstructed L2/3 PCs. We are open to improvement suggestions.

      Reviewer #2 (Public Review):

      Summary:

      This paper by Olah et al. uncovers a previously unknown role of HCN channels in shaping synaptic inputs to L2/3 cortical neurons. The authors demonstrate using slice electrophysiology and computational modeling that, unlike layer 5 pyramidal neurons, L2/3 neurons have an enrichment of HCN channels in the proximal dendrites. This location provides a locus of neuromodulation for inputs onto the proximal dendrites from L4 without an influence on distal inputs from L1. The authors use pharmacology to demonstrate the effect of HCN channels on NMDA-mediated synaptic inputs from L4. The authors further demonstrate the developmental time course of HCN function in L2/3 pyramidal neurons. Taken together, this a well-constructed investigation of HCN channel function and the consequences of these channels on synaptic integration in L2/3 pyramidal neurons.

      Strengths:

      The authors use careful, well-constrained experiments using multiple pharmacological agents to asses HCN channel contributions to synaptic integrations. The authors also use a voltage clamp to directly measure the current through HCN channels across developmental ages. The authors also provide supplemental data showing that their observation is consistent across multiple areas of the cerebral cortex.

      Weaknesses:

      The gradient of the HCN channel function is based almost exclusively on changes in EPSP width measured at the soma. While providing strong evidence for the presence of HCN current in L2/3 neurons, there are space clamp issues related to the use of somatic whole-cell voltage clamps that should be considered in the discussion.

      We thank the reviewer for pointing out our careful and well-constrained experiments and for making suggestions. The potential effects of space clamp errors will be detailed in the discussion section (see extended explanations under Reviewer 1).

      Reviewer #3 (Public Review):

      Summary:

      The authors study the function of HCN channels in L2/3 pyramidal neurons, employing somatic whole-cell recordings in acute slices of visual cortex in adult mice and a bevy of technically challenging techniques. Their primary claim is a non-uniform HCN distribution across the dendritic arbor with a greater density closer to the soma (roughly opposite of the gradient found in L5 PT-type neurons). The second major claim is that multiple sources of long-range excitatory input (cortical and thalamic) are differentially affected by the HCN distribution. They further describe an interesting interplay of NMDAR and HCN, serotonergic modulation of HCN, and compare HCN-related properties at 1, 2 and 6 weeks of age. Several results are supported by biophysical simulations.

      Strengths:

      The authors collected data from both male and female mice, at an age (6-10 weeks) that permits comparison with in vivo studies, in sufficient numbers for each condition, and they collected a good number of data points for almost all figure panels. This is all the more positive, considering the demanding nature of multi-electrode recording configurations and pipette-perfusion. The main strength of the study is the question and focus.

      Weaknesses:

      Unfortunately, in its present form, the main claims are not adequately supported by the experimental evidence: primarily because the evidence is indirect and circumstantial, but also because multiple unusual experimental choices (along with poor presentation of results) undermine the reader's confidence. Additionally, the authors overstate the novelty of certain results and fail to cite important related publications. Some of these weaknesses can be addressed by improved analysis and statistics, resolving inconsistent data across figures, reorganizing/improving figure panels, more complete methods, improved citations, and proofreading. In particular, given the emphasis on EPSPs, the primary data (for example EPSPs, overlaid conditions) should be shown much more.

      However, on the experimental side, addressing the reviewer's concerns would require a very substantial additional effort: direct measurement of HCN density at different points in the dendritic arbor and soma; the internal solution chosen here (K-gluconate) is reported to inhibit HCN; bath-applied cesium at the concentrations used blocks multiple potassium channels, i.e. is not selective for HCN (the fact that the more selective blocker ZD7288 was used in a subset of experiments makes the choice of Cs+ as the primary blocker all the more curious); pathway-specific synaptic stimulation, for example via optogenetic activation of specific long-range inputs, to complement / support / verify the layer-specific electrical stimulation.

      We thank the reviewer for their very careful examination of our manuscript and helpful suggestions. We will address the concerns raised in the review and present substantially more raw traces in our figures. Although direct dendritic HCN mapping measurements are likely outside the scope of the current manuscript due to the morphological constraints presented by L2/3 PCs (which explains why no other full dendritic nonlinearity distribution has been described in L2/3 PCs with this method), we will nonetheless supplement our manuscript with additional suggested experiments. For example we plan to include the excellent suggestion of pathway-specific optogenetic stimulation to further validate the disparate effect of HCN channels for distal and proximal inputs. We will also include control measurements using different internal solutions. We agree that ZD-7288 is a widely accepted blocker of HCN channels. However, the off-target effects on sodium channels may have significantly confounded our measurements of AP output using extracellular stimulation. Therefore we chose cesium as the primary blocker for those experiments, but did validate several other Cs+-based results with ZD-7288. These controls will also be represented in a more clear fashion in a new supplementary figure.

    1. Author Response

      We thank all the reviewers for their comments and insight. We plan to address the comments and recommendations in the revised version of the manuscript. Provisional response on key points are given below.

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Chowdhury and co-workers provide interesting data to support the role of G4-structures in promoting chromatin looping and long-range DNA interactions. The authors achieve this by artificially inserting a G4-containing sequence in an isolated region of the genome using CRISPR-Cas9 and comparing it to a control sequence that does not contain G4 structures. Based on the data provided, the authors can conclude that G4-insertion promotes long-range interactions (measured by Hi-C) and affects gene expression (measured by qPCR) as well as chromatin remodelling (measured by ChIP of specific histone markers).

      Whilst the data presented is promising and partially supports the authors' conclusion, this reviewer feels that some key controls are missing to fully support the narrative. Specifically, validation of actual G4-formation in chromatin by ChIP-qPCR (at least) is essential to support the association between G4-formation and looping. Moreover, this study is limited to a genomic location and an individual G4-sequence used, so the findings reported cannot yet be considered to reflect a general mechanism/effect of G4-formation in chromatin looping.

      Strengths:

      This is the first attempt to connect genomics datasets of G4s and HiC with gene expression. The use of Cas9 to artificially insert a G4 is also very elegant.

      Weaknesses:

      Lack of controls, especially to validate G4-formation after insertion with Cas9. The work is limited to a single G4-sequence and a single G4-site, which limits the generalisation of the findings.

      In an earlier study, we reported intracellular G4 formation in the hTERT promoter region in human cells (Sharma et al., Cell Reports, 2021). Exactly the same stretch of DNA was taken for insertion here. This is mentioned in the current manuscript as- “The array of G4-forming sequences used for insertion was previously reported to form stable G4s in human cells.” under the paragraph titled “Insertion of an array of G4s in an isolated locus” in the Results section. As the reviewer points out, we understand that intracellular G4 formation needs to be confirmed upon insertion at the non-native location. These experiments/results will be included in the revised version.

      To directly address the second point we are attempting insertion of the same G4-sequence at another locus. Experiments/results on this, and if the insertion is successful, how the insertion affects chromatin organization and nearby gene expression will be included in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      Roy et al. investigated the role of non-canonical DNA structures called G-quadruplexes (G4s) in long-range chromatin interactions and gene regulation. Introducing a G4 array into chromatin significantly increased the number of long-range interactions, both within the same chromosome (cis) and between different chromosomes (trans). G4s functioned as enhancer elements, recruiting p300 and boosting gene expression even 5 megabases away. The study proposes a mechanism where G4s directly influence 3D chromatin organization, facilitating communication between regulatory elements and genes.

      Strength:

      The findings are valuable for understanding the role of G4-DNA in 3D genome organization and gene transcription.

      Weaknesses:

      The study would benefit from more robust and comprehensive data, which would add depth and clarity.

      (1) Lack of G4 Structure Confirmation: The absence of direct evidence for G4 formation within cells undermines the study's foundation. Relying solely on in vitro data and successful gene insertion is insufficient.

      As pointed out in response to the above comment, direct evidence of G4 formation by the stretch of DNA was published by us earlier (Sharma et al., Cell Reports, 2021). We understand here it is important to check/confirm this at the insertion site. These experiments are being initiated.

      (2) Alternative Explanations: The study does not sufficiently address alternative explanations for the observed results. The inserted sequences may not form G4s or other factors like G4-RNA hybrids may be involved.

      G4 formation at the insertion site will be checked to confirm. It has been reported G4 structures associate with R-loops to strengthen CTCF binding and enhance chromatin looping (Wulfridge et al., 2023). This can discussed further for readers.

      (3) Limited Data Depth and Clarity: ChIP-qPCR offers limited scope and considerable variation in some data makes conclusions difficult.

      Variation with one of the primers in a few ChIP-qPCR experiments (in Figures 2 and 3D) we have noted. The change however was statistically significant, and consistent with the overall trend across experiments (Figures 2, 3 and 4). Enhancer function, in addition to ChIP, was confirmed using other assays like 3C and RNA expression.

      (4) Statistical Significance and Interpretation: The study could be more careful in evaluating the statistical significance and magnitude of the effects to avoid overinterpreting the results.

      As pointed out, the manuscript will be revised to ensure we are not overinterpreting any results.

      Reviewer #3 (Public Review):

      Summary:

      This paper aims to demonstrate the role of G-quadruplex DNA structures in the establishment of chromosome loops. The authors introduced an array of G4s spanning 275 bp, naturally found within a very well-characterized promoter region of the hTERT promoter, in an ectopic region devoid of G-quadruplex and annotated gene. As a negative control, they used a mutant version of the same sequence in which G4 folding is impaired. Due to the complexity of the region, 3 G4s on the same strand and one on the opposite strand, 12 point mutations were made simultaneously (G to T and C to A). Analysis of the 3D genome organization shows that the WT array establishes more contact within the TAD and throughout the genome than the control array. Additionally, a slight enrichment of H3K4me1 and p300, both enhancer markers, was observed locally near the insertion site. The authors tested whether the expression of genes located either nearby or up to 5 Mb away was up-regulated based on this observation. They found that four genes were up-regulated from 1.5 to 3-fold. An increased interaction between the G4 array compared to the mutant was confirmed by the 3C assay. For in-depth analysis of the long-range changes, they also performed Hi-C experiments and showed a genome-wide increase in interactions of the WT array versus the mutated form.

      Strengths:

      The experiments were well-executed and the results indicate a statistical difference between the G4 array inserted cell line and the mutated modified cell line.

      Weaknesses:

      The control non-G4 sequence contains 12 point mutations, making it difficult to draw clear conclusions. These mutations not only alter the formation of G4, but also affect at least three Sp1 binding sites that have been shown to be essential for the function of the hTERT promoter, from which the sequence is derived. The strong intermingling of G4 and Sp1 binding sites makes it impossible to determine whether all the observations made are dependent on G4 or Sp1 binding. As a control, the authors used Locked Nucleic Acid probes to prevent the formation of G4. As for mutations, these probes also interfere with two Sp1 binding sites. Therefore, using this alternative method has the same drawback as point mutations. This major issue should be discussed in the paper. It is also possible that other unidentified transcription factor binding sites are affected in the presented point mutants.

      Since the sequence we used to test the effects of G4 structure formation is highly G-rich, we had to introduce at least 12 mutations to be sure that a stable G4 structure would not form in the mutated control sequence. Sp1 has been reported to bind to G4 structures (Raiber et al., 2012). So, Sp1 binding could also be associated with the G4-dependent enhancer functions observed here. We also appreciate that apart from Sp1, other unidentified transcription factor binding sites might be affected by the mutations we introduced. We will discuss these possibilities in the revised version of the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors establish a recombinant insect cell expression and purification scheme for the antiviral Dicer complex of C. elegans. In addition to Dicer-1, the complex harbors two additional proteins, the RIG-I-like helicase DRH-1, and the dsRNA-binding protein RDE-4. The authors show that the complex prefers blunt-end dsRNA over dsRNAs that contain overhangs. Furthermore, whereas ATP-dependent dsRNA cleavage only exacerbates regular dsRNA cleavage activity, the presence of RDE-4 is essential to ATP-dependent and ATP-independent dsRNA cleavage. Single-particle cryo-EM studies of the ternary C. elegans Dicer complex reveal that the N-terminal domain of DRH-1 interacts with the helicase domain of DCR-1, thereby relieving its autoinhibitory state. Lastly, the authors show that the ternary complex is able to processively cleave long dsRNA, an activity primarily relying on the helicase activity of DRH-1.

      Strengths:

      First thorough biochemical characterization of the antiviral activity of C. elegans Dicer in complex with the RIG-I-like helicase DRH-1 and the dsRNA-binding protein RDE-4. • Discovery that RDE-4 is essential to dsRNA processing, whereas ATP hydrolysis is not.

      Discovery of an autoinhibitory role of DRH-1's N-terminal domain (in analogy to the CARD domains of RIG-I).

      First structural insights into the ternary complex DCR-1:DRH-1:RDE-4 by cryo-EM to medium resolution.

      Trap experiments reveal that the ternary DCR-1 complex cleaves blunt-ended dsRNA processively. Likely, the helicase domain of DRH-1 is responsible for this processive cleavage.

      We thank the reviewer for this accurate and thoughtful summary of the strengths of our study. We note that although ATP hydrolysis is not essential for dsRNA processing, it is essential for promoting an alternative, and dramatically more efficient, cleavage mechanism that is wellsuited for processing viral dsRNA.

      Weaknesses:

      Cryo-EM Structure of the ternary Dicer-1:DRH-1:RED-4 complex to only medium resolution.

      We agree with the reviewer that our structures are only of modest resolution. We continue to work towards a higher resolution structure of this conformationally heterogeneous complex. We do want to emphasize that despite our modest resolution, our structures provide novel insights into how the factors in the antiviral complex interact with each other, and also allow us to compare our findings to other Dicer systems. For example, the dsRNA binding protein RDE-4 binds the Hel2i subdomain, and this is similar to accessory dsRNA binding proteins of other Dicers, including human and Drosophila. Most importantly, for the first time, we uncover the interaction of DRH-1 with C. elegans Dicer; our structures show DRH-1's N-terminal domain interacting with Dicer's helicase domain. This observation spurred our experiments that showed the N-terminal domain of DRH-1, like the analogous domain of RIG-I, enables an autoinhibited conformation. While RIG-I autoinhibition is relieved by dsRNA binding, we do not observe this with C. elegans DRH-1 and speculate that instead it is the interaction with Dicer's helicase domain that relieves autoinhibition.

      High-resolution structure of the C-terminal domain of DRH-1 bound to dsRNA does not reveal the mechanism of how blunt-end dsRNA and overhang-containing one are being discriminated.

      The cryo-EM structure of DCR1:DRH-1:RDE-4 in the presence of ATP only reveals the helicase and CTD domains of DRH-1 bound to dsRNA. No information on dsRNA termini recognition is presented. The paragraph seems detached from the general flow of the manuscript.

      We agree with the reviewer that our paper would be improved with a high-resolution structure of DRH-1 bound to the dsRNA terminus to better understand terminus discrimination. Since we did not obtain a high-resolution structure of DRH-1 bound to the dsRNA terminus, we could not comment on how DRH-1 discriminates termini. However, our structure of DRH-1’s helicase and CTD bound to the middle of the dsRNA does provide important evidence that DRH-1 translocates along dsRNA, which is crucial for our interpretation of DRH-1’s ATPase function in the antiviral complex. Furthermore, our analysis of the DRH-1:dsRNA contacts reveals just how well conserved DRH-1 is with mammalian RLRs.

      The antiviral DCR-1:DRH-1:RDE-4 complex shows largely homologous activities and regulation than Drosophila Dicer-2.

      It is unclear to us why this is a weakness. In our Discussion in the section “Relationship to previously characterized Dicer activities,” we compare and contrast the C. elegans antiviral complex and the most well characterized antiviral Dicer: Drosophila Dcr2. While it might not be surprising that two invertebrate activities that both must target viral dsRNA have similar enzymatic properties, we find this remarkable given that Dcr2 orchestrates cleavage with a single protein, while two helicases and a dsRNA binding protein cooperate in the C. elegans reaction. Our careful biochemical analyses reveal how the three proteins cooperate. In vivo, C. elegans Dicer must function to cleave pre-miRNAs, endogenous siRNAs as well as viral dsRNA, and we speculate that the use of diverse accessory factors allows C. elegans Dicer to carry out these distinct tasks.

      Reviewer #2 (Public Review):

      Summary:

      To investigate the evolutionary relationship between the RNAi pathway and innate immunity, this study uses biochemistry and structural biology to investigate the trimeric complex of Dicer1, DRH-1 (a RIGI homologue), and RDE-4, which exists in C. elegans. The three subunits were co-expressed to promote stable purification of the complex. This complex promoted ATPdependent cleavage of blunt-ended dsRNAs. A detailed kinetic analysis was also carried out to determine the role of each subunit of the trimeric complex in both the specificity and efficiency of cleavage. These studies indicate that RDE-4 is critical for cleavage while DRC-1 is primarily involved in the specificity of the reaction, and DRH-1 promotes ATP hydrolysis. Finally, a moderate density (6-7 angstrom) cryo-EM structure is presented with attempts to position each of the components.

      Strengths:

      (1) Newly described methods for studying the C. elegans DICER complex.

      (2) New structure, albeit only moderate resolution.

      (3) Kinetic study of the complex in the presence and absence of individual subunits and mutations, provides detailed insight into the contribution of each subunit.

      Weaknesses:

      (1) Limited insight due to limited structural resolution.

      (2) No attempts to extend findings to other Dicer or RLR systems.

      Overall, we agree with the assessment of this reviewer, and we thank them for their efforts in evaluating our manuscript. Whenever possible we have discussed the similarities and differences of the C. elegans Dicer to other Dicers and RLR systems. We are unsure how we could have expanded upon this further (as suggested in point 2).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor recommendations to the authors:

      Page 10: To assess the role of ATP hydrolysis for dsRNA binding, please refrain from using the term "fuzzy band" as a qualitative measure of RNA binding to the ternary complexes.

      We searched our entire manuscript and did not find the term “fuzzy band.” We did describe some of the bands in the gel shift assays as “diffuse.” This is an accurate description of the bands we see in our gels and distinguishes them from other more well-defined bands.

      Page 13: "positioned internally" - please explain "internally" better here.

      We agree with the reviewer that “positioned internally” is confusing. In our revised manuscript we have changed this sentence to (Page 13, line 1):

      “Under these conditions, we obtained a 2.9 Å reconstruction of the helicase and CTD domains of DRH-1 bound to the middle region of the dsRNA, rather than its terminus (Figures 4C and S9), suggesting that DRH-1 hydrolyzes ATP to translocate along dsRNA.”

      Page 13: Please re-consider the detailed description of the dsRNA:DRH-1 contacts.

      We feel it is very important to illustrate and describe these contacts, which will be of interest to those who study mammalian RLRs.

      Figure 1C/D: Please write "minus/+ ATP" on top of the gels to make this distinction more clearly visible.

      In our original manuscript the gels are labeled with “minus ATP” (panel C) or “5mM ATP” (panel D) on the left to indicate both gels in panel C and both gels in panel D have the same conditions. This is also stated in the figure legend. We have not made revisions in response to this comment because we think it is already clear.

      Figure 2: Please explain R = RDE-4 in a clearly visible legend.

      We agree with the author that the illustration above the gels was not explained clearly. In our revised manuscript we have added the sentence below to the beginning of Figure legend 2A. “Cartoons indicate complexes and variants, with mutations in DCR-1 (green) and DRH-1 (blue) indicated with the amino acid change, and the presence of RDE-4 (R) represented with a purple circle.”

      Figure 4A: Please label the DRH-1 helicase domain and the C-terminal domain.

      We agree with the reviewer that we could more clearly define our labeled domains. In the revised manuscript we have added a sentence to the legend of Figure 4A: “The domains of DCR-1, DRH-1, and RDE-4 are color coded the same as in Fig 1A. For simplicity, only domains discussed in the text are labeled.”

      Reviewer #2 (Recommendations For The Authors):

      This study is complete in that all necessary controls and data are included and the authors are careful in their interpretation so as to not overstate the data or conclusions. The only suggestion is that further extension of the study to address the weaknesses above would increase the breadth of impact of this work.

      We thank the reviewer for their thoughtful comments. Weaknesses are addressed above in public reviews, and we will add again that we agree that a higher resolution structure would provide additional insight. In ongoing research, we are working towards this goal.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the reviewers for their careful comments. We sincerely agree with the comments from both reviewers, and noticed the word “cell transplantation”, throughout the manuscript including the title, was confusing. We revised the manuscript to clarify the aim of the study, and to express the conclusion more straightforwardly.

      Response to the reviewers:

      We interpret the data of the present study as the color of each RPE cell is a temporal condition which does not necessarily represent the quality (e.g. for cell transplantation) of the cells. We consider this may be applicable not only in vitro but also in vivo, although we do not know whether RPE shows heterogeneous level of pigmentation in vivo.

      As our concern for iPSC-RPE is always about their quality for cell transplantation, maybe we haven’t fairly evaluated the scientific significance obtained from the present study.

      Another thing we noticed was, although we used the term “cell transplantation” to explain what we meant by “quality” of the cells, we agree this was confusing. The aim of the study was not to show how the pigmentation level of transplant-RPE affects the result of cell transplantation, but to show the heterogeneous gene expression of iPSC-derived RPE cells, and the less correlation of the heterogeneity with pigmentation level. We went through the manuscript, including the title, to more straightforwardly lead this conclusion: the degree of pigmentation had some but weak correlation with the expression levels of functional genes, and the reason for the weakness of the correlation may be because the color is a temporal condition (as we interpreted from the data) that is different from more stable characteristics of the cells.

      We agree that “cell transplantation” in the title (and other parts) was misleading. So, we changed the title, and removed the phrase that led as if the aim of the study was to show something about cell transplantation or in vivo results.

      Also, to face scientifically significant results obtained from the present study appropriately, we discussed more about the correlation of the pigmentation level with some functional genes, and brought this as one of the conclusions of the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the two reviewers for their very thoughtful suggestions and the editors for writing the eLife assessment. We will submit a revised manuscript that addresses most comments and include a point-by-point response to the reviewers. We will provide evidence that overexpression of the HtrA1 protease and knockdown of its inhibitor SerpinE2 reduce the development of neural crest-derived cartilage elements in the head of Xenopus embryos. This will be done by whole mount in situ hybridization, using a probe for the chondrogenic marker Sox9. We will also provide two time-lapse movies showing (1) collective migration of cranial neural crest cells in culture and (2) failure of these cells to adhere to fibronectin upon SerpinE2 depletion. We will discuss in more depth how the SerpinE2-HtrA1 proteolytic pathway and its target, the heparan sulfate proteoglycan Syndecan-4, might regulate FGF signaling and suggest a model, in which serpin secreted by the leader cells and the protease released by the follower cells might establish a chemotactic FGF gradient for the directed migration of the neural crest cohort. The criticism that other factors such as proliferation and cell survival might contribute to the observed craniofacial phenotypes upon misexpression of SerpinE2 and HtrA1, and that it remains unclear to what extent the mechanism reported here is conserved in the trunk neural crest is valid. The reason we focused on the more amenable cranial neural crest in the Xenopus embryo and used a multitude of approaches – structure-function studies, biochemical analyses, in vitro explant assays and epistatic experiments in vivo – was to validate a central finding: that an extracellular proteolytic pathway involving a serpin, a protease and a proteoglycan regulates by a double inhibition mechanism collective cell migration.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) Methods, please state the sex of the mice.

      This has now been added to the methods section:

      “Three to nine month old Thy1-GCaMP6S mice (Strain GP4.3, Jax Labs), N=16 stroke (average age: 5.4 months; 13 male, 3 female), and 5 sham (average age: 6 months; 3 male, 2 female), were used in this study.”

      (2) The analysis in Fig 3B-D, 4B-C, and 6A, B highlights the loss of limb function, firing rate, or connections at 1 week but this phenomenon is clearly persisting longer in some datasets (Fig. 3 and 6). Was there not a statistical difference at weeks 2,3,4,8 relative to "Pre-stroke" or were comparisons only made to equivalent time points in the sham group? Personally, I think it is useful to compare to "pre-stroke" which should be more reflective of that sample of animals than comparing to a different set of animals in the Sham group. A 1 sample t-test could be used in Fig 4 and 6 normalized data.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for proper depiction of results, and all normalized datasets have been replaced with nonnormalized datasets. All within group statistics are now indicated within the manuscript.

      (3) Fig 4A shows a very striking change in activity that doesn't seem to be borne out with group comparisons. Since many neurons are quiet or show very little activity, did the authors ever consider subgrouping their analysis based on cells that show high activity levels (top 20 or 30% of cells) vs those that are inactive most of the time? Recent research has shown that the effects of stroke can have a disproportionate impact on these highly active cells versus the minimally active ones.

      A qualitative analysis supports a loss of cells with high activity at the 1-week post-stroke timepoint, and examination of average firing rates at 1-week shows reductions in the animals with the highest average rates. However, we have not tracked responses within individual neurons or quantitatively analyzed the data by subdividing cells into groups based on their prestroke activity levels. We have amended the discussion of the manuscript with the following to highlight the previous data as it relates to our study:

      “Recent research also indicates that stroke causes distinct patterns of disruption to the network topology of excitatory and inhibitory cells [73], and that stroke can disproportionately disrupt the function of high activity compared to low activity neurons in specific neuron sub-types [61]. Mouse models with genetically labelled neuronal sub-types (including different classes of inhibitory interneurons) could be used to track the function of those populations over time in awake animals.”

      (4) Fig 4 shows normalized firing rates when moving and at rest but it would be interesting to know what the true difference in activity was in these 2 states. My assumption is that stroke reduces movement therefore one normalizes the data. The authors could consider putting non-normalized data in a Supp figure, or at least provide a rationale for not showing this, such as stating that movement output was significantly suppressed, hence the need for normalization.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for proper depiction of results, and all normalized datasets have been replaced with nonnormalized datasets.

      (5) One thought for the discussion. The fact that the authors did not find any changes in "distant" cortex may be specific to the region they chose to sample (caudal FL cortex). It is possible that examining different "distant" regions could yield a different outcome. For example, one could argue that there may have been no reason for this area to "change" since it was responsive to FL stimuli before stroke. Further, since it was posterior to the stroke, thalamocortical projects should have been minimally disturbed.

      We would like to thank the reviewer for this comment. We have amended the discussion with the following:

      “Our results suggest a limited spatial distance over which the peri-infarct somatosensory cortex displays significant network functional deficits during movement and rest. Our results are consistent with a spatial gradient of plasticity mediating factors that are generally enhanced with closer proximity to the infarct core [84,88,90,91]. However, our analysis outside peri-infarct cortex is limited to a single distal area caudal to the pre-stroke cFL representation. Although somatosensory maps in the present study were defined by a statistical criterion for delineating highly responsive cortical regions from those with weak responses, the distal area in this study may have been a site of activity that did not meet the statistical criterion for inclusion in the baseline map. The lack of detectable changes in population correlations, functional connectivity, assembly architecture and assembly activations in the distal region may reflect minimal pressure for plastic change as networks in regions below the threshold for regional map inclusion prior to stroke may still be functional in the distal cortex. Thus, threshold-based assessment of remapping may further overestimate the neuroplasticity underlying functional reorganization suggested by anaesthetized preparations with strong stimulation. Future studies could examine distal areas medial and anterior to the cFL somatosensory area, such as the motor and pre-motor cortex, to further define the effect of FL targeted stroke on neuroplasticity within other functionally relevant regions. Moreover, the restriction of these network changes to peri-infarct cortex could also reflect the small penumbra associated with photothrombotic stroke, and future studies could make use of stroke models with larger penumbral regions, such as the middle cerebral artery occlusion model. Larger injuries induce more sustained sensorimotor impairment, and the relationship between neuronal firing, connectivity, and neuronal assemblies could be further probed relative to recovery or sustained impairment in these models.”

      Minor comments:

      Line 129, I don't necessarily think the infarct shows "hyper-fluorescence", it just absorbs less white light (or reflects more light) than blood-rich neighbouring regions.

      Sentence in the manuscript has been changed to:

      “Resulting infarcts lesioned this region, and borders could be defined by a region of decreased light absorption 1 week post-stroke (Fig 1D, Top).”

      Line 130-132: the authors refer to Fig 1D to show cellular changes but these cannot be seen from the images presented. Perhaps a supplementary zoomed-in image would be helpful.

      As changes to the morphology of neurons are not one of the primary objectives of this study, and sampled resolution was not sufficiently high to clearly delineate the processes of neurons necessary for morphological assessment, we have amended the text as follows:

      “Within the peri-infarct imaging region, cellular dysmorphia and swelling was visually apparent in some cells during two photon imaging 1-week after stroke, but recovered over the 2 month poststroke imaging timeframe (data not shown). These gross morphological changes were not visually apparent in the more distal imaging region lateral to the cHL.”

      Lines 541-543, was there a rationale for defining movement as >30mm/s? Based on a statistical estimate of noise?

      Text has been altered as follows:

      “Animal movement within the homecage during each Ca2+ imaging session was tracked to determine animal speed and position. Movement periods were manually annotated on a subset of timeseries by co-recording animal movement using both the Mobile Homecage tracker, as well as a webcam (Logitech C270) with infrared filter removed. Movement tracking data was low pass filtered to remove spurious movement artifacts lasting below 6 recording frames (240ms). Based on annotated times of animal movement from the webcam recordings and Homecage tracking, a threshold of 30mm/s from the tracking data was determined as frames of animal movement, whereas speeds below 30mm/s was taken as periods of rest.”

      Lines 191-195: Note that although the finding of reduced neural activity is in disagreement with a multi-unit recording study, it is consistent with other very recent single-cell Ca++ imaging data after stroke (PMID: 34172735 , 34671051).

      Text has been altered as follows:

      “These results indicate decreased neuronal spiking 1-week after stroke in regions immediately adjacent to the infarct, but not in distal regions, that is strongly related to sensorimotor impairment. This finding runs contrary to a previous report of increased spontaneous multi-unit activity as early as 3-7 days after focal photothrombotic stroke in the peri-infarct cortex [1], but is in agreement with recent single-cell calcium imaging data demonstrating reduced sensoryevoked activity in neurons within the peri-infarct cortex after stroke [60,61].”

      Fig 7. I don't understand what the color code represents. Are these neurons belonging to the same assembly (or membership?).

      That is correct, neurons with identical color code belong to the same assembly. The legend of Fig 7 has been modified as follows to make this more explicit:

      “Fig 7. Color coded neural assembly plots depict altered neural assembly architecture after stroke in the peri-infarct region. (A) Representative cellular Ca2+ fluorescence images with neural assemblies color coded and overlaid for each timepoint. Neurons belonging to the same assembly have been pseudocolored with identical color. A loss in the number of neural assemblies after stroke in the peri-infarct region is visually apparent, along with a concurrent increase in the number of neurons for each remaining assembly. (B) Representative sham animal displays no visible change in the number of assemblies or number of neurons per assembly.”

      Reviewer #2 (Recommendations For The Authors):

      Materials and methods

      Identification of forelimb and hindlimb somatosensory cortex representations [...] Cortical response areas are calculated using a threshold of 95% peak activity within the trial. The threshold is presumably used to discriminate between the sensory-evoked response and collateral activation / less "relevant" response (noise). Since the peak intensity is lower after stroke, the "response" area is larger - lower main signal results in less noise exclusion. Predictably, areas that show a higher response before stroke than after are excluded from the response area before stroke and included after. While it is expected that the remapped areas will exhibit a lower response than the original and considering the absence of neuronal activity, assembly architecture, or functional connectivity in the "remapped" regions, a minimal criterion for remapping should be to exhibit higher activation than before stroke. Please use a different criterion to map the cortical response area after stroke.

      We would like to thank the reviewer for this comment. We agree with the reviewer’s assessment of 95% of peak as an arbitrary criterion of mapped areas. To exclude noise from the analysis of mapped regions, a new statistical criterion of 5X the standard deviation of the baseline period was used to determine the threshold to use to define each response map. These maps were used to determine the peak intensity of the forelimb response. We also measured a separate ROI specifically overlapping the distal region, lateral to the hindlimb map, to determine specific changes to widefield Ca2+ responses within this distal region. We have amended the text as follows and have altered Figure 2 with new data generated from our new criterion for cortical mapping.

      “The trials for each limb were averaged in ImageJ software (NIH). 10 imaging frames (1s) after stimulus onset were averaged and divided by the 10 baseline frames 1s before stimulus onset to generate a response map for each limb. Response maps were thresholded at 5 times the standard deviation of the baseline period deltaFoF to determine limb associated response maps. These were merged and overlaid on an image of surface vasculature to delineate the cFL and cHL somatosensory representations and were also used to determine peak Ca2+ response amplitude from the timeseries recordings. For cFL stimulation trials, an additional ROI was placed over the region lateral to the cHL representation (denoted as “distal region” in Fig 2E) to measure the distal region cFL evoked Ca2+ response amplitude pre- and post-stroke. The dimensions and position of the distal ROI was held consistent relative to surface vasculature for each animal from pre- to post-stroke.”

      Animals

      Mice used have an age that goes from 3 to 9 months. This is a big difference given that literature on healthy aging reports changes in neurovascular coupling starting from 8-9 months old mice. Consider adding age as a covariate in the analysis.

      We do not have sufficient numbers of animals within this study to examine the effect of age on the results observed herein. We have amended the discussion with the following to address this point:

      “A potential limitation of our data is the undefined effect of age and sex on cortical dynamics in this cohort of mice (with ages ranging from 3-9 months) after stroke. Aging can impair neurovascular coupling [102–107] and reduce ischemic tolerance [108–111], and greater investigation of cortical activity changes after stroke in aged animals would more effectively model stroke in humans. Future research could replicate this study with mice in middle-age and aged mice (e.g. 9 months and 18+ months of age), and with sufficient quantities of both sexes, to better examine age and sex effects on measures of cortical function.”

      Statistics

      Please describe the "normalization" that was applied to the firing rate. Since a mixedeffects model was used, why wasn't baseline simply added as a covariate? With this type of data, normalization is useful for visualization purposes.

      On further analysis of our datasets, normalization throughout the manuscript was unnecessary for the visualization of results, and all normalized datasets have been replaced with nonnormalized datasets. All within group comparisons are now indicated throughout the manuscript and in the figures.

      Introduction

      Line 93 awake, freely behaving but head-fixed. That's not freely. Should just say behaving.

      Sentence has been edited as follows:

      “We used awake, behaving but head-fixed mice in a mobile homecage to longitudinally measure cortical activity, then used computational methods to assess functional connectivity and neural assembly architecture at baseline and each week for 2 months following stroke.”

      110 - 112 The last part of this sentence is unjustified because these areas have been incorrectly identified as locations of representational remapping.

      We agree with the reviewer and have amended the manuscript as follows after re-analyzing the dataset on widefield Ca2+ imaging of sensory-evoked responses: “Surprisingly, we also show that significant alterations in neuronal activity (firing rate), functional connectivity, and neural assembly architecture are absent within more distal regions of cortex as little as 750 µm from the stroke border, even in areas identified by regional functional imaging (under anaesthesia) as ‘remapped’ locations of sensory-evoked FL activity 8-weeks post-stroke.”

      Results

      149-152 There is no observed increase in the evoked response area. There is an observed change in the criteria for what is considered a response.

      We agree with the reviewer. Text has been amended as follows:

      “Fig 2A shows representative montages from a stroke animal illustrating the cortical cFL and cHL Ca2+ responses to 1s, 100Hz limb stimulation of the contralateral limbs at the pre-stroke and 8week post-stroke timepoints. The location and magnitude of the cortical responses changes drastically between timepoints, with substantial loss of supra-threshold activity within the prestroke cFL representation located anterior to the cHL map, and an apparent shift of the remapped representation into regions lateral to the cHL representation at 8-weeks post-stroke. A significant decrease in the cFL evoked Ca2+ response amplitude was observed in the stroke group at 8-weeks post-stroke relative to pre-stroke (Fig 2B). This is in agreement with past studies [19–25], and suggests that cFL targeted stroke reduces forelimb evoked activity across the cFL somatosensory cortex in anaesthetized animals even after 2 months of recovery. There was no statistical change in the average size of cFL evoked representation 8-weeks after stroke (Fig 2C), but a significant posterior shift of the supra-threshold cFL map was detected (Fig 2D). Unmasking of previously sub-threshold cFL responsive cortex in areas posterior to the original cFL map at 8-weeks post-stroke could contribute to this apparent remapping. However, the amplitude of the cFL evoked widefield Ca2+ response in this distal region at 8-weeks post-stroke remains reduced relative to pre-stroke activation (Fig 2E). Previous studies suggest strong inhibition of cFL evoked activity during the first weeks after photothrombosis [25]. Without longitudinal measurement in this study to quantify this reduced activation prior to 8-weeks poststroke, we cannot differentiate potential remapping due to unmasking of the cFL representation that enhances the cFL-evoked widefield Ca2+ response from apparent remapping that simply reflects changes in the signal-to-noise ratio used to define the functional representations. There were no group differences between stroke and sham groups in cHL evoked intensity, area, or map position (data not shown).”

      A lot of the nonsignificant results are reported as "statistical trends towards..." While the term "trend" is problematic, it remains common in its use. However, assigning directionality to the trend, as if it is actively approaching a main effect, should be avoided. The results aren't moving towards or away from significance. Consider rewording the way in which these results are reported.

      We have amended the text to remove directionality from our mention of statistical trends.

      R squared and p values for significant results are reported in the "impaired performance on tapered beam..." and "firing rate of neurons in the peri-infarct cortex..." subsections of the results, but not the other sections. Please report the results in a consistent manner.

      R-squared and p-values have been removed from the results section and are now reported in figure captions consistently.

      Discussion

      288 Remapping is defined as "new sensory-evoked spiking". This should be the main criterion for remapping, but it is not operationalized correctly by the threshold method.

      With our new criterion for determining limb maps using a statistical threshold of 5X the standard deviation of baseline fluorescence, we have edited text throughout the manuscript to better emphasize that we may not be measuring new sensory-evoked spiking with the mesoscale mapping that was done. We have edited the discussion as follows:

      “Here, we used longitudinal two photon calcium imaging of awake, head-fixed mice in a mobile homecage to examine how focal photothrombotic stroke to the forelimb sensorimotor cortex alters the activity and connectivity of neurons adjacent and distal to the infarct. Consistent with previous studies using intrinsic optical signal imaging, mesoscale imaging of regional calcium responses (reflecting bulk neuronal spiking in that region) showed that targeted stroke to the cFL somatosensory area disrupts the sensory-evoked forelimb representation in the infarcted region. Consistent with previous studies, this functional representation exhibited a posterior shift 8-weeks after injury, with activation in a region lateral to the cHL representation. Notably, sensory-evoked cFL representations exhibited reduced amplitudes of activity relative to prestroke activation measured in the cFL representation and in the region lateral the cHL representation. Longitudinal two-photon calcium imaging in awake animals was used to probe single neuron and local network changes adjacent the infarct and in a distal region that corresponded to the shifted region of cFL activation. This imaging revealed a decrease in firing rate at 1-week post-stroke in the peri-infarct region that was significantly negatively correlated with the number of errors made with the stroke-affected limbs on the tapered beam task. Periinfarct cortical networks also exhibited a reduction in the number of functional connections per neuron and a sustained disruption in neural assembly structure, including a reduction in the number of assemblies and an increased recruitment of neurons into functional assemblies. Elevated correlation between assemblies within the peri-infarct region peaked 1-week after stroke and was sustained throughout recovery. Surprisingly, distal networks, even in the region associated with the shifted cFL functional map in anaesthetized preparations, were largely undisturbed.”

      “Cortical plasticity after stroke Plasticity within and between cortical regions contributes to partial recovery of function and is proportional to both the extent of damage, as well as the form and quantity of rehabilitative therapy post-stroke [80,81]. A critical period of highest plasticity begins shortly after the onset of stroke, is greatest during the first few weeks, and progressively diminishes over the weeks to months after stroke [19,82–86]. Functional recovery after stroke is thought to depend largely on the adaptive plasticity of surviving neurons that reinforce existing connections and/or replace the function of lost networks [25,52,87–89]. This neuronal plasticity is believed to lead to topographical shifts in somatosensory functional maps to adjacent areas of the cortex. The driver for this process has largely been ascribed to a complex cascade of intra- and extracellular signaling that ultimately leads to plastic re-organization of the microarchitecture and function of surviving peri-infarct tissue [52,80,84,88,90–92]. Likewise, structural and functional remodeling has previously been found to be dependent on the distance from the stroke core, with closer tissue undergoing greater re-organization than more distant tissue (for review, see [52]).”

      “Previous research examining the region at the border between the cFL and cHL somatosensory maps has shown this region to be a primary site for functional remapping after cFL directed photothrombotic stroke, resulting in a region of cFL and cHL map functional overlap [25]. Within this overlapping area, neurons have been shown to lose limb selectivity 1-month post-stroke [25]. This is followed by the acquisition of more selective responses 2-months post-stroke and is associated with reduced regional overlap between cFL and cHL functional maps [25]. Notably, this functional plasticity at the cellular level was assessed using strong vibrotactile stimulation of the limbs in anaesthetized animals. Our findings using longitudinal imaging in awake animals show an initial reduction in firing rate at 1-week post-stroke within the peri-infarct region that was predictive of functional impairment in the tapered beam task. This transient reduction may be associated with reduced or dysfunctional thalamic connectivity [93–95] and reduced transmission of signals from hypo-excitable thalamo-cortical projections [96]. Importantly, the strong negative correlation we observed between firing rate of the neural population within the peri-infarct cortex and the number of errors on the affected side, as well as the rapid recovery of firing rate and tapered beam performance, suggests that neuronal activity within the peri-infarct region contributes to the impairment and recovery. The common timescale of neuronal and functional recovery also coincides with angiogenesis and re-establishment of vascular support for peri-infarct tissue [83,97–100].”

      “Consistent with previous research using mechanical limb stimulation under anaesthesia [25], we show that at the 8-week timepoint after cFL photothrombotic stroke the cFL representation is shifted posterior from its pre-stroke location into the area lateral to the cHL map. Notably, our distal region for awake imaging was directly within this 8-week post-stroke cFL representation. Despite our prediction that this distal area would be a hotspot for plastic changes, there was no detectable alteration to the level of population correlation, functional connectivity, assembly architecture or assembly activations after stroke. Moreover, we found little change in the firing rate in either moving or resting states in this region. Contrary to our results, somatosensoryevoked activity assessed by two photon calcium imaging in anesthetized animals has demonstrated an increase in cFL responsive neurons within a region lateral to the cHL representation 1-2 months after focal cFL stroke [25]. Notably, this previous study measured sensory-evoked single cell activity using strong vibrotactile (1s 100Hz) limb stimulation under aneasthesia [25]. This frequency of limb stimulation has been shown to elicit near maximal neuronal responses within the limb-associated somatosensory cortex under anesthesia [101]. Thus, strong stimulation and anaesthesia may have unmasked non-physiological activity in neurons in the distal region that is not apparent during more naturalistic activation during awake locomotion or rest. Regional mapping defined using strong stimulation in anesthetized animals may therefore overestimate plasticity at the cellular level.”

      “Our results suggest a limited spatial distance over which the peri-infarct somatosensory cortex displays significant network functional deficits during movement and rest. Our results are consistent with a spatial gradient of plasticity mediating factors that are generally enhanced with closer proximity to the infarct core [84,88,90,91]. However, our analysis outside peri-infarct cortex is limited to a single distal area caudal to the pre-stroke cFL representation. Although somatosensory maps in the present study were defined by a statistical criterion for delineating highly responsive cortical regions from those with weak responses, the distal area in this study may have been a site of activity that did not meet the statistical criterion for inclusion in the baseline map. The lack of detectable changes in population correlations, functional connectivity, assembly architecture and assembly activations in the distal region may reflect minimal pressure for plastic change as networks in regions below the threshold for regional map inclusion prior to stroke may still be functional in the distal cortex. Thus, threshold-based assessment of remapping may further overestimate the neuroplasticity underlying functional reorganization suggested by anaesthetized preparations with strong stimulation. Future studies could examine distal areas medial and anterior to the cFL somatosensory area, such as the motor and pre-motor cortex, to further define the effect of FL targeted stroke on neuroplasticity within other functionally relevant regions. Moreover, the restriction of these network changes to peri-infarct cortex could also reflect the small penumbra associated with photothrombotic stroke, and future studies could make use of stroke models with larger penumbral regions, such as the middle cerebral artery occlusion model. Larger injuries induce more sustained sensorimotor impairment, and the relationship between neuronal firing, connectivity, and neuronal assemblies could be further probed relative to recovery or sustained impairment in these models. Recent research also indicates that stroke causes distinct patterns of disruption to the network topology of excitatory and inhibitory cells [73], and that stroke can disproportionately disrupt the function of high activity compared to low activity neurons in specific neuron sub-types [61]. Mouse models with genetically labelled neuronal sub-types (including different classes of inhibitory interneurons) could be used to track the function of those populations over time in awake animals. A potential limitation of our data is the undefined effect of age and sex on cortical dynamics in this cohort of mice (with ages ranging from 3-9 months) after stroke. Aging can impair neurovascular coupling [102–107] and reduce ischemic tolerance [108–111], and greater investigation of cortical activity changes after stroke in aged animals would more effectively model stroke in humans. Future research could replicate this study with mice in middle-age and aged mice (e.g. 9 months and 18+ months of age), and with sufficient quantities of both sexes, to better examine age and sex effects on measures of cortical function.”

      315 - 317 Remodelling is dependent on the distance from the stroke core, with closer tissue undergoing greater reorganization than more distant tissue. There is no evidence that the more distant tissue undergoes any reorganization at all.

      We agree with the reviewer that no remodelling is apparent in our distal area. We have removed reference to our study showing remodeling in the distal area, and have amended the text as follows:

      “Likewise, structural and functional remodeling has previously been found to be dependent on the distance from the stroke core, with closer tissue undergoing greater re-organization than more distant tissue (for review, see [52]).”

      412-414 The authors speculate that a strong stimulation under anaesthesia may unmask connectivity in distal regions. However, the motivation for this paper is that anaesthesia is a confounding factor. It appears to me that, given the results of this study, the authors should argue that the functional connectivity observed under anaesthesia may be spurious.

      The incorrect word was used here. We have corrected the paragraph of the discussion and amended it as follows:

      “Consistent with previous research using mechanical limb stimulation under anaesthesia [25], we show that at the 8-week timepoint after cFL photothrombotic stroke the cFL representation is shifted posterior from its pre-stroke location into the area lateral to the cHL map. Notably, our distal region for awake imaging was directly within this 8-week post-stroke cFL representation. Despite our prediction that this distal area would be a hotspot for plastic changes, there was no detectable alteration to the level of population correlation, functional connectivity, assembly architecture or assembly activations after stroke. Moreover, we found little change in the firing rate in either moving or resting states in this region. Contrary to our results, somatosensoryevoked activity assessed by two photon calcium imaging in anesthetized animals has demonstrated an increase in cFL responsive neurons within a region lateral to the cHL representation 1-2 months after focal cFL stroke [25]. Notably, this previous study measured sensory-evoked single cell activity using strong vibrotactile (1s 100Hz) limb stimulation under aneasthesia [25]. This frequency of limb stimulation has been shown to elicit near maximal neuronal responses within the limb-associated somatosensory cortex under anesthesia [101]. Thus, strong stimulation and anaesthesia may have unmasked non-physiological activity in neurons in the distal region that is not apparent during more naturalistic activation during awake locomotion or rest. Regional mapping defined using strong stimulation in anesthetized animals may therefore overestimate plasticity at the cellular level.”

      Figures

      Figure 1 and 2: Scale bar missing.

      Scale bars added to both figures.

      Figure 2: The representative image shows a drastic reduction of the forelimb response area, contrary to the general description of the findings. It would also be beneficial to see a graph with lines connecting the pre-stroke and 8-week datapoints.

      The data for Figure 2 has been re-analyzed using a new criterion of 5X the standard deviation of the baseline period for determining the threshold for limb mapping. Figure 2 and relevant manuscript and figure legend text has been amended. In agreement with the reviewers observation, there is no increase in forelimb response area, but instead a non-significant decrease in the average forelimb area.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We greatly thank you and the reviewers for your expert comments and valuable suggestions on our manuscript. After reading these comments, we realized that the previous version of the manuscript contained some weak points. Surely, the issues raised by the six reviewers were of great help in the revision of our manuscript.

      According to the comments, we have now fully revised the manuscript to address most of the questions and suggestions. In addition, we reworded some parts of the Introduction, Results and Discussion, Figures, Figure legends and Experimental Methods to increase the rigor of our conclusions.

      Overall, you will see that we have paid serious attention to all the concerns and criticisms expressed by reviewers. Addressing these various issues has most certainly allowed us to prepare a much-improved manuscript and for this we offer our hearty thanks.

      Reviewer #1 (Public Review):

      Summary:

      The organization of cell surface receptors in membrane nanodomains is important for signaling, but how this is regulated is poorly understood. In this study, the authors employ TIRFM single-molecule tracking combined with multiple analyses to show that ligand exposure increases the diffusion of the immune receptor FLS2 in the plasma membrane and its co-localization with remorin REM1.3 in a manner dependent on the phosphosite S938. They additionally show that ligand increases the dwell time of FLS2, and this is linked to FLS2 endocytosis, also in a manner dependent on S938 phosphorylation. The study uncovers a regulatory mechanism of FLS2 localization in the nanodomain crucial for signaling.

      Strengths:

      TIRFM single-molecule tracking, FRAP, FRET, and endocytosis experiments were nicely done. The role of S938 phosphorylation is convincing.

      Weaknesses:

      Question 1: The model suggests that S938 is phosphorylated upon flg22 treatment. This is actually not known.

      Reply: Thank you for your expert comments. Although the phosphorylation of Ser-938 upon flg22 treatment is not known, the model presented in the manuscript is based on previous studies that have shown the importance of Ser-938 phosphorylation for the function of FLS2 (Cao et al, 2013). When it is mutated to the phosphorylation-mimicking residues aspartate or glutamate, immune responses remain normal. These findings suggest that the phosphorylation of Ser-938 plays a critical role in activating defense mechanisms upon flagellin detection (Cao et al, 2013). Now we added the results of Cao et al. (2013) to the introduction to strengthen in the revised manuscript.

      Question 2: In addition, the S938D mutant does not show constitutively increased diffusion and co-localization with remorin. It is necessary to soften the tone in the conclusion.

      Reply: We appreciate the valuable suggestions from the reviewer. Based on our findings, we observed that the phosphorylation of Ser-938 significantly impacts the dynamics of flg22-induced FLS2. However, it does not alter the diffusion coefficient of FLS2 itself. In the revised manuscript, we have carefully adjusted the conclusion by softening the tone to reflect these findings.

      Question 3: The introduction (only two paragraphs) and discussion are not properly written in the context of the current understanding of plant receptors in nanodomains. The authors basically just cited a few publications of their own, and this is not acceptable.

      Reply: We accepted the criticisms here. Now, we have reworded the introduction and discussion sections to improve clarity. Furthermore, we have incorporated several new reports on plant receptors in nanodomains into the revised manuscript. Besides, we deleted some publications from our own group, while citing the latest references on plant receptors and nanodomains.

      Reviewer #2 (Public Review):

      Summary:

      The research conducted by Yaning Cui and colleagues delves into understanding FLS2-mediated immunity. This is achieved by comparing the spatiotemporal dynamics of an FLS2-S938A mutant and FLS2-WT, especially in relation to their association with the remorin protein. To delineate the differences between the FLS2-S938A mutant and FLS2-WT, they utilized a plethora of advanced fluorescent imaging techniques. By analyzing surface dynamics and interactions involving the receptor signal co-receptor BAK1 and remorin proteins, the authors propose a model of how FLS2 and BAK1 are assembled and positioned within a remorin-specific nano-environment during FLS2 ligand-induced immune responses.

      Strengths:

      These techniques offer direct visualizations of molecular dynamics and interactions, helping us understand their spatial relationships and interactions during innate immune responses. Advanced cell biology imaging techniques are crucial for obtaining high-resolution insights into the intracellular dynamics of biomolecules. The demonstrated imaging systems are excellent examples to be used in studying plant immunity by integrating other functional assays. Weaknesses:

      It's essential to acknowledge that every fluorescence-based method, just like biochemical assays, comes with its unique limitations. These often pertain to spatial and temporal resolutions, as well as the sensitivity of the cameras employed in each setup. Meticulous interpretation is pivotal to guarantee an accurate depiction and to steer clear of potential misunderstandings when employing specific imaging systems to analyze molecular attributes. Moreover, a discerning interpretation and accurate image analysis can offer invaluable guidance for future studies on plant signaling molecules using these nice cell imaging techniques. For instance, although single-particle analysis couldn't conclusively link FLS2 and remorin, FLIM-FRET effectively highlighted their ligand-triggered association and the disengagement brought on by mutations. While these methodologies seemed to present differing outcomes, they were described in the manuscript as harmonious. In reality, these differences could highlight distinct protein populations active in immune responses, each accentuated differently by the respective imaging techniques due to their individual spatial and temporal limitations. Addressing these variations is imperative, especially when designing future imaging explorations of immune complexes.

      Reply: Thank you for your insightful comments and suggestions. We appreciate your expertise in fluorescence-based methods and the importance of careful interpretation and accurate image analysis. We agree with you that different imaging techniques may have their limitations and can highlight distinct aspects of protein dynamics and interactions.

      In our study, we used single-particle analysis and FLIM-FRET to investigate the spatiotemporal dynamics of FLS2 and its association with remorin. While single-particle analysis did not conclusively link FLS2 and remorin, FLIM-FRET effectively highlighted their ligand-triggered association and the disengagement caused by mutations. We acknowledge that these techniques may have different spatial and temporal resolutions, leading to the discrepancy in their results. However, after the normalized treatment, we can provide very similar conclusions. Accordingly, we have revised the manuscript.

      Reviewer #3 (Public Review):

      Summary:

      Receptor kinases (RKs) perceive extracellular signals to regulate many processes in plants. FLS2 is an RK that acts as a pattern-recognition receptor (PRR) to recognize bacterial flagellin and activate pattern-triggered immunity (PTI). PRRs such as FLS2 have been previously shown to reside within PM nanodomains, which can regulate downstream PTI signaling. In the current manuscript, Cui et al use single particle tracking to characterize the effect of previously-described phosposite mutants (FLS2-S938A/D) on the PM organization, endocytosis, and signaling functions of FLS2. The authors confirm that FLS2-S938D but not -S938A is functional for flg22-induced responses, while also demonstrating that phopshodead mutation at this site (S938A) prevents flg22-induced sorting into nanodomains and endocytosis. These results are consistent with S938 being an important phosphorylation site for FLS2 function, however, they fall short of demonstrating that membrane disorganization of FLS2-938A is responsible for downstream signaling defects.

      Strengths:

      The authors' experiments (single particle tracking, co-localization, etc) do a good job of demonstrating how a non-functional version of FLS2 (S938A) does not alter its spatio-temporal dynamics, nanodomain organization, and endocytosis in response to flg22, suggesting that these require a functional receptor and are regulated by intracellular signaling components.

      Weaknesses:

      Question 1: The authors do not provide direct evidence that S938 phosphorylation specifically affects membrane organization, rather than FLS2 signaling more generally. All evidence is consistent with S938A being a non-functional version of FLS2, wherein an activated/functional receptor is required for all downstream events including membrane re-organization, downstream signalling, internalization, etc. Furthermore, the authors never demonstrate that this site is phosphorylated in planta in the basal or flg22-elicited state.

      Reply: Sorry that we did not describe clearly in the original manuscript. In fact, we found in our study that the phosphorylation of the Ser-938 site influences the efficient sorting of FLS2 into AtRem1.3-associated microdomains rather than membrane organization, as depicted in Figure 2. Furthermore, we found that the immune responses are disrupted when Ser-938 is mutated to alanine, which is consistent with previously reported results (Cao et al, 2013). However, they remain normal when mutated to the phosphorylation-mimicking residues aspartate or glutamate. These results suggest that the phosphorylation of Ser-938 is crucial for activating defense mechanisms upon flagellin detection. Although the phosphorylation of Ser-938 in plant at the basal or flg22-elicited state is not known, the model presented in the manuscript is based on the results of our current investigation together with those in the previous study that have shown the importance of Ser-938 phosphorylation for FLS2 function (Cao et al, 2013).

      Question 2: As written, the manuscript also has numerous scientific issues, including a misleading/incomplete description of plant immune signaling, lack of context from previous work, and extensive use of inappropriate references.

      Reply: We accept the criticism here. After reading the comments, we realized the problem. Now we have revised the misleading or incomplete description of plant immune signaling, added the context of previous works and deleted inappropriate references in the revised manuscript.

      Reviewer #1 (Recommendations For The Authors):

      Question 1: The description of the data has no details. How many biological repeats were done? How were statistical analyses done? What is the concentration of flg22? How was the calcium flux done (Fig. 4A)? The method also lacks details and relevant references.

      Reply: We apologize for the lack of detail in presenting the data. Following your suggestion, we added comprehensive figure legends that provide clear explanations for each figure. Additionally, we included supplementary information on the measurement methods and references pertaining to calcium flux in the revised manuscript.

      Question 2: Data in Fig. 4 basically repeated the 2013 PLoS Pathog paper. Why were these experiments even performed? Were GFP-tagged FLS2 lines used in these experiments? If this is the case, the data just verified that the GFP-tagged FLS2 functions as expected and should be moved to supporting data.

      Reply: Thanks for the expert suggestions. In our study, we utilized GFP-tagged FLS2 lines to generate FLS2-S938 mutants and conducted experiments to investigate the flg22-induced immune response. Although some experiments in Figure 4 are similar to those reported (Cao et al, 2013), we provided a more detailed analysis of the immune response. The comprehensive analysis included early immune responses and late immune responses, e.g., the activation of a calcium burst, mitogen-activated protein kinases (MAPKs), the induction of immune-responsive genes and callose deposition, ultimately resulting in the inhibition of plant growth. As some results are analogous to the previous paper, we transfer some of the experiments as suggested, including the analysis of MAPKs and callose deposition, to the supporting data section of the revised manuscript.

      Question 3: Flg22-induced FLS2-BAK1 association does not require S938, this is consistent with prior study that flg22 acts as a molecular glue for the ectodomains of FLS2 and BAK1 (Sun et al., 2013 Science). This needs to be cited.

      Reply: Yes, we agree with the comment. Now we added an additional sentence in the revised manuscript: “ This aligns with the previous finding that flg22 acts as a molecular glue for FLS2 and BAK1 ectodomains (Sun et al., 2013).”

      Question 4: Line 50, the references cited do not match what they say here.

      Reply: We are sorry for the mistake in citing inappropriate references. In the revised manuscript, we deleted this sentence as well as the incorrect reference.

      Question 5: Line 105, "flg22 can act as a ligand-like factor". It is a ligand!

      Reply: Sorry for the mistake. Now, the sentence was corrected in the revised manuscript by deleting the word “like”.

      Question 6: Line 107, FLS2/BAK1 heterodimerization, not heteroologomerization.

      Reply: Now we used “heterodimerization” to replace “heteroologomerization” in the revised manuscript.

      Question 7: Line 114, are these really the best references to cite here?

      Reply: After reading the comment, we found the references were not suitable here. Now we changed references by citing “(Martinière et al., 2021)” in the revised manuscript.

      Question 8: Lines 123-124, the sentence is incomplete.

      Reply: In the revised manuscript, we reworded the sentence to make it complete now. We changed “In a previous investigation, we demonstrated that flg22 induces FLS2 translocation from AtFlot1-negative to AtFlot1-positive nanodomains in the plasma membrane, implying a connection between FLS2 phosphorylation and membrane nanodomain distribution (Cui et al., 2018). To validate this, we assessed the association of FLS2/FLS2S938D/FLS2S938A with membrane microdomains, using AtRem1.3-associated microdomains as representatives (Huang et al., 2019).” in the revised manuscript.

      Question 9: Lines 169-170, Why is this "most important"?

      Reply: Sorry for the unsuitable description. As we have dramatically changed the manuscript, this sentence was deleted from the new version.

      Reviewer #2 (Recommendations For The Authors):

      Here are some specific areas of ambiguity in the study to be improved.

      Question 1: Clarity in statistical analysis is necessary. Many figure legends omit details such as the sample size "n", and the nature of the measurements, like ROIs, images, and dots, the size of the seedlings, etc.

      Reply: We appreciated this suggestion, which was raised by the reviewer I as well. Now, we provided the details for each figure, including the sample size, the nature of the measurements in the revised manuscript.

      Question 2: Additional background about the choice of FLS2-S938 mutant would be beneficial, given that this mutant doesn't affect the BAK1 interaction but nullifies several PTI responses.

      Reply: Yes, we agreed that some additional background is required for the FLS2-S938 mutant. Therefore, we added a sentence here: “FLS2 Ser-938 mutations impact flg22-induced signaling, while BAK1 binding remains unaffected, thereby suggesting Ser-938 regulates other aspects of FLS2 activity (Cao et al., 2013).” in the revised manuscript.

      Question 3: A specific segment "... Using CLSM, Fluorescence Correlation Spectroscopy (FCS) and Western blotting, we found that the endocytic vesicles of FLS2S938D increased significantly after flg22 treatment (Figure 3B-3E)..." is not easy to follow. The author may want to differentiate these methods and highlight them by indicting them as endocytic vesicle counting, receptor density on PM measurement by FCS, and WB-based protein degradation characterization to understand such mixed descriptions better. By the way, "Number of Endocytosis" should be "number of endocytic vesicles". Endocytosis is a process and uncountable.

      Reply: We thank the reviewer for kindly reminding us to differentiate experimental methods. Therefore, we changed the sentences in the revised manuscript: “Employing confocal laser-scanning microscopy (CLSM) during 10μM flg22 treatment, we tracked FLS2 endocytosis and quantified vesicle numbers over time (Figure 3B). It is evident that both FLS2 and FLS2S938D vesicles appeared 15 min after-flg22 treatment, significantly increasing thereafter (Figure 3C). Notably, only a few vesicles were detected in FLS2S938A-GFP, indicating Ser-938 phosphorylation's impact on flg22-induced FLS2 endocytosis. Additionally, fluorescence correlation spectroscopy (FCS) (Chen et al., 2009) monitored molecular density changes at the PM before and after flg22 treatment (Figure S3F). Figure 3D shows that both FLS2-GFP and FLS2S938D-GFP densities significantly decreased after flg22 treatment, while FLS2S938A-GFP exhibited minimal changes, indicating Ser-938 phosphorylation affects FLS2 internalization. Western blotting confirmed that Ser-938 phosphorylation influences FLS2 degradation after flg22 treatment (Figure 3E), consistent with single-molecule analysis findings.” Besides, we also changed “number of endocytosis” to “the number of endocytic vesicles” in Figure 3C as suggested.

      Question 4: In Figure 1 E, a discrepancy exists where the total percentages in the red and black columns don't sum up to 100%, while other groups look right. This needs clarification.

      Reply: We are sorry for our carelessness in making the data incomplete. Now we thoroughly supplemented, collated, and rechecked the data in Figure 1E. Due to an oversight during the production of the figure, some data was inadvertently omitted, resulting in the red column not reaching 100%. Besides, we checked the data in the black column again, and the total percentage indeed added up to 100%.

      Question 5: Although Figure 1F uses UMAP analysis to differentiate between FLS2WT and A mutants, only data pertaining to the "D" mutant is shown.

      Reply: Thank you for the expert comments. Because there are several images in Figure 1, we only selected the data related to the “D” mutant as a representative for display. As suggested, we have added all the UMAP images in the revised supplement figure S1F.

      Question 6: There are apparent inconsistencies in the FRAP results, particularly regarding the initial recovery points post-bleaching. A detailed statistical analysis, supplemented with FRAP images over time, should be included for clarity. Were they bleached to a similar ground level before monitoring their recovery? The data points from "before" and "after "bleaching were not shown. I found the red and blue curves showed similar recovery slop, which suggests no long-distance movement changes for all three FLS2 versions, with or without flg22. This is opposite from the conclusions made by the author.

      Reply: Thank you for the expert comments. After reading the comments, we recognized this terrible problem. Therefore, we carried out a new FRAP experiment. The new results showed that, following complete bleaching of three samples of FLS2 to ground level, the recovery rates of FLS2 and FLS2S938D under flg22 treatment were significantly higher compared to the control group (Fig. 1G). In contrast, the recovery rates of the FLS2S938A-GFP after flg22 treatment remain similar to that before treatment (Fig. 1G), indicating that the Ser-938 phosphorylation site indeed affects the flg22-induced lateral diffusion of FLS2 at the PM. The new results are basically consistent with the motion range of single-molecule results, which is not contradictory to long-distance movement changes. Accordingly, we incorporated the new time-lapse FRAP images into Figure 1G and S1B.

      Question 7: There's a potential typo in Figure 1B regarding the bar size. It could neither possibly be 200 um nor 200 nm. Figure 1A also needs a scale bar.

      Reply: Apologies for the mistake. We now corrected “200 μm” to “2 μm”. Besides, we also included a scale bar in Figure 1A in the revised manuscript.

      Question 8: Due to the unreliable tracking for a long-time by Imaris, the authors analyzed the tracks within 10s and quantified very short live particles under 4s. Such 4S surface retention for a receptor does not seem to match functional endocytic internalization time for cargo. Even after the endocytic adaptor module recruitment, it would take at least more than 10s to finish the internalization. In the field of endocytosis, these events are often described as abortive endocytic events. However, the disappearance of cargoes, FLS2 in this case, indicates internalization into the cytoplasm, which is interesting. May the author discuss more on how these short events analyzed enhance our understanding of the functional behavior of FLS2?

      Reply: We greatly appreciated the valuable comments provided by the reviewer. After thorough consideration, we acknowledged that in our original manuscript, we failed to distinguish the short-lived from the long-lived particles and vaguely put them collectively into the internalized particles. We realized that and it is inappropriate to ambiguously categorize all particles as internalized. Therefore, we added the sentence “Additionally, numerous FLS2 exhibited short-lived dwell times, indicating abortive endocytic events associated with the endocytic pathway and signal transduction (Bertot et al., 2018)” in the revised manuscript.

      Question 9: Figure 2D should be comprehensive, presenting data for the WT, A, and D versions.

      Reply: Yes, we agreed with the suggestions. Now, we added several representative images for the WT, A, and D versions in the revised manuscript.

      Question 10: In Figure 2D, TIRM-SIM should be a typo and rectified to TIRF-SIM. Also, a detailed explanation of the TIRF-SIM setup and its specifics would be important. The imaging approach of SIM, especially the time duration for finishing all frames before reconstruction, is essential to rationalize its use in capturing and measuring an appropriate speed range of particle movement. May the author elaborate on the technique details and the use of TIRF-SIM for colocalization analysis? To clarify these, the author may provide additional TIRF-only movies of FLS2 (WT, A, D) and AtRem1.3 for comparison with TIRF-SIM still images.

      Reply: Sorry for the mistake. In the revised manuscript, we have corrected “TIRM-SIM” to “TIRF-SIM”. In order to rationalize its use in capturing and measuring an appropriate speed range of particle movement, we included a more detailed description of the imaging approach and the colocalization analysis of TIRF-SIM in the Materials and Methods section as follows: “The SIM images were taken by a 60 × NA 1.49 objective on a structured illumination microscopy (SIM) platform (DeltaVision OMX SR) with a sCMOS camera (Camera pixel size, 6.5 μm). The light source for TIRF-SIM included diode laser at 488 nm and 568 nm with pixel sizes (μm) of 0.0794 and 0.0794 (Barbieri et al., 2021). For the dual-color imaging, FLS2/FLS2S938A/FLS2S938D-GFP (488 nm/30.0%) and AtRem1.3-mCherry (561 nm/30.0%) were excited sequentially. The exposure time of the camera was set at 50 ms throughout single-particle imaging. The time interval for time-lapse imaging was 100 ms, the total time was 2s, and the total time points were 21s. The Imaris intensity correlation analysis plugin was used to calculate the co-localization ratio.” in the revised manuscript. Furthermore, we provided additional TIRF-SIM movies of FLS2 (WT, A, D) and AtRem1.3.

      Question 11: The colocalization displayed in Figure 2D is hard to tell. A colocalization ratio of FLS2-AtRem1.3 is shown as ~0.8%, which has only ~0.2% difference from the flg22-treated condition. "n" of Figure 2F should be specified in the legend, such as a line with a specific length, or an ROI with a specific area size.

      Reply: Thank you for the expert comments. Although the increased colocalization after flg22 treatment is not high, the change is statistically significant as compared with the wild type. We agreed that every fluorescence-based method, like biochemical analysis, has its own unique limitations, which were raised by the Reviewer #2 (Public Review) as well. In order to provide strong evidence, we also carried out the FLIM-FRET experiment as a supplement, which can effectively detect their ligand-triggered association or disassociation. From figure 2G and H, we clearly found that the co-localization of FLS2/FLS2S938D-GFP with AtRem1.3-mCherry significantly increase in response to flg22 treatment (FLS2-GFP control: 2.45 ± 0.019 s; FLS2-GFP flg22-treated: 2.39 ± 0.016 s; FLS2S938D-GFP control: 2.42 ± 0.010 ns; FLS2S938D-GFP flg22-treated: 2.35 ± 0.028 ns). In contrast, FLS2S938A-GFP shows no significant changes (control: 2.53 ± 0.011 ns; flg22-treated: 2.56 ± 0.013 ns), indicating that Ser-938 phosphorylation influences efficient sorting of FLS2 into AtRem1.3-associated microdomains. Following the suggestion of the reviewer, we now rearranged the order of 2E and 2F, in which N represents the entire image region used for analysis rather than a specific region of interest.

      Question 12: I appreciate the nice results of the FLIM-FRET results for FLS2-Rem1.3. Figure 2H should be supplemented with additional representative images of all FLS2 variants including WT and mutants.

      Reply: Thanks for your warm encouragement. As suggested, we added all the representative images in the revised manuscript.

      Question 13: The unit of the X-axis of Figure 2E can not be pixel. Should it be, um? In the method, the author could specify the camera model and magnification for TIRF-SIM to understand pixel size of the image better.

      Reply: Sorry for the mistake here. Indeed, the unit of the X-axis in Figure 2E should be μm. Now we correct this mistake in Figure 2E in the revised manuscript. Besides, we included a detailed description of the imaging approach of TIRF-SIM in the Materials and Methods section as follows: “The SIM images were taken by a 60 × NA 1.49 objective on a structured illumination microscopy (SIM) platform (DeltaVision OMX SR) with a sCMOS camera (Camera pixel size, 6.5 μm)”.

      Question 14: "... as shown in A..." in Figure Legend 2E should be "... as shown in D..."

      Reply: Thanks for pointing out this mistake. In the revised manuscript, we used “as shown in D” to replace “as shown in A”.

      Question 15: I recommend that the authors exercise caution when drawing conclusions based on the Rem1.3 data and when representing the "microdomain" concept in their final model. While Rem1.3 punctate is a nanometer-sized protein cluster specific to its identity, its shape can be categorized as a nanodomain. Conceptually, however, it neither universally represents all nanodomains nor microdomains, as depicted in Figure 4. We should exercise caution to prevent providing misleading information to the field.

      Reply: We thank the reviewer for expert comments. To avoid misleading conclusions, we changed “nanodomains” to “AtRem1.3-associated microdomains” in the revised manuscript. Besides, we have also made modifications to Figure 4.

      Reviewer #3 (Recommendations For The Authors):

      Question 1: The manuscript needs to be extensively re-written and has severe issues as-is. Many references are either not quite appropriate or are completely unrelated to the use in the text. In general, the current state-of-the-art of PTI and RK signaling is not correctly described or incorporated.

      Reply: We accepted the criticisms here. As suggested, we thoroughly rewrote the manuscript to address the concerns raised. Furthermore, we have thoroughly checked and revised the manuscript by removing 21 irrelevant references and adding 30 relevant references. We also incorporated the most up-to-date descriptions of the PTI and RK signaling pathways.

      Question 2: Receptor-like kinase (RLK) should generally be receptor kinase (RK) as receptor functions are now well established.

      Reply: Yes, we agreed with your expert comment here. Now, we changed “Receptor-like kinase (RLK)” into “receptor kinase (RK)” in the revised manuscript.

      Question 3: Line 20 - is this really true?

      Reply: Sorry for the mistake. In the revised manuscript, we changed “However, the mechanisms underlying the regulation of FLS2 phosphorylation activity at the plasma membrane in response to flg22 remain largely enigmatic.” to “However, the dynamic FLS2 phosphorylation regulation at the plasma membrane in response to flg22 needs further elucidation.”

      Question 4: S938D sorts better in response to Flg22; S938A is unaffected - suggests phosphorylation of S938 is not dynamic in response to Fig 22 but is required for pre-elicitation sorting. Overall, there is a chicken-and-egg problem in this paper: which comes first, immune/signalling functionality or nanodomain sorting? And which is explaining the defects of S938A?

      Reply: We thank the reviewer for expert suggestions. In fact, the previous studies showed that membrane microdomains serve as signaling platforms that mediate cargo protein sorting and protein-protein interactions in a variety of contexts (Goldfinger et al. 2017). Since our previous research showed that the disruption of membrane microdomains affected flg22-induced immune signaling (Cui et al. 2018), we speculate that the immune signal occurred after entering the membrane microdomains.

      As shown in Figure 1 and 2, ligand exposure leads to an increase in diffusion coefficient and enhanced co-localization with REM1.3, both of which are dependent on the phosphorylation of the Ser-938 site. Deducing from these results, we inferred that the defects in S938A resulted largely from its failure to sort into membrane microdomains. The phosphorylation of the Ser-938 site can regulate FLS2 into functional AtRem1.3-associated microdomains, thereby affecting flg22-induced plant immunity.

      Question 5: Line 37 conserved, not conservative (though not technically true - the domain organization is conserved but the ECDs are not conserved).

      Reply: Thank you for pointing this mistake out. In the revised manuscript, we used “conserved” to replace “conservative”.

      Question 6: Lines 40-42 - not all phosphorylation sites are within the kinase domain, for example, sites are well-described on the JM and/or C-tail regions outside of the kinase domain.

      Reply: We accepted the criticisms here. We have corrected the sentence to “with phosphorylation sites mainly located in PKC” in the revised manuscript.

      Question 7: Line 42 - what is BIK1? Intro to relevant topics is severely lacking.

      Reply: Sorry for the incomplete introduction here. We added the relevant introduction of BIK1 by adding that “Upon recognizing flg22, FLS2 interacts with the co-receptor Brassinosteroid-Insensitive 1-associated Kinase 1 (BAK1), initiating phosphorylation events through the activation of receptor-like cytoplasmic kinases (RLCKs) such as BOTRYTIS-INDUCED KINASE 1 (BIK1) to elicit downstream immune responses (Chinchilla et al., 2006; Li et al., 2016b; Majhi et al., 2021). ” in the revised manuscript.

      Question 8: Lines 42-44 - not sure this sequence of events is being properly described (e.g. BIK1 release is unlikely to precede activation by BAK1/SERKs).

      Reply: We apologize for not expressing this sentence clearly. Now, we reworded the sentence: “Upon recognizing flg22, FLS2 interacts with the co-receptor Brassinosteroid-Insensitive 1-associated Kinase 1 (BAK1), initiating phosphorylation events through the activation of receptor-like cytoplasmic kinases (RLCKs) such as BOTRYTIS-INDUCED KINASE 1 (BIK1) to elicit downstream immune responses (Chinchilla et al., 2006; Li et al., 2016b; Majhi et al., 2021).” in the revised manuscript.

      Question 9: Line 61 - S938 was identified by Cao et al (2013) based on in vitro MS, but was functionally validated using genetic assays, not based on MS.

      Reply: Thank you for your comments. Now, we changed the sentence: “In vitro mass spectrometry (MS) identified multiple phosphorylation sites in FLS2. Genetic analysis further identified Ser-938 as a functionally important site for FLS2 in vivo (Cao et al., 2013).” in the revised manuscript.

      Question 10: Line 68-69 - phospho-dead and phospho-mimic, not phosphorylated/non-phosphorylated.

      Reply: We thank the reviewer for expert suggestions. In the revised manuscript, we changed the sentence by replacing “phosphorylated/non-phosphorylated” with “phospho-mimic” and “phospho-dead”.

      Question 11: Lines 104-106 - this is wildly misleading. Flg22 is more than a ligand-like factor, as it is a bona fide ligand, and the heterodimerization with BAK1/SERKs is extremely well-established (and relevant foundational papers should be cited here in place of the authors' previous work).

      Reply: We apologize for the incorrect expression here. After reading the comments, we realized the problem which was raised by the reviewer I as well. Now, we changed “ligand-like factor” to “ligand”. Besides, we cited the new references “(Orosa et al., 2018)” to replace the references of our group in the revised manuscript.

      Question 12: Lines 107-112 - again, this is confusing. There is a decade of (uncited, undiscussed) work previously establishing that heterodimerization of RK-co-receptor complexes is mediated by extracellular ligand binding and independent of intracellular phosphorylation.

      Reply: We thank the reviewer for expert suggestions. Now, we added several sentences in the revised manuscript: “Therefore, we further investigated if Ser-938 phosphorylation affects FLS2/BAK1 heterodimerization. Tesseler segmentation, FRET-FLIM, and smPPI analyses revealed no impact of Ser-938 phosphorylation on FLS2/BAK1 heterodimerization (Figure 2A-C and S2). This aligns with the previous finding that flg22 acts as a molecular glue for FLS2 and BAK1 ectodomains (Sun et al., 2013), confirming the independence of FLS2/BAK1 heterodimerization from phosphorylation, with these events occurring sequentially.”

      Question 13: Line 119 - this is the wrong citation - Yu et al 2020 is a review and does not cover RALFs; correct citation is Gronnier et al 2022 eLife.

      Reply: In the revised manuscript, we updated the reference from “ (Yu et al., 2020)” to “(Gronnier et al., 2022)”.

      Question 14: Lines 123-124 - this sentence is incomplete.

      Reply: Sorry for the incomplete sentence. Now we reworded the sentence to “In a previous investigation, we demonstrated that flg22 induces FLS2 translocation from AtFlot1-negative to AtFlot1-positive nanodomains in the plasma membrane, implying a connection between FLS2 phosphorylation and membrane nanodomain distribution (Cui et al., 2018). To validate this, we assessed the association of FLS2/FLS2S938D/FLS2S938A with membrane microdomains, using AtRem1.3-associated microdomains as representatives (Huang et al., 2019).” in the revised manuscript.

      Question 15: Line 126 - this requires a reference.

      Reply: Yes, we added a new reference: “(Huang et al., 2019)” in the revised manuscript.

      Question 16: Lines 125-128 - should clarify that the authors are not looking at direct interaction between FLS2 and REM1.3.

      Reply: Sorry for the inappropriate expressions here. In the revised manuscript, we reworded the sentence as follows: “To validate this, we assessed the association of FLS2/FLS2S938D/FLS2S938A with membrane microdomains, using AtRem1.3-associated microdomains as representatives (Huang et al., 2019)” .

      Question 17: Line 138 - these are odd references to use for such a broad statement.

      Reply: Now the inappropriate references cited here have been deleted.

      Question 18: Line 161 - incorrect reference, again.

      Reply: Sorry for this mistake. In the revised manuscript, we reworded the sentence and changed the reference.

      Question 19: Lines 160-165 - this is very confusing and misleading. I would suggest just having a short section introducing PTI earlier on (with appropriate references).

      Reply: As suggestion, we reworded and added a section in the revised manuscript as follows: “PTI plays a pivotal role in host defense against pathogenic infections (Lorrai et al., 2021; Ma et al., 2022). Previous studies demonstrated that FLS2 perception of flg22 initiates a complex signaling network with multiple parallel branches, including calcium burst, mitogen-activated protein kinases (MAPKs) activation, callose deposition, and seedling growth inhibition (Baral et al., 2015; Marcec et al., 2021; Huang et al., 2023). Our focus was to investigate the significance of Ser-938 phosphorylation in flg22-induced plant immunity. Figure 4A-F illustrates diverse immune responses in FLS2 and FLS2S938D plants following flg22 treatment. These responses encompass calcium burst activation, MAPKs cascade reaction, callose deposition, hypocotyl growth inhibition, and activation of immune-responsive genes. In contrast, FLS2S938A (Figure S4A-D) exhibited limited immune responses, underscoring the importance of Ser-938 phosphorylation for FLS2-mediated PTI responses”.

      Question 20: Line 166 - these are not appropriate references, again.

      Reply: Thank you for the suggestion. In the revised manuscript, we removed the inappropriate references. Besides, we added new references by citing: “(Baral et al., 2015; Marcec et al., 2021)”.

      Question 21: Lines 169-173 - this is not relevant, the inhibition of growth by elicitors is extremely well-documented (though not by the refs cited here).

      Reply: We reworded the sentence and deleted the inappropriate reference in the revised manuscript.

      Question 22: Lines 174-175 - I don't see why this is unexpected, as nanodomain organization of PRRs has been previously described.

      Reply: Sorry for the inappropriate expressions here. As we have dramatically changed the manuscript, this sentence was deleted from the new version.

      References we added into the revised manuscript

      Baral A, Irani NG, Fujimoto M, Nakano A, Mayor S, Mathew MK. 2015. Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root. Plant Cell 27:1297-315. DOI: 10.1105/tpc.15.00154, PMID: 25901088

      Barbieri L, Colin-York H, Korobchevskaya K, Li D, Wolfson DL, Karedla N, Schneider F, Ahluwalia BS, Seternes T, Dalmo RA, Dustin ML, Li D, Fritzsche M. 2021. Two-dimensional TIRF-SIM-traction force microscopy (2D TIRF-SIM-TFM). Nature Communications 12:2169. DOI: 10.1038/s41467-021-22377-9, PMID: 33846317

      Bertot L, Grassart A, Lagache T, Nardi G, Basquin C, Olivo-Marin J, Sauvonnet N. 2018. Quantitative and statistical study of the dynamics of clathrin-dependent and -independent endocytosis reveal a differential role of endophilinA2. Cell Reports 22: 1574–1588. DOI:org/10.1016/j.celrep.2018.01.039, PMID: 29425511

      Bücherl CA, Jarsch IK, Schudoma C, Segonzac C, Mbengue M, Robatzek S, MacLean D, Ott T, Zipfel C. 2017. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6:e25114. DOI: https://doi.org/10.7554/eLife.25114, PMID: 28262094

      Chen Y, Munteanu AC, Huang YF, Phillips J, Zhu Z, Mavros M, Tan W. 2009. Mapping receptor density on live cells by using fluorescence correlation spectroscopy. Chemistry 15:5327-36. DOI: https://doi.org/10.1002/chem.200802305, PMID: 19360825

      Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465-476. doi:10.1105/tpc.105.036574, PMID: 16377758

      Gada KD, Kawano T, Plant LD, Logothetis DE. 2022. An optogenetic tool to recruit individual PKC isozymes to the cell surface and promote specific phosphorylation of membrane proteins. The Journal of Biological Chemistry 298:101893. DOI: https://doi.org/10.1016/j.jbc.2022.101893, PMID: 35367414

      Gronnier J, Franck CM, Stegmann M, DeFalco TA, Abarca A, von Arx M, Dünser K, Lin W, Yang Z, Kleine-Vehn J, Ringli C, Zipfel C. 2022. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife 11:e74162. DOI: https://doi.org/10.7554/eLife.74162, PMID: 34989334

      Hohmann U, Lau K, Hothorn M. 2017. The structural basis of ligand perception and signal activation by receptor kinases. Annual Review of Plant Biology 68:109–137. DOI: https://doi.org/10.1146/annurev-arplant-042916-040957, PMID: 28125280.

      Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran TM, Yang L, Lam SM, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X. 2019. Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proceedings of the National Academy of Sciences 116:21274–21284. DOI: https://doi.org/10.1073/pnas.1911892116, PMID: 31575745

      Huang Y, Cui J, Li M, Yang R, Hu Y, Yu X, Chen Y, Wu Q, Yao H, Yu G, Guo J, Zhang H, Wu S, Cai Y. 2023. Conservation and divergence of flg22, pep1 and nlp20 in activation of immune response and inhibition of root development. Plant Science 331:111686. DOI: https://doi.org/10.1016/j.plantsci.2023.111686, PMID: 36963637

      Jiao C, Gong J, Guo Z, Li S, Zuo Y, Shen Y. 2022. Linalool activates oxidative and calciμm burst and CAM3-ACA8 participates in calciμm recovery in Arabidopsis leaves. International Journal of Molecular Sciences, 23:5357. DOI: https://doi.org/10.3390/ijms23105357, PMID: 35628166

      Kim TJ, Lei L, Seong J, Suh JS, Jang YK, Jung SH, Sun J, Kim DH, Wang Y. 2018. Matrix rigidity-dependent regulation of Ca2+ at plasma membrane microdomains by FAK visualized by fluorescence resonance energy transfer. Advanced science, 6:1801290. DOI: https://doi.org/10.1002/advs.201801290, PMID: 30828523

      Kontaxi C, Kim N, Cousin MA. 2023. The phospho-regulated amphiphysin/endophilin interaction is required for synaptic vesicle endocytosis. Journal of Neurochemistry 166:248–264. DOI: https://doi.org/10.1111/jnc.15848, PMID: 37243578

      Lee Y, Phelps C, Huang T, Mostofian B, Wu L, Zhang Y, Tao K, Chang YH, Stork PJ, Gray JW, Zuckerman DM, Nan X. 2019. High-throughput, single-particle tracking reveals nested membrane domains that dictate KRasG12D diffusion and trafficking. eLife 8:e46393. DOI: https://doi.org/10.7554/eLife.46393, PMID: 31674905

      Li B, Meng X, Shan L, He P. 2016a. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe 19:641-50. DOI: 10.1016/j.chom.2016.04.011, PMID: 27173932

      Li L, Kim P, Yu L, Cai G, Chen S, Alfano JR, Zhou JM. 2016b. Activation-dependent destruction of a co-receptor by a pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 20:504-514. DOI: https://doi.org/10.1016/j.chom.2016.09.007, PMID: 27736646.b

      Lorrai R, Ferrari S. 2021. Host cell wall damage during pathogen infection: mechanisms of perception and role in plant-pathogen interactions. Plants (Basel) 10:399. DOI: https://doi.org/10.3390/plants10020399, PMID: 33669710

      Marcec MJ, Tanaka K. 2021. Crosstalk between Calcium and ROS signaling during flg22-triggered immune response in Arabidopsis leaves. Plants 11:14. DOI: 10.3390/plants11010014. PMID: 35009017

      Ma M, Wang W, Fei Y, Cheng HY, Song B, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X, Zhou JM. A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. 2022. Cell Host Microbe 30:1602-1614. DOI: 10.1016/j.chom.2022.09.012. Epub 2022 Oct 13. PMID: 36240763.

      Martinière A, Zelazny E. 2021. Membrane nanodomains and transport functions in plant. Plant Physiology 187:1839–1855. DOI: https://doi.org/10.1093/plphys/kiab312, PMID: 35235669

      Majhi, B.B., Sobol, G., Gachie, S., Sreeramulu, S., and Sessa, G. 2021. BRASSINOSTEROID-SIGNALLING KINASES 7 and 8 associate with the FLS2 immune receptor and are required for flg22-induced PTI responses. Molecular Plant Pathology 22:786-799. DOI:https://doi.org/10.1111/mpp.13062, PMID: 33955635

      Mitra SK, Chen R, Dhandaydham M, Wang X, Blackburn RK, Kota U, Goshe MB, Schwartz D, Huber SC, Clouse SD. 2015. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana. The Plant Journal 82:1042–1060. DOI: https://doi.org/10.1111/tpj.12863, PMID: 25912465

      Orosa B, Yates G, Verma V, Srivastava AK, Srivastava M, Campanaro A, De Vega D, Fernandes A, Zhang C, Lee J, Bennett MJ, Sadanandom A. 2018. SμmO conjugation to the pattern recognition receptor FLS2 triggers intracellular signalling in plant innate immunity. Nature Communications 9:5185. DOI: https://doi.org/10.1038/s41467-018-07696-8, PMID: 30518761

      Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou JM, Chai J. 2013. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624-628. DOI: https://doi.org/10.1126/science.1243825, PMID: 24114786

      Vitrac H, Mallampalli VKPS, Dowhan W. 2019. Importance of phosphorylation/dephosphorylation cycles on lipid-dependent modulation of membrane protein topology by posttranslational phosphorylation. The Journal of Biological Chemistry 294:18853–18862. DOI: https://doi.org/10.1074/jbc.RA119.010785, PMID: 31645436

      Xue Y, Xing J, Wan Y, Lv X, Fan L, Zhang Y, Song K, Wang L, Wang X, Deng X, Baluška F, Christie JM, Lin J. 2018. Arabidopsis blue light receptor phototropin 1 undergoes blue light-induced activation in membrane microdomains. Molecular Plant 11:846-859. DOI: 10.1016/j.molp.2018.04.003, PMID: 29689384

      Xing J, Ji D, Duan Z, Chen T, Luo X. 2022. Spatiotemporal dynamics of FERONIA reveal alternative endocytic pathways in response to flg22 elicitor stimuli. New Phytologist 235: 518-532. DOI: 10.1111/nph.18127, PMID: 35358335

      Zhai K, Liang D, Li H, Jiao F, Yan B, Liu J, Lei Z, Huang L, Gong X, Wang X, Miao J, Wang Y, Liu JY, Zhang L, Wang E, Deng Y, Wen CK, Guo H, Han B, He Z. 2021. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601:245-251. DOI: https://doi.org/10.1038/s41586-021-04219-2, PMID: 34912119

      Zhong YH, Guo ZJ, Wei MY, Wang JC, Song SW, Chi BJ, Zhang YC, Liu JW, Li J, Zhu XY, Tang HC, Song LY, Xu CQ, Zheng HL. 2023. Hydrogen sulfide upregulates the alternative respiratory pathway in mangrove plant Avicennia marina to attenuate waterlogging-induced oxidative stress and mitochondrial damage in a calciμm-dependent manner. Plant Cell and Environment 46:1521-1539. DOI: https://doi.org/10.1111/pce.14546, PMID: 36658747

      Inappropriate references we deleted from the revised manuscript

      Schulze S, Yu L, Hua C, Zhang L, Kolb D, Weber H, Ehinger A, Saile SC, Stahl M, Franz-Wachtel M, Li L, El Kasmi F, Nürnberger T, Cevik V, Kemmerling B. 2022. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host Microbe 30:1717-1731.e6. DOI: 10.1016/j.chom.2022.11.001, PMID: 36446350

      Wang Q, Zhao Y, Luo W, Li R, He Q, Fang X, Michele RD, Ast C, von Wirén N, Lin J. 2013. Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proceedings of the National Academy of Sciences of the United States of America 110:13204-9. DOI: 10.1073/pnas.1301160110, PMID: 23882074

      Eichel K, Jullié D, von Zastrow M. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nature Cell Biology 18:303-10. DOI: 10.1038/ncb3307, PMID: 26829388

      Van Itallie CM, Anderson JM. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. Tissue Barriers 6:e1382671. DOI: 10.1080/21688370.2017.1382671, PMID: 29083946

      Monje-Galvan V, Warburton L, Klauda JB. Setting up all-atom molecular dynamics simulations to study the interactions of peripheral membrane proteins with model lipid bilayers. Methods in Molecular Biology 1949:325-339. DOI: 10.1007/978-1-4939-9136-5_22, PMID: 30790265.

      Trotta A, Bajwa AA, Mancini I, Paakkarinen V, Pribil M, Aro EM. The role of phosphorylation dynamics of CURVATURE THYLAKOID 1B in plant thylakoid membranes. Plant Physiology 181:1615-1631. DOI: 10.1104/pp.19.00942, PMID: 31615849

      Dorrity MW, Saunders LM, Queitsch C, Fields S, Trapnell C. Dimensionality reduction by UMAP to visualize physical and genetic interactions. Nature Communications 11:1537. DOI: 10.1038/s41467-020-15351-4, PMID: 32210240

      Sato KI, Tokmakov AA. Membrane microdomains as platform to study membrane-associated events during Oogenesis, Meiotic Maturation, and Fertilization in Xenopus laevis. Methods in Molecular Biology 920:59-73. DOI: 10.1007/978-1-4939-9009-2_5, PMID: 30737686.

      Ozolina NV, Kapustina IS, Gurina VV, Bobkova VA, Nurminsky VN. Role of plasmalemma microdomains (Rafts) in protection of the plant cell under Osmotic stress. Journal of Membrane Biology 254:429-439. DOI: 10.1007/s00232-021-00194-x, PMID: 34302495

      Boutté Y, Moreau P. Plasma membrane partitioning: from macro-domains to new views on plasmodesmata. Frontiers in Plant Science 5:128. DOI: 10.3389/fpls.2014.00128. PMID: 24772114

      Yu M, Cui Y, Zhang X, Li R, Lin J. Organization and dynamics of functional plant membrane microdomains. Cellular and Molecular Life Sciences 77:275-287. DOI: 10.1007/s00018-019-03270-7, PMID: 31422442

      Zhao Z, Li M, Zhang H, Yu Y, Ma L, Wang W, Fan Y, Huang N, Wang X, Liu K, Dong S, Tang H, Wang J, Zhang H, Bao Y. Comparative proteomic analysis of plasma membrane proteins in rice leaves reveals a vesicle trafficking network in plant immunity that is provoked by Blast Fungi. Frontiers in Plant Science 13:853195. DOI: 10.3389/fpls.2022.853195, PMID: 35548300

      Hilgemann DW, Dai G, Collins A, Lariccia V, Magi S, Deisl C, Fine M. Lipid signaling to membrane proteins: From second messengers to membrane domains and adapter-free endocytosis. Journal of General Physiology 150:211-224. DOI: 10.1085/jgp.201711875, PMID: 29326133

      Joshi R, Paul M, Kumar A, Pandey D. Role of calreticulin in biotic and abiotic stress signalling and tolerance mechanisms in plants. Gene 714:144004. DOI: 10.1016/j.gene.2019.144004, PMID: 31351124

      Chen Y, Cao C, Guo Z, Zhang Q, Li S, Zhang X, Gong J, Shen Y. Herbivore exposure alters ion fluxes and improves salt tolerance in a desert shrub. Plant Cell and Environment 43:400-419. DOI: 10.1111/pce.13662, PMID: 31674033

      Chi Y, Wang C, Wang M, Wan D, Huang F, Jiang Z, Crawford BM, Vo-Dinh T, Yuan F, Wu F, Pei ZM. Flg22-induced Ca2+ increases undergo desensitization and resensitization. Plant Cell and Environment 44:3563-3575. DOI: 10.1111/pce.14186, PMID: 34536020

      Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Current Opinion in Plant Biology 45:1-10. DOI: 10.1016/j.pbi.2018.04.012, PMID: 29753266

      Arnaud D, Deeks MJ, Smirnoff N. RBOHF activates stomatal immunity by modulating both reactive oxygen species and apoplastic pH dynamics in Arabidopsis. Plant Journal 116:404-415. DOI: 10.1111/tpj.16380, PMID: 37421599

      Zou Y, Wang S, Zhou Y, Bai J, Huang G, Liu X, Zhang Y, Tang D, Lu D. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell.30:2779-2794. DOI: 10.1105/tpc.18.00297, PMID: 30337428

      Ngou BPM, Jones JDG, Ding P. Plant immune networks. Trends in Plant Science 27:255-273. DOI: 10.1016/j.tplants.2021.08.012, PMID: 34548213.

      Yu M, Liu H, Dong Z, Xiao J, Su B, Fan L, Komis G, Šamaj J, Lin J, Li R. 2017. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. Journal of Plant Physiology 215:73–84. DOI: https://doi.org/10.1016/j.jplph.2017.05.010, PMID: 28582732

    1. Author Response

      The following is the authors’ response to the current reviews.

      Response to Reviewer 1:

      • We agree with the reviewer’s overall assessment of this manuscript.

      • Because multiple secreted proteins are changed between the control and experimental groups, some of them could be causal and others corelative in the context of enhancing compensatory glucose production in response to elevated glycosuria. Through future studies we will determine the causal factors that trigger the increase in glucose production.

      • Yes, we will correct the typographical errors in a revised version of this manuscript.

      Response to Reviewer 2:

      • We agree with reviewer on their comment about potential sex differences we may have missed in this study. Therefore, we will include this limitation in discussion section of a revised manuscript.

      • The reviewer’s statement ‘The methods of that publication indicate that all experiments were completed within 14 days of inducing the Glut2 knockout’ is incorrect. In the referred publication, we had explicitly mentioned in methods that ‘All of the experiments, except those using a diet-induced obesity mouse model or noted otherwise, were completed within 14 days of inducing the Glut2 deficiency.’ Please see figures 5h-l and 6 in that previous publication, which demonstrate that all the experiments were not completed within 14 days of inducing renal Glut2 deficiency. Per the reviewer’s advice, in the present manuscript we will include the timeline of the experiments (which in some cases is 4 months beyond inducing glycosuria) with all the figure legends. In addition, for a separate project (which is unpublished) we have measured glycosuria up to 1 year after inducing renal Glut2 deficiency. Therefore, the glycosuria observed in the renal Glut2 KO mice is not temporary.

      • In our previous response to the reviewer, we had already mentioned which control group was used in this study. Please see our response to the second reviewer’s point 3. As mentioned to the reviewer, we had used Glut2-loxp/loxp mice as the control group, which is also described multiple times in the figure legends of our previous paper that reported the phenotype of renal Glut2 KO mice and is cited in this manuscript so we don’t have to repeat the same information. Per the reviewer’s advice, we will also include the information in a revised version of this manuscript.

      • We request the reviewer to look at figure 1, showing an increase in glucose production in renal Glut2 KO mice and figure 3, which demonstrates that an afferent renal denervation reduces blood glucose levels by 50%. The afferent renal denervation (ablation of afferent renal nerves) does reduce blood glucose levels in renal Glut2 KO mice. Therefore, the use of the word ‘promote’ in the title is accurate and appropriate to reflect the role of the afferent renal nerves in contributing to about 50% increase in blood glucose levels in renal Glut2 KO mice. Regarding the reviewer's comment on changes in Crh gene expression, please look at figure 3. Ablation of renal afferent nerves decreases hypothalamic Crh gene expression and other mediators of the HPA axis by 50%. Therefore, the afferent renal nerves do contribute to regulating blood glucose levels, at least in part, by the HPA axis (which is widely known to change blood glucose levels). The use of words such as ‘required’ or ‘necessary’ in the title may have indicated causal role or could have been misleading here; therefore we have purposely used ‘promote’ in the title to accurately reflect the findings of this study.

      • Because we observed an increase in hepatic glucose production in renal Glut2 KO mice (Fig. 1) - which was reduced by 50% after selective afferent renal denervation (Fig. 3) - in the graphical abstract we are suggesting a neural connection between the kidney-brain-liver or an endocrine factor(s) to account for these changes in blood glucose levels as also described in the discussion section. We can include a question mark ‘?’ in the graphical abstract to show that further studies are need to validate these proposed mechanisms; however, we cannot just remove the arrow as advised by the reviewer.

      • Per the reviewer’s advice, in the methods we will include the dilutions used for each assay.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      It would be helpful to the reader to specify in Figure 1a-c whether data were directly measured or calculated.

      We have now clarified this in method section of the revised manuscript. The glucose production was directly measured and then fractional contribution of the tissues was calculated from the former data. We have also included a reference research paper to further clarify the method.

      The methods section would be strengthened by clarifying the order in which experiments were performed, the age of the mice at each time point, and whether different cohorts were used for different techniques.

      We have included additional details in the method section with proper citations. For in-depth protocols we have cited our previous publications.

      It would be helpful to explain or provide a reference for how the post-mortem background activity measurement was performed.

      We have included this explanation in the revised manuscript.

      Similarly, details regarding the collection of blood for ACTH and corticosterone measurement are needed for the reader to evaluate whether the results are confounded by stress at the time of collection.

      We have added these details in the method section.

      I recommend stating, if accurate, that you used mixed-sex groups because your previous study found no sex differences in the phenotype of renal Glut2 KO mice.

      Yes, we have included these details in the revised manuscript.

      Sentence 239 is difficult to follow. Also, line 287 contains a contraction.

      We have revised the sentence per the reviewer’s advice.

      A graphical abstract would be helpful, bearing in mind conclusive vs suggestive findings.

      Yes, we have included the graphical abstract with the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Minor Comments to the Authors

      (1) The Methods also need to specify more of the critical details of the ELISAs, including the dilution factors used, and whether the values reported are dilution-corrected. Also, there is no description of how insulin was measured.

      We have included these details in the method section. The assay dilutions were performed per manufacturers’ instructions.

      (2) The Methods do not sufficiently describe how Crh mRNA was quantified in the hypothalamus. Presumably, they examined only the paraventricular nucleus? How many sections were used for in situ hybridization? How were the brains processed? What thickness of section was used? When were the brains collected?

      We have included these details in the method section and cited our previous publications for in-depth protocols. Some of the information is also available in the figure legends.

      (3) The number of mice that were used for plasma proteomics is not indicated.

      The number of mice is indicated using individual symbols or points presented on the bar graphs.

  2. Mar 2024
    1. Author Response

      Reviewer #2 (Public Review):

      In this manuscript, Chen et al. reported that the core binding factor beta (Cbfβ), a heterodimeric subunit of the RUNX family transcription factors (TFs), is crucial in maintaining cartilage homeostasis and counteracting traumatic OA pathology. Using mouse models in which Cbfβ is conditionally inactivated in the Col2a1+ and Acan+ cells, the authors claimed that Cbfβ ablation led to articular cartilage (AC) degeneration, which is associated with aberrant cartilage gene expression and chondrocyte signaling, particularly the elevated Wnt/Catenin and the decreased Hippo/YAP and TGFβ signaling. The authors further showed that Cbfβ transcripts are decreased in human OA cartilage, and sustaining Cbfβ expression in mouse knee joints mitigated the severity of surgery-evoked OA.

      On the whole, the work reported is interesting and exciting. Genetic and biochemical data support key statements. Both in vivo and in vitro experiments were well designed with proper controls; semiquantitative data were digitalized and processed for statistical significance. Furthermore, new findings were adequately discussed in contrast to the current available knowledge. However, the conceptual novelty of this study is slightly compromised by recent publications showing that Cbfβ reduction is associated with OA (Che et al. 2023; Li et al. 2021). Also, the authors claimed that multiple signaling pathways were affected by Cbfβ ablation in cartilage cells; many of them, however, are indirect effects given the nature of Cbfβ as a TF. The authors also showed that pSMAD2/3 and active βCatenin decreased and increased upon Cbfβ depletion in the mouse AC cartilage. However, how the deficiency of Cbfβ, a widely expressed TF, affected the posttranslational modification of SMAD2/3 and βCatenin is unclear and needs further discussion. Overall, Cbfβ's role in cartilage and OA pathology is an emerging area of study; the authors provided a set of genetic evidences showing that Cbfβ is indispensable for cartilage homeostasis.

      We thank the reviewer for the positive appraisal of our manuscript. We greatly appreciate the insightful comments and critiques. In accordance with the reviewer’s suggestions, we have thoroughly revised all parts of the manuscript. We are glad that the reviewers considered our work to be of interest, and we are grateful for this opportunity to resubmit our manuscript. With regard to concerns of novelty of our study, Li et al’s study only reported the relationship between abnormal Cbfβ expression in human cartilage and osteoarthritis. Che et al’s study employed Cbfβf/fAggrecan-cre mice, while our study used a novel inducible Cbfβf/fCol2α1CreERT mouse model. While the Aggrecan-creERT system provides valuable insights into the role of Cbfβ in differentiated cartilage cells and its implications in the advanced stages of osteoarthritis, our current study also used Cbfβf/fCol2α1-CreERT aimed to explore the gene's function from a broader perspective. Previous study points out that Col2α1 is expressed in both early and late stage of chondrogenesis, including skeletal mesenchymal cells, perichondrium and presumptive joint cells, but aggrecan is expressed specifically in differentiated chondrocytes(1). However, studies show that not only differentiated chondrocytes but also chondrocyte progenitors are involved in OA pathogenesis(2). In our current study, the Col2α1-CreERT system allowed us to investigate Cbfβ's role not only in mature chondrocytes but also in early chondroprogenitor cells, offering a comprehensive view of Cbfβ’s involvement in cartilage in osteoarthritis. Therefore, the use of the Cbfβf/fCol2α1-CreERT mouse mutant strain was instrumental in expanding our understanding of Cbfβ's multifaceted role in osteoarthritis, highlighting its importance not only in mature cartilage but also in the early stages of cartilage formation and differentiation. In addition to the different types of Cre used compared to our previous study, our current study also used gain-of-function approach in ACLT-induced OA disease model to understand the potential therapeutic function of Cbfβ in OA pathological condition. Adding our current findings to our previous research, we can now piece together a more complete picture of Cbfβ's role across the entire spectrum of cartilage development in osteoarthritis.

      We agree with the reviewer that how the deficiency of Cbfβ, a widely expressed TF, affected the posttranslational modification of SMAD2/3 and βCatenin is unclear and needs further exploration. So far there is no clear explanation of this, which is why we used RNA-seq and heatmap analysis to examine other genes expression which could help to uncover the mechanism underlying these results. Interestingly, Che et al’s result showed that TGFB signaling (P-Smad3) increased in Cbfβf/fAggrecan-cre mice, while our data showed that TGFB signaling (both PSmad3 and Smad3) decreased in Cbfβf/fCol2α1-CreERT mice as shown in our results in Figure 8. These results were also confirmed by RNA-seq analysis as shown in the heatmaps in figure 5.

      These differences could be the result of different mouse ages used in our study and Che et al’s study.

      1. Blaney Davidson EN, van de Loo FA, van den Berg WB, van der Kraan PM. How to build an inducible cartilagespecific transgenic mouse. Arthritis Res Ther. 2014;16(3):210.

      2. Tong L, Yu H, Huang X, Shen J, Xiao G, Chen L, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 2022;10(1):60.

      Reviewer #3 (Public Review):

      The authors comprehensively demonstrated the Cbfβ gene, which is involved in articular cartilage homeostasis, can promote articular cartilage regeneration and repair in osteoarthritis (OA) through regulating Hippo/YAP signaling TGF-β signaling, and canonical Wnt signaling. First, the authors demonstrated the deletion of Cbfβ can induce the OA phenotypes including decreased articular cartilage and osteoblasts, and increased osteoclasts and subchondral bone hyperplasia, and induce the early onset of OA. Additionally, the authors showed that the deficiency of Cbfβ in cartilage can increase canonical Wnt signaling and decrease TGF-β and Hippo signaling. Finally, the authors demonstrated that the overexpression of Cbfβ can inhibit Wnt signaling and enhance Hippo/YAP signaling in knee joints articular cartilage of ACLT-induced OA mice and protect against ACLT-induced OA. The manuscript is overall well-constructed, and the authors provided evidence to support their findings.

      In Fig. 7I, it could be better to show the statistical analysis between normal and AAV-mediated Cbfβ ACLT mice groups.

      We thank the reviewer for bringing this to our attention. In the revised figure 7I, we have included the statistical analysis between normal and AAV-mediated Cbfβ ACLT mice groups.

      In Fig. 9H-K, in the quantification analysis, the OARSI score in the DMM+AAV-YFP group is higher than in the sham group significantly. However, the SO staining results appear to show no significant difference between the DMM+AAV-luc-YFP group (Fig. 9I) and the sham group (Fig. 9H).

      We thank the reviewer for bringing this to our attention. Although both the sham and DMM+AAV-luc-YFP group stain positive for SO, the SO stain intensity of the DMM+AAV-lucYFP group is noticeably lower. In addition, SO staining is not the only parameter which is included in the OARSI score. We also evaluated the cartilage thickness, proteoglycan structure, and Cartilage surface fibrillation index. Our evaluation to determine the OARSI score relies on the qualities of the whole joint, not only the magnified portion. For convenience we have also outlined the region of positive SO stain in the revised figure 9I

    1. Author Response

      eLife assessment

      This important study provides a new, apparently high-performance algorithm for B cell clonal family inference. The new algorithm is highly innovative and based on a rigorous probabilistic analysis of the relevant biological processes and their imprint on the resulting sequences, however, the strength of evidence regarding the algorithm's performance is incomplete, due to (1) a lack of clarity regarding how different data sets were used for different steps during algorithm development and validation, resulting in concerns of circularity, (2) a lack of detail regarding the settings for competitor programs during benchmarking, and (3) method development, data simulation for method validation, and empirical analyses all based on the B cell repertoire of a single subject. With clarity around these issues and application to a more diverse set of real samples, this paper could be fundamental to immunologists and important to any researcher or clinician utilizing B cell receptor repertoires in their field (e.g., cancer immunology).

      We apologize for the long delay in implementing the suggested changes. Some of the co-authors had some personal issues that made it hard to efficiently work on the revision.

      We have addressed all the essential points below, as well as all the detailed comments of each reviewer in the following pages.

      Due to the journal’s guidelines we have to upload an “all black” version of the manuscript as the main version. We have uploaded a revised manuscript with the changes marked in red as a “Related Manuscript file”, which appears at the very end of the Merged Manuscript File, after all the Figures, and at the end of the list of files on the webpage. We apologize for this inconvenience.

      In addition, we have added an extension of HILARy to deal with paired-chain repertoires, and have benchmarked the new method on a recently published synthetic dataset. This new analysis is now presented in new Fig. 5.

      Reviewer #1 (Public Review):

      Identifying individual BCR/Ab chain sequences that are members of the same clone is a longstanding problem in the analysis of BCR/Ab repertoire sequencing data. The authors propose a new method designed to be scalable for application to huge repertoire data sets without sacrificing accuracy. Their approach utilizes Hamming Distance between CDR3 sequences followed by clustering for a fast, high-precision approach to classifying pairs of sequences as related or not, and then refines the classification using mutation information from germline-encoded regions. They compare their method with other state-of-the-art methods using synthetic data.

      The authors address an important problem in an interesting, innovative, and rigorous way, using probabilistic representations of CDR3 differences, frequencies of shared and not-shared mutations, and the relationships between the two under hypotheses of related pairs and unrelated pairs, and from these develop an approach for determining thresholds for classification and lineage assignment. Benchmarking shows that the proposed method, the complete method including both steps, outperforms other methods.

      Strengths of the method include its theoretical underpinnings which are consistent with an immunologist's intuition about how related and unrelated sequences would compare with each other in terms of the metrics to use and how those metrics are related to each other.

      I have two high-level concerns:

      (1) It isn't clear how the real and synthetic data are being used to estimate parameters for the classifier and evaluate the classifier to avoid circularity. It seems like the approach is used to assign lineages in the data from [1], and then properties of this set of lineages are used to estimate parameters that are then used to refine the approach and generate synthetic data that is used to evaluate the approach. This may not be a problem with the approach but rather with its presentation, but it isn't entirely clear what data is being used and where for what purpose. An understanding of this is necessary in order to truly evaluate the method and results.

      The reviewer is correct in their understanding of the pipeline. It should be stressed that the lineages used to guide the generation of the synthetic data was done on VJl classes for which the clustering was easy and reliable, and should therefore be largely model independent.

      We have added an explanation in the main text of why the re-use of real data lineages inferred by HILARy doesn’t bias the procedure, since it’s done on a subset of lineages within VJl classes that are easy to infer (section “Test on synthetic dataset”).

      (2) Regarding the data used for benchmarking - given the intertwined fashion by which the classification approach and synthetic data generation approach appear to have been developed, it is not surprising that the proposed approach outperforms the other methods when evaluated on the synthetic data presented here. It would be better to include in the benchmark the data used by the other methods to benchmark themselves or also generate synthetic data using their data generation procedures.

      We agree with the reviewer that a test of the method on an independent synthetic dataset is important for its applicability and to compare to other methods.

      We have added a new synthetic dataset from the group that designed the partis method to our benchmark. Our method still performs competitively, on par with partis—which was developed and tested on that dataset—and better than other methods. The results are presented in revised Fig. 4 (panels E-G), and Figure 4–figure supplement 1 as a function of the mutation rate.

      In addition, we have used that dataset to benchmark a new version of HILARy that also uses the light chain. We present the results in new Figures 5 and Figure 4–figure supplement 1.

      An improved method for BCR/Ab sequence lineage assignment would be a methodologic advancement that would enable more rigorous analyses of BCR/Ab repertoires across many fields, including infectious disease, cancer, autoimmune disease, etc., and in turn, enable advancement in our understanding of humoral immune responses. The methods would have utility to a broad community of researchers.

      Reviewer #2 (Public Review):

      This manuscript describes a new algorithm for clonal family inference based on V and J gene identity, sequence divergence in the CDR3 region, and shared mutations outside the CDR3. Specifically, the algorithm starts by grouping sequences that have the same V and J genes and the same CDR3 length. It then performs single-linkage clustering on these groups based on CDR3 Hamming distance, then further refines these groups based on shared mutations.

      Although there are a number of algorithms that use a similar overall strategy, a couple of aspects make this work unique. First, a persistent challenge for algorithms such as this one is how to set a cutoff for single-linkage clustering: if it is too low, then one separates clusters that should be together, and if too high one joins together clusters that should be separate. Here the authors leverage a rich collection of probabilistic tools to make an optimal choice. Specifically, they model the probability distributions of within- and between-cluster CDR3 Hamming distances, with parameters depending on CDR3 length and the "prevalence" of clonal sequence pairs (i.e. family size distribution). This allows the algorithm to make optimal choices for separating clusters, given the particular chosen distance metric, and assuming the sample in question has been accurately modeled. Second, the algorithm uses a highly efficient means of doing single-linkage clustering on nucleotide sequences.

      This leads to a fast and highly performant algorithm on data meant to replicate the original sample used in algorithm design. The ideas are new and beautifully developed. The application to real data is interesting, especially the point about dN/dS.

      However, the paper leaves open the question of how this inference algorithm works on samples other than the one used for simulation and as a template for validation. If I understand the simulation procedure correctly - that one takes a collection of inferred trees from the real data, then re-draws the root sequence and the identity of the mutations on the branches - then the simulated data should be very close to the data used to develop the methods in the paper. This consideration seems especially important given that key methods in this paper use mutation counts and overall mutation counts are preserved.

      Repertoires come in all shapes and sizes: infants to adults, healthy to cancerous, and naive to memory to plasma-cell-just-after-vaccination. If this is being proposed as a general-purpose clonal inference algorithm rather than one just for this sample, then a more diverse set of validations are needed.

      We agree that testing the method on a differently generated dataset is a useful check. We should point out, however, that our synthetic dataset is not as biased as it may seem. In particular, it is based on trees from VJl classes that we predicted are very easy to cluster, which means that they are truly faithful to the data, and not dependent on the particular algorithm used to infer them. The big advantage over this synthetic dataset over others is that it recapitulates the power law statistics of clone size distribution, as well as the diversity of mutation rates. To us, it still represents a more useful benchmark than synthetic datasets generated by population genetics models, which miss most of this very broad variability.

      However, to check how the method generalizes to other datasets, we repeated our validation procedure on the dataset used to evaluate Partis in Ralph et al 2022. The new results are discussed in the main text and in new panels of Fig. 4 in the same form as the previous comparisons. We also added a comparison of performance as a function of mutation rate in the new Figure 4–figure supplement 1.

      It is unclear how to run the code. The software repo has a nice readme explaining the file layout, dependencies, and input file format, but the repo seems to be lacking an inference.ipynb mentioned there which runs an analysis. Perhaps this is a typo and refers to inference.py, which in addition to the documented cdr3 clustering, seems to have functions to run both clustering methods. However, it does not seem to have any documentation or help messages about how to run these functions.

      We have completely overhauled the github to provide a detailed step by step explanation of how to run the code. The code is now easily installable using pip.

      The results are not currently reproducible, because the simulated data is not available. The data availability statement says that no data have been generated for this manuscript, however simulated data has been generated, and that is a key aspect of the analysis in the paper.

      We have uploaded the simulated data to zenodo, as well as provided scripts in the github to run the benchmarks.

      More detail is needed to understand the timing comparisons. The new software is clearly written to use many threads. Were the other software packages run using multiple threads? What type of machine was used for the benchmarks?

      All timing comparisons were made based on a single VJl class on a 14 double-threaded CPU computer. HILARy uses all 28 threads, and other methods were run with default settings, with multi-threading allowed.

      We have clarified the specifications of the computer.

      Reviewer #3 (Public Review):

      B cell receptors are produced through a combination of random V(D)J recombination and somatic hypermutation. Identifying clonal lineages - cells that descend from a common V(D)J rearrangement - is an important part of B cell repertoire analysis. Here, the authors developed a new method to identify clonal lineages from BCR data. This method builds off of prior advances in the field and uses both an adaptive clonal distance threshold and shared somatic hypermutation information to group B cells into clonal lineages.

      The major strength of this paper is its thorough quantitative treatment of the subject and integration of multiple improvements into the clonal clustering process. By their simulation results, the method is both highly efficient and accurate.

      The only notable weakness we identified is that much of the impact of the method will depend on its superiority to existing approaches, and this is not convincingly demonstrated by Fig. 4. In particular, little detail is given on how the other clonal clustering programs were run, and this can significantly impact their performance. More specifically:

      We have added a new benchmark to address these concerns, presented in Fig. 4 and in new figure 4 – figure supplement 1 as a function of a controllable mutation rate.

      (1) Scoper supports multiple methods for clonal clustering, including both adaptive CDR3 distance thresholds (Nouri and Kleinstein, 2018) and shared V-gene mutations (Nouri and Kleinstein, 2020). It is not clear which method was used for benchmarking. The specific functions and settings used should have been detailed and justified. Spectral clustering with shared V gene mutations would be the most comparable to the authors' method. Similar detail is needed for partis.

      In the updated version I use the 2020 version. The 2018 is very similar to simple single linkage so will be removed from the benchmark.

      (2) It is not clear how the adaptive thresholds and shared mutation analysis in the authors' method differ from prior approaches such as scoper and partis.

      We have changed the paragraph in the discussion section about the benchmark to highlight the innovative aspects and differences with previous approaches.

      (3) The scripts for performing benchmarking analyses, as well as the version numbers of programs tested, are not available.

      We have added to the github all the scripts used for benchmarking. We have added details about the version numbers in the data and code availability section of the methods.

      (4) Similar to above, P. 10 describes single linkage hierarchical clustering with a fixed threshold as a "crude method" that "suffers from inaccuracy as it loses precision in the case of highlymutated sequences and junctions of short length." As far as we could tell, this statement is not backed up by either citations or analyses in the paper. It should not be difficult for the authors to test this though using their simulations, as this method is also implemented in scoper.

      We have added this method to our benchmark to support that point. The results are presented in Figure 4 – figure supplement 2.

      References

      Nouri N, Kleinstein SH. 2020. Somatic hypermutation analysis for improved identification of B cell clonal families from next-generation sequencing data. PLOS Comput Biol 16:e1007977. doi:10.1371/journal.pcbi.1007977

      Nouri N, Kleinstein SH. 2018. A spectral clustering-based method for identifying clones from high- throughput B cell repertoire sequencing data. Bioinformatics 34:i341-i349. doi:10.1093/bioinformatics/bty235

      We have changed citation [22] to refer to the 2018 paper. The 2020 paper is citation [18].

    1. Author Response

      We acknowledge the editors and reviewers for their careful and thoughtful review of the preprint. Their comments and suggestions will be very useful in improving the manuscript's revised version, which we plan to submit in the coming weeks.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewing Editor

      We thank you for clarifying several of the questions raised by the reviewers. Since the study has otherwise largely stayed unchanged, we will leave the eLife assessment as “before”:

      We respectfully disagree because we addressed all concerns raised by the two reviewers except one (below), which was not satisfactorily answered according to reviewer 1; it has now been addressed (new S3 Fig).

      Reviewer #1 (Recommendations For The Authors):

      The authors addressed most of my previous comments. However, there is one important point that was not satisfactorily addressed "The band intensities on Western blots in Fig. 4 and Fig. 5 are not quantified, and the numbers of repeats are also not provided" The response that "It is not straightforward to quantify and describe the intensity of the bands of these numerous with different fate outcomes." In the revision, they mentioned at least three repeats were performed. If so, it's not entirely clear why they couldn't quantify the western blots results. Including quantitative data will strengthen the rigor of the findings.

      Quantitative data from Fig. 4 and Fig. 5 are now provided as S3 Fig and described in the manuscript (lines 170-175; 184-188).

    2. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      (1) It is not entirely clear why a tumor-free model is chosen to study immune responses, as immune responses can differ significantly with or without tumor-bearing. A more detailed explanation is needed.

      We appreciate the question. As stated in the original submission, tumor-free mouse models are commonly used to assess off-target outcomes of anti-neoplastic therapies. We have expanded on this point and acknowledged this shortcoming in the revised manuscript (lines 264-265).

      (2) Immune responses in isolated macrophages, neutrophils, and bone marrow cells require priming with LPS, while such responses are not observed in vivo. There is no explanation for these differences.

      The reviewer raises an excellent point. The assembly of inflammasomes such as those nucleated by NLRP3 requires priming signals, which increase the levels of this sensor, which are kept low in homeostatic conditions to prevent spontaneous unwanted inflammation. While LPS is commonly used in vitro as an inducer of priming signals, these cues are triggered in vivo by various molecules, including pro-inflammatory cytokines. We have provided a rationale for the use of LPS in vitro in the revised manuscript (lines 144-145).

      (3) The band intensities on Western blots in Fig. 4 and Fig. 5 are not quantified, and the numbers of repeats are also not provided. This additional information is recommended.

      While caspase-1, caspase-3, GSDMD, and GSDME but not AIM 2 and NLRP3 are activated upon proteolytic cleavage. It is not straightforward to quantify and describe the intensity of the bands of these numerous with different fate outcomes. We regret for not mentioning the numbers of repeats in the original submission. This information has now been provided in figure legends where necessary.

      (4) Many abbreviations are used throughout the text, and some of the full names are not provided.

      Full names are required at the first introduction.

      We agree. We have provided full names at the first introduction (lines 21, 23, 86).

      (5) Fig. 5B needs a label on the X axis.

      We regret the confusion: X axis was for both Fig. 5B and 5C. We have made the change in the new Fig. 5.

      Reviewer #2:

      The following specific points could be addressed to further improve the quality of the manuscript:

      (1) Concerning data presented in Figure 1, 3D micro-CT reconstructions of the entire femurs could be shown instead of just the trabecular bone. Data on cortical bone loss are important. It would be important to show histological (sagittal) sections of the bones at baseline, treated with Doxorubicin or vehicle, and quantify osteoblasts in addition to osteoclasts. Is there increased bone marrow adiposity in Doxorubicin-treated mice? The data with vehicle should be shown in the main figures not just in the supplemental data.

      We thank the reviewer for the suggestion. We have now provided 3 D micro-CT reconstructions of a representative femur containing both trabecular and cortical bones (S1B Fig). Only the metaphyseal area is shown because we did not originally scan the entire femur.

      Quantification of osteoblast number is not a reliable measurement, the reason why we carried out dynamic histomorphometry to assess the effect of doxorubicin on bone formation (original S1D Fig/new S1E Fig).

      Unfortunately, we did not determine the effects of doxorubicin on bone marrow adiposity. However, to address the reviewer’s comment, we have mentioned in the revised manuscript adipogenic effects of doxorubicin based on the literature (lines 264-265).

      (2) Concerning data presented in Figure 2, how long after Doxorubicin injection is leukopenia observed (beyond the 72-hour timepoint)? Does cell-count return to baseline 4 weeks after treatment (when the bone phenotype is characterized)? Why use 12-week-old mice here and 10week-old animals for the rest of the study?

      We appreciate the question. We did not measure leukopenic effects of doxorubicin beyond the 72-hour timepoint based on the following: i) bones are analyzed in mice injected only once with a single dose of doxorubicin; ii) leukopenia is a side effect of doxorubicin whose blood levels should be undetectable 4 weeks after its administration although we did not measure them experimentally. Our premise is that osteopenia observed in doxorubicin-exposed mice is the result of early events that occur after the administration of the drug.

      We apologize for the confusion. We assessed baseline bone mass by VivaCT using 10-week-old mice; doxorubicin was injected 2 weeks when mice were 12-week-old. We have clarified this point in the revised manuscript (line 301).

      (3) It would be important to evaluate local inflammation in bones collected from wild-type and mutant mice. Are ASC specks, Cit-H3, and MPO present in the bone marrow? The expression of some components of the inflammasomes or relevant pathways could be assessed in bone samples deprived of bone marrow and in the bone marrow.

      This is a good point. Although we were not able to reliably measure Cit-H3 and MPO in bone marrow fluid, our data shown in Figs. 3-6, 7A-D are from bone marrow cells.

      (4) Data presented in western blots should be quantified. The ratio of signal intensity obtained for beta-actin over the signal obtained for a given protein should be calculated for each experimental condition (especially in Figure 5, where beta-actin levels fluctuate a lot).

      Please see the response to question #1. Fluctuations in β-actin levels are likely related to doxorubicin cytotoxic effects as mentioned in the original submission (lines 150, 194, 253). Despite this caveat, IL-1β levels are stimulated by this drug.

      (5) In Figure 7, BV/TV of WT and mutant mice at baseline should be quantified and shown. Sagittal histological sections of the femur should be shown. 3D micro-CT reconstructions of the entire femur could be shown instead of just the trabecular bone. Osteoblasts and bone resorption should be quantified. Data obtained with vehicle should be quantified and shown in the main figure. The control and LPS conditions should be better defined. Does it include vehicle?

      Please see the response to reviewer 1’s question #1.

      We have now provided 3 D micro-CT reconstructions of a representative femur containing both trabecular and cortical bone (S3A, B Fig).

      LPS was dissolved in PBS (vehicle), which was used as control. We have now replaced vehicle with PBS in Fig. 7.

      (6) For all figures, the number of biological replicates should be mentioned in the legends, as well as the statistical tests used for the analyses.

      We have now included this information in the legends where necessary.

      (7) Some of the scientific rationales are not totally clear and could be better explained in the text. For example, it is written on page 6 "studies mainly on male mice and revolved around innate immune responses" and "we focused on neutrophils because of their high turnover rate and short lifespan", but it is not clear why. The rationale (page 10) for assessing bone mass in "mice globally lacking AIM2 and/or NLRP3" is not totally clear either. The argument is that systemic inflammation leads to bone loss but the effects obtained with the total ablation of AIM2 and NLRP3 do not prove strictly speaking that systemic inflammation really matters (in this current study, although we know from many other studies that it clearly does matter). We could imagine, for example, that bone mass would be preserved in AIM2 KO mice only because the inflammasome is impaired in osteoblasts and/or osteoclasts, but not in any other cell types. Conversely one could imagine that bone would be preserved only because inflammation is preserved in the gut, for example. The use of global knockouts unfortunately does not tell us much about the importance of systemic versus local effects of the inflammasomes. It shows that reducing inflammation, either in specific organs or globally, limits bone loss in doxorubicin-treated mice. This result is important but it was fully expected since doxorubicin has been reported to induce systemic inflammation, and since many studies have shown that systemic inflammation leads to bone loss.

      We appreciate the comments. We have clarified the rationale for focusing on neutrophils (lines 129-130) and AIM2 and NLRP inflammasomes (lines 209-211). We have also now down played the concept of inflammasome-mediated systemic inflammation in doxorubicin-induced bone loss.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Roget et al. build on their previous work developing a simple theoretical model to examine whether ageing can be under natural selection, challenging the mainstream view that ageing is merely a byproduct of other biological and evolutionary processes. The authors propose an agent-based model to evaluate the adaptive dynamics of a haploid asexual population with two independent traits: fertility timespan and mortality onset. Through computational simulations, their model demonstrates that ageing can give populations an evolutionary advantage. Notably, this observation arises from the model without invoking any explicit energy tradeoffs, commonly used to explain this relationship.

      The model’s results are based on both numerical simulations and formal mathematical analysis.

      Additionally, the theoretical model developed here indicates that mortality onset is generally selected to start before the loss of fertility, irrespective of the initial values in the population. The selected relationship between the fertility timespan and mortality onset depends on the strength of fertility and mortality effects, with larger effects resulting in the loss of fertility and mortality onset being closer together. By allowing for a trans-generational effect on ageing in the model, the authors show that this can be advantageous as well, lowering the risk of collapse in the population despite an apparent fitness disadvantage in individuals. Upon closer examination, the authors reveal that this unexpected outcome is a consequence of the trans-generational effect on ageing increasing the evolvability of the population (i.e., allowing a more effective exploration of the parameter landscape), reaching the optimum state faster.

      The simplicity of the proposed theoretical model represents both the major strength and weakness of this work. On one hand, with an original and rigorous methodology, the logic of their conclusions can be easily grasped and generalised, yielding surprising results. Using just a handful of parameters and relying on direct competition simulations, the model qualitatively recapitulates the negative correlation between lifespan and fertility without requiring energy tradeoffs. This alone makes this work an important milestone for the rapidly growing field of adaptive dynamics, opening many new avenues of research, both theoretically and empirically.

      We thank the reviewers and editor for highlighting the importance of the work presented here.

      On the other hand, the simplicity of the model also makes its relationship with living organisms difficult to gauge, leaving open questions about how much the model represents the reality of actual evolution in a natural context.

      We presented both in results and discussion how the mathematical trade-offs between fertility and survival time give rise to (xb, xd) configuration representative of existing aging modes.

      In particular, a more explicit discussion of how the specifics of the model can impact the results and their interpretation is needed. For example, the lack of mechanistic details on the trans-generational effect on ageing makes the results difficult to interpret.

      We discussed the role of the transgenerational Lansing effect played to its function, there is no need for a particular mechanism beyond that function of transgenerational negative effect. We reinforce this in the discussion by adding the following sentence “Regarding the nature of the transgenerational effect, our model is agnostic and the mere transmission of any negative effect would be sufficient to exert the function.“

      Even if analytical results are obtained, most of the observations appear derived from simulations as they are currently presented. Also, the choice of parameters for the simulations shown in the paper and how they relate to our biological knowledge are not fully addressed by the authors.

      The long time limit of the system with and without the Lansing effect is based on analytical results later confirmed using numerical simulations. The choice of parameters is explained in the introduction as being the minimum ones for defining a living organism. As for the parameters’ values, our numerical analysis gives a solution for any ib, id, xb and xd on R+, making the choice of initial value a mere random decision.

      Finally, the conclusions of evolvability are insufficiently supported, as the authors do not show if the wider genotypic variability in populations with the ageing trans-generational effect is, in fact, selected.

      We do not show nor claim that evolvability per se is selected for but that the apparent advantage given by this transgenerational effect seems to be mediated by an increased genotypic/phenotypic variability conferred to the lineage that we interpreted as evolvability.

      Recommendations for the authors

      (1) The authors could use the lineage tracing results for the evolvability aspect. Specifically, within subpopulations featuring the Lansing effect, it would be valuable to explore whether individuals with parental age greater than the mortality onset (a > x_d) demonstrate higher fitness compared to individuals with a < x_d. Additionally, an examination of how this variation evolves over time could provide further insights into the dynamics of the proposed model.

      We thank the reviewer for this suggestion. This is an ongoing work in the group, especially in the context of varying environmental conditions.

      (2) In all simulations, I_b = I_d = 1, resulting in total fertility (x_b * I_b) equating to x_b, while x_d is proportional to life expectancy. Considering an exploration of the implications of this parameter setting, the authors could frame x_d as a 'lifespan cost', potentially allowing for the model to be conceptualised in terms of energetic tradeoffs. This might offer additional perspectives on the dynamics of the model and its alignment with biological principles.

      We discuss how the apparent trade-offs given by the model depending on ib and id values can be related to the interpretation of such trade-offs that has been accepted for most of the past century. Our claim here in the discussion is that one does not need such energetic trade-off for the fertility/longevity trade-offs to appear. Such energetic trade-off is not a “biological principle” but merely an accepted interpretation of a fertility/longevity trade-off that is not even a general mechanism.

      (3) Considering the necessity of variation in x_d for the observed patterns, an exploration could be undertaken by the authors to examine a model where x_d is simply variable without inheritance. This could involve centring x_d at some value d with some variance σ_d for all individuals. In such a scenario, it may be observed whether the same convergence of x_b - x_d occurs without requiring x_d to be selected. Furthermore, similar consequences of the Lansing effect could potentially be identified.

      This was done early on during our work and did not show any major changes in the model’s behaviour beyond the time of convergence. We did not include it to the final manuscript because of the low added value to an already long and complex manuscript.

      (4) While it may not be necessary to alter the model itself, it is suggested that the authors consider acknowledging the potential consequences of certain modelling decisions that might be perceived as biologically unrealistic. Notable examples include assumptions such as fertility from birth and zero mortality prior to x_d. These assumptions, such as infertility from birth, could be viewed as distinctive features, and it might be worth mentioning that parental care of offspring could have co-evolved with such features. This is particularly relevant considering the energy tradeoff hypothesis that has been postulated.

      Although inspired from results obtained in Drosophila, mice, nematodes and zebrafish, the model is so far haploid and asexual, thus involving individuals likely more similar to unicellulars. In these conditions, infertility from birth did not seem relevant to us. However, the model and codes are accessible online and we hope that others will use it to address such questions. It is interesting though to notice that ageing appears here without such constraint.

      Additionally, the consideration that all organisms face a non-trivial mortality rate at every age, not solely from physiological causes, reflects the reality within which selection operates.

      We thought this was the best way to reflect, an environment with a limited carrying capacity. A more complex model is under construction to take into account the fact that older individuals might be more sensitive to it than younger ones.

      (5) While acknowledging the technical rigour applied by the authors, it is suggested that further attention be given to conducting a comprehensive 'reality check' associated with the chosen parameters, particularly regarding the biological relevance of the results. For instance, the authors argue that offspring of old organisms do not, on average, live similarly to their parents. However, it is noted that studies in the haploid asexual organism yeast, akin to what the authors model (albeit not necessarily yeast), revealed that the average lifespan of yeast progeny born from young or old mothers is very similar.

      We do not claim that progeny of old parents live less long than that of younger parents on average, we say that it happens in the progeny of physiologically old parents, representing at most 10% of the population in our numerical simulations.

      The authors cite experimental evolution in Drosophila progeny conceived later in the life of the parent, indicating that the onset of mortality in these progeny occurs late, sometimes even after the end of the fertility period (Burke et al., 2016; Rose et al., 2002). While the authors report their own previous studies with divergent results, independent experiments have suggested an increase of x_d following an artificial increase of x_b (Luckinbill and Clare, 1985; Sgro et al., 2000). A more in-depth consideration of these contrasting observations and their potential implications for the current model could enhance the overall robustness of the study.

      The increase of x_d following an artificial increase of x_b is predicted by our model as discussed. The divergence of observations between studies is alas hard to assess.

      (6) To enhance readability and maintain consistency, it is suggested that the authors homogenise the description of key parameters, specifically x_b and x_d, throughout the text. This could contribute to improved clarity and rigour. One recommendation is to refer to x_b consistently as the 'fertility span' and x_d as the 'mortality onset' for the sake of uniformity in terminology.

      We have modified the text accordingly.

      (7) At various points in the text, the assertion is made that observations have indicated a tradeoff between fertility and longevity. It is recommended that the authors provide references or data to substantiate this claim. This addition would contribute to the empirical grounding of the mentioned tradeoff and strengthen the overall support for the assertions made in the study.

      We added the following references to the discussion Lemaitre et al., 2015, Kirkwood, 2005 and Rodrigues and Flatt 2016.

      (8) The statement claiming that the model is 'able to describe all types of ageing observed in the wild' should be moderated. As the authors themselves acknowledge, the model is referred to as a 'toy model,' and it is made clear that it cannot capture, nor is intended to capture, the entire diversity observed in life. Adjusting this statement to reflect the limited scope and purpose of the model would enhance precision and accuracy in the presentation of its capabilities.

      Although a toy model, its possible configurations encompass all the possible configurations described so far across the diversity of ageing throughout the tree of life from negligible senescence with no loss of fertility (x_b and x_d >> 0) to menopause-like configurations (x_b >> x_d) through fast mortality increase post reproduction (x_b = x_d). Replacing our current square functions would allow age-dependant decrease or increase of fertility and/or risks of mortality onsets.

      (9) To bolster the biological relevance of the study, it is strongly recommended that the authors cross-check the results of their simulations with previously published experimental findings. This approach would serve to strengthen the alignment between the model outcomes and observed biological phenomena. Additionally, placing greater emphasis on the biological relevance aspects throughout the text would contribute to a more robust and comprehensive exploration of the study's implications.

      In the present manuscript we have tried to cite a certain number of results from artificial selection experiments on life history traits in order to strengthen the interpretations of our model’s behaviour. There are numerous other studies, going in the same direction or not, but we do not think that it would be relevant to add an exhaustive list of them. Nevertheless, we added Stearns et al., 2000 that adds extrinsic high mortality to the evolution of life history traits.

      (1) For enhanced clarity, it is suggested that the x-axis in Figure 1 be labelled as 'age.' Considering this adjustment could contribute to clearer visual communication of the data.

      We agree with the reviewer and modified the figure accordingly.

      (!!) The addition of graphical legends is recommended for Figures 3-5, as well as the supplementary figures. Including these legends would provide essential context and improve the interpretability of the figures for readers.

      We agree with the reviewer and modified the figure accordingly.

      (12) For improved distinction of the ranges indicated by quantiles in Figure 3, it is suggested that the authors consider enhancing visual clarity. One approach could involve making the middle quantile thicker or using a different line type. Additionally, it is recommended to explore the calculation of the highest density 90% intervals rather than the 1-9 deciles. This adjustment could contribute to a clearer representation of the data distribution in the figure.

      We named the different deciles directly on the figure to improve readability.

      (13) It is observed that the mathematical proofs in Annex 1 are not displaying properly in the PDF. Additionally, there seem to be missing and broken references for the Annex. This issue may be related to LaTeX formatting. The authors could consider revisiting the formatting of Annex 1 to ensure the correct display of mathematical proofs and address the referencing concerns, possibly by checking and rectifying any LaTeX-related issues.

      The latex file of the supplementary was not correctly compiled. It is now corrected.

      (14) There is inconsistency in the text regarding the reference to the Annex, with both 'Annex' and 'Annexe' being used interchangeably. To maintain uniformity, it is suggested that the authors consistently use either 'Annex' or 'Annexe' throughout the text. This adjustment would contribute to a more polished presentation of the supplementary material.

      We corrected them accordingly.

      (15)There appears to be a typographical error in the name of Supplementary Figure 3.

      We corrected it accordingly.

    1. Author Response

      eLife assessment

      The authors present evidence that small extracellular vesicles can be secreted from cells inside larger vesicles that they call amphiectosomes, which then tear to release their small vesicle contents. There are questions and concerns relating to the quality of the data and the in vivo significance of the observations. The findings are potentially important but the data are incomplete and the claims are only partially supported.

      We agree that the in vivo significance and details of the molecular background of amphiectosome release remains to be studied further. However, as Reviewer 2 indicated, our data in this Short Report may have a substantial impact on our understanding of EV biogenesis. Therefore, we considered it was important to publish our data as soon as possible because it may significantly impact other EV biogenesis studies.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors' research group had previously demonstrated the release of large multivesicular body-like structures by human colorectal cancer cells. This manuscript expands on their findings, revealing that this phenomenon is not exclusive to colorectal cancer cells but is also observed in various other cell types, including different cultured cell lines, as well as cells in the mouse kidney and liver. Furthermore, the authors argue that these large multivesicular body-like structures originate from intracellular amphisomes, which they term "amphiectosomes." These amphiectosomes release their intraluminal vesicles (ILVs) through a "torn-bag mechanism." Finally, the authors demonstrate that the ILVs of amphiectosomes are either LC3B positive or CD63 positive. This distinction implies that the ILVs either originate from amphisomes or multivesicular bodies, respectively.

      Strengths:

      The manuscript reports a potential origin of extracellular vesicle (EV) biogenesis. The reported observations are intriguing.

      Weaknesses:

      It is essential to note that the manuscript has issues with experimental designs and lacks consistency in the presented data. Here is a list of the major concerns:

      (1) The authors culture the cells in the presence of fetal bovine serum (FBS) in the culture medium. Given that FBS contains a substantial amount of EVs, this raises a significant issue, as it becomes challenging to differentiate between EVs derived from FBS and those released by the cells. This concern extends to all transmission electron microscopy (TEM) images (Figure 1, 2P-S, S5, Figure 4 P-U) and the quantification of EV numbers in Figure 3. The authors need to use an FBS-free cell culture medium.

      (1) Although FBS indeed contains bovine EVs, however, the presence of very large multivesicular EVs (amphiectosomes) that our manuscript focuses on has never been observed and reported. For reported size distributions of EVs in FBS, please find a few relevant references below:

      PMID: 29410778, PMID: 33532042, PMID: 30940830 and PMID: 37298194

      All the above publications show that the number of lEVs > 350-500 nm is negligible in FBS. The average diameter of MV-lEVs (amphiectosomes) described in our manuscript is around 1.00-1.50 micrometre.

      (1) When we demonstrated the TEM of isolated EVs, we consistently used serum- free conditioned medium (Fig2 P-S, Fig2S5 J, O) as described previously (Németh et al 2021, PMID: 34665280).

      (2) Our TEM images show cells captured in the process of budding and scission of large multivesicular EVs excluding the possibility that these structures could have originated from FBS.

      (3) In addition, in our confocal analysis, we studied Palm-GFP positive, cell-line derived MV-lEVs. Importantly, in these experiments, FBS-derived EVs are non-fluorescent, therefore, the distinction between GFP positive MV-lEVs and FBS-derived EVs was evident.

      (4) In addition, culturing cells in FBS-free medium (serum starvation) significantly affects autophagy. Given that in our study, we focused on autophagy related amphiectosome secretion, we intentionally chose to use FBS supplemented medium.

      (5) Even though the authors of this manuscript are not familiar with the technological details how FBS is processed before commercialization, it is reasonable to assume that the samples are subjected to sterile filtration (through a 0.22 micron filter) after which MV-lEVs cannot be present in the commercial FBS samples.

      (2) The data presented in Figure 2 is not convincingly supportive of the authors' conclusion. The authors argue that "...CD81 was present in the plasma membrane-derived limiting membrane (Figures 2B, D, F), while CD63 was only found inside the MV-lEVs (Fig. 2A, C, E)." However, in Figure 2G, there is an observable CD63 signal in the limiting membrane (overlapping with the green signals), and in Figure 2J, CD81 also exhibits overlap with MV-IEVs.

      Both CD63 and CD81 are tetraspanins known to be present both in the membrane of sEVs and in the plasma membrane of cells (for references, please see Uniprot subcellular location maps: https://www.uniprot.org/uniprotkb/P08962/entry#subcellular_location https://www.uniprot.org/uniprotkb/P60033/entry#subcellular_location). However, according the feedback of the reviewer, for clarity, we will delete the implicated sentence from the text.

      (3) Following up on the previous concern, the authors argue that CD81 and CD63 are exclusively located on the limiting membrane and MV-IEVs, respectively (Figure 2-A-M). However, in lines 104-106, the authors conclude that "The simultaneous presence of CD63, CD81, TSG101, ALIX, and the autophagosome marker LC3B within the MV-lEVs..." This statement indicates that CD63 and CD81 co-localize to the MV-IEVs. The authors need to address this apparent discrepancy and provide an explanation.

      There must be a misunderstanding because we did not claim or implicate in the text that that “CD81 and CD63 are exclusively located on the limiting membrane and MV-IEVs”. Here we studied co-localization of the above proteins in the case intraluminal vesicles (ILVs). In Fig 2. we did not show any analysis of limiting membrane co-localization.

      (4) The specificity of the antibodies used in Figure 2 should be validated through knockout or knockdown experiments. Several of the antibodies used in this figure detect multiple bands on western blots, raising doubts about their specificity. Verification through additional experimental approaches is essential to ensure the reliability and accuracy of all the immunostaining data in this manuscript.

      We will consider this suggestion during the revision of the manuscript.

      (5) In Figures 2P-R, the morphology of the MV-IEVs does not resemble those shown in Figures 1-A, H, and D, indicating a notable inconsistency in the data.

      EM images in Figure2 P-R show sEVs separated from serum-free conditioned media as opposed to MV-lEVs, which were in situ captured in in fixed tissue cultures (Fig1). Therefore, the two EV populations necessarily have different size and structure. Furthermore, Fig. 1 shows images of ultrathin sections while in Figure 2P-R, we used a negative-positive contrasting of intact sEV-s without embedding and sectioning.

      (6) There are no loading controls provided for any of the western blot data.

      Not even the latest MISEV 2023 guidelines give recommendations for proper loading control for separated EVs in Western blot (MISEV 2023 , DOI: 10.1002/jev2.12404 PMID: 38326288). Here we applied our previously developed method (PMID: 37103858), which in our opinion, is the most reliable approach to be used for sEV Western blotting. For whole cell lysates, we used actin as loading control (Fig3_S2B).

      Additionally, for Figures 2-S4B, the authors should run the samples from lanes i-iii in a single gel.

      Please note that in Figure 2- S4B, we did run a single gel, and the blot was cut into 4 pieces, which were tested by anti-GFP, anti-RFP, anti-LC3A and anti-LC3B antibodies. Full Western blots are shown in Fig.3_S2 B, and lanes “1”, “2” and “3” correspond to “i”, “ii” and “iii” in Fig.2_S4, respectively.

      (7) In Figure 2-S4, is there co-localization observed between LC3RFP (LC3A?) with other MV-IFV markers? How about LC3B? Does LC3B co-localize with other MV-IFV markers?

      In the Supplementary figure Figure 2-S4 we showed successful generation of HEK293T-PalmGFP-LC3RFP cell line. In this case we tested the cells, and not the released MV-lEVs. LC3A co-localized with the RFP signal as expected.

      (8) The TEM images presented in Figure 2-S5, specifically F, G, H, and I, do not closely resemble the images in Figure 2-S5 K, L, M, N, and O. Despite this dissimilarity, the authors argue that these images depict the same structures. The authors should provide an explanation for this observed discrepancy to ensure clarity and consistency in the interpretation of the presented data.

      As indicated in Material and Methods, Fig 2_S5 F, G, H and I are conventional TEM images fixed by 4% glutaraldehyde 1% OsO4 2h and embedded into Epon resin with a post contrasting of 3.75% uranyl acetate 10 min and 12 min lead citrate. Samples processed this way have very high structure preservation and better image quality, however, they are not suitable for immune detection. In contrast, Fig.2._S5 K,L,M,N shows immunogold labelling of in situ fixed samples. In this case we used milder fixation (4% PFA, 0.1% glutaraldehyde, postfixed by 0.5% OsO4 30 min) and LR-White hydrophilic resin embedding. This special resin enables immunogold TEM analysis. The sections were exposed to H2O2 and NaBH4 to render the epitopes accessible in the resin. Because of the different applied techniques, the preservation of the structure is not the same. In the case of Fig.2 J, O, separated sEVs were visualised by negative-positive contrast and immunogold labelling as described previously (PMID: 37103858).

      (9) For Figures 3C and 3-S1, the authors should include the images used for EV quantification. Considering the concern regarding potential contamination introduced by FBS (concern 1), it is advisable for the authors to employ an independent method to identify EVs, thereby confirming the reliability of the data presented in these figures.

      In our revised manuscript, we will provide all the images used for EV quantification in Figure 3C. Given that Figures 3C and 3-S1 show MV-lEVs released by HEK293T-PlamGFP cells, the possible interference by FBS-derived non-fluorescent EVs can be excluded.

      (10) Do the amphiectosomes released from other cell types as well as cells in mouse kidneys or liver contain LC3B positive and CD63 positive ILVs?

      Based on our confocal microscopic analysis, in addition the HEK293T-PalmGFP cells, HT29 and HepG2 cells also release similar LC3B and CD63 positive MV-lEVs. Preliminary evidence shows MV-lEV secretion by additional cell types.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The present study by Berger et al. analyzes to what extent memory formation is dependent on available energy reserves. This has been dealt with extensively in the case of aversive memory formation, but only very sparsely in the case of appetitive memory formation. It has long been known that an appetitive memory in flies can only be formed by starvation. However, the authors here additionally show that not only the duration of starvation plays a role, but also determines which form of memory (short- or long-term memory) is formed. The authors demonstrated that internal glycogen stores play a role in this process and that this is achieved through insulin-like signaling in octopaminergic reward neurons that integrates internal energy stores into memory formation. Here, the authors suggest that octopamine plays a role as a negative regulator of different forms of memory.

      The study sheds light on an old question, to what extent the octopaminergic neuronal system plays a role in the formation of appetitive memory, since in recent years only the dopaminergic system has been in focus. Furthermore, the data are an interesting contribution to the ongoing debate whether insulin receptors play a role in neurons themselves or in glial cells. The experiments are very well designed and the authors used a variety of behavioural experiments, genetic tools to manipulate neuronal activity and state-of-the-art imaging techniques. In addition, they not only clearly demonstrated that octopamine is a negative regulator of appetitive memory formation, but also proposed a mechanism by which the insulin receptor in octopaminergic neurons senses the internal energy status and then controls the activity of those neurons. The conclusions are mostly supported by the data, but some aspects related to the experimental design, some explanations and literature references need more clarification and revision.

      (1) Usually, long-term memory (LTM) is tested 24 hours after training. Here, the authors usually refer to LTM as a memory that is tested 6 hours after training. The addition of a control experiment to show that LTM that the authors observe here lasts longer would increase the power of this study immensely.

      We thank the reviewer for this comment, as it helped greatly to clarify the matter.

      We measured memory of control and mutant flies 24 h after the training and included the data into the manuscript (Figure 1B and summarized in a model in Figure 2C). We show that control flies develop an intermediate type of memory, that is depending on the length of starvation either anesthesia-sensitive or resistant. Mutants lacking octopamine develop either anesthesia-sensitive or resistant long-term memory.

      (2) The authors define here another consolidated memory component as ARM, when they applied a cold-shock 2 hours after training. However, some publications showed that LTM is formed after only one training cycle (Krashes et al 2008, Tempel et al 1983). This makes it difficult to determine, whether appetitive ARM can be formed. Furthermore, one study showed that appetitive ARM is absent after massed training (Colomb et al 2009). Therefore, the conclusion could be also, that different starvation protocols, would lead to different stabilities of LTM. Therefore, additional experiments could help to clarify this opposing explanation. From these results, it can then be concluded either that different stable forms of LTM are formed depending on the starvation state, or that two differently consolidated memory phases (LTM, ARM) are formed, as has already been shown for aversive memory. This is also important for other statements in the manuscript, and therefore the authors should address this. For example, the findings about the insulin receptor (is it two opposing memories or different stabilities of LTM).

      The flies indeed develop different types of memory depending on the length of starvation and the internal energy supply.

      Reviewer #2 (Public Review):

      How organism physiological state modulates establishment and perdurance of memories is a timely question that the authors aimed at addressing by studying the interplay between energy homeostasis and food-related conditioning in Drosophila. Specifically, they studied how starvation modulates the establishment of short-term vs long-term memories and clarified the role of the monoamine Octopamine in food-related conditioning, showing that it is not per se involved in formation of appetitive short-term memories but rather gates memory formation by suppressing LTM when energy levels are high. This work clarifies previously described phenotypes and provides insight about interconnections between energy levels, feeding and formation of short-term and long-term food-related memories. In the absence of population-specific manipulation of octopamine signaling, it however does not reach a circuit-level understanding of how these different processes are integrated.

      Strengths

      • Previous studies have documented the impact of Octopamine on different aspects of food-related behaviors (regulation of energy homeostasis, feeding, sugar sensing, appetitive memory...), but we currently lack a clear understanding of how these different functions are interconnected. The authors have used a variety of experimental approaches to systematically test the impact of internal energy levels in establishment of appetitive memory and the role of Octopamine in this process.

      • The authors have used a range of approaches, performed carefully controlled experiments and produced high quality data.

      Weaknesses

      (1) In the tbh mutant flies, Tyramine -to- Octopamine conversion is inhibited, resulting not only in a lack of Octopamine, but also in elevated levels of Tyramine. If and how elevated levels of Tyramine contributes to the described phenotypes is unclear. In the current version of the manuscript, only one set of experiments (Figure 2) has been performed using Octopamine agonist. This is particularly important in light of recent published data showing that starvation modifies Tyramine levels. (2) Octopamine (and its precursor Tyramine) have been implicated in numerous processes, complicating the analysis of the phenotypes resulting from a general inhibition of tbh.

      We thank the reviewer for raising these points. The observed memory defects of the Tbh mutants can be solely explained by loss of octopamine. We included models into the manuscript to illustrate this (Figure 2 C and Figure 7E).

      To address whether the elevated levels of tyramine observed in Tbh mutants interfere with food consumption, we analyzed the effect of increased levels of tyramine and octopamine on food consumption. We included the data (Figure S2). An increase in tyramine levels did not result in a change in food intake, rather the increase in octopamine levels reduced food intake. Our data show that the reduction of food intake observed in starved Tbh mutants is due to the increased internal energy supply.

      (3) The manuscript explores various aspects of the impact of energy levels on food-related behaviors and the underlying sensing and effector mechanism, both in wild-type and tbh mutants, making it difficult to follow the flow of the results.

      We included models illustrating the results to clarify the content of the manuscript.

      Reviewer #3 (Public Review):

      In this manuscript, Berger et al. study how internal energy storage influence learning and memory. Since in Drosophila melanogaster, octopamine (OA) is involved in the regulation of energy homeostasis they focus on the roles of OA. To do so they use the tyramine-β-hydroxylase (Tbh) mutant that is lacking the neurotransmitter OA and study short term memory (STM), long-term memory (LTM) and anesthesia-resistant memory (ARM). They show that the duration of starvation affects the magnitude of both short- and long-term memory. In addition, they show that OA has a suppressive effect on learning and memory. In terms of energy storage, they show that internal glycogen storage influences how long sucrose is remembered and high glycogen suppresses memory. Finally, they show that insulin-like signaling in octopaminergic neurons, which is also related to internal energy storage, suppresses learning and memory.

      This is an important study that extends our knowledge on OA activity in learning and memory and the effects the metabolic state has on learning and memory. The authors nicely use the genetic tools available in flies to try and unravel the complex circuitry of metabolic state level, OA activity and learning and memory.

      Nevertheless, I do have some comments that I think require attention:

      (1) The authors use RNAi to reduce the level of glycogen synthase or glycogen phosphorylase. These manipulations are expected to affect the level of glycogen. Using specific drivers the authors attempt to manipulate glycogen level at the muscles and fat bodies and examine how this affects learning and memory. The conclusions of the authors arise solely from the manipulation intended (i.e. the genetics). However, the authors also directly measured glycogen levels at these organs and those do not follow the manipulation intended, i.e. the RNAi had very limited effect on the glycogen level. Nevertheless, these results are ignored.

      We agreed with the reviewer and repeated the experiments. While we could not detect differences in whole animals, we detected differences in tissues enriched for muscles or fat, e.g. thorax or abdomen. We added the data.

      (2) The authors claim in the summary that OA is not required for STM. However, according to one experiment OA is required for STM as Tbh mutants cannot form STM. In another experiment OA is suppressive to STM as wt flies fed with OA cannot form STM. Therefore, it is very difficult to appreciate the actual role of OA on STM.

      During mild starvation, the internal energy supply is greater in Tbh mutants than in control flies. This information is integrated into the reward system via insulin receptor signaling. Therefore, the association between the odorant and sucrose is not meaningful to the mutants and no STM is formed. At the same time there is no release of octopamine and therefore no repression of LTM. In starved animals, octopamine suppresses food intake (we added the data). This is consistent with a function of Octopamine as a signal for the presence of food. Depending on when the signal comes, this might suppress the formation of STM or LTM.

      (3) The authors use t-test and ANOVA for most of the statistics, however, they did not perform normality tests. While I am quite sure that most datasets will pass normality test, nevertheless, this is required.

      Thanks for pointing this out. We have included a description in the “Materials and Methods” section that explains how we tested the data for normal distribution. We corrected the figure legends accordingly.

      “We used the Shapiro-Wilk test (significance level P < 0.05) followed by a QQ-Plot chart analysis to determine whether the data were normal distributed. “

      (4) While it is logical to assume that OA neurons are upstream to R15A04 DA neurons, I am not sure this really arises from the experiment that is presented here. It is well established that without activity in R15A04 DA neurons there is no LTM. Since OA acts to decrease LTM, can one really conclude anything about the location of OA effect when there is no learning?

      Normally control flies did not form memory 6 h after training, only Tbh mutants. We wanted to investigate what kind of memory develops in Tbh mutants. During the experiments of the manuscript, we kept the training procedure constant.

      (5) It is unclear how expression of a dominant negative form of insulin receptor (InR) in OA neurons can rescue the lack of OA due to the Tbh mutation. If OA neurons cannot release anything to the presumably downstream DA neurons, how can changing their internal signaling has any effect?

      The expression of the dominant negative form of the insulin receptor signals no food or low energy levels and activation of the insulin receptor that there is enough food. The reward is a source of food, but the energy content is not high enough to fill the energy stores. The insulin receptor activation can activate at least three different signaling cascades, one of which might regulate octopamine release.

      While I stressed some comments that need to be addressed, the overall take-home message of the manuscript is supported and the authors do show that the metabolic state of the animal affects learning and memory. I do think though, that some more caution is required for some of the conclusions.

      We added additional data to address the points raised.

      Recommendations for the authors:

      We addressed all points raised by the reviewers, clarified the content or added more data.

      Reviewer #1 (Recommendations For The Authors):

      (1) Throughout the manuscript, the full stop of a sentence is always placed before the references.

      We fixed this.

      (2) I find the English in the manuscript not yet sufficient for publication. I suggest that the authors carefully revise the manuscript. I think if the sentences are structured a little more clearly, this paper has enormous potential to be read by your broad community.

      We agree and revised the manuscript. We hope the manuscript is now clearer.

      (3) Sentences l114 to l117 are misleading. The authors imply that they tested the same flies for changes in odor perception or sucrose sensitivity. I assume that the authors meant that they analyzed different groups of animals.

      We clarified the sentence as follows:

      “To ensure that the observed differences in learning and memory were not due to changes in odorant perception, odorant evaluation or sucrose sensitivity, different fly populations of the same genotypes were tested for their odorant acuity, odorant preference and their sucrose responsiveness (Table S1).”

      (4) In the title as well as in the abstract the influence of octopamine on appetitive memory formation is described in more detail, this is also the main focus of this study. However, in the introduction, the influence of the insulin receptor on memory formation is discussed first. Personally, I would describe this later in the manuscript, ideally in the results section. At this point in the manuscript, this leads to an interruption in the flow of reading.

      Thanks for the suggestion. We changed the order in the introduction.

      (5) The authors could consider, since they only used Drosophila melanogaster, changing "Drosophila melanogaster" to "Drosophila" throughout the manuscript.

      We modified the text accordingly.

      (6) All evaluations and statistical tests are state of the art. However, I have one comment. For each statistical test, a correction should be made depending on the number of tests. However, I could not determine whether this was also done for the parametric or non-parametric one-sample t-test. From the results and the methods section, I would guess not. Here I would recommend a Bonferroni correction or even better a Sidak-Holm correction. Furthermore, the authors could also go into more detail about which non-parametric one-sample t-test they used.

      We described the statistic used in more detail in the material and method section.

      “We used the Shapiro-Wilk test (significance level P < 0.05) followed by a QQ-Plot chart analysis to determine whether the data were normal distributed. For normal distributed data, we used the Student’s t test to compare differences between two groups and the one-way ANOVA with Tukey’s post hoc HSD test for differences between more than two groups. For nonparametric data, we used the Mann-Whitney U test for differences between two groups and for more than two groups the Kruskal-Wallis test with post hoc Duenn analysis and Bonferroni correction. The nonparametric one-sample sign test was used to analyze whether behavior was not based on random choice and differed from zero (P < 0.5). The statistical data analysis was performed using statskingdom (https://www.statskingdom.com).”

      (7) In nearly all figure legends the sentence "The letter "a" marks a significant difference from random choice as determined by a one-sample sign test (P < 0.05; P< 0.01)" occur. This is correctly indexed in the figures. However, I do not understand here what then P < 0.05; P**< 0.01 means. The significance level should be described here. I would strongly recommend the authors to make the definition clearer.

      We corrected this in the figure legends (see also above).

      (8) In Fig. 1B the labelling is a bit confusing. I interpret the two right groups as the mutants for octopamine, but there is still w[1118] in front.

      We modified the Figure 1B.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions

      (1) Assessing the contribution of Tyramine in the observed phenotypes (for example by reducing the levels of Tyramine or its specific receptor) would help understand the contribution of Tyramine in the observed phenotypes.

      See comments above.

      We thank the reviewer for raising these points. The observed memory defects of the Tbh mutants can be solely explained by loss of octopamine. We included models into the manuscript to illustrate this (Figure 2 C and Figure 7E).

      To address whether the elevated levels of tyramine observed in Tbh mutants interfere with food consumption, we analyzed the effect of increased levels of tyramine and octopamine on food consumption. We included the data (Figure S2). An increase in tyramine levels did not result in a change in food intake, rather the increased octopamine levels reduced food intake. Our data show that the reduction of food intake observed in starved Tbh mutants is due to the increased internal energy supply.

      (2) Cell-specific inhibition of octopamine receptors should thus be performed to precisely interpret the observed phenotypes and dissect how interconnected the different phenotypes are, which is the object of this publication.

      We observed that the time point and duration of octopamine application changes the behavioral output. The behavior analyzed depends on pulses of octopamine and differences of the internal energy status. A cell-specific inhibition via RNAi knock down of octopamine receptors might not clarify the issue.

      (3) Defining of streamline and progressively integrating the different observations into a unifying model would improve the clarity and flow of the manuscript.

      We included models explaining the observed results (Figure 2C and Figure 7E).

      Minor comments

      Line 129: Figure 1B should be mentioned, not 2B.

      Figure 1 legend: E should be replaced by C (after A,B).

      Figure S5: what are the arrows pointing to? Why are the Inr foci visible in A not seen in B? It should be mCD8-GFP and not mCD on top of the images.

      We fixed this.

      Reviewer #3 (Recommendations For The Authors):

      Major:

      (1) Can one really conclude from Figure 2A that OA acts on R15A04 DA neurons? It is well established that without activity in these DA neurons there is no LTM. Since OA acts to decrease learning, how one can conclude anything about the location of OA effect when there is no learning? With STM the situation was opposite, OA supported learning and this was abolished when DA neurons were silenced. I think some supporting experiment are required, i.e. how OA affects DA neurons activity or, alternatively, tone down a bit the writing.

      Normally control flies did not form memory 6 h after training, only Tbh mutants. We wanted to investigate what kind of memory develops in Tbh mutants. During the experiments of the manuscript, we kept the training procedure constant. The inhibition of dopaminergic neurons blocks the memory of Tbh mutants. Taken together the duration of the memory, the cold-shock experiments and the inhibition of the dopaminergic neurons, Tbh develops LTM after training. This training does not evoke memory in controls.

      The loss of STM in mildly starved Tbh mutants depends on the integration of the high internal energy levels via InR signaling. Reducing the internal energy levels further by extension of starvation result in STM supporting that OA is not directly involved in the formation of STM.

      (2) Figure 4 requires some clarifications. In Supplementary Figure S2 the authors show that they could not manipulate glycogen levels in muscles. However, in Figure 4B they show that "Increasing glycogen levels in the muscles did not change short-term memory in 16 h starved flies, but the reduction in glycogen significantly improved memory strength (Figure 4B)" (lines 231-233). How can this be reconciled?

      While we could not detect differences in whole animals, we detected differences in glycogen content in body parts enriched with muscles or fat, e.g. thorax or abdomen when using UAS-GlyP-RNAi or UAS-GlyS-RNAi under the control of the respective Gal4 drivers.

      We added the data.

      Likewise, the authors write that "Increasing or decreasing glycogen levels in the fat bodies had no effect on memory performance (Figure 4C)" Line (233-234). However, in Figure S2 they show that they can only increase glycogen levels but not decrease them.

      As explained above the conclusion of Figure 4 "Thus, low levels of glycogen in the muscles upon starvation positively influence appetitive short-term memory, while high levels of glycogen in the muscles and fat body reduce short-term memory" lines 245-246, is not supported by the direct measurements of glycogen presented in Figure S2.

      We added the data showing that the reduction or increase can be measured when analyzing the specific body parts enriched in muscles tissue or fat tissue.

      (3) In cases where mutant flies do not display learning, a control should be done to see if they ate the sugar (with dye). Especially since the genetic manipulation affects metabolism.

      We analyzed how much sucrose the animals consumed in the behavioral test. Tbh and controls fed and there was no difference in feeding behavior between the mutants and the controls.

      “We next determined whether differences in preferences influence sucrose intake during training. Therefore, we measured the sucrose intake of starved flies in the behavioral set up. We used a food-colored sucrose solution and evaluated the presence of food in the abdomen of the fly after two 2 min (Table S1). Flies fed sucrose within 2 min and there was no difference between w1118 and TβhnM18 flies. “

      (4) The use of t-test requires the data to be normally distributed. If I am not mistaken this was not demonstrated for any of the datasets used. I did a quick check on one of the datasets provided in the excel sheet and it is normally distributed. Therefore, please add normality test for all data sets. If some do not pass normality, please use a suitable non-parametric test.

      We added normality test to all data sets and used non-parametric tests for non-normal distributed data. We clarify this in the material and method section and the figure legends.

      (5) The authors show that OA suppresses also STM. This result is in contradiction to previous published results. This by itself is not a problem. However, this result also seems to me in contradiction to the authors own results. According to Figure 1B, OA is required for STM as it absence in the tbh mutant results in loss of STM. According to Figure 2C, OA is reducing STM as wt flies fed with OA just prior to learning do not form STM. This appears in other places in the manuscript as well.

      In addition, in the text lines 178-180, the authors write "A short pulse of octopamine before the training inhibits the STM. Thus, octopamine is a negative regulator of appetitive dopaminergic neuron-dependent long-term memory and can block STM." But in the summary they write "Octopamine is not required for short-term memory, since octopamine deficient mutants form appetitive short-term memory to sucrose and to other nutrients depending on the internal energy status." So, the take-home message regarding OA and STM is unclear.

      The authors need to better clarify this point.

      We clarified these points. See comments above. The loss of memory in Tbh mutants is not due to loss of octopamine, but increased energy levels that changes the reward properties of sucrose.

      (6) The manuscript is very difficult to follow. The authors constantly change between 16 and 40 hours starvation, short term memory, 3 hour memory and 6 hour memory. I think it would have been better to have a more focused manuscript. However, if this is not possible, I recommend preparing a diagram with the different neurons or signaling pathways (i.e. insulin) and how they affect each other. Also, perhaps add to each figure a panel describing exactly the experimental conditions. I think also simplifying the text and adding more conclusions throughout the results section will help the readers to follow. Finally, I think that it would help understanding the conclusions if the authors can add a diagram of the flow that they think occurs. For example, the authors show that glycogen suppresses learning as its reduction increases learning. They also show that InR activity receptor suppresses learning as its KD also increases learning. If I am not mistaken the link between the two is not straight forward (but I may be wrong here). A diagram of the flow would be very helpful.

      We prepared diagrams summarizing and explaining the results.

      Minor

      (1) I may not have understood correctly as I am not sure that I found Table S1.

      Also, there was no legend for Table S1.

      Nevertheless, if I understood correctly, the authors write that "Before the experiments, flies were tested to determine whether they perceived the odorants, preferred one odorant over other and responded to the reward similarly to ensure that the observed differences in behavior were not due to changes in odorant perception or sucrose sensitivity (Table S1)." However, according to the Table that I found it seems that following 40h starvation wt flies show preference to OCT whereas this does not occur for the mutant. Also, it seems that at 16h the mutant has a much higher preference to the odors than after 40h. This is a bit odd. I am also not sure what the balance value refers to. Finally, the mutant shows really low 2M sucrose preference after 40h. In general, this set of experiments requires a bit more explanation.

      I think it is better to show these experiments using graphs and add this to the supplementary figures.

      We clarified the experiments in the result section as follows and added an explanation to the material and method section. We tested the odorant acuity and sucrose preference for all genotypes used in the manuscript and added the data to the Table S1.

      “The flies of the different genotypes sensed the odorants and evaluated them as similar salient in comparison. This is important to a avoid a bias in the situation where flies have to choose between the two odorants after training. They also sensed sucrose. We next determined whether differences in preferences influence sucrose intake during training. Therefore, we measured the sucrose intake of starved flies in the behavioral set up. We used a food-colored sucrose solution and evaluated the presence of food in the abdomen of the fly after two 2 min (Table S1). Flies fed sucrose within 2 min and there was no difference between w1118 and TβhnM18 flies.”

      (2) Line 129 should be Figure 1B

      Is corrected.

      (3) Line 133, Figure 1C, how can one explain the negative reinforcement? I can understand no reinforcement, but negative?

      The effect of glucose might be doses dependent. 0.15 M sucrose is a much closer to a realistic concentration found in fruits than 2 M sucrose and might therefore elicit aversion. When animals are starved enough they might find any food source attractive, even when the concentrations of sucrose is unrealistic.

      (4) Figure 1, why are the graphs different between panel B and C?

      Is corrected.

      (5) In Figure S1, are the TβhnM18 groups differ significantly from zero? I think they are, so better to state this somewhere. If not, the claims in lines 134-135 are not supported by the data.

      We added the significance and added the data to Figure 1.

      Figure S1 legend: there is no A panel. Also "below box blots" should be box plots.

      Thanks for pointing that out. We corrected it.

      (6) It is not clear what is the duration of starvation used in Figure 2A. I assume that 16h and sucrose 2M used were used, but I would state that explicitly.

      We added the information to the figure legends.

      (7) Figure 2A is missing a control of flies with both the driver and UAS shibirets at the permissive temperature.

      We added the controls to the supplement (Figure S1).

      (8) It seems to me that Figure 3B, in which the author state that "Only after 40 h of starvation did TβhnM18 mutants show a similar preference to control sucrose consumption" (line 198) is somewhat in contradiction to Table S1 in which I see Sucrose preference for wt 0.36 and for tbh 0.17. I think this comment arise because I did not understand Table S1 correctly, so please better explain.

      We rewrote this section.

      (9) In Figure 3C, consider not using std as this stands for standard deviation and may be confusing.

      We now use the term “food” instead of “std” and explained in the legend that food means standard fly food.

      We fixed this.

      (10) Please check the Supplementary Figures. I think Figures S2 and S3 are switched.

      We fixed this.

      (11) There is a mistake in Figure S3A. The right column should have another "+" sign.

      Thanks, we fixed this.

      (12) I am somewhat puzzled by Figures 4 and 5. If I understand correctly figure 4B w1118 mef2-G4 is exactly the same experiment as Figure 5A w1118 mef2-G4 and yet in Figure 4B performance index is 0.2 and in Figure 5A about 0.4. According to other comparisons it seems to me that these will be significantly different and yet it is the same experiment.

      They are two independent experiments done at different times. The controls were independently repeated.

      (13) Line 273 should be Figure 5C.

      Is corrected.

      (14) I don't think this is a correct sentence "Virgin females remembered sucrose significantly better than mated females." Line 274.

      Reads now:

      “Virgin females remembered the odorant paired with sucrose significantly better than mated females.”

      (15) Line 340 there is no Figure 1E

      Is fixed (1 C)

      (16) The data excel file is difficult to follow. In Figure 2 there are references to Figure 5. The graphs are pointing to other files. Text is not always in English. It is not clear what W stands for. I recommend making it more accessible.

      We corrected the data excel files.

      (17) The manuscript is difficult to follow. I recommend preparing a diagram with the different neurons or signaling pathways (i.e. insulin) and how they affect each other.

      We improved the data presentation by

      a) adding a model showing the kinetics of memory formation in controls and mutants (Figure 2C)

      b) a model explaining how the internal state is integrated into the formation of memory (Figure 7D).

    1. Author Response

      The following is the authors’ response to the original reviews.

      This study reports important evidence that infants' internal factors guide children's attention and that caregivers respond to infants' attentional shifts during caregiver-infant interactions. The authors analyzed EEG data and multiple types of behaviors using solid methodologies that can guide future studies of neural responses during social interaction in infants. However, the analysis is incomplete, as several methodological choices need more adequate justification.

      Reviewer #1

      Public Review:

      The authors bring together multiple study methods (brain recordings with EEG and behavioral coding of infant and caregiver looking, and caregiver vocal changes) to understand social processes involved in infant attention. They test different hypotheses on whether caregivers scaffold attention by structuring a child's behavior, versus whether the child's attention is guided by internal factors and caregivers then respond to infants' attentional shifts. They conclude that internal processes (as measured by brain activation preceding looking) control infants' attention, and that caregivers rapidly modify their behaviors in response to changes in infant attention.

      The study is meticulously documented, with cutting-edge analytic approaches to testing alternative models; this type of work provides a careful and well-documented guide for how to conduct studies and process and analyze data for researchers in the relatively new area of neural response in infants in social contexts.

      We are very pleased that R1 considers our work an important contribution to this developing field, and we hope that we have now addressed their concerns below.

      Some concerns arise around the use of terms (for example, an infant may "look" at an object, but that does not mean the infant is actually "attending); collapsing of different types of looks (to people and objects), and the averaging of data across infants that may mask some of the individual patterns.

      We thank the reviewer for this feedback and their related comments below, and we feel that our manuscript is much stronger as a result of the changes we have made. Please see blow for a detailed description of our rationale for defining and analysing the attention data, as well as the textual changes made in response to the author’s comments.

      Recommendations For The Authors

      This paper is rigorous in method, theoretically grounded, and makes an important contribution to understanding processes of infant attention, brain activity, and the reciprocal temporal features of caregiver-infant interactions. The alternative hypothesis approach sets up the questions well (although authors should temper any wording that suggests attention processes are one or the other. That is, certain bouts of infant attention can be guided by exogenous factors such as social input, and others be endogenous; so averaging across all bouts can actually mask the variation in these patterns). I appreciated the focus on multiple types of behavior (e.g., gaze, vocal fluctuations in maternal speech); the emphasis on contingent responding; and the very clear summaries of takeaways after each section. Furthermore, methods and analyses are well described, details on data processing and so on are very thorough, and visualizations aptly facilitate data interpretation. However, I am not an expert on infant neural responses in EEG and assume that a reviewer with such expertise will weigh in on the treatment and quality of the data; therefore, my comments should be interpreted in light of this lack of knowledge.

      We thank R1 for these very positive and insightful comments on our analyses which are the result of a number of years of methodological and technical developmental work.

      We do agree with R1 that we should more carefully word parts of our argument in the Introduction to make clear the fact that shifts in infant attention could be driven by a combination of interactive and endogenous influences. As a result of this comment, we have made direct changes to parts of the Introduction; removing any wording that suggests that these processes are ‘alternative’ or ‘separate’, and our overall aim states: ‘Here, recording EEG from infants during naturalistic interactions with their caregiver, we examined the (inter)-dependent influences of infants’ endogenous oscillatory neural activity, and inter-dyadic behavioural contingencies in organising infant attention’.

      Examining variability between infant attention episodes in the factors that influence the length and timing of the attention episode is an important area for future investigation. We now include a discussion on this on page 38 of the Discussion section, with suggestions for how this could be examined. Investigating different subtypes of infant attention is methodologically challenging, given the number of infant behaviours that would need to inform such an analysis- all of which are time consuming to code. Developing automated methods for performing these kinds of analyses is an important avenue for future work.

      Here, I review various issues that require revision or elaboration based on my reading of what I consider to otherwise be a solid and important research paper.

      Problem in the use of the term attention scaffolding. Although there may be literature precedent in the use of this term, it is problematic to narrowly define scaffolding as mother-initiated guidance of attention. A mother who responds to infant behaviors, but expands on the topic or supports continued attention, and so on, is scaffolding learning to a higher level. I would think about a different term because it currently implies a caregiver as either scaffolding OR responding contingently. It is not an either-or situation in conceptual meaning. In fact, research on social contingency (or contingent responsiveness), often views the follow-in responding as a way to scaffold learning in an infant.

      Yes, we agree with R1 that the term ‘attention scaffolding’ could be confusing given the use of this term in previous work conducted with children and their caregivers in problem-solving tasks, that emphasise modulations in caregiver behaviour as a function of infant behaviour. As a result of this suggestion, we have made direct edits to the text throughout, replacing the term attentional scaffold with terms such as ‘organise’ and ‘structure’ in relation to the caregiver-leading or ‘didactic’ perspective, and terms such as ‘contingent responding’ and ‘dynamic modulation’ in relation to the caregiver-following perspective. We feel that this has much improved the clarity of the argument in the Introduction and Discussion sections.

      Do individual data support the group average trends? My concern with unobservable (by definition) is that EEG data averages may mask what's going on in individual brain response. Effects appear to be small as well, which occurs in such conditions of averaging across perhaps very variable response patterns. In the interest of full transparency and open science, how many infants show the type of pattern revealed by the average graph (e.g., do neural markers of infant engagement forward predict attention for all babies? Majority?). Non-parametric tests on how many babies show a claimed pattern would offer the litmus test of significance on whether the phenomenon is robust across infants or pulled by a few infants with certain patterns of data. Ditto for all data. This would bolster my confidence in the summaries of what is going on in the infant brain. (The same applies as I suggest to attention bouts. To what extent does the forward-predict or backward-predict pattern work for all bouts, only some bouts, etc.?). I recognize that to obtain power, summaries are needed across infants and bouts, but I want to know if what's being observed is systematic.

      We thank R1 for this comment and understand their concern that the overall pattern of findings reported in relation to the infants’ EEG data might obscure inter-individual variability in the associations between attention and theta power. Averaging across individual participant EEG responses is, however, the gold standard way to perform both event-locked (Jones et al., 2020) and continuous methods (Attaheri et al., 2020) of EEG analysis that are reported in the current manuscript. EEG data, and, in particular, naturalistic EEG data is inherently noisy, and averaging across participants increases the signal to noise ratio (i.e. inconsistent, and, therefore, non-task-related activity is averaged out of the response (Cohen, 2014; Noreika et al., 2020)). Examining individual EEG responses is unlikely to tell us anything meaningful, given that, if a response is not found for a particular participant, then it could be that the response is not present for that participant, or that it is present, but the EEG recording for that participant is too noisy to show the effect. Computing group-level effects, as is most common in all neuroimaging analyses, is, therefore, most optimal to examining our main research questions.

      The findings reported in this analysis also replicate previous work conducted by our lab which showed that infant attention to objects significantly forward-predicted increases in infant theta activity during joint table-top play with their caregiver, involving one toy object (compared to our paradigm which involved 3;Wass et al., 2018). More recent work conducted by our lab has also shown continuous and time-locked associations between infant look durations and infant theta activity when infants play with objects on their own (Perapoch Amadó et al., 2023). To reassure readers of the replicability of the current findings, we now reference the Wass et al. (2018) study at the beginning of the Discussion section.

      Could activity artifacts lead to certain reported trends? Babies typically look at an object before they touch or manipulate the object, and so longer bouts of attention likely involve a look and then a touch for lengthier time frames. If active involvement with an object (touching for example) amplifies theta activity, that may explain why attention duration forward predicts theta power. That is, baby looks, then touches, then theta activates, and coding would show visual gaze preceding the theta activation. Careful alignment of infants' touches and other such behaviors with the theta peak might help address this question, again to lend confidence to the robustness of the interpretation.

      Yes, again this is a very important point, and the removal of movement-related artifact is something we have given careful attention to in the analysis of our naturalistic EEG data (Georgieva et al., 2020; Marriott Haresign et al., 2021). As a result of this comment we have made direct changes to the Results section on page 18 to more clearly signal the reader to our EEG pre-processing section before presenting the results of the cross-correlation analyses.

      As we describe in the Methods section of the main text, movement-related artifacts are removed from the data with ICA decomposition, utilising an automatic-rejection algorithm, specially designed for work with our naturalistic EEG data (Marriott Haresign et al., 2021). Given that ICA rejection does not remove all artifact introduced to the EEG signal, additional analysis steps were taken to reduce the possibility that movement artifacts influenced the results of the reported analyses. As explained in the Methods section, rather than absolute theta power, relative theta was used in all EEG analyses, computed by dividing the power at each theta frequency by the summed power across all frequencies. Eye and head movement-related artifacts most often associate with broadband increases in power in the EEG signal (Cohen, 2014): computing relative theta activity therefore further reduces the potential influence of artifact on the EEG signal.

      It is also important to highlight that previous work examining movement artifacts in controlled paradigms with infants has shown that limb movements actually associate with a decrease in power at theta frequencies, compared to rest (Georgieva et al., 2020). It is therefore unlikely that limb movement artifacts explain the pattern of association observed between theta power and infant attention in the current study.

      That said, examining the association between body movements and fluctuations in EEG activity during naturalistic interactions is an important next step, and something our lab is currently working on. Given that touching an object is most often the end-state of a larger body movement, aligning the EEG signal to the onset of infant touch is not all that informative to understanding how body movements associate with increases and decreases in power in the EEG signal. Our lab is currently working on developing new methods using motion tracking software and arousal composites to understand how data-derived behavioural sub-types associate with differential patterns of EEG activity.

      The term attention may be misleading. The behavior being examined is infant gaze or looks, with the assumption that gaze is a marker of "attention". The authors are aware that gaze can be a blank stare that doesn't reflect underlying true "attention". I recommend substitution of a conservative, more precise term that captures the variable being measured (gaze); it would then be fine to state that in their interpretation, gaze taken as a marker for attention or something like that. At minimum, using term "visual attention" can be a solution if authors do not want to use the precise term gaze. As an example, the sentence "An attention episode was defined as a discrete period of attention towards one of the play objects on the table, or to the partner" should be modified to defined as looking at a play object or partner.

      We thank the reviewer for this comment, and we understand their concern with the use of the term ‘attention’ where we are referring to shifts in infant eye gaze. However, the use of this term to describe patterns of infant gaze, irrespective of whether they are ‘actually attending’ or not is used widely in the literature, in both interactive (e.g. Yu et al., 2021) and screen-based experiments examining infant attention (Richards, 2010). We therefore feel that its use in our current manuscript is acceptable and consistent with the reporting of similar interaction findings. On page 39 of the Discussion we now also include a discussion on how future research might further investigate differential subtypes of infant looks to distinguish between moments where infants are attending vs. just looking.

      Why collapse across gaze to object vs. other? Conceptually, it's unclear why the same hypotheses and research questions on neural-attention (i.e., gaze in actuality) links would apply to looks to a mom's face or to an object. Some rationale would be useful to the reader as to why these two distinct behaviors are taken as following the same principles in ordering of brain and behavior. Perhaps I missed something, however, because later in the Discussion the authors state that "fluctuations in neural markers of infants' engagement or interest forward-predict their attentiveness towards objects", which suggests there was an object-focused variable only? Please clarify. (Again, sorry if I missed something).

      This is a really important point, and we agree with R1 that it could have been more clearly expressed in our original submission – for which, we apologise. In the cross-correlation analyses conducted in parts 2 and 3 which examines forwards-predictive associations between infant attention durations and infant endogenous oscillatory activity (part two), and caregiver behaviour (part three), as R1 describes, we include all infant looks towards objects and their partner. Including all infant look types is necessary to produce a continuous variable to cross-correlate with the other continuous variables (e.g. theta activity, caregiver vocal behaviours), and, therefore, does not concentrate only on infant attention episodes towards objects.

      We take the reviewers’ point that different attention and neural mechanisms may be associated with looks towards objects vs. the partner, which we now acknowledge directly on page 10 of the Introduction. However, our focus here is on the endogenous and interactive mechanisms that drive fluctuations in infant engagement with the ongoing, free-flowing interaction. Indeed, previous work has shown increases in theta activity during sustained episodes of infant attention to a range of different stimuli, including cartoon videos (Xie et al., 2018), real-life screen-based interactions (Jones et al., 2020), as well as objects (Begus et al., 2016). In the second half of part 2, we go on to address the endogenous processes that support infant attention episodes specifically towards objects.

      As a result of this comment, we have made direct changes to the Introduction on page 10 to more clearly explain the looking behaviours included in the cross-correlation analysis, and the rationale behind the analysis being conducted in this way – which is different to the reactive analyses conducted in the second half of parts one and three, which examines infant object looks only. Direct edits to the text have also been made throughout the Results and Methods sections as a result of this comment, to more clearly specify the types of looks included in each analysis. Now, where we discuss the cross-correlation analyses we refer only to infant ‘attention durations’ or infant ‘attention’, whilst ‘object-directed attention’ and ‘looks towards objects’ is clearly specified in sections discussing the reactive analyses conducted in parts 2 and 3. We have also amended the Discussion on page 31so that the cross-correlation analyses is interpreted relative to infant overall attention, rather than their attention towards objects only.

      Why are mothers' gazes shorter than infants' gazes? This was the flip of what I'd expect, so some interpretation would be useful to understanding the data.

      This is a really interesting observation. Our findings of the looking behaviour of caregivers and infants in our joint play interactions actually correspond to much previous micro-dynamic analysis of caregiver and infant looking behaviour during early table-top interactions (Abney et al., 2017; Perapoch Amadó et al., 2023; Yu & Smith, 2013, 2016). The reason for the shorter look durations in the adult is due to the fact that the caregivers alternate their gaze between their infant and the objects (i.e. they spend a lot of the interaction time monitoring their infants’ behaviours). This can be seen in Figure 2 (see main text) which shows that caregiver looks are divided between looks to their infants and looks towards objects. In comparison, infants spend most of their time focussing on objects (see Figure 2, main text), with relatively infrequent looks to their caregiver. As a result, infant looks are, overall, longer in comparison to their caregivers’.

      Minor points

      Use the term association or relation (relationships is for interpersonal relationships, not in statistics).

      This has now been amended throughout.

      I'm unsure I'd call the interactions "naturalistic" when they occur at a table, with select toys, EEG caps on partners, and so on. The term seems more appropriate for studies with fewer constraints that occur (for example) in a home environment, etc.

      We understand R1s concern with our use of the term ‘naturalistic’ to refer to the joint play interactions that we analyse in the current study. However, we feel the term is appropriate, given that the interactions are unstructured: the only instruction given to caregivers at the beginning of the interaction is to play with their infants in the way that they might do at home. The interactions, therefore, measure free-flowing caregiver and infant behaviours, where modulations in each individual’s behaviour are the result of the intra- and inter-individual dynamics of the social exchange. This is in comparison to previous work on early infant attention development which has used more structured designs, and modulations in infant behaviour occur as a result of the parameters of the experimental task.

      Reviewer #2

      Public Review

      Summary:

      This paper acknowledges that most development occurs in social contexts, with other social partners. The authors put forth two main frameworks of how development occurs within a social interaction with a caregiver. The first is that although social interaction with mature partners is somewhat bi-directional, mature social partners exogenously influence infant behaviors and attention through "attentional scaffolding", and that in this case infant attention is reactive to caregiver behavior. The second framework posits that caregivers support and guide infant attention by contingently responding to reorientations in infant behavior, thus caregiver behaviors are reactive to infant behavior. The aim of this paper is to use moment-to-moment analysis techniques to understand the directionality of dyadic interaction. It is difficult to determine whether the authors prove their point as the results are not clearly explained as is the motivation for the chosen methods.

      Strengths

      The question driving this study is interesting and a genuine gap in the literature. Almost all development occurs in the presence of a mature social partner. While it is known that these interactions are critical for development, the directionality of how these interactions unfold in real-time is less known.

      The analyses largely seem to be appropriate for the question at hand, capturing small moment-to-moment dynamics in both infant and child behavior, and their relationships with themselves and each other. Autocorrelations and cross-correlations are powerful tools that can uncover small but meaningful patterns in data that may not be uncovered with other more discretized analyses (i.e. regression).

      We are pleased that R2 finds our work to be an interesting contribution to the field, which utilises appropriate analysis techniques.

      Weaknesses

      The major weakness of this paper is that the reader is assumed to understand why these results lead to their claimed findings. The authors need to describe more carefully their reasoning and justification for their analyses and what they hope to show. While a handful of experts would understand why autocorrelations and cross-correlations should be used, they are by no means basic analyses. It would also be helpful to use simulated data or even a simple figure to help the reader more easily understand what a significant result looks like versus an insignificant result.

      We thank the reviewer for this comment, and we agree that much more detail should be added to the Introduction section. As a result of this comment, we have made direct changes to the Introduction on pages 9-11 to more clearly detail these analysis methods, our rationale for using these methods; and how we expect the results to further our understanding of the drivers of infant attention in naturalistic social interactions.

      We also provide a figure in the SM (Fig. S6) to help the reader more clearly understand the permutation method used in our statistical analyses described in the Methods, on page 51, which depicts significant vs. insignificant patterns of results against their permutation distribution.

      While the overall question is interesting the introduction does not properly set up the rest of the paper. The authors spend a lot of time talking about oscillatory patterns in general but leave very little discussion to the fact they are using EEG to measure these patterns. The justification for using EEG is also not very well developed. Why did the authors single out fronto-temporal channels instead of using whole brain techniques, which are more standard in the field? This is idiosyncratic and not common.

      We very much agree with R2 that the rationale and justification for using EEG to understand the processes that influence infants’ attention patterns is under-developed in the current manuscript. As a result of this comment we have made direct edits to the Introduction section of the main text on pages 7-8 to more clearly describe the rationale for examining the relationship between infant EEG activity and their attention during the play interactions with their caregivers.

      As we describe in the Introduction section, previous behavioural work conducted with infants has suggested that endogenous cognitive processes (i.e. fluctuations in top-down cognitive control) might be important in explaining how infants allocate their attention during free-flowing, naturalistic interactions towards the end of the first year. Oscillatory neural activity occurring at theta frequencies (3-6Hz), which can be measured with EEG, has previously been associated with top-down intrinsically guided attentional processes in both adulthood and infancy (Jones et al., 2020; Orekhova, 1999; Xie et al., 2018). Measuring fluctuations in infant theta activity therefore provides a method to examine how endogenous cognitive processes structure infant attention in naturalistic social interactions which might be otherwise unobservable behaviourally.

      It is important to note that the Introduction distinguishes between two different oscillatory mechanisms that could possibly explain the organisation of infant attention over the course of the interaction. The first refers to oscillatory patterns of attention, that is, consistent attention durations produced by infants that likely reflect automatic, regulatory functions, related to fluctuations in infant arousal. The second mechanism is oscillatory neural activity occurring at theta frequencies, recorded with EEG, which, as mentioned above, is thought to reflect fluctuations in intrinsically guided attention in early infancy. We have amended the Introduction to make the distinction between the two more clear.

      A worrisome weakness is that the figures are not consistently formatted. The y-axes are not consistent within figures making the data difficult to compare and interpret. Labels are also not consistent and very often the text size is way too small making reading the axes difficult. This is a noticeable lack of attention to detail.

      This has now been adjusted throughout, where appropriate.

      No data is provided to reproduce the figures. This does not need to include the original videos but rather the processed and de-identified data used to generate the figures. Providing the data to support reproducibility is increasingly common in the field of developmental science and the authors are greatly encouraged to do so.

      This will be provided with the final manuscript.

      Minor Weaknesses

      Figure 4, how is the pattern in a not significant while in b a very similar pattern with the same magnitude of change is? This seems like a spurious result.

      The statistical analysis conducted for all cross-correlation analyses reported follows a rigorous and stringent permutation-based temporal clustering method which controls for family-wise error rate using a non-parametric Monte Carlo method (see Methods in the main text for more detail). Permutations are created by shuffling data sets between participants and, therefore, patterns of significance identified by the cluster-based permutation analysis will depend on the mean and standard deviation of the cross-correlations in the permutation distribution. Fig. S6 now depicts the cross-correlations against their permutation distributions which should help readers to understand the patterns of significance reported in the main text.

      The correlations appear very weak in Figures 3b, 5a, 7e. Despite a linear mixed effects model showing a relationship, it is difficult to believe looking at the data. Both the Spearman and Pearson correlations for these plots should be clearly included in the text, figure, or figure legend.

      We thank the reviewer for this comment, and agree that reporting the correlations for these plots would strengthen the findings of the linear mixed effects models reported in text. As a result, we have added both Spearman and Pearson correlations to the legends of Figures 3b, 5a and 7e, corresponding to the statistically significant relationships examined in the linear mixed effects models. The strength of the relationships are entirely consistent with those documented in other previous research that used similar methods (e.g. Piazza et al., 2018). How strong the relationship looks to the observer is entirely dependent on the graphical representation chosen to represent it. We have chosen to present the data in this way because we feel that it is the most honest way to represent the statistically significant, and very carefully analysed, effects that we have observed in our data.

      Linear mixed effects models need more detail. Why were they built the way they were built? I would have appreciated seeing multiple models in the supplementary methods and a reasoning to have landed on one. There are multiple ways I can see this model being built (especially with the addition of a random intercept). Also, there are methods to test significance between models and aid in selection. That being said, although participant identity is a very common random effect, its use should be clearly stated in the main text.

      We very much agree with R2 that the reporting of the linear mixed effects models needs more detail and this has now been added to the Method section (page 54). Whilst it is true that there are multiple ways in which this model could be built, given the specificity of our research questions, regarding the reactive changes in infant theta activity and caregiver behaviours that occur after infant look onsets towards objects (see pages 9-11 of the Introduction), we take a hypothesis driven approach to building the linear mixed effects models. As a result, random intercepts are specified for participants, as well as uncorrelated by-participant random slopes (Brown, 2021; Gelman & Hill, 2006; Suarez-Rivera et al., 2019). In this way, infant look durations are predicted from caregiver behaviours (or infant theta activity), controlling for between participant variability in look durations, as well as the strength of the effect of caregiver behaviours (or infant theta activity) on infant look durations.

      Some parentheses aren't closed, a more careful re-reading focusing on these minor textual issues is warranted.

      This has now been corrected.

      Analysis of F0 seems unnecessarily complex. Is there a reason for this?

      Computation of the continuous caregiver F0 variable may seem complex but we feel that all analysis steps are necessary to accurately and reliably compute this variable in our naturalistic, noisy and free-flowing interaction data. For example, we place the F0 only into segments of the interaction identified as the mum speaking so that background noises and infant vocalisations are not included in the continuous variable. We then interpolate through unvoiced segments (similar to Räsänen et al., 2018), and compute the derivative in 1000ms intervals as a measure of the rate of change. The steps taken to compute this variable have been both carefully and thoughtfully selected given the many ways in which this continuous rate of change variable could be computed (cf. Piazza et al., 2018; Räsänen et al., 2018).

      The choice of a 20hz filter seems odd when an example of toy clacks is given. Toy clacks are much higher than 20hz, and a 20hz filter probably wouldn't do anything against toy clacks given that the authors already set floor and ceiling parameters of 75-600Hz in their F0 extraction.

      We thank the reviewer for this comment and we can see that this part of the description of the F0 computation is confusing. A 20Hz low pass filter is applied to the data stream after extracting the F0 with floor and ceiling parameters set between 75-600Hz. The 20Hz filter therefore filters modulations in the caregivers’ F0 that occur at a modulation frequency greater than 20Hz. The 20Hz filter does not, therefore, refer to the spectral filtering of the speech signal. The description of this variable has been rephrased on page 48 of the main text.

      Linear interpolation is a choice I would not have made. Where there is no data, there is no data. It feels inappropriate to assume that the data in between is simply a linear interpolation of surrounding points.

      The choice to interpolate where there was no data was something we considered in a lot of detail, given the many options for dealing with missing data points in this analysis, and the difficulties involved with extracting a continuous F0 variable in our naturalistic data sets. As R2 points out, one option would be to set data points to NaN values where no F0 is detected and/ or the Mum is not vocalising. A second option, however, would be to set the continuous variable to 0s where no F0 is detected and/ or the Mum is not vocalising (where the mum is not producing sound there is no F0 so rather than setting the variable to missing data points, really it makes most objective sense to set to 0).

      Either of these options (setting parts where no F0 is detected to NaN or 0) makes it difficult to then meaningfully compute the rate of change in F0: where NaN values are inserted, this reduces the number of data points in each time window; where 0s are inserted this creates large and unreal changes in F0. Inserting NaN values into the continuous variable also reduces the number of data points included in the cross-correlation and event-locked analyses. It is important to note that, in our naturalistic interactions, caregivers’ vocal patterns are characterised by lots of short vocalisations interspersed by short pauses (Phillips et al., in prep), similar to previous findings in naturalistic settings (Gratier et al., 2015). Interpolation will, therefore, have largely interpolated through the small pauses in the caregiver’s vocalisations.

      The only limitation listed was related to the demographics of the sample, namely saying that middle class moms in east London. Given that the demographics of London, even east London are quite varied, it's disappointing their sample does not reflect the community they are in.

      Yes we very much agree with R2 that the lack of inclusion of caregivers from wider demographic backgrounds is disappointing, and something which is often a problem in developmental research. Our lab is currently working to collect similar data from infants with a family history of ADHD, as part of a longitudinal, ongoing project, involving families from across the UK, from much more varied demographic backgrounds. We hope that the findings reported here will feed directly into the work conducted as part of this new project.

      That said, demographic table of the subjects included in this study should be added.

      This is now included in the SM, and referenced in the main text.

      References

      Abney, D. H., Warlaumont, A. S., Oller, D. K., Wallot, S., & Kello, C. T. (2017). Multiple Coordination Patterns in Infant and Adult Vocalizations. Infancy, 22(4), 514–539. https://doi.org/10.1111/infa.12165

      Attaheri, A., Choisdealbha, Á. N., Di Liberto, G. M., Rocha, S., Brusini, P., Mead, N., Olawole-Scott, H., Boutris, P., Gibbon, S., Williams, I., Grey, C., Flanagan, S., & Goswami, U. (2020). Delta- and theta-band cortical tracking and phase-amplitude coupling to sung speech by infants [Preprint]. Neuroscience. https://doi.org/10.1101/2020.10.12.329326

      Begus, K., Gliga, T., & Southgate, V. (2016). Infants’ preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113(44), 12397–12402. https://doi.org/10.1073/pnas.1603261113

      Brown, V. A. (2021). An Introduction to Linear Mixed-Effects Modeling in R.

      Cohen, M. X. (2014). Analyzing neural time series data: Theory and practice. The MIT Press.

      Gelman, A., & Hill, J. (2006). In Data Analysis using Regression and mulilevel/Hierachical Models. Cambridge University Press.

      Georgieva, S., Lester, S., Noreika, V., Yilmaz, M. N., Wass, S., & Leong, V. (2020). Toward the Understanding of Topographical and Spectral Signatures of Infant Movement Artifacts in Naturalistic EEG. Frontiers in Neuroscience, 14, 352. https://doi.org/10.3389/fnins.2020.00352

      Gratier, M., Devouche, E., Guellai, B., Infanti, R., Yilmaz, E., & Parlato-Oliveira, E. (2015). Early development of turn-taking in vocal interaction between mothers and infants. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01167

      Jones, E. J. H., Goodwin, A., Orekhova, E., Charman, T., Dawson, G., Webb, S. J., & Johnson, M. H. (2020). Infant EEG theta modulation predicts childhood intelligence. Scientific Reports, 10(1), 11232. https://doi.org/10.1038/s41598-020-67687-y

      Marriott Haresign, I., Phillips, E., Whitehorn, M., Noreika, V., Jones, E. J. H., Leong, V., & Wass, S. V. (2021). Automatic classification of ICA components from infant EEG using MARA. Developmental Cognitive Neuroscience, 52, 101024. https://doi.org/10.1016/j.dcn.2021.101024

      Noreika, V., Georgieva, S., Wass, S., & Leong, V. (2020). 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants. Infant Behavior and Development, 58, 101393. https://doi.org/10.1016/j.infbeh.2019.101393

      Orekhova, E. (1999). Theta synchronization during sustained anticipatory attention in infants over the second half of the first year of life. International Journal of Psychophysiology, 32(2), 151–172. https://doi.org/10.1016/S0167-8760(99)00011-2

      Perapoch Amadó, M., Greenwood, E., James, Labendzki, P., Haresign, I. M., Northrop, T., Phillips, E., Viswanathan, N., Whitehorn, M., Jones, E. J. H., & Wass, S. (2023). Naturalistic attention transitions from subcortical to cortical control during infancy. [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/6z27a

      Piazza, E. A., Hasenfratz, L., Hasson, U., & Lew-Williams, C. (2018). Infant and adult brains are coupled to the dynamics of natural communication [Preprint]. Neuroscience. https://doi.org/10.1101/359810

      Räsänen, O., Kakouros, S., & Soderstrom, M. (2018). Is infant-directed speech interesting because it is surprising? – Linking properties of IDS to statistical learning and attention at the prosodic level. Cognition, 178, 193–206. https://doi.org/10.1016/j.cognition.2018.05.015

      Richards, J. E. (2010). The development of attention to simple and complex visual stimuli in infants: Behavioral and psychophysiological measures. Developmental Review, 30(2), 203–219. https://doi.org/10.1016/j.dr.2010.03.005

      Suarez-Rivera, C., Smith, L. B., & Yu, C. (2019). Multimodal parent behaviors within joint attention support sustained attention in infants. Developmental Psychology, 55(1), 96–109. https://doi.org/10.1037/dev0000628

      Wass, S. V., Noreika, V., Georgieva, S., Clackson, K., Brightman, L., Nutbrown, R., Covarrubias, L. S., & Leong, V. (2018). Parental neural responsivity to infants’ visual attention: How mature brains influence immature brains during social interaction. PLOS Biology, 16(12), e2006328. https://doi.org/10.1371/journal.pbio.2006328

      Xie, W., Mallin, B. M., & Richards, J. E. (2018). Development of infant sustained attention and its relation to EEG oscillations: An EEG and cortical source analysis study. Developmental Science, 21(3), e12562. https://doi.org/10.1111/desc.12562

      Yu, C., & Smith, L. B. (2013). Joint Attention without Gaze Following: Human Infants and Their Parents Coordinate Visual Attention to Objects through Eye-Hand Coordination. PLoS ONE, 8(11), e79659. https://doi.org/10.1371/journal.pone.0079659

      Yu, C., & Smith, L. B. (2016). The Social Origins of Sustained Attention in One-Year-Old Human Infants. Current Biology, 26(9), 1235–1240. https://doi.org/10.1016/j.cub.2016.03.026

      Yu, C., Zhang, Y., Slone, L. K., & Smith, L. B. (2021). The infant’s view redefines the problem of referential uncertainty in early word learning. Proceedings of the National Academy of Sciences, 118(52), e2107019118. https://doi.org/10.1073/pnas.2107019118

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This important study combines a comparative approach in different synapses with experiments that show how synaptic vesicle endocytosis in nerve terminals regulates short-term plasticity. The data presented support the conclusions and make a convincing case for fast endocytosis as necessary for rapid vesicle recruitment to active zones. Some aspects of the description of the data and analysis are however incomplete and would benefit from a more rigorous approach. With more discussion of methods and analysis, this paper would be of great interest to neurobiologists and biophysicists working on synaptic vesicle recycling and short-term plasticity mechanisms.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study examines the role of release site clearance in synaptic transmission during repetitive activity under physiological conditions in two types of central synapses, calyx of Held and hippocampal CA1 synapses. After the acute block of endocytosis by pharmacology, deeper synaptic depression or less facilitation was observed in two types of synapses. Acute block of CDC42 and actin polymerization, which possibly inhibits the activity of Intersectin, affected synaptic depression at the calyx synapse, but not at CA1 synapses. The data suggest an unexpected, fast role of the site clearance in counteracting synaptic depression.

      Strengths:

      The study uses an acute block of the molecular targets with pharmacology together with precise electrophysiology. The experimental results are clear-cut and convincing. The study also examines the physiological roles of the site clearance using action potential-evoked transmission at physiological Ca and physiological temperature at mature animals. This condition has not been examined.

      Weaknesses:

      Pharmacology may have some off-target effects, though acute manipulation should be appreciated. Although this is a hard question and difficult to address experimentally, reagents may affect synaptic vesicle mobilization to the release sites directly in addition to blocking endocytosis.

      To acutely block vesicle endocytosis, we utilized two different pharmacological tools, Dynasore and Pitstop-2, after testing their blocking spectra and potencies at the calyx presynaptic terminals and collected data of their common effects on target functions. Since the recovery from STD was faster at the calyx synapses in the presence of both endocytic blockers in physiological 1.3 mM [Ca2+] (Figure 2B), but not in 2.0 mM [Ca2+] (Figure S4), they might facilitate vesicle mobilization in physiological condition.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Mahapatra and Takahashi report on the physiological consequences of pharmacologically blocking either clathrin and dynamin function during compensatory endocytosis or of the cortical actin scaffold both in the calyx of Held synapse and hippocampal boutons in acute slice preparations

      Strengths:

      Although many aspects of these pharmacological interventions have been studied in detail during the past decades, this is a nice comprehensive and comparative study, which reveals some interesting differences between a fast synapse (Calyx of Held) tuned to reliably transmit at several 100 Hz and a more slow hippocampal CA1 synapse. In particular, the authors find that acute disturbance of the synaptic actin network leads to a marked frequency-dependent enhancement of synaptic depression in the Calyx, but not in the hippocampal synapse. This striking difference between both preparations is the most interesting and novel finding.

      Weaknesses:

      Unfortunately, however, these findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee et al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

      The concept of FRP and SRP are derived from voltage-clamp step-depolarization experiments at calyces of Held in pre-hearing rodents at RT, which cannot be directly dissected in data of action-potential evoked EPSCs at post-hearing calyces at physiological conditions. However, we dissected as much by referring to related literatures in new paragraphs in Result section (p9-10), particularly on the different effects of Latrunculin application and experimental conditions by adding a new supplementary Figure (now S5). Regarding F-actin role in vesicle replenishment at cerebellar synapses, we added sentences in Discussion section (p14, last paragraph).

      Reviewer #3 (Public Review):

      General comments:

      (1) While Dynasore and Pitstop-2 may impede release site clearance due to an arrest of membrane retrieval, neither Latrunculin-B nor ML-141 specifically acts on AZ scaffold proteins. Interference with actin polymerization may have a number of consequences many of which may be unrelated to release site clearance. Therefore, neither Latrunculin-B nor ML-141 can be considered suitable tools for specifically identifying the role of AZ scaffold proteins (i.e. ELKS family proteins, Piccolo, Bassoon, α-liprin, Unc13, RIM, RBP, etc) in release site clearance which was defined as one of the principal aims of this study.

      In this study, we focused our analysis on the downstream activity of scaffold protein intersectin by comparing the common inhibitory effects of CDC42 and actin polymerization, by use of ML141 and Latrunculin B, respectively, on vesicle endocytosis and synaptic depression/ facilitation without addressing diverse individual drug effects. To avoid confusion we removed “AZ” from scaffold protein.

      (2) Initial EPSC amplitudes more than doubled in the presence of Dynasor at hippocampal SC->CA1 synapses (Figure S2). This unexpected result raises doubts about the specificity of Dynasor as a tool to selectively block SV endocytosis.

      It is possible that Dynasore might have unknown or off-target effects. However, the main conclusion is backed up by Pitstop-2.

      (3) In this study, the application of Dynasore and Pitstop-2 strongly decreases 100 Hz steady-state release at calyx synapses while - quite unexpectedly - strongly accelerates recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      The latrunculin effect on STD can vary according to the condition of application and external [Ca2+], which we show in a new supplemental Figure S5. The latrunculin effect on the recovery from STD also varies with temperature, [Ca2+], and animal age, which affect Ca2+-dependent fast recovery component from depression. We added paragraphs for this issue in Results section (p9-10).

      (4) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      We added methodological explanations and reworded sentences in the text to be clear for pharmacological data derived from non-sequential separate experiments.

      (5) The authors compare results obtained in calyx with those obtained in SC->CA1 synapses which they considered examples for 'fast' and 'slow' synapses, respectively. There is little information given to help readers understand why these two synapse types were chosen, what the attributes 'fast' and 'slow' refer to, and how that may matter for the questions studied here. I assume the authors refer to the maximum frequency these two synapse types are able to transmit rather than to EPSC kinetics?

      Yes, the “fast and slow” naming features maximum operating frequency these synapses can transmit. We reworded “fast and slow” to “fast-signaling and slow-plastic” and added explanation in the text.

      (6) Strong presynaptic stimuli such as those illustrated in Figures 1B and C induce massive exocytosis. The illustrated Cm increase of 2 to 2.5 pF represents a fusion of 25,000 to 30,000 SVs (assuming a single SV capacitance of 80 aF) corresponding to a 12 to 15% increase in whole terminal membrane surface (assuming a mean terminal capacitance of ~16 pF). Capacitance measurements can only be considered reliable in the absence of marked changes in series and membrane conductance. Since the data shown in Figs. 1 and 3 are central to the argumentation, illustration of the corresponding conductance traces is mandatory. Merely mentioning that the first 450 ms after stimulation were skipped during analysis is insufficient.

      Conductance trace is shown with a trace of capacitance change induced by a square pulse in our previous paper (Yamashita et al, 2005 Science).

      (7) It is essential for this study to preclude a contamination of the results with postsynaptic effects (AMPAR saturation and desensitization). AMPAR saturation limits the amplitudes of initial responses in EPSC trains and hastens the recovery from depression due to a 'ceiling effect'. AMPAR desensitization occludes paired-pulse facilitation and reduces steady-state responses during EPSC trains while accelerating the initial recovery from depression. The use of, for example, 1 mM kynurenic acid in the bath is a well-established strategy to attenuate postsynaptic effects at calyx synapses. All calyx EPSC recordings should have been performed under such conditions. Otherwise, recovery time courses and STP parameters are likely contaminated by postsynaptic effects. Since the effects of AMPAR saturation on EPSC_1 and desensitization on EPSC_ss may partially cancel each other, an unchanged relative STD in the presence of kynurenic acid is not necessarily a reliable indicator for the absence of postsynaptic effects. The use of kynurenic acid in the bath would have had the beneficial side effect of massively improving voltage-clamp conditions. For the typical values given in this MS (10 nA EPSC, 3 MOhm Rs) the expected voltage escape is ~30 mV corresponding to a change in driving force of 30 mV/80 mV=38%, i.e. initial EPSCs in trains are likely underestimated by 38%. Such large voltage escape usually results in unclamped INa(V) which was suppressed in this study by routinely including 2 mM QX-314 in the pipette solution. That approach does, however, not reduce the voltage escape.

      Glutamate released during AP-evoked EPSCs does not saturate or desensitize postsynaptic receptors at post-hearing calyces of Held (Ishikawa et al, 2002; Yamashita et al, 2003) although it does in pre-hearing calyces (Yamashita et al, 2009). In fact, as shown in Figure S3, our results are essentially the same with or without kynurenate.

      (8) In the Results section (pages 7 and 8), the authors analyze the time course into STD during 100 Hz trains in the absence and presence of drugs. In the presence of drugs, an additional fast component is observed which is absent from control recordings. Based on this observation, the authors conclude that '... the mechanisms operate predominantly at the beginning of synaptic depression'. However, the consequences of blocking or slowing site clearing are expected to be strongly release-dependent. Assuming a probability of <20% that a fusion event occurs at a given release site, >80% of the sites cannot be affected at the arrival of the second AP even by a total arrest of site clearance simply because no fusion has yet occurred. That number decreases during a train according to (1-0.2)^n, where n is the number of the AP, such that after 10 APs, ~90% of the sites have been used and may potentially be unavailable for new rounds of release after slowing site clearance. Perhaps, the faster time course into STD in the presence of the drugs isn't related to site clearance?

      Enhanced depression at the beginning of stimulation indicates the block of rapid SV replenishment mechanism, which includes endocytosis-dependent site-clearance and scaffold-dependent vesicle translocation to release sites.

      (9) In the Discussion (page 10), the authors present a calculation that is supposed to explain the reduced size of the second calyx EPSC in a 100 Hz train in the presence of Dynasore or Pitstop-2. Does this calculation assume that all endocytosed SVs are immediately available for release within 10 ms? Please elaborate.

      We do not assume rapid endocytosed vesicle reuse within 10 ms as it requires much longer time for glutamate refilling (7s at PT; Hori & Takahashi, 2012). Instead, already filled reserved vesicles can rapidly replenish release sites if sites are clean and scaffold works properly. Results shown in Figure S6 also indicate that block of vesicle transmitter refilling has no immediate effect on synaptic responses.

      (10) It is not clear, why the bafilomycin/folimycin data is presented in Fig. S5. The data is also not mentioned in the Discussion. Either explain the purpose of these experiments or remove the data.

      These v-ATPase blockers, which block vesicular transmitter refilling, are reported to enhance EPSC depression at hippocampal synapses at RT and 2 mM [Ca2+] presumably because of lack of filled vesicles undergoing rapid vesicle recycling (eg Kiss & Run). We thought it important to determine whether these data have physiological relevance since such a mechanism might also regulate synaptic strength during repetitive transmission. However, our results did not support its physiological relevance. Since these results are not within our main questions, the negative results are shown it in supplementary Figure 6 and explained in the last paragraph of Result section (p11), but were not discussed further in Discussion section.

      (11) The scheme in Figure 7 is not very helpful.

      We updated the scheme to summarize our conclusion that vesicle replenishment through endocytosis-dependent site-clearance and scaffold-dependent mechanism independently co-operate to strengthen synaptic efficacy during repetitive transmission at calyx fast-signaling synapses. However, endocytic site clearance is solely required to support facilitation at slow-plastic hippocampal SC-CA1 synapses.

      Recommendations for the authors:

      First, my deep apologies for the long delay in reviewing your paper. All reviewers are now in agreement that the paper has valuable new information, but some methods are not described well and some results appear to be incompatible with previous results in the literature. The discussion of previous literature is also incomplete and not well-balanced. With more discussion of methods and literature strengthened this paper would be of great interest to neurobiologists and biophysicists working on synaptic vesicle recycling and short-term plasticity mechanisms. We ask that you address the comments and revise your paper before we can fully recommend the paper as being an important contribution with compelling evidence and a strong data set that supports the conclusions.

      We explained methods more explicitly. Apparent incompatibility with previous results is now explained and discussed with new supplementary data.

      Major:

      (1) In this study, the application of Dynasore and Pitstop-2 strongly decreased 100 Hz steady-state release at calyx synapses while - quite unexpectedly - it strongly accelerated recovery from depression. A previous study found that genetic ablation of dynamin-1 actually enhanced 300 Hz steady-state release while only little affecting recovery from depression (Mahapatra et al., 2016). A similar scenario holds for the Latrunculin-B effects: In this study, Latrunculin-B strongly increased steady-state depression while in Babu et al. (2020), Latrunculin-B did not affect steady-state depression. In Mahapatra et al. (2016), Latrunculin-B marginally enhanced steady-state depression. The authors need to make a serious attempt to explain all these seemingly contradicting results.

      Lack of change in the recovery from depression in dynamin-1 knockout mice by Mahapatra et al (2016) is consistent with results in Figure S4 in 2 mM [Ca2+], whereas accelerated recovery by Dynasore (Figure 2B2) is observed in 1.3 mM [Ca2+] suggesting that it is masked in 2 mM [Ca2+] but revealed in physiological [Ca2+] (p7, top paragraph). In both cases, however, recovery from STD is not prolonged unlike Hosoi et al (2009).

      The latrunculin issues are discussed in Results section with newly added Supplementary Figure S5 (p9-10).

      (2) The experimental conditions need to be better specified. It is not clear which recordings were obtained in 1.3 mM and which (if any?) in 2 mM external Ca. It is also unclear whether 'pooled data' are presented (obtained from control recordings and from separate recordings after pre-incubation with the respective drugs), or whether the data actually represent 'before'/'after' comparisons obtained from the same synapses after washing in the respective drugs. The exact protocol of drug application (duration of application/pre-incubation?, measurements after wash-out or in the continuous presence of the drugs?) needs to be clearly described in the methods and needs to be briefly mentioned in Results and/or Figure legends.

      We made these points clearer in Method section and Result section.

      (3) Please cite and discuss briefly previous papers that have shown fast endocytosis in the calyx of Held with membrane capacitance measurements like Renden and von Gersdorff, J Neurophysiology, 98:3349, 2007 and Taschenberger et al., Neuron, 2002. These papers first showed exocytosis and endocytosis kinetics in more mature (hearing) mice calyx of Held and at higher physiological temperatures.

      One of these literatures relevant to the present study is quoted in p4.

      (4) The findings concerning the different consequences of actin depolymerization are not sufficiently discussed in comparison to the literature. My only criticism concerns the interpretation of the ML 141 and Lat B data. With respect to the Calyx data, I am missing a detailed discussion of the effects observed here in light of the different RRP subpools SRP and FRP. This is very important since Lee et al. (2012, PNAS 109 (13) E765-E774) showed earlier that disruption of actin inhibits the rapid transition of SRP SVs to the FRP at the AZ. The whole literature on this important concept is missing. Likewise, the role of actin for the replacement pool at a cerebellar synapse (Miki et al., 2016) is only mentioned in half a sentence. There is quite some evidence that actin is important both at the AZ (SRP to FRP transition, activation of replacement pool) and at the peri-active zone for compensatory endocytosis and release site clearance. Both possible underlying mechanisms (SRP to FRP transition or release site clearance) should be better dissected.

      We added discussions on the issue of latrunculin in Result section by quoting previous literatures (p9-10). Since there is no direct evidence (by vesicle imaging) for the presence of FRP and SRP, these definitions derived from voltage clamp step-depolarization studies are difficult to incorporate into the dissection of synaptic depression in physiological conditions.

      Reviewer #1 (Recommendations For The Authors):

      I have no major comments, but the following issues may be addressed.

      (1) The term "fast and slow" synapses may be relative and a bit confusing. I do not think hippocampal synapses are slow synapses.

      We have replaced “fast and slow” by “fast-signaling and slow-plastic” to represent their functions and added explanation in the text.

      (2) Off-target effects of pharmacological effects may be discussed. In this respect, bafilomycin experiments can be used to argue against the slow effects of vesicle cycling such as endocytosis, and vesicle mobilization. However, the effects on rapid vesicle mobilization cannot be excluded entirely. Because I cannot exclude the absence of off-target effects either (can be addressed by looking at single vesicle imaging at nano-scale, which is hard to do or looking at EM level quantitatively?), I feel this is a matter of discussion.

      It is possible that Dynasore might have unknown or off-target effects. However, the main conclusion is backed up by Pitstop-2.

      (3) Fig2 A2, B2 and Fig 4 A2 and B2. It is easier to plot the recovery only normalized to the initial value. Subtracting steady-state is somewhat confusing because the recovery looks faster after deeper depression, but this may be just apparent.

      We have given values for both types of plots in Table 2, which indicates no essential difference in the recovery parameters.

      Reviewer #2 (Recommendations For The Authors):

      Line 51: Rajappa et al. (2016) investigated clearance deficits in synaptophysin KO mice (not synaptobrevin).

      Corrected.

      Line 54: intersectin is introduced as AZ scaffold protein, although in most of the literature, it is referred to as an endocytic scaffold protein (also in the cited one, e.g. Sakaba et al. 2013). At least, this should be discussed.

      Since blockers of intersectin downstream protein activity has no effect on vesicle endocytosis (Figure 3 and Sakaba et al, 2013), we called it (presynaptic) scaffold protein instead of endocytic scaffold protein.

      Reviewer #3 (Recommendations For The Authors):

      Minor comments

      Page 1, Title: I don't think the presented data address the role of the presynaptic scaffold in SV replenishment. In addition, 'SV replenishment' and 'site clearance' should not be used synonymously as it seems to be implied here.

      In this study our focus was on the downstream activity of scaffold protein intersectin and since block of its downstream effector proteins CDC42 and actin activities do not obstruct the endocytic activity (Fig 3, and Sakaba et al., 2013), instead of naming it as “endocytic scaffold protein”, we adopted “presynaptic scaffold protein”.

      We have corrected it in the text.

      Page 2, Abstract: Clarify 'physiologically optimized condition' here and elsewhere in the manuscript.

      Abstract: in physiologically optimized condition → in physiological temperature and Ca2+.

      Page 3, line 62: I don't think 'the site-clearance hypothesis is widely accepted'. There are very few models that implement such a mechanism. Examples would be Pan & Zucker (2009) Neuron and Lin, Taschenberger & Neher 2022 (PNAS) which could be cited.

      62: the site-clearance hypothesis is “widely accepted”→ “well supported”

      Page 3 line 77: Please clarify 'fast synapses

      77: fast synapses→fast-signaling synapses, added clarification in the text.

      Page 4, line 100: Please clarify 'in the maximal rate'.

      100: in the maxima rate→reached during 1-Hz stimulation.

      Page 6, line 136: Please clarify 'to reduce the gap'.

      136: To reduce the gap between these different results→To explore the reason for these different results

      Page 7, line 157: I don't consider ML141 and Latrunculin-B 'scaffold protein inhibitors'.

      157: scaffold protein inhibitors had no effect on→ reworded as “none of these inhibitors affected fast or slow endocytosis”.  

      Page 7, line 162: P-value missing.

      162: p < 0.001 added.

      Page 8, line 184: "Since both endocytic blockers and scaffold inhibitors enhanced synaptic depression with a similar time course" consider rephrasing. Sounds like you refer to the time course by which these drugs exert their effect after being applied.

      184: Since both endocytic blockers and scaffold inhibitors enhance synaptic depression with a similar time course→Since the enhancement of synaptic depression by endocytic blockers or scaffold inhibitor occurred mostly at the early phase of synaptic depression.

      Same on page 11, line 250: "At the calyx of Held, scaffold protein inhibitors significantly enhanced synaptic depression with a time course closely matching to that enhanced by endocytic blocker" Please consider rephrasing.

      At the calyx of Held, scaffold protein inhibitors significantly enhanced synaptic depression with a time course closely matching to that enhanced by endocytic blocker →the early phase of synaptic depression like endocytic blockers

      Page 13, line 318: Please clearly state which experiments were performed at 1.3 mM and which at 2 mM external Ca if two different concentrations were used during recordings.

      320: Added text “Unless otherwise noted, EPSCs were recorded in 1.3 mM [Ca2+] aCSF at 37oC” in the methods.

      Page 15: line 346: Reference in the wrong format.

      346; (25) → (Yamashita et al, 2005)

      Page 15: line 351: Do you mean to say every 10 s and every 20 s? Please clarify.

      No, averaged at 10 ms and 20 ms, respectively as written.

      Page 16, line 369: 1 mM kyn was present in only very few experiments shown in the supplemental figures. Please clarify.

      368: In some experiments, to test in the presence of 1 mM kyn, if there is any difference in enhanced STD following endocytic block. However, as shown in Figure S3, our results are essentially the same with or without kynurenate, suggesting glutamate released during AP-evoked EPSCs does not saturate or desensitize postsynaptic receptors at post-hearing calyces of Held (Ishikawa et al, 2002; Yamashita et al, 2003) unlike in pre-hearing calyces (Yamashita et al, 2009).

      Page 16, line 387: You cannot simply use multiple t-tests to compare a single control to multiple test conditions which seems to be the scenario here. Please correct or clarify.

      Experimental protocols are clarified in Methods as “Experiments were designed as population study using different cells from separate brain slices under control and drug treatment, rather than on a same cell before and after the drug exposure.”

      Table S1: 'Endo decay rate'. It's either the 'Endo rate' or the 'Deacy rate of delta Cm'. Please correct.

      Corrected as Endocytosis rate (Endo rate).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Zhu, et al present a genome-wide histone modification analysis comparing patients with schizophrenia (on or off antipsychotics) to non-psychiatric controls. The authors performed analyses across the dorsolateral prefrontal cortex and tested for enrichment of nearby genes and pathways. The authors performed an analysis measuring the effect of age on the epigenomic landscape as well. While this paper provides a unique resource around SCZ and its epigenetic correlates, and some potentially intriguing findings in the antipsychotic response dataset there were some potential missed opportunities - related to the integration of outside datasets and genotypes that could have strengthened the results and novelty of the paper.

      Major Comments

      (1) Is there genotype data available for this cohort of donors or can it be generated? This would open several novel avenues of investigation for the authors. First the authors can test for enrichment of heritability for SCZ or even highly comorbid disorders such as bipolar. Second, it would allow the authors to directly measure the genetic regulation of histone markers by calculating QTLs (in this case histone hQTLs). The authors assert that although interesting, ATACseq approach does not provide the same chromatin state information as histone mods mapped by ChiP. Why do the authors not test this? There are several ATACseq datasets available for SCZ [https://pubmed.ncbi.nlm.nih.gov/30087329/]and an additional genomic overlap could help tease apart genetic regulation of the changes observed.

      As detailed in our Methods section, brain samples have previous medical diagnosis, treatment record, and toxicological screening. Unfortunately, there was no genotype information on our brain sample collection. However, we examined overlap of differential enhancer and promoter peaks with genetic variants using linkage disequilibrium score regression (Fig. S10). Additionally, to assess agreement with the literature, we compared DEGs identified in our study with a previous snRNA-seq study in postmortem prefrontal cortex of schizophrenics and controls (Table S7).

      Repressive histone marks tend to provide different information than ATAC-seq data. However, we examined only activating marks in this study. Thus, the sentence in the Introduction mentioning that “ATAC-seq approach does not provide the same chromatin state information as histone modifications mapped by chromatin immunoprecipitation sequencing (ChIP-seq) assays do” has been removed.

      (2) Can the authors theorize why their analysis found significant effects for H3K27Ac for antipsychotic use when a recent epigenomic study of SCZ using a larger cohort of samples and including the same histone modifications did not [https://pubmed.ncbi.nlm.nih.gov/30038276/]? Given the lower n and lower number of cells in this group, it would be helpful if the authors could speculate on why they see this. Do the authors know if there is any overlap with the Girdhar study donors or if there are other phenotypic differences that could account for this?

      As mentioned in the Methods sections, three strengths of this brain bank include i) inclusion of samples of schizophrenia subjects with antemortem diagnosis (i.e., based on clinical histories) and not with postmortem diagnosis (i.e., based on interviews with relatives and friends – a diagnostic approach used by many brain banks worldwide but with important limitations, see here: PMID: 15607306), ii) inclusion of control subjects individually matched by sex, age and PMD, and iii) our possibility to test the presence or absence of antipsychotic medications in blood samples as an independent experimental variable. This allowed us to obtained novel and statistically valid conclusions related to cell-type epigenetic alterations in the frontal cortex of schizophrenia subjects, and the impact of age and antipsychotic treatment on chromatin organization.

      There is no overlap with Girdhar study donors.

      (3) The reviewer is concerned about the low concordance between bulk nuclei RNA-seq and single-cell RNA-seq for SCZ (236 of 802 DEGs in NeuN+ and 63 of 1043 NEuN-). While it is not surprising for different cohorts to have different sets of DEGs these seem to be vastly different. Was there a particular cell type(s) that enriched for the authors' DEGs in the single-cell dataset? Do the authors know if any donors overlapped between these cohorts?

      This overlap is acceptable considering that these are datasets originated from an entirely distinct cohort of postmortem human brain samples.

      (4) Functional enrichment analyses: details are not provided by the authors and should be added. The authors need to consider a) providing a gene universe, ie only considering the sets of genes with nearby H3K4me3/ H3K27ac levels, to such pathway tools, and b) should take into account the fact that some genes have many more peaks with data. There are known biases in seemingly just using the best p-value per gene in other epigenetic analysis (ie. DNA methylation data) and software is available to run correct analyses: https://pubmed.ncbi.nlm.nih.gov/23732277.

      GREAT was used to map differential peak loci to target genes using the whole genome as the background set and default basal extension as per Nord et al. http://dx.doi.org/10.1016/j.cell.2013.11.033. We argue that it is more biologically relevant than comparing against an artificially selected background. These gene sets were then passed to Panther for Gene Ontology enrichment analysis as per Liu et al. 10.1186/s12940-015-0052-5.

      Additional details are provided in Materials and Methods section:

      ChIP-seq annotation and functional enrichment

      GREAT analysis (http://great.standford.edu) was performed on differential peaks using the whole genome as background and default basal extension from 5kb upstream to 1kb downstream of the TSS.

      Significantly enriched Gene Ontology biological processes were identified using the Panther Classification tools using a hypergeometric test.

      Reviewer #2 (Public Review):

      The manuscript by Zhu has generated ChIP-seq and RNA-seq data from sizeable cohorts of SCZ patient samples and controls. The samples include 15 AF-SCZ samples and 15 controls, as well as 14 AT-SCZ samples and 14 controls. The genomics data was generated using techniques optimized for low-input samples: MOWChIP-seq and SMART-seq2 for histone profiles and transcriptome, respectively. The study has generated a significant data resource for the investigation of epigenomic alterations in SCZ. I am not convinced that the hierarchical pairwise design - first comparing AF-SCZ and AT-SCZ with their corresponding controls and secondarily contrasting the two comparisons is fully justified. The authors should repeat the statistical analysis by modeling all three groups simultaneously with an interaction effect for treatment or directly compare AF-SCZ to AT-SCZ groups and evaluate if the main conclusions remain supported.

      Major comments

      (1) The manuscript did not discuss (mention) the quality control of RNA-seq data shown in Fig. 1B. The color scheme choice for the heatmap visualization did not provide a quantitative presentation of the specificity of the RNA-seq data. I would recommend using bar plots to present the results more quantitatively.

      QC of raw RNA-seq data including per sequence GC and adapter content was assessed with FastQC. Reads underwent soft-clipping during STAR alignment with on average 73.8% (+/- 0.08%) reads for neurons and 69.0% (+/- 0.99%) reads for glia being uniquely mapped. A new supplementary figure (Figure S5) has been included to show four bar plots representing the expression values more quantitatively.

      These details are now provided in the RNA-seq data processing part of the Materials and Methods section:

      RNA-seq data processing

      The human genome (GRCh38) and comprehensive gene annotation were obtained from GENCODE (v29). Quality control of RNA-seq reads including per sequence GC and adapter content was assessed with FastQC. Reads were mapped with STAR (2.7.0f) with soft-clipping (average of 73.8% (+/- 0.08%) reads uniquely mapped for neurons and 69.0% (+/- 0.99%) reads for glia) and quantified with featureCounts (v2.0.1) using the default parameters.

      (2) How does the specificity of this RNA-seq dataset compare to previous studies using a similar NeuN sorting strategy?<br /> As mentioned in the Results section, highly significant (median p-value = 6 ´ 10-7) pairwise differences in molecular marker expression were observed for all markers ranging from mature, functional and synaptic neuron markers to astrocyte, oligodendrocyte and microglial markers (Figure 1B; Figures S4 and S5; Table S5). This confirms neuronal and non-neuronal cell-type identities in the NeuN+ and NeuN- nuclei samples, respectively.

      (3) I appreciate the effort to assess the ChIP-seq data quality using phantompeakqualtools. However, prior knowledge/experience with this tool is required to fully understand the QC results. The authors should additionally provide browser shots at different scales for key neuronal/glial genes, so readers can have a more direct assessment of data quality, such as the enrichment of H3K4me3 at promoters (but not elsewhere), and H3K27ac at promoters and enhancers. Existing browser views, such as Fig. 2B are too zoomed out for assessing the data quality.

      A new Fig 2B has been generated with a magnified view for clearer examination.

      (4) The pairwise regression model should be explicitly reported in methods.

      Additional details are included in the Methods section:

      Differential analysis for RNA-seq data

      We analyzed the bulk RNA-seq data of 29 schizophrenia subjects and 29 controls. The initial step involved filtering out genes with low read counts (less than 20 reads in over 50% of samples). The analysis then employed a two-step method to estimate the technical and biological noise. The first step was identifying the top 10 principal components (PCs) of the dataset. Subsequently, the correlation between each PC and various experimental (alignment rate, unique rate, exon percentage, number of unique mapped reads) and demographic (sex, age at death, PMD, antemortem diagnosis) factors was calculated. Covariates with high correlation to the PCs were included in the analysis to minimize their impact. The analysis was conducted using the 'DESeq2' software package, and genes with a false discovery rate (FDR) below 0.05 were identified as differentially expressed.

      (5) The statistical strategy to compare AF-SCZ and AT-SCZ to their corresponding control groups was unjustified. Why not model all three groups simultaneously with an interaction effect for treatment or directly compare AF-SCZ to AT-SCZ groups? If the manuscript argues that the antipsychotic effect is the main novelty, why not directly compare AF-SCZ and AT-SCZ?

      This is an important point. As mentioned above, one of the main strengths of our experimental design is that schizophrenia subjects and controls were individually matched by sex and age and (if possible) postmortem delay and freezing storage time. Our study is also among the first to report the potential impact of antipsychotic treatment on chromatin organization using postmortem human brain samples. Because of this individual matching method, we only compared schizophrenia subjects (either antipsychotic-free or antipsychotic-treated) with their respective individually matched controls. This experimental design is supported by our previous publications with postmortem human brain samples (PMID: 36100039; PMID: 28783139; PMID: 26758213; PMID: 23129762; PMID: 22864611; PMID: 18297054). The rationale behind this experimental design – as well as potential limitations particularly related to the division of the schizophrenia group in antipsychotic-free and antipsychotic-treated – is mentioned in the Discussion:

      Related to the effect of antipsychotic treatment, frontal cortex samples of schizophrenia subjects were divided into AF and AT based on postmortem toxicological analysis in both blood and when possible brain samples, which provides information about a longer retrospective drug-free period due to the high liposolubility of antipsychotic medications (Voicu and Radulescu, 2009). However, we cannot fully exclude the possibility of previous exposure to antipsychotic medications in the AF-schizophrenia group, and hence that the epigenetic alterations observed exclusively in the AF-schizophrenia group are a consequence of a potential period of decompensation, which typically occurs following voluntary treatment discontinuation (Liu-Seifert et al., 2005).

      It is also worth mentioning here that data were analyzed both at the cohort level, as well as at an individual level (schizophrenia/cohort pairs). This is mentioned in the manuscript:

      It should be noted that in the differential analyses here, the schizophrenia subjects (whether AF or AT) and their controls were compared at the cohort level, while matched schizophrenia/control pairs were examined individually in the TF-based analyses.

      (6) The method of pairwise comparison to corresponding control groups, then further comparing the pairwise results opens the study to a number of statistical vulnerabilities. For example, on page 12, the studies identified 166 DEGs between AF and control, and 1273 DEGs between AT and control. Instead of implicating a greater amount of difference between AT and control, such a result can often be driven by differences in between-group variance, rather than between-group means, that is, are the SCZ-AF and SCZ-treated effect size magnitudes and directionalities similar (but the treated group has lower variance) or are the two groups truly different in terms of means? The result in Fig. 5A suggests effect sizes for the two comparisons (AF-Ctrl and AT-Ctrl) are similar but have lower variability in the treated group.

      For a discussion regarding our approach, which involves a pairwise comparison, see above.

      (7) The pairwise comparison further raised the possibility the results were driven by the difference in the two control cohorts rather than the two SCZ cohorts.

      We clearly show that age is an important independent factor (Fig 7). Since controls are individually matched by sex and age, this limits the validity of the comparison among the two cohort groups including subjects of different age (see Tables S1 and S2).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor Comments

      (1) Why not mention what histone modifications you measured by Chip-seq in the abstract? A certainly minor point but I felt I read for quite a while before I got to that point in the intro.

      The two histone marks are now mentioned in the abstract.

      (2) There are several places in the introduction where improper grammar is utilized and this should be edited.

      Introduction has been edited.

      (3) Related to major comments, how many donors overlapped with the PsychENCODE, CommonMind papers?

      Our datasets were generated from an entirely distinct cohort of postmortem human brain samples. Our postmortem sample collection does not overlap with postmortem samples included in PsychENCODE and/or CommonMind publications.

      (4) Since studies have already measured H3K4me3 and H3K27ac in the SCZ prefrontal cortex, why didn't the authors consider measuring changes in a related repressive marker? This is not to suggest the authors should do that now, but additional comments about other markers would help provide context for this analysis and point toward potential future studies.

      This is an interesting question and will be the goal of our future investigation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Why does stimulation at 0.15 Hz show a third harmonic signal (Figure 5A) but 0.25 Hz does not show a second harmonic signal?

      Second and third harmonic signals were sometimes observed in 0.15 Hz and also in 0.25 Hz and other frequency stimulations. The second harmonic signal is easier to understand as vasomotion may be reacting to both directions of oscillating stimuli. The reason for the emergence of the third harmonics was totally unknown. These harmonic signals were not always observed, and the magnitude of these signals was variable. The frequency-locked signal was robust, thus, in this manuscript, we decided to describe only this signal. These observations are mentioned in the revised manuscript (Results, page 9, paragraph 2).

      References for the windows are missing. Closed craniotomy: (Morii, Ngai, and Winn 1986). Thinned skull: (Drew et al. 2010).

      These references were incorporated into the revised manuscript.

      An explanation of, or at least a discussion on, why a flavoprotein or other intrinsic signal from the parenchyma might follow vasomotion with high fidelity would be most helpful.

      We spend a large part of the Results describing that any fluorescence signal from the brain parenchyma follows the vasomotion because the blood vessels largely lack fluorescence signals within the filter band that we observe. This is described as “shadow imaging”. What was rather puzzling was that flavoprotein or other intrinsic signals were phase-shifted in time. This suggests that these autofluorescence signals have an anti-phase “shadow imaging” component and another component that is phase-shifted in time. This is described in the manuscript as the following.

      (Results, page 13, paragraph 2)

      “Production and degradation of flavin and other metabolites may be induced by the fluctuation in the blood vessel diameter with a fixed delay time. The phase shift in the autofluorescence could be due to the additive effect of “shadow” imaging of the vessel and to the concentration fluctuation of the autofluorescent metabolite”

      Glucose and oxygen are likely to be abundantly delivered during the vasodilation phase compared to the vasoconstriction phase of vasomotion. These molecules will trigger cell metabolism and endogenous fluorescent molecules such as NADH, NADPH, and FAD may increase or decrease with a certain delay, which is required for the chemical reactions to occur. Therefore, the concentration fluctuation of these metabolites could lag in time to the changes in the blood flow. These discussions are added in the revised manuscript (Discussions, page 19, paragraph 2).

      Reviewer #2 (Recommendations For The Authors):

      Minor corrections to the text and figures:

      (1) Figures 1 and 2- The single line slice basal and dilated traces are larger in Figure 2 (intact skull) than in Figure 1 (thinned skull)- have these been mixed up, as the authors state in the text that larger dilations are detected in the thinned skull preparation?

      The example vessel described for the thinned skull (Figure 1) happened to be larger than that shown for the intact skull (Figure 2). We did not describe that larger dilations are observed in the thinned skull preparation. What was described was that the vessel profiles were shallower in the intact skull. This is because the presence of the intact skull blurs the fluorescence image.

      (2) Figure 3- I think the lower panel of the amplitude spectrums from 3 individual animals included in D would benefit from being in its own panel within this Figure (i.e. E). The peak ratio is also used in this figure, but the equation to calculate this is not displayed until Figure 4.

      We thank the reviewer for recommending making the figure more comprehensible. We have divided panel D into D and E and shifted the panel character accordingly. The manuscript text was also updated.

      As the reviewer describes, the peak ratio of 0.25 Hz is used in Figure 3E (original). However, the equation to calculate this figure is described in the appropriate location within the main text of the manuscript (Results, page 10, paragraph 2) as well as in the figure legend.

      (3) Figure 5- In the visual stimulation traces displayed in C you have included a 10-degree scale bar, which looks similar in amplitude to the trace but the text states these are 17-degree amplitude traces.

      We thank the reviewer for noticing this mistake of labeling in the figure. We have corrected the error in the revised figure.

      (4) Figure 6- For the Texas red fluorescence traces and image scales displayed in F, you have shown the responding traces on the right and non-responding on the left, but the figure legend states the amplitude is strong on the left and weak on the right.

      We thank the reviewer for noticing the error in the figure legend text. We have corrected the error in the revised manuscript.

      (5) Figure 6- It would be helpful for the reader if the r value was displayed on the graph in G.

      We thank the reviewer for the suggestion. We have indicated the r value in Figure 6G as the reviewer recommended.

      Reviewer #3 (Recommendations For The Authors):

      Major

      It is unclear to me if the authors are studying vasomotion per se. Vasomotion is an intrinsic, natural rhythm of blood vessel diameter oscillation that is entrained by endogenous rhythmic neural activity. Importantly, if you take neural activity away, the blood vessel (with flow and pressure) should still be capable of oscillating due to an intrinsic mechanism within the vessel wall. In contrast, if one increases neural activity by way of sensory stimulation and blood flow increases, this is the basis of functional hyperemia. If one stimulates the brain over and over again at a particular frequency, it is expected that blood flow will increase whenever neural activity increases to the stimulus, up to a particular frequency until the blood vessel cannot physically track the stimulus fast enough. Functional hyperemia does not depend on an intrinsic oscillator mechanism. It occurs when the brain becomes active above endogenous resting activity due to sensory or motor activity.

      We thank the reviewer for stressing the importance of the distinction between “vasomotion” and functional “hyperemia”.

      We recognized that the terminology used in our paper was not explicitly explained. Traditionally, “vasomotion” is defined as the dilation and constriction of the blood vessels that occurs spontaneously at low frequencies in the 0.1 Hz range without any apparent external stimuli. Sensory-induced changes in the blood flow are usually called “hyperemia”. However, in our paper, we used the term, vasomotion, literally, to indicate both forms of “vascular” “motion”. Therefore, the traditional vasomotion was called “spontaneous vasomotion” and the hyperemia, with both vasoconstriction and vasodilation, induced with slow oscillating visual stimuli was called “visually induced vasomotion”. This distinction in the terminology is now explicitly introduced in the revised manuscript (Introduction, page 3, paragraph 2-3; page 4, paragraph 1-2).

      Using our newly devised methods, we show the presence of “spontaneous vasomotion”. However, this spontaneous vasomotion was often fragmented and did not last long at a specific frequency. With visual stimuli that slowly oscillated at temporal frequencies close to the frequency of spontaneous vasomotion, oscillating hyperemia, or “visually induced vasomotion” was observed. Importantly, this visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex. We also do not know how the synchronized vasomotion can spread throughout the whole brain. Where the plasticity for vasomotion entrainment occurs is also unknown. How much of the visually induced vasomotion relies on the mechanisms of intrinsic spontaneous vasomotion is also undetermined. Discussion about the future directions of understanding the mechanisms of visually induced vasomotion and entrainment is described in better detail in the revised manuscript (Discussions, page 19, paragraph 1).

      To me, one would need to silence the naturally occurring vasomotion to study it. As soon as one activates the brain with an external stimulus, functional hyperemia is being studied. One idea that would be interesting to look at is whether a single or perhaps a double stimulus, in an untrained vs trained mouse, shows vasodilation that occurs across the cortex and in the cerebellum. In other words, is there something special about repeating the signal over and over again that results in brain-wide synchronization, or does a single or double oscillation of the same frequency (0.25Hz) also transiently synchronize the brain? My guess is that a short stimulus would give you the same thing (especially in a trained mouse) and that there is nothing special about oscillating the signal over and over again (except for the learning component).

      We thank the reviewer for the ideas of new experiments to understand whether the visually induced vasomotion shares the same mechanisms for creating spontaneous vasomotion or not.

      We would like to emphasize again that the visually induced vasomotion is not observed in the Novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to the visual stimuli. Entrainment with repeated presentation of visual stimuli is required for this global synchronization phenomenon to occur.

      We would also like to emphasize that, even in Expert animals, the visually induced vasomotion that is frequency-locked to the presented stimulus does not always occur immediately. As shown in Figure 3D lower panel (Figure 3E in the revised figure), the vasomotion did not always immediately frequency-lock. The vasomotion was also not always stable throughout the 15 min of visual stimulation presentation. These characteristics are emphasized in the revised manuscript (Results, page 10, paragraph 1).

      Therefore, we would assume that a single or double frequency of the visual stimulation would not always be sufficient to transiently frequency-lock the visually induced vasomotion.

      An alternative idea is to test frequencies lower than vasomotion. Vasomotion typically oscillates around a wide range of very low frequencies averaging around 0.1Hz, yet here the authors entrain blood vessel oscillations towards the top end of vasomotion, at 0.25Hz. What would happen if the authors tried synchronizing brain activity with 0.025Hz? Would the natural vasomotion frequency still be there, or would it be gone, dominated by the 0.025Hz entrainment?

      We would assume that visually induced vasomotion will not be induced with 0.025 Hz visual stimuli. This is too slow to induce smooth pursuit of the visual stimuli with eye movement. We show that, even if smooth eye pursuit occurs, the visually induced vasomotion may or may not occur (Figure 6F). However, visually induced vasomotion does not largely occur without eye movement. Therefore, the proposed experiment by the reviewer is likely not doable.

      Finally, perhaps the authors can see if there is a long-lasting change in natural vasomotion occurring after the animal has been trained to 0.25Hz. For example, is there greater power in the endogenous fluctuation at either 0.25Hz (or perhaps 0.1Hz) with no visual stimulation given but after the animal has been trained? These ideas would be interesting to test and could help clarify whether this is plasticity in functional hyperemia or plasticity in vasomotion.

      It should also be mentioned that the frequency-locked vasomotion quickly dissipates as soon as the visual stimulation is halted (Figure 3D upper panel, middle). However, we agree with the reviewer that it would be interesting to see whether the fragmentation of the spontaneous vasomotion is observed less in the Trained or Expert mice compared to the Novice mice, to understand whether the entrainment effect would propagate to the properties of the spontaneous vasomotion.

      This issue I have raised is not a fundamental flaw in the paper, it pertains more to the wording, phrasing, and pitch of the paper i.e. is this really entrained and plastic vasomotion? I am skeptical. Nevertheless, I think the authors should try some of these suggestions to better characterize this effect.

      We agree that the phrasing used in the original manuscript was rather confusing, as “vasomotion” normally refers to spontaneous vascular movement. However, functional “hyperemia” may not adequately express the phenomenon that we observe either. The phenomenon that we observe is slowly oscillating vasodilation and vasoconstriction that is induced with visual stimuli with a temporal frequency similar to the spontaneously occurring “vasomotion”. This phenomenon is not a direct hyperemia response to the visual stimuli as it requires entrainment and it spreads globally throughout the whole brain. We revised our manuscript to define the terminology that we use.

      An important question is if neural activity is entraining the CBF responses. The authors should do one experiment in a pan-neural GCaMP line to test if neural activity in the visual cortex (and other areas captured in the widefield microscope) shows a progressive and gradual synchronization (or not) to the vasomotion responses with training. It is possible to do this through a thinned skull window. This important to know if/how synchronized population neural activity scales with training. Perhaps they will not correlate and there is something more subtle going on.

      In our paper, we mainly studied visually induced vasomotion (or visual stimulus-triggered vasomotion). Therefore, visual stimulation must first activate the neurons and, through neurovascular coupling, the initial drive for vasomotion is likely triggered. However, visually induced vasomotion is not observed in novice animals. Therefore, the visually induced vasomotion is not a simple sensory reaction of the vascular in response to neuronal activity in the primary visual cortex.

      An important point that should be pointed out is that the neuronal visual response in the primary visual cortex could potentially decrease with repeated visual stimulation presentation as the adaptive movement of the eye should decrease the retinal slip. With repeated training sessions, a more static projection of the presented image will likely be shown to the retina. The neurovascular coupling could be enhanced with increased responsiveness of the vascules and vascular-to-vascular coupling could also be potentiated. This argument is now incorporated in the revised manuscript (Discussions, page 19, paragraph 1).

      We agree with the reviewer that, to identify the extent of the neuronal contribution to the vasomotion triggering, whole brain synchronization, and vasomotion entrainment, simultaneous neuronal calcium imaging would be ideal. However, due to the fact that fluorescent Ca2+ indicators expressed in neurons would also be distorted by the “shadow” effect from the vasomotion, exquisite imaging techniques would be required. We recognize this “shadow” effect and we are currently developing methods to take out the “shadow” effect and the intracellular pH fluctuation effect from the fluorescence traces.

      The authors nicely show that plasticity in vasomotion coincides with the mouse learning the HOKR task and that as eye movement tracks the stimulus, CBF gets entrained. However, there could also be a stress effect going on in the early trials, and as the mouse gets used to the procedure and stress comes down, the vasomotion entrainment can be seen. It could be the case that the vasomotion process is there on the first trial, but masked by stress-induced effects on neural and/or vascular activity. I did not see anything in the methods about how the mouse was habituated to head restraint. Was the first visual stim trial the first time the mouse was head restrained? If so, there could be a strong stress effect. The authors should address this either by clarifying that habituation to head restraint was done, or by doing a control experiment where each animal receives at least 1week of progressive and gradual head restraint before doing the same HOKR experiment using multiple trials.

      We agree with the reviewer that stress could well affect spontaneous vasomotion as well as visually induced vasomotion (or visual stimulus-triggered vasomotion). As the reviewer suggested, we could have compared the habituated and non-habituated mice to the initial visually induced vasomotion response. In addition, whether the experimentally induced increase in stress would interfere with the vasomotion or not could also be studied. With the TexasRed experiments, we observed that tail-vein injection stress appeared to interfere with the HOKR learning process. In the experiments presented in Fig. 3, TexasRed was injected before session 1. Vasomotion entrainment likely progressed with sessions 2 and 3 training. Before session 4, TexasRed was injected again to visualize the vasomotion. The vasomotion was clearly observed in session 4, indicating that the stress induced by tail-vein injection could not interfere with the generation of visually induced vasomotion. This argument is included in the revised manuscript (Discussions, page 20, paragraph 2).

      Minor

      The first sentence of the introduction requires citations. It is also a somewhat irrelevant comparison to make.

      Necessary citation was made in the revised manuscript, as the reviewer suggested. We think that describing how the energy is distributed in the brain would provide one of the most important breakthroughs to the understanding of how efficient information processing in the brain works. Therefore, we would like to keep this introduction.

      The third and fourth sentence of the introduction equates vasodilation/vasoconstriction with vasomotion and it is not this simple. Vasomotion is a specific physiological process involving rhythmic changes to artery diameter. Also, the frequency of these slow oscillations needs to be stated. The authors only say they are slower than 10Hz.

      The definition of spontaneous vasomotion with indication of typical temporal frequency is described in the revised manuscript, as the reviewer suggested.

      More than half of the introduction is describing the paper itself, rather than setting the stage for the findings. The authors need a more thorough account of what is known and what is not known in this area. Some of this information is in the discussion, which should be moved up to the intro.

      We have revised the introduction to include the definition of spontaneous vasomotion and visually induced vasomotion or functional hyperemia, as the reviewer suggested.

      In the first paragraph of the results section, the authors should state in what way the mice are awake. Are they freely mobile? Are they head-restrained? Are they resting or moving or doing both at different times? This is clarified later but it should come up front as someone reads through the paper.

      As the reviewer suggested, we clarified that the experiments were done in awake and head-restrained mice within the first paragraph for the Results section.

      The authors say "As shown later, blood vessels on the surface...". There is no need to say "as shown later".

      This is deleted as the reviewer suggested.

      The use of "full width at 10% maximum" of the Texas red intensity for the diameter measure is a little odd, as it may actually overestimate the diameter, but I see what the authors were trying to do. A full-width half max is standard here and that is likely more appropriate. Also, the line profiles of intensity are not raw data. The authors say the trace is strongly filtered/smoothed. If so, this creates a somewhat artificial platform to make the diameter measurement. The authors should show raw data from a single experiment and make the measurement from that. The raw line profile should look almost square, where a full-width half-max would work well.

      Contrary to what the reviewer observed, the raw line profile was not almost square. Even if there were almost no blur in the XY dimension in the optical imaging system, one would not expect to see a square line profile, as the thickness of the vessel increases in the Z dimension towards the center, as this is not a confocal or two-photon microscope image, and an ideal optical section was not created. Therefore, the full-width half-maximum value would definitely be an underestimate of the actual vessel diameter. It may be possible to equate an ideal value for cutoff if we have the 3D point spread function of the imaging. 10% is an arbitrary number but we think 10% is the minimum intensity that we can distinguish from the background intensity fluctuations. We did not attempt to derive the “true” diameter of the vessel and full-width at 10% maximum is just an index of the actual diameter. In most of the manuscript, we only deal with the change of the vessel diameter relative to the basal diameter, therefore, we considered that careful derivation of the absolute diameter estimate is not necessary. This argument is detailed in the Materials and Methods section in the revised manuscript (page 31, paragraph 2).

      The raw line profile before filtering is shown overlaid in Figure 1C, as the reviewer suggested.

      In Figures 1 and 2, state/label what brain region this is.

      The blood vessels between the bregma and lambda on the cortex were observed and described in Figures 1 and 2. This is described in the revised manuscript, as the reviewer suggested.

      Can the authors also show what a vein or venule looks like using their quantification method in Figures 1 and 2? This would be a helpful comparison to a static vein.

      The methods shown in Figures 1 and 2 would not allow us to distinguish between vein and venule in our study. Methods that allow quantification of the relative blood vessel diameter fluctuation due to spontaneous or visually induced vasomotion activities are shown in Figures 1 and 2. Later in the manuscript, the whole intensity fluctuation of TexasRed or autofluorescence in the brain parenchyma is studied, and in this case, no distinction between vein and venules could be made.

      Statements such as this are not necessary: "Later in the manuscript, we will be dealing with vasomotion dynamics observed with the optical fiber photometry methods, in which the blood vessel type under the detection of the fiber could not be identified". Simply talk about this data when you get to it.

      We have deleted this statement in this part of the manuscript, as the reviewer suggested.

      Same as this, please consider deleting: "Spontaneous vasomotion dynamic differences between different classes of blood vessels would be of interest to study using a more sophisticated in vivo two-photon microscope which we do not own." Just describe the data you have from the methods you have. There is no need to lament.

      We deleted this sentence, as the reviewer suggested.

      Figure 3 D the light blue boxes showing the time period of visual stimulation physically overlay with the frequency-time spectrograms. They should not overlay with this graph because it makes them more light blue, distorting the figure which also uses light blue in the heat map.

      Figure 3D was modified, as the reviewer suggested.

      The authors say: "The reason why the vasomotion detected in our system through the intact skull in awake in vivo mice was less periodic was unknown." Yes, but you are imaging an awake mouse. Many spontaneous behaviours such as whisking, grooming, twitching, and struggling will manifest as increased artery diameter. These will be functional hyperemia occurring events on top of rhythmic vasomotion. This can be briefly discussed.

      As the reviewer comments, the vasomotion detected in awake mice was likely to be less periodic because the spontaneous animal behavior induces functional hyperemia and interrupts spontaneous vasomotion. This interpretation was included in the revised manuscript (Results, page 8, paragraph 1).

      The authors say "extremely tuned" on page 8. They should not use words like "extremely". Perhaps say "more strongly tuned" or equivalent.

      We have changed “extremely” to “more strongly”, as the reviewer suggested.

      The authors say "First, the Texas Red fluorescence images were Gaussian filtered in the spatial XY dimension to take out the random noise presumably created within the imaging system." It is inadvisable to alter the raw data in this way unless there is a sound reason to do so. If there is random noise this should not affect the Fast Fourier Transform analysis. If there is regular noise caused by instrumentation artefact, which is picked up by the analysis then perhaps this could be filtered out. A static Texas red sample in a vial can be used to determine if there is artefactual noise.

      We mainly used the Gaussian filter for better presentation of the imaged data. The TexasRed fluorescence was low in intensity and the acquired images were Gaussian filtered in the spatial XY dimesion to reduce the pixelated noise at the expense of spatial resolution reduction. This filter should not affect the temporal frequency of the observed vasomotion. This is now more clearly indicated in the revised manuscript (Results, page 10, paragraph 2).

      There are endogenous fluorescent molecules in cell metabolism that change dynamically to neural activity: NADH, NADPH, and FAD. These are almost certainly a fraction of the auto-fluorescent signal the authors are measuring and it would be expected to see small fluctuations in these metabolites with neural activity. Perhaps this can be discussed, and the authors can likely argue that metabolic signals are much smaller than the change caused by vasodilation.

      We found that the autofluorescence signal was phase-shifted in time relative to the vasomotion, which was visualized with TexasRed. This suggests that these autofluorescence signals have an anti-phase “shadow imaging” component and another component that is phase-shifted in time. Glucose and oxygen are likely to be abundantly delivered during the vasodilation phase compared to the vasoconstriction phase of vasomotion. These molecules will trigger cell metabolism and endogenous fluorescent molecules such as NADH, NADPH, and FAD may increase or decrease with a certain delay, which is required for the chemical reactions to occur. Therefore, the concentration fluctuation of these metabolites could lag in time to the changes in the blood flow. It is also expected that these metabolites may fluctuate according to the neuronal activity that triggers visually induced vasomotion or functional hyperemia. These discussions are added in the revised manuscript (Discussions, page 19, paragraph 2).

      The authors say "however, we found that, if Texas Red had to be injected before every training session, the mouse did not learn very well." This is interesting. Why do the authors suppose this was the case? Stress from the injection? Or perhaps some deleterious effect on blood vessel function caused by the dye itself? Either way, I think this honest statement should remain. Others need to know about it.

      We think that the stress from the injection interferes with the HOKR learning. However, as shown, TexasRed injection after the mouse had learned did not interfere with the eye movement or with the visually induced vasomotion. We do not know whether the injection stress directly interferes with the blood vessel function and affects the plastic vasomotion entrainment. These arguments are now described in the revised manuscript (Discussions, page 20, paragraph 2). The statement above remains as is, as the reviewer suggested.

      YCnano50 is a calcium sensor and not really appropriate for the use employed by the authors. They are exciting YFP at 505nm but unless the authors are using a laser line, there is some bandwidth of excitation light that is likely exciting the CFP too which still absorbs light up to ~490nm. Here, calcium signalling may affect the YFP signal. This can be discussed.

      Multiband-pass filter (Chroma 69008x with the relevant band of 503 nm / 19.5 nm (FWHM)) was used for direct excitation of YFP. Negligible light is passed below 490 nm. CFP excitation above 490 nm is assumed to be negligible and usually not defined in literature. We assume that with our optical system, fluorescence by direct YFP excitation dominates the effect from the minor CFP excitation effect. We explicitly describe this in the revised manuscript (Materials and Methods, page 28, paragraph 2).

      The discussion is interesting but does not actually discuss much of the data or measurements in the paper. Most of the discussion reads more like a topical review, rather than a critical analysis of the effects/measurements and why the authors' interpretations are likely correct. This can be improved.

      As the reviewer suggests, we have improved the discussion by starting with the summary of the results (Discussion, page 19, paragraph 1). We also included the possibility of stress affecting visually induced vasomotion (Discussion, page 20, paragraph 2).

    1. Author Response

      OVERVIEW OF RESPONSE TO REVIEWS

      I thank the three anonymous reviewers for providing well-informed, constructive feedback on the initial version of this manuscript. Based on their comments I will revise the manuscript and hopefully improve it in several ways. I expected a great deal of resistance to the ideas proposed in this model because they break from traditional approaches. One of my goals in developing this model was to argue for a paradigm shift regarding the concept of a “receptive field”. Experimentally, the receptive field is defined as the set of preferred environmental sensory circumstances that cause a neuron to become highly active. Traditional interpretation of receptive fields implicitly assumes that the environmental circumstances that give rise to the receptive field do so in a purely bottom-up fashion (the cell is “receiving” its field), in which case the receptive field specifies the function of the cell. In other words, the receptive field is what the cell does. However, some brain regions (e.g., entorhinal cortex) receive substantial feedback from downstream regions (e.g., hippocampus), and feedback can play an important role in determining the receptive field. As applied to a memory account of MTL, this feedback is memory retrieval and reactivation. Thus, the multifield spatial response of grid cells doesn’t necessarily mean that their function is spatial. Consideration of bottom-up versus top-down signals gives rise to the proposal that the bottom-up preference of many grid cells is some non-spatial attribute even though they exhibit a spatial receptive field owing to retrieval in specific locations.

      One thing I will emphasize in a revision is that this model can address findings in the vast literature on learning, memory, and consolidation. The question asked in this study is whether a memory model can also explain the rodent navigation literature. This is not an attempt to provide definitive evidence that this is a better account of the rodent navigation literature. Instead, the goal is to model the rodent navigation literature even though this is a memory model rather than a spatial/navigation model. Nevertheless, within the domain of rodent spatial/navigation, this model makes different predictions/explanations than spatial/navigation models. For instance, this is the only model predicting that many grid cells with spatial receptive fields are non-spatial (see predictions in Box 1). As reviewed in Box 1, this is the only model that can explain why head direction conjunctive grid cells become head direction cells in the absence of hippocampal feedback and it is the only model that can explain why some grid cells are also sensitive to sound frequency (see several other unique explanations in Box 1).

      This study is an attempt to unify the spatial/navigation and learning/memory literatures with a relatively simply model. Given the simplicity of the model, there are important findings that the model cannot address -- it is not that the model makes the wrong predictions but rather that it makes no predictions. The role of running speed is one such variable for which the model makes no predictions. Similarly, because the model is a rate-coded model rather than a model of oscillating spiking neurons, it makes no predictions regarding theta oscillations. The model is an account of learning and memory for an adult animal, and it makes no predictions regarding the developmental or evolutionary time course of different cell types. This model contains several purely spatial representations such as border cells, head direction cells, and head direction conjunctive grid cells. In evolution and/or in development, it may be that these purely spatial cell types emerged first, followed by the evolution and/or development of non-spatial cell types. However, this does not invalidate the model. Instead, this is a model for an adult animal that has both episodic memory capabilities and spatial navigation capabilities, irrespective of the order in which these capabilities emerged.

      Grid cell models that are purely spatial are agnostic regarding the thousands of findings in the literature on memory, learning, and consolidation whereas this model can potentially unify the learning/memory and spatial/navigation literatures. The reason to prefer this model is parsimony. Rather than needing to develop a theory of memory that is separate from a theory of spatial navigation, it might be possible to address both literatures with a unified account. There are other grid cell models that can explain non-spatial grid-like responses (Mok & Love, 2019; Rodríguez‐Domínguez & Caplan, 2019; Stachenfeld et al., 2017; Wei et al., 2015) and these models may be similarly positioned to explain memory results. However, these models assume that grid cells exhibiting spatial receptive fields serve the function of identifying positions in the environment (i.e., their function is spatial). As such, these models do not explain why most of the input to rodent hippocampus appears to be spatial (these models would need to assume that rodent hippocampus is almost entirely concerned with spatial navigation). This account provides an answer to this conundrum by proposing that grid cells with spatial receptive fields have been misclassified as spatial. Below I give responses to some of the specific comments made by reviewers, grouping these comments by topic:

      COMMENTS RELATED TO THE NEED/MOTIVATION FOR THIS MODEL

      In a revision, I will clarify that the non-spatial MTL cell types that are routinely found in primate and human studies are fully compatible with this model. The reported simulations are focused on the specific question of how it can be that most mEC and hippocampal cell types in the rodent literature appear to be spatial. It is known that perirhinal cortex is not spatial. However, entorhinal cortex is the gateway to hippocampus. If the hippocampus has the capacity to represent non-spatial memories, it must receive non-spatial input from entorhinal cortex. These simulations suggest that characterization of the rodent mEC cortex as primarily spatial might be incorrect if most grid cells (except perhaps head direction conjunctive grid cells) have been mischaracterized as spatial.

      Lateral entorhinal cortex also projects to hippocampus, and one reviewer asks about the distinction between lateral versus medial entorhinal cortex. From this memory perspective, the important question is which part of the entorhinal cortex represents the non-spatial attributes common to the entire recording session, under the assumption that the animal is creating and retrieving memories during recording. If these non-spatial attributes are represented in lateral EC, there would be grid cells in lateral EC (but these are not found). There is evidence that lateral EC cells respond selectively in relation to objects (Deshmukh & Knierim, 2011), but in a typical rodent navigation study there are no objects in the enclosure.

      One reviewer asks whether this model is built to explain the existing data or whether the assumptions of this model are made for theoretical reasons. The BVC model (Barry et al., 2006), which is a precursor to this model, is a theoretically efficient representation of space that could support place coding. If the distances to different borders are known, it’s not clear why the MTL also needs the two-dimensional Fourier-like representation provided by grid cells. This gives rise to the proposal that grid cells with spatial receptive fields are serving some function other than representing space. In the proposed model, the precise hexagonal arrangement of grid cells indicates a property that is found everywhere in the enclosure (i.e., a “tiling” of knowledge for where the property can be found). This arrangement arises from the well-documented learning process termed “differentiation” in the memory literature (McClelland & Chappell, 1998; Norman & O’Reilly, 2003; Shiffrin & Steyvers, 1997), which highlights differences between memories to avoid interference and confusion.

      CONCERNS RELATED TO LIMITATIONS AND CONFLICTING RESULTS

      One reviewer points out that individual grid cells will typically reveal a grid pattern regardless of the environmental circumstances, which, according to this model, indicates that all such circumstances have the same non-spatial attribute. This might seem strange at first, but I suggest that there is a great deal of “sameness” to the environments used in the published rodent navigation experiments. For instance, as far as I’m aware, the animal is never allowed to interact with other animals during spatial navigation recording. Furthermore, the animal is always attached to wires during recording. The internal state of the animal (fear, aloneness, the noise of electronics, etc.) is likely similar across all recording situations and attributes of this internal state are likely represented in the hippocampus as well as in the regions that provide excitatory drive to hippocampus. The claim of this model is that the grid cells are “tagging” different navigation enclosures as places where these things happen (fear, aloneness, electronics, metal floor, no objects, etc.). The interesting question is what happens when the animal is allowed to navigate in a more naturalistic setting that includes varied objects, varied food sources, varied surfaces, other animals, etc. Do grid cells persist in such a naturalistic environment? Or do they lose their regularity, or even become silent, considering that there is no longer a uniformity to the non-spatial attributes? The results of Caswell Barry et al. (2012), demonstrate that the grid pattern expands and becomes less regular in a novel environment. Nevertheless, the novel environment in that study was uncluttered rather than naturalistic. It remains to be seen what will happen with a truly naturalistic environment.

      One reviewer asks how this model relates to non-grid multifield cells found in mEC (Diehl et al., 2017; see also the irregularly arranged 3D multifield cells reported by Ginosar et al., 2021). A full explanation of these cells would require a new simulation study. In a revision, I will discuss these cells, which reveal a consistent multifield spatial receptive field and yet the multiple fields are irregular in their arrangement rather than a precise hexagonal lattice. On this memory account, precise hexagonal arrangement of memories is something that occurs when there is a non-spatial attribute found throughout the enclosure. However, in a typical rodent navigation study, there may be some non-spatial attributes that are not found everywhere in the enclosure. For instance, consider the set of locations within the enclosure that afford a particular view of something outside of the enclosure or the set of locations corresponding to remembered episodic events (e.g., memory for the location where the animal first entered the enclosure). For non-spatial characteristics that are found in some locations but not others within in the enclosure, the cells representing those non-spatial attributes should reveal multifield firing at irregular locations, reflecting the subset of locations associated with the non-spatial attribute.

      One reviewer suggests that this model cannot explain the finding that grid fields become warped (e.g., grid fields arranged in an ellipse rather than a circle) in the same manner that the enclosure is warped when a wall is moved (Barry et al., 2007). The way in which I would simulate this result would be to assume that the change in the boundary location was too modest to be noticed by the animal. Because the distances are calculated relative to the borders, an unnoticed change in the border would not change the model in terms of the grid field as measured by proportional distances between borders. However, because the real-world Euclidean positions of the border are changed, the grid fields would be changed in terms of real-world coordinates. This is what I was referring to in the paper when I wrote “For instance, perhaps one egocentric/allocentric pair of mEC grid modules is based on head direction (viewpoint) in remembered positions relative to the enclosure borders whereas a different egocentric/allocentric pair is based on head direction in remembered positions relative to landmarks exterior to the enclosure. This might explain why a deformation of the enclosure (moving in one of the walls to form a rectangle rather than a square) caused some of the grid modules but not others to undergo a deformation of the grid pattern in response to the deformation of the enclosure wall (see also Barry et al., 2007). More specifically, if there is one set of non-orthogonal dimensions for enclosure borders and the movement of one wall is too modest as to cause avoid global remapping, this would deform the grid modules based the enclosure border cells. At the same time, if other grid modules are based on exterior properties (e.g., perhaps border cells in relation to the experimental room rather than the enclosure), then those grid modules would be unperturbed by moving the enclosure wall.” Related to the question of enclosure geometry, the irregularity that can emerge in trapezoid shaped enclosures was discussed in the section of the paper that reads “As seen in Figure 12, because all but one of the place cells was exterior when the simulated animal was constrained to a narrow passage, the hippocampal place cell memories were no longer arranged in a hexagonal grid. This disruption of the grid array for narrow passages might explain the finding that the grid pattern (of grid cells) is disrupted in the thin corner of a trapezoid (Krupic et al., 2015) and disrupted when a previously open enclosure is converted to a hairpin maze by insertion of additional walls within the enclosure (Derdikman et al., 2009).”

      CONCERNS THAT WILL BE ADDRESSED WITH GREATER CLARIFICATION

      One reviewer asks why a cell representing a non-spatial attribute found everywhere in the enclosure would not fire everywhere in the enclosure. In theory, cells could fire constantly. However, in practice, cells habituate and rapidly reduce their firing rate by an order of magnitude when their preferred stimulus is presented without cessation (Abbott et al., 1997; Tsodyks & Markram, 1997). After habituation, the firing rate of the cell fluctuates with minor variation in the strength of the excitatory drive. In other words, habituation allows the cell to become sensitive to changes in the excitatory drive (Huber & O’Reilly, 2003). Thus, if there is stronger top-down memory feedback in some locations as compared to others, the cell will fire at a higher rate in those remembered locations. In brief when faced with constant excitatory drive, the cell accommodates, and becomes sensitive to change in the magnitude of the excitatory drive.

      One reviewer asks for greater clarification regarding the simulation result of immediate stability for grid cells but not place cells. In a revision, I will provide a video showing a sped-up birds-eye view of the place cell memories for the 3D simulations that include head direction, showing the manner in which memories tend to linger in some locations more than others as they consolidate. This behavior was explained in the text that reads “Because the non-spatial cell’s grid field reflects on-average memory positions during the recording session (i.e., the locations where the non-spatial attribute is more often remembered, even if the locations of the memories are shifting), the grid fields for the non-spatial are immediately apparent, reflecting the tendency of place cells to linger in some locations as compared to other locations during consolidation. More specifically, the place cells tend to linger at the peaks and troughs of the border cell tuning functions (see the explanation above regarding the tendency of the grid to align with border cell dimensions). By analogy, imagine a time-lapsed birds-eye view of cars traversing the city-block structure of a densely populated city; this on-average view would show a higher density of cars at the cross-street junctions owing to their tendency to become temporarily stuck at stoplights. However, with additional learning and consolidation, the place cells stabilize their positions (e.g., the cars stop traveling), producing a consistent grid field for the head direction conjunctive grid cells.” The text describing why some locations are more “sticky” than others reads “Additional analyses revealed that this tendency to align with border cell dimensions is caused by weight normalization (Step 6 in the pseudocode). Specifically, connection weights cannot be updated above their maximum nor below their minimum allowed values. This results in a slight tendency for consolidated place cell memories to settle at one of the three peak values or three trough values of the sine wave basis set. This “stickiness” at one of 6 peak or trough values for each basis set is very slight and only occurred after many consolidation steps. In terms of biological systems, there is an obvious lower-bound for excitatory connections (i.e., it is not possible to have an excitatory weight connection that is less than zero), but it is not clear if there is an upper-bound. Nevertheless, it is common practice with deep learning models include an upper-bound for connection weights because this reduces overfitting (Srivastava et al., 2014) and there may be similar pressures for biological systems to avoid excessively strong connections.”

      One reviewer points out that Border cells are not typically active in the center of enclosure. However, the model can be built without assuming between-border cells (early simulations with the model did not make this assumption). Regarding this issue, the text reads “Unlike the BVC model, the boundary cell representation is sparsely populated using a basis set of three cells for each of the three dimensions (i.e., 9 cells in total), such that for each of the three non-orthogonal orientations, one cell captures one border, another the opposite border, and the third cell captures positions between the opposing borders (Solstad et al., 2008). However, this is not a core assumption, and it is possible to configure the model with border cell configurations that contain two opponent border cells per dimension, without needing to assume that any cells prefer positions between the borders (with the current parameters, the model predicts there will be two border cells for each between-border cell). Similarly, it is possible to configure the model with more than 3 cells for each dimension (i.e., multiple cells representing positions between the borders).” The Solstad paper found a few cells that responded in positions between borders, but perhaps not as many as 1 out of 3 cells, such as this particular model simulation predicts. If the paucity of between-border cells is a crucial data point, the model can be reconfigured with opponent-border cells without any between border cells. The reason that 3 border cells were used rather than 2 opponent border cells was for simplicity. Because 3 head direction cells were used to capture the face-centered cubic packing of memories, the simulation also used 3 border cells per dimensions to allow a common linear sum metric when conjoining dimensions to form memories. If the border dimensions used 2 cells while head direction used 3 cells, a dimensional weighting scheme would be needed to allow this mixing of “apples and oranges” in terms of distances in the 3D space that includes head direction.

      REFERENCES Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224.

      Barry, C., Ginzberg, L. L., O’Keefe, J., & Burgess, N. (2012). Grid cell firing patterns signal environmental novelty by expansion. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17687–17692. https://doi.org/DOI 10.1073/pnas.1209918109

      Barry, C., Hayman, R., Burgess, N., & Jeffery, K. J. (2007). Experience-dependent rescaling of entorhinal grids. Nature Neuroscience, 10(6), 682–684.

      Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., Jeffery, K., & Burgess, Ν. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1–2), 71–98.

      Derdikman, D., Whitlock, J. R., Tsao, A., Fyhn, M., Hafting, T., Moser, M. B., & Moser, E. I. (2009). Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci, 12(10), 1325-U155. https://doi.org/Doi 10.1038/Nn.2396

      Deshmukh, S. S., & Knierim, J. J. (2011). Representation of non-spatial and spatial information in the lateral entorhinal cortex. Frontiers in Behavioral Neuroscience, 5, 69.

      Diehl, G. W., Hon, O. J., Leutgeb, S., & Leutgeb, J. K. (2017). Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. Neuron, 94(1), 83-92. e6.

      Ginosar, G., Aljadeff, J., Burak, Y., Sompolinsky, H., Las, L., & Ulanovsky, N. (2021). Locally ordered representation of 3D space in the entorhinal cortex. Nature, 596(7872), 404–409.

      Huber, D. E., & O’Reilly, R. C. (2003). Persistence and accommodation in short-term priming and other perceptual paradigms: Temporal segregation through synaptic depression. Cognitive Science, 27(3), 403–430. https://doi.org/10.1207/s15516709cog2703_4

      Krupic, J., Bauza, M., Burton, S., Barry, C., & O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232–235.

      McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105(4), 724–760.

      Mok, R. M., & Love, B. C. (2019). A non-spatial account of place and grid cells based on clustering models of concept learning. Nature Communications, 10(1), 5685.

      Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611–646.

      Rodríguez‐Domínguez, U., & Caplan, J. B. (2019). A hexagonal Fourier model of grid cells. Hippocampus, 29(1), 37–45.

      Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM - retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166.

      Solstad, T., Boccara, C. N., Kropff, E., Moser, M. B., & Moser, E. I. (2008). Representation of Geometric Borders in the Entorhinal Cortex. Science, 322(5909), 1865–1868. https://doi.org/DOI 10.1126/science.1166466

      Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.

      Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), 1643–1653.

      Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A, 94(2), 719–723. https://doi.org/10.1073/pnas.94.2.719

      Wei, X.-X., Prentice, J., & Balasubramanian, V. (2015). A principle of economy predicts the functional architecture of grid cells. Elife, 4, e08362.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable paper presents a thoroughly detailed methodology for mesoscale-imaging of extensive areas of the cortex, either from a top or lateral perspective, in behaving mice. While the examples of scientific results to be derived with this method are in the preliminary stages, they offer promising and stimulating insights. Overall, the method and results presented are convincing and will be of interest to neuroscientists focused on cortical processing in rodents.

      Authors’ Response: We thank the reviewers for the helpful and constructive comments. They have helped us plan for significant improvements to our manuscript. Our preliminary response and plans for revision are indicated below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors introduce two preparations for observing large-scale cortical activity in mice during behavior. Alongside this, they present intriguing preliminary findings utilizing these methods. This paper is poised to be an invaluable resource for researchers engaged in extensive cortical recording in behaving mice.

      Strengths:

      -Comprehensive methodological detailing:

      The paper excels in providing an exceptionally detailed description of the methods used. This meticulous documentation includes a step-by-step workflow, complemented by thorough workflow, protocols, and a list of materials in the supplementary materials.

      -Minimal movement artifacts:

      A notable strength of this study is the remarkably low movement artifacts. To further underscore this achievement, a more robust quantification across all subjects, coupled with benchmarking against established tools (such as those from suite2p), would be beneficial.

      Authors’ Response: This is a good suggestion. We have records of the fast-z correction applied by the ScanImage on microscope during acquisition, so we have supplied the online fast-z motion correction .csv files for two example sessions on our GitHub page as supplementary files:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/online_fast_z_correction

      These files correspond to Figure S3b (2367_200214_E210_1) and to Figures 5 and 6 (3056_200924_E235_1). These are now also referenced in the main text. See lines ~595, pg 18 and lines ~762, pg 24.

      We have also made minor revisions to the main text of the manuscript with clear descriptions of methods that we have found important for the minimization of movement artifacts, such as fully tightening all mounting devices, implanting the cranial window with proper, evenly applied pressure across its entire extent, and mounting the mouse so that it is not too close or far from the surface of the running wheel. See Line ~309, pg 10.

      Insightful preliminary data and analysis:

      The preliminary data unveiled in the study reveal interesting heterogeneity in the relationships between neural activity and detailed behavioral features, particularly notable in the lateral cortex. This aspect of the findings is intriguing and suggests avenues for further exploration.

      Weaknesses:

      -Clarification about the extent of the method in the title and text:

      The title of the paper, using the term "pan-cortical," along with certain phrases in the text, may inadvertently suggest that both the top and lateral view preparations are utilized in the same set of mice. To avoid confusion, it should be explicitly stated that the authors employ either the dorsal view (which offers limited access to the lateral ventral regions) or the lateral view (which restricts access to the opposite side of the cortex). For instance, in line 545, the phrase "lateral cortex with our dorsal and side mount preparations" should be revised to "lateral cortex with our dorsal or side mount preparations" for greater clarity.

      Authors’ Response: We have opted to not change the title of the paper, because we feel that adding the qualifier, “in two preparations,” would add unnecessary complexity. In addition, while the dorsal mount preparation allows for imaging of bilateral dorsal cortex, the side mount preparation does indeed allow for imaging of both dorsal and lateral cortex across the right hemisphere (a bit of contralateral dorsal cortex is also imageable), and the design can be easily “flipped” across a mirror-plane to allow for imaging of left dorsal and lateral cortex. Taken together, we do show preparations that allow for pan-cortical 2-photon imaging.

      We do agree that imprecise reference to the two preparations can sometimes lead to confusion. Therefore, we made several small revisions to the manuscript, including at ~line 545, to make it clearer that we used two imaging preparations to generate our combined 2-photon mesoscope dataset, and that each of those two preparations had both benefits and limitations.

      -Comparison with existing methods:

      A more detailed contrast between this method and other published techniques would add value to the paper. Specifically, the lateral view appears somewhat narrower than that described in Esmaeili et al., 2021; a discussion of this comparison would be useful.

      Authors’ Response: The preparation by Esmaeili et al. 2021 has some similarities to, but also differences from, our preparation. Our preliminary reading is that their through-the-skull field of view is approximately the same as our through-the-skull field of view that exists between our first (headpost implantation) and second (window implantation) surgeries for our side mount preparation, although our preparation appears to include more anterior areas both near to and on the contralateral side of the midline. We have compared these preparations more thoroughly in the revised manuscript. (See lines ~278.)

      Furthermore, the number of neurons analyzed seems modest compared to recent papers (50k) - elaborating on this aspect could provide important context for the readers.

      Authors’ response: With respect to the “modest” number of neurons analyzed (between 2000 and 8000 neurons per session for our dorsal and side mount preparations with medians near 4500; See Fig. S2e) we would like to point out that factors such as use of dual-plane imaging or multiple imaging planes, different mouse lines, use of different duration recording sessions (see our Fig S2c), use of different imaging speeds and resolutions (see our Fig S2d), use of different Suite2p run-time parameters, and inclusion of areas with blood vessels and different neuron cell densities, may all impact the count of total analyzed neurons per session. We now mention these various factors and have made clear that we were not, for the purposes of this paper, trying to maximize neuron count at the expense of other factors such as imaging speed and total spatial FOV extent.

      We refer to these issues now briefly in the main text. (See ~line 93, pg 3).

      -Discussion of methodological limitations:

      The limitations inherent to the method, such as the potential behavioral effects of tilting the mouse's head, are not thoroughly examined. A more comprehensive discussion of these limitations would enhance the paper's balance and depth.

      Authors’ Response: Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this configuration (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript at ~line 235, pg. 7.

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it is possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the Thorlabs mesoscope objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use ultrasound gel instead (which we found to be, to some degree, optically inferior to water), but without the horizontal light shield, light from the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult under these conditions because the camera would need the same optical access angle as the 2-photon objective, or would need to be moved downward toward the air table and rotated up at an angle of 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      -Preliminary nature of results:

      The results are at a preliminary stage; for example, the B-soid analysis is based on a single mouse, and the validation data are derived from the training data set.

      Authors’ Response: In this methods paper, we have chosen to supply proof of principle examples, without a complete analysis of animal-to-animal variance.

      The B-SOiD analysis that we show in Figure 6 is based on a model trained on 80% of the data from four sessions taken from the same mouse, and then tested on all of a single session from that mouse. Initial attempts to train across sessions from different mice were unsuccessful, probably due to differences in behavioral repertoires across mice. However, we have performed extensive tests with B-SOiD and are confident that these sorts of results are reproducible across mice, although we are not prepared to publish these results at this time.

      We now clarify these points in the main text at ~line 865, pg 27.

      An additional comparison of the results of B-SOiD trained on different numbers of sessions to that of keypoint-MOSEQ (Weinreb et al, 2023, bioRxiv) trained on ~20 sessions can now be found as supplementary material on our GitHub site:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/Figure_SZZ_BSOID_MOSEQ_align.pdf

      The discrepancy between the maps in Figures 5e and 6e might indicate that a significant portion of the map represents noise. An analysis of variability across mice and a method to assign significance to these maps would be beneficial.

      Authors’ Response: After re-examination of the original analysis output files, we have indeed discovered that some of the Rastermap neuron density maps in Figure 6e were incorrectly aligned with their respective qualitative behaviors due to a discrepancy in file numbering between the images in 6e and the ensembles identified in 6c (each time that Rastermap is run on the same data, at least with the older version available at the time of creation of these figures, the order of the ensembles on the y-axis changes and thus the numbering of the ensembles would change even though the neuron identities within each group stayed the same for a given set of parameters).

      This unfortunate panel alignment / graphical display error present in the original reviewed preprint has been fixed in the current, updated figure (i.e. twitch corresponds to Rastermap groups 2 and 3, whisk to group 6, walk to groups 5 and 4, and oscillate to groups 0 and 1), and in the main text at ~line 925, pg 29. We have also changed the figure legend, which also contained accurate but misaligned information, for Figure 6e to reflect this correction.

      One can now see that, because the data from both figures is from the same session in the same mouse, as you correctly point out, Fig 5d left (walk and whisk) corresponds roughly to Fig 6e group R7, “walk”, and that Fig 5d right (whisk) corresponds roughly to Fig 6e group R4, “twitch”.

      We have double-checked the identity of other CCF map displays of Rastermap neuron density and of mean correlations between neural activity and behavioral primitives in all other figures, and we found no other such alignment or mis-labeling errors.

      We have also added a caveat in the main text at ~lines 925-940, pg. 30, pointing out the preliminary nature of these findings, which are shown here as an example of the viability of the methods. Analysis of the variability of Rastermap alignments across sessions is beyond the scope of the current paper, although it is an issue that we hope to address in upcoming analysis papers.

      -Analysis details:

      More comprehensive details on the analysis would be beneficial for replicability and deeper understanding. For instance, the statement "Rigid and non-rigid motion correction were performed in Suite2p" could be expanded with a brief explanation of the underlying principles, such as phase correlation, to provide readers with a better grasp of the methodologies employed.

      Authors’ Response: We added a brief explanation of Suite2p motion correction at ~line 136, pg 4. We have also added additional details concerning CCF / MMM alignment and other analysis issues. In general we cite other papers where possible to avoid repeating details of analysis methods that are already published.

      Reviewer #2 (Public Review):

      Summary:

      The authors present a comprehensive technical overview of the challenging acquisition of large-scale cortical activity, including surgical procedures and custom 3D-printed headbar designs to obtain neural activity from large parts of the dorsal or lateral neocortex. They then describe technical adjustments for stable head fixation, light shielding, and noise insulation in a 2-photon mesoscope and provide a workflow for multisensory mapping and alignment of the obtained large-scale neural data sets in the Allen CCF framework. Lastly, they show different analytical approaches to relate single-cell activity from various cortical areas to spontaneous activity by using visualization and clustering tools, such as Rastermap, PCA-based cell sorting, and B-SOID behavioral motif detection.

      Authors’ Response: Thank you for this excellent summary of the scope of our paper.

      The study contains a lot of useful technical information that should be of interest to the field. It tackles a timely problem that an increasing number of labs will be facing as recent technical advances allow the activity measurement of an increasing number of neurons across multiple areas in awake mice. Since the acquisition of cortical data with a large field of view in awake animals poses unique experimental challenges, the provided information could be very helpful to promote standard workflows for data acquisition and analysis and push the field forward.

      Authors’ Response: We very much support the idea that our work here will contribute to the development of standard workflows across the field including those for multiple approaches to large-scale neural recordings.

      Strengths:

      The proposed methodology is technically sound and the authors provide convincing data to suggest that they successfully solved various problems, such as motion artifacts or high-frequency noise emissions, during 2-photon imaging. Overall, the authors achieved their goal of demonstrating a comprehensive approach for the imaging of neural data across many cortical areas and providing several examples that demonstrate the validity of their methods and recapitulate and further extend some recent findings in the field.

      Weaknesses:

      Most of the descriptions are quite focused on a specific acquisition system, the Thorlabs Mesoscope, and the manuscript is in part highly technical making it harder to understand the motivation and reasoning behind some of the proposed implementations. A revised version would benefit from a more general description of common problems and the thought process behind the proposed solutions to broaden the impact of the work and make it more accessible for labs that do not have access to a Thorlabs mesoscope. A better introduction of some of the specific issues would also promote the development of other solutions in labs that are just starting to use similar tools.

      Authors’ Response: We have edited the motivations behind the study to clarify the general problems that are being addressed. However, as the 2-photon imaging component of these experiments were performed on a Thorlabs mesoscope, the imaging details necessarily deal specifically with this system.

      We briefly compare the methods and results from our Thorlabs system to that of Diesel-2p, another comparable system, based on what we have been able to glean from the literature on its strengths and weaknesses. See ~lines 206-213, pg 6.

      Reviewer #3 (Public Review):

      Summary

      In their manuscript, Vickers and McCormick have demonstrated the potential of leveraging mesoscale two-photon calcium imaging data to unravel complex behavioural motifs in mice. Particularly commendable is their dedication to providing detailed surgical preparations and corresponding design files, a contribution that will greatly benefit the broader neuroscience community as a whole. The quality of the data is high, but it is not clear whether this is available to the community, some datasets should be deposited. More importantly, the authors have acquired activity-clustered neural ensembles at an unprecedented spatial scale to further correlate with high-level behaviour motifs identified by B-SOiD. Such an advancement marks a significant contribution to the field. While the manuscript is comprehensive and the analytical strategy proposed is promising, some technical aspects warrant further clarification. Overall, the authors have presented an invaluable and innovative approach, effectively laying a solid foundation for future research in correlating large-scale neural ensembles with behaviour. The implementation of a custom sound insulator for the scanner is a great idea and should be something implemented by others.

      Authors’ Response: Thank you for the kind words.

      We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      The data is located here: https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with in-depth analysis papers that are currently in preparation.

      This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other. This is described in the methods, but a visual representation would greatly benefit the readers looking to implement something similar.

      Authors’ Response: This is an excellent suggestion. We have included a workflow diagram in the revised manuscript, in the form of a 3-part figure, for the methods (a), data collection (b and c), and analysis (d). This supplementary figure is now located on the GitHub page at the following link:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/pancortical_workflow_diagrams.pdf

      We now reference this figure on ~lines 190-192, pg 6 of the main text, near the beginning of the Results section.

      The authors should cite sources for the claims stated in lines 449-453 and cite the claim of the mouse's hearing threshold mentioned in lines 463.

      Authors’ Response: For the claim stated in lines 449-453:

      “The unattenuated or native high-frequency background noise generated by the resonant scanner causes stress to both mice and experimenters, and can prevent mice from achieving maximum performance in auditory mapping, spontaneous activity sessions, auditory stimulus detection, and auditory discrimination sessions/tasks”

      ,we can provide the following references: (i) for mice: Sadananda et al, 2008 (“Playback of 22-kHz and 50-kHz ultrasonic vocalizations induces differential c-fos expression in rat brain”, Neuroscience Letters, Vol 435, Issue 1, p 17-23), and (ii) for humans: Fletcher et al, 2018 (“Effects of very high-frequency sound and ultrasound on humans. Part I: Adverse symptoms after exposure to audible very-high frequency sound”, J Acoust Soc A, 144, 2511-2520). We will include these references in the revised paper.

      For the claim stated on line 463:

      “i.e. below the mouse hearing threshold at 12.5 kHz of roughly 15 dB”

      ,we can provide the following reference: Zheng et al, 1999 (“Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses”, Vol 130, Issues 1-2, p 94-107).

      We have included these two new references in the new, revised version of our paper. Thank you for identifying these citation omissions.

      No stats for the results shown in Figure 6e, it would be useful to know which of these neural densities for all areas show a clear statistical significance across all the behaviors.

      Authors’ Response: It would be useful if we could provide a statistic similar to what we provide for Fig. S6c and f, in which for each CCF area we compare the observed mean correlation values to a null of 0, or, in this case, the population densities of each Rastermap group within each CCF area to a null value equal to the total number of CCF areas divided by the total number of recorded neurons for that group (i.e. a Rastermap group with 500 neurons evenly distributed across ~30 CCF areas would contain ~17 neurons, or ~3.3% density, per CCF area.) Our current figure legend states the maximums of the scale bar look-up values (reds) for each group, which range from ~8% to 32%.

      However, because the data in panel 6e are from a single session and are being provided as an example of our methods and not for the purpose of claiming a specific result at this point, we choose not to report statistics. It is worth pointing out, perhaps, that Rastermap group densities for a given CCF area close to 3.3% are likely not different from chance, and those closer to ~40%, which is our highest density (for area M2 in Rastermap group 7, which corresponds to the qualitative behavior “walk”), are most likely not due to chance. Without analysis of multiple sessions from the same mouse we believe that making a clear statement of significance for this likelihood would be premature.

      We now clarify this decision and related considerations in the main text at ~line 920, pg 29.

      While I understand that this is a methods paper, it seems like the authors are aware of the literature surrounding large neuronal recordings during mouse behavior. Indeed, in lines 178-179, the authors mention how a significant portion of the variance in neural activity can be attributed to changes in "arousal or self-directed movement even during spontaneous behavior." Why then did the authors not make an attempt at a simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc). These models are straightforward to implement, and indeed it would benefit this work if the model extracts information on par with what is known from the literature.

      Authors’ Response: This is an excellent suggestion, but beyond the scope of the current methods paper. We are following up with an in depth analysis of neural activity and corresponding behavior across the cortex during spontaneous and trained behaviors, but this analysis goes well beyond the scope of the present manuscript.

      Here, we prefer to present examples of the types of results that can be expected to be obtained using our methods, and how these results compare with those obtained by others in the field.

      Specific strengths and weaknesses with areas to improve:

      The paper should include an overall cartoon diagram that indicates how the various modules are linked together for the sampling of both behaviour and mesoscale GCAMP. This is a methods paper, but there is no large diagram that shows how all the parts are connected, communicating, and triggering each other.

      Authors’ Response: This is an excellent suggestion. We have included a workflow diagram in the revised manuscript, in the form of a 3-part figure, for the methods (a), data collection (b and c), and analysis (c). This supplementary figure is now located on the GitHub page at the following link:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/pancortical_workflow_diagrams.pdf

      The paper contains many important results regarding correlations between behaviour and activity motifs on both the cellular and regional scales. There is a lot of data and it is difficult to draw out new concepts. It might be useful for readers to have an overall figure discussing various results and how they are linked to pupil movement and brain activity. A simple linear model that tries to predict the activity of their many thousands of neurons by employing the multitude of regressors at their disposal (pupil, saccades, stimuli, movements, facial changes, etc) may help in this regard.

      Authors’ Response: This is an excellent suggestion, but beyond the scope of the present methods paper. Such an analysis is a significant undertaking with such large and heterogeneous datasets, and we provide proof-of-principle data here so that the reader can understand the type of data that one can expect to obtain using our methods. We will provide a more complete analysis of data obtained using our methodology in the near future in another manuscript.

      Previously, widefield imaging methods have been employed to describe regional activity motifs that correlate with known intracortical projections. Within the authors' data it would be interesting to perhaps describe how these two different methods are interrelated -they do collect both datasets. Surprisingly, such macroscale patterns are not immediately obvious from the authors' data. Some of this may be related to the scaling of correlation patterns or other factors. Perhaps there still isn't enough data to readily see these and it is too sparse.

      Authors’ Response: Unfortunately, we are unable to directly compare 1-photon widefield GCaMP6s activity with mesoscope 2-photon GCaMP6s activity. During widefield data acquisition, animals were stimulated with visual, auditory, or somatosensory stimuli (i.e. “passive sensory stimulation”), while 2-photon mesoscope data collection occurred during spontaneous changes in behavioral state, without sensory stimulation. The suggested comparison is, indeed, an interesting project for the future.

      In lines 71-71, the authors described some disadvantages of one-photon widefield imaging including the inability to achieve single-cell resolution. However, this is not true. In recent years, the combination of better surgical preparations, camera sensors, and genetically encoded calcium indicators has enabled the acquisition of single-cell data even using one-photon widefield imaging methods. These methods include miniscopes (Cai et al., 2016), multi-camera arrays (Hope et al., 2023), and spinning disks (Xie et al., 2023).

      Cai, Denise J., et al. "A shared neural ensemble links distinct contextual memories encoded close in time." Nature 534.7605 (2016): 115-118.

      Hope, James, et al. "Brain-wide neural recordings in mice navigating physical spaces enabled by a cranial exoskeleton." bioRxiv (2023).

      Xie, Hao, et al. "Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution." Nature Biomedical Engineering (2023): 1-14.

      Authors’ Response: We have corrected these statements and incorporated these and other relevant references. There are advantages and disadvantages to each chosen technique, such as ease of use, field of view, accuracy, and speed. We will reference the papers you mention without an extensive literature review, but we would like to emphasize the following points:

      Even the best one-photon imaging techniques typically have ~10-20 micrometer resolution in xy (we image at 5 micrometer resolution for our large FOV configuration, but the xy point-spread function for the Thorlabs mesoscope is 0.61 x 0.61 micrometers in xy with 970 nm excitation) and undefined z-resolution (4.25 micrometers for Thorlabs mesoscope). A coarser resolution increases the likelihood that activity related fluorescence from neighboring cells may contaminate the fluorescence observed from imaged neurons. Reducing the FOV and using sparse expression of the indicator lessens this overlap problem.

      We do appreciate these recent advances, however, particularly for use in cases where more rapid imaging is desired over a large field of view (CCD acquisition can be much faster than that of standard 2-photon galvo-galvo or even galvo-resonant scanning, as the Thorlabs mesoscope uses). This being said, there are few currently available genetically encoded Ca2+ sensors that are able to measure fluctuations faster than ~10 Hz, which is a speed achievable on the Thorlabs 2-photon mesoscope with our techniques using the “small, multiple FOV” method (Fig. S2d, e).

      We have further clarified our discussion of these issues in the main text at ~lines 76-80, pg 2.

      The authors' claim of achieving optical clarity for up to 150 days post-surgery with their modified crystal skull approach is significantly longer than the 8 weeks (approximately 56 days) reported in the original study by Kim et al. (2016). Since surgical preparations are an integral part of the manuscript, it may be helpful to provide more details to address the feasibility and reliability of the preparation in chronic studies. A series of images documenting the progression optical quality of the window would offer valuable insight.

      Authors’ Response: As you suggest, we now include brief supplementary material demonstrating the changes in the window preparation that we observed over the prolonged time periods of our study, for both the dorsal and side mount preparations. The following link to this material is now referenced at ~line 287, pg 9, and at the end of Fig S1:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/window_preparation_stability.pdf

      We have also included brief additional details in the main text that we found were useful for facilitating long term use of these preparations. These are located at ~line 287-290, pg 9.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Sharing raw data and code:

      I strongly encourage sharing some of the raw data from your experiments and all the code used for data analysis (e.g. in a github repository). This would help the reader evaluate data quality, and reproduce your results.

      Authors’ Response: We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

      The data is located here: https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

      Our existing GitHub repository, already referenced in the paper, is located here:

      https://github.com/vickerse1/mesoscope_spontaneous

      We have added an additional reference in the main text to the existence of these publicly available resources, including the appropriate links, located at ~lines 190-200, pg 6.

      (2) Use of proprietary software:

      The reliance on proprietary tools like LabView and Matlab could be a limitation for some researchers, given the associated costs and accessibility issues. If possible, consider incorporating or suggesting alternatives that are open-source, to make your methodology more accessible to a broader range of researchers, including those with limited resources.

      Authors’ Response: We are reluctant to recommend open source software that we have not thoroughly tested ourselves. However, we will mention, when appropriate, possible options for the reader to consider.

      Although LabView is proprietary and can be difficult to code, it is particularly useful when used in combination with National Instruments hardware. ScanImage in use with the Thorlabs mesoscope uses National Instruments hardware, and it is convenient to maintain hardware standards across the integrated rig/experimental system. Labview is also useful because it comes with a huge library of device drivers that makes addition of new hardware from basically any source very convenient.

      That being said, there are open source alternatives that could conceivably be used to replace parts of our system. One example is AutoPilot (author: Jonny Saunders), for control of behavioral data acquisition: https://open-neuroscience.com/post/autopilot/.

      We are not aware of an alternative to Matlab for control of ScanImage, which is the supported control software for the ThorLabs 2-photon mesoscope.

      Most of our processing and analysis code (see GitHub page: https://github.com/vickerse1/mesoscope_spontaneous) is in Python, but some of the code that we currently use remains in Matlab form. Certainly, this could be re-written as Python code. However, we feel like this is outside the scope of the current paper. We have provided commenting to all code in an attempt to aid users in translating it to other languages, if they so desire.

      (3) Quantifying the effect of tilted head:

      To address the potential impact of tilting the mouse's head on your findings, a quantitative analysis of any systematic differences in the behavior (e.g. Bsoid motifs) could be illuminating.

      Authors’ Response: We have performed DeepLabCut analysis of all sessions from both preparations, across several iterations with different parameters, to extract pose estimates, and we have also performed BSOiD of these sessions. We did not find any obvious qualitative differences in the number of behavioral motifs identified, the dwell times of these motifs, and similar issues, relating to the issue of tilting of the mouse’s head in the side mount preparation. We also did not find any obvious differences in the relative frequencies of high level qualitative behaviors, such as the ones referred to in Fig. 6, between the two preparations.

      Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this configuration (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript. (See ~line 235, pg. 7)

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it would in principle be nearly possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the Thorlabs mesoscope objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use gel instead (which we found to be optically inferior to water), but without the horizontal light shield, the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult to impossible under these conditions because the camera would need the same optical access angle as the objective, or would need to be moved down toward the air table and rotated up 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      (4) Clarification in the discussion section:

      The paragraph titled "Advantages and disadvantages of our approach" seems to diverge into discussing future directions, rather than focusing on the intended topic. I suggest revisiting this section to ensure that it accurately reflects the strengths and limitations of your approach.

      Authors’ Response: We agree with the reviewer that this section included several potential next steps or solutions for each advantage and disadvantage, which the reviewer refers to as “future directions” and are thus arguably beyond the scope of this section. Therefore we have retitled this section as, “Advantages and disadvantages of our approach (with potential solutions):”.

      Although we believe this to be a logical organization, and we already include a section focused purely on future directions in the Discussion section, we have refocused each paragraph of the advantages/disadvantages subsection to concentrate on the advantages and disadvantages per se. In addition, we have made minor changes to the “future directions” section to make it more succinct and practical. These changes can be found at lines ~1016-1077, pg 33-34.

      Reviewer #2 (Recommendations For The Authors):

      Below are some more detailed points that will hopefully help to further improve the quality and scope of the manuscript.

      • While it is certainly favorable for many questions to measure large-scale activity from many brain regions, the introduction appears to suggest that this is a prerequisite to understanding multimodal decision-making. This is based on the argument that combining multiple recordings with movement indicators will 'necessarily obscure the true spatial correlation structures'. However, I don't understand why this is the case or what is meant by 'true spatial correlation structures'. Aren't there many earlier studies that provided important insights from individual cortical areas? It would be helpful to improve the writing to make this argument clearer.

      Authors’ Response: The reviewer makes an excellent point and we have re-worded the manuscript appropriately, to reflect the following clarifications. These changes can be found at ~lines 58-71, pg. 2.

      We believe you are referring to the following passage from the introduction:

      “Furthermore, the arousal dependence of membrane potential across cortical areas has been shown to be diverse and predictable by a temporally filtered readout of pupil diameter and walking speed (Shimoaka et al, 2018). This makes simultaneous recording of multiple cortical areas essential for comparison of the dependence of their neural activity on arousal/movement, because combining multiple recording sessions with pupil dilations and walking bouts of different durations will necessarily obscure the true spatial correlation structures.”

      Here, we do not mean to imply that earlier studies of individual cortical areas are of no value. This argument is provided as an example, of which there are others, of the idea that, for sequences or distributed encoding schemes that simultaneously span many cortical areas that are too far apart to be simultaneously imaged under conventional 2-photon imaging, or are too sparse to be discovered with 1-photon widefield imaging, there are some advantages of our new methods over conventional imaging methods that will allow for truly novel scientific analyses and insights.

      The general idea of the present example, based on the findings of Shimoaka et al, 2018, is that it is not possible to directly combine and/or compare the correlations between behavior and neural activity across regions that were imaged in separate sessions, because the correlations between behavior and neural activity in each region appear to depend on the exact time since the behavior began (Shimoaka et al, 2018), in a manner that differs across regions. So, for example, if one were to record from visual cortex in one session with mostly brief walk bouts, and then from somatosensory cortex in a second session with mostly long walk bouts, any inferred difference between the encoding of walk speed in neural activity between the two areas would run the risk of being contaminated by the “temporal filtering” effect shown in Shimoaka et al, 2018. However, this would not be the case in our recordings, because the distribution of behavior durations corresponding to our recorded neural activity across areas will be exactly the same, because they were recorded simultaneously.

      • The text describes different timescales of neural activity but is an imaging rate of 3 Hz fast enough to be seen as operating at the temporal dynamics of the behavior? It appears to me that the sampling rate will impose a hard limit on the speed of correlations that can be observed across regions. While this might be appropriate for relatively slow behaviors and spontaneous fluctuations in arousal, sensory processing and decision formation likely operate on faster time scales below 100ms which would even be problematic at 10 Hz which is proposed as the ideal imaging speed in the manuscript.

      Authors’ Response: Imaging rate is always a concern and the limitations of this have been discussed in other manuscripts. We will remind the reader of these limitations, which must always be kept in mind when interpreting fluorescence based neural activity data.

      Previous studies imaging on a comparable yet more limited spatial scale (Stringer et al, 2019) used an imaging speed of ~1 Hz. With this in view, our work represents an advance both in spatial extent of imaged cortex and in imaging speed. Specifically, we believe that ~1 Hz imaging may be sufficient to capture flip/flop type transitions between low and high arousal states that persist in general for seconds to tens of seconds, and that ~3-5 Hz imaging likely provides additional information about encoding of spontaneous movements and behavioral syllables/motifs.

      Indeed, even 10 Hz imaging would not be fast enough to capture the detailed dynamics of sensory processing and decision formation, although these speeds are likely sufficient to capture “stable” encodings of sensory representations and decisions that must be maintained during a task, for example with delayed match-to-sample tasks.

      In general we are further developing our preparations to allow us to perform simultaneous widefield imaging and Neuropixels recordings, and to perform simultaneous 1.2 x 1.2 mm 2-photon imaging and visually guided patch clamp recordings.

      Both of these techniques will allow us to combine information across both the slow and fast timescales that you refer to in your question.

      We have clarified these points in the Introduction and Discussion sections, at ~lines ~93-105, pg 3, and ~lines 979-983, pg 31 and ~lines 1039-1045, pg 33, respectively.

      • The dorsal mount is very close to the crystal skull paper and it was ultimately not clear to me if there are still important differences aside from the headbar design that a reader should be aware of. If they exist, it would be helpful to make these distinctions a bit clearer. Also, the sea shell implants from Ghanbari et al in 2019 would be an important additional reference here.

      Authors’ Response: We have added brief references to these issues in our revised manuscript at ~lines 89-97, pg 3:

      Although our dorsal mount preparation is based on the “crystal skull paper” (Kim et al, 2016), which we reference, the addition of a novel 3-D printable titanium headpost, support arms, light shields, and modifications to the surgical protocols and CCF alignment represent significant advances that made this preparation useable for pan-cortical imaging using the Thorlabs mesoscope. In fact, we were in direct communication with Cris Niell, a UO professor and co-author on the original Kim et al, 2016 paper, during the initial development of our preparation, and he and members of his lab consulted with us in an ongoing manner to learn from our successful headpost and other hardware developments. Furthermore, all of our innovations for data acquisition, imaging, and analysis apply equally to both our dorsal mount and side mount preparations.

      Thank you for mentioning the Ghanbari et al, 2019 paper on the transparent polymer skull method, “See Shells.” We were in fact not aware of this study. However, it should be noted that their preparation seems to, like the crystal skull preparation and our dorsal mount preparation, be limited to bilateral dorsal cortex and not to include, as does our cranial window side mount preparation and the through-the-skull widefield preparation of Esmaeili et al, 2021, a fuller range of lateral cortical areas, including primary auditory cortex.

      • When using the lateral mount, rotating the objective, rather than the animal, appears to be preferable to reduce the stress on the animal. I also worry that the rather severe head tilt could be an issue when training animals in more complex behaviors and would introduce an asymmetry between the hemispheres due to the tilted body position. Is there a strong reason why the authors used water instead of an imaging gel to resolve the issue with the meniscus?

      Authors’ Response: Our mice readily adapted to the 22.5 degree head tilt and learned to perform 2-alternative forced choice (2-AFC) auditory and visual tasks in this situation (Hulsey et al, 2024; Cell Reports). The advantages and limitations of such a rotation of the mouse, and possible ways to alleviate these limitations, as detailed in the following paragraphs, are now discussed more thoroughly in the revised manuscript. (See ~line 235, pg. 7)

      One can look at Supplementary Movie 1 for examples of the relatively similar behavior between the dorsal mount (not rotated) and side mount (rotated) preparations. We do not have behavioral data from mice that were placed in both configurations. Our preliminary comparisons across mice indicates that side and dorsal mount mice show similar behavioral variability. We have added brief additional mention of these considerations on ~lines 235-250, pg 7.

      It was in general important to make sure that the distance between the wheel and all four limbs was similar for both preparations. In particular, careful attention must be paid to the positioning of the front limbs in the side mount mice so that they are not too high off the wheel. This can be accomplished by a slight forward angling of the left support arm for side mount mice.

      Although it would in principle be nearly possible to image the side mount preparation in the same optical configuration that we do without rotating the mouse, by rotating the objective 20 degrees to the right of vertical, we found that the last 2-3 degrees of missing rotation (our preparation is rotated 22.5 degrees left, which is more than the full available 20 degrees rotation of the objective), along with several other factors, made this undesirable. First, it was very difficult to image auditory areas without the additional flexibility to rotate the objective more laterally. Second, it was difficult or impossible to attach the horizontal light shield and to establish a water meniscus with the objective fully rotated. One could use gel instead (which we found to be optically inferior to water), but without the horizontal light shield, the UV and IR LEDs can reach the PMTs via the objective and contaminate the image or cause tripping of the PMT. Third, imaging the right pupil and face of the mouse is difficult to impossible under these conditions because the camera would need the same optical access angle as the objective, or would need to be moved down toward the air table and rotated up 20 degrees, in which case its view would be blocked by the running wheel and other objects mounted on the air table.

      • In parts, the description of the methods is very specific to the Thorlabs mesoscope which makes it harder to understand the general design choices and challenges for readers that are unfamiliar with that system. Since the Mesoscope is very expensive and therefore unavailable to many labs in the field, I think it would increase the reach of the manuscript to adjust the writing to be less specific for that system but instead provide general guidance that could also be helpful for other systems. For example (but not exclusively) lines 231-234 or lines 371 and below are very Thorlabs-specific.

      Authors’ Response: We have revised the manuscript so that it is more generally applicable to mesoscopic methods.

      We will make revisions as you suggest where possible, although we have limited experience with the other imaging systems that we believe you are referring to. However, please note that we already mentioned at least one other comparable system in the original eLife reviewed pre-print (Diesel 2p, line 209; Yu and Smith, 2021).

      Here are a couple of examples of how we have broadened our description:

      (1) On lines ~231-234, pg 7, we write:

      “However, if needed, the objective of the Thorlabs mesoscope may be rotated laterally up to +20 degrees for direct access to more ventral cortical areas, for example if one wants to use a smaller, flat cortical window that requires the objective to be positioned orthogonally to the target region.”

      Here have modified this to indicate that one may in general rotate their objective lens if their system allows it. Some systems, such as the Thorlabs Bergamo microscope and the Sutter MOM system, allow more than 20 degrees of rotation.

      (2) On line ~371, pg 11, we write:

      “This technique required several modifications of the auxiliary light-paths of the Thorlabs mesoscope”

      Here, we have changed the writing to be more general such as “may require…of one’s microscope.”

      Thank you for these valuable suggestions.

      • Lines 287-299: Could the authors quantify the variation in imaging depth, for example by quantifying to which extent the imaging depth has to be adjusted to obtain the position of the cortical surface across cortical areas? Given that curvature is a significant challenge in this preparation this would be useful information and could either show that this issue is largely resolved or to what extent it might still be a concern for the interpretation of the obtained results. How large were the required nominal corrections across imaging sites?

      Authors’ Response: This information was provided previously (lines 297-299):

      “In cases where we imaged multiple small ROIs, nominal imaging depth was adjusted in an attempt to maintain a constant relative cortical layer depth (i.e. depth below the pial surface; ~200 micrometer offset due to brain curvature over 2.5 mm of mediolateral distance, symmetric across the center axis of the window).”

      This statement is based on a qualitative assessment of cortical depth based on neuron size and shape, the density of neurons in a given volume of cortex, the size and shape of blood vessels, and known cortical layer depths across regions. A ground-truth measurement of this depth error is beyond the scope of the present study. However, we do specify the type of glass, thickness, and curvature that we use, and the field curvature characterization of the Thorlabs mesoscope is given in Fig. 6 of the Sofroniew et al, 2016 eLife paper.

      In addition, we have provided some documentation of online fast-z correction parameters on our GitHub page at:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/online_fast_z_correction

      ,and some additional relevant documentation can be found in our publicly available data repository on FigShare+ at: https://doi.org/10.25452/figshare.plus.c.7052513

      • Given the size of the implant and the subsequent work attachments, I wonder to which extent the field of view of the animal is obstructed. Did the authors perform receptive field mapping or some other technique that can estimate the size of the animals' remaining field of view?

      Authors’ Response: The left eye is pointed down ~22.5 degrees, but we position the mouse near the left edge of the wheel to minimize the degree to which this limits their field of view. One may view our Fig. 1 and Suppl Movies 1 and 6 to see that the eyes on the left and right sides are unobstructed by the headpost, light shields, and support arms. However, other components of the experimental setup, such as the speaker, cameras, etc. can restrict a few small portions of the visual field, depending on their exact positioning.

      The facts that mice responded to left side visual stimuli in preliminary recordings during our multimodal 2-AFC task, and that the unobstructed left and right camera views, along with pupillometry recordings, showed that a significant portion of the mouse’s field of view, from either side, remains intact in our preparation.

      We have clarified these points in the text at ~lines 344-346, pg. 11.

      • Line 361: What does movie S7 show in this context? The movie seems to emphasize that the observed calcium dynamics are not driven by movement dynamics but it is not clear to me how this relates to the stimulation of PV neurons. The neural dynamics in the example cell are also not very clear. It would be helpful if this paragraph would contain some introduction/motivation for the optogenetic stimulation as it comes a bit out of the blue.

      Authors’ Response: This result was presented for two reasons.

      First, we showed it as a control for movement artifacts, since inhibition of neural activity enhances the relative prominence of non-activity dependent fluorescence that is used to examine the amplitude of movement-related changes in non-activity dependent fluorescence (e.g. movement artifacts). We have included a reference to this point at ~lines 587-588, pg 18.

      Second, we showed it as a demonstration of how one may combine optogenetics with imaging in mesoscopic 2-P imaging. References to this point were already present in the original version of the manuscript (the eLife “ reviewed preprint”).

      • Lines 362-370: This paragraph and some of the following text are quite technical and would benefit from a better description and motivation of the general workflow. I have trouble following what exactly is done here. Are the authors using an online method to identify the CCF location of the 2p imaging based on the vessel pattern? Why is it important to do this during the experiment? Wouldn't it be sufficient to identify the areas of interest based on the vessel pattern beforehand and then adjust the 2p acquisition accordingly? Why are they using a dial, shutter, and foot pedal and how does this relate to the working distance of the objective? Does the 'standardized cortical map' refer to the Allen common coordinate framework?

      Authors’ Response: We have revised this section to make it more clear.

      Currently, the general introduction to this section appears in lines 349-361. Starting in line 362, we currently present the technical considerations needed to implement the overall goals stated in that first paragraph of this section.

      In general we use a post-hoc analysis step to confirm the location of neurons recorded with 2-photon imaging. We use “online” juxtaposition of the multimodal map image with overlaid CCF with the 2-photon image by opening these two images next to each other on the ScanImage computer and matching the vasculature patterns “by eye”. We have made this more clear in the text so that the interested reader can more readily implement our methods.

      By use of the phrase “standardized cortical map” in this context, we meant to point out that we had not decided a priori to use the Allen CCF v3.0 when we started working on these issues.

      • Does Fig. 2c show an example of the online alignment between widefield and 2p data? I was confused here since the use of suite2p suggests that this was done post-recording. I generally didn't understand why the user needed to switch back and forth between the two modes. Doesn't the 2p image show the vessels already? Also, why was an additional motorized dichroic to switch between widefield and 2p view needed? Isn't this the standard in most microscopes (including the Thorlabs scopes)?

      Authors’ Response: We have explained this methodology more clearly in the revised manuscript, both at ~lines 485-500, pg 15-16, and ~lines 534-540, pg 17.

      The motorized dichroic we used replaced the motorized mirror that comes with the Thorlabs mesoscope. We switched to a dichroic to allow for near-simultaneous optogenetic stimulation with 470 nm blue light and 2-photon imaging, so that we would not have to move the mirror back and forth during live data acquisition (it takes a few seconds and makes an audible noise that we wanted to avoid).

      Figure 2c shows an overview of our two step “offline” alignment process. The image at the right in the bottom row labeled “2” is a map of recorded neurons from suite2p, determined post-hoc or after imaging. In Fig. 2d we show what the CCF map looks like when it’s overlaid on the neurons from a single suite2p session, using our alignment techniques. Indeed, this image is created post-hoc and not during imaging. In practice, “online” during imaging, we would have the image at left in the bottom row of Fig. 2c (i.e. the multimodal map image overlaid onto an image of the vasculature also acquired on the widefield rig, with the 22.5 degree rotated CCF map aligned to it based on the location of sensory responses) rotated 90 degrees to the left and flipped over a horizontal mirror plane so that its alignment matches that of the “online” 2-photon acquisition image and is zoomed to the same scale factor. Then, we would navigate based on vasculature patterns “by-eye” to the desired CCF areas, and confirm our successful 2-photon targeting of predetermined regions with our post-hoc analysis.

      • Why is the widefield imaging done through the skull under anesthesia? Would it not be easier to image through the final window when mice have recovered? Is the mapping needed for accurate window placement?

      Authors’ Response: The headpost and window surgeries are done 3-7 days apart to increase success rate and modularize the workflow. Multimodal mapping by widefield imaging is done through the skull between these two surgeries for two major reasons. First, to make efficient use of the time between surgeries. Second, to allow us to compare the multimodal maps to skull landmarks, such as bregma and lambda, for improved alignment to the CCF.

      Anesthesia was applied to prevent state changes and movements of the mouse, which can produce large, undesired effects on neural responses in primary sensory cortices in the context of these mapping experiments. We sometimes re-imaged multimodal maps on the widefield microscope through the window, roughly every 30-60 days or whenever/if significant changes in vasculature pattern became apparent.

      We have clarified these points in the main text at ~lines 510-522, pg 20-21, and we added a link to our new supplementary material documenting the changes observed in the window preparation over time:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/window_preparation_stability.pdf

      Thank you for these questions.

      • Lines 445 and below: Reducing the noise from resonant scanners is also very relevant for many other 2p experiments so it would be helpful to provide more general guidance on how to resolve this problem. Is the provided solution only applicable to the Thorlabs mesoscope? How hard would it be to adjust the authors' noise shield to other microscopes? I generally did not find many additional details on the Github repo and think readers would benefit from a more general explanation here.

      Authors’ Response: Our revised Github repository has been modified to include more details, including both diagrams and text descriptions of the sound baffle, respectively:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_for_noise_reduction_on_resonant_scanner_devices.pdf

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_methodology_summary.pdf

      However, we can not presently disclose our confidential provisional patent application. Complete design information will likely be available in early 2025 when our full utility patent application is filed.

      With respect to your question, yes, this technique is adaptable to any resonant scanner, or, for that matter, any complicated 3D surface that emits sound. We first 3D scan the surface, and then we reverse engineer a solid that fully encapsulates the surface and can be easily assembled in parts with bolts and interior foam that allow for a tight fit, in order to nearly completely block all emitted sound.

      It is this adaptability that has prompted us to apply for a full patent, as we believe this technique will be quite valuable as it may apply to a potentially large number of applications, starting with 2-photon resonant scanners but possibly moving on to other devices that emit unwanted sound.

      • Does line 458 suggest that the authors had to perform a 3D scan of the components to create the noise reduction shield? If so, how was this done? I don't understand the connection between 3D scanning and printing that is mentioned in lines 464-466.

      Authors’ Response: We do not want to release full details of the methodology until the full utility patent application has been submitted. However, we have now included a simplified text description of the process on our GitHub page and included a corresponding link in the main text:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/resonant_scanner_baffle/closed_cell_honeycomb_baffle_methodology_summary.pdf

      We also clarified in the main text, at the location that you indicate, why the 3D scanning is a critical part of our novel 3D-design, printing, and assembly protocol.

      • Lines 468 and below: Why is it important to align single-cell data to cortical areas 'directly on the 2-photon microscope'? Is this different from the alignment discussed in the paragraph above? Why not focus on data interpretation after data acquisition? I understand the need to align neural data to cortical areas in general, I'm just confused about the 'on the fly' aspect here and why it seems to be broken out into two separate paragraphs. It seems as if the text in line 485 and below could also be placed earlier in the text to improve clarity.

      Authors’ Response: Here by “such mapping is not routinely possible directly on the 2-photon mesoscope” what we mean is that it is not possible to do multimodal mapping directly on the mesoscope - it needs to be done on the widefield imaging rig (a separate microscope). Then, the CCF is mapped onto the widefield multimodal map, which is overlaid on an image of the vasculature (and sometimes also the skull) that was also acquired on the widefield imaging rig, and the vasculature is used as a sort of Rosetta Stone to co-align the 2-photon image to the multimodal map and then, by a sort of commutative property of alignment, to the CCF, so that each individual neuron in the 2-photon image can be assigned a unique CCF area name and numerical identifier for subsequent analysis.

      We have clarified this in the text, thank you.

      The Python code for aligning the widefield and 2-photon vessel images would also be of great value for regular 2p users. It would strongly improve the impact of the paper if the repository were better documented and the code would be equally applicable for alignment of imaging data with smaller cranial windows.

      Authors’ Response: All of the code for multimodal map, CCF, and 2-photon image alignment is, in fact, already present on the GitHub page. We have made some minor improvements to the documentation, and readers are more than welcome to contact us for additional help.

      Specifically, the alignment you refer to starts in cell #32 of the meso_pre_proc_1.ipynb notebook. In general the notebooks are meant to be run sequentially, starting with cell #1 of meso_pre_proc_1, then going to the next cell etc…, then moving to meso_pre_proc_2, etc… The purpose of each cell is labeled at the top of the cell in a comment.

      We now include a cleaned, abridged version of the meso_pre_proc_1.pynb notebook that contains only the steps needed for alignment, and included a direct link to this notebook in the main text:

      https://github.com/vickerse1/mesoscope_spontaneous/blob/main/python_code/mesoscope_preprocess_MMM_creation.ipynb

      Rotated CCF maps are in the CCF map rotation folder, in subfolders corresponding to the angle of rotation.

      Multimodal map creation involves use of the SensoryMapping_Vickers_Jun2520.m script in the Matlab folder.

      We updated the main text to clarify these points and included direct links to scripts relevant to each processing step.

      • Figure 4a: I found it hard to see much of the structure in the Rastermap projection with the viridis colormap - perhaps also because of a red-green color vision impairment. Correspondingly, I had trouble seeing some of the structure that is described in the text or clearer differences between the neuron sortings to PC1 and PC2. Is the point of these panels to show that both PCs identify movement-aligned dynamics or is the argument that they isolate different movement-related response patterns? Using a grayscale colormap as used by Stringer et al might help to see more of the many fine details in the data.

      Authors’ Response: In Fig. 4a the viridis color range is from blue to green to yellow, as indicated in the horizontal scale bar at bottom right. There is no red color in these Rastermap projections, or in any others in this paper. Furthermore, the expanded Rastermap insets in Figs. S4 and S5 provide additional detailed information that may not be clear in Fig 4a and Fig 5a.

      We prefer, therefore, not to change these colormaps, which we use throughout the paper.

      We have provided grayscale png versions of all figures on our GitHub page:

      https://github.com/vickerse1/mesoscope_spontaneous/tree/main/grayscale_figures

      In Fig 4a the point of showing both the PC1 and PC2 panels is to demonstrate that they appear to correspond to different aspects of movement (PC1 more to transient walking, both ON and OFF, and PC2 to whisking and sustained ON walk/whisk), and to exhibit differential ability to identify neurons with positive and negative correlations to arousal (PC1 finds both, both PC2 seems to find only the ON neurons).

      We now clarify this in the text at ~lines 696-710, pg 22.

      • I find panel 6a a bit too hard to read because the identification and interpretation of the different motifs in the different qualitative episodes is challenging. For example, the text mentions flickering into motif 13 during walk but the majority of that sequence appears to be shaped by what I believe to be motif 11. Motif 11 also occurs prominently in the oscillate state and the unnamed sequence on the left. Is this meaningful or is the emphasis here on times of change between behavioral motifs? The concept of motif flickering should be better explained here.

      Authors’ Response: Here motif 13 corresponds to a syllable that might best be termed “symmetric and ready stance”. This tends to occur just before and after walking, but also during rhythmic wheel balancing movements that appear during the “oscillate” behavior.

      The intent of Fig. 6a is to show that each qualitatively identified behavior (twitch, whisk, walk, and oscillate) corresponds to a period during which a subset of BSOiD motifs flicker back and forth, and that the identity of motifs in this subset differs across the identified qualitative behaviors. This is not to say that a particular motif occurs only during a single identified qualitative behavior. Admittedly, the identification of these qualitative behaviors is a bit arbitrary - future versions of BSOiD (e.g. ASOiD) in fact combine supervised (i.e. arbitrary, top down) and unsupervised (i.e. algorithmic, objective, bottom-up) methods of behavior segmentation in attempt to more reliably identify and label behaviors.

      Flickering appears to be a property of motif transitions in raw BSOiD outputs that have not been temporally smoothed. If one watches the raw video, it seems that this may in fact be an accurate reflection of the manner in which behaviors unfold through time. Each behavior could be thought of, to use terminology from MOSEQ (B Datta), as a series of syllables strung together to make a phrase or sentence. Syllables can repeat over either fast or slow timescales, and may be shared across distinct words and sentences although the order and frequency of their recurrence will likely differ.

      We have clarified these points in the main text at ~lines 917-923, pg 29, and we added motif 13 to the list of motifs for the qualitative behavior labeled “oscillate” in Fig. 6a.

      • Lines 997-998: I don't understand this argument. Why does the existence of different temporal dynamics make imaging multiple areas 'one of the keys to potentially understanding the nature of their neuronal activity'?

      Authors’ Response: We believe this may be an important point, that comparisons of neurobehavioral alignment across cortical areas cannot be performed by pooling sessions that contain different distributions of dwell times for different behaviors, if in fact that dependence of neural activity on behavior depends on the exact elapsed time since the beginning of the current behavioral “bout”. Again, other reasons that imaging many areas simultaneously would provide a unique advantage over imaging smaller areas one at a time and attempting to pool data across sessions would include the identification of sequences or neural ensembles that span many areas across large distances, or the understanding of distributed coding of behavior (an issue we explore in an upcoming paper).

      We have clarified these points at the location in the Discussion that you have identified. Thank you for your questions and suggestions.

      Minor

      Line 41: What is the difference between decision, choice, and response periods?

      Authors’ Response: This now reads “...temporal separation of periods during which cortical activity is dominated by activity related to stimulus representation, choice/decision, maintenance of choice, and response or implementation of that choice.”

      Line 202: What does ambulatory mean in this context?

      Authors’ Response: Here we mean that the mice are able to walk freely on the wheel. In fact they do not actually move through space, so we have changed this to read “able to walk freely on a wheel, as shown in Figs. 1a and 1b”.

      Is there a reason why 4 mounting posts were used for the dorsal mount but only 1 post was sufficient for the lateral mount?

      Authors’ Response: Here, we assume you mean 2 posts for the side mount and 4 posts for the dorsal mount.

      In general our idea was to use as many posts as possible to provide maximum stability of the preparations and minimize movement artifacts during 2-photon imaging. However, the design of the side mount headpost precluded the straight-forward or easy addition of a right oriented, second arm to its lateral/ventral rim - this would have blocked access of both the 2-photon objective and the right face camera. In the dorsal mount, the symmetrical headpost arms are positioned further back (i.e. posterior), so that the left and right face cameras are not obscured.

      When we created the side mount preparation, we discovered that the 2 vertical 1” support posts were sufficient to provide adequate stability of the preparation and minimize 2-photon imaging movement artifacts. The side mount used two attachment screws on the left side of the headpost, instead of the one screw per side used in the dorsal mount preparation.

      We have included these points/clarifications in the main text at ~lines 217-230, pg 7.

      Figure S1g appears to be mislabeled.

      Authors’ Response: Yes, on the figure itself that panel was mislabeled as “f” in the original eLife reviewed preprint. We have changed this to read “g”.

      Line 349 and below: Why is the method called pseudo-widefield imaging?

      Authors’ Response: On the mesoscope, broad spectrum fluorescent light is passed through a series of excitation and emission filters that, based on a series of tests that we performed, allow both reflected blue light and epifluorescence emitted (i.e. Stokes-shifted) green light to reach the CCD camera for detection. Furthermore, the CCD camera (Thorlabs) has a much smaller detector chip than that of the other widefield cameras that we use (RedShirt Imaging and PCO), and we use it to image at an acquisition speed of around 10 Hz maximum, instead of ~30-50 Hz, which is our normal widefield imaging acquisition speed (it also has a slower readout than what we would consider to be a standard or “real” 1-photon widefield imaging camera).

      For these 3 reasons we refer to this as “pseudo-widefield” imaging. We would not use this for sensory activity mapping on the mesoscope - we primarily use it for mapping cortical vasculature and navigating based on our multimodal map to CCF alignment, although it is actually “contaminated” with some GCaMP6s activity during these uses.

      We have briefly clarified this in the text.

      Figures 4d & e: Do the colors show mean correlations per area? Please add labels and units to the colorbars as done in panel 4a.

      Authors’ Response: For both Figs 4 and 5, we have added the requested labels and units to each scale bar, and have relabeled panels d to say “Rastermap CCF area cell densities”, and panels e to say “mean CCF area corrs w/ neural activity.”

      Thank you for catching these omissions/mislabelings.

      Line 715: what is superneuron averaging?

      Authors’ Response: This refers to the fact that when Rastermap displays more than ~1000 neurons it averages the activity of each group of adjacent 50 neurons in the sorting to create a single display row, to avoid exceeding the pixel limitations of the display. Each single row representing the average activity of 50 neurons is called a “superneuron” (Stringer et al, 2023; bioRxiv).

      We have modified the text to clarify this point.

      Line 740: it would be good to mention what exactly the CCF density distribution quantifies.

      Authors’ Response: In each CCF area, a certain percentage of neurons belongs to each Rastermap group. The CCF density distribution is the set of these percentages, or densities, across all CCF areas in the dorsal or side mount preparation being imaged in a particular session. We have clarified this in the text.

      Line 745: what does 'within each CCF' mean? Does this refer to different areas?

      Authors’ Response: The corrected version of this sentence now reads: “Next, we compared, across all CCF areas, the proportion of neurons within each CCF area that exhibited large positive correlations with walking speed and whisker motion energy.”

      How were different Rastermap groups identified? Were they selected by hand?

      Authors’ Response: Yes, in Figs. 4, 5, and 6, we selected the identified Rastermap groups “by hand”, based on qualitative similarity of their activity patterns. At the time, there was no available algorithmic or principled means by which to split the Rastermap sort. The current, newer version of Rastermap (Stringer et al, 2023) seems to allow for algorithmic discretization of embedding groups (we have not tested this yet), but it was not available at the time that we performed these preliminary analyses.

      In terms of “correctness” of such discretization or group identification, we intend to address this issue in a more principled manner in upcoming publications. For the purposes of this first paper, we decided that manual identification of groups was sufficient to display the capabilities and outcomes of our methods.

      We clarify this point briefly at several locations in the revised manuscript, throughout the latter part of the Results section.

      Reviewer #3 (Recommendations For The Authors):

      In "supplementary figures, protocols, methods, and materials", Figure S1 g is mislabeled as Figure f.

      Authors’ Response: Yes, on the figure itself this panel was mislabeled as “f” in the original reviewed preprint. We have changed this to read “g”.

      In S1 g, the success rate of the surgical procedure seems quite low. Less than 50% of the mice could be imaged under two-photon. Can the authors elaborate on the criteria and difficulties related to their preparations?

      Authors’ Response: We will elaborate on the difficulties that sometimes hinder success in our preparations in the revised manuscript.

      The success rate indicated to the point of “Spontaneous 2-P imaging (window) reads 13/20, which is 65%, not 50%. The drop to 9/20 by the time one gets to the left edge of “Behavioral Training” indicates that some mice do not master the task.

      Protocol I contains details of the different ways in which mice either die or become unsuitable or “unsuccessful” at each step. These surgeries are rather challenging - they require proper instruction and experience. With the current protocol, our survival rate for the window surgery alone is as high as 75-100%. Some mice can be lost at headpost implantation, in particular if they are low weight or if too much muscle is removed over the auditory areas. Finally, some mice survive windowing but the imageable area of the window might be too small to perform the desired experiment.

      We have added a paragraph detailing this issue in the main text at ~lines 287-320, pg 9.

      In both Suppl_Movie_S1_dorsal_mount and Suppl_Movie_S1_side_mount provided (Movie S1), the behaviour video quality seems to be unoptimized which will impact the precision of Deeplabcut. As evident, there were multiple instances of mislabeled key points (paws are switched, large jumps of key points, etc) in the videos.

      Many tracked points are in areas of the image that are over-exposed.

      Despite using a high-speed camera, motion blur is obvious.

      Occlusions of one paw by the other paws moving out of frame.

      As Deeplabcut accuracy is key to higher-level motifs generated by BSOi-D, can the authors provide an example of tracking by exclusion/ smoothing of mislabeled points (possibly by the median filtering provided by Deeplabcut), this may help readers address such errors.

      Authors’ Response: We agree that we would want to carefully rerun and carefully curate the outputs of DeepLabCut before making any strong claims about behavioral identification. As the aim of this paper was to establish our methods, we did not feel that this degree of rigor was required at this point.

      It is inevitable that there will be some motion blur and small areas of over-exposure, respectively, when imaging whiskers, which can contain movement components up to ~150 Hz, and when imaging a large area of the mouse, which has planes facing various aspects. For example, perfect orthogonal illumination of both the center of the eye and the surface of the whisker pad on the snout would require two separate infrared light sources. In this case, use of a single LED results in overexposure of areas orthogonal to the direction of the light and underexposure of other aspects, while use of multiple LEDs would partially fix this problem, but still lead to variability in summated light intensity at different locations on the face. We have done our best to deal with these limitations.

      We now briefly point out these limitations in the methods text at ~lines 155-160, pg 5.

      In addition, we have provided additional raw and processed movies and data related to DeepLabCut and BSOiD behavioral analysis in our FigShare+ repository, which is located at:

      https://doi.org/10.25452/figshare.plus.c.7052513

      In lines 153-154, the authors mentioned that the Deeplabcut model was trained for 650k iterations. In our experience (100-400k), this seems excessive and may result in the model overfitting, yielding incorrect results in unseen data. Echoing point 4, can the authors show the accuracy of their Deeplabut model (training set, validation set, errors, etc).

      Authors’ Response: Our behavioral analysis is preliminary and is included here as an example of our methods, and not to make claims about any specific result. Therefore we believe that the level of detail that you request in our DeepLabCut analysis is beyond the scope of the current paper. However, we would like to point out that we performed many iterations of DeepLabCut runs, across many mice in both preparations, before converging on these preliminary results. We believe that these results are stable and robust.

      We believe that 650k iterations is within the reasonable range suggested by DLC, and that 1 million iterations is given as a reasonable upper bound. This seems to be supported by the literature for example, see Willmore et al, 2022 (“Behavioral and dopaminergic signatures of resilience”, Nature, 124:611, 124-132). Here, in a paper focused squarely on behavioral analysis, DLC training was run with 1.3 million iterations with default parameters.

      We now note, on ~lines 153-154, pg 5, that we used 650K iterations, a number significantly less than the default of 1.03 million, to avoid overfitting.

      In lines 140-141, the authors mentioned the use of slicing to downsample their data. Have any precautions, such as a low pass filter, been taken to avoid aliasing?

      Authors’ Response: Most of the 2-photon data we present was acquired at ~3 Hz and upsampled to 10 Hz. Most of the behavioral data was downsampled from 5000 Hz to 10 Hz by slicing, as stated. We did not apply any low-pass filter to the behavioral data before sampling. The behavioral variables have heterogeneous real sampling/measurement rates - for example, pupil diameter and whisker motion energy are sampled at 30 Hz, and walk speed is sampled at 100 Hz. In addition, the 2-photon acquisition rate varied across sessions.

      These facts made principled, standardized low-pass filtering difficult to implement. We chose rather to use a common resampling rate of 10 Hz in an unbiased manner. This downsampled 10 Hz rate is also used by B-SOiD to find transitions between behavioral motifs (Hsu and Yttri, 2021).

      We do not think that aliasing is a major factor because the real rate of change of our Ca2+ indicator fluorescence and behavioral variables was, with the possible exception of whisker motion energy, likely at or below 10 Hz.

      We now include a brief statement to this effect in the methods text at ~lines 142-146, pg. 4.

      Line 288-299, the authors have made considerable effort to compensate for the curvature of the brain which is particularly important when imaging the whole dorsal cortex. Can the authors provide performance metrics and related details on how well the combination of online curvature field correction (ScanImage) and fast-z "sawtooth"/"step" (Sofroniew, 2016)?

      Authors’ Response: We did not perform additional “ground-truth” experiments that would allow us to make definitive statements concerning field curvature, as was done in the initial eLife Thorlabs mesoscope paper (Sofroniew et al, 2016).

      We estimate that we experience ~200 micrometers of depth offset across 2.5 mm - for example, if the objective is orthogonal to our 10 mm radius bend window and centered at the apex of its convexity, a small ROI located at the lateral edge of the side mount preparation would need to be positioned around 200 micrometers below that of an equivalent ROI placed near the apex in order to image neurons at the same cortical layer/depth, and would be at close to the same depth as an ROI placed at or near the midline, at the medial edge of the window. We determined this by examining the geometry of our cranial windows, and by comparing z-depth information from adjacent sessions in the same mouse, the first of which used a large FOV and the second of which used multiple small FOVs optimized so that they sampled from the same cortical layers across areas.

      We have included this brief explanation in the main text at ~lines 300-311, pg 9.

      In lines 513-515, the authors mentioned that the vasculature pattern can change over the course of the experiment which then requires to re-perform the realignment procedure. How stable is the vasculature pattern? Would laser speckle contrast yield more reliable results?

      Authors’ Response: In general the changes in vasculature we observed were minimal but involved the following: i) sometimes a vessel was displaced or moved during the window surgery, ii) sometimes a vessel, in particular the sagittal sinus, enlarged or increased its apparent diameter over time if it is not properly pressured by the cranial window, and iii) sometimes an area experiencing window pressure that is too low could, over time, show outgrowth of fine vascular endings. The most common of these was (i), and (iii) was perhaps the least common. In general the vasculature was quite stable.

      We have added this brief discussion of potential vasculature changes after cranial window surgery to the main text at ~lines 286-293, pg 9.

      We already mentioned, in the main text of the original eLife reviewed preprint, that we re-imaged the multimodal map (MMM) every 30-60 days or whenever changes in vasculature are observed, in order to maintain a high accuracy of CCF alignment over time. See ~lines 507-511, pg 16.

      We are not very familiar with laser speckle contrast, and it seems like a technique that could conceivably improve the fine-grained accuracy of our MMM-CCF alignment in some instances. We will try this in the future, but for now it seems like our alignments are largely constrained by several large blood vessels present in any given FOV, and so it is unclear how we would incorporate such fine-grained modifications without applying local non-rigid manipulations of our images.

      In lines 588-598, the authors mentioned that the occasional use of online fast-z corrections yielded no difference. However, it seems that the combination of the online fast-z correction yielded "cleaner" raster maps (Figure S3)?

      Authors’ Response: The Rastermaps in Fig S3a and b are qualitatively similar. We do not believe that any systematic difference exists between their clustering or alignments, and we did not observe any such differences in other sessions that either used or didn’t use online fast-z motion correction.

      We now provide raw data and analysis files corresponding to the sessions shown in Fig S3 (and other data-containing figures) on FigShare+ at:

      https://doi.org/10.25452/figshare.plus.c.7052513

      Ideally, the datasets contained in the paper should be available on an open repository for others to examine. I could not find a clear statement about data availability. Please include a linked repo or state why this is not possible.

      Authors’ Response: We have made ~500 GB of raw data and preliminary analysis files publicly available on FigShare+ for the example sessions shown in Figures 2, 3, 4, 5, 6, S3, and S6. We ask to be cited and given due credit for any fair use of this data.

      The data is located here:

      Vickers, Evan; A. McCormick, David (2024). Pan-cortical 2-photon mesoscopic imaging and neurobehavioral alignment in awake, behaving mice. Figshare+. Collection:

      https://doi.org/10.25452/figshare.plus.c.7052513

      We intend to release a complete data set to the public as a Dandiset on the DANDI archive in conjunction with second and third in-depth analysis papers that are currently in preparation.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1:

      Summary:

      This manuscript provides some valuable findings concerning the hippocampal circuitry and the potential role of adult-born granule cells in an interesting long-term social memory retrieval. The behavior experiments and strategy employed to understand how adult-born granule cells contribute to long-term social discrimination memory are interesting.

      We thank the reviewer for the positive evaluation.

      I have a few concerns, however with the strength of the evidence presented for some of the experiments. The data presented and the method described is incomplete in describing the connection between cell types in CA2 and the projections from abGCs. Likewise, I worry about the interpretation of the data in Figures 1 and 2 given the employed methodology. I think that the interpretation should be broadened. This second concern does not impact the interest and significance of the findings.

      In response to this concern, we have removed the data concerning abGC projections to PCP4+ and PV-GFP+ cell bodies from Figure 1 and have focused this analysis on dendrites. We now provide high magnification images of dendrites and expand on the methodology, results, and interpretations in the manuscript. We also broaden the interpretation throughout the manuscript to address the reviewer’s concern.

      Strengths:

      The behavior experiments are beautifully designed and executed. The experimental strategy is interesting.

      We appreciate these positive comments.

      Weaknesses:

      The interpretation of the results may not be justified given the methods and details provided.

      We have addressed this concern by providing more methodological details and broadening our interpretation of the results.

      Reviewer #2:

      Summary:

      Laham et al. investigate how the projection from adult-born granule cells into CA2 affects the retrieval of social memories at various developmental points. They use chemogenetic manipulations and electrophysiological recordings to test how this projection affects hippocampal network properties during behavior. I find the study to be very interesting, the results are important for our understanding of how social memories of different natures (remote or immediate) are encoded and supported by the hippocampal circuitry. I have some points that I added below that I think could help clarify the conclusions:

      We appreciate the positive assessment and have addressed the more specific points below.

      My major concern with the manuscript was that making the transitions between the different experiments for each result section is not very smooth. Maybe they can discuss a bit in a summary conclusion sentence at the end of each result section why the next set of experiments is the most logical step.

      In response, we have added summary conclusion sentences at the end of each result section.

      In line 113, the authors say that "the DG is known to influence hippocampal theta-gamma coupling and SWRs". Another recent study Fernandez-Ruiz et al. 2021, examined how various gamma frequencies in the dentate gyrus modulate hippocampal dynamics.

      We cite this paper in the revised manuscript.

      Having no single cells in the electrophysiological recordings makes it difficult to interpret the ephys part. Perhaps having a discussion on this would help interpret the results. If more SWRs are produced from the CA2 region (perhaps aided by projections from abGC), more CA2 cells that respond to social stimuli (Oliva et al. 2020) would reactivate the memories, therefore making them consolidate faster/stronger. On the other hand, the projections from abGC that the authors see, also target a great deal of PV+ interneurons, which have been shown to pace the SWRs frequency (Stark et al 2014, Gan et al 2017), which further suggests that this projection could be involved in SWRs modulation.

      We discuss these possibilities and cite Gan et al 2017, Schlingloff et al., 2014, and Stark et al., 2014 in the revised manuscript.

      The authors should cite and discuss Shuo et al., 2022 (A hypothalamic novelty signal modulates hippocampal memory).

      We mention Chen et al (A hypothalamic novelty signal modulates hippocampal memory.) in the revised manuscript. “Shuo” is the first name of the first author on this paper, so we believe that this is the same paper to which the reviewer refers.

      I think the authors forgot to refer to Fig 3a-f, maybe around lines 163-168.

      We thank the reviewer for pointing out this error. In the revised manuscript, we refer to all figure panels. Since Fig 3 is now broken into two figures (Fig 3 and 4), the panel lettering has changed in the revised manuscript.

      Are the SWRs counted only during interaction time or throughout the whole behavior session for each condition?

      The SWRs are counted throughout the whole behavior session for each condition. This is now stated in the revised manuscript.

      Figure 3t shows a shift in the preferred gamma phase within theta cycles as a result of abGC projections to CA2 ablation with CNO, especially during Mother CNO condition. I think this result is worth mentioning in the text.

      We now mention this finding in the revised manuscript.

      Figure 3u in the legend mention "scale bars = 200um", what does this refer to?

      The scale bar refers to that shown in Figure 3b, which is now indicated in the legend.

      What exactly is calculated as SWR average integral? Is it a cumulative rate? Please clarify.

      The integral measure provides information regarding the average total power of SWR events. It sums z-scored amplitude values from beginning to the end of each SWR envelope, and then takes the average across all summed envelopes. SWR integral has been shown to influence SWR propagation (De Filippo and Schmitz, 2023). This is now described in the text.

      Alexander et al 2017, "CA2 neuronal activity controls hippocampal oscillations and social behavior", examined some of the CA2 effects in the hippocampal network after CNO silencing, and the authors should cite it.

      Alexander et al., 2018, which we believe is the relevant paper, is now cited in the revised manuscript.

      Strengths:

      Behavioral experiments after abGC projections to CA2 are compelling as they show clearly distinct behavioral readout.

      We thank the reviewer for this positive assessment.

      Weaknesses:

      Electrophysiological experiments are difficult to interpret without additional quantifications (single-cell responses during interactions etc.)

      We have addressed this concern by expanding the interpretation of our results.

      Reviewer #3:

      Laham et al. present a manuscript investigating the function of adult-born granule cells (abGCs) projecting to the CA2 region of the hippocampus during social memory. It should be noted that no function for the general DG to CA2 projection has been proposed yet. The authors use targeted ablation, chemogenetic silencing, and in vivo ephys to demonstrate that the abGCs to CA2 projection is necessary for the retrieval of remote social memories such as the memory of one's mother. They also use in vivo ephys to show that abGCs are necessary for differential CA2 network activity, including theta-gamma coupling and sharp wave-ripples, in response to novel versus familiar social stimuli.

      The question investigated is important since the function of DG to CA2 projection remained elusive a decade after its discovery. Overall, the results are interesting but focused on the social memory of the mother, and their description in the manuscript and figures is too cursory. For example, raw interaction times must be shown before their difference. The assumption that mice exhibit social preference between familiar or novel individuals such as mother and non-mother based on social memory formation, consolidation, and retrieval should be better explained throughout the manuscript. Thus, when describing the results, the authors should comment on changes in preference and how this can be interpreted as a change in social memory retrieval. Several critical experimental details such as the total time of presentation to the mother and non-mother stimulus mice are also lacking in the manuscript. The in vivo e-phys results are interesting as well but even more succinct with no proposed mechanism as to how abGCs could regulate SWR and PAC in CA2.

      In response to these comments, we provide raw interaction times in a new Figure (Fig. S1). We also provide more information about the experiments and figures in the revision. We explain the rationale for our behavioral interpretations and discuss proposed mechanisms for how abGCs regulate SWR and PAC.

      The manuscript is well-written with the appropriate references. The choice of the behavioral test is somewhat debatable, however. It is surprising that the authors chose to use a direct presentation test (presentation of the mother and non-mother in alternation) instead of the classical 3-chamber test which is particularly appropriate to investigate social preference. Since the authors focused exclusively on this preference, the 3-chamber test would have been more adequate in my opinion. It would greatly strengthen the results if the authors could repeat a key experiment from their investigation using such a test. In addition, the authors only impaired the mother's memory. An additional experiment showing that disruption of the abGCs to CA2 circuit impairs social memory retrieval would allow us to generalize the findings to social memories in general. As the manuscript stands, the authors can only conclude the importance of this circuit for the memory of the mother. Developmental memory implies the memory of familiar kin as well.

      We selected the direct social interaction test because it allows for more naturalistic social behaviors than measuring investigation times toward social stimuli located inside wire mesh containers. We also decided to focus our studies on the retrieval of mother memories because these are likely the first social memories to be formed. We emphasize that our results cannot be generalized to memories of other social stimuli but given studies on recent social memory formation and retrieval in adults that manipulate abGCs and CA2 separately, we feel that it is likely that this circuit is involved in these functions as well. However, we specify throughout the manuscript that our experiments can only tell us about mother memories. We have also changed the title to reflect this.

      The in vivo ephys section (Figure 3) is interesting but even more minimalistic and it is unclear how abGCs projection to CA2 can contribute to SWR and theta-gamma PAC. In Figure 1, the authors suggest that abGCs project preferentially to PV+ neurons in CA2. At a minimum, the authors should discuss how the abGCs to PV+ neurons to CA2 pyramidal neurons circuit can facilitate SWR and theta-gamma PAC.

      We have divided Figure 3 into two figures (Figures 3 and 4) and revised the electrophysiology section of the results section. In the revised paper, we now discuss how abGC projections to PV+ interneurons may facilitate SWR and PAC.

      Finally, proposing a function for 4-6-week-old abGCs projecting to CA2 begs two questions: What are abGCs doing once they mature further, and more generally, what is the function of the DG to CA2 projection? It would be interesting for the authors to comment on these questions in the discussion.

      In response to these comments, we discuss possible answers to these interesting questions.

      Recommendations for the authors:

      Reviewer #1:

      Specifically, in Figure 1, for the analysis of the synapses formed between abGCs and CA2 PNS (as identified by PCP4 expression) and CA2 PV+ cells (as identified by cre-dependent AAV-mCherry expression) in PV-cre line. In panels c and d the soma of a CA2 PN cell is shown, as well as the soma of a PV cell is shown. Why was the soma analyzed? What relevance is there for this? It is my understanding that synapses form on dendrites- this would be much more relevant to show, in my opinion. Also, the methods for panels e and f state that the 3R-Tau+ intensity was analyzed only in stratum lucidum. (There was a normalization for the overall 3R-Tau intensity in SL of CA2 that was obtained by dividing the 3R-Tau intensity of corpus callosum). I don't understand then how a comparison of 3RTau intensity could have been done for CA2 PN soma. There are no CA2 PN soma in stratum lucidum. (This is fairly clearly shown in Figure 1aiii, with the PCP4 staining showing the soma in the somatic layer... not in stratum lucidum). What is being analyzed here?

      If the 3R-Tau intensity for dendrites is higher for PV cell dendrites, an example image of dendrites would be very helpful. How was the CA2 PV cell dendrite delimited from the CA2 PN dendrites at 40x magnification for the 3R-Tau intensity? Why were pre-synaptic puncta not examined? Is it possible to determine the post-synaptic target with these methods? This result could be particularly interesting, but I find it very difficult to understand the quantification or the justification behind it. To truly know if a cell is getting a connection, the best method would be to perform whole-cell patch clamp recordings of the post-synpatic target cells and use optogenetics of the abGCs. I understand that perhaps this may be beyond the scope of the paper, but it is a severe limitation for these results.

      We have eliminated the cell body measures from Figure 1 and focus instead on the dendrite measures, which we agree are more relevant. We now provide high magnification example images of pyramidal cell (PCP4+) and PV+ interneuron (GFP+) dendrites in Figure 1. We thank the reviewer for pointing out the error about the stratum lucidum as some of the dendrites analyzed are located in the pyramidal cell layer. In addition, neither PCP4 nor GFP label the full extent of dendrites emanating from CA2 pyramidal cells or PV+ interneurons respectively. We mention this in the revised manuscript because abGC projections to more distal dendrites might show a different pattern than that which was observed for proximal dendrites. We also provide more details about how the dendrites were delimited for the analysis, and mention that these results cannot definitively inform us about whether functional synaptic connections have been formed.

      Canulation over CA2 is potentially not specific to CA2 terminals. It would be optimal if the authors had some histology demonstrating specific cannula placement, as these surgeries are really tough to get perfectly centered over CA2. Even if it is perfectly centered, how much would the CNO diffuse into CA3? I think that given the methodology, the authors really need to consider that the behavioral results are not only a result of blocking abGC terminals in CA2 alone. Would it really change much if the abGC terminals are also silenced in CA3a/b as well? The McHugh lab has shown that area CA3 is also playing a role in social memory (Chiang, M.-C., Huang, A. J. Y., Wintzer, M. E., Ohshima, T. & McHugh, T. J. A role for CA3 in social recognition memory. Behav Brain Res 354, 2018). It may be that both areas CA2 and CA3 are important for the phenomenon being demonstrated in Figure 2. I think the impact of the study is just as interesting, as this examination of early social memories is very interesting and nicely done. In fact, areas CA2 and CA3 may be acting together (please see Stöber, T. M., Lehr, A. B., Hafting, T., Kumar, A. & Fyhn, M. Selective neuromodulation and mutual inhibition within the CA3-CA2 system can prioritize sequences for replay. Hippocampus 30, 1228-1238, 2020).

      We agree that it is possible that CNO infusions targeted at the CA2 would also influence CA3a/b and have revised the paper to include this possible interpretation. We also cite the suggested paper on CA3 involvement in social memory (Chiang et al., 2018) and the paper on CA2-CA3 interactions (Stöber et al, 2020).

      Figure 3 is packed with information, but not communicated in a reasonable way. Much more information and a description of the experimental protocol need to be presented. Furthermore, why are there no example traces for the SWRs recorded? There should be more analysis than just a difference score and frequency. How is j, k, and l analyzed and interpreted? Why no example traces there? Also, the n's seem way too small for Figure 3mr. Are there only 32 or three animals used for some of these conditions? This is insufficient in my opinion to conclude much for a 5-minute interaction.

      In response to this concern, we have divided Figure 3 into 2 figures – Figure 3 and Figure 4. In Figure 3, we provide example traces for SWRs, with additional SWR data presented in Figures S3 and S4, including data to complement the difference score data in Figure 3. In Figure 4, we include traces of phase amplitude coupling. We also provide more information in the methods about how the phase amplitude coupling data were analyzed. For Figure 4, we used methods described by Tort et al., 2010 to produce a modulation index, which is a measure of the intensity of coupling between theta phase and gamma amplitude. This method additionally allows for visualization of how gamma amplitude is modified across individual theta phase cycles. Regarding the question about n sizes in the 10-12 week abGC group (Fig. 3), the numbers are lower than in the 4-6 week abGC group because by 6 weeks after the first set of recordings, the electrodes in some of the mice were no longer usable. The n sizes for this specific study are 4-5 per group for Nestin-cre mice; 7-8 for Nestin-cre:Gi. This is now clarified in the figure legend.

      The discussion section of this paper does not put these results into a broader context with the field. There are other studies examining abGCs and their roles in novelty and memory formation (the work from Juna Song's lab, for example). These should be properly mentioned and discussed.

      In response, we have added discussion on the roles of abGCs in nonsocial novelty and memory formation and have cited papers from the Song lab.

      In the figure legend for Figure 2, there is no specific explanation for panel h. Perhaps the label is missing in the legend.

      We thank the reviewer for noting this error and now include a description in the revised manuscript.

      Reviewer #2:

      Adding more quantifications (single cells, isolating data during interactions versus noninteraction times) would help understand the results better. In the lack of this, adding a more clear rationale (even if only through the presentation of hypotheses) in between the transitions of the different results sections would make the study easier to read.

      In response to this comment, we have added transition sentences between results sections to clarify the rationale and make the manuscript easier to understand.

      Reviewer #3:

      Line 110: "Hippocampal phase-amplitude coupling (PAC) and generation of sharp waveripples (SWRs) have been linked to novel experience, memory consolidation, and retrieval (Colgin, 2015; Fernandez Ruiz et al., 2019; Meier et al., 2020; Joo and Frank, 2018; Vivekananda et al., 2021). The DG is known to influence hippocampal theta-gamma coupling and SWRs (Bott et al, 2016; Meier et al., 2020), yet no studies have examined the influence of abGCs on these oscillatory patterns." This information comes too early in the result section and is somewhat confusing.

      In response to this comment, we have moved this information and provided a better description.

      Line 118: "we found that mice with normal levels of abGCs can discriminate between their own mother and a novel mother." Be more descriptive of the results (present the raw interaction times with the statistical test to compare them), this is the conclusion.

      In response to this comment, we provide the raw interaction times in a new Figure (Fig. S1) and describe the results in more detail.

      Line 121: "These effects were not due to changes in physical activity". Be more specific. Did you subject the mice to a specific test? If not, how did you calculate locomotion? The data presented in the supplementary figure 1a only states the % locomotion.

      Locomotion was manually scored whenever an animal moved in the testing apparatus. Speed was not recorded. Total locomotion was divided by trial duration to create a % locomotion measure. We have added these details to the methods.

      Line 124: "Coinciding with the recovery of adult neurogenesis, GFAP-TK animals regained the ability to discriminate between their mother and a novel mother". Explain how the difference in interaction time can be interpreted as the ability to discriminate. You could also compute the discrimination index used by several other laboratories (difference of interaction normalized by the total interaction time).

      In response to this comment, we describe how the difference in interaction time can be interpreted as the ability to discriminate between novel and familiar mice.

      Line 133: "Targeted CNO infusion in Nestin-Cre:Gi mice enabled the inhibition of GiDREADD+ abGC axon terminals present in CA2." Provide data or references to support this claim. Injection of a dye of comparable size to CNO would help. Otherwise, mention that nearby CA3a could be affected as well.

      We cannot rule out that nearby CA3a was affected by our cannula infusions of CNO into CA2. Furthermore, since dyes likely diffuse at different rates than CNO, we believe that a dye injection would not eliminate this concern completely. Therefore, we have revised the paper to acknowledge the likelihood that the CNO infusion affected parts of CA3 in addition to CA2. We also changed the title to focus more on the CA2 electrophysiological recordings, which we know were obtained only from the CA2.

      Line 150: "When reintroduced to the now familiar adult mouse 6 hours later, after the effects of CNO had largely worn off". Provide data or references supporting this claim.

      In response, we cite articles that show behavioral effects of CNO DREADD activation are returned to baseline 6 hrs later.

      Line 165: "We found that SWR production is increased during social interaction, with more SWRs produced during novel mouse investigation, presumably during encoding social memories, than during familiar mouse investigation, presumably during retrieval of developmental social memories". How does this compare to the results in Oliva et al, Nature 2021?

      The Oliva et al 2021 paper recorded CA2 SWRs during home cage and during post-social stimulus exposure periods of sleep. The timing of the study does not coincide with the measures we made, but we cite the paper.

      Line 168: "Inhibition of abGCs in the presence of a social stimulus". How does silencing abGC impact CA2 pyramidal neurons' firing rate?

      The direct answer to this question is unknown because we did not measure single units, but based on studies done in the CA3, it is likely that firing rate in CA2 would increase.

      Line 203: "abGCs possess a time-sensitive ability to support retrieval of developmental social memories." Can you speculate on the function of the cells later on?

      In the revised paper, we speculate about the function of abGCs after they mature and no longer support retrieval of developmental social memories.

      Line 229: "GFAP-TK mice were group housed by genotype". Why not housed them with CD1 littermates?

      We housed these mice according to genotype to avoid having mice with different levels of abGCs (GFAP-TK + VGCV and CD1 + VGCV) living together in social groups. We did this to avoid potential differences that might emerge in social behavior.

      Line 237: "Adult TK, Nestin-cre, and Nestin-cre:Gi offspring underwent a social interaction test in which they directly interacted with the mother". Specify how long was the social interaction time.

      In the revised manuscript, we specify that mice interacted with each social stimulus for 5 minutes.

      Line 240: "After a 1-hour delay spent in the home cage". Were the mice single-housed or with their littermates during this delay?

      In the revised manuscript, we indicate that mice were put back into the home cage with their cagemates during the 1 hr delay period.

      Line 241: "The order of stimulus exposure was counterbalanced in all tests." Can you show some data to confirm that the order of presentation did not impair the interaction? Have you considered using your own version of the classical 3-chamber test in order to assess directly the preference for one or the other female mouse?

      Our data suggest that the order of testing is not responsible for the observed results. Across all experimental groups without an abGC manipulation (i.e., all direct social interaction assays excluding VGCV+ GFAP-TK trials and CNO+ Nestin-cre:Gi trials), ~84.4% of animals demonstrate a social preference for the novel mother over the mother (CD1 + GFAP-TK VGCV- cohort: 28/33; CD1 VGCV+ cohort: 17/17; CD1 and TK recovery cohort: 24/31; Nestin-cre and Nestin-cre:GI 4-6-week-old abGC cohort: 77/95; 10-12-week-old abGC cohort: 49/55; Total = 195/231 mice with an investigation preference for the novel mother). If stimulus presentation order were to bias social investigation preference toward the first stimulus presented, we would expect the percentage of animals demonstrating a social preference for each stimulus to be around 50%, as roughly half the animals were first exposed to the mother with the other half first exposed to the novel mother. The social novelty preference percentage reported above is comparable to percentages we observe in our lab's novel to familiar social interaction experiments, in which all animals are first exposed to a novel conspecific. We have yet to conduct experiments testing adults using the modified 3-chamber assay described in Laham et al., 2021.

      Statistics: The statistical tests used throughout the paper are appropriate but their description is too cursory. Please provide F values and specify the name of the tests used in the figure legends before giving the exact p values.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this valuable study the authors propose a new regulatory role for one the most abundant circRNAs, circHIPK3, mediated by the RNA binding protein IGF2BP2. While the study presents interesting and largely solid evidence, part of the work is incomplete, requiring additional controls to more robustly support the major claims. The work would also benefit from further discussion addressing the apparently contradictory effects of circHIPK3 and STAT3 depletion in cancer progression.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this work the authors propose a new regulatory role for one the most abundant circRNAs, circHIPK3, by showing that it interacts with an RNA binding protein (IGF2BP2) and, by sequestering it, it regulates the expression of hundreds of genes containing a sequence (11-mer motif) in their untranslated regions (3'-UTR). This sequence is also present in circHIPK3, precisely where IGF2BP2 binds. The study further focuses on one specific case, the STAT3 gene, whose mRNA product is downregulated upon circHIPK3 depletion apparently through sequestering IGF2BP2, which otherwise binds to and stabilizes STAT3 mRNA. The study presents mechanistic insight into the interactions, sequence motifs, and stoichiometries of the molecules involved in this new mode of regulation. Altogether, this new mechanism seems to underlie the effects of circHIPK3 in cancer progression.

      Strengths:

      The authors show mechanistic insight into a proposed novel "sponging" function of circHIPK3 which is not mediated by sequestering miRNAs but rather by a specific RNA binding protein (IGF2BP2). They address the stoichiometry of the molecules involved in the interaction, which is a critical aspect that is frequently overlooked in this type of study. They provide both genome-wide analysis and a specific case (STAT3) that is relevant for cancer progression.

      Weaknesses:

      One of the central conclusions of the manuscript, namely that circHIPK3 sequesters IGF2BP2 and thereby regulates target mRNAs, lacks more direct experimental evidence such as rescue experiments where both species are simultaneously knocked down. CircRNA overexpression lacks a demonstration of circularization efficiencies. There seem to be contradictory effects of circHIPK3 and STAT3 depletion in cancer progression, namely that while circHIPK3 is frequently downregulated in cancer, circHIPK3 downregulation in this study leads to downregulation of STAT3. This does not seem to fit the fact that STAT3 is normally activated in a wide diversity of cancers and is positively associated with cell proliferation. The result is neither consistent with the fact that circHIPK3 expression positively correlates with good clinical outcomes. Overall, the authors have achieved some of their aims but additional controls would be advisable to fully support their conclusions.

      We thank the reviewer for the important and constructive criticism. All the raised points have now been addressed as described below.

      Rescue experiment:

      We have now performed the suggested rescue experiment, exploring the potential normalization of target expression upon double knockdown (both circHIPK3 and IGF2BP2). Expression of targets STAT3, NEU and TRAPPC9 were assessed, and all target mRNAs became normalized upon double knockdown, supporting our suggested IGF2BP2 sponging mechanism for circHIPK3. These results have been included in Supplementary Figure 5F.

      Circularization efficiency of ectopically expressed circRNAs:

      For efficient expression of circRNAs in human cells, we have used a state-of-the-art plasmid construct (Laccase2-circRNA; Kramer et al., 2015, Genes Dev. 2015 Oct 15;29(20):2168-82. doi: 10.1101/gad.270421.115), which has proved superior to many alternatives presented in the literature. To ensure proper circularization efficiency of circHIPK3, we have now subjected purified RNA from transfected HEK293 cells (and from HEK293 Flp-In T-Rex cells with stable integration of cassette) to northern blotting (Supplementary Figure S5H). This demonstrates the production of a single RNase R resistant band of correct size, for both circHIPK3 expression constructs. Due to relatively weak signal to noise ratio (rRNA background), we are unable to calculate an accurate linear-to-circ ratio. Nevertheless, the results suggest efficient production of WT and mutant circHIPK3 using the Laccase2 vector system.

      circHIPK3 and STAT3 expression in cancer:

      It is correct that STAT3 expression is oden positively correlated with disease progression in many patients suffering from different cancers, and that the observed expression pattern with downregulation of circHIPK3 and STAT3 in BC cells can be perceived as counterintuitive. We note that the STAT3 profile in our time-course knockdown experiments is somewhat dynamic. While downregulation of STAT3 is most pronounced After 24 hrs of circHIPK3 knockdown, the expression tends to be more normalized After 48 and 72 hrs, which could be due to initiating compensatory mechanisms elicited by the cells. Indeed, comparing long-term development of tumors in patients, with numerous primary and accumulating secondary effects, to transient (0-72 hrs) geneexpression analyses has limitations. In addition, despite the oncogenic role of STAT3 having been widely demonstrated, evidence suggest that STAT3 functions are multifaced and not always trivial to classify. Recent evidence has shown that STAT3 can have opposite functions in cancer and act as both a potent tumor promoter and a tumor suppressor (reviewed in Tolomeo and Cascio, 2021, Int J Mol Sci. 2021 Jan; 22(2): 603. doi: 10.3390/ijms22020603). We have now discussed this in more detail (in the discussion section) and stated some of the limitations of our study in terms of the regulation of the STAT3/p53 axis.

      Reviewer #2 (Public Review):

      The manuscript by Okholm and colleagues identified an interesting new instance of ceRNA involving a circular RNA. The data are clearly presented and support the conclusions. Quantification of the copy number of circRNA and quantification of the protein were performed, and this is important to support the ceRNA mechanism.

      We thank the reviewer for the positive feedback.

      Reviewer #3 (Public Review):

      In Okholm et al., the authors evaluate the functional impact of circHIPK3 in bladder cancer cells. By knocking it down and performing an RNA-seq analysis, the authors found thousands of deregulated genes that look unaffected by miRNAs sponging function and that are, instead, enriched for an 11mer motif. Further investigations showed that the 11-mer motif is shared with the circHIPK3 and able to bind the IGF2BP2 protein. The authors validated the binding of IGF2BP2 and demonstrated that IGF2BP2 KD antagonizes the effect of circHIPK3 KD and leads to the upregulation of genes containing the 11-mer. Among the genes affected by circHIPK3 KD and IGF2BP2 KD (resulting in downregulation and upregulation, respectively) the authors found the STAT3 gene. This was accompanied by consistent concomitant upregulation of one of its targets, TP53. The authors propose a mechanism of competition between circHIPK3 and IGF2BP2 triggered by IGF2BP2 nucleation, potentially via phase separation.

      Strengths:

      The number of circRNAs continues to drastically grow; however, the field lacks detailed molecular investigations. The presented work critically addresses some of the major pi‘alls in the field of circRNAs and there has been a careful analysis of aspects frequently poorly investigated. The timepoint KD followed by RNA-seq, investigation of the miRNAs-sponge function of circHIPK3, identification of 11-mer motif, identification, and validation of IGF2BP2, and the analysis of copy number ratio between circHIPK3 and IGF2BP2 in assessing the potential ceRNA mode of action have been extensively explored and, comprehensively are convincing.

      Weaknesses:

      In some parts, the manuscript lacks appropriate internal controls (eg: comparison with normal bladder cells, linear transcript measurements upon the KD, RIP internal controls/ WB analysis, etc), statistical analysis and significance (in some qPCRs), exhaustive description in the methods of microscopy and image analysis, western blot, and a separate section of cell lines used. The use of certain cell lines bladder cancer cells vs non-bladder cells in some experiments for the purpose of the study is also unclear.

      Overall, the presented study adds new knowledge in describing circHIPK3 function, its capability to regulate some downstream genes and its interaction and competition for IGF2BP2. However, whereas the experimental part appears technically logical, it remains unclear the overall goal of this study and the final conclusions. The mechanism of condensation proposed, although interesting and encouraging, would need further experimental support and information, especially in the context of cancer.

      In summary, this study is a promising step forward in the comprehension of the functional role of circHIPK3. These data could possibly help to better understand the circHIPK3 role in cancer.

      We thank the reviewer for the important and constructive criticism. All the raised points have now been addressed as described below.

      Internal controls/description of methods:

      We have now included suggested internal controls and provided statistical significance measures where needed. We have also described in more detail the usage of different cell lines for different experiments and a comprehensive description of microscopy, image, and western analyses.<br /> The condensation mechanism of circHIPK3 and IGF2BP2 that we propose has been toned down slightly in the discussion, as we agree that these observations are not unequivocal and could potentially be explained by alternative and yet undefined events as discussed in further detail.

      Recommendations for the authors:

      Major points

      (1) In Figure 1B the authors show neither error bars nor statistical analysis. Did they sequence each cell line in single replicates? A clarification on this point would be of help.

      All timepoints for J82 and UMUC3 were sequenced in biological triplicates (Figure 1C-G). The data shown in Figure 1B represents prior single RNA-seq runs of all specific cell lines sequenced for selection of appropriate BC cell lines used for further study.

      (2) In Figure 1C the quantification of the cognate linear Hipk3 RNA would be desired in order to rule out changes in this species levels that could account for the observed effects upon circHIPK3 KD.

      We do not observe a non-specific downregulation of the HIPK3 mRNA upon circHIPK3 knockdown, rather we observe a moderate upregulation at later timepoints. However, western blotting shows that this upregulation is not translated into significantly increased protein levels. This data is now available in Supplementary Figure S1A and S1B.

      (3) In Supplementary Figure S1B the authors show the number of differentially expressed genes between time points and baseline upon circHIPK3 KD or scr siRNA transfection. However, in this referee's opinion, the relevant comparison would be the differentially expressed genes between circHIPK3 KD and scr siRNA at different time points. Otherwise, they would be focusing on both circHIPK3-specific and non-specific effects.

      The requested comparison is part of the main figures (Figure 1F). The plotted data in Supplementary Figure 1B (Supplementary Figure S1D in the revised version) was included to allow the reviewer to better assess the variability in the data. We therefore believe it provides relevant information and that it should be kept in the final version.

      (4) Figure 1E. How many hours of KD do these measurements correspond to? Even if they correspond to 72 h, there seems to be a discrepancy between Fig 1E and 1F in terms of the total number of differentially expressed (DE) genes. Why are there more DE genes in 1E?

      The number of differentially expressed genes in Figure 1E represents the total number at all timepoints, while Figure 1F represent single timepoints. We have modified the figure legend to clarify this issue.

      (5) In Figure 3B, in order to verify pulldown efficiency, RT-qPCR should be performed instead of endpoint RT-PCR. Otherwise, no robust claim can be made regarding interaction affinities.

      We agree that these RIP-PCR results in Figure 3B are only semi-quantitative and therefore do not unequivocally assess binding strength. However, since IGF2BP2 is the RNA binding protein in focus throughout the rest of the study, where additional quantitative RIP-RT-qPCR experiments have been performed, we find this issue negligible. In addition, the semi-quantitative nature of the endpoint PCR experiment has now been mentioned in the main text and figure legend.

      (6) The authors claim that IGF2BP2 KD counteracts the effect of circHIPK3 KD on target mRNAs. However, in order to support this claim the authors should perform a rescue experiment where they simultaneously knock down both circHIPK3 and IGF2BP2. Otherwise, the conclusion remains largely supported by a correlation.

      Indeed, such an experiment is important. A rescue experiment with double knockdown has now been performed and demonstrates that levels of tested targets; STAT3, NEU and TRAPPC9 become normalized under these conditions, supporting our IGF2BP2/circHIPK3 sponging model. The data is available in Supplementary Figure S5F.

      (7) The authors claim that circHIPK3 interacts strongly with IGF2BP2 in bladder cancer cells but not with GRWD1. This is shown in Figure 4A where neither standard errors nor statistical analysis is shown. The authors need to show replicates of this experiment and perform statistics in order to support their claims.

      These experiments have been redone with even higher stringency in biological triplicates and fully supports our claims. The data is available in a modified Figure 4A – now including error bars and indications of significance. In addition, we have included western blots demonstrating Input (IN), Flowthrough (FT) and Immunoprecipitation (IP) of correctly sized proteins in Supplementary Figure S4A.

      (8) The authors claim that the STAT3 gene, which contains the 11-mer motif in its 3'UTR, becomes downregulated upon circHIPK3 KD in UMUC3 and J82 cells, while it is upregulated upon IGF2BP2 depletion in both cell lines. It is unclear why they show the effect of circHIPK3 KD on STAT3 within a time course while the effect of IGF2BP2 KD in a fixed time point (Figures 5A/S5A and 5B/S5B respectively), and it would be convenient to clarify this point.

      The initial time course knockdown experiment for circHIPK3 was conducted to provide a comprehensive dataset for circHIPK3-mediated events and clarify any temporal effects. After identification of IGF2BP2 as an interaction partner of circHIPK3, we chose to harvest cells After knockdown at 48 hrs as knockdown efficiency was prominent at this point. The temporal knockdown efficiency of RNAs (circHIPK3) and proteins (IGF2BP2) differ considerably due to increased stability of proteins compared to target RNA. This is the main reason why only a single timepoint has been assessed.

      (9) In Figure 5F the authors show that upon overexpression of wildtype or 11-mer motif-mutant circHIPK3, the binding of IGF2BP2 was reduced while the binding of STAT3 mRNA to IGF2BP2 was increased. In order to rule out differences in circularization efficiencies, it would be convenient to show a northern blot comparing the efficiency of circHIPK3 overexpression relative to its linear cognate RNA for both constructs.

      Indeed, circRNA expression constructs may differ considerably in circularization efficiencies. We are using the Laccase2 system developed by the Jeremy Wilusz lab (Kramer et al., 2015), which, at least in our hands, efficiently produces circRNAs from almost any inserted sequence. To address whether the WT and mutant circHIPK3 express similar amounts of circRNA with high efficiency, we performed the suggested northern blot, which displays very similar RNase R resistant circHIPK3 levels. The data is now available in Supplementary Figure S5H. Due to background signal from 18S rRNA in non-RNase R treated samples, we cannot accurately calculate a linear/circular RNA ratio, since no distinct linear RNA species above background is visible on the blot. However, the important part that mutant and WT (RNase R resistant) circRNA are expressed at similar levels, makes us confident about our conclusion that WT circHIPK3 expression interferes with IGF2BP2 binding to STAT3 mRNA.

      (10) Figure 1G, several genes were selected as up and downregulated for J82 and UMUc3 cell lines. Were these consistently involved in specific biological processes?

      Genes were classified as down or upregulated based on significant (FDR<0.1) fold changes. The most significant genes in both directions were named, disregarding of involvement in any specific biological processes. Initially, we performed a GO-term analysis on these genes and received many hits, but we did not observe a very specific pattern or cluster of genes, suggesting that we are looking at both primary and secondary effects of knocking down circHIPK3. We believe our GSEA of the 50 hallmarks of cancer genes sets, presented in Figure 4D, 4E and Supplementary Figure S4E and S4F is addressing this point in a satisfactory manner.

      (11) For differential expression analysis, which data sets were used to group outcomes at different time points. Also, there is an increased number of genes affected after KD - please describe in more detail how you reached that gene number.

      As also discussed above (point 3), at each timepoint (Figure 1F) “Scr” was compared to “circHIPK3” knockdown. It makes sense that more and more genes are DE over the course of time as both primary and secondary effects of knockdown will build up over time. We have now clarified which datasets have been used in the figure legend and rewritten the Methods’ section on differential expression analysis.

      (12) What happens with the expression of circHIPK3 if STAT3 is KD? What biological processes are modulated by silencing circHIPK3?

      (13) What happens in bladder cancer cells if STAT3 and circHIPK3 are KD?

      The main goal of our work is to clarify how circRNAs (here circHIPK3) affect gene-expression and cancer pathways. While it would be interesting to explore the consequences of STAT3 knockdown and in combination with circHIPK3, such experiments would require comprehensive additional analyses (RNA-seq), which we believe is beyond the scope of this study at this point.

      (14) The rationale of the study and conclusions are unclear. Quote "we extensively evaluate the functional impact of circHIPK3 in bladder cancer cells". As previously published by the authors, as well as mentioned in the manuscript, circHIPK3 is downregulated in cancers and possesses tumor suppressor functions in bladder cancers. Could the authors clarify how the results of the presented study based on the depletion of circHIPK3 fit with the previous discoveries? If the circHIPK3 is generally downregulated compared to normal cells (although higher compared to the linear transcript) why do the authors use a KD approach? Are the bladder cancer cells simply a cell model to study circRNA vs linear? How the condensation model reconciles with circHIPK3 tumor suppressor function based on these results?

      We believe that it remains unclear whether circHIPK3 is a direct tumor suppressor, although this is possible judged from the clinical patient data, since STAT3, which has been shown to become activated in many cancers, is also downregulated upon circHIPK3 knockdown. However, differences in immediate effects on gene-expression of circHIPK3 knockdown (0-72 hrs) and long-term development of tumors within patients, may be difficult to compare directly. If STAT3 downregulation contributes to cancer phenotypes in bladder cancer as suggested for several other cancer types (Glioblastoma, prostate cancer, lung cancer etc.) circHIPK3 may indeed still be classified as a tumor suppressor in bladder cancer. It is worth noting that circHIPK3 has been shown to be upregulated and have oncogenic phenotypes in many other cancers, which makes direct correlations between cancers complex and difficult to reconcile. We have revised the discussion to reflect these issues in a more comprehensive fashion. To fully delve into STAT3 regulation in terms of bladder cancer development, progression, cell invasiveness, and survival, we believe are more suitable for future experiments.

      At this point, we have identified a novel mechanism of a circRNA deregulated in cancer being able to sponge/regulate the function of an oncogenic RNA binding protein, even though it is severely outnumbered in cells. Importantly, circHIPK3 likely does not function as a miRNA sponge as previously proposed in several previous studies based on circRNA overexpression, reporter constructs and miRNA mimics. We therefore believe that these findings provide new important insights into circHIPK3 function and that the current understanding of circRNAs functioning primarily as miRNA sponges, likely should be revised.

      (15) Related to the previous point, if the purpose is to study the role of circHIPK3 in bladder cancer, there is a bit of a lack of consistency and it is sometimes confusing to understand the use of certain cell lines for specific experiments. The initial circHIPK3 KD experiments have been conducted in 2 (out of 11 not malignant/ metastatic) bladder cancer cell lines (J82 and UMUC3). Why this specific selection of exclusively metastatic bladder cell lines? For comparison are the normal bladder cell lines characterized by the same circRNA vs linear ratio?

      The selection of bladder cancer cell lines (J82, UMUC3 and FL3) is based on several criteria including expression levels of circHIPK3, cell maintenance characteristics and knockdown/transfection efficiencies. Initially, we included HT1197 cells as well, but batch effects precluded the use of these data.

      Furthermore, the subsequent miRNA analysis was conducted exclusively in one bladder cell line (J82 but not in UMUC3), the initial identification of motif again in bladder cells but the initial RBP identification and experimental interaction is conducted in non-bladder cells HepG2 and k562 (reported as main figure 3B) and only subsequently in bladder cell (4A), again in a different cell line (only FL3, but not in J82 and UMUC3). The validation of the interaction of STAT3 by RIP is performed exclusively in FL3. All this also makes someone wonder how specific this mechanism/binding is in bladder cancer cells. There is an attempt to explain this by comparing cell cycle progression analysis upon circHIPK3 KD and IGF2BP2 KD later on but the final conclusions of this analysis remain unclear. The authors should provide more explanation and information in this part of the manuscript.

      It is correct that the different bladder cancer cell lines (FL3, J82 and UMUC3) have been used more or less interchangeably between experiments. This is due to the observed common phenotypes, e.g. sharing up to 92% DE genes, and highly significant enrichment of the IGF2BP2 11-mer-motif in downregulated mRNAs upon circHIK3 knockdown in all three cell lines. The ENCODE cell lines HepG2 and K562 were used since the accessible RBP-CLIP data originates from the ENCODE project, where these cells have been used exclusively. Hence, we validated the binding of candidate RBPs (semi-quantitatively) in HepG2 and K562 prior to assessing their RNA binding in the BC cell line FL3. We have used FL3 for RIP and validation of IGF2BP2 binding mainly due to better transfection efficiency and higher expression levels, allowing detection all interrogated components. The fact that we have included three BC cell lines in many experiments instead of only one, and obtained consistent results, solidifies the conclusions that our phenotypes and regulatory mechanisms are likely common for most, if not all, bladder cancer cell lines. We have included a paragraph in the materials and methods section to further clarify the usage of cell lines in the different experiments.

      (16) STAT3 gene is used as an example. Where is this gene coming from? How has this gene been selected? Is there any complete list of RNA-seq data of up/down-regulated genes upon circHIPK3 KD? The raw data and gene list should be publicly available to the reviewers.

      STAT3 is a major regulator of cancer pathways and therefore an interesting candidate for further analysis as it is differentially expressed between control and circHIPK3 knockdown in all cell lines. We have now included the complete list of DE genes from the time-resolved RNA-seq analyses (DESeq2 output files) in the supplementary material. This data is now available in Supplementary Tables S6 and S7.

      (17) In performing the KD of circHIPK3 the authors use a unique siRNA on a splice junction. The authors claim that this is a way to not affect the linear transcript, however, have the authors also ensured experimentally that this doesn't affect in any way the linear RNA? This should be included as an initial internal control.

      We do not observe a downregulation of the HIPK3 mRNA upon circHIPK3 downregulation, rather we observe a moderate upregulation at later timepoints. When assessing the HIPK3 protein levels, we observe no significant change After 48 hrs of knockdown. This data is now available in Supplementary Figure S1A and S1B.

      (18) Additional controls should be provided for RIP, especially for Fig3B and 4A, Sfig4, 5C such as an internal positive control (es: AGAP2-AS1) of the correct pulldown of IGF2BP2 and/or WB should be shown (in the methods it is told that WB has been used for the analysis of RIP but I couldn't find any)

      Indeed, IGF2BP2 likely binds to many mRNAs in the cell. We have now included b-actin mRNA as a low affinity control in the Figure 4A RIP data, showing that circHIPK3 represents a tight binding substrate for IGF2BP2. We have also included a western blot showing the IP of IGF2BP2, IGF2BP2, GRWD1 and GFP. This data is now available in Supplementary Figure S4A.

      (19) Additional internal experimental controls should be included to assess the successful transfection and overexpression of circHIPK3 with the laccase-2 driven plasmid and mutated versions before the RIP in 4B and in the 5F. Supportive controls to show equal transfection would be required for Figure 6C-D. Further controls to show that the ASO specifically targets the 11-mer in circHIPK3 but not IGF2BP2 target genes should also be included. Please include this information in the supplementary materials.

      We have now included a northern blot showing successful transfection and expression of RNase R resistant circHIPK3 from the Laccase2 vector (WT and mutant) in relation to RIP experiments. This data is now available in Supplementary Figure S5H (see also comments about this above). Equal transfections in cells shown in Figure 6C-D is assessed by comparable levels of GFP expression, which is included as an expression cassette in the modified Laccase2 construct. Pictures were acquired with same exposure time and scaling to ensure that they can be compared directly. The ASO targets circHIPK3 with full complementarity, while STAT3 mRNA has 2 mismatches, leaving the “lesser interaction” with STAT3 theoretical. This has now been clarified in the main text.

      (20) Specifically, in 1C and 4A, Sfig4 there is no statistical analysis made and/or significance? This is only reported for the RIP experiment in Fig 5C.

      Statistical analyses have now been performed and shown in Figure 4A and we have included binding of ACTB as a low affinity control. In Figure 1C, which displays knockdown efficiency (highly efficient) at the various timepoints, no statistical significance has been displayed, since this is normally not done for such knockdown experiments. In addition, it is also not clear which comparisons would be beneficial. Except for the J82 cell line at 12 hrs compared to 0 hrs, knockdown efficiency is high and statistically significant at all timepoints.

      (21) In the assessment of copy number ensuring the same primer efficiency is fundamental, it can't be simply "assumed". Please clarify this point and possibly include this information in the supplementary materials.

      It is correct that identical, or at least very similar, primer efficiencies are necessary to make the conclusion that the relationship between GAPDH mRNA and circHIPK3 levels in the cell reflects the quantitatively measured number of molecules. However, since this single comment is only to support the quantitatively measured circHIPK3 molecules by a ballpark estimate, and since we already assume that there are an estimated 10.000-20.000 copies of GAPDH mRNAs in most cells (which we also do not know precisely), we have chosen to remove this statement.

      (22) The methodology section is not well organized and looks incomplete. For example, there are two separate sections for circHIPK3 expression conducted in different cell lines, this would be better explained in a single paragraph.

      We have now rewritten this section to make it clearer.

      The section reporting cell lines and growth conditions is incorporated in "circHIPK3 KD and overexpression" while it should be a separate paragraph and valid for all experiments where these cells have been used. There is no information regarding Western blots, including Antibodies used, and densitometry performed.

      This information has now been included.

      In "immunofluorescence microscopy" it is not clear what microscope has been used, how many acquisitions have been made, and how acquisition has been performed. Related to this, how the image analysis has been performed? Figures 5I-J "Finally, immunofluorescence staining showed that nuclear and overall STAT3 protein levels are significantly lower upon circHIPK3 KD, while nuclear p53 protein levels are higher" and 6C and D "we observed a significantly higher prevalence of large cytoplasmic condensates in cells expressing high levels of circHIPK3 compared to controls" how this quantification has been made? The conclusive part about the condensation role remains a bit too loose and mostly speculative, largely due to the lack of robust information provided on microscopy and image analysis

      We have now included a better description of the acquisition and quantification methods.

      Minor

      (1) The Van Nostrand et al 2018 citation should refer to the updated publication in Nature and not to the original preprint in Biorxiv.

      This reference has now been updated.

      (2) In Supplementary Figure S3B, the authors offer no explanation as to why genes that become upregulated upon circHIPK3 knockdown generally contain more circHIPK3-RBP binding sites other than for IGF2BP2. A clarification would be of help.

      We do not have any evidence to explain this observation. One possibility is that other RBPs elicit mRNA stabilizing effects on average, whereas abundant IGF2BP2 (~ 120.000-200.000 copies per cell) now able to bind more target mRNAs and elicit destabilization. This remains highly speculative though.

      (3) In Supplementary Figure S3D, the authors' claim that the 11-mer motif is found more bound to IGF2BP2 than for other circHIPK3-RBPs should be referred to the corresponding dataset/reference.

      This information is stated in the figure legend (K562) and we have now included it in the main text as well: “We evaluated how oden binding sites of circHIPK3-RBPs overlap the 11-mer motif and found that this is more oden the case for IGF2BP2 binding sites than binding sites of the other circHIPK3-RBPs when scrutinizing K562 datasets (Supplementary Figure S3D)”.

      (4) In Figure 4C the authors show that, according to previously performed experiments of their group, the 11-mer motif is enriched in upregulated genes compared to downregulated genes upon IGF2BP2 KD in UMUC3. This seems like a confirmation of the results presented in the preceding section (Figure 3H) and it would be clearer if it were presented in the same section.

      The data in Figure 3H is based on ENCODE data from IGF2BP2 knockdowns in K562 cells, while in Figure 4C these are from IGF2BP2 knockdown followed by sequencing in UMUC3 cells. We believe the timing of the data is fitting as is, since they relate to non-BC cells and BC cells, respectively.

      (5) More in vitro experiments are needed to investigate the implication of circHIPK3 in bladder cancer cell phenotype, and how different cancer hallmarks are modulated by this ceRNA network.

      We agree that this study does not fully clarify how these complex molecular interactions relate to bladder cancer progression, including fluctuations of key cancer genes/proteins. Since our focus has been on the mechanisms of circRNA function in relation to bladder cancer, these issues will await further future experimentation.

      (6) "apparent" competition (introduction - pag4)? Maybe rephrase more appropriately.

      This has been rephrased and “apparent” excluded.´

      (7) Fig1C. Relative quantification. Statistical analysis? Is this significant?

      See also comment to point 20 above. In Figure 1C we show the knockdown efficiency at the different timepoints. At all timepoints knockdowns are highly significant compared to the control (Scr), which is not significantly changed over time. It seems somewhat redundant to include pvalues for such data. Also, which comparisons should be highlighted? Knockdown is highly efficient, which is what we want to show.

      (8) Figure 5H. Western blot. Densitometry quantification performed, how?

      This is now described in the Materials and Methods section.

      (9) Please specify the concentration of circHIPK3-specific siRNA used.

      20 nM. The information is included in the Materials and Methods section.

      (10) The control sample refers to scrambled or untreated cells? Instead of using "control samples without siRNA transfection" or "No siRNA" use untreated cells - otherwise, it is a bit confusing.

      This has now been modified.

      (11) Figure 3 is starting with hepatocellular and leukemia cells; why not with bladder cells?

      These experiments were performed based on CLIP-data and RBP knockdown data from the ENCODE project. The cells used are limited to HepG2 and K562.

      (12) For Figure 4B, which is the time-point?

      This is 24 hrs. Has now been stated.

      (13) Figure 5I and J, the expression of STAT3 and circHIPK3 can be also investigated for cellular distribution.

      The expression of STAT3 is investigated in Figure 5I. Localization of circRNA by standard RNA-FISH protocols using multiple (>20) probes is inherently difficult due to the cross reaction of probes with the linear mRNA. Certain amplification steps can be included if using a single backsplicing junction probe, but this is oden giving rise to highly ambiguous results as specificity is very limited due to the “one probe“ nature of the design.

      (14) Some discussion of the limitations of the study would be of value.

      We have included this in the discussion.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors were attempting to determine the extent that CIH altered swallowing motor function; specifically, the timing and probability of the activation of the larygneal and submental motor pools. The paper describes a variety of different motor patterns elicited by optogenetic activation of individual neuronal phenotypes within PiCo in a group of mice exposed to CIH. They show that there are a variety of motor patterns that emerge in CIH mice; this is apparently different than the more consistent motor patterns elicited by PiCo activation in normoxic mice (previously published).

      Strengths:

      The preparation is technically challenging and gives valuable information related to the role of PiCo in the pattern of motor activation involved in swallowing and its timing with phrenic activity. Genetic manipulations allow for the independent activation of the individual neuronal phenotypes of PiCo (glutamatergic, cholinergic) which is a strength.

      We thank the reviewers for acknowledging and summarizing the strengths of this study.

      Weaknesses:

      (1) The data presented are largely descriptive in terms of the effect of PiCo activation on the probability of swallowing and the pattern of motor activation changes following CIH. Comparisons made between experimental data acquired currently and those obtained in a previous cohort of animals (possibly years before) are extremely problematic, with the potential confounding influence of changing environments, genetics, and litter effects. The statistical analyses (i.e. comparing CIH with normoxic) appear insufficiently robust. Exactly how the data were compared is not described.

      Yes, we agree the data are descriptive in terms of characterizing the effect of CIH on PiCo activation. However, we would like to emphasize that the data are also mechanistic because they characterize the effects of specifically, optogenetically manipulating PiCo neurons after being exposed to CIH.

      Thank you for this comment and for pointing out our misleading description in the paper. This manuscript is meant to independently characterize the effects of CIH to the response of PiCo stimulation. We are not making direct comparisons between the previously published manuscript where mice were exposed to room air. There has been no statistical analysis made between previously published control and current CIH data, since we are not making a direct comparison, only an observational comparison.

      To make this clearer, and to address the reviewers concern, we have removed the room air data from figures 1E, 2C and 3A. However, we believe it is important to keep the data from mice exposed to room air in Figure 2B since we did not include this information in the previously published manuscript. It is important to point out that all mice exposed to CIH have some form of submental activity during laryngeal activation in response to PiCo stimulation. This is not the case when mice are exposed to room air only. In this figure, only descriptive analysis are presented. We adjusted our wording throughout the text, particularly in the discussion, to eliminate any confusion that we are making direct comparisons between the two studies. The following sentence has been added to the discussion “While we do not intend to make direct quantitative comparisons between the previously published PiCo-triggered swallows in control mice exposed to room air (Huff et al 2023) and the data presented here for mice exposed to CIH, we believe it is important to compare the conclusions made in these two studies.” This was the motivation for using the eLife Advance format. Since the present study demonstrates that PiCo affects swallow patterning which was not observed in the control data.

      (2) There is limited mechanistic insight into how PiCo manipulation alters the pattern and probability of motor activation. For example, does CIH alter PiCo directly, or some other component of the circuit (NTS)? Techniques that silence or activation projections to/from PiCo should be interrogated. This is required to further delineate and define the swallowing circuit, which remains enigmatic.

      We agree with the reviewer that our study raises many more questions than we are able to answer at the moment. This however applies to most scientific studies. Even though swallowing has been studied for many decades, the underlying circuitry remains largely enigmatic. We will continue to investigate the role of PiCo and its interaction with the NTS, in healthy and diseased states. These investigations require many different techniques, and approaches, some of which are still in development. For example, we are currently conducting experiments that silence portions of the NTS related to swallow and PiCo: ChAT/Vglut2 neurons using novel unpublished viral approaches. However, these are separate and ongoing studies beyond the scope of the current one.

      To address the reviewer’s comment, we have added to the following to the limitation section: “In addition, this preparation does not allow for recording of PiCo neurons to evaluate the direct effects of CIH in PiCo neuronal activity”. The following has also been added to the discussion: “Rather, our data reveal CIH disrupts the swallow motor sequence which is likely due to changes in the interaction between PiCo and the SPG, presumably located in the cNTS. While it has previously been demonstrated that PiCo is an important region in swallow-breathing coordination (Huff et al., 2023), previous studies did not demonstrate that PiCo is involved in swallow motor patterning itself. Here we show for the first time that CIH leads to disturbances in the generation of the swallow motor pattern that is activated by stimulating PiCo. This suggests that PiCo is not only important for coordinating swallow and breathing, but also modulating swallow motor patterning. Further studies are necessary to directly evaluate the presumed interactions between PiCo and the cNTS.”

      (3) The functional significance of the altered (non-classic) patterns is unclear.

      Like in our original study, the preparation used to stimulate PiCo does not allow to simultaneously characterize the functional significance of swallowing. Therefore, we have included this as a limitation in the limitation section: “In this preparation we are unable to directly determine the functionality of the variable swallow motor pattern seen after CIH. Different experimental techniques, such as videofluoroscopy would need to be used to directly evaluate functional significance. This technique is beyond the scope of this study and not possible to perform in this preparation. We acknowledge this limits our ability to make direct comparisons between dysphagic swallows in OSA patients.”

      Reviewer #1 (Recommendations For The Authors):

      (1) A more rigorous experimental approach is required. Littermates should be separated and exposed to either room air or CIH at the same (or close to the same) time.

      As stated above, we did not directly compare mice exposed to room air with mice exposed to CIH. Hence, we believe this is not necessary, and it would have meant repeating all the experiments already published in the original eLife paper.

      (2) Robust statistical analyses are required to determine whether the effects of CIH on the pattern/probability of motor activation are required.

      Since control and CIH group were not compared in this study, statistical hypothesis testing is not appropriate or applicable.

      (3) Use a combination of retrograde, Cre- AAVs and Cre-dependent approaches to interrogate the circuitry to/from PiCO that forms the swallowing network. This is what is needed to push this area forward, in my view.

      Thank you for this suggestion, we will consider this suggestion as we plan for future experiments. Indeed, we are in the process of developing novel approaches. However, in this context we would like to emphasize that further network investigations are exponentially more complicated given that we need to use a Flpo/Cre approach to specifically characterize the glutamatergic-cholinergic PiCo neurons. Most other laboratories that have studied PiCo have avoided this experimental complication and used only a “cre-dependent” approach. This approach is much simpler, but the data are much less specific and the conclusions sometimes misleading. Stimulating for example cholinergic neurons in the PiCo area will also activate Nucleus ambiguus neurons, stimulating glutamatergic neurons will also activate glutamatergic neurons that are not necessarily the glutamatergic/cholinergic neurons that we use to define PiCo specifically. Readers that are unfamiliar with these different approaches often miss this important difference. Hence, compared to stimulating other areas, stimulating the cholinergic-glutamatergic neurons in PiCo is much more specific than e.g. stimulating preBötzinger complex neurons. There are no markers that will specifically stimulate only preBötzinger complex neurons or neurons in the parafacial Nucleus. Unfortunately, this difference is often overlooked.

      (4) It should be made more clear how each of the "non-classic" swallowing patterns could cause dysfunction - especially to the reader who is not completely familiar with the neural control of swallowing.

      We agree that it would be helpful to understand the functional implications of these alterations in swallow-related motor activation, however since our approach does not allow us to use any tools to measure or evaluate functional activity it would be inappropriate to make suggestions of this type without any data to back up our conclusion. This is why we have not speculated on the functional implications. We have added the following to the discussion section of this manuscript. “While fine wire EMG studies are an excellent evaluation tool to observe temporal motor pattern of sequential swallow related muscles; it must be combined with tools such as videofluoroscopic swallow study (VFSS) and/or high resolution manometry (HRM) in order to characterize the functional significance of these alterations to the swallow motor pattern shown in this study (Park et al., 2017). Since the preparation in this study utilizes only fine wire EMGs we are not able to evaluate or comment on the functional significance of the variable swallow motor patterns. ”

      Minor:

      The Results should be written in a way that better conveys the neurophysiological effects of the manipulations. As it stands, it reads like a statistical report on how activation of each neuronal phenotype is statistically different from each other. As such it is difficult to read and understand the salient findings.

      Thank you for this insight. We have adjusted the language in the results section.

      Reviewer #2 (Public Review):

      Summary:

      In this study, the authors investigated the role of a medullary region, named Postinspiratory Complex (PiCo), in the mediation of swallow/laryngeal behaviours, their coordination with breathing, and the possible impact on the reflex exerted by chronic intermittent hypoxia (CIH). This region is characterized by the presence of glutamatergic/cholinergic interneurons. Thus, experiments have been performed in single allelic and intersectional allelic recombinase transgenic mice to specifically excite cholinergic/glutamatergic neurons using optogenetic techniques, while recording from relevant muscles involved in swallowing and laryngeal activation. The data indicate that in anaesthetized transgenic mice exposed to CIH, the optogenetic activation of PiCo neurons triggers swallow activity characterized by variable motor patterns. In addition, these animals show an increased probability of triggering a swallow when stimulation is applied during the first part of the respiratory cycle. They conclude that the PiCo region may be involved in the occurrence of swallow and other laryngeal behaviours. These data interestingly improve the ongoing discussion on neural pathways involved in swallow-breathing coordination, with specific attention to factors leading to disruption that may contribute to dysphagia under some pathological conditions.

      The Authors' conclusions are partially justified by their data. However, it should be acknowledged that the impact of the study is to a certain extent limited by the lack of knowledge on the source of excitatory inputs to PiCo during swallowing under physiological conditions, i.e. during water-evoked swallowing. Also the connectivity between this region and the swallowing CPG, a structure not well defined, or other brain regions involved in the reflex is not known.

      We thank the reviewer for the comments and the strength of the paper. However, with regards to the “lack of knowledge”, we would like to emphasize that PiCo was first described in 2016, while e.g. the preBötzinger complex was described in 1991. Thus, it is not fair to assume the same level of anatomical and physiological understanding for PiCo as we became accustomed to for the preBötzinger complex. We are fairly confident that in 25 years from now, our knowledge of the in- and outputs of PiCo will be much less limited than it currently is.

      Strengths:

      Major strengths of the manuscript:

      • The methodological approach is refined and well-suited for the experimental question. The in vivo mouse preparation developed for this study takes advantage of selective optogenetic stimulation of specific cell types with the simultaneous EMG recordings from upper airway muscles involved in respiration and swallowing to assess their motor patterns. The animal model and the chronic intermittent hypoxia protocol have already been published in previous papers (Huff et al. 2022, 2023).

      • The choice of the topic. Swallow disruption may contribute to the dysphagia under some pathological conditions, such as obstructive sleep apnea. Investigations aimed at exploring and clarifying neural structures involved in this behaviour as well as the connectivity underpinning muscle coordination are needed.

      • This study fits in with previous works. This work is a logical extension of previous studies from this group on swallowing-breathing coordination with further advances using a mouse model for obstructive sleep apnea.

      We thank the reviewers for acknowledging and summarizing the strengths of this study.

      Weaknesses:

      Major weaknesses of the manuscript:

      • The Authors should be more cautious in concluding that the PiCo is critical for the generation of swallowing itself. It remains to demonstrate that PiCo is necessary for swallowing and laryngeal function in a more physiological situation, i.e. swallow of a bolus of water or food. It should be interesting to investigate the effects of silencing PiCo cholinergic/glutamatergic neurons on normal swallowing. In this perspective, the title should be slightly modified to avoid "swallow pattern generation" (e.g. Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production).

      Thank you for pointing out that this manuscript suggest PiCo is necessary for swallow generation. We agree further interventions to silence specifically PiCo ChAt/Vglut2 neurons will be necessary to investigate this claim. Which we have begun to evaluate for a future study by developing a novel as yet unpublished approach. We have altered language throughout the text to limit the perception that PiCo is the swallow pattern generator. We have also changed the title to say: Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production

      • The duration of swallows evoked by optogenetic stimulation of PiCo is considerably shorter in comparison with the duration of swallows evoked by a physiological stimulus (water). This makes it hard to compare the timing and the pattern of motor response in CIH-exposed mice. In Figure 1, the trace time scale should be the same for water-triggered and PiCo-triggered swallows. In addition, it is not clear if exposure to CIH alters the ongoing respiratory activity. Is the respiratory rhythm altered by hypoxia? If a disturbed or irregular pattern of breathing is already present in CIH-exposed mice, could this alteration interfere with the swallowing behaviour?

      Thank you. We have changed the time scale so that all representative traces are on the same time scale.

      We explained in the original paper (Huff et al 2023) that the significant decrease in PiCo-evoked swallow duration compared to water evoked is likely due to the absence of oral/upper airway feedback. We are not making comparisons of the effects of CIH on swallow motor pattern between water-evoked and PiCo-evoked. Rather, we are only characterizing the effects of CIH on the swallow motor pattern in PiCo-evoked swallows. The purpose of Figure 1A is to show that the rostocaudal submental-laryngeal sequence in water-evoked swallows is preserved in “canonical” PiCo-evoked swallow like is shown in the original study. While we did not measure the effects of CIH on breathing and the respiratory pattern in this study, it has been established, by others, that CIH causes respiratory muscle weakness, impaired motor control of the upper airway and variable respiratory rhythm and rhythm generation. However, when characterizing the timing of swallow in relation to inspiration (Figure 1 Figure Supplement 1) and the reset of the respiratory rhythm (Figure 3 figure supplement 1) and by observationally comparing these results with mice exposed to room air (Huff et al 2023) we do not observe any obvious differences in swallow-breathing coordination. However, a separate study in wild-type mice focusing on a characterization of swallowing via water after CIH would be better suited to achieve a better understanding of the physiological changes of swallowing after CIH. We would like to point out that this has shown in Huff et al 2022 that altering respiratory rate/pattern via activation of various preBötzinger Complex neurons does not change swallow behavior. Except in the case of Dbx1 PreBötC neuron activation, which was independent of CIH. Increasing or decreasing respiratory rate via activation of PreBötC Vgat and SST neurons did not change the swallow pattern rather it changed the timing of when swallows occurred. It has been reported before by others that swallow has a hierarchical control over breathing and has the ability to shut breathing down. We believe that the swallowing behavior is independent of respiratory pattern and alterations in breathing pattern does not necessarily affect the swallow motor pattern rather could affect the swallow timing.

      Reviewer #2 (Recommendations For The Authors):

      Abstract

      Lines 37-41 "Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly the generation of swallow motor pattern was significantly disturbed."

      It should be better:

      "Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly triggers variable swallow motor patterns".

      Thank you, this has been changed

      Lines 41-43 "This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the gating of postinspiratory and swallow activity but also play important roles in the generation of swallow motor pattern." I suggest removing any language claiming PiCo is swallow gating and change "generation" in "modulation"

      "This suggests that glutamatergic-cholinergic neurons in PiCo are not only critical in regulating swallow-breathing coordination but also play important roles in the modulation of swallow motor pattern."

      Thank you, this has been changed

      Introduction:

      Line 88-90: Actually, in Huff et al. 2023 it is said "PiCo acts as an interface between the swallow pattern generator and the preBötzinger complex to coordinate swallow and breathing". Please, change accordingly. Please, remove Toor et al., 2019 since their conclusions are quite different.

      Line 100-101: Please, change the sentence according to the comments reported above.

      Thank you, this has been changed

      Results:

      Lines 104-105: Did you mean: "We confirmed that optogenetic stimulation of PiCo neurons in ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH triggers swallow and laryngeal activation similar to the control mice exposed to room air (Huff et al., 2023)." Otherwise, the sentence is not clear.

      Thank you, this has been changed

      Lines 129-130: This finding is not surprising since similar results have been reported in Huff et al. 2023.

      Thank you, we wanted to confirm that CIH did not alter this characteristic, which it did not. We believe that it is important to include this as it is a criterion for characterizing laryngeal activation.

      Lines 219: The number of water swallows is considerably lower than stimulation-evoked swallows. Why?

      We inject water into the mouth three times. Typically, there is one swallow in response to each water injection. Pico is stimulated 25 times at each duration. If we were to stimulate swallow with water as many times as optogenetic stimulation there would be an adaptive response to the water stimulation and the mouse would not respond. This does not seem to be the case with PiCo stimulation. Simple answer is, there are many more PiCo stimulations than water stimulation.

      Lines 228-232: "PiCo-triggered swallows are characterized by a significant decrease in duration compared to swallows evoked by water in ChATcre:Ai32 mice (265 {plus minus} 132ms vs 144 {plus minus} 101ms; paired t-test: p= 0.0001, t= 5.21, df= 8), Vglut2cre:Ai32 mice (308 {plus minus} 184ms vs 125 {plus minus} 44ms; paired t-test: p= 0.0003, t= 6.46, df= 7), and ChATcre:Vglut2FlpO:ChR2 mice (230 {plus minus} 67ms vs 130 {plus minus} 35ms; paired t-test: p= 0.0005, t= 5.62, df= 8) exposed to CIH (Table S1).".

      Thank you, this has been changed

      Line 252 and 254: remove SEM.

      Thank you, this has been changed

      Discussion

      Line 267: ...(Figure 1Bi), while 28% of PiCo-triggered swallows...

      Thank you, this has been changed

      Lines 283-290: "Thus, CIH does not alter PiCo's ability to coordinate the timing for swallowing and breathing. Rather, our data reveals that CIH disrupts the swallow motor sequence likely due to changes in the interaction between PiCo and the SPG, presumably the cNTS.

      While it has previously been demonstrated that PiCo is an important region in swallow-breathing coordination (Huff et al., 2023), previous studies did not demonstrate that PiCo is involved in swallow pattern generation itself. Thus, here we show for the first time that CIH resulted in the instability of the swallow motor pattern activated by stimulating PiCo, suggesting PiCo plays a role in its modulation.".

      Thank you, this has been changed

      Could the observed effects be due to a non-specific effect of hypoxia on neuronal excitability? In addition, it should be considered that PiCo-triggered swallows lack the behavioural setting of water-evoked swallows and do not activate the sensory component of the SPG to the same extent as the water-evoked swallows.

      Yes, this is very possible. We stated in our first manuscript that the decrease in PiCo-triggered swallow duration, as compared to water-triggered swallow duration, is likely because oral sensory components are not being activated to the same extent (Huff et al. 2023). Since we do not directly measure neuronal excitability, it is not known (in this study) whether CIH causes changes in the excitability to swallow related areas. However, others have shown increased excitability and activity of Vglut2 neurons after CIH exposure (Kline et al 2007,2010), and we have shown e.g. changes in the excitability of preBötC neurons (Garcia et al. 2016, 2017).

      Lines 293-300: The sentence is not clear. Is there any evidence indicating that glutamatergic neurons are differently affected by hypoxia than cholinergic neurons?

      Thank you, these sentences have been changed to increase clarity. The section now reads: There was no statistical difference in the probability of triggering a swallow during optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32 and ChATcre:Vglut2FlpO:ChR2 neurons in mice exposed to room air (Huff et al 2023). However, when exposed to CIH, ChATcre:Ai32 and Vglut2:Ai32 mice have a lower probability of triggering a swallow -- in some mice swallow was never triggered via PiCo activation, while water-triggered swallows remained – compared to the ChATcre:Vglut2FlpO:ChR2 mice. While it is possible that portions of the presumed SPG remain less affected by CIH, which could offset these instabilities to produce functional swallows, our data suggest that PiCo targets microcircuits within the SPG that are highly affected by CIH. The NTS is a primary first site for upper airway and swallow-related sensory termination in the brainstem (Jean, 1984). CIH induces changes to the cardio-respiratory Vglut2 neurons, resulting in an increase in cNTS neuronal activity (Kline, 2010; Kline et al., 2007), as well as changes to preBötzinger neurons (Garcia et al., 2017; Garcia et al., 2016) and ChAT neurons in the basal forebrain (Tang et al., 2020). It is reasonable to suggests that CIH has differential effects on neurons that only express ChATcre and Vglut2cre versus the PiCo-specific interneurons that co-express ChATcre and Vglut2FlpO, emphasizing the importance of targeting and manipulating these PiCo-specific interneurons.”

      Lines 372-374: "Here we show that PiCo, a neuronal network which is critical for the generation of postinspiratory activity (Andersen et al. 2016) and implicated in the coordination of swallowing and breathing (Huff et al., 2023), is severely affected by CIH.".

      Thank you, this has been changed.

      Methods

      Line 398: Did you mean Slc17a6-IRES2-FlpO-D?

      Thank you, this has been changed.

      Line 399: were.

      Thank you, this has been changed.

      Line 403: ... expressing both ChAT and Vglut2 and will be reported as ChATcre:Vglut2FlpO.

      Thank you, this has been changed.

      Line 437: Mice of the ChATcre:Ai32, Vglut2cre:Ai32 and ChATcre:Vglut2FlpO:ChR2 lines were kept in collective cages with food and water ad libitum placed inside custom-built chambers.

      Thank you, this has been changed.

      Line 479: (Figure 6a in Huff et al., 2022).

      Line 497: What does Fig 7 refer to?

      This should say Figure 1- figure supplement 2, This has been changed

      Lines 501-506: "First, swallow was stimulated by injecting 0.1cc of water into the mouth using a 1.0 cc syringe connected to a polyethylene tube. Second, 25 pulses of each 40ms, 80ms, 120ms, 160ms and 200ms continuous TTL laser stimulation at PiCo was repeated, at random, throughout the respiratory cycle. The lasers were each set to 0.75mW and triggered using Spike2 software (Cambridge Electronic Design, Cambridge, UK). These stimulation protocols were performed in all ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2." .

      Thank you, this has been changed.

      Line 526 and 540: (Fig.6 in Huff et al., 2022) and (Fig.6d in Huff et al., 2022).

      Thank you, this has been fixed

      Line 594: Figure 5 doesn't exist. Please, change the sentence.

      Thank you, this has been fixed

      Line 595 and 609: The reference Kirkcaldie et al. 2012 is referred to the neocortex and doesn't seem appropriate. Please, quote the atlas of Paxinos and Franklin.

      Thank you, this has been changed.

      Reference:

      Please, correct throughout the text editing of references by removing e.g J.M. or A. or David D. and so on. Only surnames should be mentioned.

      Thank you, this has been changed.

      Figures:

      Figure 1. A and B as well as the purple arrow are lacking. In addition, optogenetic stimulation is applied during different periods of inspiratory activity and this could impact the swallow motor pattern. In Bv, Non-LAR seems very similar to LAR. In panel E, please add the number of animals.

      Thank you, this has been fixed.

      We used the same optogenetic protocols in the original paper (Huff et al. 2023) and did not observe any changes to the swallow motor patter in relation to the time PiCo was stimulated. The only phase dependent response seen in both control and CIH is when PiCo Is stimulated during inspiration and a swallow is triggered, inspiration will be inhibited. Therefore, we do not believe variability in swallow motor pattern is dependent on the phase of breathing in which PiCo is stimulated.

      Biv LAR has a pause in EMG activity before the swallow begins (red arrow pointing to the pause). While Bv Non-LAR does not have this pause, rather the two behaviors converge (red arrow). In order for something to be considered an LAR the pause must be present which is why we separated these two motor patterns.

      Figure 1 - Figure Supplement 1. Why do the Authors call the lines "histograms"?

      Thank you, this has been fixed. This is a line graph of swallow frequency in relation to inspiration.

      Tables:

      In tables, data are provided as means and standard deviation. Please, specify this in the Method section.

      Thank you, the following is listed in the methods section: “All data are expressed as mean ± standard deviation (SD), unless otherwise noted.”

      Reviewer #3 (Public Review):

      In the present study, the authors investigated the effects of CIH on the swallowing and breathing responses to PICO stimulation. Their conclusion is that glutamatergic-cholinergic neurons from PICO are not only critical for the gating of post-inspiratory and swallow activity, but also play important roles in the generation of swallow motor patterns. There are several aspects that deserve the authors' attention and comments, mainly related to the study´s conclusions.

      • The authors refer to PICO as the generator of post-inspiratory rhythm. However, evidence points to this region as a modulator of post-inspiratory activity rather than a rhythmogenic site (Toor et al., 2019 - 10.1523/JNEUROSCI.0502-19.2019; Oliveira et al., 2021 - 10.1016/j.neuroscience.2021.09.015). For example, sustained activation of PICO for 10 s barely affected the vagus or laryngeal post-inspiratory activity (Huff et al., 2023 - 10.7554/eLife.86103).

      Yes, we did refer to PiCo as the postinspiratory rhythm generator as defined as Anderson et al. 2016. We base this statement on the following criteria and experiments: In Anderson et al. 2016, we demonstrate that PiCo can be isolated in vitro, that PiCo neurons are activated in phase with postinspiration, and that they are inhibited during inspiration by preBötC neurons via GABAergic mechanisms and not glycinergic mechanisms. We also demonstrate that optogenetically stimulating cholinergic neurons in the PiCo area resets the inspiratory rhythm both in vivo and in vitro. We also show that PiCo when isolated in transverse slices is autorhythmic and that PiCo, like the preBötC in transverse slices can generate respiratory rhythmic activity in vitro and independent of the preBötC. We also demonstrate that PiCo neurons are an order of magnitude more sensitive to opioids (DAMGO) than the preBötC and that local injections of DAMGO into the PiCo area in vivo abolishes postinspiration, and also abolishes the phase delay of the respiratory rhythm. None of these specific rhythmogenic properties have been studied by the Toor study or the Oliveira et al study. Hence, we do not understand why the reviewer cites these studies as evidence for modulation as opposed to rhythmogenic properties. The fact that PiCo is rhythmogenic should not be considered as an “exclusive property”. Specifically, this does not mean that PiCo is also “modulating” the swallow-breathing coordination as we have demonstrated more specifically in the Huff et al study. In the same sentence we also referred to the PreBӧtzinger complex as the inspiratory rhythm generator as defined by Smith et al 1991, and it seems that the reviewer did not object to this reference. But we would like to point out that the same criteria were used to define the preBötzinger complex as we used for PiCo, except that PiCo neurons are better defined than preBötzinger complex neurons. Dbx1 neurons are often used to characterize the PreBötC, but these neurons form a rostrocaudal and ventrodorsal column which involves also glia cells and transcends the preBötC. Glutamatergic neurons are everywhere, and so are Somatostatin or Neurokinin neurons. Moreover, the 1991 study was only performed in vitro, and did not include a histochemical analysis. We would also like to point out that the present manuscript is investigating the role of PiCo in swallow and laryngeal behaviors, and not specifically postinspiration. Thus, we are not entirely sure how this comment relates to this manuscript.

      • The optogenetic activation of glutamatergic and cholinergic neurons from PICO evoked submental and laryngeal responses, and CIH changed these motor responses. Therefore, the authors proposed that PICO is directly involved in swallow pattern generation and that CIH disrupts the connection between PICO and SPG (swallow pattern generator). However, the experiments of the present study did not provide evidence about connections between these two regions nor their possible disruption after CIH, or even whether PICO is part of SPG.

      We have edited the text to suggest PiCo modulates swallow motor sequence in addition to the coordination of swallow and breathing. We have also added that further experiments will be necessary to further investigate the connections between PiCo and SPG. But, unfortunately, compared to PiCo, the SPG is much less defined. As already stated above, it cannot be expected that a single study can address all possible open questions. Clearly, more work needs to be done outside of this study to answer all of these questions, which makes this an exciting area of research.

      • CIH affects several brainstem regions which might contribute to generating abnormal motor responses to PICO stimulation. For example, Bautista et al. (1995 - 10.1152/japplphysiol.01356.2011) documented that intermittent hypoxia induces changes in the activity of laryngeal motoneurons by neural plasticity mechanisms involving serotonin.

      Yes, we thank the reviewer for this comment and we agree that CIH effects multiple brainstem regions. We stated in the manuscript that we are measuring changes in two muscle complexes which spread among three motor neuron pools: hypoglossal nucleus, trigeminal nucleus, and nucleus ambiguus. We have added a discussion on laryngeal activity in the presence of acute bouts of extreme hypoxia, acute intermittent hypoxia, as well as chronic intermittent hypoxia.

      • To support the hypothesis that PICO is directly involved in swallow pattern generation the authors should perform the inhibition of Vglut2-ChAT neurons from PICO and then evoke swallow motor responses. If swallow is abolished when the neurons from this region are inhibited, it would indicate that PICO is crucial to generate this behavior.

      Thank you. We would like to clarify: “involvement” does not mean “necessary for”. Confusing this difference has caused much confusion and debate in the field. Just as an example: We can argue in great length whether inhibition is necessary for respiratory rhythmogenesis in vivo, but I think there is no question that inhibition is involved in respiratory rhythmogenesis in vivo. But to avoid any confusion, we have changed the text to suggest PiCo is involved in the modulation of swallow motor sequence. We agree various additional inhibition experiments are necessary to explain if PiCo is also a necessary component of the SPG, but this is not the question we have set out to address in this study. To specifically target PiCo we must not only inhibit Vglut2 neurons but neurons that express both ChAT and Vglut2. To our knowledge there are no inhibitory DREADD or opsin techniques for cre/FlpO to specifically target these neurons. As stated above, non-experts in the field do not appreciate this technical nuance. However, we have begun to develop novel techniques necessary to inhibit these specific neurons which will be published in the future.

      • In almost all the data presented, the authors observed different patterns of changes in the motor submental and laryngeal responses to PICO activation, including that animals submitted to CIH (6%) presented a "normal" motor response. However, the authors did not discuss the possible explanations and functional implications of this variability.

      We agree that it would be helpful to understand the functional implications of these alterations in swallow-related motor activation, however since we are not using any tools to measure or evaluate functional activity it would be inappropriate to make suggestions of this type without any data to back up our conclusion. This is why we have not included any functional implications. We have added the following to the manuscript. “While fine wire EMG studies are an excellent evaluation tool to observe temporal motor pattern of sequential swallow related muscles; it must be combined with tools such as videofluoroscopic swallow study (VFSS) and/or high resolution manometry (HRM) in order to characterize the functional significance of these alterations to the swallow motor pattern shown in this study (Park et al., 2017). Since the preparation in this study utilizes only fine wire EMGs we are not able to evaluate or comment on the functional significance of the variable swallow motor patterns.”

      • In Figure 4, the authors need to present low magnification sections showing the PICO transfected neurons as well as the absence of transfection in the ventral respiratory column. The authors could also check the scale since the cAmb seems very small.

      Thank you, added different histology images to have a more comparable cAmb. As well as added lower magnification to show absence of transfection in the VRC.

      • Finally, the title does not reflect the study. The present study did not demonstrate that PICO is a swallow pattern generator.

      We have also changed the title to say: Chronic Intermittent Hypoxia reveals the role of the Postinspiratory Complex in the mediation of normal swallow production

    1. Author Response

      eLife assessment

      This valuable study examines the activity and function of dorsomedial striatal neurons in estimating time. The authors examine striatal activity as a function of time and the impact of optogenetic striatal manipulation on the animal's ability to estimate a time interval. However, the task's design and methodology present several confounding factors that mean the evidence in support of the authors' claims is incomplete. With these limitations addressed, the work would be of interest to neuroscientists examining how striatum contributes to behavior.

      We appreciate the editorial process and are grateful for the thorough, detailed, and constructive reviews. We will respond in detail to every point raised by reviewers in a full revision.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this work, the authors examine the activity and function of D1 and D2 MSNs in dorsomedial striatum (DMS) during an interval timing task. In this task, animals must first nose poke into a cued port on the left or right; if not rewarded after 6 seconds, they must switch to the other port. Critically, this task thus requires animals to estimate if at least 6 seconds have passed after the first nose poke - this is the key aspect of the task focused on here. After verifying that animals reliably estimate the passage of 6 seconds by leaving on average after 9 seconds, the authors examine striatal activity during this interval. They report that D1-MSNs tend to decrease activity, while D2-MSNs increase activity, throughout this interval. They suggest that this activity follows a drift-diffusion model, in which activity increases (or decreases) to a threshold after which a decision (to leave) is made. The authors next report that optogenetically inhibiting D1 or D2 MSNs, or pharmacologically blocking D1 and D2 receptors, increased the average wait time of the animals to 10 seconds on average. This suggests that both D1 and D2 neurons contribute to the estimate of time, with a decrease in their activity corresponding to a decrease in the rate of 'drift' in their drift-diffusion model. Lastly, the authors examine MSN activity while pharmacologically inhibiting D1 or D2 receptors. The authors observe most recorded MSNs neurons decrease their activity over the interval, with the rate decreasing with D1/D2 receptor inhibition.

      Major strengths:

      The study employs a wide range of techniques - including animal behavioral training, electrophysiology, optogenetic manipulation, pharmacological manipulations, and computational modeling. The behavioral task used by the authors is quite interesting and a nice way to probe interval timing in rodents. The question posed by the authors - how striatal activity contributes to interval timing - is of importance to the field and has been the focus of many studies and labs; thus, this paper can meaningfully contribute to that conversation. The data within the paper is presented very clearly, and the authors have done a nice job presenting the data in a transparent manner (e.g., showing individual cells and animals). Overall, the manuscript is relatively easy to read and clear, with sufficient detail given in most places regarding the experimental paradigm or analyses used.

      We are glad our main points came through to the reviewer.

      Major weaknesses:

      I perceive two major weaknesses. The first is the impact or contextualization of their results in terms of the results of the field more broadly. More specifically, it was not clear to me how the authors are interpreting the striatal activity in the context of what others have observed during interval timing tasks. In other words - what was the hypothesis going into this experiment? Does observing increasing/decreasing activity in D2 versus D1 support one model of interval timing over another, or does it further support a more specific idea of how DMS contributes to interval timing? Or was the main question that we didn't know if D2 or D1 neurons had differential activity during interval timing?

      Our hypothesis, based on prior behavioral work from our group describing that blocking striatal D1 and D2 dopamine receptors impaired interval timing (De Corte et al., 2019; Stutt et al., 2023) was D1 and D2 MSNs would have similar patterns of activity during interval timing. We will clarify this in the revision.

      In the second, I felt that some of the conclusions suggested by the authors don't seem entirely supported by the data they present, or the data presented suggests a slightly more complicated story. Below I provide additional detail on some of these instances.

      Regarding the results presented in Figures 2 and 3:

      I am not sure the PC analysis adds much to the interpretation, and potentially unnecessarily complicates things. In particular, running PCA on a matrix of noisy data that is smoothed with a Gaussian will often return PCs similar to what is observed by the authors, with the first PC being a line up/down, the 2nd PC being a parabola that is up/down, etc. Thus, I'm not sure that there is much to be interpreted by the specific shape of the PCs here.

      These are insightful points. We will clarify details of our PCA analysis in the revision. We include PCA for comparisons with our past work (Emmons et al., 2017, 2021; Bruce et al., 2021). Second, it is true that these components can be observed in smoothed data; however, when we generated random data using identical parameters, we found that the variance explained by PC1 was not commonly observed in random data. Third, our goal is to compare between D1 and D2 MSNs, not to interpret the PCs. We will make this explicit in our revision.

      I think an alternative analysis that might be both easier and more informative is to compute the slope of the activity of each neuron across the 6 seconds. This would allow the authors to quantify how many neurons increase or decrease their activity much like what is shown in Figure 2.

      This is exactly the analysis shown in Figure 3D. We will clarify this in the revision.

      Relatedly, it seems that the data shown in Figure 2D doesn't support the authors' main claim regarding D2/D1 MSNs increasing/decreasing their activity, as the trial-by-trial slope is near 0 for both cell types.

      This likely refers to Figure 3D. In the revision, we will clarify this analysis, add error bars, and note that our goal was to differentiate D2 and D1 MSNs in this analysis. We will also add to this analysis to better make the poin that D2 and D1 MSNs are distinct, contrary to our hypothesis.

      Regarding the results in Figure 4:

      The authors suggest that their data is consistent with a drift-diffusion model. However, it is unclear how well the output from the model fits the activity from neurons the authors recorded. Relatedly, it is unclear how the parameters were chosen for the D1/D2 versions of this model. I think that an alternate approach that would answer these questions is to fit the model to each cell, and then examine the best-fit parameters, as well as the ability of the model to predict activity on trials held out from the fitting process. This would provide a more rigorous method to identify the best parameters and would directly quantify how well the model captures the data.

      This is a great point. Our goal was to fit behavioral activity, not neuronal activity; in our revision, we will do exactly what the reviewer suggests and present data of fits to neuronal activity.

      Relatedly, looking at the raw data in Figure 2, it seems that many neurons either fire at the beginning or end of the interval, with more neurons firing at the end, and more firing at the beginning, for D2/D1 neurons respectively. Thus, it's not clear to me whether the drift-diffusion model is a good model of activity. Or, perhaps the model is supposed to be related to the aggregate activity of all D1/D2 neurons? (If so, this should be made more explicit. The comment about fitting the model directly to the data also still stands).

      Our model was inspired by the averages in Figure 2G&H; however, we will fit drift-diffusion models to individual neurons exactly as the reviewer suggests.

      Further, it's unclear to me how, or why, the authors changed the specific parameters they used to model the optogenetic manipulation. Were these parameters chosen because they fit the manipulation data? This I don't think is in itself an issue, but perhaps should be clearly stated, because otherwise it sounds a bit odd given the parameter changes are so specific. It is also not clear to me why the noise in the diffusion process would be expected to change with increased inhibition.

      We will clarify this in our revision, as this is an important point.

      Regarding the results in Figure 6:

      My comments regarding the interpretation of PCs in Figure 2 apply here as well. In addition, I am not sure that examining PC2 adds much here, given that the authors didn't examine such nonlinear changes earlier in the paper.

      We agree – we will remove PC2 in Figure 6 and Figure S9 and add context to the PC analysis noting that we are including for 1) comparisons with past work, 2) our observed variance is much higher than observed in random/smoothed data, and 3) we are primarily interested in comparisons between conditions rather than interpreting the components.

      A larger concern though that seems potentially at odds with the authors' interpretation is that there seems to be very little change in the firing pattern after D1 or D2 blockade. I see that in Figure 6F the authors suggest that many cells slope down (and thus, presumably, they are recoding more D1 cells), and that this change in slope is decreased, but this effect is not apparent in Figure 6C, and Figure 6B shows an example of a cell that seems to fire in the opposite direction (increase activity). I think it would help to show some (more) individual examples that demonstrate the summary effect shown by the authors, and perhaps the authors can comment on the robustness (or the variability) of this result.

      We agree, although we note D1/D2 blockade changes PC1, which explains the most variance in MSN activity. In the revision, we will show more examples and comment on the robustness of PC1, exactly as the reviewer recommends. The changes in PC1 are rather consistent.

      Also, it seems that if the authors want to claim that this manipulation lowers the drift rate. I think to make this claim, they could fit the DDM model and examine whether D is significantly lower.

      This is a great idea – we will try to do this.

      Regarding the results in Figure 7:

      I am overall a bit confused about what the authors are trying to claim here. In Figure 7, they present data suggesting that D1 or D2 blockade disrupts their ability to decode time in the interval of interest (0-6 seconds). However, in the final paragraph of the results, the authors seem to say that by using another technique, they didn't see any significant change in decoding accuracy after D1 or D2 blockade. What do the authors make of this?

      We were not clear. The second classifier was predicting response time. This was confusing and we will remove it.

      Impact:

      The task and data presented by the authors are very intriguing, and there are many groups interested in how striatal activity contributes to the neural perception of time. The authors perform a wide variety of experiments and analysis to examine how DMS activity influences time perception during an interval-timing task, allowing for insight into this process. However, the significance of the key finding - that D2/D1 activity increases/ decreases with time - remains somewhat ambiguous to me. This arises from a lack of clarity regarding the initial hypothesis and the implications of this finding for advancing our understanding of striatal functions.

      Again, we are grateful for the constructive and very insightful comments that we look forward to clarifying in a full revision.

      Reviewer #2 (Public Review):

      Summary:

      In the present study, the authors investigated the neural coding mechanisms for D1- and D2-expressing striatal direct and indirect pathway MSNs in interval timing by using multiple strategies. They concluded that D2-MSNs and D1-MSNs have opposing temporal dynamics yet disrupting either type produced similar effects on behavior, indicating the complementary roles of D1- and D2- MSNs in cognitive processing. However, the data was incomplete to fully support this major finding. One major reason is the heterogenetic responses within the D1-or D2-MSN populations. In addition, there are additional concerns about the statistical methods used. For example, the majority of the statistical tests are based on the number of neurons, but not the number of mice. It appears that the statistical difference was due to the large sample size they used (n=32 D2-MSNs and n=41 D1-MSNs), but different neurons recorded in the same mouse cannot be treated as independent samples; they should use independent mouse-based statistical analysis.

      Strengths:

      The authors used multiple approaches including awake mice behavior training, optogenetic-assistant cell-type specific recording, optogenetic or pharmacological manipulation, neural computation, and modeling to study neuronal coding for interval timing.

      We appreciate the reviewer’s careful read recognizing the breadth of our approach.

      Weaknesses:

      (1) More detailed behavior results should be shown, including the rate of the success switches, and how long it takes to wait in the second nose poke to get a reward. For line 512 and the Figure 1 legend, the reviewer is not clear about the reward delivery. The methods appear to state that the mouse had to wait for 18s, then make nose pokes at the second port to get the reward. What happens if the mouse made the second nose poke before 18 seconds, but then exited? Would the mouse still get the reward at 18 seconds? Similarly, what happens if the mice made the third or more nosepokes within 18 seconds? It is important to clarify because, according to the method described, if the mice made a second nose poke before 18 seconds, this already counted as the mouse making the "switch." Lastly, what if the mice exited before 6s in the first nosepoke?

      We agree. These were presented in detail in our prior work (Bruce et al., 2021; Larson et al., 2022; and Weber et al., 2023) and work from others (Balci et al 2008; Tosun et al., 2016. However, we will work on a detailed behavioral schematic in the revision and move supplementary behavioral data in Figure S1 to the main manuscript.

      (2) There are a lot of time parameters in this behavior task, the description of those time parameters is mentioned in several parts, in the figure legend, supplementary figure legend, and methods, but was not defined clearly in the main text. It is inconvenient, sometimes, confusing for the readers. The authors should make a schematic diagram to illustrate the major parameters and describe them clearly in the main text.

      This is a great suggestion – we will do this – and clarify in the above schematic.

      (3) In Line 508, the reviewer suggests the authors pay attention to those trials without "switch". It would be valuable to compare the MSN activity between those trials with or without a "switch".

      We analyzed MSN activity on errors in detail Figure 6 of Bruce et al., 2021. These errors are infrequent and inconsistent – we will discuss this in the revision.

      (4) The definition of interval is not very clear. It appears that the authors used a 6-second interval in analyzing the data in Figure 2 and Figure 3. But from my understanding, the interval should be the time from time "0" to the "switch", when the mice start to exit from the first nose poke.

      We agree. The switch time can be vastly different on some trials, making it challenging to compare different lengths and slopes. However, we will clarify the interval as noted above, and we have a few ideas on how to do the analysis the reviewer suggests.

      (5) For Figure 2 C-F, the authors only recorded 32 D2-MSNs in 4 mice, and 41 D1-MSNs in 5 mice. The sample size is too small compared to the sample size usually used in the field. In addition to the small sample size, the single-cell activity exhibited heterogeneity, which created potential issues. For both D1 and D2 MSNs, the authors tried to make conclusions on the "trend" of increasing in D2-MSNs and decreasing in D1-MSNs populations, respectively, during the interval. However, such a conclusion is not sufficiently supported by the data presented. It looks like the single-cell activity patterns can be separated into groups: one is a decreasing activity group, one is an increasing activity group and a small group for on and off response. Because of the small sample size, the author should pay attention to the variance across different mice (which needs to be clearly presented in the manuscript), instead of pooling data together and analyzing the mean activity.

      We were not clear – we did this analysis exactly the reviewer suggested. We are not pooling any data – instead – as we state on line 620 – we are using linear-mixed effects models to account for mouse-specific and neuron-specific variance. This approach was developed with our statistics core for exactly the reasons the reviewer suggested. Furthermore, we will add to this analysis demonstrative that it is resistant to outliers. Finally, we will include measures of effect size noting that it is a medium to large effect.

      It’s a helpful idea to plot data individually by mice, and we will do so in the revision.

      (6) For Figure 2, from the activity in E and F, it seems that the activity already rose before the trial started, the authors should add some longer baseline data before time zero for clarification and comparison, and show the timing of the actual start of the activity with the corresponding behavior. What behavior states are the mice in when initiating the activity?

      We can certainly include a longer baseline. We can clarify in the revision that mice initiate trials at the rear nosepoke, and this is what initiates the task cues and the temporal interval.

      (7) The authors were focused on the "switch " behavior in the task, but they used an arbitrary 6s time window to analyze the activity, and tried to correlate the decreasing or increasing activities of MSNs to the neural coding for time. A better way to analyze is to sort the activity according to the "switch" time, from short to long intervals. This way, the authors could see and analyze whether the activity of D1 or D2 MSNs really codes for the different length of interval, instead of finding a correlation between average activity trends and the arbitrary 6s time window.

      This is a great idea, and we have some ideas on how to adapt the GLM analysis to perform this analysis.

      Reviewer #3 (Public Review):

      Summary:

      The cognitive striatum, also known as the dorsomedial striatum, receives input from brain regions involved in high-level cognition and plays a crucial role in processing cognitive information. However, despite its importance, the extent to which different projection pathways of the striatum contribute to this information processing remains unclear. In this paper, Bruce et al. conducted a study using a range of causal and correlational techniques to investigate how these pathways collectively contribute to interval timing in mice. Their results were consistent with previous research, showing that the direct and indirect striatal pathways perform opposing roles in processing elapsed time. Based on their findings, the authors proposed a revised computational model in which two separate accumulators track evidence for elapsed time in opposing directions. These results have significant implications for understanding the neural mechanisms underlying cognitive impairment in neurological and psychiatric disorders, as disruptions in the balance between direct and indirect pathway activity are commonly observed in such conditions.

      Strengths:

      The authors employed a well-established approach to study interval timing and employed optogenetic tagging to observe the behavior of specific cell types in the striatum. Additionally, the authors utilized two complementary techniques to assess the impact of manipulating the activity of these pathways on behavior. Finally, the authors utilized their experimental findings to enhance the theoretical comprehension of interval timing using a computational model.

      We are grateful for the reviewer’s consideration of our work and recognizing the strengths of our approach.

      Weaknesses:

      The behavioral task used in this study is best suited for investigating elapsed time perception, rather than interval timing. Timing bisection tasks are often employed to study interval timing in humans and animals.

      This is certainly valid, and we will include these points in the revision.

      The main results from unit recording (opposing slopes of D1/D2 cell firing rate, as shown in Figure 3D) appear to be very sensitive to a couple of outlier cells, and the predictive power of ensemble recording seems to be only slightly above chance levels.

      We are glad that the reviewer raised this. We will add to this analysis demonstrative that it is resistant to outliers. Finally, we will include measures of effect size noting that it is a medium to large effect. Thus, it is significantly above chance, and rather reliable, and supported by our PCA results in Figure 3C.

      In the optogenetic experiment, the laser was kept on for too long (18 seconds) at high power (12 mW). This has been shown to cause adverse effects on population activity (for example, through heating the tissue) that are not necessarily related to their function during the task epochs.

      Again, this is an important point. We are well aware of heating effects with optogenetics. For the exact reasons noted by the reviewer, we had opsin-negative controls –when the laser was on the exact same time course and parameters – in Figure S5. There were no behavioral effects in controls with identical heating and other effects of the laser. Furthermore, these effects are similar to pharmacological effects in this manuscript and in our prior work (De Corte et al., 2019; Stutt et al., 2023). We will better highlight these issues in the revision.

      Given the systemic delivery of pharmacological interventions, it is difficult to conclude that the effects are specific to the dorsomedial striatum. Future studies should use the local infusion of drugs into the dorsomedial striatum.

      This is a great point - we did exactly this experiment in De Corte et al, 2019 with local drug infusions. This earlier study was the departure point for this experiment, although it is challenging to combine focal pharmacological inactivation with recordings in mice (we have extensive experience with this in rats in Parker et al., 2015 and Parker et al, 2015). Furthermore, we have similar local optogenetics effects in this paper. We will include these points in the revised manuscript.

    1. Author Response

      We would like to thank the three reviewers and the eLife editors for their careful analysis of our work, and for their constructive feedback and positive evaluation. We are especially pleased to see echoed in the reviews and in the editorial assessment that our results underline the importance of taking into account glycosylation in viral evolution, immune surveillance, and in the interpretation of complex epistatic interactions. With this provisional response we would like to communicate to the editors, reviewers and to the eLife readership our intention to integrate in the paper a detailed description of the GM1os and GM2os binding site on the RBD with details on the computational approach we used. We agree that this addition will strengthen the work by making it more self-contained. Also, as suggested by the editorial team, we will provide a comprehensive discussion of published data, as a firmer foundation for our findings.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this study, the authors develop a useful strategy for fluorophore-tagging endogenous proteins in human induced pluripotent stem cells (iPSCs) using a split mNeonGreen approach. Experimentally, the methods are solid, and the data presented support the author's conclusions. Overall, these methodologies should be useful to a wide audience of cell biologists who want to study protein localization and dynamics at endogenous levels in iPSCs.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors have applied an asymmetric split mNeonGreen2 (mNG2) system to human iPSCs. Integrating a constitutively expressed long fragment of mNG2 at the AAVS1 locus, allows other proteins to be tagged through the use of available ssODN donors. This removes the need to generate long AAV donors for tagging, thus greatly facilitating high-throughput tagging efforts. The authors then demonstrate the feasibility of the method by successfully tagging 9 markers expressed in iPSC at various, and one expressed upon endoderm differentiation. Several additional differentiation markers were also successfully tagged but not subsequently tested for expression/visibility. As one might expect for high-throughput tagging, a few proteins, while successfully tagged at the genomic level, failed to be visible. Finally, to demonstrate the utility of the tagged cells, the authors isolated clones with genes relevant to cytokinesis tagged, and together with an AI to enhance signal-to-noise ratios, monitored their localization over cell division.

      Strengths:

      Characterization of the mNG2 tagged parental iPSC line was well and carefully done including validation of a single integration, the presence of markers for continued pluripotency, selected offtarget analysis, and G-banding-based structural rearrangement detection.

      The ability to tag proteins with simple ssODNs in iPSC capable of multi-lineage differentiation will undoubtedly be useful for localization tracking and reporter line generation.

      Validation of clone genotypes was carefully performed and highlights the continued need for caution with regard to editing outcomes.

      Weaknesses:

      IF and flow cytometry figures lack quantification and information on replication. How consistent is the brightness and localization of the markers? How representative are the specific images? Stability is mentioned in the text but data on the stability of expression/brightness is not shown.

      To address this comment, we have quantified the mean fluorescence intensity of the tagged cell populations in Fig. S3B-T. This data correlates well with the expected expression levels of each gene relative to the others (Fig. S3A), apart from CDH1 and RACGAP1, which are described in the discussion.

      The images in Fig. 2 show tagged populations enriched by FACS so they are non-clonal and are representative of the diversity of the population of tagged cells.

      The images shown in Fig. 3 are representative of the clonal tagged populations. The stability of the tag was not quantified directly. However, the fluorescence intensity was very stable across cells in clonal populations. Since these populations were recovered from a single cell and grown for several weeks, this low variability across cells in a population suggests that these tags are stable.

      The localization of markers, while consistent with expectations, is not validated by a second technique such as antibody staining, and in many cases not even with Hoechst to show nuclear vs cytoplasmic.

      We find that the localization of each protein is distinct and consistent with previous studies. To address this comment, we have added an overlay of the green fluorescence images with brightfield images to better show the location of the tagged protein relative to the nuclei and cytoplasm. We have also added references to other studies that showed the same localization patterns for these proteins in iPSCs and other relevant cell lines.

      For the multi-germ layer differentiation validation, NCAM is also expressed by ectoderm, so isn't a good solo marker for mesoderm as it was used. Indeed, the kit used for the differentiation suggests Brachyury combined with either NCAM or CXCR4, not NCAM alone.

      Since Brachyury is the most common mesodermal marker, we first tested differentiation using anti-Brachyury antibodies, but they did not work well for flow cytometry. We then switched to anti-NCAM antibodies. Since we used a kit for directed differentiation of iPSCs into the mesodermal lineage, NCAM staining should still report for successful differentiation. In the context of mixed differentiation experiments (embryoid body formation or teratoma assay), NCAM would not differentiate between ectoderm and mesoderm. The parental cells (201B7) have also been edited at the AAVS1 locus in multiple other studies, with no effect on their differentiation potential.

      Only a single female parental line has been generated and characterized. It would have been useful to have several lines and both male and female to allow sex differences to be explored.

      We agree that it would be interesting (and important) to study differences in protein localization between female and male cell types, and from different individuals with different genetic backgrounds. We see our tool as opening a door for cell biology to move away from randomly collected, transformed, differentiated cell types to more directed comparative studies of distinct normal cell types. Since few studies of cell biological processes have been done in normal cells, a first step is to understand how processes compare in an isogenic background, then future studies can reveal how they compare with other individuals and sexes. We hope that either our group or others will continue to build similar lines so that these studies can be done.

      The AI-based signal-to-noise enhancement needs more details and testing. Such models can introduce strong assumptions and thus artefacts into the resolved data. Was the model trained on all markers or were multiple models trained on a single marker each? For example, if trained to enhance a single marker (or co-localized group of markers), it could introduce artefacts where it forces signal localization to those areas even for others. What happens if you feed in images with scrambled pixel locations, does it still say the structures are where the training data says they should be? What about markers with different localization from the training set? If you feed those in, does it force them to the location expected by the training data or does it retain their differential true localization and simply enhance the signal?

      The image restoration neural network was used as in Weigert et al., 2018. The model was trained independently for each marker. Each trained model was used only on the corresponding marker and with the same imaging conditions as the training images. From visual inspection, the fluorescent signal in the restored images was consistent with the signal in the raw images, both for interphase and mitotic cells. We found very few artefacts of the restoration (small bright or dark areas) that were discarded. We did not try to restore scrambled images or images of mismatched markers.

      Reviewer #2 (Public Review):

      Summary:

      The authors have generated human iPSC cells constitutively expressing the mNG21-10 and tested them by endogenous tagging multiple genes with mNG211 (several tagged iPS cell lines clones were isolated). With this tool, they have explored several weakly expressed cytokinesis genes and gained insights into how cytokinesis occurs.

      Strengths:

      Human iPSC cells are used.

      Weaknesses:

      i) The manuscript is extremely incremental, no improvements are present in the split-fluorescent (split-FP) protein variant used nor in the approach for endogenous tagging with split-FPs (both of them are already very well established and used in literature as well as in different cell types).

      Although split fluorescent proteins and the endogenous tagging methodology had been developed previously, their use in human stem cells has not been explored. We argue that human iPSCs are a valuable model for cell biologists to study cellular processes in differentiating cells in an isogenic context for proper comparison. Many normal human cell types have not been studied at the cellular/subcellular level, and this tool will enable those studies. Importantly, other existing cell lines required transformation to persist in culture and represent a single, differentiated cell type that is not normal. Moreover, the protocols that we developed along with this methodology (e.g. workflows for iPSC clonal isolation that include automated colony screening and Nanopore sequencing) will be useful to other groups undertaking gene editing in human cells. Therefore, we argue that our work opens new doors for future cell biology studies.

      ii) The fluorescence intensity of the split mNeonGreen appears rather low, for example in Figure 2C the H2BC11, ANLN, SOX2, and TUBB3 signals are very noisy (differences between the structures observed are almost absent). For low-expression targets, this is an important limitation. This is also stated by the authors but image restoration could not be the best solution since a lot of biologically relevant information will be lost anyway.

      The split mNeonGreen tag is one of the brighter fluorescent proteins that is available. The low expression that the reviewer refers to for H2BC11, ANLN, TUBB3 and SOX2 is expected based on their predicted expression levels. Further, these images were taken with cells in dishes using lower resolution imaging and were not intended to be used for quantification. As shown in the images in Figures 3H, when using a different microscope with different optical settings and higher magnification, the localization is very clear and quantifiable without needing to use restoration (e.g., compare H2BC11 and ANLN). Using microscopes with high NA objectives, lasers and EMCCD or sCMOS cameras with high sensitivity can sufficiently detect levels of very weakly expressing proteins that can be quantified above background and compared across cells. It is worth noting that each tag may be studied in very different contexts. For example, ANLN will be useful for studies of cytokinesis, while the loss of SOX2 expression and gain of TUBB3 expression may be used to screen for differentiation rather than for localization per se. The reason for endogenous tagging is to study proteins at their native levels rather than using over-expression or fixation with antibodies where artefacts can be introduced. Endogenous tags tag will also enable studies of dynamic changes in localization during differentiation in an isogenic background as described previously.

      Importantly, image restoration is not required to image any of these probes! We use it to demonstrate how a researcher can increase the temporal resolution of imaging weakly-expressed proteins for extended periods of time. This data can be used to compare patterns of localization and reveal how patterns change with time and during differentiation. Imaging with fewer timepoints and altered optical settings will still permit researchers to extract quantifiable information from the raw data without requiring image restoration.

      iii) There is no comparison with other existing split-FP variants, methods, or imaging and it is unclear what the advantages of the system are.

      We are not sure what the reviewer means by this comment. In the future, we plan to incorporate an additional split-FP variant (e.g., split sfCherry) in this iPSC line to enable the imaging of more than one protein in the same cell. However, the split mNeonGreen system is still amenable for use with dyes with different fluorescence spectra that can mark other cellular components, especially for imaging over shorter timespans. In addition to tagging efficiency, the main advantage of split FPs is its scale, as demonstrated by the OpenCell project by tagging 1,310 proteins endogenously (Cho et al., 2022). We developed protocols that facilitate the identification of edited cell lines with high throughput. We also used multiple imaging methods throughout the study that relied on the use of different microscopes and flow cytometry, demonstrating the flexibility of this tagging system. Even for more weakly expressing proteins, the probe could be sufficiently visualized by multiple systems. Such endogenous tags can be used for everything from simply knowing when cells have differentiated (e.g., loss of SOX2 expression, gain of differentiation markers), to studying biological processes over a range of timescales.

      Reviewer #3 (Public Review):

      The authors report on the engineering of an induced Pluripotent Stem Cell (iPSC) line that harbours a single copy of a split mNeonGreen, mNG2(1-10). This cell line is subsequently used to take endogenous protein with a smaller part of mNeonGreen, mNG2(11), enabling the complementation of mNG into a fluorescent protein that is then used to visualize the protein. The parental cell is validated and used to construct several iPSC lines with endogenously tagged proteins. These are used to visualize and quantify endogenous protein localisation during mitosis.

      I see the advantage of tagging endogenous loci with small fragments, but the complementation strategy has disadvantages that deserve some attention. One potential issue is the level of the mNG2(1-10). Is it clear that the current level is saturating? Based on the data in Figure S3, the expression levels and fluorescence intensity levels show a similar dose-dependency which is reassuring, but not definitive proof that all the mNG2(11)-tagged protein is detected.

      We have not quantified the levels of mNG21-10 expression directly. However, the increase in fluorescence observed with highly expressed proteins (e.g., ACTB) supports that mNG21-10 levels must be sufficiently high to permit differences among endogenous proteins with vastly different expression levels. To ensure high expression, we used a previously validated expression system comprised of the CAG promoter integrated at the AAVS1 locus, which has previously been used to provide high and stable transgene expression (e.g. Oceguera-Yanez et al., 2016). We acknowledge that it is difficult to confirm that all of the endogenous mNG211-tagged protein is ‘detectable’.

      Do the authors see a difference in fluorescence intensity for homo- and heterozygous cell lines that have the same protein tagged with mNG2(11)? One would expect two-fold differences, or not?

      To answer this question, we measured the fluorescence intensity of homozygous and heterozygous clones carrying smNG2-anillin and smNG2-RhoA. We found homozygous clones that were approximately twice as bright as the corresponding heterozygous clones (Fig. S4H and I). This suggests that the complementation between mNG21-10 and mNG211 occurs efficiently over a range of mNG211 expression, since anillin is expressed weakly and RhoA is expressed more strongly in iPSCs. However, we also observed some homozygous clones that were not brighter than the corresponding heterozygous clones, which could be due to undetected byproducts of CRISPR or clonal variation in protein expression.

      Related to this, would it be favourable to have a homozygous line for expressing mNG2(1-10)?

      Our heterozygous cell line leaves the other AAVS1 allele available for integrations of other transgenes for future experiments. While a homozygous line could express more mNG2(1-10), it does not seem to be rate-limiting even with a highly-expressed protein like beta-actin, and we are not sure that it is necessary. The value gained by having the free allele could outweigh the difference in mNG2(1-10) levels.

      The complementation seems to work well for the proteins that are tested. Would this also work for secreted (or other organelle-resident) proteins, for which the mNG2(11) tag is localised in a membrane-enclosed compartment?

      The interaction between the 1-10 and 11 fragments is strong and should be retained when proteins are secreted. It was recently shown that secreted proteins tagged with GFP11 can be detected when interacting with GFP1-10 in the extracellular space, albeit using over-expression (Minegishi et al., 2023). However, in our work, the mNG21-10 fragment is cytosolic and we have only explored proteins localized to the nucleus or the cytoplasm similar to Cho et al., (2022). By GO annotation, 75% of human proteins are present in the cytoplasm and/or nucleus, which still covers a wide range of proteins of interest. Future versions of our line could include incorporating organelle-targeting peptides to drive the large fragment to specific, non-cytosolic locations.

      The authors present a technological advance and it would be great if others could benefit from this as well by having access to the cell lines.

      As discussed below, some of the resources are already available, and we are working to make the mNG21-10 cell line available for distribution.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The manuscript is methodological, the main achievement is the generation of a stable iPSC with the split Neon system available for the scientific community. Although it is technically solid, the judgement of this reviewer is that the manuscript should be considered for a more specialised/methodological/resource-based journal.

      Indeed, we have submitted this article under the “tools and resources” category of eLife, which publishes methodology-centered papers of high technical quality. We felt this was a good venue for the audience that it can reach compared to more specialized journals that may be more limited in scope. For example, our system will be a useful resource for cell biologists and they are more likely to see it in eLife compared to more specialized journals.

      Reviewer #3 (Recommendations For The Authors):

      (1) The authors present a technological advance and it would be great if others can benefit from this as well. Therefore access to the materials (and data) would be valuable (the authors do a great job by listing all the repair templates and primers).

      We have added several pieces of data and information to the supplementary materials, as described below.

      For instance:

      What is the (complete/plasmid) sequence of the AAVS1-mNG2(1-10) repair plasmid? Will it be deposited at Addgene?

      The plasmids used in this paper are now available on Addgene, along with their sequences [ID 206042 for pAAVS1-Puro-CAG-mNG2(1-10) and 206043 for pH2B-mNG2(11)].

      The ImageJ code for the detection of colonies is interesting and potentially valuable. Will the code be shared (e.g. at Github, or as supplemental text)?

      The ImageJ macro has been uploaded to the CMCI Github page (https://github.com/CMCI/colony_screening). The parameters are optimized to perform segmentation on images obtained using a Cytation5 microscope with our specific settings, but they can be tweaked for any other sets of images. The following text has been added to the methods section: “The code for this macro is available on Github (https://github.com/CMCI/colony_screening)”.

      The cell line with the mNG2(1-10) as well as other cell lines can be of interest to others. Will the cell lines be made available? If so, can the authors indicate how?

      We are in the process of depositing our cell line in a public repository. This process may take some time for quality control. For now, the cells can be made available by requesting them from the corresponding authors.

      (2) How well does the ImageJ macro for detection of the colonies in the well work? Is there any comparison of analysis by a human vs. the macro?

      In our most recent experiment, the colony screening macro correctly identified 99.5% of wells compared to manual annotation (83/84 positive wells and 108/108 negative wells). For each 96-well plate, imaging takes 25 minutes, and it takes 7 minutes for analysis. Despite a few false negatives, we expect this macro to be useful for large-scale experiments where multiple 96-well plates need to be screened, which would take hours manually.

      (3) The CDH labeling was not readily detected by FACS, but was visible by microscopy. Is the labeling potentially disturbed by the procedure (low extracellular calcium + trypsin?) to prepare the cell for FACS?

      It is not clear why the CDH labelling was not detected by FACS. As the reviewer suggests, there could be several reasons: E-cadherin could be broken down by the dissociation reagent (Accutase), or recycled into the cell following the loss of adhesion and the low extracellular calcium in PBS. However, the C-terminal intracellular tail of E-cadherin was tagged, which should not be affected by Accutase. Moreover, recycling into the cell should still result in a detectable fluorescent signal. Notably, the flow cytometry experiments were done as quickly as possible after dissociation to minimize the time that E-cadherin could be degraded or recycled. We also resuspended the cells in MTeSR Plus media instead of PBS, and compared cells grown on iMatrix511 to those grown on Matrigel in case differences in the extracellular matrix affected Ecadherin expression. Another possibility is that the microscopy used for detection of E-cadherin in cells involved using a sweptfield livescan confocal microscope with high NA objective, 100mW 488nm laser and an EMCCD camera with high sensitivity, and perhaps this combination permitted detection better than the detector on the BD FACSMelody used for FACs.

      (4) The authors write that the "Tubulin was cytosolic during interphase" which is surprising (and see also figure 3H), as I was expecting it to be incorporated in microtubules. May this be an issue of insufficient resolution (if I'm right this was imaged with 20x, NA=0.35 and so the resolution could be improved by imaging at higher NA)?

      Indeed, as the reviewer points out, our terminology (cytosol vs. microtubule) reflects the low resolution of the imaging for the cell populations in dishes and the individual alpha-tubulin monomers being labelled with the mNG211 tag, which are present as cytoplasmic monomers as well as polymers on microtubules. However, even in this image (Fig. 2C), the mitotic spindle microtubules are visible as they are so robust compared to the interphase microtubules. Notably, when we imaged cells from the cloned tagged cell line using a microscope designed for live imaging with a higher NA objective (see above), endogenous tagged TUBA1B was even more clearly visible in spindle microtubules, and was weakly observed in some microtubules in interphase cells, although they are slightly out of focus (Fig. 3H). If we had focused on a lower focal plane where the interphase cells are located and altered the optical settings, we would see more microtubules.

      (5) It would be nice to have access to the Timelapse data as supplemental movies (.e.g from the experiments shown in Figure 4).

      We have added the movies corresponding to the timeplase images as supplementary movies (Movies S1-6), with the raw and restored movies shown side-by-side.

      (6) In Figure 3B, the order of the colors in the bar is reversed relative to the order of the legend. Would it be possible to use the same order? That makes it easier for me (as a colorblind person) to match the colors in the figure with that of the legend.

      We have modified the legend in Fig 2B and 3B to be in the same order as the bars.

    1. Author Response

      We are deeply grateful for the highly professional analysis of our work by the Journal Editor and Reviewers. Here is our provisional response to some of the reviewer comments. In our response, we would like to address two comments that were common to all Reviewers' responses. We will thoroughly address all of the Reviewers' comments in the final version of the paper.

      Incomplete analysis of maturational changes of striato-nigral connections.

      In the initial study, we showed that chronic inhibition of striosomal neurons with the DREADD approach during early postnatal development leads to decreased functional innervation of dopaminergic cells by striosomes in adulthood. We have shown that by two approaches: (1) analysis of miniature inhibitory post-synaptic currents (mIPSCs) and (2) analysis of GFP and gephyrin puncta densities around dopaminergic cells. The results from these experiments strongly suggest a decrease in inhibitory drive to dopaminergic neurons of substantia nigra pars compacta, yet we agree that only GFP puncta density can be considered as a direct evidence for weakened striatonigral connections. Reviewers indicated that additional direct measurements of striatonigral synaptic efficacy would be needed to strengthen our conclusions. We completely agree with this statement and will evaluate the possibility of doing the suggested experiments, using optogenetic stimulation of striosomal inputs to dopaminergic neurons.

      Inconsistent description of Ca2+ imaging experiments.

      Unfortunately, there was a general misunderstanding in interpreting the Ca2+ imaging methods description. All our experiments were done so that baseline Ca2+ oscillations and oscillations in the presence of a drug were recorded in the usual ACSF (containing 3 mM KCl) at the patch-clamp setup chamber. So, conditions were exactly the same as for cell-attached and whole-cell recordings. At the end of each experiment, ACSF containing 8 mM KCl was applied. This high-KCl condition was used to calculate the total number of viable cells reacting to elevated potassium concentrations, and this number was taken as 100 %. Therefore, the percents displayed in the paper represent the actively oscillating cells in common ACSF (3 mM KCl), counted as a percent of the total number of cells that responded to the following high potassium stimulation (8 mM KCl). The formula was: (Number of active cells in 3 mM KCl / number of viable cells active at 8 mM KCl)*100.

    1. Author Response

      We appreciate your constructive feedback on our manuscript entitled “Deletion of sulfate transporter SUL1 extends yeast replicative lifespan via reduced PKA signaling instead of decreased sulfate uptake” (ID: eLife-RP-RA-2023-94609). Your comments/suggestions are very helpful for improving our manuscript. In particular, we feel additional experiments and analysis suggested by the reviewers will help strengthen our argument that Sul1 deletion mutant extends lifespan via decreased PKA signaling, instead of via decreased sulfate uptake. Below we outline our response to the reviewer's comments/suggestions and the plans for additional experiments and analysis.

      (1) Our current model is that lifespan extension following SUL1 knockout depends on the PKA signaling pathway but not sulfate transport. To further substantiate this, we plan to conduct further transcriptome sequencing and dynamic sulfate uptake experiments using WT, Sul1D and Sul1E427Q strains. If our model is correct, we expect that PKA signaling pathway will be more repressed in Sul1D strain than in Sul1E427Q strain, but the sulfate transport will be similar in both strains. This will add strong evidences supporting the model in addition to the lifespan data.

      (2) The reviewer mentioned the disparities observed between the lifespan of WT in Figure 1B and other experimental assays. Although it is known that lifespan for WT varies considerably from experiment to experiment (thus the need for WT control for every lifespan measurement), we agree it is important to make a solid conclusion that Sul1E427Q does not extend lifespan. We plan to measure the lifespan of more cells for the mutant strains illustrated in Figure 1B and update the data and charts.

      (3) Other issues, for example, the small images of Msn2/4 in the nucleus, grammar and formatting errors, and the lifespan data of double (Sul1/Msn4) mutants will be addressed in the revised version of the manuscript after we performed the additional experiments/analysis.

    1. Author Response

      Reviewer #1 (Public Review):

      (1) It is unclear whether the authors took into consideration the contribution of nuclear blebs for nuclear volume measurements. This would be particularly relevant in situations of very strong confinement. Blebs were previously shown to affect volume (Mistriotis et al., JCB 2019). One could argue that the decreased nuclear volume was due to the increased blebbing observed in very strong confinements.

      As stated in the main text: “[Nuclear Blebs] had a limited contribution to the increase in nuclearprojected area, as the increase remained significantly different even if protrusions were dismissed to compute the projected area (Fig S3C)”. In addition, a decrease in the nuclear volume was also observed for slight and intermediate confinement (height = 7 and 9 µm), while in these two conditions, no blebs are observed.

      (2) From their experimental setup, it is unclear whether the reduced nuclear volume observed after confined cell division arises from a geometrical constraint or is due to an intrinsic nuclear feature. One could argue that cells exiting mitosis under confinement have clustered chromosomes and, therefore, will have decreased volume. This would imply that the nucleus is not "reset" but rather that a geometrical constraint is forcing nuclei to be smaller. One way to test this would be to follow individual cells under confinement, let them enter mitosis, and then release the confinement. If, under these conditions, the daughter nuclei are smaller, then it supports their model. If daughter nuclei recover to their initial value, then it´s simply due to a geometrical constraint that forces the clustering of chromosomes and the reassembly of the NE in a confined space.

      We agree with the reviewer. As stated in the discussion, “For now, the mechanisms involved remain elusive”, and “Our results call for an in-depth analysis of the molecular pathways at play”. The experiments suggested by the reviewer are definitely important experiments that we plan to carry out. Indeed, it is important to know if cells that were ‘born’ under confinement will retain smaller nuclei in the next generation if confinement is released, or whether the next generation will recover their initial larger nuclei.

      (3) The authors claim that the nucleus adapts to confinement based on evidence that the nucleus no longer shrinks in the second division following the first division. I would argue no further decrease is possible because the DNA is already compacted in the smallest possible volume. If indeed nuclei are in a new homeostatic state as the authors claim, then one would expect nuclei to remain smaller even after confinement is removed. This analysis is missing.

      As mentioned above, we agree that “deconfinement experiments” are indeed important. Nevertheless, we respectfully want to point out that the DNA is not compacted to its maximum level during confinement.

      First, we observed that the nuclei of the second generation of cells born in confinement no longer shrink for all investigated confinement conditions, including for slight confinement (height of 9 µm, corresponding to an initial nuclear deformation of 41%), where DNA is less confined compared to the very strong confinement condition (height of 3 µm, corresponding to an initial nuclear deformation of 70%).

      Second, the total uncompressible volumetric fraction of a cell is smaller than 30% (Roffay et al. PMID: 34785592, Cell Biology by the Numbers ISBN: 9780815345374) this allows a nucleus to be compressed to over 70% of its size, as we observed in the extreme scenario.

      (4) Also, if the authors want to claim that this is a mechanism used for cancer cells to adapt to confined situations as the title says, they need to show that normal, near-diploid cells do not behave in the same way. This analysis is missing.

      We agree with the reviewer. For the revised version, we have planned to analyze cell response to confinement using the RPE-1 cell line, as a model of a diploid and untransformed cell line. This will be important experiments to know if the nuclear mechanism identified in the HT-29 cell line is also at stake for normal cells.

      (5) Authors state that "Loss of nuclear blebs is clearly linked to mitosis, suggesting that nuclear volume and nuclear envelope tension are tightly coupled, and supports the hypothesis that mitosis is a key regulator of nuclear envelope tension". I have a few issues with the way this sentence is written. Firstly, one could say that all nuclear structures (and not only blebs) are lost during mitosis because the nucleus disassembles. Hence, the new homeostatic state could be determined by envelope reassembly after mitosis and not mitosis itself. Thirdly, how can mitosis be a key regulator of nuclear envelope tension when the nucleus is disassembled during the process? These require clarification.

      We agree with the reviewer that the formulation used required clarification that will be made in the revised version: for now, we only have evidence that nuclear volume regulation is at stake at mitosis. The most probable hypothesis is that confinement perturbed NE reassembly after mitosis, and that this perturbed reassembly leads to a change in nuclear volume. Complementary experiments are needed to test such a hypothesis, using cell lines stably expressing LAP2/LAP2b-GFP for instance. It is however delicate experiments that will require a dedicated study on its own.

      Secondly, I don´t understand why the loss of nuclear blebs suggests that volume and tension are tightly coupled.

      Nuclear Blebs appear once nuclei have reached a critical NE tension (Srivastava, et al PMID: 33662810). The fact that cells “born” under confinement have no nuclear blebs means that their nuclei are no longer under tension. This is a direct consequence of the decrease in nuclear volume, implying a coupling between volume and tension.

      (6) The authors claim that, unlike previous studies (Lomakin et al), this work shows a "gradual nuclear adaptation". From their results, this is difficult to conclude simply because they do not analyse cPLA2 levels. This is solely based on indirect evidence obtained from cPLA2 inhibition. A gradual adaptation would mean that based on the level of confinement we would expect to have increasingly higher levels of cPLA2 (and therefore nuclear tension).

      We thank the reviewer for his/her comment. Indeed, we have no direct evidence of gradual cPLA2 recruitment in our study, as we did not analyze cPLA2 levels.

      However, of note, in our study, nuclear volume and tension adaptation occur in the entire range of confinement height (from 3 to 9 µm), with a decrease in nuclear volume inversely correlated with the imposed initial nuclear deformation (fig S2C). On the contrary, in Lomakin et al., for HeLa cells, a threshold of 5 µm confinement is needed to trigger a cell motility response mediated by cPLA2. Such a difference suggests that other parameters are used as a confinement readout by cells during the reassembly of the NE after mitosis.

      (7) The authors should refrain from saying that the mechanism behind DNA repair is coupled to the nuclear adaptation they show. There are several points regarding this statement. Firstly, increased DNA damage could be due to nuclear ruptures imposed by confinement at 2h. In fact, the authors show leakage of NLS from the nucleus after confinement (Figure S3A). Secondly, the decrease in DNA damage at 24h could be because these nuclei did not rupture. How can they ensure that cells with low DNA damage at 24h had increased DNA damage at 2h? Finally, one needs to confirm if the nuclei they are analysing at 24h did undergo a round of cell division previously. From the evidence provided, the authors cannot conclude that DNA damage regulation is occurring in confined cells. Moreover, cell cycle arrest is a known effect of DNA damage. Cells with high damage at 2h most likely are arrested or will present with increased mitotic errors (which the authors exclude from their analyses).

      We need to clarify our analysis workflow: it was only in live experiments that we excluded cells with abnormal cell division, as cell division was visible in the timelapse. For immuno-staining analysis on fixed samples, all non-apoptotic cells were taken into account in the analysis. The decrease in DNA damage observed at 24h thus applies to all cells under confinement. There is a clear difference between 2h and 24h in the 2AX immunostaining (that is used as a proxy for DNA damage): whereas at 2h almost all cells have several foci (10-15 foci per cells on average fig. 3H), the number of foci in the entire cell population decreases to 1-2 foci per cell at 24h. The population at 24h mainly includes cells that have undergone a round of cell division, with >80 % of normal cells, as quantified in Fig. 3 E. In the revised version, we will include as a supplementary figure, a quantification of the percentage of cells having more than 5 foci at 2h and 24h, as well as large field of views for -2AX immunostaining to illustrate the distribution.

      Reviewer #2 (Public Review)

      One major limitation is that all experiments are performed in a single cell line, HT-29 human colorectal cancer cells, which has an unusual nuclear envelope composition as it has no lamin B2, low lamin B1 levels, and contains a p53 mutation. Because lamins B1 and B2 play important functions in protecting the nuclear envelope from blebs and confinement-induced rupture, and p53 is crucial in the cellular DNA damage response, it remains unclear whether other cell lines exhibit similar adaptation behavior.

      We agree that including other cell lines would help generalize our findings. It would be interesting in the future to analyze if a similar regulation exists for other cell types. In particular, as stated in the discussion, it would be very interesting to investigate whether this nuclear adaptation is universal, or if it is a consequence of a dysregulation in a specific cancer pathway. Our current manuscript is relevant as it uncovers the existence of this highly interesting phenomenon.

      Investigating if other cell types have the same capacity to adapt would provide insights into the molecular mechanisms involved. In the revised version, we specifically plan to analyze nuclear response under prolonged confinement in 2 types of cells :(1) normal cells with near diploid characteristics (RPE-1 cell line, as a model of a diploid and untransformed cell line); (2) other colorectal cancer cell lines presenting higher levels of lamin B2 and B1, and no P53 mutation (HCT-116).

      Furthermore, although the time-lapse experiments suggest that reduction in nuclear volume occurs primarily during mitosis, the authors do not address whether prolonged confinement, even in the absence of apoptosis, could also result in cells adjusting their nuclear volume, or alternatively normalizing nuclear envelope tension by recruiting additional membrane from the endoplasmic reticulum, which is continuous with the nuclear membranes.

      Even if we cannot completely ruin the hypothesis raised by the reviewer, we respectfully want to stress that if additional membrane from the endoplasmic reticulum were recruited, we should observe an increase in nuclear volume at S/G2, which is the case only for the strongest imposed confinment (h=3 µm, corresponding to an initial nuclear deformation of 70 % Figure S2E). It should be however very interesting in the future to directly assess nuclear envelope tension and to follow with high resolution live experiments the eventual recruitment of additional membrane.

      Regarding the proposed role of cPLA2, previous studies have shown that cPLA2 recruitment to the nuclear membrane, which is essential to mediate its nuclear mechanotransduction function, requires both an increase in nuclear membrane tension and intracellular calcium. However, the current study does not include any data showing the recruitment of cPLA2 to the nuclear membrane upon confinement, or the disappearance of nuclear membrane-associated cPLA2 during prolonged confinement, leaving unclear the precise function and dynamics of cPLA2 in the process.

      We agree with the reviewer that it would be very informative to analyze the recruitment of cPLA2 in live experiments. We plan to do this in future experiments using cPLA2 immunostaining at different time points or the cPLA2-mKate construct. This will be the subject of a dedicated study, together with possible changes in nuclear pores size and organization, as well as nuclear tension analysis. For this article, we plan to add the analysis of the effect of cPLA2 inhibition in live experiments.

      Lastly, it remains unclear (1) whether the reduction in nuclear volume is caused by a reduction in nuclear water content, by chromatin compaction, e.g. associated with an increase in heterochromatin, or through other mechanisms, (2) whether the change in nuclear volume is reversible, and if so, how quickly,

      We thank the reviewer for his/her comment. This point was also mentioned by Reviewer #1. It is important to know if cells that were ‘born’ under confinement will retain smaller nuclei in the next generation if confinement is released, or whether the next generation will recover their initial larger nuclei. We plan to perform such “deconfinement” experiments and add the results in the revised version. In addition, we also plan to investigate in more detail the DNA compaction state during confinement.

      and (3) what functional consequences the substantial reduction in nuclear volume has on nuclear function, as one would expect that this reduction would be associated with a substantial increase in nuclear crowding, affecting numerous nuclear processes.

      We agree with the reviewer that such a reduction in nuclear volume would most probably affect numerous nuclear processes that would be highly interesting to decipher in the future. Especially, as pointed out in the discussion, “the regulation of nuclear size identified in this study could have important consequences on resistance to classical chemotherapeutic treatments that target proliferation”. This question merits an entire study and is outside the scope of our current manuscript.

      Reviewer #3 (Public Review)

      (1) One essential consideration that goes unaddressed is whether the nuclear volume alone is changing under compression (resulting in a higher nuclear to cytoplasmic ratio) or if the cell volume is changing and the nuclear volume is following suit (no change in the N:C ratio). Depending on which of these is the case, the overall model would likely shift. In particular, interpreting the effect of disrupting myosin II activity given its different distribution at the cortex in response to the higher confinement would be influenced by which of these conditions are at play.

      We agree with the reviewer. As stated in the discussion, “the nuclear to cytoplasmic volume ratio, which is constant within a given population, is most likely to be impacted by confinement and changes in nuclear envelope tension (24, 45, 46), and might be at play in the regulation we describe herein”.

      As mentioned in the results section, “the distance between the cell membrane and the nuclear envelope was significantly reduced with confinement (Fig. 1D, Fig. S1B) and accompanied by the relocalization of the contractility machinery (Phosphorylated Myosin Light Chain (p-MLC) staining) from above the nucleus to the side, indicating a cortex rearrangement (Fig. S1C)”. For the revised version, we plan to investigate if such relocalization is accompanied by a change in the nuclear to cytoplasmic ratio using the p-MLC and nuclei immunostaining performed at 2h and 24h under the entire range of confinement investigated.

      (2) -A key approach used and interpreted by the investigators is an assessment of the folding of the "inner lamin envelope", which they derive from an image analysis routine of lamin staining that they developed and argue reflects "nuclear envelope tension". I am not convinced of the robustness of this approach or what it mechanistically reveals. It may or may not reflect the contour of the inner nuclear membrane, which (perhaps) is the most relevant to the authors' interpretation of nuclear envelope tension. Given the major contribution of this data to the model, which is based on the "unfolding" of the nuclear envelope, an orthogonal approach (e.g. electron microscopy - which one needs to truly address the high-frequency undulations of the nuclear envelope) is needed to support the larger conclusions.

      We agree with the reviewer that the precise measurement of NE surface area is challenging because of the NE folds, and that our approach is provides semi-quantitative information. Higher-resolution approaches would be necessary to investigate that point in more details, using 3D super-resolution. However, we want to point out that even with our limited resolution, the differences observed in lamin A/C staining are striking (Fig. 3A): while lamin folds are completely absent at 2h under strong confinement, inner lamin folds are massively observed at 24h, showing a pattern very similar to the control condition. In the revised version, we will add more representative images to strengthen that our analysis is representative of our observations.

      (3) The authors argue that nuclear tension is lost after mitosis in the confined devices because nuclear volume has decreased. While a smaller nuclear volume might indeed translate to less compressive force from the device on the nucleus, one would imagine that the chromosomes still have to be accommodated and that confining them in a smaller volume could increase the tension. Although arguable, the potential alternative possibilities suggest that actual measurements of nuclear envelope tension are needed to robustly test the model. The authors cite the observation that blebs are less prevalent after mitosis as additional support for this model, but this is expected as nuclear envelope breakdown and reformation will "reset" the nuclear contour while the appearance of blebs at mitotic entry is essential a "memory" of all blebs and ruptures over the entire preceding cell cycle.

      We agree with the reviewer that assessing the nuclear envelope tension would enable a better description of the underlying process. It will be the subject of a dedicated study, together with possible changes in nuclear pore size and organization, as well as the analysis of cPLA2 recruitment.

      The proposed model in the current study is for the moment simply a geometrical model. Given the simplicity of the model, the fit with our experimental points is striking.

      (4) Representative images for the pharmacological perturbations other than blebbistatin are notably absent - only the analyzed data are presented in the manuscript or the supplemental material. How these perturbations (e.g. to cPLA2) also affect the cortex is important to interpret the data given the point raised above. Orthogonal approaches would also strengthen the conclusions (for example, the statement that "nuclear adaptation observed during mitosis requires nuclear tension sensing through cPLA2" requires more evidence to be convincing - it is not sufficiently supported by the data presented). Even if this is the case, the authors acknowledge that cPLA2 is likely not the answer to the adaption observed under the lower degrees of confinement. Thus, the mechanisms underlying the adaptive changes to nuclear volume remain enigmatic.

      We thank the reviewer for this insightful comment, and we plan to add representative images for the pharmacological perturbation in the revised version of the manuscript.

      (5) One more consideration that seems to go without comment is that the cells under confinement do not appear to successfully complete cytokinesis (Fig. 5b). At a minimum this seems like a major perturbation to cell physiology and needs to be more fully discussed by the authors as playing a role in the observed changes in nuclear volume.

      We agree that in the image chosen for Fig. 5b, cytokinesis does not seem to be complete. This is not representative of the entire cell population as 80% of the cell population showed a normal phenotype under very strong confinement with no drug (Fig. 5C and 3E, as well as fig S3D for a representative large field of view). Live experiments using the FUCCI cell lines also show that cells are capable of making several complete divisions under confinement (Fig. 2). Complementary experiments under pharmacological treatments and confinement are planned to extend our analysis of such processes.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This study presents a valuable finding on the possible use of vilazodone in the management of thrombocytopenia through regulating 5-HT1A receptor signaling. The evidence supporting the claims of the authors is solid, with the combined use of computational methods and biochemical assays. The work will be of broad interest to scientists working in the field of thrombocytopenia.

      Public Review:

      Reviewer #1 (Public Review):

      Summary:

      This is well-performed research with solid results and thorough controls. The authors did a good job of finding the relationship between the 5-HT1A receptor and megakaryocytopoiesis, which demonstrated the potential of vilazodone in the management of thrombocytopenia. The paper emphasizes the regulatory mechanism of 5-HT1A receptor signaling on hematopoietic lineages, which could further advance the field of thrombocytopenia for therapeutic purposes.

      Strengths:

      This is comprehensive and detailed research using multiple methods and model systems to determine the pharmacological effects and molecular mechanisms of vilazodone. The authors conducted in vitro experiments using HEL and Meg-01 cells and in vivo experiments using Zebrafish and Kunming-irradiated mice. The experiments and bioinformatics analysis have been performed with a high degree of technical proficiency. The authors demonstrated how vilazodone binds to 5-HTR1A and regulates the SRC/MAPK pathway, which is inhibited by particular 5-HTR1A inhibitors. The authors determined this to be the mechanistic underpinning for the effects of vilazodone in promoting megakaryocyte differentiation and thrombopoiesis.

      Weaknesses:

      (1) Which database are the drug test sets and training sets for the creation of drug screening models obtained from? What criteria are used to grade the results?

      Response: Thank you for your thoughtful comment. The database is built by our laboratory. Firstly, we collected 39 small molecule compounds that can promote MK differentiation or platelet formation and 691 small molecule compounds that have no obvious effect on MK differentiation or platelet formation to buiid the datbase. Then, the data of the remaining 713 types of small molecule compounds were utilized as the Training set, and the Molecular Descriptors of 2 types of active and 15 types of inactive small molecule compounds were randomly picked as the Validation set. With regard to the activity evaluation criteria, the prediction score for each molecule was between 0 and 1, and the model decision was made with a threshold of 0.5. The molecule with a score above the 0.5 threshold was identified as a megakaryopoiesis inducer (1).

      Reference:

      (1) Mo Q, Zhang T, Wu J, et al. Identification of thrombopoiesis inducer based on a hybrid deep neural network model. Thromb Res. 2023;226:36-50. doi:10.1016/j.thromres.2023.04.011

      (2) What is the base of each group in Figure 3b for the survival screening of zebrafish? The positivity rate of GFP-labeled platelets is too low, as indicated by the quantity of eGFP+ cells. What gating technique was used in Figure 3e?

      Response: We are deeply grateful for the insightful feedback you have provided regarding Figure 3 and the assessment of zebrafish model. We used 50 zebrafish embryos per group to evaluate VLZ toxicity, and we think this is a suitable and fair baseline. Our gating procedure is clearly depicted in the resulting diagram. Since our goal was to evaluate the fluorescence intensity quantitatively, we isolated the entire zebrafish cell. Since the amount of eGFP+ in various zebrafish tissues found in other literature is likewise quite low and we are unsure of the typical eGFP+ threshold for zebrafish (1, 2), we think this finding should be fair given that each group's activities in the experiment were conducted in parallel.

      Reference:

      (1) Yang L, Wu L, Meng P, et al. Generation of a thrombopoietin-deficient thrombocytopenia model in zebrafish. J Thromb Haemost. 2022; 20(8): 1900-1909. doi:10.1111/jth.15772

      (2) Fallatah W, De Silva IW, Verbeck GF, Jagadeeswaran P. Generation of transgenic zebrafish with 2 populations of RFP- and GFP-labeled thrombocytes: analysis of their lipids. Blood Adv. 2019;3(9):1406-1415. doi:10.1182/bloodadvances.2018023960

      (3) In Figure 4C, the MPV values of each group of mice did not show significant downregulation or upregulation. The possible reasons for this should be explained.

      Response: Thank you for your thoughtful comment. Megakaryocytes build pseudopodia, which form extensions that release proplatelets into the bone marrow sinusoids. Proplatelets convert into barbell-shaped proplatelets to form platelets in an integrin αIIbβIII mediated process (1-2). Platelet size is established by microtubule and actin-myosin-sceptrin cortical forces which determine platelet size during the vascular formation of barbell proplatelets (3). Conversion is regulated by the diameter and thickness of the peripheral microtubule coil. Proplatelets can also be formed from proplatelets in the circulation (4). Megakaryocyte ploidy correlates with platelet volume following a direct nonlinear relationship to mean platelet volumes (5). Usually there is an equilibrium between platelet generation and clearance from the circulation (normal turnover) controlled by thrombopoietin. When healthy humans receive thrombopoietin, their platelet size decreases (6). Proplatelet formation is dynamic and influenced by platelet turnover (7) which increases upon increased platelet consumption and/or sequestration. In our study, the MPV values of each group of mice did not show significant downregulation or upregulation, from our point of view, there are several possible reasons for these results.

      (1) Mice in a radiation-damaged state may result in a decrease in platelet count, but at the same time stimulate the bone marrow to release young and larger platelets, thus keeping the MPV relatively stable.

      (2) After radiation injury, bone marrow cells were suppressed, resulting in a decrease in the number of platelets produced, but MPV remained unchanged, possibly because the direct effects of radiation on the bone marrow caused thrombocytopenia, but not necessarily the average platelet size.

      Reference:

      (1) Thon JN, Italiano JE. Platelet formation. Semin Hematol. 2010(3):220-226. doi: 10.1053/j.seminhematol.2010.03.005.

      (2) Larson MK, Watson SP. Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood. 2006(5):1509-1514. doi: 10.1182/blood-2005-11-011957.

      (3) Thon JN, Macleod H, Begonja AJ, et al., Microtubule and cortical forces determine platelet size during vascular platelet production. Nat. Commun. 2012(3):852. doi: 10.1038/ncomms1838.

      (4) Machlus KR, Thon JN, Italiano JE Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br. J. Haematol. 2014(2):227-36. doi: 10.1111/bjh.12758.

      (5) Bessman JD. The relation of megakaryocyte ploidy to platelet volume. Am. J. Hematol. 1984(2):161-170. doi: 10.1002/ajh.2830160208.

      (6) Harker LA, Roskos LK, Marzec UM, et al., Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood. 2000(8):2514-2522. doi: 10.1182/blood.V95.8.2514.

      (7) Kowata S, Isogai S, Murai K, et al., Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow. Thromb. Haemost. 2014(4):743-756. doi: 10.1160/TH14-02-0123.

      (4) The PPI diagram and the KEGG diagram in Figure 6 both provide a possible mechanism pathway for the anti-thrombocytopenia effect of vilazodone. How can the authors analyze the differences in their results?

      Response: We are appreciated your valuable comments. PPI (Protein-Protein Interaction) refers to the interaction between proteins. Inside cells, proteins interact with each other to perform various biological functions, influencing cell signaling, metabolic pathways, cell cycle, and more. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a database that integrates information on genomes, chemicals, and biological systems. In pharmacoinformatic, KEGG pathways are often used to understand the molecular mechanisms of specific diseases or biological processes. KEGG contains the interrelationships between genes, proteins, and metabolites, helping to reveal key nodes in biological processes. PPI information can be integrated with data from KEGG pathways, such as metabolic and signaling pathways, to gain a more comprehensive understanding of the role of protein-protein interactions in cellular processes and biological functions. For example, by analyzing nodes in the PPI network, proteins associated with a specific disease can be identified, and further examination of these proteins' locations in KEGG pathways can reveal molecular mechanisms underlying the onset and development of the disease. However, this method also has some limitations:

      Uncertainty (1): The construction of protein-protein interaction networks and drug interaction networks involves many assumptions and speculations. The edges of these networks may be based on experimental data but can also rely on bioinformatics predictions. Therefore, the accuracy of predictions is limited by the quality and reliability of the data used during network construction.

      Insufficient data (2): Despite the availability of a large amount of bioinformatics data for network construction, interactions between some proteins and drugs may still lack sufficient experimental data. This data insufficiency can result in inaccuracies in network predictions.

      Dynamics and temporal-spatial changes (3): The dynamics and temporal-spatial changes in biological systems are crucial for drug effects. Pharmacoinformatic may struggle to capture these changes as it often relies on static network representations, overlooking the temporal and dynamic nature of biological systems.

      Reference:

      (1) Fernando PC, Mabee PM, Zeng E. Integration of anatomy ontology data with protein-protein interaction networks improves the candidate gene prediction accuracy for anatomical entities. BMC Bioinformatics. 2020(1):442. doi: 10.1186/s12859-020-03773-2.

      (2) Zhang S, Zhao H, Ng MK. Functional module analysis for gene coexpression networks with network integration. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015(5):1146-1160. doi: 10.1109/TCBB.2015.2396073.

      (3) Cinaglia P, Cannataro M. A method based on temporal embedding for the pairwise alignment of dynamic networks. Entropy (Basel). 2023(4):665. doi: 10.3390/e25040665.

      (5)-HTR1A protein expression is measured only in the Meg-01 cells assay. Similar quantitation through western blot is not shown in other cell models.

      Response: Your insightful criticism and recommendation to use different cell models in order to obtain a more accurate depiction of 5-HTR1A protein expression are greatly appreciated. We completely concur that using this strategy would greatly increase the validity of our research. However, establishing a primary megakaryocyte model requires specialized expertise and technical resources, which unfortunately are not readily available to us within the given timeframe. Nevertheless, we acknowledge the limitations of Meg-01 cells, which may exhibit distinct properties compared to true megakaryocytes. To mitigate this concern, we have ensured robust experimental design and rigorous data analysis to interpret our findings within the context of these model cell lines. We believe our results still provide valuable insights into megakaryocyte differentiation and address an important biological question.

      Reviewer #2 (Public Review):

      Summary:

      The authors tried to understand the mechanism of how a drug candidate, VLZ, works on a receptor, 5-HTR1A, by activating the SRC/MAPK pathway to promote the formation of platelets.

      Strengths:

      The authors used both computational and experimental methods. This definitely saves time and funds to find a useful drug candidate and its therapeutic marker in the subfield of platelets reduction in cancer patients. The authors achieved the aim of explaining the mechanism of VLZ in improving thrombocytopenia by using two cell lines and two animal models.

      Weaknesses:

      Only two cell lines, HEL and Meg-01 cells, were evaluated in this study. However, using more cell lines is really depending on the workflow and the grant situations of the current research team.

      Response: We deeply appreciate your insightful feedback and valuable suggestions regarding the use of more suitable models for studying the role of VLZ in megakaryocyte differentiation and platelet production. We fully agree that CD34+ hematopoietic stem/progenitor cells or primary megakaryocytes would provide a more accurate representation of in vitro megakaryopoiesis compared to HEL and Meg-01 cells, which possess limited potential for this process. We acknowledge that our current study did not include experiments with these preferred cell models. This is because our laboratory is still actively developing the technical expertise and resources required for establishing and maintaining primary megakaryocyte and CD34+ cell cultures. Despite the limitations of the current study, we believe the results using HEL and Meg-01 cells provide valuable preliminary insights into the potential effects of VLZ on megakaryocyte differentiation. We are actively working to overcome these limitations and plan to incorporate these more advanced models in our future investigations.

      Reviewer #1 (Recommendations For The Authors):

      I think the authors can enhance the mechanism study by developing more reliable models and methodologies. The connection to clinical research should be strengthened at the same time.

      Response: We deeply appreciate your insightful feedback and valuable suggestions regarding the use of more suitable models for studying the role of VLZ in megakaryocyte differentiation and platelet production. Despite the limitations, we are committed to expanding our research in the future by incorporating your suggestion and establishing a primary megakaryocyte model to further validate our findings and strengthen our conclusions. At the same time, we wholeheartedly concur with your suggestion to combine clinical research. Unfortunately, VLZ is not a first-line treatment for depression in China, and getting blood samples from the matching number of patients for analysis is a challenge. To give additional experimental support for the medication, we have attempted to improve the data in vivo as much as feasible, including by implementing the intervention in normal mice. Our findings should also contribute to the theoretical underpinnings of this medication and aid in its practical application.

      Reviewer #2 (Recommendations For The Authors):

      Issues the authors need to address:

      Figure 7: Why the band intensity of GAPDH in b or e is much greater than that in f, g, or h?

      Response: Thank you for your careful observation and insightful comment regarding Figure 7. Because the concentration of each batch of protein samples is different, sometimes the GAPDH band strength is increased by the large loading volume. Other factors that may influence the GAPDH band strength include the instrument's contrast adjustment during exposure and the use of different numbers of holes for electrophoresis. Meanwhile, the original three replicate results of all WB results will be provided in the supplementary materials.

      Finally, we sincerely thank you for providing us with this opportunity to make a further revision and modification of our manuscript, and your valuable and scientific comments are useful for the great improvement of our manuscript!

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers

      We wish to thank the reviewers for the time taken to appraise the manuscript and the helpful feedback to improve it. We have taken onboard the suggested feedback and incorporated it into the revision. The findings of the revised manuscript are unchanged. Below is a point-by-point response to specific comments.

      Public reviews

      Reviewer 1

      Thank you to reviewer 1 for the thorough and insightful review of our manuscript. We are pleased that the strengths of our research, particularly the use of whole-genome bisulfite sequencing, the combination of animal and human data, and the investigation of a potential dietary intervention were recognized. We are confident that these aspects contribute significantly to the value and originality of our work.

      We acknowledge the concerns regarding the statistical rigor of the study, particularly the sample size and data analysis methods. We would like to address these points in more detail:

      Sample size: While we agree that a larger sample size would be ideal, the chosen sample size (n=4 per group) is consistent with other murine whole-genome bisulfite sequencing experiments in the field. We have carefully considered the cost-benefit trade-off in selecting this approach. In the revision we discuss the potential limitations of this sample size.

      Data analysis: We acknowledge the inconsistencies in the study reporting and have committed to improving the clarity in the revision. We carefully reviewed the concerns regarding the use of causal language and the interpretation of differences in our results. In some cases, the use of causal language is justified by the intervention study design. We also believe other explanations like stochastic variation affecting the same genomic regions in different tissues, are exceedingly unlikely from a statistical viewpoint. In the revision we have adopted a balanced approach to the language.

      Confounders: We acknowledge the importance of accounting for potential confounders such as birthweight, alcohol exposure and sex. The pups selected for genome analysis were matched for sex and on litter size as a proxy for in utero alcohol exposure. This careful selection of mice for genome analysis was intentionally guided to mitigate potential confounding.

      Statistical rigour: We acknowledge the importance of multiple testing correction in the genome-wide analysis. We used the DSS method of Feng et al (PMID: 2456180) which employs a two-step procedure for assessing significance of a region. Instead of a single p-value for the whole DMR, DSS uses the area statistic to rank candidate regions and control the false discovery rate through shrinkage estimation methods. This approach reduces the risk of reporting false positives due to multiple testing across numerous CpG sites. It is similar in respects to employing local FDR correction at 0.05 level, with an additional minimum effect size threshold applied, and particularly suited to experiments where the number of replicates is low. In the revision we have committed to improving the clarity of the reporting of statistical methods.

      Reviewer 2

      Thank you to reviewer 2 for the comprehensive and valuable feedback on our manuscript. We take your concerns about the generalizability of our findings and the interpretation of certain results seriously. We would like to address your specific criticisms in detail:

      Generalizability and Human Data: We agree that the generalizability of mouse models to human conditions has limitations. However, our study focused on understanding the early molecular alterations caused by moderate PAE, which can be more effectively modelled in a controlled environment like mice. To clarify this, we have strengthened the manuscript by emphasizing the focus on moderate PAE in the title and throughout the paper.

      Transcriptome Analysis: We recognize the importance of investigating the functional consequences of PAE-induced DMRs and agree that transcriptome analysis would be highly valuable. We are currently planning to conduct future transcriptomic studies to understand the link between DMRs and gene expression.

      Species-Specificity and DMR Enrichment: We acknowledge the likelihood of species-specific PAE effects. Our finding of enrichment of DMRs in non-coding regions was consistent with observations from the Lussier study of FASD. We agree there is further work to do and now highlight this in the discussion.

      Tissue Sample Locations: Due to technical restrictions of processing newborn mouse tissue, we are unable to enhance the manuscript with specific tissue regions sampled.

      Interpretation of Shared Genomic Regions: We appreciate your point about the alternative explanation for the shared genomic regions between brain and liver. Our interpretation is that regions identified in the alcohol group only affected equally in both tissues are likely established stochastically (as a result of the exposure) in the early embryo and then maintained in the germ layers. We have revised to suggest this is the most likely explanation and we acknowledge a more detailed examination in more tissues would be warranted for proof.

      Additional Feedback

      Reviewer 1

      Introduction

      • Line 65 - alcohol consumption is not always preventable and these statements further increase the stigma associated with FASD. A better way to say this would be "a leading cause of neurodevelopmental impairments".

      We have implemented this suggestion in revised manuscript.

      • The studies cited in lines 87-89 are somewhat outdated, as several more recent studies with better sample sizes have been published in recent years. I would recommend citing more recent publications in addition to these studies. Similarly, the authors should also cite Portales-Casamar et al., 2016 (Epigenetic & Chromatin) for the validation in humans, as it was the original study for those data.

      We have added a citation for the study mentioned by Portales-Casamar et al. (2016) in the revised manuscript.

      • Lines 95-95 - the authors should elaborate further on the "encouraging results" from choline supplementation studies, as these details may help interpret the findings from their own study.

      In the revised manuscript, we replaced “encouraging results” with “results suggesting a high methyl donor diet (HMD) could at least partially mitigate the adverse effects of PAE on various behavioural outcomes”.

      • Minor point: DNA methylation is preferable to "methylation" alone when not referring to specific CpGs or sites, as methylation can also refer to protein or RNA methylation.

      “Methylation” has been replaced with “DNA methylation” in revised manuscript

      Results

      • Line 118 - HMD should be defined here.

      HMD defined in revised manuscript

      • The figures in the main manuscript and supplemental materials are not in the same order as they are presented in the text.

      We apologise for this and thank the reviwer for their attendtion to detail. In the revision we have corrected the order of figures to match the text.

      • It is concerning that the H20-HMD group had lower baseline weights, which could impact the findings from these analyses. Please discuss how these differences were accounted for in the study design and analyses.

      We appreciate the reviewer's concern about the lower baseline weight in the H20-HMD group. We agree that this difference could potentially affect our findings. However, we want to emphasize that total weight gain during pregnancy was statistically similar across all groups by linear mixed effect model. Additionally, all dams were within the healthy weight range for their strain. While we cannot completely rule out any potential influence of baseline weight, we believe the similarity in weight gain and the healthy range of all dams suggest that the in-utero experience of pups regarding weight-related factors was likely comparable across groups.

      • I have some concerns regarding the cutoffs used to identify the DMRs, particularly given the small N and number of tests. The authors should report the number of DMRs that meet a multiple testing threshold; if none, they should use a more stringent threshold than p<0.05, as one would expect 950,000 CpGs to meet that threshold by chance (19,000,000 CpGs x 0.05). The authors should also report the number of DMRs tested, as this will be a more appropriate benchmark for their analyses than the number of CpGs (they should also report the specific number here).

      We appreciate the reviewer's concerns regarding the DMR cut-offs. We agree that clarifying the methods and justifying our choices is crucial. Our implementation of the DSS method for defining DMRs employs a local FDR p<0.05 cut-off, with additional delta beta threshold of 5%. We have clarified this in the methods section of the revised manuscript . We want to emphasize that the local FDR approach effectively mitigates the concern of chance findings by adjusting for multiple comparisons across the genome. Line 414-420 in the revised methods contains the following amended text

      “Differentially methylated regions (DMRs) were identified within each tissue using a Bayesian hierarchical model comparing average DNA methylation ratios in each CpG site between PAE and non-PAE mice using the Wald test with smoothing, implemented in the R package DSS (46). False-discovery rate control was achieved through shrinkage estimation methods. We declared DMRs as those with a local FDR P-value < 0.05 based on the p-values of each individual CpG site in the DMR, and minimum mean effect size (delta) of 5%”

      • I also have concerns about the delta cutoff for their DMRs. First, it is not clear if this cutoff is set for a single CpG or across the DMR (even then, it is not clear if this is a mean, median, max, min, etc.) Second, since the authors analyzed CpGs with 10X coverage, they can only reliably detect a delta of 0.1 (1/10 reads).

      Thank you for raising this important point. In the revision we have clarified the effect size cutoff reflects the mean effect across CpGs within the DMR as follows (line 418)

      “We declared DMRs as those with a local FDR P-value < 0.05 based on the p-values of each individual CpG site in the DMR, and minimum mean effect size (delta) of 5%”

      We chose the mean as it provides a comprehensive representation of the overall methylation change within the region, while ensuring all individual CpGs used in the analysis had at least 10x coverage. It is not true that we can only detect a delta of 1/10 reads, the mean effect is the relative difference in means between groups and is not dependent on the underlying sequencing depth.

      • Prenatal alcohol exposure is known to impact cell type proportions in the brain, which could lead to differences in DNAm patterns. The authors should address this possibility in the discussion, as well as examine their list of DMRs to determine if they are associated with specific brain cell types. The possibility of cell type differences in the liver should also be discussed.

      We agree with the reviewer that PAE-induced alterations in cell type proportions can influence DNA methylation patterns. While isolating specific cell types in our current study's brain and liver samples was not achievable due to tissue limitations, we acknowledge this as a limitation and recognize the need for further investigations incorporating single-cell or cell type-specific approaches in the discussion.

      • It is interesting, but maybe not surprising, that more DMRs were identified in the liver compared to the brain. This finding would warrant some additional interpretation in the discussion.

      We appreciate and agree that this finding indeed warrants further interpretation. We have added the following sentence into the discussion section of the revised manuscript that provides some potential factors behind this observation.

      Lines 263 “Indeed, most of the observed effects were tissue-specific, with more perturbations to the epigenome observable in liver tissue, which may reflect the liver’s specific role in metabolic detoxification of alcohol. Alternatively, cell type composition differences between brain and liver might explain differential sensitivity to alcohols effects”.

      • Lines 148-149 - I disagree about the enrichment of decreased DNAm in brain DMRs, as 52.6% is essentially random chance. The authors should also include a statistical test here, such as a chi-squared test, to support this statement.

      We agree that a revised interpretation is warranted. The updated manuscript has been amended as follows: “Lower DNA methylation with early moderate PAE in NC mice was more frequently observed in liver DMRs (93.5% of liver DMRs), while brain DMRs were almost equally divided between lower and higher DNA methylation with early moderate PAE (52.6% of brain DMRs had lower DNA methylation with early moderate PAE).”

      • Similarly, I would recommend the authors use increased/decreased DNAm, rather than hypermethylated/hypomethylation, as the latter terms are better suited to DNAm values near 100% or 0%.

      The use of hyper/hypo methylation is still considered common and well understood even for moderate changes. We agree the use of increased/decreased is more inclusive for a broader audience, so we have amended all references accordingly in the main text.

      • Lines 153-155 - please report the statistics to support these enrichment results. A permutation test would be well suited to this analysis.

      The reporting of statistics related to the enrichment test has now been amended to read “Overlap permutation tests showed liver DMRs were enriched in inter-CpG regions and non-coding intergenic regions (p < 0.05), while being depleted in all CpG regions and genic regions except 1to5kb, 3UTR and 5UTR regions, where there was no significant difference (Figure 2f).”

      • Line 156 - "overwhelming enrichment" is a very strong statement considering the numbers themselves.

      Omitted “overwhelming” in revised manuscript. Revised manuscript states: “Using open chromatin assay and histone modification datasets from the ENCODE project, we found enrichment (p < 0.05) of DMRs in open chromatin regions (ATAC-seq), enhancer regions (H3K4me1), and active gene promoter regions (H3K27ac), in mouse fetal forebrain tissue and fetal liver (Table 2).”

      • Lines 165-167 - Please describe the analyses and metrics used to determine if the DNAm differences were mitigated in the HMD groups. As it stands, it is not clear if they are simply not significant, or if the delta was decreased. In terms of a figure, a scatter plot of the deltas for these DMRs would be better suited to visualizing these changes.

      To determine whether DMRs were mitigated we simply applied the same statistical testing procedure on the subset of PAE DMRs in the group of mice exposed to the HM diet. The sample size is the same, and the burden on multiple testing is reduced as we did not test the entire genome. We believe our interpretation stands although we have urged caution in the discussion as follows (line 319)

      “Another key finding from this study was that HMD mitigated some of the effects of PAE on DNA methylation. Although a plausible alternative explanation is that some of the PAE regions were not reproduced in the set of mice given the folate diet, our data are consistent with preclinical studies of choline supplementation in rodent models (34, 35) (36). Moreover, a subset of PAE regions were statistically replicated in subjects with FASD, suggestive or robust associations. Although our findings should be interpreted with caution, they collectively support the notion that alcohol induced perturbation of epigenetic regulation may occur, at least in part, through disruption of the one-carbon metabolism.”

      • Given the lenient threshold to identify DMRs, it is possible that PAE-associated DMRs are simply false positives and do not "replicate" in a different subset of animals. One way to check this would be to determine whether there are any differences between mitigated/unmitigated DMRs and the strength of their initial associations. Should the mitigated DMRs skew towards higher p-values and lower deltas, one might consider that these findings could be false positives.

      We appreciate the reviewer's concern about potential false positives due to the chosen DMR identification threshold. We reiterate the DMR calling thresholds were adjusted for local FDR; however, we acknowledge the need for further validation. We haven't observed this trend of mitigated DMRs having higher p-values and lower deltas, but we have replicated some PAE DMRs in independent human datasets and found support for their biological plausibility in the context of PAE.

      • Related to the HMD analyses, I am concerned that the EtOH-HMD group consumed less alcohol, which could manifest in the PAE-induced DMRs disappearing, unrelated to the HMD exposure. The authors should comment on whether the pups were matched for ethanol exposure and include sensitivity analyses that include ethanol level as a covariate to confirm that their results are not simply due to decreased alcohol exposure.

      We appreciate the reviewer's concern regarding the lower alcohol consumption by Dams in the EtOH-HMD group and its potential impact on DMRs. We agree that consistent in utero exposure is crucial for reliable results. Our pup selection for genomic analysis involved matching litter size as a proxy for in utero exposure, so even through the average alcohol consumption was lower for the EtOH-HMD group, we matched pups across treatment groups based on litter size as a proxy for alcohol intake levels, excluding pups with significantly different exposure levels. We agree more robust methods including direct measurement of blood alcohol content would improve the study. We have now incorporated this into the discussion of the revised manuscript on lines 351: “Additionally, we employed an ad-libitum alcohol exposure model rather than direct dosing of dams. Although the trajectories of alcohol consumption were not statistically different between groups, this introduces more variability into alcohol exposure patterns, and might might impact offspring methylation data”

      • Lines 172 - please be more specific about the neurocognitive domains tested.

      In the revision we have included more detail about the neurocognitive domains tested (originally mentioned in the results) in the methods as follows:

      “These tests included the open field test (locomotor activity, anxiety) (38), object recognition test (locomotor activity, spatial recognition) (39), object in place test (locomotor activity, spatial recognition) (40), elevated plus maze test (locomotor activity, anxiety) (41), and two trials of the rotarod test (motor coordination, balance) (42)”

      • Line 191 - please report the tissue type used in the human study, as well as the method used to estimate cell type proportions.

      We stated in the results section that buccal swabs were used in both human cohorts.

      We added to the revised manuscript that cell type proportions were estimated using the EpiDISH R package.

      • Related to validation, it is unclear whether the human-identified DMRs were also validated in mice, or if the authors are showing their own DMRs. Please also discuss why DMRs might not have been replicated in AQUA.

      We used human data sets to validate observations from our murine model, focusing on regions identified in our early moderate PAE model. This is now explicitly state on line 209 of the revision:

      “We undertook validation studies by examining PAE sensitive regions identified in our murine model using existing DNA methylation data from human cohorts to address the generalizability of our findings.”

      “In the section entitled ‘Candidate Gene Analysis..’ we used our murine data sets to reproduce previously published associations that included regions identified in both animal and human studies. We posit the lack of replication of our early moderate PAE regions in AQUA is explained in part by species-specific differences and considering the striking differences in effect size seen in regions that did replicate in FASD subjects, the exposure may need to be of sufficient magnitude and duration for the effects seen in brain and liver to survive reprogramming in the blood. The AQUA cohort is largely enriched for low to moderate patterns of alcohol consumption.

      • Line 197 - please provide a citation for the ethanol-sensitive regions. There are also several existing DNAm analyses in brain tissues from animal models that should be included as part of these analyses, as several have shown brain-region and sex-specific DMRs related to prenatal alcohol exposure. These contrasts might help the authors further delineate the effects of prenatal alcohol in their model and expand on current literature to explain the deficits caused by alcohol exposure.

      Our candidate gene/region selection was informed by a systematic review of previously published human and animal studies reporting associations between in utero exposure to PAE and offspring DNA methylation. We synthesized evidence across several models, tissues and methylation platforms to arrive at a core set of reproducible associations. Line 481 of the methods now includes a citation to our systematic review which details our selection criteria.

      Discussion

      • Line 211 - This is a strong statement for one hypothesis. It is also possible that different cell types have similar responses to prenatal alcohol exposure. In this scenario, perturbations need not arise before germ layer separation. The authors should soften this causal statement.

      We appreciate this point although given the genome size relative to the size of the DMRs we have detected, the chance that different cell types would respond similarly in exactly the same regions seems exceedingly rare. We posit a more likely explanation is early perturbations in the embryo are established stochastically as a result of the exposure (supported by the interventional design) and maintained in the differentiating tissues. We agree further work is needed to prove this, specifically in a wider set of tissues from multiple germ layers so we have amended the discussion as follows:

      “These perturbations may have been established stochastically because of alcohol exposure in the early embryo and maintained in the differentiating tissue. Further analysis in different germ layer tissues is required to formally establish this.”

      • Lines 222-224 - I completely agree with this statement. However, the authors had the opportunity to examine dosage effects in their model as they measured alcohol-levels from the dams. At the very least, I would recommend sensitivity analyses in their DMRs to assess whether alcohol level/dosage influences their results.

      Although a great suggestion to improve the manuscript, we did not have opportunity to examine dosages by design as we selected mice for genome analysis with matched exposure patterns. It would be fascinating to conduct a sensitivity analysis.

      Methods:

      • Please include the lysis protocol.

      Thank you for picking up this error in our reporting. We have now included the following details in the methods which improve the reproducibility of this study: “Ten milligrams of tissue were collected from each liver and brain and lysed in Chemagic RNA Tissue10 Kit special H96 extraction buffer”.

      • Please include the total reads for each sample and details of the QC pipeline, including filtering flags, quality metrics, and genome build.

      Thank you for suggesting improvements to our reporting which improve the reproducibility of this study. We have included a new supplementary tableTab of sequencing statistics and details of the quality metrics. Please note the genome build is explicitly stated in the methods already.

      • Please make your code publicly available to ensure that these analyses can be replicated.

      Thank you for this suggestion. A data availability statement has now been included in the revision and code will be made available upon request

      • Why were Y chromosome reads included in the dataset?

      Y chromosomal reads were not included in the DMR analysis. Amended “We filtered the X chromosomal reads” to “We filtered the sex chromosomal reads” in revised manuscript.

      • Please provide the number of total CpGs available for analysis.

      Added sentence into results section of revised manuscript: “A total of 21,842,961 CpG sites were initially available for analysis.” We also clarified that the ~19,000,000 CpGs were analysed following coverage filtering.

      • Please provide the parameters for the DMR analysis and report how the p-values and deltas were calculated.

      We have addressed this in previous comments

      • The supplemental materials for the human data are missing.

      Thank you for picking up this oversight. The revision now includes an additional data supplement which details the analysis of the human data sets for interested readers.

      Tables and figures

      • Table 1. It is not clear how the DMRs for this table were selected. The exact p-values and FDR should also be reported in this table. The number of CpGs in these DMRS should also be reported.

      Table 1 includes select DMRs that were consistently detected in both brain and liver tissue. These are particularly of interest as they represent regions highly sensitive to alcohol exposure. We agree that exact reporting of p-values would be ideal. Instead of a single p-value for the whole DMR, DSS uses the area statistic to rank candidate regions and control the false discovery rate (FDR) through shrinkage estimation methods. In the revision we have now included region size and number of CpGs in table 1.

      • Table 3. Please include p-values for the DMR analyses.

      As above we report the area-statistic which is an equivalent measure to assess evidence for differential methylation.

      • Figure 2 (Figure 4 in revised manuscript). Please report the N for these analyses. It also seems that the pairwise t-tests were only compared to the H20-NC, which does not provide much insight into the PAE group. The relevance of the sexP analysis to the present manuscript is also unclear.

      Figure 2 is now Figure 4 in the revision and the sample size has been included in figure legend. We compared all groups to the control group (H20-NC) as we aimed to determine any differences in intervention groups from the control.

      We apologies for lack of clarity around the ‘sex P’ terminology. This refers to the p-value for the main effect of sex on the behavioural outcome. We agree it lacks relevance since the regression models were adjusted for sex. In the revision we have updated the methods as follows (line426) and removed references to sex P

      “To examine the effect of alcohol exposure on behavioural outcomes we used linear regression with alcohol group (binary) as the main predictor adjusted for diet and sex.”

      • Figure 3ef (Figure 2ef in revised manuscript). It is unclear how the regions random regions were generated. A permutation test would be relevant to determine whether there are any actual enrichment differences.

      As stated in methods section: “DMRs were then tested for enrichment within specific genic and CpG regions of the mouse genome, compared to a randomly generated set of regions in the mouse genome generated with resampleRegions in regioneR, with equivalent means and standard deviations.”

      • Figure 5. Please include the gene names for these DMRs, as well as their genomic locations. It would also be relevant to annotate these plots with the max, min, and mean delta between groups.

      Thank you, we considered this however the DMRs are not in genes so we cannot apply a gene label. The locations are reported on the x-axis and the statistics are shown in Table 3.

      • Figure S1b and S2c- It is quite worrisome that the PAE-HMD group drank less throughout pregnancy than their PAE counterparts. Please discuss how this was addressed in the analyses.

      We appreciate the reviewer's concern regarding the lower alcohol consumption in the PAE-HMD group and its potential impact on DMRs. We agree that consistent in-utero exposure is crucial for reliable results. Although the total amount of liquid consumed over pregnancy was lower in this group, they started with a lower baseline and the trajectory was not statistically different compared to other groups.

      We have now incorporated this into the discussion section of the revised manuscript on lines 336: “Additionally, we employed an ad-libitum alcohol exposure model rather than direct dosing of dams. Although the trajectories of alcohol consumption were not statistically different between groups, this introduces more variability into alcohol exposure patterns, and might might impact offspring methylation data.”

      • Figure S1cd. See my comments about Figure 2.

      Suggested changes have been incorporated.

      • Figure S2d. it is not clear to what the statistics presented in this panel refer. Please clarify and discuss the implications of dietary intake differences on your findings.

      Added sentence to caption in revised manuscript: “Statistical analysis involved linear mixed-effects regression comparing trajectories of treatment groups to H2O-NC baseline control group.”

      • Figure S3. See my comments about Figure 2.

      Suggested changes have been incorporated

      • Figure S4. I am confused by the color legend, as it seems both colors are PAE. I also do not see how any regions show increased or decreased DNAm in PAE based on this plot (also no statistics are presented to support these conclusions).

      The plot is intended to show there are no gross changes in methylation when averaged across all CpGs within different regulatory genomic contexts. Statistics are not included as it is intuitive from the plot that the means are the same. We have updated the figure legend which now reads

      “Figure S4. No evidence for global disruption of methylation by PAE. The figure shows methylation levels averaged across CpGs in different regulatory genomic contexts. Neither brain tissue (A & B), nor liver tissue (C & D) were grossly affected by PAE exposure (blue bars). Bars represent means and standard deviation.”

    1. Author Response

      eLife assessment

      We appreciate the assessment carried out by the editorial team at eLife. Therefore, we plan to review the methods section in order to make the statistical analysis more comprehensible for each of the displayed figures.

      Public reviews

      Reviewer 1

      We would like to express our gratitude to Reviewer 1 for providing a thorough summary of our work and highlighting its strengths. With regards to the weaknesses, we are committed to improve the manuscript by performing the necessary changes. First, we will specify the exact p-value in all cases.

      Regarding the discussion section, we acknowledge the feedback regarding its potential confusion. In line with the reviewer's suggestion, we will reduce the literature review and highlight our findings.

      Finally, for the preprint we did not include cofounders such as HIV infection and ethnicity as our study population did not exhibit viral infections and comprised only Hispanic individuals. We will make a more thorough description of the population of study and address these characteristics explicitly in both the methods section and the initial part of the results.

      Reviewer 2

      We appreciate and thank reviewer 2 for the commentaries. Although it is true that several papers have described the role of microbiome in COVID-19 severity, we firmly believe that our current work stands out.

      There is not much information related to this association in mediterranean countries, especially in the south of Spain. In addition, most of the studies only describe microbiota composition in stool or nasopharyngeal samples separately, without investigating any potential relationships between them as we do.

      (1) We agree with the reviewer idea of a limited sample size. We faced the challenge of collecting the samples during the peak of COVID-19 pandemia. Thus, doctors and nurses were overwhelmed and not always available for carrying out patient recruitment following the inclusion criteria. Despite these constraints, we ensured that all included samples met our specified inclusion criteria and were from subjects with confirmed symptomatology.

      In addition, our main goal was to identify whether severity of the disease could be assessed through microbiota composition. Therefore we did not include a healthy group. Despite not having a large N, our results should be reproducible as they are supported by statistical analysis.

      (2) We thank reviewer commentary, and since our original sentence may have lacked clarity, we intend to modify it to ensure it conveys the intended meaning more effectively.

      Nonetheless, we remain confident in the significance of our findings. Not only have we found correlation between microbiota and COVID severity, but we have also described how specific bacteria from each condition is associated with key biochemical parameters of clinical COVID infection.

      (3) We appreciate the feedback provided by the reviewer. In this case, we have performed 16S analysis due to its cost-effectiveness compared to metagenomic approaches. Furthermore, 16S analysis has undergone refinements that ensure comprehensive coverage and depth, along with standardized analysis protocols. Unlike 16S, metagenomic approaches lack software tools such as QIIME that facilitate standardization of analysis and, thus, reduce reproducibility of results.

      (4) We sincerely appreciate this insightful suggestion. simply listing associations between both microbiomes and COVID-19 severity could not be enough, we intend to discuss how microbiota composition may be linked to the mechanisms underlying COVID-19 pathogenesis in our discussion.

      (5) We are grateful for the constructive criticism and intend to rewrite our abstract to enhance clarity. Additionally, we will thoroughly review all figures and their descriptions to ensure accuracy and comprehensibility.

      Reviewer 3

      We acknowledge the annotations made by reviewer 3 and are committed to addressing all identified weaknesses to enhance the quality of our work. Our idea is to modify the methods section and figures to make them easier to understand.

      Specifically, in the case of Figure 1, we recognize an error in the description of the Bray-Curtis test. We appreciate the commentary and we will make the necessary changes. Moreover, there is another observation related to Figure 1 description. We are going to modify it in order to gain accuracy.

      For figure 2 we are planning to add a supplementary table showing the abundance of detected genus. Nevermind, we will also update the manuscript text to provide clarification on how we obtained this result.Regarding the clarification about "1% abundance," we want to emphasize that we are referring to relative abundance, where 1 represents 100%. To avoid confusion, we will explicitly state this in both the methods section and figure descriptions. Besides, it is true that the statistical test employed for the analysis is not mentioned in the figure description and we recognize that the image may be difficult to interpret. Therefore, we will modify the text and a supplementary table displaying the abundance and p values is going to be added.

      Furthermore, we agree with the reviewer's suggestion to investigate whether the bacteria identified as potential biomarkers for each condition are specific to their respective severity index or if there is a threshold. Thus, we will reanalyze the data and include a supplementary table with the abundance of each biomarker for each condition. We will also place greater emphasis on these results in our discussion.

      Finally, in response to the reviewer's suggestion, we are going to go through the nasopharyngeal-fecal axis part in the discussion. It is well described that COVID-19 induces a dysbiosis in both microbiomes.

      Consequently, we understand that the ratio we have described could be an interesting tool for assessing COVID severity development as it considers alterations in both environments. However, we acknowledge that there may be room for improvement in clarifying the significance of this intriguing finding and its implications.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This comprehensive study provides valuable information on the cooperation of Ikaros with Foxp3 to establish and regulate a major portion of the epigenome and transcriptome of T-regulatory cells. However, the characterization is incomplete in that incontrovertible evidence that these are intrinsic features regulating biological function and not outcomes of the inflammatory micro-environment of the genetically manipulated mice is missing.

      Public Reviews:

      This study investigates the role of Ikaros, a zinc finger family transcription factor related to Helios and Eos, in T-regulatory (Treg) cell functionality in mice. Through genome-wide association studies and chromatin accessibility studies, the authors find that Ikaros shares similar binding sites to Foxp3. Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibits Th1-like gene expression with abnormal expression of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. Further, two models of inflammatory/ autoimmune diseases - Inflammatory Bowel Disease (IBD) and organ transplantation - are employed to examine the functional role of Ikaros in Treg-mediated immune suppression. The authors provide a detailed analysis of the epigenome and transcriptome of Ikaros-deficient Treg cells.

      These studies establish Ikaros as a factor required in Treg for tolerance and the control of inflammatory immune responses. The data are of high quality. Overall, the study is well organized, and reports new data consolidating mechanistic aspects of Foxp3 mediated gene expression program in Treg cells.

      Strengths:

      The authors have performed biochemical studies focusing on mechanistic aspects of molecular functions of the Foxp3-mediated gene expression program and complemented these with functional experiments using two models of autoimmune diseases, thereby strengthening the study. The studies are comprehensive at both the cellular and molecular levels. The manuscript is well organized and presents a plethora of data regarding the transcriptomic landscape of these cells.

      Response: We thank the reviewers for their careful review and feedback on our manuscript. We appreciate that the reviewers and editors recognize the strength and comprehensive nature of our in vivo, cellular, biochemical, and genome-wide molecular studies, which are well-organized in the manuscript. The acknowledgment of the complementary functional experiments in two models of inflammatory disease is also encouraging.

      Weakness:

      The authors claim that the mice have no pathologic signs of autoimmune disease even at a relatively old age, yet mice have an increased number of activated CD4+ T cells and T-follicular helper cells (even at the age of 6 weeks) as well as reduced naïve T-cells. Thus, immune homeostasis is perturbed in these mice even at a young age and the eXect of inflammatory microenvironments on cellular functions cannot be ruled out. Further, clear conclusions from the genome-wide studies are lacking.

      Response: We agree with the reviewers' comment regarding the absence of overt autoimmune pathologies in Ikzf1-fl/fl-Foxp3-Cre+ mice, despite the increased frequency of activated CD4+ T cells, TFH cells, and apparent perturbation of lymphocyte homeostasis, even at a young age. It is noteworthy that while Ikaros is implicated in various autoimmune diseases, our specific mouse model in which Ikaros expression is lost only in Tregs, may not lead to a strong autoimmune phenotype in part due to the controlled environment of an extra-clean, pathogen-free animal facility. This aligns with a related study by Ana et al (2019, J. Immunol: doi:10.4049/jimmunol.1801270) in Ikzf1-fl/fl-dLck-Cre+ mice with loss of Ikaros expression in all mature CD4+ T cells, including Tregs, that exhibit no overt signs of overt autoimmune disease. Moreover, our transcriptomic studies reveal that increased expression of inflammatory genes in Ikzf1-deficient Treg is coupled with the simultaneous upregulation of genes with positive roles in Treg function. This balance suggests a compensatory mechanism within Ikaros-deficient Tregs that maintains their suppressive function until encountering an inflammatory immune challenge, which eventually leads to loss of Treg suppressive function in Treg-specific Ikaros-deficient mice. Our studies clearly show that Ikaros has cell-intrinsic eXects in Treg that also lead to cell-extrinsic eXects mediated by secreted factors that are likewise regulated by Ikaros. This can be said about the function of any transcription factor in any cell type. Our data clearly support the conclusion from the genome-wide studies that Ikaros plays a major role in establishing the active chromatin landscape, gene expression profile, and function of regulatory T cells in mice.

      The following recommendations consolidate the views of the three reviewers of the manuscript.

      The experiments suggested and, in some instances, fresh analysis, are thought necessary, so that the evidence of Ikaros-Foxp3 interactions regulating T-regulatory cell biology is comprehensive and solid. We hope the comments are useful to strengthen the comprehensive analysis reported in this submission.

      The primary concern is that the indications of inflammation in the mice (see points 1 & 2 below) do not reflect in the experiments or consequent conclusions. The gap in the data should be addressed by testing these interactions in an appropriate context for which suggestions are included.

      Please note that the title of the manuscript may be modified to reflect the use of mice as the system of study for this work.

      (1) The evidence of inflammation (increased CD4 and T follicular cells) reported in the work requires new experiments to rigorously examine the relationship between Ikaros and Foxp3 to rule out the possible impact of the (inflammatory) microenvironment of the mice (Please see: Zemmour et al., Nat. Immunology 22, 607, 2021). Two possible experimental systems in mice are suggested.

      a) The use of heterozygous female mice, which should be phenotypically normal due to the presence of 50% normal Treg. Or,

      b) The generation of bone chimeras between wild-type and deficient mice using congenic markers.

      Response: We agree that immune dysregulation that develops in the mice with age or during an inflammatory insult due to loss of Ikaros function in the Treg lineage is an important part of the phenotype of the animals. Our studies show that loss of Ikaros function in Treg influences the gene expression program such that Treg now produce inflammatory cytokines and ligands capable of engaging receptors expressed on Treg and other cells. This likely results in autocrine and paracrine signaling that induces further metabolic and gene expression diXerences not observed in wild-type mice. Indeed, we report in the manuscript that a sizable fraction of the diXerentially expressed genes do not appear to be direct Ikaros targets, but rather are downstream of Ikaros target genes such as Il2, Ifng, Notch, and Wnt. The mosaic experiments suggested will be a useful topic of future studies. Importantly, we argue that no gene expression study involving modulation of transcription factor activity in an organism- or cell-based system can be designed to measure only the direct eXects of that transcription factor in a manner isolated from any indirect, downstream eXects on the expression of other genes. We suggest that our current data remain highly valuable, as they reveal real and relevant biology in physiologic in vivo systems that do not depend upon the use of heterologous models. The fact that loss of Ikaros has an eXect not only on its direct targets, but on gene programs driven in turn by the indirect eXects of Ikaros-regulated factors, has been acknowledged in the manuscript.

      (2) Figs. 7 and S5 show accumulation of CD4 cells (activated, memory, Tfh, Tfr) in LNs and spleens of the Ikaros KO over time. This is accompanied by elevated Igs but without overt autoimmune disease. KO Tregs had equivalent suppressive activity as WT Tregs against WT TeX in vitro. However, TeX from KO mice were resistant to the suppressive eXects of WT or KO Tregs. The authors interpret this as due to the increased percentage of memory cells within the KO TeXs, although they did not formally prove this point. Figs. 9 and S6 show that Ikaros KO mice are unable to be tolerized for cardiac allograft survival using two diXerent standard tolerogenic regiments. The rejecting allografts are accompanied by increased T-cell infiltration and upregulation of inflammatory genes. The authors suggest there is increased alloantibody, but alloantibody does not seem to have been measured.

      Response: We are currently exploring in more detail the dysregulation of humoral immunity in the Ikzf1-deficient Treg model and plan to report these results in a future study.

      (3) Linked to the above, a comparison of the chromatin occupancy of Ikaros in resting and activated Tregs would inform on whether and how Ikaros occupancy changes with the activation status of Tregs. Since the authors use in vitro stimulation for RNAseq and ATAC seq, ChIP seq analyses under these matching conditions will greatly add to the quality of the study. Since "Foxp3-dependent", ie. diXerential gene expression in the Foxp3GFPKO cells (PMID: 17220874) gene expression has been shown to be not entirely the same as Treg signature (i.e. gene expression or Tregs compared to Tnv), it will be worth correlating Ikaros, Foxp3 co-occupied genes and the corresponding fate of their expression with Foxp3-dependent and independent Treg signature gene sets.

      Response: The prior study by Gavin et al. referred to above used duplicate samples instead of the standard three or more replicates required for a robust diXerential analysis of gene expression. The two samples in this study are variable, and no statistically significant diXerential gene expression was found between the experimental groups when we subjected these data to current analysis methods. For this reason, we have elected not to compare these prior data with our current data, which are robust, reproducible, and analyzed using current statistical methods. Furthermore, the mice used for the prior study develop a fatal inflammatory disease (scurfy) and therefore the Treg examined in this study would be subject to a much stronger extrinsic inflammatory environment than the Treg in our study, as our mice show no overt disease even with age.

      Further, the consequence of the cooperation between the two transcription factors that can be inferred from the experiments in the study remains unclear. It is suggested that the authors could first consider the ChIP seq data from Foxp3, Ikaros co- and diXerentially occupied genes, and then correlate with the ATAC seq and gene expression data to comment on the consequence of this cooperation.

      Response: We find that Ikaros binding at a given region has a strong eXect on accessibility, as reported in the manuscript, but that Foxp3 occupancy has less consequence, consistent with a prior study suggesting that Foxp3 largely utilizes the open chromatin landscape already present in the conventional CD4 T cell lineage (PMID:23021222). Our data suggest that the dominant eXect of Ikaros on Foxp3 is at the level of chromatin occupancy.

      (4) In the comparative analyses of Ikaros and Foxp3 co-occupied regions and gene expression outcome, the authors mention "A total of 4423 Foxp3 binding sites were detected in the open chromatin landscape of wild-type Treg (Supplementary Table 9), and this ChIP-seq signal was enriched at accessible Foxp3 motifs." It is unclear whether the authors focused on the ATAC seq data and only examined the open chromatin regions for this analysis. In that case, it is unclear why. More so because the Ikaros footprint is more apparent in regions where accessibility is reduced upon deletion of Ikaros.

      Response: Foxp3 has been shown to bind primarily at open chromatin shared between Tconv and Treg, unlike the pioneer activity of other Fox family members (PMID: 23021222, biorXiv https://www.biorxiv.org/content/10.1101/2023.10.06.561228v2.full.pdf). Consistent with this, we found the majority of peaks were in open chromatin. The motif analysis is quantitative, not binary, and takes into account Foxp3 binding sites at regions considered open in either condition, which is why we can see enrichment of Foxp3 motifs at sites going from more open to less open in the absence of Ikaros.

      (5) Comments on figures:

      The authors use MFI repeatedly in many of the figures for quantitation of antigen expression. This is misleading as several of the target antigens are normally expressed on a subpopulation of cells, e.g., Eos. Percent positive and MFI would be more relevant. Cytokine production should be presented by intracellular staining (e.g., IL-2, IFNg) as Elisa data does not allow one to determine the percentage of abnormally producing cells.

      Response: We show both ICS and ELISA in this paper, preferring ELISA because it is much more quantitative than ICS.

      Suppl. Fig. 1c - the panels do not correspond precisely to the legend or the text. At least one panel is missing. In Supp fig 1c, the authors plotted eXector Tregs, which are by definition CD62LloCD44hi, but the Y axis says CD44hiCD62Lhi. Is this a typo? Also on page 4, describing this data the authors mentioned Tfr, but the data is not shown in the Supp fig 1c.

      Response: We thank the reviewer for catching these mistakes. We have corrected the typo in the figure panel for Supplementary Figure 1c. Follicular Treg data are indeed presented in Figure 7h, not Supplementary Figure 1, and we have corrected the text.

      Fig. 2, which lists the diXerent categories of diXerentially expressed genes, it will be helpful if the authors add two columns indicating fold change and FDR values.

      Response: These values are included in Table S1

      Fig. 3c, the resolution of the histograms in the inset should be enhanced.

      Fig. 3d, a histogram of representative CTV dilution plots, and an explanation of how the quantifications were done may be included.

      Fig. 3e - not well labeled. Are these fold changes? Enrichments? Number of gene elements within the GO term that are aXected? Something else?

      Fig. 3f - presented out of sequence. The data are a little hard to understand as the color scale is so subtle and the colors so close to one another that it is not entirely clear which gene expressions are increased vs decreased. Other than the simple statement that the Ikaros KO causes numerous changes, there does not seem to be a more consistent message from this data panel.

      Fig. 4a, in addition to the bar graphs, it will be better to show the plots in a histogram, gated on Foxp3+ Tregs in WT and KO groups, with representative MFI indicated on top. The resolution of the scatter plots in this figure, as well as some others throughout the manuscript, may be improved. Please increase the resolution wherever necessary.

      Fig. 4b should include representative plots for cytokine production gated in Tconv (CD4+Foxp3-) cells.

      Figs. 5a-h, S2-3a-d, and Suppl. Tables S4-8 show a comprehensive ATAC-seq and ChIP-seq analysis of genes and chromatin occupied or regulated by Ikaros, comparing Tconv vs Treg, stimulated vs naïve, and WT vs KO cells. It is a comprehensive tour-de-force analysis, again showing the major eXects of Ikaros on the entire Treg landscape of gene regulation.

      Fig. S5h-j should be explained or labeled in more detail. The fonts are too small to read, even at 200% magnification; and the cell and gene comparisons are not entirely clear.

      Supp. Fig. S3e is not referred to in the text.

      Fig. S4a is very diXicult to read; the font and plotted points are too small.

      Response: We have improved the clarity of the figures where necessary. We also indicate in the figure legends that full gene lists are to be found in the supplementary tables.

      Page 8, "Regions that exhibit reduced accessibility in Ikzf1 cko compared to wild-type Treg are enriched for the binding motif for Ikaros and the motif for TCF1 (Figure 5g).... ". Is this Fig. 5i or 5g?

      Response: This statement is correct and is referring to data depicted in Figure 5g.

      In Fig 6e, Flag-Ik7 is not visible in any of the inputs. The co-IP between Foxp3 and Runx1 (presumably a positive control) is not eXicient in this experimental condition. Co-IP experiments performed in primary cells upon retroviral transduction of the tagged proteins to confirm observations in cell lines are suggested.

      Response: Runx1 is shown to co-precipitate with Foxp3 as expected, although the band is not intense, and the data depicted are representative of 3 experiments. Ik7 was included in this transient transfection experiment as a redundant control, and the referee is correct that Ik7 did not express well in this experiment and cannot be seen in this exposure. We showed these blots intact in the spirit of not digitally altering the data, and because the low Ik7 expression did not impact our ability to demonstrate specific co-precipitation of Foxp3 with full length Ikaros (Ik1). The images include nearly the entire mini-blots, and we have added molecular weight markers for clarity. As indicated in the legend, the cytokine and ChIP data in 6f are from a separate model of retrovirally Foxp3/Ik7transduced T cells that we and others have used in multiple prior studies (e.g. Thomas JI 2007, Thomas JI 2010). The interpretability of these experiments is not impacted by the transient transfection data from figure 6e. It should be noted that a prior study by Rudra et al. that is cited and referred to in the manuscript used a similar approach to also establish that Foxp3 and Ikaros form a complex in cells.

      In Fig 6f, the authors state that Foxp3 overexpression in CD4 cells results in promoter occupancy of both IL2 and IFNg, however, data shows only IL2. Also in 6f, Foxp3 overexpression reduces IL2 and IFNg secretion, measured by ELISA, which is recovered by IkDN. However, the eXect of Foxp3 along with WT Ikaros (which should not modulate, and if anything, further repress IL2, IFNg production) is not shown.

      Response: The reviewer is correct that ectopic expression of Ikaros leads to repression of cytokine gene expression, which we and others have shown in prior studies. Because the focus of this study was on loss of Ikaros function in Treg, we did not elect to overexpress full-length Ikaros. However, we completely agree that Ikaros GOF in Treg is an important topic for future studies.

      Fig. 7e-g, how is %suppression calculated? Can representative CTV dilution plots for the suppression assays be shown?

      Response: Cell division was quantified as described previously (see ref 50), and percent suppression represents the reduction in cell division measured by Tconv in the presence of Treg compared to in the absence of Treg. This has been clarified in the methods section.

      In Fig 8 and the supplementary figures the representative colon pictures (Fig. S6a-c) do not show convincing diXerences in colon morphology even though all the other histology and clinical parameters are clear. Are the figures mislabeled?

      In Fig 8c-e and other histology figures scale bars should be shown.

      Fig. 8c-e, the Alcian blue staining among the groups appears similar; perhaps this is due to the low power magnification.

      Response: We have edited this figure for clarity

      Additional comments:

      Fig 10 is explained in the discussion section for the first time. The authors may want to consider including this when introducing Ikzf1 ChIPseq data for the first time in the study.

      Response: The reviewer raises a valid point but we have elected to retain the current organizational structure of the manuscript.

      A more complete characterization of the activated conventional cells including both CD4+ and CD8+ T cells for cytokine production during aging may be considered, as it is highly likely that abnormalities in cytokine production will be observed.

      Response: We agree and are planning additional such experiments in future studies focusing on in vivo models of tolerance.

      The failure of suppression of T cell proliferation which the authors claim is due to the presence of activated memory T cells can be better documented by using naive responder cells from the cKO mice.

      Response: We agree and are planning additional such experiments in a future study focusing on further aspects of cellular immunobiology impacted by Ikaros, but we will give preference to in vivo models of tolerance in such studies.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (recommendations for the authors):

      Additional suggestions for improvement are noted below:

      (1) Additional 1. Lns 261-262, as well as abstract: The term 'aerobic fermentation' is not accurate in the context of this manuscript. This terminology should be reserved for conditions where lactate production is observed under optimal aerobic conditions. This is not the case in this study. More lactate was observed in the agr mutant only when cells were grown under microaerobic conditions, where some level of fermentation would be expected to be active (esp. if nitrate is not provided in media).

      We modified the text by deleting reference to the “aerobic” fermentation as suggested by the reviewer:

      Line 93 (abstract): “Deletion of agr increased both respiration and aerobic fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency.”

      Line 184: “Collectively, these data suggest that Δagr increases respiration and aerobic fermentation to compensate for low metabolic efficiency.”

      (2) Additionally, the authors' statement, 'The tendency of Δagr cells to forgo the additional ATP yield from acetate production in favor of NAD+-generating lactate (23, 24) underscores the importance of redox balance in Δagr cells,' appears contradictory to the data presented in Fig 5, where the Δagr mutant demonstrates an approximately threefold increase in acetate production during exponential growth compared to the wild-type strain. A clarification or adjustment in the manuscript may be necessary to ensure consistency and accurate interpretation.

      In glucose-fermenting S. aureus, pyruvate can serve as an electron acceptor, generating lactate from lactate dehydrogenases. Acetyl-CoA production proceeds via the pyruvate formate-lyase reaction, which converts pyruvate to formate rather than CO2 and thus does not consume oxidized NAD+. Thus, at a general level, the tendency of fermenting cells to forgo the additional ATP yield from acetate production in favor of NAD+-generating ethanol synthesis underscores the importance of redox balance when respiration is suboptimal. This is especially true for fermenting Δagr strains, as evidenced by increased lactate production compared to their relatively ATP replete wild-type parental strains. However, in the interest of clarity, we removed the sentence in question, because it is not necessary and potentially confusing, and because the additional context it requires would detract from the manuscript by disrupting its sense of narrative and brevity.

      (3) Ln 277-285: There still are errors in how this paragraph is worded. What the authors stated in the 'response to the reviewers' (question 13) and the changes they made in the text are different. Here again, the response to question 13 suggested the following, "Collectively, these observations suggest that a surge in NADH production and reductive stress in the Δagr strain induces a burst in respiration, but levels of NADH are saturating, thereby driving fermentation in the presence of oxygen." That bit of it where the authors suggest that fermentation was activated because NADH was saturating is only true under microaerobic conditions and not under oxygen rich conditions.

      Reviewer #1 (comment under Review): Data presented in Figure 5 suggest the opposite - a surge in NADH accumulation leading to a decrease in the NAD/NADH ratio, rather than a surge in the 'consumption' of NADH. Clarifying this point in the manuscript would ensure accurate representation of the findings.

      Responses to Comments 3 and a comment in the Review have been combined.

      Line 280: We thank the Reviewer for their attention to detail in picking up our error in response to question 13 related to the difference in the revised text and “response to reviewers”. We modified the text accordingly.

      “Microaerobic conditions and “consumption”: We have modified the wording and fixed the error with respect to “consumption” as pointed out by the reviewer (strikethrough/underlined):

      Line 285: “Collectively, these observations suggest that a surge in NADH consumption accumulation and reductive stress in the Δagr strain induces a burst in respiration, but levels of NADH are saturating, thereby driving fermentation under microaerobic conditions in the presence of oxygen.”

      Reviewer #2 (recommendations for the authors):

      (1) The authors are requested to revise 'we expected a lower NAD+/NADH' in line 280 to 'we expected a higher NAD+/NADH.' Additionally, what was the glucose concentration in TSB media?

      NAD+/NADH: We thank the Reviewer for their attention to detail in picking up our error. Our responses to Reviewer 1, Comment 3 above addresses this issue.

      Glucose: We modified the Methods as suggested.

    2. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (recommendations for the authors):

      The following are comments that the authors may wish to address or clarify:

      (1) The claim that respiration and fermentation occur concurrently in the agr mutant during aerobic growth is not strongly supported by the evidence presented…. However, since neither lactate production nor a difference in the NAD+/NADH ratio between the wild type and agr mutant was observed, it is challenging to assert that fermentation is occurring. Relying solely on a gene expression signature indicative of fermentation is, in my view, inadequate to conclusively establish that aerobic fermentation is taking place.

      Lactate production. The data we provide in Figure 5-E of the original manuscript (Figure 5-C in the revised manuscript) indicates that lactate production is lower in the wild-type compared to the Δagr mutant.

      The exact focus of Reviewer 1’s concern is not clearly specified, but may have been referring to how the result was described in the text:

      “Although the stimulatory effect of the agr deletion on production of the fermentation product lactate was not observed in optimally aerated broth cultures after growth to late exponential growth phase, it was confirmed for organisms grown in broth under more metabolically demanding, suboptimal aeration conditions (Figure 5E). Overall, these results are consistent with transcription-level up-regulation of respiratory and fermentative pathways in agr-deficient strains.”

      The greater sensitivity of suboptimal aeration conditions is unsurprising and relates to a low rate of fermentation during the vigorous aeration (shaking at 250 rpm) conditions commonly used to grow S. aureus. To clarify the point, we modified the text to provide additional context as follows:

      Line 271: “Although the stimulatory effect of the agr deletion on production of the fermentation product lactate was not observed in optimally aerated broth cultures after growth to late exponential growth phase, it was confirmed for organisms grown in broth under more metabolically demanding, suboptimal aeration conditions (limitations in the rate of respiration when oxygen is limiting are expected to increase overall levels of fermentation) (Figure 5C). Overall, these results are consistent with transcription-level up-regulation of respiratory and fermentative pathways in agr-deficient strains.” NAD+/NADH ratio. Extended studies of the NAD+/NADH ratio, requested by Reviewer 1 under Comments 12 and 13, document an effect of the Δagr mutant not seen in Figure 5F in the original submission. Our responses to Comments 12 and 13 below address this issue.

      (2) The mechanisms through which the ΔagrΔrot double mutant resists H2O2 are not clearly elucidated. While the authors suggest that the ΔagrΔrot double mutant expresses several genes involved in combating oxidative stress, essential genetic studies that would validate this hypothesis have not been conducted.

      The data we provide indicate 1) that wild-type strains are tolerant to peroxide and 2) that wild-type strains are able to render inducible several known reactive oxygen species (ROS)-protective genes in the presence of peroxide in a rot-dependent manner. Δagr strains, which do not demonstrate this response, are more readily killed by peroxide. Additional data indicate that increased respiration caused by deletion of agr is associated with increased endogenous ROS. Higher levels of endogenous ROS can modulate tolerance to subsequent challenge by ROS (1). Collectively, these observations support a model of Δagr-induced hyper-susceptibility in which elevation of endogenous ROS results in a suboptimal ROS-defense response that plays a role in increased peroxide lethality.

      We prefer to test this model in future studies directed at understanding the complexities of the interaction among agr-mediated tolerance, endogenous ROS levels, and induction of protective responses in S. aureus. Culprit protective genes, alone and in various combinations, will be inactivated in Δagr mutant and wild-type strains, tested in killing assays with and without agents that mitigate endogenous ROS, and subjected to RNAseq, proteomic, and metabolomic analyses, as part of a larger program to identify factors involved in S. aureus tolerance to lethal stress.

      To clarify the issue raised by the reviewer we altered the wording in the following sentences as follows:

      Line 335: “Elevated expression of protective genes suggests that the double mutant survives damage from H2O2 better because protective genes are rendered inducible (loss of Rot-mediated repression).”

      Line 440: “Details of agr-mediated protection are sketched in Figure 10. At low levels of ROS, agr is activated by a redox sensor in AgrA, RNAIII is expressed and represses the Rot repressor, thereby rendering protective genes (e.g., clpB/C, dps) inducible via an unknown mechanism (induction, candidate protective gene(s), and their connection to endogenous ROS levels are being pursued, independent of the current report).

      (3) The reason behind the agr mutant's low metabolic efficiency, as evidenced by low levels (Fig 5A) despite enhanced respiration and acetate production, is not clearly explained. Could insights from the modeling shed light on why the ATP levels are low in the agr mutant?

      Comparative modeling of central metabolic pathways, in combination with in vitro metabolic analyses of Δagr and wild-type strains, revealed the metabolic inefficiency but cannot explain it. The basis for the metabolic inefficiency conferred by agr inactivation is unknown. The possibility that aberrant sorting of cell wall surface proteins could lead to metabolic inefficiency was raised in the Discussion where we wrote:

      “Our work supports this idea by showing that increased respiration caused by deletion of agr is associated with increased ROS-mediated lethality. The basis for the metabolic inefficiency conferred by agr inactivation is unknown. Given that Δagr mutants are unable to downregulate surface proteins during stationary phase (2, 3), it is possible that deletion of agr perturbs the cytoplasmic membrane or the machinery that sorts proteins across the cell wall. In support of this notion, jamming SecY translocation machinery of E. coli results in downstream events shared with antibiotic lethality, including accelerated respiration and accumulation of ROS (4). In this scenario, the formation of a futile macromolecular cycle may accelerate cellular respiration to meet the metabolic demand of unresolvable problems caused by elevated surface sorting.”

      For clarification, we modified the text as follows:

      Line 461: “Our work supports this idea by showing that increased respiration caused by deletion of agr is associated with increased ROS-mediated lethality. How agr deficiency is connected to the corruption of downstream processes that result in metabolic inefficiency and increased endogenous ROS levels is unknown. Given that Δagr mutants are unable to downregulate surface proteins during stationary phase (2, 3), it is possible that deletion of agr perturbs the cytoplasmic membrane or the machinery that sorts proteins across the cell wall.”

      agr has been linked to defects in peptidoglycan autolysis (5). Cho et al. (2019) found that β-lactam treatment can induce a futile cycle of peptidoglycan synthesis and degradation that has been linked to increased production of endogenous ROS (6). Thus, an alternative, nonmutually exclusive route to a futile cycle and elevated endogenous ROS levels in agr-deficient cells other than surface protein dysregulation may be via decreased cell wall cross-linking. We prefer not to include this and other speculations, because they are not necessary or revealing and because they would detract from the manuscript by disrupting its sense of narrative and brevity.

      (4) The observation that menadione can protect the agr mutant from H2O2 is perplexing. The authors propose that even though menadione generates superoxide through redox cycling, this superoxide might inhibit the TCA cycle, thereby restricting respiration, which could be advantageous for the agr mutant. To substantiate this hypothesis, it would be imperative to demonstrate that a double mutant ΔagrΔacnA exhibits long-lived protection against H2O2.

      Rowe et al. (2020) definitively showed that a burst of menadioneassociated ROS inactivates the TCA cycle in S. aureus, leading to reduced respiration and ATP production (7). Both aconitase activity and ATP levels in menadione-treated cultures were complemented by the antioxidant N-acetyl cysteine. In the present work we demonstrate, using the same experimental conditions as Rowe et al., that menadione protected the Δagr mutant from peroxide killing but had little effect on the wild-type strain. Addition of N-acetyl cysteine in the presence of menadione restored H2O2 susceptibility to the Δagr mutant and had no effect on the wild-type. Collectively, these observations support the idea that menadione inactivates the TCA cycle, leading to reduced respiration, and increased protection of the Δagr mutant from peroxide killing.

      As requested, we tested whether the ΔagrΔacnA double mutant exhibits protection against H2O2. The new data we now provide (Figure 8—figure supplement 2A) show that a ΔacnA mutation completely protected the Δagr mutant from peroxide killing after growth to late exponential growth phase, but it had little if any effect on the wild-type strain. To evaluate long-lived protection, we compared survival rates of ΔagrΔacnA mutant and Δagr cells following dilution of overnight cultures and regrowth prior to challenge with H2O2, which revealed partial protection of the Δagr mutant (Figure 8— figure supplement 2B).

      We explained these results with the following:

      Line 351: “Rowe et al. (2020) showed that menadione exerts its effects on endogenous ROS by inactivating the TCA cycle in S. aureus. To determine whether this mechanism can also induce protection in the Δagr mutant, we inactivated the TCA cycle gene acnA in wild-type and Δagr strains (Figure 8—figure supplement 2). We found that ΔacnA mutation completely protected the Δagr mutant from peroxide killing after growth to late exponential growth phase but had little effect on the wild-type strain. This finding supports the idea that TCA cycle activity contributes to an imbalance in endogenous ROS homeostasis in the Δagr mutant, and that this shift is a critical factor for Δagr hyperlethality. When we evaluated long-lived protection by comparing survival rates of ΔagrΔacnA mutant and Δagr cells following dilution of overnight cultures and regrowth prior to challenge with H2O2, ΔacnA remained protective, but less so (Figure 8—figure supplement 2). These partial effects of an ΔacnA deficiency suggest that Δagr stimulates long-lived lethality for peroxide through both TCA-dependent and TCA-independent pathways.”

      (5) Figure 10 presents a model suggesting that Rot-mediated repression of respiration is essential for long-lasting resistance to H2O2 lethality. However, the connection between decreased respiration and long-lived resistance to ROS is not evident, especially considering that the respiration rate varies over the growth phase and does not seem to align with the long-lived and steady protection provided by agr. However, the authors could investigate this by examining whether inactivating qox in the agr mutant restores its resistance to H2O2. The experiments with menadione are not particularly persuasive, as menadione could have additional effects on the cells that are not accounted for.

      As requested, we tested whether the ΔagrΔqoxC double mutant exhibits protection against H2O2. qox deficiency was hyperlethal in wild-type and Δagr strains, even with the lowest concentration of H2O2 used in our assay. Indeed, surviving cells were undetectable, precluding comparison of survival differences between wild-type and Δagr mutant strains. This striking finding can be explained by prior work highlighting the profound and pleotropic effects of qox deficiency on metabolism that involve not only control of respiration but also participation in other physiological processes such as cell growth and morphological differences. For example, in Bacillus, qox deficiency decreases TCA cycle flux and increases overflow metabolism (8). Additionally, we confirmed prior work in S. aureus showing that qox deficiency decreases growth rate and yield (9, 10), dramatically increases production of pigment that functions as an oxidation shield, and decreases hemolytic activity (11). Moreover, we found that that qox deficiency results in a striking increase (~150%) in endogenous ROS in both wild-type and agr mutant cells, likely explaining the hyperlethality phenotype. Thus, interpretation of killing assay results must account for the complex and likely reciprocal interactions among Δqox-mediated metabolic changes, agrA-mediated redox sensing, and Δagrmediated changes in metabolism. Since killing data are not necessary or revealing without this information, we prefer to address the role of qox in future studies directed at understanding the complexities of the interaction among agr-mediated tolerance, endogenous ROS levels, and induction of protective responses in S. aureus.

      (6) The repeated use of the term 'agr wild type' throughout the text is somewhat distracting. It might be clearer to simply use 'wild type,' as it is implied that this refers to the agr+ genotype.

      We modified the text by replacing 'agr wild-type' with “wild-type” as suggested by the Reviewer.

      (7) In the text, the authors imply that the extended lag phase of the agr mutant is observed solely in nutrient-limited CDM. However, Figure 1 and Figure Supplement 3A reveal that the strains were actually cultivated in CDM supplemented with glucose and Casamino acids, which makes the medium rich in both carbon and nitrogen, in addition to other nutrients present in CDM. The authors should clarify the composition of the media used and assess whether the term 'nutrient-limited CDM' is accurate in this context.

      The extended lag phase of the Δagr mutant is observable in TSB but it is more easily appreciated in CDM, perhaps owing to a larger range of carbohydrates and other nutrient types (TSB a rich and complex medium for which the composition is unknown) and a higher concentration of glucose (2.5 mM versus 2.2 mM).

      For clarification, we modified line 135 as follows:

      Line 184: “Lag-time differences between strains were more obvious in experiments using less complex, chemically defined medium (CDM)…”

      (8) Figure 1 - Figure Supplement 3C represents the growth rate in terms of [OD/min]. However, it would be more accurate to calculate the growth rate (μ) based on the change in the natural logarithm of optical density (OD) relative to the corresponding change in time, using appropriate units (preferably, h⁻¹). Additionally, the method employed for measuring growth rates should be detailed in the Materials and Methods section.

      Our responses to Reviewer 2 Minor Comment 1 below address this issue.

      (9) The resolution of the inset charts in Figure 4B is poor, and the Y-axis lacks labels. The figure legend should also specify whether the flux distribution (represented by thick black arrows in Fig 4B) is predicted for the wild type or the mutant.

      We modified Figure 4B and the legend accordingly.

      (10) On Page 9, the term "RT-PCR" should be corrected to "RT-qPCR."

      We thank the Reviewer for their attention to detail in picking up our error. We modified text accordingly.

      (11) It is ambiguous whether the agr mutant is producing more acetate, based on the information provided in Figure 5B. Since the cells might have entered the post-exponential phase at 5 hours, they could start consuming acetate. Consequently, the elevated acetate concentration in the agr mutant might result from a delay in acetate consumption rather than increased production. To discern between the production and consumption of acetate, it is essential to measure acetate concentrations at earlier time points as well as the corresponding glucose concentrations in the media. This will help ascertain when the agr mutant enters the post-exponential phase. A similar concern also exists in the case of lactate (Fig 5E) since it is not clear when lactate was measured.

      As requested, we measured acetate levels at earlier time points (1, 2, 3, 4, h of growth). New Figure 5B shows that the Δagr mutant accumulated more acetate than the wild-type strain during exponential growth at 3 h, well before entry into postexponential phase (see growth curves in Figure 1—figure supplement 1).

      In the original report, lactate levels were measured at 4 h for organisms grown under suboptimal aeration conditions (see Reviewer 1, Comment 1). When we measured lactate accumulation at 3 h it remained higher in the Δagr mutant compared to the wildtype. Likewise, acetate levels at 3 h under suboptimal aeration conditions remained elevated in the Δagr mutant compared to the wild-type. These results support the idea that inactivation of agr promotes production rather than decreased consumption of acetate and lactate in the culture medium.

      (12) In Figure 5G-H, presenting the actual NAD+ and NADH values side-by-side would facilitate a more straightforward interpretation of the data by the readers.

      (13) On Page 9, the text states that respiration and fermentation lower the NAD+/NADH ratio. However, this seems contradictory as these processes would typically increase the NAD+/NADH ratio. Furthermore, it would be beneficial for the authors to provide supporting evidence for the statement made at the beginning of Page 10, which claims that there is greater consumption of NADH in the agr mutant.

      Responses to Comments 12 and 13 were grouped together.

      We thank the Reviewer for their attention to detail in picking up our error about the NAD+/NADH ratio. The ratio is expected to be elevated by increases in respiration and fermentation, not lowered, owing to increased consumption of NADH.

      Figure 5I in the submitted manuscript indicated a small but insignificant decrease in the NAD+/NADH ratio of the Δagr mutant. Thus, the NAD+/NADH ratio remained tightly bounded, but if anything was decreased, not increased.

      We explained this finding as follows:

      Line 284: “Collectively, these observations suggest that a surge in NADH production and reductive stress in the Δagr strain induces a burst in respiration and fermentation.”

      The NAD+/NADH ratio in Figure 5F of the submitted manuscript was calculated from NADH and total (NAD+/NADH) levels. As requested, we measured individual NAD+ and NADH concentrations. We found that the decrease in the NAD+/NADH ratio of the Δagr mutant was now large, significant, and largely due to a relative increase in NADH.

      We have included these new data in a revised Figure 5 in the revised version of the manuscript and clarify the relationship among the NAD+/NADH ratio, respiration, and fermentation in the Δagr mutant by modifying the wording of the text as follows:

      Line 280: “Since respiration and fermentation generally increase NAD+/NADH ratios and since these activities are increased in Δagr strains (Figure 5C and 5E-F), we expected a higher NAD+/NADH ratio relative to wild-type cells. However, we observed an increase decrease in the NAD+/NADH ratio due to a large surge in NADH accompanied by a modest drop in NAD+ compared to wild-type. Collectively, these observations suggest that a surge in NADH production and reductive stress in the Δagr strain induces a burst in respiration, but levels of NADH are saturating, thereby driving fermentation in the presence of oxygen.

      Reviewer #2 (Recommendations For The Authors):

      (1) The RNA-seq analysis revealed that the Δagr strain exhibited increased expression of genes involved in respiration and fermentation, suggesting enhanced energy generation. However, metabolic modeling based on transcriptomic data indicated a decrease in tricarboxylic acid (TCA) cycle and lactate flux per unit of glucose uptake in the Δagr mutant. Additionally, intracellular ATP levels were significantly lower in the Δagr mutant compared to the wild-type strain, despite the carbon being directed into an acetate-generating, ATP-yielding carbon "overflow" pathway. Furthermore, growth analysis in nutrient-constrained medium demonstrated a decrease in the growth rate and yield of the Δagr mutant. Given that S. aureus actively utilizes the electron transport chain (ETC) to replenish NAD pools during aerobic growth on glucose, supporting glycolytic flux and pyruvate dehydrogenase complex (PDHC) activity while restricting TCA cycle activity through carbon catabolite repression (CCR), it is suggested that the authors analyze glucose consumption rates in conjunction with the determination of intracellular levels of pyruvate, AcCoA, and TCA cycle intermediates such as citrate and fumarate. These additional experiments will provide valuable insights into the metabolic fate of glucose and pyruvate and their subsequent impact on cellular respiration and fermentation in the Δagr mutant.

      (2) The authors highlighted the importance of redox balance in Δagr cells by emphasizing the tendency of these cells to prioritize NAD+-generating lactate production over generating additional ATP from acetate. However, the results regarding acetate and lactate production in Δagr cells during aerobic growth suggest that carbon is directed towards acetate generation rather than lactate.

      Responses to Comments 1 and 2 have been combined.

      As requested, we measured glucose consumption and intracellular levels of several different metabolites in the wild-type and Δagr mutant strain. The results are consistent with the idea that increased acetogenesis and fermentation in Δagr mutant cells contribute to increased ATP production and NAD+ recycling, respectively. These two processes appear to be relatively favored over the flux of pyruvate carbon into the TCA cycle of the Δagr mutant.

      We explained our finding as follows:

      Line 288: “To help determine the metabolic fate of glucose, we measured glucose consumption and intracellular levels of pyruvate and TCA-cycle metabolites fumarate and citrate in the wild-type and Δagr mutant strains. At 4 h of growth to late-exponential phase, intracellular pyruvate and acetyl-CoA levels were increased in the Δagr mutant compared to wild-type strain, but levels of fumarate and citrate were similar (Figure 5— figure supplement 1D-E). Glucose was depleted after 4 h of growth, but glucose consumption after 3 h of growth (exponential phase) was increased in the Δagr mutant compared to the wild-type strain (Figure 5—figure supplement 1A). These observations, together with the decrease in the NAD+/NADH ratio and increase in acetate and lactate production described above, are consistent with a model in which respiration in Δagr mutants is inadequate for 1) energy production, resulting in an increase in acetogenesis, and 2) maintenance of redox balance, resulting in an increase in fermentative metabolism, lactate production, and conversion of NADH to NAD+. Increased levels of acetate compared to lactate under optimal aeration conditions suggests that demand for ATP is in excess of demand for NAD+.”

      Future work will compare additional extracellular and intracellular (e.g., formate, ethanol, acetoin) metabolites to test these and other models using a combination of approaches (e.g., mass spectrometry, nuclear magnetic resonance, genetic deletion studies, transcriptomics) and will determine the mechanisms underlying metabolic differences in wild-type and Δagr mutant strains.

      To maintain a sense of narrative we added a new subheading after the explanation of our findings:

      Line 311: “Transcriptional changes due to Δagr mutation are long-lived and result in down-regulation of H2O2-stimulated genes relative to those in an agr wild-type.”

      (3) The authors mentioned that respiration and fermentation typically reduce the NAD+/NADH ratios, and since these activities are elevated in Δagr strains (Figure 5F-G), they initially anticipated a lower NAD+/NADH ratio compared to wild-type agr cells. However, the increase in respiration and activation of fermentative pathways leads to a decrease in NADH levels, therefore resulting in an increase in the NAD+/NADH ratio.

      We have clarified the issue with new experiments and by modifying the wording as shown in the response to Reviewer 1 Comment 13.

      (4) To improve the clarity and completeness of this work, it would be advantageous for the authors to provide specific details regarding the glucose concentration in the TSB media and the aeration conditions during growth, including the flask-tomedium ratio. These additional experimental parameters are essential for ensuring the reproducibility and comprehensiveness of the study, allowing for a more precise understanding and interpretation of the observed metabolic changes in the Δagr strain.

      We modified the Methods as suggested.

      Minor comments:

      (1) The growth rate in Figure 1-figure supplement 3 should not be presented as a simple calculation of OD/min and needs to be recalculated.

      We recalculated the growth rate and modified Figure 1 as suggested. The exponential phase was used to determine growth rate (µ) from two datapoints, OD1 and OD2 flanking the linear portion of the curve, following the equation lnOD2-lnOD1/t2-t1, as described (12).

      (2) Δrot (BS1301) should be removed from Figure 2 (A) legend as it is not presented in the panel A.

      We modified Figure 2 as suggested.

      (3) The authors should specify in the Figure 3 (D) legend that the kinetics of killing by H2O2 was performed for ΔrnaIII and ΔagrBD mixtures.

      We modified Figure 3 as suggested.

      (4) In the Figure 4 legend for (C), the statement "See Supplementary file 2 for supporting information" should be changed to "See Supplementary file 3 for supporting information."

      We modified Supplementary file name as suggested.

      References cited in responses

      (1) Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ. 2013. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nature biotechnology 31:160-165.

      (2) Morfeldt E, Taylor D, von Gabain A, Arvidson S. 1995. Activation of alphatoxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569-4577.

      (3) Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967-3975.

      (4) Takahashi N, Gruber CC, Yang JH, Liu X, Braff D, Yashaswini CN, Bhubhanil S, Furuta Y, Andreescu S, Collins JJ, Walker GC. 2017. Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality. Proc Natl Acad Sci U S A 114:9164-9169.

      (5) Fujimoto DF, Bayles KW. 1998. Opposing roles of the Staphylococcus aureus virulence regulators, Agr and Sar, in Triton X-100- and penicillin-induced autolysis. J Bacteriol 180:3724-3726.

      (6) Cho H, Uehara T, Bernhardt TG. 2014. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159:13001311.

      (7) Rowe SE, Wagner NJ, Li L, Beam JE, Wilkinson AD, Radlinski LC, Zhang Q, Miao EA, Conlon BP. 2020. Reactive oxygen species induce antibiotic tolerance during systemic Staphylococcus aureus infection. Nat Microbiol 5:282-290.

      (8) Zamboni N, Sauer U. 2003. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. FEMS Microbiol Lett 226:121-126.

      (9) Halsey CR, Lei S, Wax JK, Lehman MK, Nuxoll AS, Steinke L, Sadykov M, Powers R, Fey PD. 2017. Amino acid catabolism in Staphylococcus aureus and the runction of carbon catabolite repression. mBio 8.

      (10) Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP. 2013. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 4.

      (11) Lan L, Cheng A, Dunman PM, Missiakas D, He C. 2010. Golden pigment production and virulence gene expression are affected by metabolisms in Staphylococcus aureus. J Bacteriol 192:3068-3077.

      (12) Grosser MR, Weiss A, Shaw LN, Richardson AR. 2016. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol 198:2043-2055.

    1. Author Response

      eLife assessment

      This study demonstrates mRNA-specific regulation of translation by subunits of the eukaryotic initiation factor complex 3 (eIF3) using convincing methods, data, and analyses. The investigations have generated important information that will be of interest to biologists studying translation regulation. However, the physiological significance of the gene expression changes that were observed is not clear.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Herrmannova et al explore changes in translation upon individual depletion of three subunits of the eIF3 complex (d, e, and f) in mammalian cells. The authors provide a detailed analysis of regulated transcripts, followed by validation by RT-qPCR and/or Western blot of targets of interest, as well as GO and KKEG pathway analysis. The authors confirm prior observations that eIF3, despite being a general translation initiation factor, functions in mRNA-specific regulation, and that eIF3 is important for translation re-initiation. They show that the global effects of eIF3e and eIF3d depletion on translation and cell growth are concordant. Their results support and extend previous reports suggesting that both factors control the translation of 5'TOP mRNAs. Interestingly, they identify MAPK pathway components as a group of targets coordinately regulated by eIF3 d/e. The authors also discuss discrepancies with other reports analyzing eIF3e function.

      We would like to note that the first sentence contains a typo; the correct expression is: “…of three subunits of the eIF3 complex (d, e, and h) in mammalian cells”.

      Strengths:

      Altogether, a solid analysis of eIF3 d/e/h-mediated translation regulation of specific transcripts. The data will be useful for scientists working in the Translation field.

      Weaknesses:

      The authors could have explored in more detail some of their novel observations, as well as their impact on cell behavior.

      Many experiments are on-going in this direction. The original plan was to map all the effects in general and in as much detail as possible to select a few of them for future long-term projects.

      Reviewer #2 (Public Review):

      Summary:

      mRNA translation regulation permits cells to rapidly adapt to diverse stimuli by fine-tuning gene expression. Specifically, the 13-subunit eukaryotic initiation factor 3 (eIF3) complex is critical for translation initiation as it aids in 48S PIC assembly to allow for ribosome scanning. In addition, eIF3 has been shown to drive transcript-specific translation by binding mRNA 5' cap structures through the eIF3d subunit. Dysregulation of eIF3 has been implicated in oncogenesis, however the precise eIF3 subunit contributions are unclear. Here, Herrmannová et al. aim to investigate how eIF3 subcomplexes, generated by knockdown (KD) of either eIF3e, eIF3d, or eIF3h, affect the global translatome. Using Ribo-seq and RNA-seq, the authors identified a large number of genes that exhibit altered translation efficiency upon eIF3d/e KD, while translation defects upon eIF3h KD were mild. eIF3d/e KD share multiple dysregulated transcripts, perhaps due to both subcomplexes lacking eIF3d. Both eIF3d/e KD increase the translation efficiency (TE) of transcripts encoding lysosomal, ER, and ribosomal proteins. This suggests a role of eIF3 in ribosome biogenesis and protein quality control. Many transcripts encoding ribosomal proteins harbor a TOP motif, and eIF3d KD and eIF3e KD cells exhibit a striking induction of these TOP-modified transcripts. On the other hand, eIF3d KD and eIF3e KD lead to a reduction of MAPK/ERK pathway proteins. Despite this downregulation, eIF3d KD and eIF3e KD activate MAPK/ERK signaling as ERK1/2 and c-Jun phosphorylation were induced. Finally, in all three knockdowns, MDM2 and ATF4 protein levels are reduced. This is notable because MDM2 and ATF4 both contain short uORFs upstream of the start codon, and further support a role of eIF3 in reinitiation. Altogether, Herrmannová et al. have gained key insights into precise eIF3-mediated translational control as it relates to key signaling pathways implicated in cancer.

      Strengths:

      The authors have provided a comprehensive set of data to analyze RNA and ribosome footprinting upon perturbation of eIF3d, eIF3e, and eIF3h. As described above in the summary, these data present many interesting starting points for understanding additional roles of the eIF3 complex and specific subunits in translational control.

      Weaknesses:

      • The differences between eIF3e and eIF3d knockdown are difficult to reconcile, especially since eIF3e knockdown leads to a reduction in eIF3d levels.

      We agree and discuss this problem thoroughly in the corresponding section of our study.

      • The paper would be strengthened by experiments directly testing what RNA determinants allow for transcript-specific translation regulation by the eIF3 complex. This would allow the paper to be less descriptive.

      We carried out bioinformatic analysis dealing with specific RNA determinants that is presented as the last chapter of our study. A detailed, transcript-specific analysis of these determinants is underway, however, we consider them beyond the scope for this article.

      • The paper would have more biological relevance if eIF3 subunits were perturbed to mimic naturally occurring situations where eIF3 is dysregulated. For example, eIF3e is aberrantly upregulated in certain cancers, and therefore an overexpression and profiling experiment would have been more relevant than a knockdown experiment.

      This is indeed true and so far we have generated several stable cell lines individually overexpressing selected eIF3 subunits implicated in the observed cancer phenotypes. However, this is a completely different project of one of our PhD students, which will be published as a comprehensive study when completed.

      Reviewer #3 (Public Review):

      Summary:

      In this article, Hermannova et al catalog the changes in ribosome association with mRNAs when the eukaryotic translation initiation factor 3 is disrupted by knocking down subunits of the multisubunit protein. They find that RNAs relying on TOP motifs for translation, such as ribosomal protein RNAs, and RNAs encoding proteins that modify other proteins in the ER or components of the lysosome are upregulated. In contrast, proteins encoding components of MAP kinase cascades are downregulated when subunits of eIF3 are knocked down.

      Strengths:

      The authors use ribosome profiling of well-characterized mutants lacking subunits of eIF3 and assess the changes in translation that take place. They supplement the ribosome association studies with western blotting to determine protein level changes of affected transcripts. They analyze what is being encoded by the transcripts undergoing translation changes, which is important for understanding more broadly how translation initiation factor levels affect cancer cell translatomes.

      Weaknesses:

      (1) The data are presented as a catalog of effects, and the paper would be strengthened if there were a clear model tying the various effects together or linking individual subunit knockdown to cancerous phenotypes. It is unclear what the hypothesis is for cells having more MAPK activity with less of the MAPK proteins being translated, so the main findings of the paper become observational without context.

      As the signaling pathways are very complex and there is a frequent crosstalk among them (c-Jun can be activated by the ERK pathway as well as the JNK pathway, activated ERKs can phosphorylate many different transcription factors, etc.), we opted not to investigate the reported results any further in this study. As mentioned above, we have several ongoing, long-term projects aiming to elucidate the consequences of the observed changes in protein levels as well as in the phosphorylation status of the MAPK pathway constituents. The take home message of the present study is that eIF3 subunits (d and e) have control over the expression of many proteins involved in the MAPK/ERK pathway and that there is an independent effect (already present in the downregulation of eIF3h, which does not affect the MAPK protein expression) that leads to activation of the ERK pathway, which may be a direct consequence of compromised eIF3 function in general.

      (2) The conclusions drawn are presented as very generalized other than in the last paragraph, but the experiments were only done in Hela cells. Since conclusions are being made about how translation changes affect MAP kinase signaling and there is mention in the abstract that dysregulation of these subunits is observed in cancer, at least one other cell line would need to be analyzed to provide evidence that the effects of subunit knockdown aren't cell-line specific.

      There are several notes emphasizing that the data presented in this study were obtained only in HeLa cells. We agree that further research in other cell lines will be needed to confirm that what we observed is a general phenomenon. Nonetheless, as noted in the discussion, other reports have already been published strongly indicating that this phenomenon is not unique to HeLa cells (Li et al., 2021, PMID:34520790, HTR-8/SVneo cells). We will review our conclusions and further clarify that our results so far only apply to Hela cells.

      (3) It is also unclear how replicates were performed and how many replicates were performed for several experiments. Biological replicates are mentioned, but what the authors did for biological replicates isn't defined and the description of the collection of cells for polysome/ribosome footprint/RNA seq samples makes it unclear whether the "biological replicates" are samples from separate transfections (true biological replicates) or different aliquots or wells from a single transfection (technical replicates) being run over a separate gradient. If using technical replicates, the data comparing the effects of knocking down D vs E vs H subunits are substantially weakened because subunit-specific differences could be the result of non-specific events that occurred in a transfection. It's also notable that while the pooled siRNAs will increase the potency of knockdown, it is possible that one or more of the siRNAs could have off-target effects, and analyzing individual siRNAs would be better for ensuring effects are specific.

      We can reassure this reviewer that our Ribo-seq and RNA-Seq libraries were prepared from true biological replicates, grown, and transfected at different times. In fact, for each biological replicate, we used a new aliquot of cells from cryostock from the same batch and transfected the cells with the same passage number only. Multiple biological replicates were grown and all underwent a series of control experiments (polysomes, qPCR, western blot) as described in the article. Based on the results, 3 samples were selected for Ribo-Seq library preparation and 4 for RNA-Seq. We decided to add a fourth replicate for RNA-Seq to increase the data robustness, because RNA-Seq is used to normalize FPs to calculate TE, which was our main metric analyzed in this article.

      As for the usage of the siRNA pool from Dharmacon/Horizon – our current article builds on our previous studies (Wagner et al. 2014 PMID: 24912683; Wagner et al. 2016 PMID: 27924037 and Herrmannová et al. 2020 PMID: 31863585), where we thoroughly characterized the effects of downregulation of individual eIF3 subunits on the growth, translation, composition and stability of eIF3 complex and on the 43S preinitiation complex assembly and subsequent mRNA recruitment. In all of these studies, we used the same siRNAs pools, the same cells and the same transfection protocol; therefore, we are convinced that our results are as coherent and reproducible as can possibly be. We have never noticed any off-target effects. Moreover, the ON-TARGETplus siRNA technology we employed uses a patented modification pattern that reduces the incidence of off-targets by up to 90% compared to unmodified siRNA (see the supplier's website for more information).

      (4) Many of the changes in protein levels reported by Western are subtle. Data from all western blots making claims of quantitative differences should really be quantified relative to nontreated over-loading control or total protein quantified from the gel, and presented with a degree of error from biological replicates to make conclusions about differences in protein levels between samples.

      Generally speaking, we agree with the reviewer’s opinion. In the original version of our study, we felt that it was not necessary to perform a quantification analysis to support our conclusions as it was not important whether a given protein was downregulated to, for example, 60% or 70%, as long as its amount was visibly reduced. The main message resided in the general trend, i.e. that the whole pathway is affected in a similar way. Nevertheless, in order to properly address this criticism, we will provide quantifications in the revised paper.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors observed a decline in autophagy and proteasome activity in the context of Milton knockdown. Through proteomic analysis, they identified an increase in the protein levels of eIF2β, subsequently pinpointing a novel interaction within eIF subunits where eIF2β contributes to the reduction of eIF2α phosphorylation levels. Furthermore, they demonstrated that overexpression of eIF2β suppresses autophagy and leads to diminished motor function. It was also shown that in a heterozygous mutant background of eIF2β, Milton knockdown could be rescued. This work represents a novel and significant contribution to the field, revealing for the first time that the loss of mitochondria from axons can lead to impaired autophagy function via eIF2β, potentially influencing the acceleration of aging. To further support the authors' claims, several improvements are necessary, particularly in the methods of quantification and the points that should be demonstrated quantitatively. It is crucial to investigate the correlation between aging and the proteins eIF2β and eIF2α.

      Thank you so much for your comments. We will further investigate the correlation between aging and the proteins eIF2β and eIF2α and include the results in the revised version.

      Reviewer #2 (Public Review):

      In the manuscript, the authors aimed to elucidate the molecular mechanism that explains neurodegeneration caused by the depletion of axonal mitochondria. In Drosophila, starting with siRNA depletion of Milton and Miro, the authors attempted to demonstrate that the depletion of axonal mitochondria induces the defect in autophagy. From proteome analyses, the authors hypothesized that autophagy is impacted by the abundance of eIF2β and the phosphorylation of eIF2α. The authors followed up the proteome analyses by testing the effects of eIF2β overexpression and depletion on autophagy. With the results from those experiments, the authors proposed a novel role of eIF2β in proteostasis that underlies neurodegeneration derived from the depletion of axonal mitochondria.

      The manuscript has several weaknesses. The reader should take extra care while reading this manuscript and when acknowledging the findings and the model in this manuscript.

      The defect in autophagy by the depletion of axonal mitochondria is one of the main claims in the paper. The authors should work more on describing their results of LC3-II/LC3-I ratio, as there are multiple ways to interpret the LC3 blotting for the autophagy assessment. Lysosomal defects result in the accumulation of LC3-II thus the LC3-II/LC3-I ratio gets higher. On the other hand, the defect in the early steps of autophagosome formation could result in a lower LC3-II/LC3-I ratio. From the results of the actual blotting, the LC3-I abundance is the source of the major difference for all conditions (Milton RNAi and eIF2β overexpression and depletion). In the text, the authors simply state the observation of their LC3 blotting. The manuscript lacks an explanation of how to evaluate the LC3-II/LC3-I ratio. Also, the manuscript lacks an elaboration on what the results of the LC3 blotting indicate about the state of autophagy by the depletion of axonal mitochondria.

      We agree with the reviewer that multiple ways exist to interpret the LC3 blotting for the autophagy assessment. Thus, we analyzed the levels of p62, an autophagy substrate, and found that milton knockdown caused elevated levels of p62 (Figure 2B). Together, these results suggest that autophagic degradation is lowered.

      Another main point of the paper is the up-regulation of eIF2β by depleting the axonal mitochondria leads to the proteostasis crisis. This claim is formed by the findings from the proteome analyses. The authors should have presented their proteomic data with much thorough presentation and explanation. As in the experiment scheme shown in Figure 4A, the author did two proteome analyses: one from the 7-day-old sample and the other from the 21-day-old sample. The manuscript only shows a plot of the result from the 7-day-old sample, but that of the result from the 21-day-old sample. For the 21-day-old sample, the authors only provided data in the supplemental table, in which the abundance ratio of eIF2β from the 21-day-old sample is 0.753, meaning eIF2β is depleted in the 21-day-old sample. The authors should have explained the impact of the eIF2β depletion in the 21-day-old sample, so the reader could fully understand the authors' interpretation of the role of eIF2β on proteostasis.

      Thank you for your comments. We will include more analyses of the proteomic data in the next version of our manuscript. In this study, we aimed to elucidate the mechanisms by which depletion of axonal mitochondria induces proteostasis disruption prematurely. Thus, we did not investigate the roles of differentially expressed proteins in proteostasis at 21-day-old in milton knockdown. Aging disrupts proteostasis via multiple pathways: eIF2β levels may be lowered by feedback of earlier changes or via interaction with other age-related changes at 21-day-old. We will include more discussion in the next version of our manuscript.

      The manuscript consists of several weaknesses in its data and explanation regarding translation.

      (1) The authors are likely misunderstanding the effect of phosphorylation of eIF2α on translation. The P-eIF2α is inhibitory for translation initiation. However, the authors seem to be mistaken that the down-regulation of P-eIF2α inhibits translation. Thank you for your comment. We understand that the phosphorylation of eIF2α is inhibitory for translation initiation, as we described in page 9, Line 312-314. We propose a model in which autophagic defects caused by milton knockdown is mediate by upregulation of eIF2β, however, we are not arguing that the translational suppression in milton knockdown is caused by a reduction in p-eIF2α. We found that milton knockdown causes an increase in eIF2β, and overexpression of eIF2β copied phenotypes of milton knockdown such as autophagic defects (Figure 5 and 6). We also found that the increase in eIF2β reduces the level of p-eIF2α (Supplemental Figure 2), thus, eIF2α phosphorylation in milton knockdown may be caused by an increase in eIF2β. However, the effects of upregulation of eIF2β on the function of eIF2 complex is not fully understood. The translational suppression in milton knockdown may be caused by disruption of eIF2 complex, while it is also possible that it is mediated by a function of eIF2β that is yet-to-be-determined, or mediated by the pathways other than eIF2. We will include more details in the revised version.

      (2) The result of polysome profiling in Figure 4H is implausible. By 10%-25% sucrose density gradient, polysomes are not expected to be observed. The authors should have used a gradient with much denser sucrose, such as 10-50%. Thank you for pointing it out. We are sorry, it was a mistake. The gradient was actually 10-50%, and we described it wrong. We will correct it in the revised version.

      (3) Also on the polysome profiling, as in the method section, the authors seemed to fractionate ultra-centrifuged samples from top to bottom and then measured A260 by a plate reader. In that case, the authors should have provided a line plot with individual data points, not the smoothly connected ones in the manuscript. Thank you for pointing it out. We will replace the graph.

      (4) For both the results from polysome profiling and puromycin incorporation (Figure 4H and I), the difference between control siRNA and Milton siRNA are subtle, if not nonexistent. This might arise from the lack of spatial resolution in their experiment as the authors used head lysate for these data but the ratio of Phospho-eIF2α/eIF2α only changes in the axons, based on their results in Figure 4E-G. The authors could have attempted to capture the spatial resolution for the axonal translation to see the difference between control siRNA and Milton siRNA.

      Thank you for your comment. A new set of experiments with technical challenges will be required to capture the spatial resolution for the axonal translation. We will work on it and hope to achieve it in the future.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #2 (Recommendations For The Authors):

      I would like to thank the authors for their comments. However, my request for additional experiments to consolidate this manuscript and text changes have not been addressed (point 1 and point 2), which I believe are essential for completion of this manuscript.

      The reviewer raised the question about the relevant substrates of PARG in S-phase cells (point 1). As we explained in our previous response, the most important substrate of PARG is PARP1, since we observed increased chromatin-associated PARP1 and PARylated PARP1 in cells with PARG depletion. Moreover, PARP1 or PARP1/2 depletion rescued cell lethality caused by PARG depletion. These data strongly suggest that PARP1 is the major substrate of PARG in S phase cells. Of course, PARG may have additional substrates. In the future, we will perform proteomics experiments as suggested by this reviewer to identify additional PARG substrates, which may reveal new roles of PARG in S phase progression.

      The reviewer also suggested us to re-organize our manuscript (point 2). However, we prefer to keep the manuscript as it is, since this is how the project evolved. The other reason we would like to share with the readers is the challenge to validate KO cells. This is an important lesson we learned from this study. We hope that this will raise the awareness of hypomorphic mutant cells we often use to draw conclusions about gene functions and/or genetic interactions. We understand that the current flow of our manuscript may bring some confusion. To avoid it, we included additional explanations at the beginning of this manuscript to draw attention to the readers that our initial KO cells may not be complete PARG KO cells, i.e. they may have residual PARG activity. We also included additional discussion of this important point in the Discussion section.

      Moreover, WB analysis of PARG KO clones is inconclusive, as the additional prominent band at 50 kDa could be a degradation product. The authors should check PARG levels are localization by IF, which allows detection of intact proteins and their cellular localizations, since the shorter isoform should be localized in the cytosol. WB with PARG isoforms is missing important information regarding Mw of the PARG constructs and Mw labels of western blots, which makes is difficult to evaluate this data and compare to KO. Ideally, KO and PARG isoform samples should be all on one gel for proper comparison with different antibodies.

      We appreciate the concerns raised by this reviewer. We agree that the additional prominent band at 50kDa could be a degradation product. As we explained in our previous response, despite using several PARG antibodies, we could not draw a clear conclusion which functional isoforms or truncated forms were expressed in our PARG KO cells.

      Immunostaining experiments may not be more conclusive, since IF experiments rely on the same antibodies for recognizing endogenous PARG. Additionally, even a protein mainly localizes in the cytosol, we cannot exclude the possibility that a small fraction of this protein may localize in nuclei and have nuclear functions.

      Instead, as we presented in our manuscript, we used a biochemical assay to measure PARG activity in cell lysate and showed that our initial PARG KO cells still have residual PARG activity. However, we could not detect any PARG activity in our complete/conditional PARG KO cells (cKO cells; these cells can only survive in the presence of PARP inhibitor). These data strongly suggest that PARG is essential for cell survival.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The author should evaluate the possibility of naturally occurring arrhythmia due to the geometry of the tissues, by using voltage or calcium dye.

      Answer: We thank the reviewer for this suggestion. We have performed new experiments using a voltage-sensitive fluorescent dye (i.e. FluoVolt) with data reported in the new Figure 4 + new results section “arrhythmia analysis”. Briefly, we found that our ring-shaped tissues are compatible with live fluorescence imaging. We were then able to show that our cardiac tissues beat regularly, without naturally occurring arrhythmias or extra beats. We could not detect any re-entrant waves in our tissues in the conditions offered by the speed of our camera. A specific paragraph has also been added to the discussion.

      (2) There is only 50% survival after 20 days of culture in the optimized seeding group. Is there any way to improve it? The tissues had two compartments, cardiac and fibroblast-rich regions, where fibroblasts are responsible for maintaining the attachment to the glass slides. Do the cardiac rings detach from the glass slides and roll up? The SD of the force measurement is a quarter of the value, which is not ideal with such a high replicate number.

      Answer: This paper report seminal data that will serve as a foundation for further use of the platform. We are currently expanding to other cell lines with improvement in survival (see https://insight.jci.org/articles/view/161356). We confirm that the rings do not detach. The pillar was specifically designed to avoid this (See figure 1B).

      As the platform utilizes imaging analysis to derive contractile dynamics, calibration should be done based on the angle and the distance of the camera lens to the individual tissues to reduce the error. On the other hand, how reproducible of the pillars? It is highly recommended to mechanically evaluate the consistency of the hydrogel-based pillars across different wells and within the wells to understand the variance.

      Answer: We propose a system and a measurement method that do not need calibration. Contraction amplitude is expressed as a ratio between the contracted / relaxed areas (See figure 3 A). There is thus no influence of the distance of the camera lens.

      In order to evaluate the consistency of the mechanical properties of the hydrogel, we reproduced the experiment pictured in Figure1-Supplement 1, and measured the Young’s Modulus of three different gel solutions on different days. In the three experiments performed, we found values of 10.0-12.2 kPa, resulting in a final average value of 11.2 (+/- 0.6) kPa, coherent with the value reported in the article. We are therefore confident that the mechanical properties are consistent across and within wells. More extensive mechanical characterization of the molded gels would require the access to an Atomic Force Microscope (AFM), and is considered in the future.

      The author should address the longevity and reproducibility issues, by working on the calibration of camera lens position/distance to tissues and further optimizing the seeding conditions with hydrogels such as collagen or fibrin, and/or making sure the PEG gels have high reproducibility and consistency.

      Answer: This paper report seminal data that will serve as a foundation for further use of the platform. This platform (including the design, approach and choice of polymers) allows a fast and reproducible formation of an important number of cardiac tissues (up to 21 per well in a 96-well format, meaning a potential total of about 2,000 tissues) with a limited number of cells.

      (3) The evaluation of the arrhythmia should be more extensively explained and demonstrated.

      Answer : See answer to comment 1

      (4) The results of isoproterenol should be checked as non-paced tissues should have increased beating frequency with increasing dosages. Dofetilide does not typically have a negative inotropic effect on the tissues. Please check on the cell viability before and after dosing

      Answer : We agree with this reviewer on the principle. However, we have repeated the experiments and we confirm our results, i.e. increasing concentrations of isoproterenol induced a trend towards increase in the contraction force and significantly increased contraction and relaxation speeds without change in the beat rate (Figure 5C). We do not have a definitive explanation for this observation. Our hypothesis is that this increase in contraction and relaxation speeds induced by isoproterenol is translated, on average in our study, into an increase in contractile force rather than in an increase in contraction frequency. This may depend on the cell line used, and is very well illustrated in a recent paper from Mannhardt and colleagues (Stem cell reports. 2020; 15(4):983–998). Of the 10 different cell lines tested in engineered heart tissues, all show an increase in contraction and relaxation speeds after isoproterenol administration, but this is translated either into an increase in contractile force (4 cell lines) or into a shortening of the beat (3 cell lines), and only 2 cell lines show an increase in both parameters. Indeed, since iPSC-CMs are immature cardiac cells, it is rare to obtain a positive force-frequency relationship without any maturation medium or mechanical or electrical training. We agree that above a concentration of 10nM, dofetilide shows cardiotoxicity in our tissues as tissues completely stop beating.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the general comments in the public review, I have the following specific suggestions to the authors, that would help improve the manuscript.

      (1) Please describe the protocol for preparation of cardiac rings (shown in Figure 1C) in more detail. In particular, please describe how the tissues were transferred from the mold into the 96-well plate and how are they positioned and characterized during the study.

      Answer: There is no transfer of the tissues as they directly form in the well, that is pre-equipped with the molded PEG gel (See Figure 1B and methods section). The in situ analysis is a strong asset of this platform.

      (2) Please clarify the timepoints in this study. The overall schematic in Figure 1 C shows that the rings were formed on day 22 and then studied for 14 days, while Figure 2B shows data over 20 days following seeding, and Figure 3 shows data 14 days after seeding. It appears that these were separate studies (optimization of myocyte/fibroblast ratio followed by the main study.

      Answer: Figure 1C is showing the timeline including the cardiomyocytes differentiation. hiPSC-CMs are indeed seeded in the wells 22 days after starting the differentiation, which represent the Day0 for tissue formation. We apologize for the confusion.

      (3) Please explain if the number of rings per well (Figure 2) was used as the only criterion for selecting the myocyte/fibroblast ratio, and if so, why. Were these rings also characterized for their structural and contractile properties?

      Answer: Figure 2 supplement 1 report the contractility data according to the different tested ratios, and show no differences. The number for generated ring-shaped tissues was indeed the only criterion retained.

      (4) Please provide rationale for using the dermal rather than cardiac fibroblasts.

      Answer: We had previous experience generating EHTs using dermal fibroblasts which are easier to obtain commercially. Our approach could in theory also work using cardiac fibroblasts, which we have not tested in the present study.

      (5) Figure 2 panels C-E show an interesting segregation of cardiomyocytes into a thin cylindrical layer that does not appear to contain fibroblasts and a shorter and thicker cylinder containing fibroblasts mixed with occasional myocytes. Please specify at which time point this structure forms, and how does it change over time in culture? At which time point were the images taken? It would be helpful to include serial images taken over 1-14 days of study.

      Answer: We thank the reviewer for this interesting comment. We have performed additional immunostainings (reported in Figure 2 supplement 3) on tissues at Day 1 and day 7 after seeding. The segregation appears in the 7 first days. It appears that 1 day after seeding the fibroblasts are not yet attached, although the cardiac fiber has already started to be formed. Seven days after seeding, fibroblasts are fully spread and attached, and the contractile ring is formed and well-aligned. Brightfield images are reported in Figure 1E.

      (6) In the cardiomyocyte region (Figure 2D) the cells staining for troponin seem to be only at the surfaces. The thickness of the layer is only about 30-40 µµ, so one would assume that cell viability was not an issue. Please specify and discuss the composition of this region.

      Answer: We agree but we think this is a technical issue as at the center of the tissue, tissue thickness will limit laser penetration, although at the surface (inner our outer), the laser infiltrates easily between the tissue and the PEG. Moreover, we see on the zoomed view of the tissue in Figure 2 Supplement 2 that we have a staining inside the cardiac fiber, which just appears less strong due to tissue thickness.

      (7) Please also discuss segregation in terms of possible causes and the implications of apparently very limited contact between the two cell types, i.e., how representative is this two-region morphology of native heart tissue. Also, it would be interesting to know how the segregation has changed with the change in myocyte/fibroblast ratio.

      Answer: We are not sure there is a very limited contact as the use of fibroblasts is critical to ensure the formation of tissues (i.e. no tissues can be formed if we avoid the use of fibroblasts). We agree that these ring-shaped cardiac tissues are not especially representative of a native heart tissue in terms of interactions between several cell types. They were developed as a surrogate for physiopathological and pharmacological experiments (see a recent application in https://insight.jci.org/articles/view/161356)

      (8) There is interest and demonstrated ability to culture engineered cardiac tissues over longer periods of time. Please comment what was the rationale for selecting 14-day culture and if the system allows longer culture durations.

      Answer: In line with this comment, we have studied the contractile parameters of our rings 28 days after seeding and compared to their contractile parameters at D14. We found a slight increase for all the parameters, which is significant for the maximum contraction speed. Nevertheless, the data is much more variable and the number of tissues is lower (29 for D14 against 17 for D28). Therefore, we demonstrated that long-term culture of our tissues is possible, however not yet optimized. Hence, the following physiological and pharmacological tests have been done at D14.

      (9) Figure 3 documents the development of contractile parameters over 14 days of culture. Would it be possible to replace the arbitrary units with the actual values? Also, would it be possible to include the corresponding images of the rings taken at the same time points, to show the associated changes in ring morphologies.

      Answer: Contraction amplitude is expressed as a ratio between the contracted / relaxed areas (See figure 3 A): it is a ratio, thus without unit. Corresponding images can be seen in Figure 1 E.

      (10) The measured contraction stress, strain, and the speeds of contraction and relaxation improve from day 1 to day 7 and then plateau (Figure 3, Supplemental Figure 3. Please discuss this result.

      Answer: The new immunostainings performed on tissues at Day 1 and Day 7 show the progressive alignment of the cardiomyocytes and the muscular fibers, with an almost complete organization at Day 7.

      (11) The beating frequency does not appear to markedly change over time, while Figure 3B shows strong statistical significance (***) throughout the 14-day period. Please check/confirm.

      Answer: We confirm this result.

      (12) Please comment on the lack of effect of isoproterenol on beating frequency.

      Answer: We agree with this reviewer on the principle. However, we have repeated the experiments and we confirm our results, i.e. increasing concentrations of isoproterenol induced a trend towards increase in the contraction force and significantly increased contraction and relaxation speeds without change in the beat rate (Figure 5C). We do not have a definitive explanation for this observation. Our hypothesis is that this increase in contraction and relaxation speeds induced by isoproterenol is translated, on average in our study, into an increase in contractile force rather than in an increase in contraction frequency. This may depend on the cell line used, and is very well illustrated in a recent paper from Mannhardt and colleagues (Stem cell reports. 2020; 15(4):983–998). Of the 10 different cell lines tested in engineered heart tissues, all show an increase in contraction and relaxation speeds after isoproterenol administration, but this is translated either into an increase in contractile force (4 cell lines) or into a shortening of the beat (3 cell lines), and only 2 cell lines show an increase in both parameters. Indeed, since iPSC-CMs are immature cardiac cells, it is rare to obtain a positive force-frequency relationship without any maturation medium or mechanical or electrical training.

      (13) Please compare the contractile function of cardiac tissues measured in this study with data reported for other iPSC-derived tissue models.

      Answer : A specific paragraph tackles this aspect in the discussion

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews

      We thank the reviewers for their insightful comments and helpful suggestions that allowed us to improve the manuscript.

      Reviewer #1:

      Thermogenic adipocyte activity associate with cardiometabolic health in humans but decline with age. Identifying the underlying mechanisms of this decline is therefore highly important.

      To address this task, Holman and co-authors investigated the effects of two major determinants of thermogenic activity: cold, which induce thermogenic de novo differentiation as well as conversion of dormant thermogenic inguinal adipocytes: and aging, which strongly reduce thermogenic activity. The authors study young and middle-aged mice at thermoneutrality and following cold exposure.

      Using linage tracing, the authors conclude that the older group produce less thermogenic adipocytes from progenitor differentiation. However, they found no differences between thermogenic differentiation capacity between the age groups when progenitors are isolated and differentiated in vitro. This finding is consistent with previous findings in humans, demonstrating that progenitor cells derived from dormant perirenal brown fat of humans differentiate into thermogenic adipocytes in vitro. Taken together, this underscores that age-related changes in the microenvironment rather than autonomous alterations in the ASPCs explain the age-related decline in thermogenic capacity. This is an important finding in terms of identifying new approaches to switch dormant adipocytes into an active thermogenic phenotype.

      To gain insight into the age-related changes, the authors use single cell and single nuclei RNA sequencing mapping of their two age groups, comparing thermoneutral and cold conditions between the two groups. Interestingly, where the literature previously demonstrated that de novo lipogenesis (DNL) occurs in relation to thermogenic activation, the authors show that DNL in fact is activated in a white adipocyte cell type, whereas the beige thermogenic adipocytes form a separate cluster.

      Considering recent findings, that adipose tissue contains several subtypes of ASPCs and adipocytes, mapping the changes at single cell resolution following cold intervention provides an important contribution to the field, in particular as an older group with limited thermogenic adaptation is analyzed in parallel with a younger, more responsive group. This model also allowed for detection of microenvironment as a determining factor of thermogenic response.

      The use of only two time points (young and middle-aged) along the aging continuum limits the conclusions that can be made on aging as the only driver of the observed differences between the groups. It should for example be noted that the older mice had higher weights and larger fat depots, thus the phenotype is complex and this should be taken into consideration when interpreting the data.

      In conclusion, this study provides an important resource for further studies on how to reactivate dormant thermogenic fat and potentially improve metabolic health.

      (1) The authors claim "Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming". It is previously established in humans that aging strongly associate with a decline in thermogenic capacity. With this in mind, it is easy to accept that the reduced browning observed in the older group is due to age. However, the older group also have larger adipose depots, which also can be a confounding factor. I, therefore, recommend bringing this into the discussion and putting more focus on the complexity of the phenotype. For example, it could be discussed whether the de novo lipogenesis less due to that the adipocytes of older mice is already filled with more lipids. Additional time points along the aging continuum would be needed to make a strong conclusion about age as the determinant, but even so, aging is complex and further definitions and discussion would be needed.

      We agree with the reviewer regarding the confounding effect of body weight changes. We have added a paragraph to the discussion (pasted below) to comment on the complexity of the phenotype and the contributing role of linked changes in body weight/composition.

      “Aging is a complex process, and unsurprisingly, many pathways have been linked to the aging-related decline in beiging capacity. For example, increased adipose cell senescence, impaired mitochondrial function, elevated PDGF signaling and dysregulated immune cell activity during aging diminish beige fat formation (Benvie et al., 2023; Berry et al., 2017; Goldberg et al., 2021; Nguyen et al., 2021). Of note, older mice exhibit higher body and fat mass, which is associated with metabolic dysfunction and reduced beige fat development. While the effects of aging and altered body composition are difficult to separate, previous studies suggest that the beiging deficit in aged mice is not solely attributable to changes in body weight (Rogers et al., 2012). Further studies, including additional time points across the aging continuum may help clarify the role of aging and ascertain when beiging capacity decreases.”

      (2) The study would gain from more comparisons to existing human studies and discussion on the translation potential of the findings. For example, how does the adipocyte subtypes identified in the current study translate to subtypes identified in human adipose tissue (e.g. Emont et al).

      We analyzed the human adipose tissue atlas from Emont et al. 2022 (PMID: 35296864). We did not find any obvious homologous human adipocyte subtypes. However, this and other available human single cell studies have not investigated the effects of cold exposure on white adipose tissue depots, which may be necessary to reveal DNL-high and especially beige adipocytes.

      (3) The group has contributed multiple studies demonstrating that Prdm16 is a major inducer of a thermogenic phenotype, and the literature shows that Prdm16 promote a thermogenic phenotype in favour of a fibrogenic aging phenotype. It would therefore be interesting to see how Prdm16 is regulated in the current data set, across adipocytes subtypes, age groups and temperature conditions.

      We thank the reviewer for this comment. Previous studies showed that PRDM16 protein and not mRNA levels are downregulated during aging (Wang et al., 2019, Cell Metab, PMID: 31155495; Wang et al., 2022, Nature, PMID: 35978186). Consistent with this, we did not observe an agingassociated reduction in Prdm16 mRNA levels in adipocytes in our dataset. We did observe enrichment of Prdm16 mRNA levels in beige adipocytes relative to other adipocyte clusters. We included these data in Fig. 5F.

      (4) In Figure 1, it is difficult to understand why the 6 weeks cold exposure is not shown in relation to the thermoneutrality, 3 days and 2-week cold exposure? It would be useful to have this in the same graph relating the levels and showing all four marker genes for all time points.

      These experiments were done at different times using separate groups of mice. We have now clarified this in the figure legend.

      (5) The older mice had larger inguinal fat depots, suggesting more lipids stored. The morphology of adipose tissue has previously been shown to be modulated by cold acclimation and is also the main similarity between brown adipose tissue in adult humans and young mice beige adipose tissue. Fig S2b suggests smaller adipocytes in the young group. It would also be useful, for comparison to published data, if authors show tissue sections with H&E of their model.

      Good point. We added panels showing H&E staining of serial iWAT sections, showing changes in tissue morphology across age and temperature conditions (Figure S1F).

      (6) The authors use t-tests to compare the differences induced by e.g. cold or min vs max cell culture media etc, within each age group. However, in my opinion, a two-way Anova with post-tests would be more informative as this would allow for testing the effects of the two age categories on any quantitative variable and allow for addressing whether there is an interaction between the categories.

      Following the reviewer’s recommendation, we applied two-way ANOVA with a Tukey correction for multiple comparisons for categorical comparisons with different age groups and conditions. P values from all significant multiple comparison tests are now included within the methods section.

      (7) In Figure 5F, please include Adipoq expression between clusters and please add a reference to why Nnat is considered a canonical white adipocyte marker.

      We added Adipoq to the violin plot in Figure 5F, showing differential expression across adipocyte clusters. We included a line in the results section to highlight this observation:

      “Interestingly, Adiponectin (Adipoq) was differentially expressed across adipocyte clusters, with higher levels in Npr3-high and DNL-high cells.”

      We removed “canonical” and added references for Nnat and Lep as white marker genes.

      (8) After 14 days of cold exposure, it looks like the DNL high population divides into two populations, did the authors explore if there was any differences between these clusters?

      We also noticed this apparent division and explored this question. However, upon increasing the resolution for clustering and splitting the DNL high population, there were no obvious differentially expressed genes that defined the two subclusters. Thus, we opted to keep them together.

      (9) As cold treatment transform a subset of cells, can authors perform a data-driven analysis to visualize the directions in their single nuclei data sets by using monocle pseudotime and/or velocity analyses?

      This is a good question. We spent a long time trying to address this question using several trajectory and pseudotime analysis methods, including Velocity (scVelo), Slingshot and Dynoverse. Unfortunately, we were unable to obtain concordant results using at least two different methods and felt that the analyses were unreliable.

      Reviewer #2:

      This manuscript focused on why aging leads to decreased beiging of white adipose tissue. The authors used an inducible lineage tracing system and provided in vivo evidence that de novo beige adipogenesis from Pdgfra+ adipocyte progenitor cells is blocked during early aging in subcutaneous fat. Single-cell RNA sequencing of adipocyte progenitor cells and in vitro assays showed that these cells have similar beige adipogenic capacities in vitro. Single-cell nucleus RNA sequencing of mature adipocytes indicated that aged mice have more Npr3 high-expressing adipocytes in the subcutaneous fat from aged mice.

      Meanwhile, adipocytes from aged mice have significantly lower expression of genes involved in de novo lipogenesis, which may contribute to the declined beige adipogenesis.

      The mechanism that leads to age-related impairment of white adipose tissue beiging is not very clear. The finding that Pdgfra+ adipocyte progenitor cells contribute to beige adipogenesis is novel and interesting. It is more intriguing that the aging process represses Pdgfra+ adipocyte progenitor cells from differentiating into beige adipocytes during cold stimulation. Mature adipocytes that have high de novo lipogenesis activity may support beige adipogenesis is also novel and worth further pursuing. The study was carried out with a nice experimental design, and the authors provided sufficient data to support the major conclusions. I only have a few comments that could potentially improve the manuscript.

      (1) It is interesting that after three days of cold exposure, aged mice also have much fewer beige adipocytes. Is de novo adipogenesis involved at this early stage? Or does the previous beige adipocyte that acquired white morphology have a better "reactivation" in young mice? It would be nice if the author could discuss the possibilities.

      This is a good question. We did not evaluate beige adipogenesis at the 3d timepoint. However, a previous study demonstrates that 3d of cold exposure is sufficient to promote de novo beige adipogenesis (Wang et al., Nat Med. 2013, PMID: 23995282). We observed that beige adipogenesis from Pdgfra+ cells are a relatively minor contributor to beige adipocyte development, even after long term cold exposure in young mice. Based on these data, we presume that beige adipocyte activation (or re-activation) is the dominant mechanism for beige adipocyte development.

      To clarify this point, we have included the following lines in the manuscript:

      “Previous studies in mice using an adipocyte fate tracking system show that a high proportion of beige adipocytes arise via the de novo differentiation of ASPCs as early as 3 days of cold (Wang et al., 2013).”

      “Based on these findings, we presume that mature (dormant beige) adipocytes serve as the major source of beige adipocytes in our cold-exposure paradigm. However, long-term cold exposure also recruits smooth muscle cells to differentiate into beige adipocytes; a process that we did not investigate here (Berry et al., 2016; Long et al., 2014; McDonald et al., 2015; Shamsi et al., 2021).”

      (2) Is the absolute number of Pdgfra+ cells decreased in aged mice? It would be nice to include quantifications of the percentage of tomato+ beige adipocytes in total tomato+ cells to reflect the adipogenic rate.

      We presented FACS quantification of tdTomato+/Pdgfra+ cells in Fig. 2B. We added a graph showing the percentage of Pdgfra+ cells of total live, lin- cells in adipose tissue; this showed no difference between young and aged mice. We did not perform FACS quantification of tdTomato+ beige adipocytes due to the technical challenges with sorting adipocytes. Quantification of total tdTomato+ cells was also unreliable and inconsistent due to the widespread labeling of fibroblasts, blood vessels, along with traced adipocytes. Thus, we did not include this analysis.

      (3) Line 112, the sentence seems to be not finished.

      This has been corrected.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Reviewers’ Public Comments

      We are grateful for the reviewers’ comments. We have modified the manuscript accordingly and detail our responses to their major comments below.

      (1) Reviewer 2 was concerned that transformation of continuous functional data into categorical form could reduce precision in estimating the genetic architecture.

      We agree that transforming continuous data into categories may reduce resolution, but it also improves accuracy when the continuous data are affected by measurement noise. In our dataset, many genotypes are at the lower bound of measurement, and the variation in measured fluorescence among these genotypes is largely or entirely caused by measurement noise. By transforming to categorical data, we dramatically reduced the effect of this noise on the estimation of genetic effects. We modified the results and discussion sections to address this point.

      (2) Reviewer 2 asked about generalizability of our findings.

      Because our paper is the first use of reference-free analysis of a 20-state combinatorial dataset, generalizability is at this point unknown. However, a recent manuscript from our group confirms the generality of the simplicity of genetic architecture: using reference-free methods to analyze 20 published combinatorial deep mutational scans, several of which involve 20-state libraries, we found that main and pairwise effects account for virtually all of the genetic variance across a wide variety of protein families and types of biochemical functions (Park Y, Metzger BPH, Thornton JW. 2023. The simplicity of protein sequence-function relationships. BioRxiv, 2023.09.02.556057). Concerning the facilitating effect of epistasis on the evolution of new functions, we speculate that this result is likely to be general: we have no reason to think that the underlying cause of this observation – epistasis brings genotypes with different functions closer in sequence space to each other and expands the total number of functional sequences – arises from some peculiarity of the mechanisms of steroid receptor DBD folding or DNA binding. However, we acknowledge that our data involve sequence variation at those sites in the protein that directly mediate specific protein-DNA contact; it is plausible that sites far from the “active site” may have weaker epistatic interactions and therefore have weaker effects on navigability of the landscape. We have addressed these issues in the discussion.

      (3) Reviewer 3 asked “in which situation would the authors expect that pairwise epistasis does not play a crucial role for mutational steps, trajectories, or space connectedness, if it is dominant in the genotype-phenotype landscape?”

      The question addressed in our paper is not whether epistasis shapes steps, trajectories or connectedness in sequence space but how it does so and what its particular effects are on the evolution of new functions. The dominant view in the field has been that the primary role of epistasis is to block evolutionary paths. We show, however, that in multi-state sequence space, epistasis facilitates rather than impedes the evolution of new functions. It does this by increasing the number of functional genotypes and bringing genotypes with different functions closer together in sequence space. This finding was possible because of the difference in approach between our paper and prior work: most prior work considered only direct paths in a binary sequence space between two particular starting points – and typically only considering optimization of a single function – whereas we studied the evolution of new functions in a multi-state amino acid space, under empirically relevant epistasis informed by complete combinatorial experiments. The result is a clear demonstration that the net effect of real-world levels of epistasis on navigability of the multidimensional sequence landscape is to make the evolution of new functions easier, not harder.

      (4) Reviewer 3 asked for “an explanation of how much new biological results this paper delivers as compared with the paper in which the data were originally published.”

      Starr 2017 did not use their data to characterize the underlying genetic architecture of function by estimating main and epistatic effects of amino acid states and combinations; it also did not evaluate the importance of epistasis in generating functional variants, determining the transcription factor’s specificity, or shaping evolutionary navigability on the landscape.

      (5) Reviewer 3 requested an explanation of how the results would have been (potentially) different if a reference-based approach were used, and how reference-based analysis compares with other reference-free approaches to estimating epistasis.

      This topic has been covered in detail in a recent manuscript from our group (Park et al. Biorxiv 2023.09.02.556057). Briefly, reference-free approaches provide the most efficient explanation of an entire genotype-phenotype map, explaining the maximum amount of genetic variance and reducing sensitivity to experimental noise and missing genotypes compared to reference-based approaches. Reference-based approaches tend to infer much more epistasis, especially higher-order epistasis, because measurement error and local idiosyncrasy near the wild-type sequence propagate into spurious high-order terms. Reference-based analyses are appropriate for characterizing only the immediate sequence neighborhood of a particular “wild-type” protein of interest. Reference-free approaches are therefore best suited to understanding genotype-phenotype landscapes as a whole. We have clarified these issues in the revised discussion.

      (6) Reviewer 3 suggested that the comparison between the full and main-effects-only model should involve a re-estimation of main effects in the latter case.

      This is indeed what we did in our analysis. We have clarified the description in the results and methods sections to make this clear.

      (7) Reviewer 3 asked about the applicability of the approach to data beyond those analyzed in the present study and requirements to use it.

      Our approach could be used for any combinatorial DMS dataset in which the phenotypic data are categorical (or can be converted to categorical form). Complete sampling is not required: a virtue of reference-free analysis is that by averaging the estimated effects of states and combinations over all variants that contain them, reference-free analysis is highly robust to missing data (except at the highest possible order of epistasis, where only a single variant represents a high-order effect) as long as variant sampling is unbiased with respect to phenotype. All the required code are publicly available at the github link provided in this manuscript. We have also described a general form of reference-free analysis for continuous data and applied it to 20 protein datasets in a recent publication (Park et al. Biorxiv 2023.09.02.556057).

      (8)Reviewer 3 suggested that the text could be shortened and made less dense.

      We agree and have done a careful edit to streamline the narrative.

      Response to Reviewers’ Non-Public Recommendations

      (1) Reviewer 1 noted that specific epistatic effects might in some cases produce global nonlinearities in the genotype-phenotype relationship. They then asked how our results might change if we did not impose a nonlinear transformation as part of the genotype-phenotype model. The reviewer’s underlying concern was that the non-specific transformation might capture high-order specific epistatic effects and thus reducing their importance.

      Because our data are categorical, we required a model that characterizes the effect of particular amino acid states and combinations on the probability that a variant is in a null, weak, or strong activation class. A logistic model is the classic approach to this kind of analysis. The model structure assumes that amino acid states and combinations have additive effects on the log-odds of being in one functional class versus the lower functional class(es); the only nonlinear transformation is that which arises mathematically when log-odds are transformed into probability through the logistic link function. Thinking through the reviewer’s comment, we have concluded that our model does not make any explicit transformation to account for nonlinearity in the relationship between the effects of specific sequence states/combinations and the measured phenotype (activation class). If additional global nonlinearities are present in the genotype-phenotype relationship – such as could be imposed by limited dynamic range in the production of the fluorescence phenotype or the assay used to measure it – it is possible that the sigmoid shape of the logistic link function may also accommodate these nonlinearities. We have noted this part in the revised manuscript.

      (2) Reviewer 1 observed that our model seems to prefer sets of several pairwise interactions among states across sites rather than fewer high-order interactions among those same states.

      This finding arises because the pattern of phenotypic variation across genotypes in our dataset is consistent with that which would be produced by pairwise interactions rather than by high-order interactions. In a reference-free framework, these patterns are distinct from each other: a group of second-order terms cannot fit the patterns produced by high-order epistasis, and high-order terms cannot fit the pattern produced by pairwise interactions. Similarly, main-effect terms cannot fit the pattern of phenotypes produced by a pairwise interaction, and a pairwise epistatic term cannot fit the pattern produced by main effects of states at two sites. For example, third-order terms are required when the genotypes possessing a particular triplet of states deviate from that expected given all the main and second-order effects of those states; this deviation cannot be explained by any combination of first- and second-order effects.

      We explain this point in detail in our recent manuscript (Park Y, Metzger BPH, Thornton JW. 2023. The simplicity of protein sequence-function relationships. BioRxiv, 2023.09.02.556057) and we summarize it here. Consider the simple example of two sites with two possible states (genotypes 00, 01, 10, and 11). If there are no main effects and no pairwise effects, this architecture will generate the same phenotype for all four variants – the global average (or zero-order effect). If there are pairwise effects but no main effects, this architecture will generate a set of phenotypes on which the average phenotype of genotypes with a 0 at the first site (00 and 01) equals the global average – as does the average of those with 0 at the second site (00 and 10). The epistatic effect causes the individual genotypes to deviate from the global average. This pattern can be fit only by a pairwise epistatic term, not by first-order terms. Conversely, if there are main effects but no pairwise effects, then the average phenotype of genotypes 00 and 01 will deviate from the global average (by an amount equal to the first-order effect), as will the average of (00 and 10): the phenotype of each genotype will be equal to the sum of the relevant first-order effects for the state it contains. This pattern cannot be fit by second-order model terms. The same logic extends to higher orders: a cluster of second-order terms cannot explain variation generated by third-order epistasis, because third-order variation is by definition is the deviation from the best second-order model.

      (3) Reviewer 1 suggested several places in the text where citations to prior work would be appropriate.

      We appreciate these suggestions and have modified the manuscript to refer to most of these works.

      (4) Reviewer 1 pointed to the paper of Gong et al eLife 2013 and asked whether it is known how robust the proteins in our study are to changes in conformation/stability compared to other proteins, and whether this might impact the likelihood of observing higher-order epistasis in this system.

      The DBDs that we study here are very stable, and previous work shows that mutations affect DNA specificity primarily by modifying the DBD’s affinity rather than its stability (McKeown et al., Cell 2014). Additionally, Gong et al.’s findings pertain to a globally nonlinear relationship between stability and function, which arises from the Boltzmann relationship between the energy of folding and occupancy of the folded state. Because our data are categorical – based on rank-order of measured phenotype rather than fluorescence as a continuous phenotype – the kind of global nonlinearity observed in Gong’s study are not expected to produce spurious estimates of epistasis in our work. We have modified the discussion to discuss the point.

      (5) Reviewer 1 asked a) why the epistatic models produce landscapes on which variants have fewer neighbors on average than main-effects only models and b) why the average distance from all ERE-specific nodes to all SRE-specific nodes is greater with epistasis (but the average distance from ERE to nearest SRE is lower with epistasis).

      In the main effects-only landscape, the functional genotypes are relatively similar to each other, because each must contain several of the states that contribute the most to a positive genetic score. Moreover, ERE-specific nodes are similar to each other, and SRE-specific nodes are similar to each other, because each must contain one or more of a relatively small number of specificity-determining states. When epistasis is added to the genetic architecture, two things happen: 1) more genotypes become functional because there are more combinations that can exceed the threshold score to produce a functional activator and 2) these additional functional variants are more different from each other – in general, and within the classes of ERE- or SRE-specific variants – because there are now more diverse combinations of states that can yield either phenotype. As a result, a broader span of sequence space is occupied, but ERE- and SRE-specific variants are more interspersed with each other. This means that the average distance between all pairs of nodes is greater, and this applies to all ERE-SRE pairs, as well. However, the interspersing means that the closest single SRE to any particular ERE is closer than it was without epistasis. We have added this explanation to the main text.

      (6) Reviewer 2 asked us to explain why average path length increases with pairwise epistasis as the strength of selection for specificity increases.

      This behavior occurs because of the existence of a local peak in the pairwise model. Genotypes on this peak contained few connections to other genotypes, all of which were less SRE specific. Thus, with strong selection, i.e. high population size, the simulations became stuck on the local peak, cycling among the genotypes many times before leaving, resulting in a large increase in the mean step number. As shown in the rest of the figure, when the longest set of paths are removed, there are still differences in the average number of steps with and without epistasis. This issue is described in the methods section.

      (7) Reviewers made several suggestions for clarity in the text and figures.

      We have modified the paper to address all of these comments.

      (8) Reviewer 3 stated that the code should be available.

      The code is available at https://github.com/JoeThorntonLab/DBD.GeneticArchitecture.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The authors were trying to understand the relationship between the development of large trunks and longirrostrine mandibles in bunodont proboscideans of Miocene, and how it reflects the variation in diet patterns.

      Strengths:

      The study is very well supported, written, and illustrated, with plenty of supplementary material. The findings are highly significant for the understanding of the diversification of bunodont proboscideans in Asia during Miocene, as well as explaining the cranial/jaw disparity of fossil lineages. This work elucidates the diversification of paleobiological aspects of fossil proboscideans and their evolutionary response to open environments in the Neogene using several methods. The authors included all Asian bunodont proboscideans with long mandibles and I suggest that they should use the expression "bunodont proboscideans" instead of gomphotheres.

      Weaknesses:

      I believe that the only weakness is the lack of discussion comparing their results with the development of gigantism and long limbs in proboscideans from the same epoch.

      Thank you for your comprehensive review and positive feedback on our study regarding the co-evolution of feeding organs in bunodont proboscideans during the Miocene. We appreciate your suggestion, and have decided to use the term "bunodont elephantiforms" (for more explicit clarification, we use elephantiforms to exclude some early proboscideans, like Moeritherium, ect.) instead of "gomphotheres," and we will make this change in our revised manuscript. We also appreciate the potential weakness you mentioned regarding the lack of discussion comparing our results with the development of gigantism and long limbs in proboscideans from the same epoch. We agree with the reviewer’s suggestion, and we are aware that gigantism and long limbs are potential factors for trunk development. Gigantism resulted in the loss of flexibility in elephantiforms, and long limbs made it more challenging for them to reach the ground. A long trunk serves as compensation for these limitations. limb bones were rare to find in our material, especially those preserved in association with the skull.

      Reviewer #2 (Public Review):

      This study focuses on the eco-morphology, the feeding behaviors, and the co-evolution of feeding organs of longirostrine gomphotheres (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) which are characterised by their distinctive mandible and mandible tusk morphologies. They also have different evolutionary stages of food acquisition organs which may have co-evolve with extremely elongated mandibular symphysis and tusks. Although these three longirostrine gomphothere families were widely distributed in Northern China in the Early-Middle Miocene, the relative abundances and the distribution of these groups were different through time as a result of the climatic changes and ecosysytems.

      These three groups have different feeding behaviors indicated by different mandibular symphysis and tusk morphologies. Additionally, they have different evolutionary stages of trunks which are reflected by the narial region morphology. To be able to construct the feeding behavior and the relation between the mandible and the trunk of early elephantiformes, the authors examined the crania and mandibles of these three groups from the Early and Middle Miocene of northern China from three different museums and also made different analyses.

      The analyses made in the study are:

      (1) Finite Element (FE) analysis: They conducted two kinds of tests: the distal forces test, and the twig-cutting test. With the distal forces test, advantageous and disadvantageous mechanical performances under distal vertical and horizontal external forces of each group are established. With the twig-cutting test, a cylindrical twig model of orthotropic elastoplasity was posed in three directions to the distal end of the mandibular task to calculate the sum of the equivalent plastic strain (SEPS). It is indicated that all three groups have different mandible specializations for cutting plants.

      (2) Phylogenetic reconstruction: These groups have different narial region morphology, and in connection with this, have different stages of trunk evolution. The phylogenetic tree shows the degree of specialization of the narial morphology. And narial region evolutionary level is correlated with that of character-combine in relation to horizontal cutting. In the trilophodont longirostrine gomphotheres, co-evolution between the narial region and horizontal cutting behaviour is strongly suggested.

      (3) Enamel isotopes analysis: The results of stable isotope analysis indicate an open environment with a diverse range of habitats and that the niches of these groups overlapped without obvious differentiation.

      The analysis shows that different eco-adaptations have led to the diverse mandibular morphology and open-land grazing has driven the development of trunk-specific functions and loss of the long mandible. This conclusion has been achieved with evidence on palaecological reconstruction, the reconstruction of feeding behaviors, and the examination of mandibular and narial region morphology from the detailed analysis during the study.

      All of the analyses are explained in detail in the supplementary files. The 3D models and movies in the supplementary files are detailed and understandable and explain the conclusion. The conclusions of the study are well supported by data.

      We appreciate your detailed and insightful review of our study. Your summary accurately captures the essence of our research, and we are pleased to note that multiple research methods were used to demonstrate our conclusions. Your recognition of the evidence-based conclusions from paleoecological, feeding behavior reconstruction, and morphological analyses reinforces the validity of our findings. Once again, we appreciate your time and thoughtful reviews.

      Reviewer #1 (Recommendations For The Authors):

      Thank you very much for the invitation to review this amazing manuscript. It is very well written and supported, and I have only minor suggestions to improve the text:

      (1) Some references are not in chronological sequence in the text, and this should be reviewed.

      We greatly appreciate the positive comments of the reviewer. We revised the reference of the manuscript as the reviewer’s suggestion.

      (2) I suggest the use of the expression "bunodont proboscideans" instead of Gomphotheres because there is no agreement if Amebelodontidae and Choerolophodontidae are within Gomphotheriidae, as well as some brevirrostrine bunodont proboscideans from South America. So I think it is ok to use "Gomphotheriidae", but not gomphotheres to refer to all bunodont proboscideans included in the study.

      The reviewer is correct. Using “gomphotheres” to refer to these three groups is inappropriate. We have replaced “gomphotheres” with "bunodont elephantiforms" throughout the entire manuscript. Here, we use “elephantiforms”, not “proboscideans”, to avoid confusion with some early proboscidean members like Moeritherium, ect.

      (3) I was expecting some discussion on the development of large trunks related to the gigantism in these bunodont proboscideans, regarding the huge skulls and the columnar limbs.

      We appreciate this suggestion, and we are aware that gigantism is a potential factor for trunk development. It is difficult to compare the three groups (Amebelodontidae, Choerolophodontidae, and Gomphotheriidae) in terms of their weight and limb bone length, because in our material, limb bones were rarely found, especially those associated with cranial material. Nevertheless, at this stage, all elephantiforms had significantly enlarged cranial sizes and limb bone lengths compared to early members like Phiomia. Gigantism caused the loss of flexibility in elephantiforms, and even the long limbs made it more difficult for an elephantiform to reach the ground. A long trunk compensates for this evolutionary change. Exploring these aspects further is a part of our future work.

      (4) The reference to Alejandro et al should be replaced by Kramarz et al (and the correct surname of the authors). The name and surname of this reference need to be corrected. The correct names are Kramarz, A., Garrido, A., Bond, M. 2019. Please correct this in the text too.

      We thank the reviewer for catching this error. This reference has been corrected.

      Reviewer #2 (Recommendations For The Authors):

      I believe your paper will lead to other studies on other Proboscidean groups on the evolution of the mandible and trunk. There are some corrections in the text:

      • In line 199 in the text in pdf, "Tassy, 1994" should be "Tassy, 1996".

      • In line 241, "studied" should be "studies"

      • In line 313, "," after the word "tool" should be "."

      We appreciate the reviewer for pointing these errors out and have revised these based on the suggestions.

      • In the References, you write "et al." in some references. You should write the names of all of the authors.

      • In the References: "Lister AM. 2013" and "Shoshani&Tassy" are not referenced in the text.

      • In the References: "Tassy P. Gaps, parsimony, and early Miocene elephantoids (Mammalia), with a re-evaluation of Gomphotherium annectens (Matsumoto, 1925). Zool. J. Linn." should be "Tassy P. 1994. Gaps, parsimony, and early Miocene elephantoids (Mammalia), with a re-evaluation of Gomphotherium annectens (Matsumoto, 1925). Zool. J. Linn. 112, 1-2, 101-117" and replaced before "Tassy P. 1996".

      We appreciate the reviewer’s suggestions and have revised these references.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1

      The authors provided experimental data in response to my comments/suggestions in the revision. Overall, most points were appropriate and satisfactory, but some issues remain.

      (1) It is not fully addressed how atypical survivors are generated independently of Rad52-mediated homologous recombination.

      The newly provided data indicate that the formation of atypical telomeres is independent of the Rad52 homologous recombination pathway.

      "The atypical telomeres clones exhibit non-uniform telomere pattern", but the TG-hybridized signals after XhoI digestion are clear and uniform.

      "Atypical telomere" clones may carry circular chromosomes embedded with short TG repeats, rather than linear chromosomes. In other words, atypical telomeres may differ from telomeres, the ends of chromosomes. Is atypical telomere formation dependent on NHEJ? Given that "two chromosomes underwent intra-chromosomal fusions" (Line 248), are atypical telomere clones detected frequently in SY13 cells containing two chromosomes?

      We thank the reviewer’s questions. Frankly, we have not been able to determine the chromosome structures in these so-called "atypical survivors". As we mentioned in the manuscript, there could be mixed telomere structures, e.g. TG tract amplification, intro-chromosome telomere fusion and inter-chromosome telomere fusion. Worse still, these 'atypical survivors' may not have maintained a stable genome, and their karyotype may have undergone stochastic changes during passages. To avoid misunderstanding, we change the term "atypical" to "uncharacterized" in the revised manuscript.

      We have previously shown that deletion of YKU70 does not affect MMEJ-mediated intra-chromosome fusion in single-chromosome SY14 cdc13Δ cells (Wu et al., 2020). In SY12 cells, double knockout of TLC1 and YKU resulted in synthetic lethality, and we were unable to continue our investigation. The result of synthetic lethality of TLC1 and YKU70 double deletion was shown in the Figure 7B in the reviewed preprint version 1, and the result was not included in the reviewed preprint version 2 in accordance with the reviewer's instructions.

      "Atypical” survivors could be detected in SY13 cells (Figure 1D), but the frequency of their formation in the SY13 strain appeared to be lower than in SY12. As one can imagine, SY13 contains two chromosomes and its survivors should have a higher frequency of intra-chromosome fusions.

      (2) From their data, it is possible that X and Y elements influence homologous recombination, type 1 and type 2 (type X), at telomeres. In particular, the presence of X and Y elements appears to be important for promoting type 1 recombination. In other words, although not essential, subtelomeres have some function in maintaining telomeres. I suggest that the authors include author response image 4 in the text. They could revise their conclusion and the paper title accordingly.

      According to this suggestion, we have included author response image 4 in the revised manuscript as Figure 2E, Figure 5D, Figure 6C and Figure 6E. Accordingly, we have changed the title as “Elimination of subtelomeric repeat sequences exerts little effect on telomere essential functions in Saccharomyces cerevisiae”.

      (3) Minor points: The newly added data indicate that X survivors are generated in a type 2-dependent manner. The authors could discuss how Y elements were eroded while retaining X elements (line 225, Figure 2A).

      Thank this reviewer’s suggestion. We have discussed it in the revised manuscript (p.13 line 244-245). When telomere was deprotected, chromosome end resection took place. Since SY12 only has one Y’-element, it is hard to search homology sequences to repair the Y’-element in XVI-L. When the X-element in XVI-L was exposed by further resection, it is easier to find homology sequences to repair. So, in Type X survivor the Y’-element was eroded while retaining X-element.

      Reviewer #2

      I would like to congratulate the authors for their work and the efforts they put in improving the manuscript. The major criticism I had previously, ie testing the genetic requirements for the survivor subtypes, has been met. Below are a few minor comments that don't necessarily require a response.

      (1) I think the Author response image 6 could have been included in the manuscript. I understand that the authors don't want to overinterpret survivor subtype frequencies, but this figure would have suggested some implication of Rad51 in the emergence of survivors even in the absence of Y' elements. At this stage, however, it is up to the authors, and leaving this figure out is also fine in my opinion.

      According to the suggestion, the author response image 6 has been presented as Figure 6—figure supplement 7.

      (2) Chromosome circularization seems to rely on microhomologies. Previously, the authors proposed that SY14 circularization depended on SSA (Wu et al. 2020), but here, since circularization appears to be Rad52-independent, it is likely to be based on MMEJ rather than SSA (although there are contradictory results on Rad52's role in MMEJ in the literature).

      Yes, we mentioned it in the revised manuscript.

      (3) p. 28 lines 511-513: "The erosion sites and fusion sequences differed from those observed in SY12 tlc1Δ-C1 cells (Figure 2D), suggesting the stochastic nature of chromosomal circularization": I don't think they are necessarily stochastic, because the sequences beyond the telomeres are now modified, the available microhomologies have changed as well.

      We agreed with your opinion. In different chromosomes, there tend to be some hotspots for chromosome fusion. For example, in Figure 6C and 6F the resection site in Chr1 and Chr2 was the same in SY12XYΔ+Y tlc1Δ-C1 and SY12XYΔ tlc1Δ-C1. So, we speculate that there are some hotspots for chromosome fusion, but which site the cell will choose in one round chromosome fusion event is stochastic.

      (4) Typos and other errors:

      • p. 3 line 52: "subtelomerice" and "varies" are mispelled.

      • p. 5 line 78: "processes" should be "process".

      • Supp files are mislabelled (the numbers do not correspond to file name).

      • Supp file 2: how come SY12 has only one Y' element and SY13 has two?

      • p. 10 line 175: "emerging" should be "emergence".

      • p.15 line 276: "counter-selected" should be "being counter-selected" or "counterselection".

      • p. 29 line 523: "the formation of them" should be "their formation".

      • p. 37 line 653: "could have been an ideal tool": the sentence is grammatically incorrect. Writing "AND could have been an ideal tool" is enough to make it structurally correct.

      Thanks for pointing these errors out. We have corrected them in the revised manuscript. For the question “how come SY12 has only one Y' element and SY13 has two?” we were not sure at this moment. We speculated that one of the Y’ might be lost during genetic engineering of the chromosomes by CRISPR–Cas9 system.

      Reviewer #3

      The authors included statistical analyses of the qPCR data (Fig 4B) as requested, but did not comment on the striking difference in expression of MPH3 and HSP32 in the SY12 strain compared to BY4742. An improvement of the manuscript is the inclusion of rad52 tlc1 strains in their analyses, demonstrating that the "atypical and circular survivors" arose independently of homologous recombination. In addition, by analyzing rad51 and rad50 mutant strain they could demonstrate that the "type X" survivors had similar molecular requirements to type II survivors. Overall, the revised submission improves the article.

      We thank the reviewer’s comments and suggestions. The SY12 strain (with three chromosomes) exhibited lower expression levels of both MPH3 and HSP32 compared to the parental strain BY4742 (with 16 chromosomes). We speculated that with the reduced chromosome numbers, the silencing proteins appeared to no longer be titrated by other telomeres that have been deleted. We have added these comments in the revised manuscript.

      Wu, Z.J., Liu, J.C., Man, X., Gu, X., Li, T.Y., Cai, C., He, M.H., Shao, Y., Lu, N., Xue, X., et al. (2020). Cdc13 is predominant over Stn1 and Ten1 in preventing chromosome end fusions. Elife 9.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      This valuable study describes a new role of epithelial intercellular adhesion molecule 1 (ICAM-1) protein in controlling bile duct size. The effect is mediated via EBP-50 and subapical actomyosin to regulate size of bile canaliculi. These solid findings have theoretical and practical implications in hepatology and human disorders of bile ducts.

      Public Reviews:

      In this study, Cacho-Navas et al. describe the role of ICAM-1 expressed on the apical membrane of bile canaliculi and its function to control the bile canaliculi (BCs) homeostasis. This is a previously unrecognized function of this protein in hepatocytes. The same authors have previously shown that basolateral ICAM-1 plays a role in controlling lymphocyte adhesion to hepatocytes during inflammation and that this interaction is responsible for the loss of polarity of hepatocytes during disease states.

      This new study shows that ICAM-1 is mainly localized in the apical domain of the BC and in association with EBP-50, communicates with the subapical acto-myosin ring to regulate the size and morphology of the BC. They used the well-known immortal cell line of liver cells (HepG2) in which they deleted ICAM-1 gene by CRISPR-Cas9 editing and hepatic organoids derived from WT and ICAM-1-KO mice. alternating KO as well as rescue experiments. They show that in the absence of apical ICAM-1, the BC become dilated.

      The data sufficiently support the conclusions of the study.

      Recommendations for the authors:

      We would like to thank the editor and reviewer for recognizing the manuscript's value and the solid nature of the data. We are also thankful to them for acknowledging that the manuscript supports the conclusions. Below, we have addressed their commentaries and questions in a point-by-point rebuttal document:

      We have a few suggestions to improve the manuscript:

      (1) HepG2 cells form canaliculi-like structures but are not the ideal system to study the apical basal polarity. On the other hand, hepatic organoids can assume a hepatocyte-like phenotype, when cultured under specific conditions but are not functionally comparable to hepatocytes organized in a 3D structure with a hollow lumen that does not recapitulate the BC physiological structure. Therefore, primary hepatocyte in collagen sandwich would be the best model to study the polarization of BCs and could be isolated from WT and ICAM-1-KO mice, that are available. Some of the major findings should be confirmed in this system.

      We adopted the culture of hepatic organoids as an experimental strategy motivated by the difficulties to culture primary hepatocytes experienced in previous analyses (RegleroReal, Cell Rep, 2014). The generation of organoids or mature hepatocytes from various sources of stem cells is a commonly employed strategy in hepatocyte cell biology (Meyer et al. EMBO Rep, 2023), due to the difficulties in maintaining mature hepatic epithelial cell cultures for longer than a few hours.

      The hepatic organoids we have used in the manuscript are being accepted as advanced cellular strategies for a broad range of fields (Belenguer, Nat Commun, 2022; de Crignis, eLife, 2021; Huch, Cell, 2015). Despite they have some morphological differences with real hepatocytes, we conducted a thorough characterization of their organization identifying canalicular-like structures with functional (CFDA) and molecular (HA-4) markers, which we believe adds value to the manuscript. In addition, the organoid technology has allowed us to import the bipotent precursors to get an permanent source of hepatic cells without the need to import and use the ICAM-1_KO mice, in line with the current guides to reduce animal experimentation.

      Taking this into account and to further validate data obtained with our cellular systems, we carried out a quantification of the canalicular diameter in livers from WT and ICAM1_KO cells (New Figure 8B), which validates our data on human cell lines and organoids. We acknowledge that the data obtained from hepatic tissues cannot rule out the contribution of immune cell adhesion to changes in the hepatocyte architecture. However, these experiments, together with the aforementioned organoids and human cell lines, strongly suggest a role for hepatic ICAM-1 in regulating canalicular size.

      (2) Overexpression of proteins was used in the study. While this approach is an easier means to visualize, without the use of specific antibodies, it is known to alter the distribution of the protein compared to the endogenous one.

      Most of our characterization has been done with antibodies or other fluorescent tools against endogenous proteins localized at BCs: CD59, F-actin, EBP50, MHC, MLC…. In addition, we have included MDR1-GFP and GFP-Rab11, the latter to analyze the subapical compartment (SAC) surrounding BCs. As requested by the reviewer, we now include in a new Supplementary Figure 1C the confocal analyses of endogenous canalicular markers, radixin and MRP2, as well as a new Supplementary Figure 1D containing the staining of an endogenous marker of the SAC, plasmolipin/PLLP (Fraticelli et al, Nat Cell Biol, 2015; Cacho-Navas, Cell Mol Life Sci, 2022), which is consistent with the previous analyses performed with GFP-Rab11.

      (3) In the absence of ICAM-1, BCs change shape and dimension but still show the presence of microvilli. What happens to the distribution of polarized transporters like Mrp2, or the transport of bile acids (CFDA clearance) in vivo in the KO animal?

      Thank you for this comment. We have analyzed this transporter in murine livers and human hepatic cells. MRP2 distribution does not significantly change and is concentrated in BCs also in ICAM-1_KO livers (New Figure 8C). Likewise, ICAM-1 gene edition does not affect MRP2 localization in the polarized human hepatic epithelial cell line in vitro (Supplementary Figure 1C). We cannot rule out changes for this transporter in other murine liver cell types in vivo, such as sinusoidal endothelial cells, which we believe should be further addressed in a different piece of work.

      (4) Does the lack of ICAM-1 affect the cell viability, proliferation or cell size?

      ICAM-1_KO cells proliferate slightly more slowly than their WT counterparts, with no detected changes in cell size and death. We present these data in Supplementary Figure 1, A and B.

      (5) Are the findings recapitulated in the livers of ICAM-1 KO animals?

      ICAM-1 KO animals present enlarged BCs, which is consistent with the main findings of the manuscript (Figure 8B).

      The text needs to be more concise. Some of the concepts, in particular those already published, should be condensed. There is a large amount of experiments that are difficult to connect logically. Possibly, cartoons summarizing the approach of the figure could help the reader.

      The text of Results and Discussion sections has been shortened by almost 100 words, despite the additional panels and experiments are now described and discussed. New cartoons have been added in Figure 5G and Figure 8F, in addition to those previously included in Figure 1 and Supplementary Figure 6, the latter containing a graphical descriptions of the main conclusions.

      Also, more detailed information about statistical analysis (what post-test was used?), concentration of cytokines, and description of the mouse model should be included in the methods.

      Cytokine concentrations have been included in the legend of Figure 3 and in the Cell and Culture section of Methods. A brief description of the ICAM-1_KO mouse and the corresponding reference for further information is also provided in the Organoid Culture section of Methods. A statistical analysis section describing the post-test used is also included at the end of Methods. The references of anti-plasmolipin, anti-radixin and antiMRP2 antibodies, as well as the new fixation methods used for immunofluorescence are also included in the corresponding Antibody List and in the Confocal Microscopy section of Methods, respectively . .

      Figure 3D. Sample names should be added as in the rest of the figures.

      The arrangement of sample names in Figure 3D has been revised and is now similar to that of Figure 3A.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      In this manuscript, Yao et al. explored the transcriptomic characteristics of neural stem cells (NSCs) in the human hippocampus and their changes under different conditions using single-nucleus RNA sequencing (snRNA-seq). They generated single-nucleus transcriptomic profiles of human hippocampal cells from neonatal, adult, and aging individuals, as well as from stroke patients. They focused on the cell groups related to neurogenesis, such as neural stem cells and their progeny. They revealed genes enriched in different NSC states and performed trajectory analysis to trace the transitions among NSC states and towards astroglial and neuronal lineages in silico. They also examined how NSCs are affected by aging and injury using their datasets and found differences in NSC numbers and gene expression patterns across age groups and injury conditions. One major issue of the manuscript is questionable cell type identification. For example, more than 50% of the cells in the astroglial lineage clusters are NSCs, which is extremely high and inconsistent with classic histology studies.

      While the authors have made efforts to address previous critics, major concerns have not been adequately addressed, including a very limited sample size and with poor patient information. In addition, some analytical approaches are still questionable and the authors acknowledged that some they cannot address. Therefore, while the topic is interesting, some results are preliminary and some conclusions are not fully supported by the data presented.

      We thank the reviewer for reevaluating our revised manuscript. We respect the reviewer’s comments and discuss the technical and conceptual limitations of this work. Here we provide the response to Reviewer #1 (Public Review) on these below.

      Firstly, we appreciate the concerns raised by Reviewer 1 regarding the high proportion of NSCs within the astroglia lineage clusters. it is worth mentioning that distinguishing hippocampal qNSCs from astrocytes by transcription profiling poses a significant challenge in the field due to their high transcriptional similarity. From previous global UMAP analysis, AS1 (adult specific) can be separated from qNSCs, but AS2 (NSC-like astrocytes) cannot. Therefore, the data presented in Figure 2C to G aimed to further distinguish the qNSCs from AS2 by using gene set scores analysis. Based on different scores, we categorized qNSC/AS lineages into qNSC1, qNSC2 and AS2. Figure 2C presented the UMAP plot of qNSC/AS2 population from only neonatal sample. We apologize for not clarifying this in the figure legend. We have now clarified this information in the figure legend of Figure 2C. More importantly, we have added UMAP plots and quantifications for other groups in Figure 2-Supplement 2A and B, including adult, aging, and injure samples. This supplementary figure provides more complete information of the cell type composition and dynamic variations during aging and injury. Although the ratio of NSCs in the astroglia lineage clusters remains higher compared to classic histology studies, the trends indicate a reduction in qNSCs and an increase in astrocytes during aging and injury, which supports that cell type identification by using gene set score analysis is effective, although still not optimal. Combined methods to accurately distinguish between qNSCs and astrocytes are required in the future, and we also discuss this in the corresponding texts.

      Secondly, we cannot adequately address the major concern regarding sample size raised by the reviewer due to the scarcity of stroke and neonatal human brain samples. We have collected additional details about the donors. Please refer to Figure 1-source data 1 for the updated information. Other information regarding the lifestyle parameters of these donors has not been sufficiently recorded by the hospital. Therefore, we cannot improve the patient information further.

      Thirdly, regarding the questionable subpopulations of granule cells (GCs) that derive from neuroblasts in Figure 4A-4D, which are inconsistent with previous single-cell transcriptomic studies, we tried various strategies to confirm the identity of the two subpopulations of granule cells (GCs) derived from neuroblasts but didn’t get a clear answer. As a result, we can only provide an objective description of the differences in gene expression and developmental trajectory and speculate that these differences may be related to their degree of maturity but are not aligned on the same trajectory.

      In the end, we have discussed the technical and conceptual limitations of this work and added a brief discussion about these limitations in the last paragraph of the main text. We hope the readers can interprate our data critically and objectively.

      Reviewer #2 (Public Review):

      In this manuscript, Yao et al. present a series of experiments aiming at generating a cellular atlas of the human hippocampus across aging, and how it may be affected by injury, in particular, stroke. Although the aim of the study is interesting and relevant for a larger audience, due to the ongoing controversy around the existence of adult hippocampal neurogenesis in humans, a number or technical weaknesses result in a poor support for many of the conclusions made from the results of these experiments.

      In particular, a recent meta analysis of five previous studies applying similar techniques to human samples has identified different aspects of sample size as main determinants of the statistical power needed to make significant conclusions. Some of this aspects are the number of nuclei sequenced and subject stratification. These two aspects are of concern in Yao's study. First, the number of sequenced nuclei is lower than the calculated numbers of nuclei required for detecting rare cell types. However, Yao et al. report succeeding in detecting rare populations, including several types of neural stem cells in different proliferation states, which have been demonstrated to be extremely scarce by previous studies. It would be very interesting to read how the authors interpret these differences. Secondly, the number of donors included in some of the groups is extremely low (n=1) and the miscellaneous information provided about the donors is practically inexistent. As individual factors such as chronic conditions, medication, lifestyle parameters, etc... are considered determinant for the variability of adult hippocampal neurogenesis levels across individuals, this represents a series limitation of the current study. Overall, several technical weaknesses severely limit the relevance of this study and the ability of the authors to achieve their experimental aims.

      After a first review round, the manuscript is still lacking a clear discussion of its several technical limitations, which will help the audience to grasp the relevance of the findings. In particular, detailed information about individual patients health status and relevant lifestyle parameters that may have affected it is lacking. The authors make the point themselves that the discrepancies among studies might be caused by health state differences across hippocampi, which subsequently lead to different degrees of hippocampal neurogenesis.". So, even in the authors own interpretation this is a serious limitation to the manuscript, that however out of the authors control, impacts on the quality of their findings.

      Reviewer #2 (Recommendations For The Authors):

      Please see public review. I do understand the authors point about incomplete patient data collection and low patient numbers and how the former is out of their control. Nevertheless, these are crucial parameters that impact negatively on the quality and relevance of several of their bold claims in the manuscript, especially given the low number of patients included. The current version still lacks a clear and honest discussion of the several technical and conceptual limitations of the authors work, as in some cases they are presented to the reviewers in the rebuttal letter, for the readership, so that they could critically evaluate the relevance of the authors' finding in a bigger perspective.

      We thank the reviewer for reevaluating our revised manuscript. We respect the reviewer’s comm¬ents and discuss the technical and conceptual limitations of this work. Here we provide the response to Reviewer #2 (Public Review) on these below.

      We understand the reviewer’s concern and have also noticed that according to the computational modeling conducted by Tosoni et al. (Neuron, 2023), at least 21 neuroblast cells (NBs) can be identified out of 30,000 granule cells (GCs) from a total of 180,000 dentate gyrus (DG) cells. In our dataset, we sequenced 24,671 GC nuclei and 92,966 total DG cell nuclei, which also includes neonatal samples. The number of nuclei we sequenced is 4.5 times higher than that of Wang et al. (Cell Research, 2022), who also detected NBs. Therefore, it is possible that we are able to detect NBs. Importantly, we have implemented strict quality control measures to support the reliability of our sequencing data. These measures include: 1. Immediate collection of tissue samples after postmortem (3-4 hrs) to ensure the quality of isolated nuclei. 2. Only nuclei expressing more than 200 genes but fewer than 5000-8600 genes (depending on the peak of enrichment genes) were considered. On average, each cell detected around 3000 genes. 3. The average proportion of mitochondrial genes in each sample was approximately 1.8%, with no sample exceeding 5%. We have shown that the number of cells captured from individual samples and the average number of genes detected per cell are sufficient, indicating overall good sequencing quality (Figure 1-supplement 1A,B andF, and Figure 1-source data 1). Additionally, we have further confirmed the presence of these cell types with low abundance by integrating immunofluorescence staining (Figure 4E, 5D and 6B), cell type-specific gene expression (Figure1 C and D), overall transcriptomic characteristics (Figure 1-supplement 1E), and developmental potential (Figure4 A-D, Figure 6E and F). We hope these evidences together could explain why we can identify the rare neurogenic populations.

      Regarding the limited sample size and poor patient information, we cannot adequately address these two major concerns. Due to the scarcity of stroke or neonatal human samples, it was not feasible to collect a larger sample size within the expected timeframe. We have collected additional details about the donors. Please refer to Figure 1-source data 1 for the updated information. Other information regarding the lifestyle parameters of these donors has not been sufficiently recorded by the hospital. Therefore, we cannot improve the patient information further.

      As per the reviewer’s recommendation, in the latest version, we have discussed the technical and conceptual limitations of this work and added a brief discussion about these limitations in the last paragraph of the main text. We hope the readers can interprate our data critically and objectively.

    1. Author Response

      We thank both reviewers for the positive evaluation of our work and suggestions on how to improve it.

      We agree with Reviewer #1 that reporting uncertainties will both clarify and strengthen our arguments. Where applicable, uncertainties will be added in a revised version.

      To Reviewer #2’s suggestion of including free energy calculations to estimate the free energies of hydrogen bond and hydrophobic interactions, the current free energy methods are capable of given accurate estimates of the relative binding free energies of similar ligands; however, accurate calculations of the absolute free energies of hydrogen bond and hydrophobic interactions are not feasible yet.

      Again, we thank the reviewers for their assessment and suggestions. We will update the manuscript as we have outlined above.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review

      [...] A particular strength of the present study is the structural characterization of human PURA, which is a challenging target for structural biology approaches. The molecular dynamics simulations are state-of-the-art, allowing a statistically meaningful assessment of the differences between wild-type and mutant proteins. The functional consequences of PURA mutations at the cellular level are fascinating, particularly the differential compartmentalization of wild-type and mutant PURA variants into certain subcellular condensates.

      Weaknesses that warrant rectification relate to (i) The interpretation of statistically non-significant effects seen in the molecular dynamic simulations.

      We removed from the manuscript the sentence which indicated that we analyzed statistically non-significant effects. Therefore, the above statement has been resolved.

      (ii) The statistical analysis of the differential compartmentalization of PURA variants into processing bodies vs. stress granules, and

      We re-analyzed all cell-biological data and adjusted the statistical analysis of P-bodies and Stress-granule intensity analysis. The new, and improved statistics have replaced the original analyses in the corresponding figures (Figs. 1C and 2B).

      (iii) Insufficient documentation of protein expression levels and knock-down efficiencies.

      Quantification of protein expression levels by Western blotting is shown in Appendix Figure S1. Quantification of knock-down efficiencies by Western blot experiments (Appendix Figure S3).

      Recommendations for the authors: Reviewer #1

      Concerns and Suggested Changes

      (a) I have only one concern about the computational part and that is about statements such as "There are also large differences in the residue surrounding the mutation spot (residues 90 to 100), where the K97E mutant also shows much greater fluctuation. However, these differences are not significant due to the large standard deviations." If the differences are not statistically significant, then I would suggest either removing such a statement or increasing the statistics.

      We agree with the Reviewer’s comment. We removed this sentence from the text.

      Recommendations for the authors: Reviewer #2

      General Comments

      This is a challenging structural target and the authors have made considerable efforts to determine the effect of several mutations on the structure and function. Many of the constructs, however, could not be expressed and/or purified in bacteria. However, it is not clear to what extent other expression systems (e.g. Drosophila or human) were considered and if this would have been beneficial.

      We did not use other expression systems because the wild-type protein is well-behaved when expressed in E. coli. In case a mutant variant cannot be expressed or does not behave well in E. coli, this constitutes a clear indication that the respective mutation impairs the protein’s integrity. Thus, by using E. coli as a reference system for all the variants of PURA protein, we could assess the influence of the mutations on the structural integrity and solubility. Only for the variants that did not show impairment in E. coli expression, we continued to assess in more detail why they are nevertheless functionally impaired and cause PURA Syndrome.

      Concerns and Suggested Changes

      (a) The schematic in Figure 3A would have been helpful for interpreting the mutations discussed in Figures 1 and 2. I would suggest moving it earlier in the text.

      We changed the figure according to the Reviewer’s suggestion.

      (b) I believe the RNA used for binding studies in Figures 3C and D was (CGG)8. Are the two "free" RNA bands a monomer and a dimer (duplex?)?

      Although we do not know for certain, it is indeed likely that the two free RNA bands represent either different secondary structures of the free RNA or a duplex of two molecules. Of note, PURA binds to both “free” RNA bands, indicating that it either does not discriminate between them or melts double-stranded RNA in these EMSAs.

      There also seems to be considerable cooperativity in the binding, so I wonder if a shorter RNA oligonucleotide might facilitate the measurement of Kds.

      The length of the used RNA was selected based on the estimated elongated size of the full-length PURA and the presence of 3 PUR repeats. Assuming that one PUR repeat interacts with about 6-7 bases (data from the co-structure of Drosophila PURA with DNA; PDB-ID: 5FGP) and that full-length PURA forms a dimer consisting of three PUR repeats, the full-length protein in its extended form should cover a nucleic-acid stretch of about 24 bases.

      Also, it is not clear how the affinities were measured particularly for hsPURA III since free band is never fully bound at the highest protein concentration.

      It was not our goal to measure Kds for the interaction of PURA variants with RNA. The EMSA experiments were conducted to detect relative differences in the interaction between PURA variants and RNA. To estimate the differences, we measured total intensity of the bound (shifted) and unbound RNA. The intensities of the bands observed on the scanned EMSA gels were quantified with FUJI ImageJ software. We calculated the percentage of the shifted RNA and normalized it. hsPURA III fragment shows much lower affinity therefore it does not fully shift RNA with the highest protein concentration when compared to the full-length PURA and to PURA I-II.

      (c) Do the human PURA I+II and dmPURA I+ II crystallize in the same space group and have similar packing? Can the observed structural flexibility be due to crystal contacts?

      hsPURA I+II and dmPURA I+II crystallize in different space groups with different crystal packing. In both cases, the asymmetric unit contains 4 independent molecules with the flexible part of the structure composed of the β4 and β8 (β ridge) exposed to solvent. In the case of the Drosophila structure, we do not observe any flexibility of both β-strands. In contrast, for the human PURA structure the β ridge exhibits lots of flexibility and it adopts different conformations in all 4 molecules of the asymmetric unit. We observe similar flexibility of the β4 and β8 (β ridge) in the structure of K97E mutant which contains 2 molecules in the asymmetric unit. We would like to add that we expect crystal contacts to rather stabilize than destabilize domains.

      Similarly, can the conformations observed for the K97E mutant be partially explained by packing?

      Regarding the sequence shift observed for the β5 and β6 strands in hsPURA I+II K97E variant: although the β5 strand with shifted amino acid sequence is involved in the contact with the symmetry-related molecule with another β5 strand we don’t consider this interaction as a source of the shift. To be sure that the shift is not forced by the crystallization, we had performed NMR measurement which confirmed that in solution there is a strong change in the β-stands comparing WT and K97E mutant. This is an unambiguous indication that the structural changes observed in the crystal structure are also happening in solution. In addition, the MD simulations provide additional confirmation of our interpretation that K97E destabilizes the corresponding PUR domain. Taken together, we provide proof from three different angles that the observed differences indeed affect the integrity and hence function of the protein.

      (d) Perhaps, it is my misunderstanding, but I find the NMR data on the Arg sidechains for the K97E confusing. If they are visible for K97E and not WT, doesn't this indicate that there is an exchange between two conformations or more dynamics in the WT structure? This does not seem to be the opposite of the expectation if K97E is thought to have more conformational flexibility.

      Due to a technical issue (peak contour level), arginine side chain resonances were not clearly visible in the WT spectrum. The figure 5F has been updated. Now, they do correspond to those seen in the mutant spectrum. However, to prevent any confusion or mis/overinterpretation, we removed the sentence regarding arginine side chain: "Intriguingly, arginine side chain resonances Nε-Hε were only visible in the K97E variant, while they were broadened out in the wild-type spectrum."

      (e) The most speculative part of the paper is the interpretation of SG and PB localization of PURA in Fig 1 and 2. There is an important issue with the statistics that must be clarified because it would appear that statistical significance was determined using each SG or PB as an independent measurement. This is incorrect and significance should be measured by only using the means of three biological replicates. This is well described here. It is not clear at this time if the reported P values will be confirmed upon reanalysis, and this may require reinterpretation of the data.

      We are grateful for this clarifying comment and agree that the statistical analysis of P-body and stress granule was misleading. Of note, while the figures depicted all the values independent of the biological repeats, the statistical analyses were done on the mean value of each replicate of each cell line and not all raw data points.

      We prepared new Plots, only showing the mean value of each replicate, and also re-calculated P-values. The values have changed only slightly in this new analysis because we now also included the previously labeled outliers (red points) to better demonstrate that significance still exists even when considering them.

      In the new analysis of stress-granule association, only the value of the K97E mutant lost its significance, indicating that its association to stress granules is not lost. Therefore, we adjusted the following sentences in the manuscript.

      Results:

      Original: "While quantification showed a reduced association of hsPURA K97E mutant with G3BP1-positive granules (Fig 1B), the two other mutants, I206F and F233del, showed the same co-localization to stress granules as the wild type control."

      Corrected: "In all the patient-related mutations, no significant reduction in stress granule association was seen when compared to the wild type control (Fig 1C)."

      Original: "The observation that only one of the patient-related mutations of hsPURA, K97E, showed reduced stress granule association indicates that this feature may not constitute a major hallmark of the PURA syndrome. It should be noted however that this interpretation must be considered with some caution as the experiments were performed in a PURA wild-type background."

      Corrected: "As we did not observe significant changes in the association of patient-related mutations of hsPURA to stress granules, it is suggested that that this feature may not constitute a major hallmark of the PURA syndrome. It should be noted however that this interpretation must be considered with some caution as the experiments were performed in a PURA wild-type background."

      (f) A western blot showing the level of overexpression of the PURA proteins should be shown in Figure 1 as well as the KD of endogenous PURA for Figure S2?

      As requested, a Western blot showing the level of overexpression of the different PURA proteins has been added as Appendix Figure S1.

      A Western blot of the siRNA-mediated knock-down experiments of PURA and their corresponding control has been added to Appendix Figure S3. Quantification of three biological repeats showed a significant reduction of PURA protein levels upon knock down.

      (g) While I appreciate that rewriting is time-consuming, I would recommend considering restructuring the manuscript because I think that it would aid the overall clarity. I think the foundation of the work is the structural characterization and would suggest beginning the paper with this data and the biochemical characterization. The co-localization with SGs and PBs and how this may be relevant to disease is much more speculative and is therefore better to present later. While I appreciate that the structural interpretation of why some mutants localize to PBs differently is not entirely clear, I do think that this would provide some context for the discussion.

      In the initial version of the manuscript we first presented the structural characterization of PURA and afterwards the co-localization with SGs and PBs. As this reviewer stated him-/herself in (e), we also noticed that the SG and PB interpretation is the most speculative part of this manuscript. We felt that having this at the end of the results section would weaken the manuscript. On the other hand, we consider that the structural interpretation of mutations is much stronger and has a greater impact for future research. After long discussion we decided to swap the order to leave the most important results for the end of the manuscript.

      Recommendations for the authors: Reviewer #3

      Concerns and Suggested Changes:

      (a) For the characterization of G3BP1-positive stress granules in HeLa cells upon depletion of PURA, it remains unclear what is the efficiency of siRNA? The authors should provide a western blot to indicate how much the endogenous levels were reduced.

      We completely agree with the stated concern and addressed it accordingly. We had performed this experiment prior to submission but for some unknown reason it was not included in the manuscript.

      The Western blot of siRNA-mediated knock-down experiments of PURA and their corresponding control is now shown in Appendix Figure S3. Quantification of three biological repeats, showed a significant reduction of PURA protein levels upon knock down.

      (b) How does knocking down PURA affect DCP1A-positive structures in HeLa cells? Would P bodies be formed even in the absence (or reduction) of total PURA?

      Indeed, the stated question is very interesting. In fact, we have already shown in our recent publication (Molitor et al., 2023) that a knock down of PURA in HeLa and NHDF cells leads to a significant reduction of P-bodies. We actually referred to this finding on page 6:

      "Since hsPURA was recently shown to be required for P-body formation in HeLa cells and fibroblasts (Molitor et al. 2023), PURA-dependent liquid phase separation could potentially also directly contribute to the formation of these granules."

      On the same page, we also refer to the underlying molecular mechanism:

      "However, when putting this observation in perspective with previous reports, it seems unlikely that P-body formation directly depends on phase separation by hsPURA, but rather on its recently reported function as gene regulator of the essential P-body core factors LSM14a and DDX6 (Molitor et al., 2023)."

    1. Author Response

      The following is the authors’ response to the previous reviews.

      • Is the coronal slice in Figure 2 the corresponding mid-coronal plane to compute Dice scores? If so, the authors could mention it so that readers have an idea where the selected slice is.

      This is indeed a good point. The coronal slice in Figure 2 is not part of the set of slices that we used to compute Dice scores. Showing such a slice is important, so we have added a small figure to the appendix with one of these slices, along with the corresponding automated segmentations.

      • SIFT descriptors were adopted to detect fiducials only. Maybe it could also be applied to align stacked photographs of brain slices.

      While SIFT is robust against changes in pose (e.g., object rotation), perspective, and lightning, it is not robust against changes in the object itself – such as changes between one slice to the next, as is the case in our work. We have added a sentence to the methods section clarifying this issue.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Weaknesses:

      Start site fidelity in purified recons5tuted systems can be drama5cally altered in different buffer condi5ons. Interpreta5on of the observed changes to start site selec5on in mRNAs in the absence or presence of Ded1 using only the one buffer condi5on used is therefore limited.

      This is an excellent point and is something we could explore in future studies using the Rec-Seq system. We have added this caveat to the Discussion on lines 797-809. We have previously studied the fidelity of start codon recogni>on in the recons>tuted system (Kolitz et al., [2009] RNA, 15:138-152) and found that under our standard buffer condi>ons the codon specificity generally reflects what we observed in vivo using a dual-luciferase reporter assay, with the most stable 48S complexes forming on AUG codons, followed by first posi>on mismatches (GUG, UUG, CUG), with second and third posi>on mismatches leading to significantly less stable complexes. However, as the reviewer notes, there are some devia>ons: ACG and AUA are poor codons in the in vitro system under the buffer condi>ons used but allowed rela>vely strong expression in our in vivo reporter assay. It should also be noted that the hierarchy of nearcognate start codon usage in vivo in yeast differs according to the study and the reporter used, making it difficult to establish a “ground truth” for start codon fidelity.

      I have some specific comments to strengthen the manuscript and address some minor issues.

      It is not clear to me whether the authors refold the purified mRNA aEer phenol/chloroform extrac5on? Have the authors observed different results if the mRNA is refolded or not? This is appropriate since the authors compare their Rec-Seq data to PARS scores that were generated from refolded mRNAs. One assumes that the total mRNA used is refolded in the same way as the PARS score study, but this is not clearly stated. The authors should make this point clear in the text and methods.

      This is an excellent point. We did not use the final refolding protocol that Kertesz et al. used when they developed their PARS scores and now clarify this in the Methods sec>on (lines 962967). It is possible that we would have seen stronger correla>ons in the analyses using PARS scores had we followed the renatura>on protocol, although the fact that we observed significant correla>ons (e.g., Fig. 3E-H) suggests the structures in the Kertesz et al. mRNAs were similar to those in our mRNAs.

      It is not clear how the authors determine the concentra5on of total mRNA that is used in the assay - reported as 60 nM? Are the authors assuming a molecular weight of an average mRNA to determine the concentra5on? The authors should provide more detail for how they quan5fy their mRNA concentra5on and its stoichiometry compared to 43S PICs.

      We thank the reviewer for poin>ng out this oversight and have now included this informa>on on lines 849-855 of the Methods sec>on.

      Comments regarding start site fidelity in the recons5tuted system:

      The authors use in vitro transcribed tRNAi-Met. Since tRNA modifica5ons may play a role in start site fidelity, the authors should perhaps men5on that this will need to be inves5gated in a future study in the discussion.

      This is a good point and we now note it as a caveat in the Discussion on lines 806-809.

      The authors state that Ded1 promotes leaky scanning regardless of the mAUG start site context (page 24; lines 533-534). The authors then state on page 25 that the level of iAUG ini5a5on rela5ve to mAUG ini5a5on does depend on the mAUG context (lines 545-546). This seems contradictory unless I am not understanding this correctly? It would certainly be surprising that mAUG context didn't regulate leaky scanning in the recons5tuted system given the fact that ini5a5on codon context regulates selec5on in cells (when Ded1 is present).

      These statements are correct as wrihen. As shown in Figure 5O, the frequency of leaky scanning (as measured by rela>ve ribosome occupancy of the internal region of the ORF, not including the main start codon, to the whole ORF, including the main start codon; RRO) decreases as the context score around the start codon gets stronger (green and purple lines). The RRO is increased to the same extent when 500 nM Ded1 is added, regardless of the strength of the start codon context, indica>ng that Ded1 enhances leaky scanning equally (compare slopes of the green line without Ded1 to the purple line with Ded1). Because of this, the effect of Ded1 on RRO (DRR0) is constant across context score bins (orange line). There is no discrepancy between our two conclusions that leaky scanning of the mAUG increases as context score decreases and that Ded1 increases leaky scanning equally for good and bad mAUG contexts, indica>ng that Ded1 does not inspect the mAUG context and simply decreases the dwell >me equally at all contexts.

      Further to the start site context ques5on. It is possible that the fidelity of the recons5tuted system (i.e. buffer condi5ons) is not fully reflec5ng in vivo-like start site selec5on. A rigorous characteriza5on of commercially available re5culocyte lysate systems iden5fied buffer condi5ons that provided similar start site fidelity to that observed in live cells (Kozak. Nucleic Acids Res. 1990 May 11;18(9):2828). While I feel that it is beyond the context of the current work to undertake a similar rigorous buffer characteriza5on, one must be careful about interpre5ng the results about leaky scanning and upstream ini5a5on sites in the current work. Perhaps one would observe similar results to Guenther et al. if the fidelity (buffer condi5ons) of the recons5tuted system were different? I appreciate that the authors state that their results only apply to their recons5tuted system and do not necessarily suggest that previous data are incorrect, but with only one buffer condi5on being tested in the current study it may be appropriate to further soEen the interpreta5on of the current results when compared to published data in live cells.

      This point is well-taken. As noted above, we have added a caveat about possible effects of buffer condi>ons on start codon fidelity to the Discussion (lines 797-809). In terms of the possibility that upstream ini>a>on is more frequent in vivo than we observe in the in vitro RecSeq system, we previously studied 5’UTR transla>on in vivo using ribosome profiling (Kulkarni et al. [2019] BMC Biol., 17:101). The ra>o of RPFs in 5’UTRs to coding sequences in this study was 0.0027, very similar to the value measured in the in vitro Rec-Seq system in the presence of Ded1 (0.0016-0.0017). Thus, it does not seem that the frequency of upstream ini>a>on is drama>cally higher in vivo than in our in vitro system. We have now made note of this point in the Results (lines 594-598). Guenther et al. employed a ribosome profiling protocol in which they added cycloheximide to their cells prior to lysis, which has been shown to create significant ar>facts, par>cularly in 5’UTR transla>on (e.g., Gerashchenko and Gladyshev [2014] Nucleic Acids Res., 42:e134). Nevertheless, as suggested by the reviewer, we have modified the text in the Results and Discussion to somen the interpreta>on somewhat (lines 582-583; 616-618; 761763).

      Reviewer #2

      Weaknesses:

      Several findings in this report are quite surprising and may require addi5onal work to fully interpret. Primary among these is the finding that Ded1p s5mulates accumula5on of PICs at internal site in mRNA coding sequences at an incidence of up to ~50%. The physiological relevance of this is unclear.

      We agree with the reviewer that understanding the physiological significance, if any, of the apparent leaky scanning of main AUG start codons induced by Ded1 is an unanswered ques>on that will require addi>onal studies. It is possible that rapid 60S subunit joining and forma>on of the 80S ini>a>on complex amer start codon recogni>on on most mRNAs reduces the leaky scanning effect in vivo. We now bring up this possibility in the Discussion sec>on (lines 804809). However, as noted in lines 568-580, mRNAs that display significantly decreased mRPFs at 500 nM Ded1 in the Rec-Seq system also tend to have TEs that are increased in the ded1-cs- mutant rela>ve to WT yeast in in vivo ribosome profiling experiments, sugges>ng that Ded1 ac>vity also diminishes ini>a>on on mAUG codons in these mRNAs in vivo.

      A limita5on of the methodology is that, as an endpoint assay, Rec-Seq does not readily decouple effects of Ded1p on PIC-mRNA loading from those on the subsequent scanning step where the PIC locates the start codon. Considering that Ded1p ac5vity may influence each of these ini5a5on steps through dis5nct mechanisms - i.e., binding to the mRNA cap-recogni5on factor eIF4F, or direct mRNA interac5on outside eIF4F - addi5onal studies may be needed to gain deeper mechanis5c insights.

      We agree that this is a limita>on of the Rec-Seq assay and now men>on this point in the Discussion sec>on (lines 810-817). It is possible that future work using cross-linking agents to stabilize 43S complexes bound near the cap and scanning the 5’UTR, similar to the methodology used in 40S ribosome profiling, could enable us or others to disentangle these steps from one another.

      As the authors note, the achievable Ded1p concentra5ons in Rec-Seq may mask poten5al effects of Ded1p-based granule forma5on on transla5on ini5a5on. Addi5onal factors present in the cell could poten5ally also promote this mechanism. Consequently, the results do not fully rule out granule forma5on as a poten5al parallel Ded1p-mediated transla5on-inhibitory mechanism in cells.

      We agree. As stated in the Discussion sec>on (lines 735-741): “It is possible that at higher concentra>ons of Ded1 than were achievable in these in vitro experiments or in the presence of addi>onal factors that modify Ded1’s ATPase or RNA binding ac>vi>es the factor could directly inhibit a subset of mRNAs, by ac>ng as an mRNA clamp that impedes scanning by the PIC, or by sequestering the mRNAs in insoluble condensates. It might be interes>ng in the future to test candidate factors in Rec-Seq to determine if they switch Ded1 from being a s>mulatory helicase to an inhibitory mRNA clamp that removes transcripts from the soluble phase.”

      It is certainly clear why the 15-minute 5mepoint was chosen for these assays. However, I wondered whether data from an earlier 5mepoint would provide useful informa5on. The descrip5on on line 210 of the compiled PDF suggests data from different 5mepoints may be available; if it is, in my view it could be a useful addi5on. More generally, including language about the single-turnover nature of these reac5ons may be helpful for the benefit of a broad audience.

      In preliminary experiments, we have used the Rec-Seq system to measure the kine>cs of 48S PIC forma>on transcriptome-wide. As you probably can imagine, this is a challenging experiment and requires addi>onal work before we would feel comfortable publishing it. We very much agree with the reviewer that resolving the kine>cs of these events will provide important addi>onal informa>on. As suggested, we have added caveats about the endpoint and single-turnover nature of the assay to the Discussion (lines 821-828).

      I wondered whether it might be useful to present addi5onal informa5on on the mRNAs not found in the assay. For example, are these the least abundant mRNAs, which may not have had 5me to recruit the 43S PIC?

      75% of mRNAs (2719 of 3640) not observed in the Rec-Seq analysis had densi>es below the median (2.3 reads per nucleo>de). We now men>on this in the Methods sec>on (lines 855856).

      The Rec-Seq recruitment reac5ons were carried out at 22C˚ . Considering that remodeling of RNA structure by helicase enzymes is a focal point of the study, linking the results to the recruitment landscape at a closer-to-physiological temperature may bolster the conclusions.

      In the future, it would be interes>ng to test the effects of temperature on 48S PIC forma>on using the Rec-Seq system. As the reviewer suggests, the interplay between temperature and mRNA structure could reveal interes>ng phenomenon. It is worth no>ng, however, that there is no clear “physiological” temperature for S. cerevisiae. For consistency and convenience, lab yeast is usually grown at 30 ˚C, but in the wild yeast live at a wide range of temperatures, which generally change throughout the day. From this standpoint, 22 ˚C seems reasonably physiological.

      Results from Rec-seq experiments conducted at 15° C might be more directly comparable to in vivo Ribo-seq data with the ded1-cs mutant. However, already ~90% of the Ded1hyperdependent mRNAs iden>fied by Ribo-seq analysis of that mutant were iden>fied here as Ded1-s>mulated mRNAs in Rec-Seq experiments at 22°C. The Ribo-seq experiments conducted by Guenther et al. were conducted on the ded1-ts mutant at 37°C; thus, any structures that confer Ded1-dependent leaky-scanning through uORFs detected in that study should have been stable in our Rec-Seq experiments.

      The introduc5on provides an important, detailed exposi5on of the state of the field with respect to Ded1p ac5vity. Nevertheless, in my view, it is quite lengthy and could be streamlined for clarity. As just one example, the proposed func5on of Ded1p in the nucleus seems like a detail that could be dispensed with for the present work.

      We have ahempted to shorten the Introduc>on, as suggested. However, we did not remove the short sec>on describing Ded1’s possible roles in the nucleus and ribosome biogenesis because we felt it was important to emphasize that one of the strengths of the Rec-Seq system is that it allows us to isolate the early steps of transla>on ini>a>on from later steps and from other cellular processes. In addi>on, at the sugges>on of Reviewer #3, we added a brief explana>on of Ded1’s possible role in the subunit joining step of transla>on.

      Reviewer #3

      Weaknesses:

      The slow nature of the biochemical experiments could bias results.

      We agree that the 15-minute >me point used could mask effects that are manifested at a purely kine>c level. It should be noted that we have measured the observed rate constants for 48S forma>on on a variety of mRNAs in the in vitro recons>tuted system in the presence of satura>ng Ded1 (Gupta et al. [2018] eLife, hhps://elifesciences.org/ar>cles/38892 ) and found that they are generally in the range of es>mates of rate constants for transla>on ini>a>on in vivo in yeast (~1-10 min-1; e.g., Siwiak and Zielenkiewicz [2010], PLOS Comput. Biol., 6: e100865). In preliminary experiments, we have used the Rec-Seq system to measure the kine>cs of 48S PIC forma>on transcriptome-wide in the absence of Ded1 and find that the mean rate constant observed (~2 min-1) is also within the range of es>mates of the rate of transla>on ini>a>on in vivo in yeast. We hope to publish this analysis in a future manuscript.

      It has been suggested that Ded1 and its human homolog DDX3X could play a role in subunit joining postscanning (Wang et al. 2022, Cell and Geissler et al. 2012 Nucleic Acids Res). Could the authors poten5ally inves5gate this by adding GTP, eIF5B and 60S subunits into the reac5on mixture and isola5ng 80S complexes?

      This is a very interes>ng sugges>on. One of our plans with the Rec-Seq system is to see if we can also observe 80S forma>on with it and dis>nguish 80S from 48S complexes. Although we haven’t yet tried this and there might be technical obstacles to doing it, if it works we would like to examine the poten>al effects of Ded1, as suggested. We now men>on this possibility in the Discussion sec>on (lines 709-716 and 810-817).

      An incuba5on 5me of 15 minutes is quite long on the 5mescale of transla5on ini5a5on. Presumably, the compe55on for 40S among mRNAs is par5ally kine5cally controlled so it would be interes5ng if the authors could do a 5me series on the incuba5on 5me. Does Ded1 increase ini5a5on on more structured UTRs even at shorter incuba5ons or are those only observed with longer incuba5ons?

      We agree. See the response to the ques5on about kine5cs above.

      Does GDPNP lead to off-pathway events? What happens when GTP is used in the TC? Presumably in the absence of eIF5B the 48S PIC should remain stalled at the start codon.

      In previous experiments in the recons>tuted system, we showed that using GTP instead of GDPNP resulted in 48S complexes that were less stable than those stalled prior to GTP hydrolysis (e.g., Algire et al. [2002] RNA 8:382-397). This is presumably because eIF2•GDP and eIF5 release from the complex and the Met-tRNAi can dissociate in the absence of subunit joining. Although we haven’t tried it in the Rec-Seq system, we suspect that the resul>ng PICs would fall apart during sucrose gradient sedimenta>on.

      The authors use assembly of a 48S PIC at the start codon as evidence of scanning but could use more evidence to back this claim up. Does removing the cap structure on the two luciferase mRNA controls disrupt ini5a5on using this approach? That would be direct evidence of 5' end 40S loading and scanning to the start codon.

      In previous work using the recons>tuted system, we studied the effect of the 5’-cap on 48S PIC forma>on (Mitchell et al. [2010] Mol. Cell 39:950-962; Yourik et al. [2017] eLife hhps://elifesciences.org/ar>cles/31476 ). We found that stable 48S PIC forma>on is strongly dependent on the presence of the 5’-cap. In addi>on, the cap prevents off-pathway events and enforces a requirement for the full set of ini>a>on factors to achieve efficient 48S PIC forma>on. As the reviewer indicates, the cap-dependence of the system supports the conclusion that 5’end loading and scanning take place. We have now added this informa>on and the relevant cita>ons to the Introduc>on (lines 147-153). We thank the reviewer for poin>ng out this oversight. It should also be noted that the cases of mRNAs in which 5’UTR transla>on is increased by addi>on of Ded1 support the conclusion that the factor promotes ahachment of the PIC to the 5’ ends of mRNAs and subsequent 5’ to 3’ scanning, as noted in lines 608-618.

      The authors state that "The correla5on between CDS length and RE could be indirect because CDS length also correlates with 5'UTR length". Could the authors bin the transcripts into different 5' UTR length ranges and then probe for CDS length differences on RE for each 5' UTR length bin? This could be useful to truly parse the mechanism by which CDS length is influencing RE.

      This was an excellent sugges>on. We now include this analysis in a new supplementary figure, Figure 3S-2. Corresponding text was added in lines 380-387:

      “Importantly, correlations between Ded1 stimulation and 5’ UTR lengths are evident for all three groups of mRNAs containing distinct ranges of CDS lengths (Fig. 3-S2A-C). In contrast, a marked correlation between Ded1 stimulation and CDS length was detected only for the group of mRNAs with longest 5’UTRs (Fig. 3-S2D-F), and only the latter group showed a clear correlation between 5’UTR length and CDS length (Fig. 3-S2G-I). Thus, the correlation between Ded1 stimulation and CDS length appears to be indirect, driven by the tendency for the mRNAs with the longest 5’UTRs to also have correspondingly longer CDSs.”

      We thank the reviewer for this very useful idea.

      In Figure 3I, why does RE dip for the middle bins of CDS length in both 100 nM and 500 nM condi5ons, and then rise back up for the later bins? In other words, why do the shortest and longest CDS have the best RE in the presence of ded1?

      We do not know the reason for this dip and now say this in the Results on lines 377-378.

      The discussion sec5on would be well served to discuss proposed roles of Ded1 post-scanning and how those fit, if at all, with the data presented throughout the manuscript.

      We have now added this to the Discussion (lines 709-716 and 810-817). We thank the reviewer for poin>ng out this oversight.

      Minor comments:

      • Define bins on figures rather than using bin number for axis labels. For example, Figure 3A-D x-axis labels indicate the length range of each bin.

      Thank you for the sugges>on. We have made this change.

      • Figure 3I: the data seem to indicate that shortest CDSs have a ded1 dependency similar to the longest CDSs. This result seems inconsistent with the given rela5onship between UTR length, structure, CDS length. Please clarify.

      See answer to this ques>on above.

      • Replace qualita5ve statements, such as "substan5ally smaller reduc5ons" with percent change, numbers, etc.

      We have tried to replace qualita>ve statements with quan>ta>ve ones, where possible.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This fundamental study advances our understanding of the cell specific treatment of cone photoreceptor degeneration by Txnip. The evidence supporting the conclusions is convincing with rigorous genetic manipulation of Txnip mutations, however, there are a few areas in which the article may be improved through further analysis and application of the data. The work will be of broad interest to vision researchers, cell biologists and biochemists.

      Reviewer #1 (Public Review):

      Summary:

      This is a follow-up study to the authors' previous eLife report about the roles of an alpha-arrestin called protein thioredoxin interacting protein (Txnip) in cone photoreceptors and in the retinal pigment epithelium. The findings are important because they provide new information about the mechanism of glucose and lactate transport to cone photoreceptors and because they may become the basis for therapies for retinal degenerative diseases.

      Strengths:

      Overall, the study is carefully done and, although the analysis is fairly comprehensive with many different versions of the protein analyzed, it is clearly enough described to follow. Figure 4 greatly facilitated my ability to follow, understand and interpret the study.

      Weaknesses:

      I have just one concern that I would like the authors to address. It is about the text that begins at line 133: "We assayed their ability to clear GLUT1 from the RPE surface (Figure 2A)". Please provide more details about this. From the figure it appears that n = 1 for this experiment, but given how careful the authors are with these types of studies that seems unlikely. How did the authors quantify the ability to clear GLUT1 from the surface? Was it cleared from both the apical and basal surface? (It is hard to resolve the apical and basal surfaces in the images provided). The experiments shown in Fig. 1H and Fig. 1I of PMID 31365873 shows how GLUT1 disappears only from the apical surface (under the conditions of that experiment and through the mechanism described in their text). It would be helpful for the authors to discuss their current results in the context of that experiment.

      We repeated all eight AAV-Best1-Txnip alleles for RPE GLUT1 staining with more than three eyes of each condition. We also quantified the GLUT1 intensity on the RPE basal surface. A new Figure 2-figure supplement 1 with these data has been added to this submission. The results and conclusions are similar to those in our initial submission.

      As mentioned in our provisional responses: GLUT1 on the basal surface of the RPE is more easily scored than that on the apical surface. The photoreceptor inner segments and Müller glia microvilli also have GLUT1, and their processes are juxtaposed and/or intertwined with the apical processes of the RPE, making the apical process GLUT1 staining of the RPE much more difficult to score. In some sections where the RPE and the retina separate, we can score the apical process GLUT1 staining of the RPE, but we do not always have this situation in our sections. The current quantification in the new Figure 2-figure supplement 1 thus concerns only the basal staining.

      As a separate issue, Reviewer #1 mentioned the work of another group (Wang et al., 2019, PMID: 31365873), which claimed that, on the apical surface of the RPE, GLUT1 is down-regulated in a RP mouse strain, RhoP23H. We have not consistently observed such a down-regulation of GLUT1 in other RP mouse strains such as rd1, rd10 or Rho-/- (unpublished data; see review Xue and Cepko, 2023, PMID: 37460158). However, as we pointed out above, it is difficult to score GLUT1 staining on the RPE apical surface. It is even more difficult in the degenerating retina where RPE and photoreceptor processes degenerate. For reference, one can see images of degenerating RPE apical processes in Wu et al. 2021 (PMID: 33491671).

      Reviewer #2 (Public Review):

      The hard work of the authors is much appreciated. With overexpression of a-arrestin Txnip in RPE, cones and the combined respectively, the authors show a potential gene agnostic treatment that can be applied to retinitis pigmentosa. Furthermore, since Txnip is related to multiple intracellular signaling pathway, this study is of value for research in the mechanism of secondary cone dystrophy as well.

      There are a few areas in which the article may be improved through further analysis and application of the data, as well as some adjustments that should be made in to clarify specific points in the article.

      Reviewer #3 (Public Review):

      Summary:

      Xue et al. extended their groundbreaking discovery demonstrating the protective effect of Txnip on cone photoreceptor survival. This was achieved by investigating the protection of cone degeneration through the overexpression of five distinct mutated variants of Txnip within the retinal pigment epithelium (RPE). Moreover, the study explored the roles of two proteins, HSP90AB1 and Arrdc4, which share similarities or associations with Txnip. They found the protection of Txnip in RPE cells and its mechanism is different from its protection in cone cells. These discoveries have significant implications for advancing our understanding of the mechanisms underlying Txnip's protection on cone cells.

      Strengths: (1) Identify the roles of different Txnip mutations in RPE and their effects on the expression of glucose transporter

      (2) Dissect the mechanism of Txnip in RPE vs Cone photoreceptors in retinal degeneration models.

      (3) Explore the functions of ARrdc4, a protein similar to Txnip and HSP90AB1 in cone degeneration.

      Weaknesses:

      (1) Arrdc4 has deleterious effect on cone survival but no discussion on its mechanism.

      (2) Inhibition of HSP90 is known to cause retinal generation. It is unclear why inhibition enhances the protection of Txnip.

      As mentioned in our provisional responses, little was known about the function of Arrdc4 or HSP90AB1 in cones. We summarize some of the recent discoveries regarding these two proteins in the new Discussion:

      “Arrdc4, the most similar α-arrestin protein to Txnip that also has Arrestin N- and C- domains, accelerated RP cone death when transduced via AAV (Figure 1). This observation suggests that Txnip has unique functions that protect RP cones. Recently, Arrdc4 has been proposed to be critical for liver glucagon signaling, which could be negated by insulin (Dagdeviren et al. 2023). The implication of this potential role in RP cone survival is unclear, but interestingly, the activation of the insulin/mTORC1 pathway is beneficial to RP cone survival (Punzo et al. 2009; Venkatesh et al. 2015).”

      “Little is known about the function of HSP90AB1. Knocking down Hsp90ab1 improved mitochondrial metabolism of skeletal muscle in a diabetic mouse model (Jing et al. 2018). Knocking out HSP90AA1, a paralog of HSP90AB1 which has 14% different amino acids, led to rod death and correlated with PDE6 dysregulation (Munezero et al. 2023). Inhibiting HSP90AA1 with small molecules transiently delayed cone death in human retinal organoids under low glucose conditions (Spirig et al. 2023). However, the exact role of HSP90AA1 in photoreceptors needs to be clarified, and the implications for HSP90AB1 in RP cones are still unclear. ”

      In addition, we used AlphaFold Multimer, an AI algorithm based on AlphaFold-2, to explore the possible interaction between TXNIP, PARP1 and HSP90AB1 in the revision. One of the predicted models is shown as the new Figure 5-figure supplement 2. The C-terminus of Txnip is predicted to link HSP90AB1 and PARP1 together in this model.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have just one concern that I would like the authors to address. It is about the text that begins at line 133: "We assayed their ability to clear GLUT1 from the RPE surface (Figure 2A)". Please provide more details about this. From the figure it appears that n = 1 for this experiment, but given how careful the authors are with these types of studies that seems unlikely. How did the authors quantify the ability to clear GLUT1 from the surface? Was it cleared from both the apical and basal surface? (It is hard to resolve the apical and basal surfaces in the images provided). The experiments shown in Fig. 1H and Fig. 1I of PMID 31365873 shows how GLUT1 disappears only from the apical surface (under the conditions of that experiment and through the mechanism described in their text). It would be helpful for the authors to discuss their current results in the context of that experiment.

      See our responses to Review #1’s public review section above.

      Also, is the clearance from the RPE plasma membrane homogenous throughout the RPE monolayer?

      In the area of AAV infection, the effects are very homogenous. In the uninfected area, the clearance does not occur, and we consider the uninfected area of the same eye to be an excellent internal control.

      A statistical analysis (as was provided for other experiments in the manuscript) would help to make the surprising conclusion about C.Txhniip.C247S more convincing.

      In this revision, we used the Mann-Whitney U test with the Bonferroni correction for GLUT1 intensity quantification. For the cone survival statistics, we used the t-test or ANOVA with Dunnett multiple comparison test. The information has been added to each figure legend.

      Another improvement I suggest for this figure is to include normal full length Txnip as a positive control to show how completely it removes GLUT1 from the surface.

      Added. See the new Figure 2-figure supplement 1.

      Another point that should be discussed is - when Txnip prevents GLUT1 from reaching the surface does all the GLUT1 get fully degraded within the cell. A brief description of how Txnip influences GLUT1 stability and localization would be helpful.

      We are unable to track the fate of the GLUT1 after it is removed, i.e. we do not see definitive intracellular staining. We do not know if this is due to degradation or a hidden epitope.

      Minor point

      (1) Confusing citation on lines 99-100: "We previously showed that overexpressing the Txnip wt allele in the RPE using an RPE specific promoter, derived from the Best1 gene (Esumi et al. 2009),.." makes it sound like Esumi et al. is the citation for their previous study, which is not correct.

      We have amended this to: "We previously showed (Xue et al. 2021) that overexpressing the Txnip wt allele in the RPE using an RPE-specific promoter, derived from the Best1 gene (Esumi et al., 2009), did not improve RP cone survival."

      Reviewer #2 (Recommendations For The Authors):

      Regarding the manuscript, here are some suggestions that authors can take into consideration for the completeness of the study:

      (1) The text references the relationship between α-arrestin and glucose metabolism in cone cells, but fails to provide an explanation for its specific involvement in glucose metabolism. Consequently, readers may struggle to discern the targeted metabolic pathway.

      We understand this point from Reviewer, and would love to know more about its mechanism, which is one reason why we undertook the current study. The mechanism(s) by which Txnip affects metabolism remains to be elucidated. To summarize our findings from our previous study, we showed that LDHB, which converts lactate to pyruvate, was required for Txnip-mediated rescue. Addition of the LDHB gene, however, did not boost rescue. We also showed that mitochondrial size and membrane potential were improved, and the Na/K pump function was improved, in Txnip-treated cones. Improved mitochondria were not sufficient, however, as revealed by a PARP-1 KO mouse with improved mitochondria that did not extend cone survival. In addition, using a Txnip mutant that does not remove the glucose transporter, we still saw cone rescue, so this function cannot be required for Txnip-mediated rescue. How does Txnip lead to improved mitochondria and to a reliance on lactate? We do not know.

      (2) Although the author conducted an experiment on arrdc14 due to its similarity to Txnip, the lack of clarification on why arrdc4, with a 60% amino acid similarity, did not yield the same effects as Txnip remains unaddressed. Highlighting structural disparities or differences in intracellular signaling pathways could potentially shed light on this incongruity. Subsequently, an additional experiment may be warranted to test the hypothesis regarding the effective component of α-arrestin for cone rescue.

      Additional experiments are needed to learn of the relevant differences between Arrdc4 and Txnip, but are beyond the scope of our work at the present. However, we have added a paragraph on newly published data on the function of Arrdc4 in the new Discussion:

      “Arrdc4, the most similar α-arrestin protein to Txnip that also has Arrestin N- and C- domains, accelerated RP cone death when transduced by AAV (Figure 1). This observation suggests that Txnip has unique functions that protect RP cones. Recently, Arrdc4 has been proposed to be critical for liver glucagon signaling, which could be negated by insulin (Dagdeviren et al. 2023). The implication of this potential role regarding RP cone survival is unclear, but interestingly, the activation of the insulin/mTORC1 pathway is beneficial to RP cone survival (Punzo et al. 2009; Venkatesh et al. 2015).”

      (3) The utilization of distinct mutant Txnip variants to impact RPE, cones, and their combined influence is noted. A comparative table elucidating the impact of cone rescue on these three targets would greatly enhance clarity.

      We presented these data in Figure 4 in a table format.

      Additionally, the text does not definitively establish whether Txnip.C247S.LL351 and 352AA, as well as Txnip.C247S, indeed manifest discrepancies when exclusively affecting RPE.

      We edited a sentence in Results to: “Similar to Best1-wt Txnip (Xue et al., 2021), Best1-Txnip.C247S did not show significant improvement of cone survival, ruling out the C247S mutation alone as promoting the cone survival by Best1-Txnip.C247S.LL351 and 352AA.”

      (4) While the text mentions that Txnip stimulates lactate utilization within cones, it remains unclear whether this effect extends to RPE. If applicable, this trait could potentially contribute to its role in cone rescue.

      We agree with the Reviewer, and hope to address this question in our next study.

      (5) The discussion introduces the notion that one potential mechanism for cone rescue by Txnip.C247S involves facilitating unhindered movement of Thioredoxin for redox processes. To validate this hypothesis and elucidate the mechanics of Txnip's involvement in cone rescue, it may be prudent to conduct further experiments concentrating on the interaction between Txnip and thioredoxin. Alternatively, an experiment aimed at upregulating Thioredoxin expression would be a valuable addition.

      We hope to address this question in the future. However, the effect may be more complicated than our simple hypothesis regarding release of Thioredoxin. More than a dozen proteins were found to differentially interact with Txnip vs. Txnip.C247S (Forred et al. 2016).

      Reviewer #3 (Recommendations For The Authors):

      (1) Glucose transporter 1 is identified as an important mechanism in the protection of cone degeneration. It is unclear why GLut1 is upregulated in retinal cells although the expression of Txnip mutants are specifically in the RPE in Figure 2.

      This retinal GLUT1 upregulation was not consistently observed in the treated eyes, so we did not comment on it in the text.

      (2) Mutant N. Txnip was mentioned in the discussion that it causes obvious retinal degeneration. The quantification of retinal thickness from Figure 2 will be more rigorous.

      Unlike the robust effects of Best1-N.Txnip on RPE GLUT1 level, this negative effect of Best1-N.Txnip on ONL thickness was not consistent. This result does not undermine the other major conclusions. Therefore, we deleted the related sentence of the original text: “This hypothesis is supported by the observation that N.Txnip led to an obvious thinning of the outer nuclear layer of the wt retina, reflecting a loss of photoreceptors”. We did leave in the related finding as follows:

      “The N-terminal half of Txnip (1-228aa) might exert harmful effects in the RPE, that negate the beneficial effects from the C-terminal half, suggested by the observation that its removal, in the C-terminal 149-397 allele, led to better cone survival when expressed in the RPE (Figure 2). In cones, the C-terminal half, including the C-terminal IDR tail, may cooperate with the N-terminal half, or negate its negative effects, to benefit RP cone survival. However, the C-terminal half is not sufficient for cone rescue when expressed in cones, as the 149-397 allele did not rescue.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels.

      Strengths:

      The experiments were thorough and well designed. The results are compelling and support the main claim. The development and the use of the DrosoX two-choice assay put forward for a more quantitative and automatic/unbiased assessment for ingestion volume and preference.

      Weaknesses:

      There are a few inconsistencies with respect the the exact role by which IR60b neurons limit high salt consumption and the contribution of external (labellar) high-salt sensors in regulating high salt consumption. These weaknesses do not significantly impact the main conclusion, however.

      Reviewer #2 (Public Review):

      Summary:

      In this paper, Sang et al. set out to identify gustatory receptors involved in salt taste sensation in Drosophila melanogaster. In a two-choice assay screen of 30 Ir mutants, they identified that Ir60b is required for avoidance of high salt. In addition, they demonstrate that activation of Ir60b neurons is sufficient for gustatory avoidance using either optogenetics or TRPV1 to specifically activate Ir60b neurons. Then, using tip recordings of labellar gustatory sensory neurons and proboscis extension response behavioral assays in Ir60b mutants, the authors demonstrate that Ir60b is dispensable for labellar taste neuron responses to high salt and the suppression of proboscis extension by high salt. Since external gustatory receptor neurons (GRNs) are not implicated, they look at Poxn mutants, which lack external chemosensory sensilla but have intact pharyngeal GRNs. High salt avoidance was reduced in Poxn mutants but was still greater than Ir60b mutants, suggesting that pharyngeal gustatory sensory neurons alone are sufficient for high salt avoidance. The authors use a new behavioral assay to demonstrate that Ir60b mutants ingest a higher volume of sucrose mixed with high salt than control flies do, suggesting that the action of Ir60b is to limit high salt ingestion. Finally, they identify that Ir60b functions within a single pair of gustatory sensory neurons in the pharynx, and that these neurons respond to high salt but not bitter tastants.

      Strengths:

      A great strength of this paper is that it rigorously corroborates previously published studies that have implicated specific Irs in salt taste sensation. It further introduces a new role for Ir60b in limiting high salt ingestion, demonstrating that Ir60b is necessary and sufficient for high salt avoidance and convincingly tracing the action of Ir60b to a particular subset of gustatory receptor neurons. Overall, the authors have achieved their aim by identifying a new gustatory receptor involved in limiting high salt ingestion. They use rigorous genetic, imaging, and behavioral studies to achieve this aim, often confirming a given conclusion with multiple experimental approaches. They have further done a great service to the field by replicating published studies and corroborating the roles of a number of other Irs in salt taste sensation. An aspect of this study that merits further investigation is how the same gustatory receptor neurons and Ir in the pharynx can be responsible for regulating the ingestion of both appetitive (sugar) and aversive tastants (high salt).

      A previous report published in eLife from John Carlson’s lab (Joseph et al, 2017) showed that the Ir60b GRN in the pharynx responds to sucrose resulting in sucrose repulsion. Thus, stimulation of this pharyngeal GRN results in gustatory avoidance only, not both attraction and avoidance. (lines 205-207)

      Weaknesses:

      There are several weaknesses that, if addressed, could greatly improve this work.

      (1) The authors combine the results and discussion but provide a very limited interpretation of their results. More discussion of the results would help to highlight what this paper contributes, how the authors interpret their results, and areas for future study.

      We agree and have now separated the Results and Discussion, and in so doing have greatly expanded discussion of the results.

      (2) The authors rename previously studied populations of labellar GRNs to arbitrary letters, which makes it difficult to understand the experiments and results in some places. These GRN populations would be better referred to according to the gustatory receptors they are known to express.

      One of the corresponding authors (Craig Montell) introduced this alternative GRN nomenclature in a review in 2021: Montell, C. (Drosophila sensory receptors—a set of molecular Swiss Army Knives. Genetics 217, 1-34) (Montell, 2021). We are not fans of referring to different classes of GRNs based on the receptors that they express since it is not obvious which receptors to use. For example, the GRNs that respond to bitter compounds all express multiple GR co-receptors. The same is true for the GRNs that respond to sugars. The former system of referring to GRNs simply as sugar, bitter, salt and water GRNs is also not ideal since the repertoire of chemicals that stimulates each class is complex. For example, the Class A GRNs (formerly sugar GRNs) are also activated by low Na+, glycerol, fatty acids, and acetic acid, while the B GRNs (former bitter GRNs) are also stimulated by high Na+, acids, polyamines, and tryptophan. In addition, there are five classes of GRNs. At first mention of the Class A—E GRNs, we mention the most commonly used former nomenclature of sugar, bitter, salt and water GRNs. In addition, for added clarify, we now also include a mention of one of the receptors that mark each class. (lines 51-59)

      (3) The conclusion that GRNs responsible for high salt aversion may be inhibited by those that function in low salt attraction is not well substantiated. This conclusion seems to come from the fact that overexpression of Ir60b in salt attraction and salt aversion sensory neurons still leads to salt aversion, but there need not be any interaction between these two types of sensory neurons if they act oppositely on downstream circuits.

      We did not make this claim.

      (4) The authors rely heavily on a new Droso-X behavioral apparatus that is not sufficiently described here or in the previous paper the authors cite. This greatly limits the reader's ability to interpret the results.

      We expanded the description of the apparatus in the Droso-X assay section of the Materials and Methods. (lines 588-631)

      Reviewer #3 (Public Review):

      Summary:

      Sang et al. successfully demonstrate that a set of single sensory neurons in the pharynx of Drosophila promotes avoidance of food with high salt concentrations, complementing previous findings on Ir7c neurons with an additional internal sensing mechanism. The experiments are well-conducted and presented, convincingly supporting their important findings and extending the understanding of internal sensing mechanisms. However, a few suggestions could enhance the clarity of the work.

      Strengths:

      The authors convincingly demonstrate the avoidance phenotype using different behavioral assays, thus comprehensively analyzing different aspects of the behavior. The experiments are straightforward and well-contextualized within existing literature.

      Weaknesses:

      Discussion

      While the authors effectively relate their findings to existing literature, expanding the discussion on the surprising role of Ir60b neurons in both sucrose and salt rejection would add depth. Additionally, considering Yang et al. 2021's (https://doi.org/10.1016/j.celrep.2021.109983) result that Ir60b neurons activate feeding-promoting IN1 neurons, the authors should discuss how this aligns with their own findings.

      Yang et al. demonstrated that the activation of Ir60b neurons can trigger the activation of IN1 neurons akin to pharyngeal multimodal (PM) neurons, potentially leading to enhanced feeding (Yang et al, 2021). However, our research reveals a specific pattern of activation for Ir60b neurons. Instead of being generalists, they are specialized for certain sugars, such as sucrose and high salt. Consequently, while Ir60b GRNs activate IN1 neurons, we contend that there are other neurons in the brain responsible for inhibiting feeding. (lines 412-417)

      Lines 187: The discussion primarily focuses on taste sensillae outside the labellum, neglecting peg-type sensillae on the inner surface. Clarification on whether these pegs contribute to the described behaviors and if the Poxn mutants described also affect the pegs would strengthen the discussion.

      We added the following to the Discussion section. “We also found that the requirement for Ir60b appears to be different when performing binary liquid capillary assay (DrosoX), versus solid food binary feeding assays. When we employed the DrosoX assay to test mutants that were missing salt aversive GRNs in labellar bristles but still retained functional Ir60b GRNs, the flies behaved the same as wild-type flies (e.g. Figure 3J and 3L). However, using solid food binary assays, Poxn mutants, which are missing labellar taste bristles but retain Ir60b GRNs (LeDue et al, 2015), displayed repulsion to high salt food that was intermediate between control flies and the Ir60b mutant (Figure 2J). Poxn mutants retain taste pegs (LeDue et al., 2015), and these hairless taste organs become exposed to food only when the labial palps open. We suggest that there are high-salt sensitive GRNs associated with taste pegs, which are accessed when the labellum contacts a solid substrate, but not when flies drink from the capillaries used in DrosoX assays. This explanation would also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but prefers 1 mM sucrose alone over 300 mM NaCl and 5 mM sucrose in the solid food binary assay (Figure 1B).”. (lines 430-444)

      In line 261 the authors state: "We attempted to induce salt activation in the I-type sensilla by ectopically expressing Ir60b, similar to what was observed with Ir56b 8; however, this did not generate a salt receptor (Figures S6A)"

      An obvious explanation would be that these neurons are missing the identified necessary co-receptors Ir76b and Ir25a. The authors should discuss here if the Gr33a neurons they target also express these co-receptors, if yes this would strengthen their conclusion that an additional receptor might be missing.

      We clarified this point in the Discussion section as follows, “An open question is the subunit composition of the pharyngeal high Na+ receptor, and whether the sucrose/glucose and Na+ receptors in the Ir60b GRN are the same or distinct. Our results indicate that the high salt sensor in the Ir60b GRN includes IR25a, IR60b and IR76b since all three IRs are required in the pharynx for sensing high levels of NaCl. I-type sensilla do not elicit a high salt response, and we were unable to induce salt activation in I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. This indicates that IR25a, IR60b and IR76b are insufficient for sensing high Na+. The inability to confer a salt response by ectopic expression of Ir60b was not due to absence of Ir25a and Ir76b in Gr33a GRNs since Gr33a and Gr66a are co-expressed (Moon et al, 2009), and Gr66a GRNs express Ir25a and Ir76b (Li et al, 2023). Thus, the high salt receptor in Ir60b GRNs appears to require an additional subunit. Given that Na+ and sugars are structurally unrelated, we suggest that the Na+ and sucrose/glucose receptors do not include the identical set of subunits, or that that they activate a common receptor through disparate sites”. (lines 464-477)

      Methods

      The description of the Droso-X assay seems to be missing some details. Currently, it is not obvious how the two-choice is established. Only one capillary is mentioned, I assume there were two used? Also, the meaning of the variables used in the equation (DrosoX and DrosoXD) are not explained.

      We expanded the description of the apparatus in the Droso-X assay section of the Materials and Methods. (lines 588-631)

      The description of the ex-vivo calcium imaging prep. is unclear in several points:

      (1) It is lacking information on how the stimulus was applied (was it manually washed in? If so how was it removed?).

      We expanded the description of the apparatus in the ex vivo calcium imaging section of the Materials and Methods. (lines 682-716)

      (2) The authors write: "A mild swallow deep well was prepared for sample fixation." I assume they might have wanted to describe a "shallow well"?

      We deleted the word “deep.”.(line 691)

      (3) "...followed by excising a small portion of the labellum in the extended proboscis region to facilitate tastant access to pharyngeal organs." It is not clear to me how one would excise a small portion of the labellum, the labellum depicts the most distal part of the proboscis that carries the sensillae and pegs. Did the authors mean to say that they cut a part of the proboscis?

      Yes. We changed the sentence to “…followed by excising a small portion of the extended proboscis to facilitate tastant access to the pharyngeal organs.”.(lines 693)-695

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      In this manuscript, Sang et al. proposed a pair of IR60b-expressing pharyngeal neurons in Drosophila use IR25a, IR76b, and IR60b channels to detect high Na+ and limit its consumption. Some of the key findings that support this thesis are: 1) animals that lacked any one of these channels - or with their IR60b-expressing neurons selectively silenced - showed much reduced rejection of high Na+, but restored rejection when these channels were reintroduced back in the IR60b neurons; 2) animals with TRPV artificially expressed in their IR60b neurons rejected capsaicin-laced food whereas WT did not; 3) IR60b-expressing neurons exhibited increased Ca2+ influx in response to high Na+ and such response went away when animals lacked any of the three channels. In general, I find the collective evidence presented by the authors convincing. But I feel the MS can benefit from having a discussion session and a few simple experiments. Below I listed some inconsistencies I hope the authors can address or at least discuss.

      We have now added a Discussion section, and expanded the discussion.

      (1) The role of IR60b neurons on suppressing PER appeared inconsistent. On the one hand, optogenetic activation of these neurons suppressed PER (Fig 1D), on the other hand, IR60b mutants were as competent to suppress PER in response to high salt as WT (Fig 2G). Are pharyngeal neurons expected to modulate PER? It might be worth including a retinal-free or genotype control to ascertain the PER suppression exhibited by IR60b>CsChrimson is genuine.

      Please note that Figure 2G is now Figure 2H.

      Our interpretation is that activation of aversive GRNs by high salt either in labellar bristles or in the pharynx is sufficient to inhibit repulsion to high salt. Consistent with this conclusion, optogenetic activation of Ir60b GRNs, which are specific to the pharynx, is sufficient to reduce the PER to sucrose containing food (Figure 1D). However, mutation of Ir60b has no impact on the PER to sucrose plus high (300 mM) NaCl since the high-salt activated GRNs in labellar bristles are not impaired by the Ir60b mutation. In contrast, Ir25a and Ir76b are required in both labellar bristles and in the pharynx to reject high salt. As a consequence, mutation of either Ir25a or Ir76b impairs the repulsion to high salt. Thus, there is no inconsistency between the optogenetics and PER results. We clarified this point in the Discussion section. In terms of controls for IR60b>CsChrimson, we show that UAS-CsChrimson alone or UAS-CsChrimson in combination with the Gr5a driver has no impact on the PER (Figure 1D). In addition, we now include a retinal free control (Figure 1D). These findings provide the key genetic controls and are described in the Results section. (lines 167-170)

      (2) The role of labellar high-salt sensors in regulating salt intake appeared inconsistent. On the one hand, they appeared to have a role in limiting high salt consumption because poxn mutants were significantly more receptive to high salt than WT (Fig. 2J). On the other hand, selectively restoring IR76b or IR25a in only the IR60b neurons in these mutants - thus leaving the labellar salt sensors still defective - reverted the flies to behave like WT when given a choice between sucrose vs. sucrose+high salt (Fig 3J, L).

      We now offer an explanation for these seemingly conflicting results in the Discussion section. When we employed the DrosoX assay with mutants with functional Ir60b GRNs, but were missing salt aversive GRNs in labellar bristles, the flies behaved the same as control flies (e.g. Figure 3J and L). However, using solid food binary assays, Poxn mutants, which are missing labellar taste bristles but retain Ir60b GRNs (LeDue et al., 2015), display aversion high salt food intermediate between control and Ir60b mutant flies (Figure 2J). Poxn mutants retain taste pegs (LeDue et al., 2015), which are exposed to food substrates only when the labial palps open. We suggest that the taste pegs harbor high salt sensitive GRNs, and they may be exposed to solid substrates, but not to the liquid in capillary tubes used in the DrosoX assays. This explanation would also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but prefers 1 mM sucrose alone over 300 mM NaCl and 5 mM sucrose in the solid food binary assay (Figure 1B). (lines 433-444)

      (3) The behavior sensitivity of IR60b mutant to high salt again appeared somewhat inconsistent when assessed in the two different choice assays. IR60b mutant flies were indifferent to 300 mM NaCl when assayed with DrosoX (Fig 3A, B) but were clearly still sensitive to 300 mM NaCl when assayed with "regular" assay - they showed much reduced preference for 5 mM sucrose over 1 mM sucrose when the 5 mM sucrose was adulterated with 300 mM NaCl (Fig 1B).

      The explanation provided above may also account for the findings that the Ir60b mutant is indifferent to 300 mM NaCl in the DrosoX assay (Figure 3B), but not when selecting between 300 mM NaCl and 5 mM sucrose versus 1 mM sucrose in the solid food binary assay (Figure 1B). Alternatively, the different behavioral responses might be due to the variation in sucrose concentrations in each of these two assays, which employed 5 mM sucrose in the solid food binary assay, as opposed to 100 mM sucrose in the DrosoX assay. This disparity in attractive valence between these two concentrations of sucrose might consequently impact feeding amount and preference. This point is now also included in the Discussion section. (lines 441-449)

      (4) Given the IR60b neurons exhibited clear IR60b/IR25a/IR76b-dependent sucrose sensitivity, too, I am curious how the various mutant animals behave when given a choice between 100 mM sorbitol vs. 100 mM sorbitol + 300 mM NaCl, a food choice assay not complicated by the presence of sucrose. Similarly, I am curious if the Ca2+ response of IR60 neurons differs significantly when presented with 100 mM sucrose vs. when presented with 100 mM sucrose + 300 mM NaCl. In principle, the magnitude for the latter should be significantly larger than the former as animals appeared to be capable of discriminating these two choices solely relying on their IR60b neurons.

      To investigate the aversion induced by high salt in the absence of a highly attractive sugar, such as sucrose, we combined 300 mM salt with 100 mM sorbitol, which is a tasteless but nutritive sugar (Burke & Waddell, 2011; Fujita & Tanimura, 2011). Using two-way choice assays, we found that the Ir25a, Ir60b, and Ir76b mutants exhibited substantial reductions in high salt avoidance (Figure 3—figure supplement 2A). In addition, we performed DrosoX assays using 100 mM sorbitol alone, or sorbitol mixed with 300 mM NaCl. Sorbitol alone provoked less feeding than sucrose since it is a tasteless sugar (Figure 3—figure supplement 2B and C). Nevertheless, addition of high salt to the sorbitol reduced food consumption (Figure 3—figure supplement 2B and C). (lines 300-308)

      We also conducted a comparative analysis of the Ca2+ responses within the Ir60b GRN, examining its reaction to various stimuli, including 100 mM sucrose alone, 300 mM NaCl alone, and a combination of 100 mM sucrose and 300 mM NaCl. We found that the Ca2+ responses were significantly higher when we exposed the Ir60b GRN to 300 mM NaCl alone, compared with the response to 100 mM sucrose alone (Figure 4—figure supplement 1D). However, the GCaMP6f responses was not higher when we presented 100 mM sucrose with 300 mM NaCl, compared with the response to 300 mM NaCl alone (Figure 4—figure supplement 1D). (lines 360-367)

      Minor issues

      (1) The labels of sucrose concentration on Figure 2D were flipped.

      This has been corrected.

      (2) The phrasing of the sentence that begins in line 196 (i.e., "This suggests the internal sensor ...") is not as optimal.

      We changed the sentence to, “We found that the aversive behavior to high salt was reduced in the Poxn mutants relative to the control (Figure 2J), consistent with previous studies demonstrating roles for GRNs in labellar bristles in high salt avoidance (Jaeger et al, 2018; McDowell et al, 2022; Zhang et al, 2013).”. (lines 217-219)

      (3) In Line 231, I am not sure why the authors think ectopic expressing IR60b in labellar neurons would allow them to become activated by Na+. It seems highly unlikely to me, especially given IR60b also plays a role in sensing sugar.

      We added the following paragraph to the Discussion addressing this point, “An open question is the subunit composition of the pharyngeal high Na+ receptor, and whether the sucrose/glucose and Na+ receptors in the Ir60b GRN are the same or distinct. Our results indicate that the high salt sensor in the Ir60b GRN includes IR25a, IR60b and IR76b since all three IRs are required in the pharynx for sensing high levels of NaCl. I-type sensilla do not elicit a high salt response, and we were unable to induce salt activation in I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. This indicates that IR25a, IR60b and IR76b are insufficient for sensing high Na+. The inability to confer a salt response by ectopic expression of Ir60b was not due to absence of Ir25a and Ir76b in Gr33a GRNs since Gr33a and Gr66a are co-expressed (Moon et al., 2009), and Gr66a GRNs express Ir25a and Ir76b (Li et al., 2023). Thus, the high salt receptor in Ir60b GRNs appears to require an additional subunit. Given that Na+ and sugars are structurally unrelated, we suggest that the Na+ and sucrose/glucose receptors do not include the identical set of subunits, or that that they activate a common receptor through disparate sites.”. (lines 464-477)

      Reviewer #2 (Recommendations For The Authors):

      Line 41, acutely excessive salt ingestion can lead to death, not just health issues

      We now state that, “consumption of excessive salt can contribute to various health issues in mammals, including hypertension, osteoporosis, gastrointestinal cancer, autoimmune diseases, and can lead to death.”. (lines 41-43)

      Line 46, delete the comma after flies

      Done. (line 47)

      Lines 51-56: This description is unnecessarily confusing and does not cite proper sources. Renaming these GRNs arbitrarily can only create confusion, plus this description lacks nuance. If E GRNs are Ir94e positive, this description is out of date. Furthermore, If D GRNs are ppk23 and Gr66a positive then they will respond to both bitter and high salt.

      Papers to consult: https://elifesciences.org/articles/37167 10.1016/j.cell.2023.04.038

      We have now added citations. We prefer the A—E nomenclature, which was introduced in a 2021 Genetics review by one of the authors of this manuscript (Montell) (Montell, 2021) since naming different classes of GRNs on the basis of markers or as sweet, bitter, salt and water GRNs is misleading and an oversimplification. We cite the Genetics 2021 review, and for added clarity include both types of former names (markers and sweet, bitter, salt and water). Class D GRNs are not marked by Gr66a. The eLife reference cited above provided the initial rationale for stating that Class E GRNs are marked by Ir94e and activated by low salt. According to the Taisz et al reference (Cell 2023), the Class E GRNs, which are marked by Ir94e, are also activated by pheromones, which we now mention (Taisz et al, 2023). (lines 51-59)

      Line 62, E GRNs are not required for low salt behaviors

      We do not state that E GRNs are required for low salt behaviors, only that they sense low Na+ levels. (line 58)

      Line 70-81 - Great deal of emphasis on labellar GRNs but then no mention of how pharyngeal GRNs fit into categories A-E

      We devote the following paragraph to pharyngeal GRNs. We do not mention how they fit in with the A—E categories because it is not clear.

      “In addition to the labellum and taste bristles on other external structures, such as the tarsi, fruit flies are endowed with hairless sensilla on the surface of the labellum (taste pegs), and three internal taste organs lining the pharynx, the labral sense organ (LSO), the ventral cibarial sense organ (VCSO), and the dorsal cibarial sense organ (DCSO), which also function in the decision to keep feeding or reject a food (Chen & Dahanukar, 2017, 2020; LeDue et al., 2015; Nayak & Singh, 1983; Stocker, 1994). A pair of GRNs in the LSO express a member of the gustatory receptor family, Gr2a, and knockdown of Gr2a in these GRNs impairs the avoidance to slightly aversive levels of Na+ (Kim et al, 2017). Pharyngeal GRNs also promote the aversion to bitter tastants, Cu2+, L-canavanine, and bacterial lipopolysaccharides (Choi et al, 2016; Joseph et al., 2017; Soldano et al, 2016; Xiao et al, 2022). Other pharyngeal GRNs are stimulated by sugars and contribute to sugar consumption (Chen & Dahanukar, 2017; Chen et al, 2021; LeDue et al., 2015). Remarkably, a pharyngeal GRN in each of the two LSOs functions in the rejection rather the acceptance of sucrose (Joseph et al., 2017).”. (lines 74-89)

      Line 89, aversive --> aversion

      We changed this part.

      Line 90, gain of aversion capsaicin avoidance suggests they are sufficient for avoidance, not essential for avoidance.

      We changed “essential” to “sufficient.”. (line 100)

      Line 104, what are you recording from here? Labellar or pharyngeal GRNs

      We added “S-type and L-type sensilla” to the sentence. (line 119)

      Line 107, How are A GRNS marked with tdTomato? It is important to mention how you are defining A GRNs.

      We modified the sentence as follows: “Using Ir56b-GAL4 to drive UAS-mCD8::GFP, we also confirmed that the reporter was restricted to a subset of Class A GRNs, which were marked with LexAop-tdTomato expressed under the control of the Gr64f-LexA (Figure 1—figure supplement 1D—F).”. (lines 120-123)

      Line 124, should read "concentrated as sea water."

      We made the change. (line 142)

      Line 125, I am not sure what is meant by "alarm neurons"

      We changed “additional pain or alarm neurons” to “nociceptive neurons.”. (line 144)

      Line 141, Are you definitely A GRNs as only labellar GRNs, i.e. the Gr5a-GAL4 pattern with labellar plus few pharyngeal GRNs? Or are the defining it as Gr64f-GAL4 (i.e. labellar plus many pharyngeal GRNs)

      We refer to the Class A—E GRNs as labellar GRNs. Therefore, in this instance, we removed the reference to A GRNs and B GRNs, and simply mention the drivers that we used (Gr5a-GAL4 and Gr66a-GAL4) to express UAS-CsChrimson. The modified sentence is, “As controls we drove UAS-CsChrimson under control of either the Gr5a-GAL4 or the Gr66a-GAL4.”. (lines 51-59, 160-161)

      Line 180, labellar hairs--> labellar taste bristles

      We made the change. (line 204)

      Line 190, possess only --> only possess

      We made the change. (line 216)

      Line 202, Should this read increased?

      Yes. We changed “reduced” to “increased.”. (line 225)

      Line 206, The information provided here and in reference 47 was not sufficient for me to understand how the Droso-X system works and whether it has been validated. Better diagrams and much more description is required for the reader to understand this system and assess its validity

      We now explain that the DrosoX “system consists of a set of five separately housed flies, each of which is exposed to two capillary tubes with different liquid food options. One capillary contained 100 mM sucrose and the other contained 100 mM sucrose mixed with 300 mM NaCl. The volume of food consumed from each capillary is then monitored automatically over the course of 6 hours and recorded on a computer.”. (lines 238-243)

      Line 218-219, It would be helpful to expand on this to explain how the previous paper detected no difference. Is this because the contact time with the food is the same but the rate of ingestion is slower?

      Yes. This is correct. We now clarify this point by stating that, “In a prior study, it was observed that the repulsion to high salt exhibited by the Ir60b mutant was indistinguishable from wild-type (Joseph et al., 2017). Specifically, the flies were presented with drop of liquid (sucrose plus salt) at the end of a probe, and the Ir60b mutant flies fed on the food for the same period of time as control flies (Joseph et al., 2017). However, this assay did not discern whether or not the volume of the high salt-containing food consumed by the Ir60b mutant flies was reduced relative to control flies. Therefore, to assess the volume of food ingested, we used the DrosoX system, which we recently developed (Figure 3—figure supplement 1A) (Sang et al, 2021). This system consists of a set of five separately housed flies, each of which is exposed to two capillary tubes with different liquid food options. One capillary contained 100 mM sucrose and the other contained 100 mM sucrose mixed with 300 mM NaCl. The volume of food consumed from each capillary was then monitored automatically over the course of 6 hours and recorded on a computer. We found that control flies consuming approximately four times more of the 100 mM sucrose than the sucrose mixed with 300 mM NaCl (Figure 3A). In contrast, the Ir25a, Ir60b, and Ir76b mutants consumed approximately two-fold less of the sucrose plus salt (Figure 3A). Consequently, they ingested similar amounts of the two food options (Figure 3B; ingestion index). Thus, while the Ir60b mutant and control flies spend similar amounts of time in contact with high salt-containing food when it is the only option (Joseph et al., 2017), the mutant consumes considerably less of the high salt food when presented with a sucrose option without salt.”. (lines 226-251)

      Lines 231-235, Is this evidence for this, that Ir60b expression in the Ir25a or Ir76b pattern will induce high salt responses in the labellum? You should elaborate on this to clearly state what you mean rather than implying it. I do not think that overexpression of one Ir is enough evidence for this sweeping conclusion.

      We agree. We eliminated this point. (lines 227-232)

      Lines 261-263, Please elaborate here, how did you target the I-type sensilla and where are these neurons? So they already express Ir76b and Ir25a?

      We now explain in the Results that, “We attempted to induce salt activation in the I-type sensilla by ectopically expressing Ir60b, under control of the Gr33a-GAL4. Gr33a is co-expressed with Gr66a (Moon et al., 2009), which has been shown to be co-expressed Ir25a and Ir76b (Li et al., 2023). When we performed tip recordings from I7 and I10 sensilla, we did not observe a significant increase in action potentials in response to 300 mM NaCl (Figure 4—figure supplement 1A), indicating that ectopic expression of Ir60b in combination with Ir25a and Ir76b is not sufficient to generate a high salt receptor.”. (lines 324-330)

      Lines 300-303, The discussion needs to be greatly expanded. What is the proposed mechanism by which the same neurons/receptors can inhibit sucrose and high salt feeding? What is the author's interpretation of what this study adds to our understanding of taste aversion?

      We have now added a Discussion section and greatly expanded the discussion.

      Reviewer #3 (Recommendations For The Authors):

      In line 73 there is a typo in "esophagus"

      We changed this part.

      In line 331, the use of a mixture of sucrose and "saponin" seems to be a mistake; "NaCl" is likely intended.

      We made the correction. (lines 546 and 640)

      On several occasions, the authors refer to the pharynx as a taste organ (for example 1st sentence of the abstract). I am not sure this is correct, the actual pharyngeal taste organs are the LSO, DSCO, and VSCO which are located in the pharynx.

      We made the corrections. (lines 24, 90, 92, 93, and 356)

      In line 155 the authors refer to Ir25a and Ir76b as "broadly tuned". I think it is not correct to refer to co-receptors this way, I'd suggest to just call them co-receptors.

      We made the correction. (lines 177-178)

      In line 182, stating "Gr2a is also expressed in the proboscis" is unclear. Clarify whether it refers to sensillae, pharyngeal taste organs, etc.

      We clarified it refers to pharyngeal taste organs. (lines 206-207)

      Line 253: "These finding imply that all three Irs are coexpressed in the pharynx." "The pharynx" is very unspecific, did the authors mean to say "the same neuron"?

      We now clarify by saying “in the Ir60b GRN in the pharynx.”. (line 317)

      Figures & Legends

      I found it confusing that the same color scale is being reused for different panels with different meanings repeatedly and in inconsistent ways. For example in Figure 2, red and blue are being used for Ir25a² mutants, while blue is also being used for Gr64f-Gal4 and S type sensilla. It is also not easily visible nor mentioned in the caption which of the 3 color scales presented belong to which panels.

      We modified the colors in the figures so that they are used in a consistent way. We now also define the colors in the legends.

      In Figure 2 F-I, indicating the stimulus sequence in each panel would enhance clarity. The color scale in Figure 3 could benefit from explicit explanations of different shades in the caption for easier interpretation.

      For example: "The ingestion of (a, dark color) 100 mM sucrose alone and (b, light color) in combination with 300 mM"

      We made the suggested modification.

      In Figure 4a the authors highlight that Ir76b and Ir25a label 2 neurons in the LSO. Did the imaging in 4c also capture the second cell, and if so did it respond to their stimulation?

      No, the focal plane differs, and the signal in Figure 4C is considerably weaker compared to the immunohistochemistry shown in Figure 4A. Notably, the other neuron did not exhibit a response to NaCl.

      In Figure 4f a legend for the color scale is missing, or the color might not be necessary at all. Also, the asterisks seem to be shifted to the right.

      We fixed the shifted asterisks and eliminated the color.

      Figure 4i is mislabeled 4f

      We made the correction.

    1. Author Response

      The following is the authors’ response to the original reviews.

      This study highlights new insights into the mechanism of pheochromocytoma pathogenesis that remains poorly understood. In the context of hereditary syndromes, such as multiple endocrine neoplasia 2 (MEN-2), where RET mutation is the major driver of thyroid, parathyroid, and adrenal pathologies, including pheochromocytoma, this mechanistic dissection of RET and TMEM127 is fundamentally sound. While the significance was deemed important, the strength of the evidence was found to be solid,

      Recognizing the limitations of models available for study of neuroendocrine cancers, and specifically for pheochromocytomas, we have revised and clarified the text of the current manuscript version and provide specific responses to the additional comments provided below, highlighting changes and new data.

      Reviewer #1 (Recommendations For The Authors):

      A current lack of pheochromocytoma cell lines and the use of generated cell lines for mechanistic studies presents a significant challenge that may undermine the inferred value of these findings in mock in vitro systems and question reproducibility in pheochromocytoma. Consideration for 3-dimensional patient-derived pheochromocytoma organoid in vitro and patient-derived organoid xenograft in vivo models will enable confirmation or refute novel findings described by the authors.

      We agree completely with Reviewer 1 that ideally, we should replicate these findings with PCC-derived cells in vitro and in organoids. Despite many attempts, PCC cell lines have proved a major challenge for the field of neuroendocrine cancers. Cell line models are not available and PDOs have proven poorly growing and resistant to manipulations, such as CRISPR KOs or siRNA KD. In studies completed since the submission and review of the present manuscript, and subsequently published elsewhere, we have shown that RET protein is highly expressed in TMEM127-mutant PCC by immunohistochemistry. We also showed that the TMEM127-KO SH-SY5Y cell model does grow more robustly than Mock-KO cells in nude mice and that RET inhibition (Selpercatinib) does lead to tumor regression (Guo et al., 2023), suggesting that our findings may be reproducible in vivo. These findings, and potential caveats of the cell models used have been further discussed in the text.

      Reviewer #2 (Recommendations For The Authors):

      Most notably, all experiments are conducted in an isogenic single-cell line. This exposes the whole story to be potentially confounded by unknown variables.

      In addition, studies would benefit from the adding back of TMEM127, or other methods to modulate endosome and plasma membrane dynamics to mechanistically secure the cause of the findings.

      As suggested by Reviewer 2, we have generated a TMEM127 KO in HEK293, an unrelated cell line which expressed low levels of TMEM127 but does not express RET. Consistent with our findings in SH-SY5Y, we saw increased membrane accumulation of endogenous membrane proteins N-cadherin and transferrin receptor-1 in these cells in the absence of TMEM127. Additionally, re-expression of a wildtype TMEM127 (FLAG-TMEM127) in these cells led to dramatic decreases in membrane localization of these proteins (Supplemental Figure 1D). These data suggest that membrane accumulation is indeed TMEM127 dependent, and that these processes are not directly dependent on RET expression.

      References

      Guo, Q., Z.M. Cheng, H. Gonzalez-Cantu, M. Rotondi, G. Huelgas-Morales, P. Ethiraj, Z. Qiu, J. Lefkowitz, W. Song, B.N. Landry, H. Lopez, C.M. Estrada-Zuniga, S. Goyal, M.A. Khan, T.J. Walker, E. Wang, F. Li, Y. Ding, L.M. Mulligan, R.C.T. Aguiar, and P.L.M. Dahia. 2023. TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation. Cell Rep. 42:113070.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript by DeHaro-Arbona et al., the authors wish to understand how a signaling pathway (Notch) is dynamically decoded to elicit a specific transcriptional output. In particular, they investigate the kinetic properties of Notch-responsive nuclear complexes (the DNA binding factor CSL and its co-activator Mastermind (mam) along with several candidate interacting partners). Their experimental model is the polytene chromosome of the Drosophila salivary gland, in which the naturally inactive Notch can be artificially induced through the expression of a constitutively active form of Notch.

      The authors develop a series of CRISPR and transgenic lines enabling the live imaging of these complexes at a specific locus and in various backgrounds (genetic perturbations/drug treatments). This quantitative live imaging data suggests that Notch nuclear complexes form hubs, and the authors characterize their binding dynamics. Interestingly, they elegantly demonstrate that the content of these hubs and their kinetic properties can evolve, even within Notch ON cells. Hence, they propose the existence of distinct hubs, distinguishing an open (CSL), engaged (CSK-Mam), or active (CSL-Mam-Med-PolII) configuration in Notch ON cells and an inactive hub (in Notch OFF having previously been exposed to Notch) state, that would explain the surprising transcriptional memory that the authors observe hours after Notch withdrawal.

      We thank the reviewer for this constructive summary of our work

      Reviewer #2 (Public Review):

      The manuscript from deHaro-Arbona et al, entitled "Dynamic modes of Notch transcription hubs conferring memory and stochastic activation revealed by live imaging the co-activator Mastermind", uses single molecule microscopy imaging in live tissues to understand the dynamics and molecular determinants of transcription factor recruitment to the E(spl)-C locus in Drosophila salivary gland cells under Notch-ON and -OFF conditions. Previous studies have identified the major players that are involved in transcription regulation in the Notch pathway, as well as the importance of general transcriptional coregulators, such as CBP/P300 and the Mediator CDK module, but the detailed steps and dynamics involved in these processes are poorly defined. The authors present a wealth of single molecule data that provides significant insights into Notch pathway activation, including:

      (1) Activation complexes, containing CSL and Mam, have slower dynamics than the repressor complexes, containing CSL and Hairless.

      (2) Contribution of CSL, NICD, and Mam IDRs to recruitment.

      (3) CSL-Mam slow-diffusing complexes are recruited and form a hub of high protein concentrations around the target locus in Notch-ON conditions.

      (4) Mam recruitment is not dependent on transcription initiation or RNA production.

      (5) CBP/P300 or its associated HAT activity is not required for Mam recruitment.

      (6) Mediator CDK module and CDK8 activity are required for Mam recruitment, and vice-versa, but not CSL recruitment.

      (7) Mam is not required for chromatin accessibility but is dependent on CSL and NICD.

      (8) CSL recruitment and increased chromatin accessibility persist after NICD removal and loss of Mam, which confers a memory state that enables rapid re-activation in response to subsequent Notch activation.

      (9) Differences in the proportions of nuclei with both Pol II and with Mam enrichment, which results in transcription being probabilistic/stochastic. These data demonstrate that the presence of Mamcomplexes is not sufficient to drive all the steps required for transcription in every Notch-ON nucleus.

      (10) The switch from more stochastic to robust transcription initiation was elicited when ecdysone was added.

      Overall, the manuscript is well written, concise, and clear, and makes significant contributions to the Notch field, which are also important for a general understanding of transcription factor regulation and behavior in the nucleus. I recommend that the authors address my relatively minor criticisms detailed below.

      We thank the reviewer for their thorough and constructive summary of our work. We are glad that they overall found it insightful and interesting. Below we have addressed the points they have raised.

      Page 7, bottom. The authors speculate, "It is possible therefore that, once recruited, Mam can be retained at target loci independently of CSL by interactions with other factors so that it resides for longer." Is it possible that another interpretation of that data is that Mam is a limiting factor?

      As indicated our comment is a speculation and is based on the observations summarized in the paragraph. We are not entirely sure what the reviewer is proposing as an alternate model. However, if it relates to the relative concentrations of the different factors, this would not account for the differences in trajectory durations. And for most aspects of our analysis, K[off] has the most profound influence on the results. Furthermore, differences persist even when CSL levels are considerably reduced (as in conditions with Hairless RNAi).

      Page 9. The authors write, "A very low level of enrichment was evident for... for the CSL Cterminus..". The recruitment of CSL ct IDR does not appear to be statistically significant or there is no apparent difference (Figure S2C), suggesting the CSL ct IDR does not play a role in enrichment.

      We agree with the comments of the reviewer and have adjusted the text on page 9 accordingly.

      Page 9. The authors write, "Notably, MamnIDR::GFP fusion was present in droplets, suggesting it can self-associate when present in a high local concentration (Figure S2B)." Is this result only valid for Mam nIDR or does full-length Mam also localize into droplets, as has been previously observed for full-length mammalian Maml1 in transfected cells?

      We agree that the observed foci of MamL1 that have been detected in mammalian cells are interesting. We have not tried to replicate those data because the large size of Mam has made it challenging to produce a full-length form in over-expression. We note however that another portion of Mam, MamIDR, does not make droplets when over-expressed despite it containing a large section of the disordered region of the Drosophila Mam. We have now included a comment about the mammalian data in the text (page 9) to put our findings in context.

      Previous studies in mammalian cells suggest that Maml1 is a high-confidence target for phosphorylation by CDK8, see Poss et al 2016 Cell Reports https://doi.org/10.1016/j.celrep.2016.03.030. By sequence comparison, does fly Mam have similar potential phosphorylation sites, and might these be critical for Mam/CDK module recruitment?

      We thank the reviewer for highlighting this point. Indeed, we were very excited when we learnt that MamL1 was found to be a high confidence CDK8 target and we looked hard in the Mam sequence for potential phosphorylation sites. Sadly, there is very little conservation between the fly and the mammalian proteins beyond the helical region that contacts CSL and NICD. Furthermore, there are no identifiable putative CDK8 phosphorylation sites based on conventional motifs. It therefore remains to be established whether or not Mam is a direct target of the CDK8 kinase activity. We have added an explanatory comment in the text (page 11).

      Page 11: The authors write, "The differences in the effects on Mam and CSL imply that the CDK module is specifically involved in retaining Mam in the hub, and that in its absence other CSL complexes "win-out", either because the altered conditions favour them and/or because they are the more abundant." Are the "other" complexes the authors are referring to Hairless-containing complexes? With the reagents the authors have in hand couldn't this be explicitly shown for CSLcomplexes rather than speculated upon?

      The reviewer is correct that CSL complexes containing Hairless are good candidates to be recruited in these conditions. We have compared the levels of Hairless at E(spl)-C following treatments with Senexin and have not detected a difference. However, it appears that the high proportion of unbound Hairless makes it difficult to detect/quantify the enrichment at E(spl)-C. We have therefore taken a different strategy, which is to measure the recruitment of a mutant form of CSL that is compromised for Hairless binding. Recruitment of the mutant CSL is detected in Notch-ON conditions, but is significantly reduced/absent following Senexin treatment. These data favour the model proposed by the reviewer that in the absence of CDK8 activity, the CSL-Hairless complexes win out. These new data have been added in new Supplementary Figure S3F and S3G (and see text page 11)

      Page 12/13: The authors write, "Based on these results we propose that, after Notch activity decays, the locus remains accessible because when Mam-containing complexes are lost they are replaced by other CSL complexes (e.g. co-repressor complexes)." Again, why not actually test this hypothesis rather than speculate? The dynamics of Hairless complexes following the removal of Notch would be very interesting and build upon previously published results from the Bray lab.

      We thank the reviewer for this comment and we agree it’s possible that the proportion of Hairless complexes increases after Notch withdrawal. However, for the reasons outlined above, it is difficult to quantify changes in Hairless, (and our preliminary experiment did not reveal any large-scale effect) and because of the complexity of the genetics we cannot straightforwardly extend the experiment to analyze the behaviour of the mutant CSL as above. Therefore, at present, we cannot say whether the loss of Mam is compensated by an increase in Hairless. We hope in future to investigate the characteristics of the memory in more depth.

      Page 13: The authors write, "As Notch removal leads to a loss of Mam, but not CSL, from the hub, it should recapitulate the effects of MamDN." While the data in Figure 5B seem to support this hypothesis, it's not clear to me that the loss of Mam and MamDN should phenocopy each other, bc in the case of MamDN, NICD would still be present.

      We apologise that this sentence was a bit misleading. We have now rewritten it to improve accuracy (page 13) “As Notch removal leads to a loss of Mam, but not CSL, from the hub, we hypothesised it would recapitulate the effects of MamDN on chromatin accessibility and transcription of targets.”

      The temporal dynamics for Mam recruitment using the temperature- and optogenetic-paradigms are quite different. For example, in the optogenetic time course experiments, the preactivated cells are in the dark for 4 hours, while in the temperature-controlled experiments, there is still considerable enrichment of Mam at 4 hours. For the preactivated optogenetic experiments, how sure are the authors that Mam is completely gone from the locus, and alternatively, can the optogenetic experimental results be replicated in the temperature-controlled assays? My concern is whether the putative "memory" observation is just due to incomplete Mam removal from the previous activation event.

      We appreciate the concerns of the reviewer. However, we are confident that the 4-hour optogenetic inactivation is much more effective than the equivalent time for temperature shifts. The temperature sensitive experiment involves a longer decay, because not only the protein but also the mRNA has to decay to fully remove NICD activity. The optogenetic experiments, involve only protein decay and so are more acute. Furthermore, we have tested (and we show in Figure 5H) that Mam is fully depleted after 4 hours “Off” in the optogenetic experiments.

      In order to further strengthen the evidence in favour of the memory hub, we have extended the time-frame further to show that CSL is retained at the locus even after 24 hours “Notch OFF” in both the temperature and the optogenetic paradigm. We have also measured the effects on transcription after a 24hr OFF period using the optogenetic paradigm and seen that robust transcription is initiated in cells that have experienced a previous activation (preactivated) compared to those that have not (naïve). These new data have been added to new Figure 5 C-F and strongly support the memory model.

      Reviewer #3 (Public Review):

      Summary:

      DeHaro-Arbona and colleagues investigate the in vivo dynamics of Notch-dependent transcriptional activation with a focus on the role of the Mastermind (MAM) transcriptional co-activator. They use GFP and HALO-tagged versions of the CSL DNA-binding protein and MAM to visualize the complex, and Int/ParB to visualize the site of Notch-dependent E(Spl)-C transcription. They make several conclusions. First, MAM accumulates at E(Spl)-C when Notch signaling is active, just like CSL. Second, MAM recruits the CDK module of Mediator but does not initiate chromatin accessibility. Third, after signaling is turned off, MAM leaves the site quickly but CSL and chromatin accessibility are retained. Fourth, RNA pol II recruitment, Mediator recruitment, and active transcription were similar and stochastic. Fifth, ecdysone enhances the probability of transcriptional initiation.

      Strengths:

      The conclusions are well supported by multiple lines of extensive data that are carefully executed and controlled. A major strength is the strategic combination of Drosophila genetics, imaging, and quantitative analyses to conduct compelling and easily interpretable experiments. A second major strength is the focus on MAM to gain insights into the dynamics of transcriptional activation specifically.

      We thank the reviewer for their positive comments about the strengths of our work.

      Weaknesses:

      Weaknesses are minor. There were no p-values reported for data presented in Figure S1D and no indication of how variable measurements were. In addition, the discussion of stochasticity was not integrated optimally with relevant literature.

      We thank the reviewer for noting these points. The statistical tests have now been included for Figure S1D (now Figure S1F). We have amplified the discussion about stochasticity, to include more reference to the literature and to make clear also the distinction with transcription bursting (page 19, 20).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors have an elegant series of manipulations that provide strong evidence for their hypotheses and conclusions. Their exploitation of a unique biological system amenable to imaging in the larval salivary gland is well-considered and well-performed. Most of the conclusions are supported by the data. I only have the concerns below.

      (1) One of the main findings is the composition of Notch nuclear complexes and their interactions within a 'hub'. Yet most of the data showing hubs focus on labeling one protein component (+the locus or transcription), but multi-color imaging is rarely used to show how CSL-Mam, Mam-Med... protein signals coalescence to form a hub. Given the powerful tool developed, it would be important to show these multi-state hubs. Related to this, if the authors expect that hubs are formed independently of transcription or Notch pathway activation, do the authors see clustering at other non-specific loci in the nucleus? If not, can the authors comment on why they think that is the case? If so, do they demonstrate consistent residence time profiles with the tracked E(spl) locus?

      We apologise that it was not evident from the data shown that the proteins co-localize. First we stress that all the experiments are multicolor and most rely on very powerful methods to measure co-recruitment at a chromosomal locus- something that is very rarely achieved by others studying hubs. Second, we have in all cases confirmed that the proteins do colocalize. We have modified the diagram of our analysis pipeline to make more clear that this relies on multi-colour imaging, and adjusted all the figure labels to indicate the position of E(spl)-C. We have also added panels to new supplementary Figure S1C with examples of the co-localization between CSL and Mam and a plot confirming their levels of recruitment are correlated across multiple nuclei.

      We would like to clarify that our data show that the hubs do require Notch activation for their establishment. Other regions of enrichment are detected in Notch-ON conditions, but these are less prominent and, with no independent method for identifying them, can’t be compared between nuclei. In SPT experiments, other clusters with consistent residence are detected as reported in our recent paper which expanded on the SPT data (Baloul et al, 2023). We also detect co-localizations and “hubs” in other tissues, but those analyses are ongoing and beyond the scope of this paper.

      (2) The authors convincingly show that Notch hub complexes exhibit a memory. While the data showing rapid hub reformation upon Notch withdrawal are solid and convincing (Figure 5, in particular, F), the claim that this memory fosters rapid transcriptional reactivation is less clear. Yet in order to invoke transcriptional memory, it's necessary to solidify this transcriptional response angle. The authors should consider quantifying the changes in transcription activity (at the TS and not in the cytoplasm as currently shown), as well as the timing of transcriptional reactivation (with the MS2 system or smFISH). Manipulating the duration of the activation and dark recovery periods could help to draw a better correlation between the timing of hub reformation and that of transcriptional response and would also help determine how persistent this phenomenon is.

      We thank the reviewer for these suggestions. We have carried out several new experiments to probe further the persistence of memory and to show the effects on transcription when Notch is inactivated/reactivated. First, we have extended the time period for Notch inactivation by temperature control and show that the CSL hub persists even at 24 hours and that no transcription from the target E(spl)m3 is detected –neither at the transcription start-site nor in the cytoplasm. Second, we have extended the Notch OFF time period to 24 hours using the optogenetic approach and show that transcription is robustly reinitiated in preactivated nuclei when Notch is re-activated with 30 mins light treatment while little if any E(spl)m3 transcription is detected in naïve nuclei with the same treatment. These new data are included in new Figure 5 C-F and see page 13-14. Both these new experiments substantiate the model that the nuclei retain transcriptional memory.

      (3) The manuscript ends with the finding that the presence of a Mam hub does not always correlate with transcription. They conclude that transcription is initially stochastic. The authors find this surprising and even state that this could not be observed without their in vivo live imaging approaches. I don't understand why this result is surprising or unexpected, as we now know that transcription is generally a stochastic process and that most (if not all) loci are transcribed in a bursting manner. The fact that E(spl)-C locus is bursty is already obvious from the smFISH data. The fact that active nascent transcription does not correlate with local TF hubs was already observed in early Drosophila embryos (with Zelda hubs and two MS2 reporters, hb-MS2, sna-MS2). If, in spite of the inherent stochasticity of transcription (bursting), the data are surprising for other reasons, the authors should explain it better.

      We apologise that we had not made clear the reasons why the results were unexpected. We have substantially rewritten this section, and the discussion section, to clarify. We have also moderated the language used to better reflect the overall context of our results. We briefly summarise here. As the reviewer correctly states, it is well known that transcription is inherently bursty. Indeed the MS2 transcription profiles in “ON” nuclei are bursty, which likely reflects the switching of the promoter. However, in other contexts where we have monitored transcription although it is bursty it has nevertheless been initiated synchronously in response to Notch in all nuclei in a manner that was fully penetrant. What we observe in our current conditions, is that some nuclei never initiate transcription over the time-course of our experiments (2-3 hours), and those that are ON rarely switch off. This implies that there is another rate-limiting step. Supplying a second signal can modulate this so that it occurs with much higher frequency/penetrance. We consider this to be a second tier of regulation above the fundamental transcriptional bursting.

      The fact that Mam is recruited in all nuclei, whether or not they are actively transcribing was surprising because recruitment of the activation complex has been considered as the limiting step. This is somewhat different from Zelda, which is thought to be permissive and needed at an early step to prime genes for later activation rather than to be the last step needed to fire transcription. We note also that we are not monitoring the position of the hub with respect to the promoter, as in the Zelda experiments (Zelda hubs may still persist, but they are not overlapping with the nascent RNA), we are monitoring the presence or absence of Mam hub in proximity to a genomic region.

      Minor suggestions:

      (1) The genotypes of the samples should be indicated in the figure legends.

      We thank the reviewer for this suggestion. We have provided a table (new Table S3) where all of the genetic combinations are provided in detail for each figure. We considered that this approach would be preferable because it would be quite cumbersome to have the genotypes in each legend as they would become very long and repetitive.

      (2) While the schematic Fig1A explains how the locus is detected, the presence of ParS/ParB is never indicated in subsequent panels and Figure. I assume that all panels depicting enrichment profiles, use a given radius from the ParS/ParB dot to determine the zero of the x-axis (grey zone). This should be clearly stated in all panels/figure legends concerned.

      We apologies if this was not made explicit. Yes, all panels depicting enrichment profiles, use immunofluorescence signal from ParA/ParB recruitment to determine the zero of the x-axis. We have now marked this more clearly In all figures (grey bar, grey shading or labelled 0). All images where the locus is indicated by an arrowhead, by a coloured bar above the intensity plots or by grey shading in the graphs have been captured with dual colour and the signal from ParA/B recruitment used to define its location. This is now clearly stated in the analysis methods and in the legend. We have also modified the diagram in new supplementary Figure S1B, showing our analysis pipeline, to make that more explicit.

      (3) FRAP/SPT experiments: the author should provide more details. How many traces? Are traces showing bleaching removed?

      P7: does the statement ' The residences are likely an underestimation because bleaching and other technical limitations also affect track durations' imply that traces showing bleaching have not been removed from the analysis?

      The authors could justify the choice of the model for fitting FRAP/Spt experiments and be cautious about their interpretation. For example, interpreting a kinetic behavior as a DNA-specific binding event can be accurate, only if backed up with measurements with a mutant version of the DNA binding domain.

      We apologise if some of this information was not evident. The number of trajectories is provided in new Figure S1F, which indicates the number of trajectories analyzed for each condition in Figure 1.

      We have now added also the numbers of trajectories analyzed for the ring experiments.

      The comments on page 7 about bleaching refer to the technical limitations of the SPT approach. However, as bleached particles cannot be distinguished from those that leave the plane of imaging, they have not been filtered or removed. We have not sought to make claims about absolute residence times for that reason. Rather the point is to make a comparison between the different molecules. As the same fluorescent ligand and imaging conditions are used in all the experiments, all the samples are equivalently affected by bleaching. We subdivide trajectories according to their properties and infer that those which are essentially stationary are bound to chromatin, as is common practice in the field. We note that we have previously shown that a DNA binding mutant of CSL does not produce a hub at E(spl)-C in Notch-ON conditions and has a markedly more rapid recovery in FRAP experiments (Gomez-Lamarca et al, 2018) consistent with the slow recovery being related to DNA binding. This point has been added to the text (page 8).

      (4) The authors should quantify their RNAi efficiency for Hairless-RNAi, Med13-RNAi, white-RNAi, yellow-RNAi, CBP-RNAi, and CDK8-RNAi.

      We thank the reviewer for this comment. We have made sure that we are using well validated RNAis in all our experiments and have included the references in Table S2 where they have been used. We have now evaluated the knock-down in the precise conditions used in our experiments by quantitative RT-PCR and added those data, which show efficient knock-down is occurring, to new Supplementary Figure S1D and Figure S3J. We note also that the RNAi experiments are complemented by experiments inhibiting the complexes with specific drugs and that these yield similar results.

      (5) Figure 3 A: could the author show that transcription is indeed inhibited upon triptolide treatment with smFISH (with for example m3 probes)? Why not use alpha-amanitin?

      We thank the reviewer for this suggestion. We had omitted the smFISH data from this experiment in error. These data have now been added to new Supplementary Figure S3A and clearly show that transcription is inhibited following 1 hour exposure to triptolide. Triptolide is a very fast acting and very efficient inhibitor of transcription that acts at a very early step in transcription initiation. In our experience it is much more efficient than alpha-amanitin and is now the inhibitor of choice in many transcription studies.

      (6) Figure 4 typo: panel B should be D and vice versa. Accessibility panels are referred to as Figure 4D, D' in the text but presented as panel B in the Figure.

      We thank the reviewer for noting this mistake, it is now changed in the main text.

      (7) The authors must add their optogenetic manipulation protocol to their methods section.

      The method is described in detail in a recently published paper that reports its design and use. We have now also added a section explaining the paradigm in the methods (Page 31) as requested.

      (8) Figure 3G needs a Y-axis label.

      Our apologies, this has now been added.

      (9) The authors should note why there was a change of control in Figure 3D compared to 3E and G (yellow RNAi vs white RNAi).

      This is a pragmatic choice that relates to the chromosomal site of the RNAis being tested. Controls were chosen according to the chromosome that carries the UAS-RNAi: for the second chromosome this was yellow RNAi and for the third white RNAi. This is explained in the methods.

      (10) Figure 1 would benefit from a diagram describing the genomic structure of the E(spl) locus and the relative position of the labelled locus within it.

      We thank the reviewer for this suggestion and have added a diagram to Supplementary Figure S1A .

      Reviewer #2 (Recommendations For The Authors):

      Minor criticisms and typos:

      Pet peeve: in some of the figure panels they are labeled Notch ON or OFF, but in others they are not, albeit that info is included in the figure legend. For the ease of the reader/reviewer, would it be possible to label all relevant figure panels either Notch ON or OFF for clarity?

      We thank the reviewer for this suggestion and have modified the figures accordingly.

      Page 7, top. "In comparison to their average distribution across the nucleus, both CSL and Mam trajectories were significantly enriched in a region of approximately 0.5 μm around the target locus in Notch-ON conditions, reflecting robust Notch dependant recruitment to this gene complex." Are the authors referring to Figure 1D here?

      Thank you, this figure call-out has been added in the text.

      Page 9. "...reported to interact with p300 and other factors (Figure S2B)." I believe the authors mean Figure S2C and not S2B.

      Thank you, this has been corrected in the text.

      Page 9. There is no Figure S2D.

      Apologies, this was referring to Figure S1D, and is now corrected in the text.

      Page 11: "...were at very reduced levels in nuclei co-expressing MamDN (Figure 4B).." Should be Figure 4CD.

      Thank you, this has been corrected in the text.

      Page 12: "...which was maintained in the presence of MamDN (Figure 4D, D')." Should be Figure 4B.

      Thank you, this has been corrected in the text.

      Reviewer #3 (Recommendations For The Authors):

      In the Results section on Hub, the paragraph starting with "Third, we reasoned . ." the callout to Figure S2D should be Fig S1D.

      Thank you, this has been corrected in the text

      Figures: The font size in the Figures is so small that most words and numbers cannot be read on a printout. One has to go to the electronic version and increase the size to read it. This reviewer found that inconvenient and often annoying.

      We apologise for this oversight, the font size has now been adjusted on all the graphs etc.

      Figure legends: the legends are terse and in some cases leave explanations to the imagination (e.g. "px" in Figure 2E). It would be useful to go through them and make sure those who are not a Drosophila Notch person and not a transcription biochemist can make sense of them.

      Our apologies for the lack of clarity in the legends. We have gone over them to make them more accessible and less succinct.

    1. Author Response

      We are very pleased to hear the overall positive views and constructive criticisms of eLife Editors and Reviewers on our work. In particular, we appreciate their comments highlighting the value of our new pipeline for high-throughput quantification of fly embryonic movement and the positive views of reviewers and editors that our data on the roles of miR-2b-1 in embryonic movement are well supported.

      Regarding Reviewer 1, we thank them for their positive comments that our work is experimentally sound and well-written, their kind words on the value of our new embryonic movement pipeline, and their overall appreciation of the quality, scope, and significance of our work. In a revised version of the manuscript we will consider discussing and addressing some of the interesting points raised by Rev1.

      Turning to the comments by Rev2, we are grateful to them for their recognition of the novelty of our miRNA findings and appreciation of the utility of our novel quantitative pipeline for assessing embryonic movement. Nonetheless, we politely – but strongly – disagree with their suggestion that the findings are inflated by our language. For example, they criticise our use of the verb ‘control’, yet this is a standard textbook term in molecular biology to describe biological processes regulated by genetic factors: given that miR-2b-1 regulates movement patterns during embryogenesis, to say that miR-2b-1 ‘controls’ embryonic movement in the Drosophila embryo is reasonable and in line with the language used in the field. It is not inflation. In connection to other comments, in a revised manuscript we will propose a different name for the gene here described as Janus to avoid annotation issues at FlyBase due to other, unrelated genes that include this word as part of their names.

    1. Author Response:

      Reviewer #1 (Public Review):

      [...] Weaknesses are the absence of correlation between the results from the animal studies and human pancreatic cancers.

      Author response: We appreciate the reviewer’s attention to the importance of human pancreatic cancer studies. In a previous study (D’Amico et al. Genes & Development 2018 doi: 10.1101/gad.311852.118), we evaluated the expression of STAT3 in human pancreatic tissue microarrays and data from the Human Protein Atlas. Mutations in Stat3 are infrequent in human pancreatic cancers, however there is a trend of decreased STAT3 activity in poorly differentiated carcinomas.

      In the current study, STAT3 and SMAD4 gene signature scores (computed from KO KPC cells) were aligned with human pancreatic ductal adenocarcinoma samples from the TCGA cohort, and statistical analyses supported the selective antagonism of STAT3 and SMAD4 (Fig 4D, Fig 4E).

      The complex process of EMT is difficult to characterize rigorously in human cancers. Mouse models offer an opportunity to study the relationships between cancer phenotypes and genetic alterations.

      Reviewer #2 (Public Review):

      [...] While correlations are strong, the study would benefit from additional cause-and-effect type experiments. It would also be beneficial to better tie together the first and second parts of the paper.

      Author response: We understand the Reviewer’s interest in additional experiments that could further elucidate mechanisms that drive EMT and/or KRAS dependency in relation to STAT3 and TGF-beta antagonism. We previously investigated the development of mutant KRAS knockout tumors (Ischenko et al. Nature Communications 2021 doi:10.1038/s41467-021-21736) to find loss of KRAS promotes EMT, similar to loss of STAT3. Additional experiments are underway but are outside the scope of the current study.

      The first part of the paper is mechanistic and used KRAS-transformed mouse embryo fibroblasts to perform in vitro studies with foci formation. The cell-based foci formation assay has been shown to best evaluate malignant transformation and oncogenic potential. In the second part we transitioned to epithelial cells and pancreatic ductal adenocarcinomas to combine mechanistic relationships with genetic models.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript represents a cleanly designed experiment for assessing biological motion processing in children (mean age = 9) with and without ADHD. The group differences concerning accuracy in global and local motion processing abilities are solid, but the analyses suggesting dissociable relationships between global and local processing and social skills, age, and IQ need further interrogation. The results are useful in terms of understanding ADHD and the ontogenesis of different components of the processing of biological motion.

      We thank the editors for the positive assessment of our manuscript. We have carefully considered the reviewers’ constructive and helpful comments and revised our manuscript accordingly. To address the question about the dissociable relationships between global and local BM processing, we have provided more evidence and additional analyses in this revised version.

      Reviewer #1 (Public Review):

      Summary:

      The paper presents a nice study investigating differences in biological motion perception in participants with ADHD in comparison with controls. Motivated by the idea that there is a relationship between biological motion perception and social capabilities, the authors investigated local and global (holistic) biological motion perception, the group, and several additional behavioral variables that are affected in ADHS (IQ, social responsiveness, and attention/impulsivity). As well as local global biological motion perception is reduced in ADHD participants. In addition, the study demonstrates a significant correlation between local biological motion perception skills and the social responsiveness score in the ADHD group, but not the controls. A path analysis in the ADHD data suggests that general performance in biological motion perception is influenced mainly by global biological motion perception performance and attentional and perceptual reasoning skills.

      Strengths:

      It is true that there exists not much work on biological motion perception and ADHD. Therefore, the presented study contributes an interesting new result to the biological motion literature and adds potentially also new behavioral markers for this clinical condition. The design of the study is straightforward and technically sound, and the drawn conclusions are supported by the presented results.

      Thank you for your positive assessment of our work.

      Weaknesses:

      Some of the claims about the relationship between genetic factors and ADHD and the components of biological motion processing have to remain speculative at this point because genetic influences were not explicitly tested in this paper.

      We agree that the relationship between genetic factors and BM processing in ADHD needs more investigation, We have modified our statement in Discussion section as following:

      “Using the classical twin method, Wang et al. found that the distinction between local and global BM processing may stem from the dissociated genetic bases. The former, to a great degree, seems to be acquired phylogenetically20,21,59,60, while the latter is primarily obtained through individual development19.” (lines 421 - 425),

      Reviewer #2 (Public Review):

      Summary:

      Tian et al. aimed to assess differences in biological motion (BM) perception between children with and without ADHD, as well as relationships to indices of social functioning and possible predictors of BM perception (including demographics, reasoning ability and inattention). In their study, children with ADHD showed poorer performance relative to typically developing children in three tasks measuring local, global, and general BM perception. The authors further observed that across the whole sample, performance in all three BM tasks was negatively correlated with scores on the social responsiveness scale (SRS), whereas within groups a significant relationship to SRS scores was only observed in the ADHD group and for the local BM task. Local and global BM perception showed a dissociation in that global BM processing was predicted by age, while local BM perception was not. Finally, general (local & global combined) BM processing was predicted by age and global BM processing, while reasoning ability mediated the effect of inattention on BM processing.

      Strengths:

      Overall, the manuscript is presented in a relatively clear fashion and methods and materials are presented with sufficient detail so the study could be reproduced by independent researchers. The study uses an innovative, albeit not novel, paradigm to investigate two independent processes underlying BM perception. The results are novel and have the potential to have wide-reaching impact on multiple fields.

      We appreciate your positive assessment of our work.

      Weaknesses:

      Except for the main analysis, it is unclear what the authors' specific predictions are regarding the three different tasks they employ. The three BM tasks are used to probe different processes underlying BM perception, but it is difficult to gather from the introduction why these three specific tasks were chosen and what predictions the authors have about the performance of the ADHD group in these tasks. Relatedly, the authors do not report whether (and if so, how) they corrected for multiple comparisons in their analyses. As the number of tests one should control for depends on the theoretical predictions (http://daniellakens.blogspot.com/2016/02/why-you-dont-need-to-adjust-you-alpha.html), both are necessary for the reader to assess the statistical validity of the results and any inferences drawn from them. The same is the case for the secondary analyses exploring relationships between the 3 individual BM tasks and social function measured by the social responsivity scale (SRS).

      We appreciate these constructive suggestions. In response, we have included a detailed description in the Introduction section explaining why we employed three different tasks and our predictions about the performance in ADHD:

      “Despite initial indications, a comprehensive investigation into BM perception in ADHD is warranted. We proposed that it is essential to deconstruct BM processing into its multiple components and motion features, since treating them as a single entity may lead to misleading or inconsistent findings31. To address this issue, we employed a carefully designed behavioral paradigm used in our previous study19, making slight adjustments to adapt for children. This paradigm comprises three tasks. Task 1 (BM-local) aimed to assess the ability to process local BM cues. Scrambled BM sequences were displayed and participants could use local BM cues to judge the facing direction of the scrambled walker. Task 2 (BM-global) tested the ability to process the global configuration cues of the BM walker. Local cues were uninformative, and participants used global BM cues to determine the presence of an intact walker. Task 3 (BM-general) tested the ability to process general BM cues (local + global cues). The stimulus sequences consisted of an intact walker and a mask containing similar target local cues, so participants could use general BM cues (local + global cues) to judge the facing direction of the walker.” (lines 116 - 130)

      “In Experiment 1, we examined three specific BM perception abilities in children with ADHD. As mentioned earlier, children with ADHD also show impaired social interaction, which implies atypical social cognition. Therefore, we speculated that children with ADHD performed worse in the three tasks compared to TD children.” (lines 131 - 134)

      Additionally, we have reported the p values corrected for multiple comparisons (false discovery rate, FDR) in the revised manuscript wherever it was necessary to adjust the alpha (lines 310 - 316; Table 2). The pattern of the results remained unchanged.

      In relation to my prior point, the authors could provide more clarity on how the conclusions drawn from the results relate to their predictions. For example, it is unclear what specific conclusions the authors draw based on their findings that ADHD show performance differences in all three BM perception tasks, but only local BM is related to social function within this group. Here, the claim is made that their results support a specific hypothesis, but it is unclear to me what hypothesis they are actually referring to (see line 343 & following). This lack of clarity is aggravated by the fact that throughout the rest of the discussion, in particular when discussing other findings to support their own conclusions, the authors often make no distinction between the two processes of interest. Lastly, some of the authors' conclusions related to their findings on local vs global BM processing are not logically following from the evidence: For instance, the authors conclude that their data supports the idea that social atypicalities are likely to reduce with age in ADHD individuals. However, according to their own account, local BM perception - the only measure that was related to social function in their study - is understood to be age invariant (and was indeed not predicted by age in the present study).

      Thank you for pointing out this issue. We have carefully revised the Discussion section about our findings to clarify these points:

      “Our study contributes several promising findings concerning atypical biological motion perception in ADHD. Specifically, we observe the atypical local and global BM perception in children with ADHD. Notably, a potential dissociation between the processing of local and global BM information is identified. The ability to process local BM cues appears to be linked to the traits of social interaction among children with ADHD. In contrast, global BM processing exhibits an age-related development. Additionally, general BM perception may be affected by factors including attention.” (lines 387 - 393)

      We have provided a detailed discussion on the two processes of interest to clarify their potential differences and the possible reasons behind the difference of the divergent developmental trajectories between local and global BM processing:

      “BM perception is considered a multi-level phenomenon56-58. At least in part, processing information of local BM and global BM appears to involve different genetic and neural mechanisms16,19. Using the classical twin method, Wang et al. found that the distinction between local and global BM processing may stem from the dissociated genetic bases. The former, to a great degree, seems to be acquired phylogenetically20,21,59,60, while the latter is primarily obtained through individual development19. The sensitivity to local rather than global BM cues seems to emerge early in life. Visually inexperienced chicks exhibit a spontaneous preference for the BM stimuli of hen, even when the configuration was scrambled20. The same finding was reported in newborns. On the contrary, the ability to process global BM cues rather than local BM cues may be influenced by attention28,29 and shaped by experience24,56.” (lines 419 - 430)

      “We found that the ability to process global and general BM cues improved significantly with age in both TD and ADHD groups, which imply the processing module for global BM cues tends to be mature with development. In the ADHD group, the improvement in processing general and global BM cues is greater than that in processing local BM cues, while no difference was found in TD group. This may be due to the relatively higher baseline abilities of BM perception in TD children, resulting in a relatively milder improvement. These findings also suggest a dissociation between the development of local and global BM processing. There seems to be an acquisition of ability to process global BM cues, akin to the potential age-related improvements observed in certain aspects of social cognition deficits among individuals with ADHD5, whereas local BM may be considered an intrinsic trait19.” (lines 438 -449)

      In addition, we have rephased some inaccurate statements in revised manuscript. Another part of social dysfunction might be stable and due to the atypical local BM perception in ADHD individuals, although some studies found a part of social dysfunction would reduce with age in ADHD individuals. One reason is that some factors related to social dysfunction would improve with age, like the symptom of hyperactivity.

      Results reported are incomplete, making it hard for the reader to comprehensively interpret the findings and assess whether the conclusions drawn are valid. Whenever the authors report negative results (p-values > 0.05), the relevant statistics are not reported, and the data not plotted. In addition, summary statistics (group means) are missing for the main analysis.

      Thanks for your comments. We have provided the complete statistical results in the revised manuscript (lines 309 - 316) and supplementary material, which encompass relevant statistics and plots of negative results (Figure 4, Figure S2 and S3), in accordance with our research questions. And we have also included summary statistics in the Results section (lines 287 - 293).

      Some of the conclusions/statements in the article are too strong and should be rephrased to indicate hypotheses and speculations rather than facts. For example, in lines 97-99 the authors state that the finding of poor BM performance in TD children in a prior study 'indicated inferior applicability' or 'inapplicable experimental design'. While this is one possibility, a perhaps more plausible interpretation could be that TD children show 'poor' performance due to outstanding maturation of the underlying (global) BM processes (as the authors suggest themselves that BM perception can improve with age). There are several other examples where statements are too strong or misleading, which need attention.

      We thank you for pointing out the issue. We have toned down and rephrased the strong statements and made the necessary revisions.

      “Another study found that children with ADHD performed worse in BM detection with moderate ratios of noise34. This may be due to the fact that BM stimuli with noise dots will increase the difficulty of identification, which highlights the difference in processing BM between the two groups33,35.” (lines 111 - 115)

      Reviewer #3 (Public Review):

      Summary:

      The authors presented point light displays of human walkers to children (mean = 9 years) with and without ADHD to compare their biological motion perception abilities and relate them to IQ, social responsiveness scale (SRS) scores and age. They report that children with ADHD were worse at all three biological motion tasks, but that those loading more heavily on local processing related to social interaction skills and global processing to age. The important and solid findings are informative for understanding this complex condition, as well as biological motion processing mechanisms in general. However, I am unsure that these differences between local and global skills are truly supported by the data and suggest some further analyses.

      Strengths:

      The authors present clear differences between the ADHD and TD children in biological motion processing, and this question has not received as much attention as equivalent processing capabilities in autism. They use a task that appears well controlled. They raise some interesting mechanistic possibilities for differences in local and global motion processing, which are distinctions worth exploring. The group differences will therefore be of interest to those studying ADHD, as well as other developmental conditions, and those examining biological motion processing mechanisms in general.

      We appreciate your positive feedback. In revised manuscript, we have added more analyses to support the differences between local and global motion processing. Please refer to our response to the point #3 you mentioned below.

      Weaknesses:

      I am unsure that the data are strong enough to support claims about differences between global and local processing wrt social communication skills and age. The mechanistic possibilities for why these abilities may dissociate in such a way are interesting, but do not seem so plausible to me. I am also concerned about gender, and possible autism, confounds when examining the effect of ADHD. Specifics:

      Gender confound. There are proportionally more boys in the ADHD than TD group. The authors appear to attempt to overcome this issue by including gender as a covariate. I am unsure if this addresses the problem. The vast majority of participants in the ADHD group are male, and gender is categorically, not continuously, defined. I'm pretty sure this violates the assumptions of ANCOVA.

      We appreciate your comments. We concur with you that although we observed a clear difference between local and global BM processing in ADHD, the evidence is to some extent preliminary. The mechanistic possibilities for why these abilities may dissociate have been discussed in revised manuscript. Please refer to the response to reviewer 2’s point #2. To further examine if gender played a role in the observed results, we used a statistical matching technique to obtain a sub-dataset. The pattern of results remained with the more balanced dataset (see Supplementary Information part 1). According to your suggestion, we have also presented the results without using gender as a covariate in main text and also separated the data of boys and girls on the plots (see Figure 1 and Figure S1). There were indeed no signs of a gender effect.

      Autism. Autism and ADHD are highly comorbid. The authors state that the TD children did not have an autism or ADHD diagnosis, but they do not state that the ADHD children did not have an autism diagnosis. Given the nature of the claims, this seems crucial information for the reader.

      Thanks for your suggestion. We have confirmed that all children with ADHD in our study were not diagnosed with autism. We used a semi-structured interview instrument (K-SADSPL-C) to confirm every recruited child with ADHD but not with ASD. The exclusion criteria for both groups were mentioned in the Materials and methods section:

      “Exclusion criteria for both groups were: (a) neurological diseases; (b) other neurodevelopmental disorders (e.g., ASD, Mental retardation, and tic disorders), affective disorders and schizophrenia…” (lines 158 - 162)

      Conclusions. The authors state frequently that it was the local BM task that related to social communication skills (SRS) and not the global tasks. However, the results section shows a correlation between SRS and all three tasks. The only difference is that when looking specifically within the ADHD group, the correlation is only significant for the local task. I think that if the authors wish to make strong claims here they must show inferential stats supporting (1) a difference between ADHD and TD SRS-Task 1 correlations, and (2) a difference in those differences for Task 2 and 3 relative to Task 1. I think they should also show a scatterplot of this correlation, with separate lines of best fit for the two groups, for Tasks 2 and 3 as well. I.e. Figure 4 should have 3 panels. I would recommend the same type of approach for age. Currently, they have small samples for correlations, and are reading much of theoretical significance between some correlations passing significance threshold and others not. It would be incredibly interesting if the social skills (as measured by SRS) only relate to local BM abilities, and age only to global, but I think the data are not so clear with the current information. I would be surprised if all BM abilities did not improve with age. Even if there is some genetic starter kit (and that this differs according to particular BM component), most abilities improve with learning/experience/age.

      Thank you for this recommendation. We have added more statistics to test differences between the correlations (a difference between ADHD and TD in SRS-Task 1 correlations (see the first paragraph of Supplementary Information part 2), a difference in SRS-response accuracy correlations for Task 2 and 3 relative to Task 1(see the second paragraph of Supplementary Information part 2), and a difference in age-response accuracy correlations for Task 2 and 3 relative to Task 1 in ADHD group (see Supplementary Information part 3)). Additionally, we have included scatterplots for SRS-Task1, SRS-Task2, SRS-Task3 (with separate lines of best fit for the two groups in each, see Figure 4), SRS-ADHD, SRS-TD, age-ADHD and age-TD (with separate lines of best fit for the three tasks in each, see Figure S2 and S3) to make a clear demonstration. Detailed results have been presented in the revised manuscript and Supplementary Information. We expect these further analyses would strengthen our conclusions.

      Theoretical assumptions. The authors make some sweeping statements about local vs global biological motion processing that need to be toned down. They assume that local processing is specifically genetically whereas global processing is a product of experience. The fact their global, but not local, task performance improves with age would tend to suggest there could be some difference here, but the existing literature does not allow for this certainty. The chick studies showing a neonatal preference are controversial and confounded - I cannot remember the specifics but I think there an upper vs lower visual field complexity difference here.

      Thank you for pointing out this issue. We have toned down rephrased our claims that the difference between local and global BM processing according to your suggestion:

      “These findings suggest that local and global mechanisms might play different roles in BM perception, though the exact mechanisms underlying the distinction remain unclear. Exploring the two components of BM perception will enhance our understanding of the difference between local and global BM processing, shedding light on the psychological processes involved in atypical BM perception.” (lines 87 - 92)

      Reviewer #1 (Recommendations For The Authors):

      I have only a number of minor points that should be addressed prior to publication:

      L. 95ff: What is meant by 'inapplicability of experimental designs' ? This paragraph is somewhat unclear.

      In revised manuscript, we have clarified this point (lines 111 - 115).

      L. 146: The groups were not perfectly balanced for sex. Would results change fundamentally in a more balanced design, or can arguments be given that gender does not play a role, like it seems to be the case for some functions in biological motion perception (e.g. Pavlova et al. 2015; Tsang et al 2018). One could provide a justification that this disbalance does not matter or test for subsampled balanced data sets maybe.

      This point is similar to the point #1 from reviewer 3, and we have addressed this issue in our response above.

      L. 216 f.: In this paragraph it does not become very clear that the mask for the global task consisted of scrambles generated from walkers walking in the same direction. The mask for the local task then should consist of a balanced mask that contains the same amount of local motion cues indicating right and leftwards motion. Was this the case? (Not so clear from this paragraph.)

      Regarding the local task, the introduction of mask would make the task too difficult for children. Therefore, in the local task, we only displayed a scrambled walker without a mask, which was more suitable for children to complete the task. We have made clear this point in the corresponding paragraph (lines 232 - 241).

      L. 224 ff.: Here it would be helpful to see the 5 different 'facing' directions of the walkers. What does this exactly mean? Do they move on oblique paths that are not exactly orthogonal to the viewing directions, and how much did these facing directions differ?

      Out of the five walkers we used, two faced straight left or right, orthogonal to the viewing directions. Two walked with their bodies oriented 45 degrees from the observer, to the left or right. The last one walked towards the observer. We have included a video (Video 4) to demonstrate the 5 facing directions.

      L. 232: How was the number of 5 practicing trials determined/justified?

      As mentioned in main text, global BM processing is susceptible to learning. Therefore, too many practicing trials would increase BM visual experience and influence the results. We determined the number of training trials to be 5 based on the results of the pilot experiment. During this phase, we observed that nearly all children were able to understand the task requirements well after completing 5 practicing trials.

      L 239: Apparently no non-parametric statistics was applied. Maybe it would be good to mention in the Statistics section briefly why this was justified.

      We appreciate your suggestion and have cited two references in the Statistics section (Fagerland et al. 2012, Rochon et al. 2012). Fagerland et al., mentioned that when the sample size increases, the t-test is more robust. According to the central limit theorem, when the sample size is greater than 30, the sampling distribution of the mean can be safely assumed to be normal.

      (http://www2.psychology.uiowa.edu/faculty/mordkoff/GradStats/part%201/I.07%20normal.p df). In fact, we also ran non-parametric statistics for our data and found the results to be robust.

      L 290: 'FIQ' this abbreviation should be defined.

      Regarding the abbreviation ’FIQ’, it stands for the abbreviation of the full-scale intellectual quotient, which was mentioned in Materials and methods section:

      “Scores of the four broad areas constitute the full-scale intellectual quotient (FIQ).”

      L. 290 ff.: These model 'BM-local = age + gender etc ' is a pretty sloppy notation. I think what is meant that a GLM was used that uses the predictors gender etc. time appropriate beta_i values. This formula should be corrected or one just says that a GLM was run with the predictors gender ....

      The same criticism applies to these other models that follow.

      We thank you for pointing this out. We have modified all formulas accordingly in the revised manuscript (see part3 of the Results section).

      All these models assume linearity of the combination of the predictors.was this assumption verified?

      We referred to the previous study of BM perception in children. They found main predictor variables, including IQ (Rutherford et al., 2012; Jones et al., 2011) and age (Annaz et al., 2010; van et al., 2016), have a linear relation with the ability of BM processing.

      L. 296ff.: For model (b) it looks like general BM performance is strongly driven by the predictor global BM performance in the group of patients. Does the same observation also apply to the normals?

      The same phenomenon was not observed in TD children. We have briefly discussed this point in the Discussion section of the revised manuscript (lines 449 - 459).

      Reviewer #2 (Recommendations For The Authors):

      (1) Please add public access to the data repository so data availability can be assessed.

      The data of the study will be available at https://osf.io/37p5s/.

      (2) Although overall, the language was clear and understandable, there are a few parts where language might confuse a reader and lead to misconceptions. For instance, line 52: Did the authors mean to refer to 'emotions and intentions' instead of 'emotions and purposes'? See also examples where rephrasing may help to reflect a statement is speculation rather than fact.

      Thanks for the comments. We have carefully checked the full text and rephrased the confused statements.

      (3) Line 83/84: Autism is not a 'mental disorder' - please change to something like 'developmental disability'. Authors are encouraged to adapt their language according to terms preferred by the community (e.g., see Fig. 5 in this article:

      https://onlinelibrary.wiley.com/doi/10.1002/aur.2864)

      Suggestion well taken. We have changed the wording accordingly:

      “In recent years, BM perception has received significant attention in studies of mental disorders (e.g., schizophrenia30) and developmental disabilities, particularly in ASD, characterized by deficits in social communication and social interaction31,32.” (lines 93 - 95)

      (4) Please report how the sample size for the study was determined.

      In the Materials and methods section (lines 168 - 173), we explained how the sample size was determined.

      Line 94: It would be helpful to have a brief description of what neurophysiological differences have been observed upon BM perception in children with ADHD.

      Thanks for the comment. We have added a brief description of neurophysiological findings in children with ADHD (lines 108 - 111).

      (6) Line 106/107 and 108/109: please add references.

      We have revised this part, and the relevant findings and references are in line with the revised manuscript (lines 77, 132 - 133).

      (7) Line 292: Please add what order the factors were entered into each regression model.

      Regarding this issue, we used SPSS 26 for the main analysis. SPSS utilizes the Type III sum of squares (default) to evaluate models. Regardless of the order in the GLM, we will obtain the same result. For more information, please refer to the documentation of SPSS 26 (https://www.ibm.com/docs/en/spss-statistics/26.0.0?topic=features-glm-univariate-analysis).

      Reviewer #3 (Recommendations For The Authors)

      (1) Task specifics. It is key to understanding the findings, as well as the dissociation between tasks, that the precise nature of the stimuli is clear. I think there is room for improvement in description here. Task 1 is described as involving relocating dots within the range of the intact walker. Of course, PLWs are created by presenting dots at the joints, so relocation can involve either moving to another place on the body, or random movement within the 2D spatial array (which likely involves moving it off the body). Which was done? It is said that Ps must indicate the motion direction, but what was the display of the walker? Sagittal? Task 2 requires detecting whether there is an intact walker amongst scrambled walkers. Were all walkers completely overlaid? Task 3 requires detecting the left v right facing of an intact walker at different orientations, presented amongst noise. So Task 3 requires determining facing direction and Task 1 walking direction. Are these tasks the same but described differently? Or can walkers ever walk backwards? Wrt this point, I also think it would help the reader if example videos were uploaded.

      We appreciate you for bringing this to our attention. With regards to Task 1, it appears that your second speculation is correct. We scrambled the original dots and randomly presented them within the 2D spatial array (which likely involved moving them off the body). As a result, the global configuration of the 13 dots was completed disrupted while preserving the motion trajectory of each individual dot. This led to the display of scrambled dots on the monitor (which does not resemble a human). In practice, these local BM cues contain information about motion direction. In Task 2, the target walkers completely overlaid by a mask that is approximately 1.44 times the size of the intact walker. The task requirements of Task 1 and Task3 are same, which is judging the motion (walking) direction. The difference is that Task 1 displayed a scrambled walker while Task 3 displayed an intact walker within a mask. We have clarified these points and improved our descriptions in Procedure section and created example videos for each task, which we believe will be helpful for the readers to understand each task.

      (2) Gender confound (see above). I think that the authors should present the results without gender as a covariate. Can they separate boys and girls on the plots with different coloured individual datapoints, such that readers can see whether it's actually a gender effect driving the supposed ADHD effect? And show that there are no signs of a gender effect in their TD group?

      This point is similar to the point #1 you mentioned. Please refer to our response to that point above.

      (3) Autism possible confound (see above). I think the authors must report whether any of the ADHD group had an autism diagnosis.

      Please refer to the response for the point #2 your mentioned.

      (4) Conclusions concerning differences between the local and global tasks wrt SRS and age (see above). I believe the authors should add stats demonstrating differences between the correlations to support such claims, as well as demonstrating appropriate scatterplots for SRS-Task 1, SRS-Task 2, SRS-Task 3 and age-Task 1, age-Task2 and age-Task 3 (with separate lines of best fit for the two groups in each).

      Please refer to the response for the point #3 your mentioned.

      (5) Theoretical assumptions (see above). I would suggest rephrasing all claims here to outline that these discussed mechanistic differences between local and global BM processing are only possibilities and not known on the basis of existing data.

      Please refer to the response for the point #4 your mentioned.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      I only have a few minor suggestions:

      Abstract: I really liked the conclusion (that IM and VWM are two temporal extremes of the same process) as articulated in lines 557--563. (It is always satisfying when the distinction between two things that seem fundamentally different vanishes). If something like this but shorter could be included in the Abstract, it would highlight the novel aspects of the results a little more, I think.

      Thank you for this comment. We have added the following to the abstract:

      “A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.”

      L 216: There's an orphan parenthesis in "(justifying the use".

      Fixed.

      L 273: "One surprising result was the observed set size effect in the 0 ms delay condition". In this paragraph, it might be a good idea to remind the reader of the difference between the simultaneous and zero-delay conditions. If I got it right, the results differ between these conditions because it takes some amount of processing time to interpret the cue and free the resources associated with the irrelevant stimuli. Recalling that fact would make this paragraph easier to digest.

      That is correct. However, at this point in the text, we have not yet fitted the DyNR model to the data. Therefore, we believe that introducing cue processing and resource reallocation as concepts that differentiate between those two conditions would disrupt the flow of this paragraph. We address these points soon after, in a paragraph starting on line 341.

      Figures 3, 5: The labels at the bottom of each column in A would be more clear if placed at the top of each column instead. That way, the x-axis for the plots in A could be labeled appropriately, as "Error in orientation estimate" or something to that effect.

      We edited both figures, now Figure 4 and Figure 6, as suggested.

      L 379: It should be "(see Eq 6)", I believe.

      That is correct, line 379 (currently line 391) should read ‘Eq 6’. Fixed.

      L 379--385: I was a bit mystified as to why the scaled diffusion rate produced a worse fit than a constant rate. I imagine the scaled version was set to something like

      sigma^2_diff_scaled = sigma^2_base + K*(N-1)

      where N is the set size and sigma^2_base and K are parameters. If this model produced a similar fit as with a constant diffusion rate, the AIC would penalize it because of the extra parameter. But why would the fit be worse (i.e., not match the pattern of variability)? Shouldn't the fitter just find that the K=0 solution is the best? Not a big deal; the Nelder-Mead solutions can wobble when that many parameters are involved, but if there's a simple explanation it might be worth commenting on.

      The scaled diffusion was implemented by extending Eq 6 in the following way:

      σ(t)2 = (t-toffset) * σ̇ 2diff * N

      where N is set size. Therefore, the scaling was not associated with a free parameter that could become 0 if set size did not affect diffusion rate, but variability rather mandatory increased with set size. We now clarify this in the text:

      “The second variant was identical to the proposed model, except that we replaced the constant diffusion rate with a set size scaled diffusion rate by multiplying the right side of Eq 6 by N.“

      Figure 4 is not mentioned in the main text. Maybe the end of L 398 would be a good place to point to it. The paragraph at L 443-455 would also benefit from a couple of references to it.

      Thank you for this suggestion. Figure 4 (now Figure 5) was previously mentioned on line 449 (previously line 437), but now we have included it on line 410 (previously line 398), within the paragraph spanning lines 455-467 (previously 443-455), and also on line 136 where we first discuss masking effects.

      L 500: Figure S7 is mentioned before Figures S5 and S6. Quite trivial, I know....

      Thank you for this comment. There was no specific reason for Figure S7 to appear after S5 & S6, so we simply swapped their order to be consistent with how they are referred to in the manuscript (i.e., S7 became S5, S5 became S6, and S6 became S7).

      Reviewer #2 (Recommendations For The Authors):

      (1) One potential weakness is that the model assumes sensory information is veridical. However, this isn't likely the case. Acknowledging noise in sensory representations could affect the model interpretation in a couple of different ways. First, neurophysiological recordings have shown normalization affects sensory representations, even when a stimulus is still present on the screen. The DyNR model partially addresses this concern because reports are drawn from working memory, which is normalized. However, if sensory representations were also normalized, then it may improve the model variant where subjects draw directly from sensory representations (an alternative model that is currently described but discarded).

      Thank you for this suggestion. We can consider two potential mechanisms through which divisive normalization might be incorporated into sensory processing within the DyNR model.

      The first possibility involves assuming that normalization is pre-attentive. In this scenario, the sensory activity of each object would be rescaled at the lowest level of sensory processing, occurring before the allocation of attentional or VWM resources. One strong prediction of such an implementation is that recall error in the simultaneous cue condition (Experiment 1) should vary with set size. However, this prediction is inconsistent with the observed data, which failed to show a significant difference between set sizes, and is more closely aligned with the hypothesis of no-difference (F(2,18) = 1.26, p = .3, η2 = .04, BF10 = 0.47). On that basis, we anticipate that introducing normalization as a pre-attentive mechanism would impair the model fit.

      An alternative scenario is to consider normalization as post-attentive. In the simultaneous cueing condition, only one item is attended (i.e., the cued one), regardless of the displayed set size. Here, we would expect normalized activity for a single item, regardless of the number of presented objects, which would then be integrated into VWM. This expanded DyNR model with post-attentive normalization would make exactly the same predictions as the proposed DyNR for recall fidelity, so distinguishing between these models would not be possible based on working memory experiments.

      To acknowledge the possibility that sensory signals could undergo divisive normalization and to motivate future research, we have added the following to our manuscript:

      “As well as being implicated in higher cognitive processes including VWM (Buschman et al, 2011; Sprague et al., 2014), divisive normalization has been shown to be widespread in basic sensory processing (Bonin et al., 2005; Busse et al., 2009; Ni et al., 2017). The DyNR model presently incorporates the former but not the latter type of normalization. While the data observed in our experiments do not provide evidence for normalization of sensory signals (note comparable recall errors across set size in the simultaneous cue condition of Experiment 1), this may be because sensory suppressive effects are localized and our stimuli were relatively widely separated in the visual field: future research could explore the consequences of sensory normalization for recall from VWM using, e.g., centre-surround stimuli (Bloem et al., 2018).”

      Bloem, I. M., Watanabe, Y. L., Kibbe, M. M., & Ling, S. (2018). Visual Memories Bypass Normalization. Psychological Science, 29(5), 845–856. https://doi.org/10.1177/0956797617747091

      Bonin, V., Mante, V., & Carandini, M. (2005). The Suppressive Field of Neurons in Lateral Geniculate Nucleus. The Journal of Neuroscience, 25(47), 10844–10856. https://doi.org/10.1523/JNEUROSCI.3562-05.2005

      Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11252–11255. https://doi.org/10.1073/pnas.1104666108

      Busse, L., Wade, A. R., & Carandini, M. (2009). Representation of Concurrent Stimuli by Population Activity in Visual Cortex. Neuron, 64(6), 931–942. https://doi.org/10.1016/j.neuron.2009.11.004

      Ni, A. M., & Maunsell, J. H. R. (2017). Spatially tuned normalization explains attention modulation variance within neurons. Journal of Neurophysiology, 118(3), 1903–1913. https://doi.org/10.1152/jn.00218.2017

      Sprague, T. C., Ester, E. F., & Serences, J. T. (2014). Reconstructions of Information in Visual Spatial Working Memory Degrade with Memory Load. Current Biology, 24(18), 2174–2180. https://doi.org/10.1016/j.cub.2014.07.066

      Second, visual adaptation predicts sensory information should decrease over time. This would predict that for long stimulus presentation times, the error would increase. Indeed, this seems to be reflected in Figure 5B. This effect is not captured by the DyNR model.

      Indeed, neural responses in the visual cortex have been observed to quickly adapt during stimulus presentation, showing reduced responses to prolonged stimuli after an initial transient (Groen et al., 2022; Sawamura et al., 2006; Zhou et al., 2019). This adaptation typically manifests as 1) reduced activity towards the end of stimulus presentation and 2) a faster decay towards baseline activity after stimulus offset.

      In the DyNR model, we use an idealized solution in which we convolve the presented visual signal with a response function (i.e., temporal filter). At the longest presentation durations, in DyNR, the sensory signal plateaus and remains stable until stimulus offset. Because our psychophysical data does not allow us to identify the exact neural coding scheme that underlies the sensory signal, we tend to favour this simple implementation, which is broadly consistent with some previous attempts to model temporal dynamics in sensory responses (e.g., Carandini and Heeger, 1994). However, we agree with the reviewer that some adaptation of the sensory signal with prolonged presentation would also be consistent with our data.

      We have added the following to the manuscript:

      “In Experiment 2, the longest presentation duration shows an upward trend in error at set sizes 4 and 10. While this falls within the range of measurement error, it is also possible that this is a meaningful pattern arising from visual adaptation of the sensory signal, whereby neural populations reduce their activity after prolonged stimulation. This would mean less residual sensory signal would be available after the cue to supplement VWM activity, predicting a decline in fidelity at higher set sizes. Visual adaptation has previously been successfully accounted for by a type of delayed normalization model in which the sensory signal undergoes a series of linear and nonlinear transformations (Zhou et al., 2019). Such a model could in future be incorporated into DyNR and validated against psychophysical and neural data.”

      Carandini, M., & Heeger, D. J. (1994). Summation and division by neurons in primate visual cortex. Science, 264(5163), 1333–1336. https://doi.org/10.1126/science.8191289

      Groen, I. I. A., Piantoni, G., Montenegro, S., Flinker, A., Devore, S., Devinsky, O., Doyle, W., Dugan, P., Friedman, D., Ramsey, N. F., Petridou, N., & Winawer, J. (2022). Temporal Dynamics of Neural Responses in Human Visual Cortex. The Journal of Neuroscience, 42(40), 7562–7580. https://doi.org/10.1523/JNEUROSCI.1812-21.2022

      Sawamura, H., Orban, G. A., & Vogels, R. (2006). Selectivity of Neuronal Adaptation Does Not Match Response Selectivity: A Single-Cell Study of the fMRI Adaptation Paradigm. Neuron, 49(2), 307–318. https://doi.org/10.1016/j.neuron.2005.11.028

      Zhou, J., Benson, N. C., Kay, K., & Winawer, J. (2019). Predicting neuronal dynamics with a delayed gain control model. PLOS Computational Biology, 15(11), e1007484. https://doi.org/10.1371/journal.pcbi.1007484

      (2) A second potential weakness is that, in Experiment 1, the authors briefly change the sensory stimulus at the end of the delay (a 'phase shift', Fig. 6A). I believe this is intended to act as a mask. However, I would expect that, in the DyNR model, this should be modeled as a new sensory input (in Experiment 2, 50 ms is plenty of time for the subjects to process the stimuli). One might expect this change to disrupt sensory and memory representations in a very characteristic manner. This seems to make a strong testable hypothesis. Did the authors find evidence for interference from the phase shift?

      The phase shift was implemented with the intention of reducing retinal after-effects, essentially acting as a mask for retinal information only; crucially the orientation of the stimulus is unchanged by the phase shift, so from the perspective of the DyNR model, it transmits the same orientation information to working memory as the original stimulus.

      If our objective were to model sensory input at the level of individual neurons and their receptive fields, we would indeed need to treat this phase shift as a novel input. Nevertheless, for DyNR, conceived as an idealization of a biological system for encoding orientation information, we can safely assume that visual areas in biological organisms have a sufficient number of phase-sensitive simple cells and phase-indifferent complex cells to maintain the continuity of input to VWM.

      When comparing conditions with and without the phase shift of stimuli (Fig S1B), we found performance to be comparable in the perceptual condition (simultaneous presentation) and with the longest delay (1 second), suggesting that the phase shift did not change the visibility or encoding of information into VWM. In contrast, we found strong evidence that observers had access to an additional source of information over intermediate delays when the phase shift was not used. This was evident through enhanced recall performance from 0 ms to 400 ms delay. Based on this, we concluded that the additional source of information available in the absence of a phase shift was accessible immediately following stimulus offset and had a brief duration, aligning with the theoretical concept of retinal afterimages.

      (3) It seems odd that the mask does not interrupt sensory processing in Experiment 2. Isn't this the intended purpose of the mask? Should readers interpret this as all masks not being effective in disrupting sensory processing/iconic memory? Or is this specific to the mask used in the experiment?

      Visual masks are often described as instantly and completely halting the visual processing of information that preceded the mask. We also anticipated the mask would entirely terminate sensory processing, but our data indicate the effect was not complete (as indicated by model variants in Experiment 2). Nevertheless, we believe we achieved our intended goal with this experiment – we observed a clear modulation of response errors with changing stimulus duration, indicating that the post-stimulus information that survived masking did not compromise the manipulation of stimulus duration. Moreover, the DyNR model successfully accounted for the portion of signal that survived the mask.

      We can identify two possible reasons why masking was incomplete. First, it is possible that the continuous report measure used in our experiments is more sensitive than the discrete measures (e.g., forced-choice methods) commonly employed in experiments that found masks to be 100% effective. Second, despite using a flickering white noise mask at full contrast, it is possible that it may not have been the most effective mask; for instance, a mask consisting of many randomly oriented Gabor patches matched in spatial frequency to the stimuli could prove more effective. We decided against such a mask because we were concerned that it could potentially act as a new input to orientation-sensitive neurons, rather than just wiping out any residual sensory activity.

      (4) I apologize if I missed it, but the authors did not compare the DyNR model to a model without decaying sensory information for Experiment 1.

      We tested two DyNR variants in which the diffusion process was solely responsible for memory fidelity dynamics. These models assumed that the sensory signal terminates abruptly with stimuli offset, and the VWM signal encoding the stimuli was equal to the limit imposed by normalization, independent of the delay duration.

      As variants of this model failed to account for the observed response errors both quantitatively (see 'Fixed neural signal' under Model variants) and qualitatively (Figure S3), we decided not to test any more restrictive variants, such as the one without sensory decay and diffusion.

      (5) In the current model, selection is considered to be absolute (all or none). However, this need not be the case (previous work argues for graded selection). Could a model where memories are only partially selected, in a manner that is mediated by load, explain the load effects seen in behavior?

      Thank you for this point. If attentional selection was partial, it would affect the observers’ efficiency in discarding uncued objects to release allocated resources and encode additional information about the cued item. We and others have previously examined whether humans can efficiently update their VWM when previous items become obsolete. For example, Taylor et al. (2023) showed that observers could efficiently remove uncued items from VWM and reallocate the released resources to new visual information. These findings align with results from other studies (e.g., Ecker, Oberauer, & Lewandowsky, 2014; Kessler & Meiran, 2006; Williams et al., 2013).

      Based on these findings, we feel justified in assuming that observers in our current task were capable of fully removing all uncued objects, allowing them to continue the encoding process for the cued orientation that was already partially stored in VWM, such that the attainable limit on representational precision for the cued item equals the maximum precision of VWM.

      Partial removal could in principle be modelled in the DyNR model by introducing an additional plateau parameter specifying a maximum attainable precision after the cue. Our concern would be that such a plateau parameter would trade off with the parameter associated with Hick’s law (i.e., cue interpretation time). The former would control the amount of information that can be encoded into VWM, while the latter regulates the amount of sensory information available for encoding. We are wary of adding additional parameters, and hence flexibility, to the model where we do not have the data to sufficiently constrain them.

      Ecker, U. K. H., Oberauer, K., & Lewandowsky, S. (2014b). Working memory updating involves item-specific removal. Journal of Memory and Language, 74, 1–15. https://doi.org/10.1016/j.jml. 2014.03.006

      Kessler, Y., & Meiran, N. (2006). All updateable objects in working memory are updated whenever any of them are modified: Evidence from the memory updating paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 570–585. https://doi.org/10.1037/0278-7393.32.3.570

      Taylor, R., Tomić, I., Aagten-Murphy, D., & Bays, P. M. (2023). Working memory is updated by reallocation of resources from obsolete to new items. Attention, Perception, & Psychophysics, 85(5), 1437–1451. https://doi.org/10.3758/s13414-022-02584-2

      Williams, M., & Woodman, G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 38(5), 1206–1220. https://doi.org/10.1037/a0027389

      (6) Previous work, both from the authors and others, has shown that memories are biased as if they are acted on by attractive/repulsive forces. For example, the memory of an oriented bar is biased away from horizontal and vertical and biased towards diagonals. This is not accounted for in the current model. In particular, this could be one mechanism to generate a non-uniform drift rate over time. As noted in the paper, a non-uniform drift rate could capture many of the behavioral effects reported.

      The reviewer is correct that the model does not currently include stimulus-specific effects, although our work on that topic provides a clear template for incorporating them in future (e.g. Taylor & Bays, 2018). Specifically on the question of generating a non-uniform drift, we have another project that currently looks at this exact question (cited in our manuscript as Tomic, Girones, Lengyel, and Bays; in prep.). By examining various datasets with varying memory delays, including the Additional Dataset 1 reported in the Supplementary Information, we found that stimulus-specific effects on orientation recall remain constant with retention time. Specifically, although there is a clear increase in overall error over time, estimation biases remain constant in direction and amplitude, indicating that the bias does not manifest in drift rates (see also Rademaker et al., 2018; Figure S1).

      Taylor, R., & Bays, P. M. (2018). Efficient coding in visual working memory accounts for stimulus-specific variations in recall. The Journal of Neuroscience, 1018–18. https://doi.org/10.1523/JNEUROSCI.1018-18.2018

      Rademaker, R. L., Park, Y. E., Sack, A. T., & Tong, F. (2018). Evidence of gradual loss of precision for simple features and complex objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance. https://doi.org/10.1037/xhp0000491

      (7) Finally, the authors use AIC to compare many different model variants to the DyNR model. The delta-AICs are high (>10), indicating a strong preference for the DyNR model over the variants. However, the overall quality of fit to the data is not clear. What proportion of the variance in data was the model able to explain? In particular, I think it would be helpful for the reader if the authors reported the variance explained on withheld data (trials, conditions, or subjects).

      Thank you for this comment.

      Below we report the estimates of r2, representing the goodness of fit between observed data (i.e., RMSE) and the DyNR model predictions.

      In Experiment 1, the r2 values between observations and predictions were computed across delays for each set size, yielding the following estimates: r2ss1 = 0.60; r2ss4 = 0.87; r2ss10 = 0.95. Note that lower explained variance for set size 1 arises from both data and model predictions having near-constant precision.

      In Experiment 2, we calculated r2 between observations and predictions across presentation durations, separately for each set size, resulting in the following estimates: r2ss1 = 0.88; r2ss4 = 0.71; r2ss10 = 0.70. Note that in this case the decreasing percentage of explained variance with set size is a consequence of having less variability in both data and model predictions with larger set sizes.

      While these estimates suggest that the DyNR model effectively fits the psychophysical data, a more rigorous validation approach would involve cross-validation checks across all conditions with a withheld portion of trials. Regrettably, due to the large number of conditions in each experiment, we could only collect 50 trials per condition. We are sceptical that fitting the model to even fewer trials, as necessary for cross-validation, would provide a reliable assessment of model performance.

      Minor: It isn't clear to me why the behavioral tasks are shown in Figure 6. They are important for understanding the results and are discussed earlier in the manuscript (before Figure 3). This just required flipping back and forth to understand the task before I could interpret the results.

      Thank you for this comment. We have now moved the behavioural task figure to appear early in the manuscript (as Figure 3).

      Reviewer #3 (Recommendations For The Authors):

      (1) Dynamics of sensory signals during perception

      I believe that the modeled sensory signal is a reasonable simplification and different ways to model the decay function are discussed. I would like to ask the authors to discuss the implications of slightly more complex initial sensory transients such as the ones shown in Teeuwen (2021). Specifically for short exposure times, this might be particularly relevant for the model fits as some of the alternative models diverge from the data for short exposures. In addition, the role of feedforward (initial transient?) and feedback signaling (subsequent "plateau" activity) could be discussed. The first one might relate more strongly to sensory signals whereas the latter relates more to top-down attention/recurrent processing/VWM.

      Particularly, this latter response might also be sensitive to the number of items present on the screen which leads to a related question pertaining to the limitations of attention during perception. Some work suggests that perception is similarly limited in the amount of information that can be represented concurrently (Tsubomi, 2013). Could the authors discuss the implications of this hypothesis? What happens if maximum sensory amplitude is set as a free parameter in the model?

      Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. Journal of Neuroscience, 33(19), 8257-8263.

      Thank you for this question. Below, we unpack it and answer it point by point.

      While we agree our model of the sensory response is justified as an idealization of the biological reality, we also recognise that recent electrophysiological recordings have illuminated intricacies of neuronal responses within the striate cortex, a critical neural region associated with sensory memory (Teeuwen et al, 2021). Notably, these recordings reveal a more nuanced pattern where neurons exhibit an initial burst of activity succeeded by a lower plateau in firing rate, and stimulus offset elicits a second small burst in the response of some neurons, followed by a gradual decrease in activity after the stimulus disappears (Teeuwen et al, 2021).

      In general, asynchronous bursts of activity in individual neurons will tend to average out in the population making little difference to predictions of the DyNR model. Synchronized bursts at stimulus onset could affect predictions for the shortest presentations in Exp 2, however the model appears to capture the data very well without including them. We would be wary of incorporating these phenomena into the model without more clarity on their universality (e.g., how stimulus-dependent they are), their significance at the population level (as opposed to individual neurons), and most importantly, their prominence in visual areas outside striate cortex. Specifically, while Teeuwen et al. (2021) described activity in V1, our model does not make strong assumptions about which visual areas are the source of the sensory input to WM. Based on these uncertainties we believe the idealized sensory response is justified for use in our model.

      Next, thank you for the comment on feedforward and feedback signals. We have added the following to our manuscript:

      “Following onset of a stimulus, the visual signal ascends through visual areas via a cascade of feedforward connections. This feedforward sweep conveys sensory information that persists during stimulus presentation and briefly after it disappears (Lamme et al., 1998). Simultaneously, reciprocal feedback connections carry higher-order information back towards antecedent cortical areas (Lamme and Roelfsema, 2000). In our psychophysical task, feedback connections likely play a critical role in orienting attention towards the cued item, facilitating the extraction of persisting sensory signals, and potentially signalling continuous information on the available resources for VWM encoding. While our computational study does not address the nature of these feedforward and feedback signals, a challenge for future research is to describe the relative contributions of these signals in mediating transmission of information between sensory and working memory (Semedo et al., 2022).”

      Lamme, V. A., Supèr, H., & Spekreijse, H. (1998). Feedforward, horizontal, and feedback processing in the visual cortex. Current Opinion in Neurobiology, 8(4), 529–535. https://doi.org/10.1016/S0959-4388(98)80042-1

      Lamme, V. A. F., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571–579. https://doi.org/10.1016/S0166-2236(00)01657-X

      Semedo, J. D., Jasper, A. I., Zandvakili, A., Krishna, A., Aschner, A., Machens, C. K., Kohn, A., & Yu, B. M. (2022). Feedforward and feedback interactions between visual cortical areas use different population activity patterns. Nature Communications, 13(1), 1099. https://doi.org/10.1038/s41467-022-28552-w

      Finally, both you and Reviewer 2 raised a similar interesting question regarding capacity limitations of attention during perception Such a limitation could be modelled by freely estimating sensory amplitude and implementing divisive normalization to that signal, similar to how VWM is constrained. We can consider two potential mechanisms through which divisive normalization might be incorporated into sensory processing within the DyNR model.

      The first possibility involves assuming that normalization is pre-attentive. In this scenario, the sensory activity of each object would be rescaled at the lowest level of sensory processing, occurring before the allocation of attentional or VWM resources. One strong prediction of such an implementation is that recall error in the simultaneous cue condition (Experiment 1) should vary with set size. However, this prediction is inconsistent with the observed data, which failed to show a significant difference between set sizes, and is more closely aligned with the hypothesis of no-difference (F(2,18) = 1.26, p = .3, η2 = .04, BF10 = 0.47). On that basis, we anticipate that introducing normalization as a pre-attentive mechanism would impair the model fit.

      An alternative scenario is to consider normalization as post-attentive. In the simultaneous cueing condition, only one item is attended (i.e., the cued one), regardless of the displayed set size. Here, we would expect normalized activity for a single item, regardless of the number of presented objects, which would then be integrated into VWM. This expanded DyNR model with post-attentive normalization would make exactly the same predictions as the proposed DyNR for recall fidelity, so distinguishing between these models would not be possible based on working memory experiments.

      To acknowledge the possibility that sensory signals could undergo divisive normalization and to motivate future research, we have added the following to our manuscript:

      “As well as being implicated in higher cognitive processes including VWM (Buschman et al, 2011; Sprague et al., 2014), divisive normalization has been shown to be widespread in basic sensory processing (Bonin et al., 2005; Busse et al., 2009; Ni et al., 2017). The DyNR model presently incorporates the former but not the latter type of normalization. While the data observed in our experiments do not provide evidence for normalization of sensory signals (note comparable recall errors across set size in the simultaneous cue condition of Experiment 1), this may be because sensory suppressive effects are localized and our stimuli were relatively widely separated in the visual field: future research could explore the consequences of sensory normalization for recall from VWM using, e.g., centre-surround stimuli (Bloem et al., 2018).”

      Bloem, I. M., Watanabe, Y. L., Kibbe, M. M., & Ling, S. (2018). Visual Memories Bypass Normalization. Psychological Science, 29(5), 845–856. https://doi.org/10.1177/0956797617747091

      Bonin, V., Mante, V., & Carandini, M. (2005). The Suppressive Field of Neurons in Lateral Geniculate Nucleus. The Journal of Neuroscience, 25(47), 10844–10856. https://doi.org/10.1523/JNEUROSCI.3562-05.2005

      Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108(27), 11252–11255. https://doi.org/10.1073/pnas.1104666108

      Busse, L., Wade, A. R., & Carandini, M. (2009). Representation of Concurrent Stimuli by Population Activity in Visual Cortex. Neuron, 64(6), 931–942. https://doi.org/10.1016/j.neuron.2009.11.004

      Ni, A. M., & Maunsell, J. H. R. (2017). Spatially tuned normalization explains attention modulation variance within neurons. Journal of Neurophysiology, 118(3), 1903–1913. https://doi.org/10.1152/jn.00218.2017

      Sprague, T. C., Ester, E. F., & Serences, J. T. (2014). Reconstructions of Information in Visual Spatial Working Memory Degrade with Memory Load. Current Biology, 24(18), 2174–2180. https://doi.org/10.1016/j.cub.2014.07.066

      (2) Effectivity of retro-cues at long delays

      Can the authors discuss how cues presented at long delays (>1000 ms) can still lead to increased memory fidelity when sensory signals are likely to have decayed? A list of experimental work demonstrating this can be found in Souza & Oberauer (2016).

      Souza, A. S., & Oberauer, K. (2016). In search of the focus of attention in working memory: 13 years of the retro-cue effect. Attention, Perception, & Psychophysics, 78, 1839-1860.

      The increased memory fidelity observed with longer delays between memory array offset and cue does not result from integrating available sensory signals into VWM because the sensory signal would have completely decayed by that time. Instead, research so far has indicated several alternative mechanisms that could lead to higher recall precision for cued items, and we can briefly summarize some of them, which are also reviewed in more detail in Souza and Oberauer (2016).

      One possibility is that, after a highly predictive retro-cue indicates the to-be-tested item, uncued items can simply be removed from VWM. This could result in decreased interference for the cued item, and consequently higher recall precision. Secondly, the retro-cue could also indicate which item can be selectively attended to, and thereby differentially strengthening it in memory. Furthermore, the retro-cue could allow evidence to accumulate for the target item ahead of decision-making, and this could increase the probability that the correct information will be selected for response. Finally, the retro-cued stimulus could be insulated from interference by subsequent visual input, while the uncued stimuli may remain prone to such interference.

      A neural account of this retro-cue effect based on the original neural resource model has been proposed in Bays & Taylor, Cog Psych, 2018. However, as we did not use a retro-cue design in the present experiments, we have decided not to elaborate on this in the manuscript.

      (3) Swap errors

      I am somewhat surprised by the empirically observed and predicted pattern of swap errors displayed in Figure S2. For set size 10, swap probability does not consistently increase with the duration of the retention interval, although this was predicted by the author's model. At long intervals, swap probability is significantly higher for large compared to small set sizes, which also seems to contrast with the idea of shared, limited VWM resources. Can the authors provide some insight into why the model fails to reproduce part of the behavioral pattern for swap errors? The sentence in line 602 might also need some reconsideration in this regard.

      Determining the ground truth for swap errors poses a challenge. The prevailing approach has been to employ a simpler model that estimates swap errors, such as a three-component mixture model, and use those estimates as a proxy for ground truth. However, this method is not without its shortcomings. For example, the variability of swap frequency estimates tends to increase with variability in the report feature dimension (here, orientation). This is due to the increasing overlap of response probability distributions for swap and non-swap responses. Consequently, the discrepancy between any two methods of swap estimation is most noticeable when there is substantial variability in orientation reports (e.g., 10 items and long delay or short exposure).

      When modelling swap frequency in the DyNR model, our aim was to provide a parsimonious account of swap errors while implementing similar dynamics in the spatial (cue) feature as in the orientation (report) feature. This parametric description captured the overall pattern of swap frequency with set size and retention and encoding time, but is still only an approximation of the predictions if we fully modelled memory for the conjunction of cue and report features (as in e.g. Schneegans & Bays, 2017; McMaster et al, 2020).

      We expanded the existing text in the section ‘Representational dynamics of cue-dimension features’ of our manuscript:

      “… Although we did not explicitly model the neural signals representing location, the modelled dynamics in the probability of swap errors were consistent with those of the primary memory feature. We provided a more detailed neural account of swap errors in our earlier works that is theoretically compatible with the DyNR model (McMaster et al., 2020; Schneegans & Bays, 2017).

      The DyNR model successfully captured the observed pattern of swap frequencies (intrusion errors). The only notable discrepancy between DyNR and the three-component mixture model (Fig. S2) arises with the largest set size and longest delay, although with considerable interindividual variability. As the variability in report-dimension increases, the estimates of swap frequency become more variable due to the growing overlap between the probability distributions of swap and non-swap responses. This may explain apparent deviations from the modelled swap frequencies with the highest set size and longest delay where orientation response variability was greatest. “

      McMaster, J. M. V., Tomić, I., Schneegans, S., & Bays, P. M. (2022). Swap errors in visual working memory are fully explained by cue-feature variability. Cognitive Psychology, 137, 101493. https://doi.org/10.1016/j.cogpsych.2022.101493

      Schneegans, S., & Bays, P. M. (2017). Neural Architecture for Feature Binding in Visual Working Memory. The Journal of Neuroscience, 37(14), 3913–3925. https://doi.org/10.1523/JNEUROSCI.3493-16.2017

      (4) Direct sensory readout

      The model assumes that readout from sensory memory and from VWM happens with identical efficiency. Currently, we don't know if these two systems are highly overlapping or are fundamentally different in terms of architecture and computation. In the case of the latter, it might be less reasonable to assume that information readout would happen at similar efficiencies, as it is currently assumed in the manuscript. Perhaps the authors could briefly discuss this possibility.

      In the direct sensory read-out model, we did not explicitly model the efficiency of readout from either sensory or VWM store. However, the distinctive prediction of this model is that the precision of recall changes exponentially with delay at every set size, including one item. This prediction does not depend on the relative efficiency of readout from sensory and working memory, but only on the principle that direct readout from sensory memory bypasses the capacity limit on working memory. This prediction is inconsistent with the pattern of results observed in Experiment 1, where early cues did not show a beneficial effect on recall error for set size 1. While the proposal raised by the reviewer is intriguing, even if we were to model the process of readout from both the sensory and VWM stores with different efficiencies, the direct read-out model could not account for the near-constant recall error with delay for set size one.

      (5) Encoding of distractors

      One of the model assumptions is that, for simultaneous presentations of memory array and cue only the cued feature will be encoded. Previous work has suggested that participants often accidentally encode distractors even when they are cued before memory array onset (Vogel 2005). Given these findings, how reasonable is this assumption in the authors' model?

      Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503.

      Although previous research suggested that observers can misinterpret the pre-cue and encode one of the uncued items, our results argue against this being the case in the current experiment. Such encoding failures would manifest in overall recall error, resulting in a gradient of error with set size, owing to the presence of more adjacent distractors in larger set sizes. However, when we compared recall errors between set sizes in the simultaneous cue condition, we did not find a significant difference between set sizes, and moreover, our results were more likely under the hypothesis of no-difference (F(2,18) = 1.26, p = .3, η2 = .04, BF10 = 0.47). If observers occasionally encoded and reported one of the uncued items in the simultaneous cue condition, those errors were extremely infrequent and did not affect the overall error distributions.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, Zeng and Staley provide a valuable analysis of the molecular requirements for the export of a reporter mRNA that contains a lariat structure at its 5' end in the budding yeast S. cerevisiae. The authors provide evidence that this is regulated by the main mRNA export machinery (Yra1, Mex67, Nab2, Npl3, Tom1, and Mlp1). Of note, Mlp1 has been mainly implicated in the nuclear retention of unspliced pre-mRNA (i.e. quality control), and relatively little has been done to investigate its role in mRNA export in budding yeast.

      Strengths:

      There is relatively little information in the current literature about the nuclear export of splicing intermediates. This paper provides one of the first analyses of this process and dissects the molecular components that promote this form of RNA export. Overall, the strength of the data presented in the manuscript is solid. The paper is well written and the message is clear and of general interest to the mRNA community.

      We thank the reviewer for highlighting these strengths.

      Weaknesses:

      There are three problems with the paper, although these are not major and likely would not affect the final model as most aspects of the molecular details are confirmed by multiple complementary assays.

      (1) The brG reporter produces both unspliced pre-mRNA and a lariat-containing intermediate RNA. Based on the primer extension assay the authors claim that only 33% of the final product is in pre-mRNA form and that this "is insufficient to account for the magnitude of the cytoplasmic signal from the brG reporter (83%)". Nevertheless, it is possible that primer extension is incomplete or that the lariat-containing RNA is inaccessible for smFISH. The authors could easily perform a dual smFISH experiment (similar to Adivarahan et l., Molecular Cell 2018) where exon 1 is labelled with probes of one color, and the region that overlaps the lariat-containing intermediate is labelled with probes of a second color. If the authors are correct, then one-third of the smFISH foci should have both labels and the rest would have only the second label. This would also confirm that the latter (i.e. the lariat-containing RNAs) are exported to the cytoplasm. Using this approach, the authors could then show that MLP1-depletion (or depletion of any of the other factors) affect(s) one pool of RNAs (i.e. those that are lariat-containing) but not the other (i.e. pre-mRNA). Including these experiments would make the evidence for their model more convincing.

      We appreciate the reviewer’s comments and suggestions. Concerning the primer extension analysis, we are considering alternative assays to quantitate the pre-mRNA and lariat intermediate levels. Concerning the accessibility of the lariat intermediate in smRNA-FISH, in a dbr1∆ strain the only major species from the UAc reporter that is detected by primer extension is the lariat intermediate (Fig. S3), and this reporter is readily detected by smRNA-FISH, indicate that the lariat intermediate is accessible to smRNA-FISH. Concerning discriminating between pre-mRNA and lariat intermediate by smRNA-FISH, we agree with the reviewer that a dual smFISH experiment would directly distinguish between the signals of these species. The brG reporter we used in most smRNA-FISH experiments has a 5’ exon that is too short for smRNA-FISH probes, as is typical of most budding yeast 5’ exons. We have tried to replace the 5’ exon with a longer sequence (GFP) to allow for smRNA-FISH; however, this substitution inhibited splicing. Therefore, to distinguish signals from pre-mRNA versus lariat intermediate, we used additional reporters: G1c and brC reporters, which accumulate pre-mRNA essentially exclusively (Fig. S2A-C), and the UAc reporter, which accumulates lariat intermediate exclusively, in a dbr1∆ strain (Fig. S3). Whereas the mlp1 deletion did not change beta-galactosidase activities of the G1c and brC pre-mRNA-accumulating reporters (Fig. S2E), the mlp1 deletion in a dbr1∆ background did reduce the beta-galactosidase activities of the UAc lariat intermediate-accumulating reporter (Fig. 3D) and did increase smRNA-FISH signal of this reporter in the nucleus (Fig. 3E). These observations corroborate our interpretation based on the brG reporter that Mlp1p is required for efficient export of lariat intermediates but not pre-mRNAs.

      (2) In some cases, the number of smFISH foci appears to change drastically depending on the genetic background. This could either be due to the stochastic nature of mRNA expression between cells or reflect real differences between the genetic backgrounds that could alter the interpretation of the other observations.

      We thank the reviewer for raising this point. We will review our data to distinguish between these possibilities.

      (3) The authors state in the discussion that "the general mRNA export pathway transports discarded lariat intermediates into the cytoplasm". Although this appears to be the case for the reporters that are investigated in this paper, I don't think that the authors should make such a broad sweeping claim. It may be that some discarded lariat intermediates are exported to the cytoplasm while others are targeted for nuclear retention and/or decay.

      The reviewer’s point is well-taken. We will revise the wording accordingly.

      Reviewer #2 (Public Review):

      In this report, Zeng and Staley have used an elegant combination of RNA imaging approaches (single molecule FISH), RNA co-immunoprecipitations, and translation reporters to characterize the factors and pathways involved in the nuclear export of splicing intermediates in budding yeast. Their study notably involves the use of specific reporter genes, which lead to the accumulation of pre-mRNA and lariat species, in a battery of mutants impacting mRNA export and quality control.

      The authors convincingly demonstrate that mRNA species expressed from such reporters are exported to the cytoplasm in a manner depending on the canonical mRNA export machinery (Mex67 and its adaptors) and the nuclear pore complex (NPC) basket (Mlp1). Interestingly, they provide evidence that the export of splicing intermediates requires docking and subsequent undocking at the nuclear basket, a step possibly more critical than for regular mRNAs.

      We thank the reviewer for this overall positive assessment.

      However, their assays do not always allow us to define whether the impacted mRNA species correspond to lariats and/or pre-mRNAs. This is all the more critical since their findings apparently contradict previous reports that supported a role for the nuclear basket in pre-mRNA quality control. These earlier studies, which were similarly based on the use of dedicated yet distinct reporters, had found that the nuclear basket subunit Mlp1, together with different cofactors, prevents the export of unspliced mRNA species. It would be important to clarify experimentally and discuss the possible reasons for these discrepancies.

      It is true that we did not assess export of all reporters in all mutant strains by smFISH; however, we did validate the key conclusion that the export of lariat intermediates requires the nuclear basket gene MLP1: the export of both the brG reporter (mostly lariat intermediate) and the UAc reporter (exclusively lariat intermediate) showed a dependence on MLP1 (Fig. 3). Further, by beta-galactosidase activity, we tested in total five separate reporters – three that accumulated lariat intermediate and two that accumulated exclusively pre-mRNA; only the three reporters accumulating lariat intermediate showed a dependence of export on MLP1 (Fig. 4B,D; Fig S2D); the reporters accumulating pre-mRNA did not show a dependence on MLP1 (Fig. S2E), further validating our main conclusion. We are considering additional experiments to validate this key conclusion even further. Also, see response to comment 1 from reviewer 1.

      We agree that the main conclusion from this manuscript differs from earlier studies. A key difference is that prior studies monitored exclusively pre-mRNA. In our study, we monitored pre-mRNA and lariat intermediate species and in doing so revealed a role for MLP1 in the export of lariat intermediates. This study, our previous study, as well as the previous studies of others have all provided evidence for efficient export of pre-mRNA; all of these studies are in conflict with the studies purporting a general role for the nuclear basked in retaining immature mRNA. Still, these past apparently conflicting studies can be re-interpreted in the context of our model that the export of such species requires docking at the nuclear basket, followed by undocking. In a revised manuscript, we will discuss the possibility that pre-mRNA apparently “retained” by the nuclear basket are stalled in export at the undocking stage.

      Reviewer #3 (Public Review):

      Summary:

      Zeng and Stanley show that in yeast, intron-lariat intermediates that accumulated due to defects in pre-mRNA splicing, are transported to the cytoplasm using the canonical mRNA export pathway. Moreover, they demonstrate that export requires the nuclear basket, a sub-structure of the nuclear pore complex previously implicated with the retention of immature mRNAs. These observations are important as they put into question a longstanding model that the main role of the nuclear basket is to ensure nuclear retention of immature or faulty mRNAs.

      Strengths:

      The authors elegantly combine genetic, biochemical, and single-molecule resolution microscopy approaches to identify the cellular pathway that mediates the cytoplasmic accumulation of lariat intermediates. Cytoplasmic accumulation of such splicing intermediates had been observed in various previous studies but how these RNAs reach the cytoplasm had not yet been investigated. By using smFISH, the authors present compelling, and, for the first time, direct evidence that these intermediates accumulate in the cytoplasm and that this requires the canonical mRNA export pathway, including the RNA export receptor Mex67 as well as various RNA-binding proteins including Yra1, Npl3 and Nab2. Moreover, they show that the export of lariat intermediates, but not mRNAs, requires the nuclear basket (Mlp1) and basket-associated proteins previously linked to the mRNP rearrangements at the nuclear pore. This is a surprising and important observation with respect to a possible function of the nuclear basket in mRNA export and quality control, as it challenges a longstanding model that the role of the basket in mRNA export is primarily to act as a gatekeeper to ensure that immature mRNAs are not exported. As discussed by the authors, their finding suggests a role for the basket in promoting the export of certain types of RNAs rather than retention, a model also supported by more recent studies in mammalian cells. Moreover, their findings also collaborate with a recent paper showing that in yeast, not all nuclear pores contain a basket (PMID: 36220102), an observation that also questioned the gatekeeper model of the basket, as it is difficult to imagine how the basket can serve as a gatekeeper if not all nuclear pore contain such a structure.

      We thank the reviewer for highlighting the importance and surprising nature of our findings.

      Weaknesses:

      One weakness of this study is that all their experiments rely on using synthetic splicing reporter containing a lacZ gene that produces a relatively long transcript compared to the average yeast mRNA.

      We are considering repeating some of our experiments to monitor export of RNAs with more average lengths.

      The rationale for using a reporter containing the brG (G branch point) resulting in more stable lariat intermediates due to them being inefficient substrates for the debranching enzyme Dbr1 could be described earlier in the manuscript, as this otherwise only becomes clear towards the end, what is confusing.

      We thank the reviewer for this comment. We will revise the text to explain sooner the rationale for using the brG reporter to assess the export of lariat intermediates.

      Discussion of their observation in the context that, in yeast, not all pores contain a basket would be useful.

      Thanks for this suggestion. We will raise this point that a nuclear basket is not present on all nuclear pores and discuss the implications.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      Summary:

      This paper reports how mycobacterial cAMP level is increased under stressful conditions and that the increase is important in the survival of the bacterium in animal hosts.

      Strengths:

      The authors show that under different stresses the response regulator PhoP represses a phosphodiesterase (PDE) that degrades cAMP specifically. Identification of a PDE specific to cAMP is significant progress in understanding Mtb pathogenesis. An increase in cAMP apparently increases bacterial survival upon infection. On the practical side, the reduction of cAMP by increasing PDE can be a means to attenuate the growth of the bacilli. The results have wider implications since PhoP is implicated in controlling diverse mycobacterial stress responses and many bacterial pathogens modulate host cell cAMP level. The results here are straightforward, internally consistent, and of both theoretical and applied interests.

      We thank the reviewers for these extremely encouraging comments.

      Weaknesses:

      Repression of PDE promoter by binding of phosphorylated PhoP could have been shown at higher precision. The binding is now somewhere along a roughly 500 bp region. Although the regulation of PDE is shown to be by transcriptional repression only, it has been described as a homeostatic mechanism. The latter would have required a demonstration of both repression and activation by negative feedback.

      We agree. We have now performed EMSA (Electrophoretic Mobility Shift Assay) experiments and included the data showing DNA binding of PhoP to the upstream regulatory region of rv0805 (rv0805up) as a supplemental figure (see Figure 2-figure supplement 1). The supplemental figure, figure caption, and the relevant results have been adjusted accordingly in the revised manuscript.

      Further, as recommended by the reviewer we have now removed the term ‘homeostatic mechanism’ and rephrased it with ‘maintenance of cAMP level’ in the manuscript.

      Response to Reviewers’ comments

      Reviewer #1:

      The authors have used homeostasis inappropriately. Homeostasis usually requires negative feedback (a clear example is the regulation of Lambda prm promoter). Here, there is no feedback from changes in PDE or cAMP level to their synthesis. Homeostasis does not belong to this paper anywhere.

      As recommended by the reviewer, we have now removed “homeostasis” from the manuscript and mostly replaced it with “maintenance of cAMP level” in the revised manuscript.

      The authors have frequently used adverbs at the beginning of a sentence, such as Notably (l.240, 272, 376), Importantly (l.66, 213), More importantly (l.134), Remarkably (l.264), Interestingly (l.115,301), Intriguingly (l.344), unambiguously (l.347), etc. The use of these words is generally counter-productive. The authors should scan the ms. to eliminate them as far as possible. The sentences would read more clearly and become more impactful.

      Following reviewer’s recommendation, we have now eliminated most of the adverbs, mostly used at the beginning of sentences, in the revised manuscript.

      Specific comments

      (1) L.1: "maintenance of homeostasis" or increasing cAMP level.

      As suggested by the reviewer, we have now replaced “maintenance of cAMP homeostasis” with “maintenance of cAMP level”.

      (2) L.27: mechanism or reason; varying or various.

      As recommended by the reviewer, we have now replaced “mechanism” with “reason” and the word “varying” is deleted while incorporating suggested changes in the abstract.

      (3) L.28-29: The logic of connecting PhoP to cAMP doesn't follow well. The logic is much better in l.54, l.112-5 and l.130.

      We thank the reviewer for this suggestion. We have now modified the statement within the ‘abstract’ in the revised manuscript (duplicated below):

      “cAMP is one of the most widely used second messengers which impacts on a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-mycobacterial cAMP level could be controlled by the phoP locus since the major regulator plays a key role in bacterial response against numerous stress conditions.”

      (4) L.30: discovers or reveals (?). Also, in l.101.

      As recommended by the reviewer, we have now replaced ‘discovers’ with ‘reveals’ in the Abstract and ‘uncovered’ with ‘revealed’ in the Introduction section of the manuscript.

      (5) L.31: Delete "The most - - derived". It is not obvious what most fundamental means here. I suggest: We find that PhoP-dependent ---involves specific binding of the regulator---PDE gene.

      As recommended by the reviewer, we have modified the statement (duplicated below): “In keeping with these results, we find specific recruitment of the regulator within the promoter region of rv0805 PDE, and absence of phoP or ectopic expression of rv0805 independently accounts for elevated PDE synthesis leading to depletion of intra-mycobacterial cAMP level.”

      (6) L.36: --pathway decreases cAMP level, stress tolerance, and survival of the bacilli.

      As recommended by the reviewer, we have now modified the statement (duplicated below): “Thus, genetic manipulation to inactivate PhoP-Rv0805-cAMP pathway decreases cAMP level, stress tolerance, and intracellular survival of the bacilli.

      (7) L.41: 'keeps encountering" or encounters?

      As suggested by the reviewer, we have replaced ‘keeps encountering’ with ‘encounters’ in the ‘Introduction’ section of the revised manuscript.

      (8) L.61: responds, carries.

      Our apologies for the embarrassing grammatical mistakes. We have rectified these errors in the revised manuscript.

      (9) L.67: you mean burst in synthesis level, not burst of cAMP itself.

      To improve clarity, we have now modified the statement in the revised manuscript (duplicated below): “Agarwal and colleagues had shown that burst in synthesis of bacterial cAMP upon infection of macrophages, improved bacterial survival by interfering with host signalling pathways (Agarwal et al., 2009)”

      Reference

      Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460: 98-102

      (10) L.77: Change Off to Of.

      We are sorry for the inaccuracy. The suggested change has been made to the text.

      (11) L.83: Did not discuss "degradation" earlier.

      Following reviewer’s recommendation, we have now modified the statement in the revised manuscript (duplicated below).

      “Together, these results strongly suggest that a balance between cAMP synthesis by adenylate cyclases and cAMP degradation by phosphodiesterases contributes to rapid adaptive response of mycobacteria in a hostile intracellular environment (Johnson and McDonough, 2018; McDonough and Rodriguez, 2011).”

      Reference

      Johnson RM, McDonough KA (2018) Cyclic nucleotide signaling in Mycobacterium tuberculosis: an expanding repertoire. Pathog Dis 76 (5)

      McDonough KA, Rodriguez A (2011) The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. Nature reviews Microbiology 10: 27-38

      (12) L.95: Isn't PhoPR a two-component signal transduction system, the terminology that is more specific than a two-protein regulatory system?

      As recommended by the reviewer, we have replaced “two protein regulatory system” with more specific “two-component signal transduction system” in the revised manuscript.

      (13) L.124: check-point prevents things from happening. Here the mechanism you found allows growth and survival.

      We agree. As recommended by the reviewer, we have now modified the sentence in the revised manuscript (duplicated below).

      “Together, the newly identified mechanism of regulation of cAMP level allows intraphagosomal survival and growth program of mycobacteria.”

      (14) L.132: why not say directly-"---under normal, and NO and acid stress conditions (Fig. 1A).

      As recommended by the reviewer, we have now deleted the first part of the sentence and directly stated that “we compared cAMP levels………. under normal, NO and acidic stress conditions” (duplicated below).

      “We compared cAMP levels of WT and phoPR-KO (lacking both phoP and phoR), grown under normal, NO stress and acid stress conditions (Fig. 1A).”

      (15) L.134: The complementation is quite variable. Also true in Fig. 2A. If no simple answer, you can say- cAMP values increased in complemented cells, although to a variable extent, for reasons unknown.

      We agree with the reviewer. We have now incorporated new text in the ‘Results’ section of the revised manuscript (duplicated below):

      “A higher cAMP level in the complemented strain under NO stress is possibly attributable to reproducibly higher phoP expression in the complemented mutant under specific stress conditions (Khan et al., 2022).”

      (16) L.154: You rather not say "conclude" and "most likely" at the same time. How about replacing "we conclude" with suggests? In that case, no need to say "most likely". Also, in l.306-7 & l.322-3.

      We thank the reviewer for these suggestions. We have now modified the statements in the revised manuscript (duplicated below).

      “We suggest that lower cAMP level of the mutant is not due to its higher efficacy of cAMP secretion.”

      Following reviewer’s recommendation, we have incorporated similar changes in two other places of the ‘Results’ section of the revised manuscript.

      (17) L.161: introduce both the acronyms here and not in l.162.

      Following reviewer’s recommendation, we have made the suggested changes.

      (18) L.164: Second, (to be in line with First).

      We have made the suggested change.

      (19). Fig. 2C: There are no black and white bars. This is an important figure because the results appear in the abstract. The signal change from pH 7 to 4.5 is not much. An independent approach would have been desirable. If it were E. coli, I would have suggested beta-gal assay or in vivo footprints. Is a PhoP binding site recognizable in the promoter region of rv0805?

      We apologize for the inaccuracy. We have corrected it in the revised manuscript. Also, we have now carried out DNA binding assays, and included the EMSA data of rv0805 upstream regulatory region binding to phosphorylated PhoP (P~PhoP) as a supplemental figure (Figure 2-figure supplement 1A-B). In this figure, we have also incorporated our results on the likely PhoP binding site within rv0805up. The new figure, figure caption and the relevant results have been adjusted accordingly in the revised manuscript.

      (20) L.209: ORFs; also delete "of growth" from the sentence.

      The suggested changes were made to the text.

      (21) L.213: Delete Importantly and change "failed to" to 'did not' (since you did not motivate the expectation earlier, it is better to state the results in an unbiased way).

      As recommended by the reviewer, both changes were included in the revised manuscript.

      (22) L.217: The requirement of PhoR is a new result - why say "confirm". Change it to indicate. Also, delete "indeed" here and from L.233.

      As recommended by the reviewer, both changes were included in the revised manuscript.

      (23) L.224: Are the results in Fig 3-S1A under inducing conditions?

      The results shown in Fig 3-S1A are not under inducing conditions of expression. For better clarity, we have modified the sentence describing Figure 3-figure supplement 1A (duplicated below).

      “rv0805 ORF was cloned within the multicloning site of integrative pSTki (Parikh et al., 2013) between EcoRI and HindIII sites under the control of Pmyc1tetO promoter, and expression of rv0805 under non-inducing condition was verified by determining the mRNA level (Figure 3 - figure supplement 1A).

      Reference:

      Parikh et al (2013) Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Applied and environmental microbiology 79: 1718-1729

      (24) L.225: ---cAMP level. Add (Fig. 3C) at the end of the next sentence.

      As recommended by the reviewer, both the suggested changes were made to the revised text.

      (25) L.231: Delete "Most importantly"- you didn't specify what are other less important results.

      We agree. We have now deleted “most importantly” from the sentence in the revised text.

      (26) L.243 & 254: Change homeostasis to level? Here you are showing mechanisms that can change cAMP level. Homeostasis here would mean how fluctuations in cAMP level are adjusted, usually requiring negative feedback.

      As recommended by the reviewer, ‘homeostasis’ was replaced with ‘level’ in both places.

      (27) L.256: stress response or stress? Also, in l.272

      We are sorry for the inaccuracy. We have corrected these errors in the revised version of the manuscript.

      (28) L.259: Change "maintenance of homeostasis" to 'repressing the rv0805 PDE gene'. It is safer to use a fact-based title. In this section, direct measurement of rv0805 mRNA, and/or cAMP levels in different genetic backgrounds seem desirable.

      We agree. As recommended by the reviewer, we have modified the title of the ‘Results’ section in the revised manuscript (duplicated below).

      “PhoP contributes to mycobacterial stress tolerance and intracellular survival by repressing the rv0805 PDE expression.”

      Please note that direct measurements of rv0805 mRNA and cAMP levels are part of Fig. 3 and Figure 3- figure supplement 1A, respectively.

      (29) Fig, 4A: White and grey symbols are not easily discriminated without zooming. Use color for phoPR-KO.

      We agree. We have now indicated the phoPR-KO in blue in the revised Fig. 4.

      (30) L.264: Delete remarkable or explain what is so remarkable. Aren't the results expected- the PDE level would go up in both cases. Direct measurement of PDE /cAMP levels would take the mystery out of the results.

      As recommended by the reviewer, we have deleted ‘remarkably’ in the revised text. We have measured cAMP and PDE expression levels of the four strains in Fig. 3 and Figure 3-figure supplement 1.

      (31) L.273: --suggesting a role of ---

      We have modified this sentence in the revised version of the manuscript (duplicated below).

      “A previous study had reported that phoP-deleted mutant strain was more sensitive to Cumene Hydrogen Peroxide (CHP), suggesting a role of PhoP in regulating mycobacterial stress response to oxidative stress (Walters et al., 2006).”

      Reference:

      Walters et al. (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60: 312-330

      (32) L.275: Delete "transcriptome". CHP sensitivity alone doesn't speak for transcriptome.

      As suggested by the reviewer, we have deleted “transcriptome”. Also, please see our response to the previous comment (above).

      (33) Fig. 4D and E: % Colocalization in the Merge panels is not much different among the four strains tested (to an untrained eye). Can the results be explained to readers not used to in vivo studies?

      As recommended by the reviewer, we have now incorporated new text to explain the in vivo experiment (duplicated below).

      “In this assay, WT-H37Rv inhibits phagosome maturation, whereas phagosomes with phoPR-KO mature into phagolysosomes (Anil Kumar et al., 2016).”

      Further, for better clarity of the results shown in Fig. 4D, we have (a) increased size of the figure to highlight the difference in the ‘merge’ panel; (b) included “white arrowheads” in the merge panels of Fig. 4D to indicate auramine labeled mycobacteria, which either have inhibited or facilitated trafficking into lysosomes, and finally (c) incorporated method used to calculate percent co-localization in greater details in the ‘Material and Methods’ section of the revised manuscript.

      Reference

      Anil Kumar et al. (2016) EspR-dependent ESAT-6 secretion of Mycobacterium tuberculosis requires the presence of virulence regulator PhoP. J Biol Chem. 291, 19018-19030

      (34) L.275-6: Delete "next" (also in l.347) and "Note that". In this paragraph, I was expecting some explanation on how phoPR-KO and WT-Rv0805 are behaving similarly. Even if the reason is not known, it should be mentioned.

      The suggested changes have been made to the text. Also, as recommended by the reviewer, we have included the following text in the revised manuscript (duplicated below):

      “Together, these results reveal similar behaviour of phoPR-KO, and WT-Rv0805 by demonstrating a comparably higher susceptibility of these strains to acidic pH and oxidative stress relative to WT bacteria and indicate a link between intra-mycobacterial cAMP level and bacterial stress response. Collectively, these data suggest that at least one of the mechanisms by which PhoP contributes to global stress response is attributable to maintenance of cAMP level.”

      (35) L.281: ---WT and indicate a link between cAMP level and stress response in mycobacteria. (No mention of homeostasis).

      The suggested change has been made to the revised text. Please see above our response to point # 34.

      (36) L.288, 290: No Thus and no clearly.

      Both the suggested changes have been made to the text.

      (37) L.297: Can you be more direct and state --is due to reduced cAMP level?

      As recommended by the reviewer, we have now modified the sentence to make it more direct in the revised manuscript (duplicated below):

      “Together, our findings facilitate an integrated view of our results, suggesting that higher susceptibility of WT-Rv0805 to stress conditions, is attributable to its reduced cAMP level.”

      (38) L.307: May delete "most likely----homeostasis". cAMP is not discussed here. The same deletion is desired in l.324.

      We agree. As recommended by the reviewer, we have now modified the relevant texts in the revised manuscript. These are duplicated below.

      “From these results, we suggest that ectopic expression of rv0805 impacts phagosome maturation arguing in favour of a role of PhoP in influencing phagosome-lysosome fusion in macrophages.”

      “Thus, we suggest that one of the reasons which accounts for an attenuated phenotype of phoPR-KO in both cellular and animal models is attributable to PhoP-dependent repression of rv0805 PDE activity, which controls mycobacterial cAMP level.”

      (39) L.342: cAMP level is regulated remains---

      The suggested change has been made to the revised text (duplicated below):

      “Although many bacterial pathogens modulate host cell cAMP level as a common strategy, the mechanism of regulation of mycobacterial cAMP level remains unknown.”

      (40) L.373: tone down "most fundamental". It is not obvious what is so profound about a stress-response system that depends on PhoP also depends on PhoR. OR justify what is most fundamental about it.

      We agree. Following reviewer’s recommendation, we have modified the text in the revised manuscript (duplicated below):

      “In keeping with these results, we find that PhoP-dependent rv0805 expression requires PhoR (Figs. 3A-B), the cognate kinase which activates PhoP in a signal-dependent manner (Gupta et al., 2006; Singh et al., 2023).”

      References:

      Gupta et al. (2006) Transcriptional autoregulation by Mycobacterium tuberculosis PhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Letters 580, 5328-5338.

      Singh et al. (2023) Dual functioning by the PhoR sensor is a key determinant to Mycobacterium tuberculosis virulence. PLoS Genetics 19(12): e1011070.

      (41) L.395: delete correspondingly (?)

      The suggested change has been made to the text.

      (42) L.396: Delete "appear to" and "somewhat". The uncertainty is already implied in "suggest". The evidence that ectopic expression of rv0805 is functionally equivalent to phoP deletion is quite clear in this paper and not saying that clearly is confusing.

      We agree with the reviewer. The suggested changes have been made to the revised text (duplicated below):

      “Thus, our results suggest that ectopic expression of rv0805 is functionally equivalent to deletion of the phoP locus.”

      (43) L.401: --over-expressing bacilli, induction level of rv0805 expression was significantly different in Matange et al and our studies. The next sentence is also very wordy.

      We have made changes to the text to address the reviewer’s concern. Also, the next sentence has been rewritten (duplicated below).

      “Although both studies were performed with rv0805 over-expressing bacilli, the fact that important differences in the expression of PDEs, in this study (Matange et al., 2013) and in our assays - yielding significantly different levels of rv0805 expression - most likely account for this discrepancy. While we cannot rule out the possibility of cleavage of other cyclic nucleotides by Rv0805 (Keppetipola & Shuman, 2008; Shenoy et al., 2007; Shenoy et al., 2005), consistent with a previous study our results correlate rv0805 expression with intra-mycobacterial cAMP level (Agarwal et al., 2009).”

      References:

      Matange et al. (2013) Overexpression of the Rv0805 phosphodiesterase elicits a cAMP-independent transcriptional response. Tuberculosis (Edinb) 93: 492-500.

      Keppetipola N, Shuman S (2008) A phosphate-binding histidine of binuclear metallophosphodiesterase enzymes is a determinant of 2',3'-cyclic nucleotide phosphodiesterase activity. J Biol Chem 283: 30942-30949

      Shenoy et al. (2007) Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. Journal of molecular biology 365: 211-225

      Shenoy et al. (2005) The Rv0805 gene from Mycobacterium tuberculosis encodes a 3',5'-cyclic nucleotide phosphodiesterase: biochemical and mutational analysis. Biochemistry 44: 15695-15704

      Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460: 98-102

      (44) L.409: To avoid saying "conclude" and "most likely" at the same time, can you start the sentence thus: 'We infer that Pho-----rv0805 is a---.

      We agree. We have made suggested changes to the text. The modified sentence is duplicated below:

      “We infer that PhoP-dependent regulation of Rv0805 is a critical regulator of intra-mycobacterial cAMP level.”

      (45) L.424. Delete "According to this model". In the preceding sentence, the subject is results, not model. This whole paragraph needs to be rewritten in fewer lines. The shorter the summary statement, the greater would be its impact (less is more here). I would delete the red circles from the figure- it appears that in the repressed state, you are making more products. Replace the circles with an arrow. The legend could be "Increased cAMP level and effective stress response" and "Decreased cAMP---and reduced---.

      We thank the reviewer for these suggestions. Following reviewer’s recommendations, we have made numerous changes and rewritten the paragraph in the revised manuscript (duplicated below):

      “In summary, upon sensing low acidic pH as a signal PhoR activates PhoP, P~PhoP binds to rv0805 upstream regulatory region and functions as a specific repressor of Rv0805. Therefore, we observed (a) a reproducibly lower level of cAMP in phoPR-KO relative to WT-H37Rv, (b) a significantly reduced expression of rv0805 in WT-H37Rv, grown under acidic pH relative to normal conditions, and (c) comparable cAMP levels in phoPR-KO and WT-Rv0805. This is why the two strains remain ineffective to mount an appropriate stress response, most likely due to their inability to coordinate regulation of gene expression because of dysregulation of intra-mycobacterial cAMP level. However, without uncoupling regulatory control of PhoPR and rv0805 expression, we cannot confirm that dysregulation of cAMP level accounts for virulence attenuation of phoPR-KO. Given the fact that rv0805-depleted M. tuberculosis is growth attenuated in vivo (McDowell et al., 2023), paradoxically ectopic expression of rv0805 leads to dysregulated metabolic adaptation, thereby resulting in reduced stress tolerance and intracellular survival.”

      Also, the suggested changes have been incorporated in Fig. 6 and the figure caption.

      Reference

      McDowell JR, Bai G, Lasek-Nesselquist E, Eisele LE, Wu Y, Hurteau G, Johnson R, Bai Y, Chen Y, Chan J et al (2023) Mycobacterial phosphodiesterase Rv0805 is a virulence determinant and its cyclic nucleotide hydrolytic activity is required for propionate detoxification. Mol Microbiol 119: 401-422

      (46) L.458 & 500: ---was used to transform.

      Following reviewer’s recommendation, the suggested changes were made to the text in the Materials and Methods section of the revised manuscript.

      (47) L.460: --- antibiotics plates.

      Both suggested changes were made to the text.

      (48) L.466-7: --they were transferred-pH 4.5) and grown for further-

      We thank the reviewer for these suggestions. The suggested changes were made to the text.

      (49) L.486: ---full-length ORFs of interest were---

      The suggested changes were incorporated in the revised manuscript.

      (50) L.497: The RNAs were 20 nt long and complementary---

      As recommended by the reviewer, we have modified the text in the revised manuscript (duplicated below).

      “The RNAs were 20 nt long and complementary to the non-template strand of the target gene.”

      Reviewer #2:

      (1) Rephrase this sentence in the abstract: “Because growing evidence connects PhoP with varying stress response, we hypothesized that the level of 3’,5’ cAMP, one of the most widely used second messengers, was regulated by the phoP locus, linking numerous stress responses with cAMP production”.

      As recommended by the reviewer, we have now rewritten the sentence. The modified text is incorporated in the revised manuscript (duplicated below):

      “cAMP is one of the most widely used second messengers, which impacts on a wide range of cellular responses in microbial pathogens including M. tuberculosis. Herein, we hypothesized that intra-mycobacterial cAMP level could be controlled by the phoP locus since the major regulator plays a key role in bacterial responses against numerous stress conditions.”

      Also, please see our response to specific comments #1-3 of Reviewer 1.

      (2) Line 134: please describe the complementation strain features as it is mentioned for the first time (plasmid, copy number, promoter etc.) in the manuscript. Especially under NO stress what could be the authors' justification regarding the high cAMP concentration in the complementation strain?

      As recommended by the reviewer, the details of construction of the complemented strain have been incorporated in the ‘Materials and Methods’ section of the revised manuscript (duplicated below):

      “To complement phoPR expression, pSM607 containing a 3.6- kb DNA fragment of M. tuberculosis phoPR including 200-bp phoP promoter region, a hygromycin resistance cassette, attP site and the gene encoding phage L5 integrase, as detailed earlier (Walters et al., 2006) was used to transform phoPR mutant to integrate at the L5 attB site.”

      To address the reviewer’s other concern, we have now included the following sentence in the ‘Results’ section of the revised manuscript (duplicated below):

      “A higher cAMP level in the complemented strain under NO stress is possibly attributable to reproducibly higher phoP expression in the complemented mutant under specific stress condition (Khan et al., 2022).”

      Reference:

      Khan et al. (2022) Convergence of two global regulators to coordinate expression of essential virulence determinants of Mycobacterium tuberculosis. eLife 2022, 11:e80965.

      (3) In Figure 1C, it is a bit confusing to see the numbers 1,2,3 and 4 and nothing is referred to these numbers in the figure legend so it's better to remove them.

      We agree with the reviewer. We have now removed the lane numbers from the figure (Fig. 1C) in the revised manuscript.

      (4) Line 852: rephrase it "insignificantly different".

      The suggested change has been made to the text. The modified text is incorporated in the manuscript (duplicated below):

      “Note that the difference in expression levels of rv0805 between WT and phoPR-KO was significant (p<0.01), whereas the fold difference in mRNA level between WT and the complemented mutant (Compl.) remains nonsignificant (not indicated).”

      (5) Line198-200: There are no open/black bars, they all are coloured bars. Correct the same. The significance test should be done for the same gene (suppose rv0805 up) in different pH conditions. Right now, it is not revealing anything and misleading.

      We apologize for the inaccuracy. We have now rectified the error. As recommended by the reviewer, Fig. 4C was modified, and the significance tests were carried out between samples involving identical promoter enrichments under different pH conditions. The modified figure, figure legend, and the relevant results have been adjusted accordingly in the revised manuscript.

      (6) Line 213: Is there any difference between this complementation strain (phoPR-KO:: phoPphoR with the one used in Figure 1A, 1B, and 2A? If yes, then please describe it.

      The same complemented mutant strain, which has been described in the ‘Materials and Methods’ section of the revised manuscript, was used in the experiments described in Fig. 1A, Fig.1B and Fig. 2A.

      (7) Line 223: Please mention the copy number and promoter of the vector construct.

      As recommended by the reviewer, we have now mentioned the promoter of the vector and incorporated new text with regard to copy number of the expression vector in the revised manuscript (duplicated below).

      “Although copy number of episomal vectors with pAl5000 origin of replication (oriM) have been reported to be 3 by Southern hybridization (Ranes et al, 1990), in this case wild-type and mutant Rv0805 proteins were expressed from single-copy chromosomal integrants (Parikh et al., 2013).”

      References

      Ranes et al., (1990) Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a "mini" mycobacterium-Escherichia coli shuttle vector. J Bacteriol 172: 2793-2797

      Parikh et al., (2013) Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Applied and environmental microbiology 79: 1718-1729

      (8) Figure 3 - Figure Supplement 1: not sure why the authors measured mRNA levels of rv1357 and rv2387? These genes were not overexpressed!

      The mRNA levels of rv1357 and rv2387 were measured to show that overexpression of either the wild-type or mutant Rv0805 did not influence expression of other PDEs like Rv1357 and Rv2387. We have now mentioned it explicitly in the revised manuscript (duplicated below).

      “In contrast, other PDE encoding genes (rv1357 and rv2387), under identical conditions, demonstrate comparable expression levels in WT-H37Rv and rv0805 over-expressing strains.”

      (9) Line 234: Wrong interpretation it should be PDE mRNA levels in WT-Rv0805 and WT-Rv0805M.

      As recommended by the reviewer, we have now modified the statement to improve clarity (duplicated below).

      “The corresponding mRNA levels of PDEs (wild-type and the mutant) are over-expressed approximately 4.5-6 -fold relative to the genomic rv0805 level of WT-H37Rv (Figure 3-figure supplement 1A).”

      (10) Line 237: Remove the sentence "Thus, we conclude......identical expression strategy", you have already talked about why phosphodiesterase activity is crucial for cAMP concentration and it is well understood.

      Following reviewer’s recommendation, we have now removed the sentence from the revised manuscript.

      (11) Figure 3E: Authors should comment on why the cAMP concentration is not significantly changed even though the mRNA level changes are drastic (~90%). How do you correlate that? Is it because of other PDEs?

      We agree. As suggested by the reviewer, we have now incorporated new text in the revised manuscript (duplicated below).

      “We speculate that effective knocking down of phoP or rv0805 is not truly reflected in the extent of variation of cAMP levels possibly due to the presence of numerous other mycobacterial PDEs.”

      (12) Line 505,506: Is it the translation start site or the transcription start site? Because mRNA level changes are reported.

      It is the translational start sites, and gene-specific small guide RNAs were designed to inhibit mRNA expression.

      (13) Line 292: There is a difference between red and green bars. Authors should do statistical analysis and then comment on whether overexpression of WT and mutant pde are different or similar, to me they are different; also, explain why the WT-Rv0805 strain is different than the phoPR-KO strain in the context of cell wall metabolism.

      As recommended by the reviewer, we have now included statistical significance of the data in the revised version, and modified the text accordingly in the manuscript.

      Also, we included text explaining why WT-Rv0805 is different compared to phoPR-KO strain in the context of cell wall metabolism (duplicated below).

      “Together, these results suggest that both strains expressing wild type or mutant PDEs share a largely similar cell-wall properties and are consistent with (a) a recent study reporting no significant effect of cAMP dysregulation on mycobacterial cell wall structure/permeability (Wong et al., 2023), and (b) role of PhoP in cell wall composition and complex lipid biosynthesis (Walters et al., 2006; Asensio et al., 2006; Goyal et al., 2011).”

      References:

      Wong et al. (2023) Cyclic AMP is a critical mediator of intrinsic drug resistance and fatty acid metabolism in M. tuberculosis. eLife 2023; 12: e81177

      Walters et al. (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60: 312-330

      Asensio et al. (2006) The Virulence-associated Two-component PhoP-PhoR System Controls the Biosynthesis of Polyketide-derived Lipids in Mycobacterium tuberculosis. J Biol Chem 281: 1313-1316.

      Goyal et al. (2011) Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286: 45197-45208

      (14) Line 299-303: Authors should explain how the colocalization % are calculated. Also, in the figure 4D merge panel please highlight the difference.

      As suggested by the reviewer, we have now explained the methodology used to calculate percent colocalization in greater details. Also, we have modified Figure 4D to highlight the difference between samples shown in merge panel. Please see our response to comment # 33 from the Reviewer 1.

      (15) General comment: There are multiple instances where writing needs to be improved.

      We are sorry for the inaccuracies. We have now done thorough editing of the manuscript and made numerous corrections throughout.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Weaknesses:

      The weaknesses are the brevity of the simulations, the concomitant lack of scope of the simulations, the lack of depth in the analysis, and the incomplete relation to other relevant work.

      A 1 µs simulation of CCh (Video 1, part 2) shows that m3 (ACHA) is stable, throughout. The DG comparisons, in silico versus in vitro, indicate that 200 ns simulations are sufficient to identify LA versus HA conformational populations. Figure 6-table supplement 1 shows distances. New citations have been added.

      Reviewer #2 (Public Review):

      Weaknesses:

      After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area, and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand, and solvent) could be provided. Despite this, the authors report a correlation between their free energy estimates and those inferred from the experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if the authors were to instead express results in terms of KD values (which would have an error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as a more careful discussion of free energy maps as a function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.

      The objective of the calculations was to identify structural populations, not to estimate binding free energies. We knew the actual LA and HA energies (for all 4 agonists) from real-world electrophysiology experiments. We conclude that the simple PBSA method worked as a tool for identification because the calculated efficiencies match those from experiments (Figure 4B, Figure 4-Source Data 1). We discuss the mismatches in absolute G in the Results and Discussion. Methods for estimating experimental binding free energies are described in a cited, eLife companion paper. The G ratio relates to agonist efficiency.

      Main points:

      Regarding the choice of model, some further justification of the reduced 2 subunit ECD-only model could be given. On page 5 the authors argue that, because binding free energies are independent of energy changes outside the binding pocket, they could remove the TMD and study only an ECD subunit dimer. While the assumption of distant interactions being small seems somewhat reasonable, provided conformational changes are limited and localised, how do we know the packing of TMD onto the ECD does not alter the ability of the alpha-delta interface to rearrange during weak or strong binding? They further write that "fluctuations observed at the base of the ECD were anticipated because the TMD that offers stability here was absent.". As the TMD-ECD interface is the "gating interface" that is reshaped by agonist binding, surely the TMD-ECD interface structure must affect binding. It seems a little dangerous to completely separate the agonist binding and gating infrastructure, based on some assumption of independence. Given the model was only the alpha and delta subunits and not the pentamer with TMD, I am surprised such a model was stable without some heavy restraints. The authors state that "as a further control we carried out MD simulation of a pentamer docked with ACh and found similar structural changes at the binding pocket compared to the dimer." Is this sufficient proof of the accuracy of the simplified model? How similar was the model itself with and without agonist in terms of overall RMSD and RMSD for the subunit interface and the agonist binding site, as well as the free energy of binding to each model to compare?

      The statement that distant interactions are small is not an "assumption", but rather a conclusion based on data. Mutant cycle analysis of 83 pairs shows (with a few exceptions) non-additivity of free energy change prevails only with separations <~15 A (Fig.3 in Gupta et al 2017). Regardless, the adequacy of dimers and convergence by 200 ns are supported by the calculated and experimental agonist efficiencies match (Figure 4B) and the 1 ms simulation (Video 1 part 2). Apo 200ns simulation of the ECD dimer is now added (Figure 2-figure supplement 2) and the dimer interface seems to be adequate (stable).

      Although the authors repeatedly state that they have good convergence with their MD, I believe the analysis could be improved to convince us. On page 8 the authors write that the RMSD of the system converged in under 200 ns of MD. However, I note that the graph is of the entire ECD dimer, not a measure for the local binding site region. An additional RMSD of local binding site would be much more telling. You could have a structural isomerisation in the site and not even notice it in the existing graph. On page 9 the authors write that the RMSF in Figure S2 showed instability mainly in loops C and F around the pocket. Given this flexibility at the alpha-delta interface, this is why collecting those regions into one group for the calculation of RMSD convergence analysis would have been useful. They then state "the final MD configuration (with CCh) was well-aligned with the CCh-bound cryo-EM desensitized structure (7QL6)... further demonstrating that the simulation had converged." That may suggest a change occurred that is in common with the global minimum seen in cryo EM, which is good, but does not prove the MD has "converged". I would also rename Figure S3 accordingly.

      The description is now changed to “aligns well” with desensitized structure (7QL6.PDB)”. RMSD of not just the binding pocket but the whole ECD dimer is well aligned with first apo (m1) and with desensitized state (m3).

      The authors draw conclusions about the dominant states and pathways from their PCA component free energy projections that need clarification. It is important first to show data to demonstrate that the two PCA components chosen were dominant and accounted for most of the variance. Then when mapping free energy as a function of those two PCA components, to prove that those maps have sufficient convergence to be able to interpret them. Moreover, if the free energies themselves cannot be used to measure state stability (as seems to be the case), that the limitations are carefully explained. First, was PCA done on all MD trajectories combined to find a common PC1 & PC2, or were they done separately on each simulation? If so, how similar are they? The authors write "the first two principal components (PC-1 and PC-2) that capture the most pronounced C. displacements". How much of the total variance did these two components capture? The authors write the changes mostly concern loop C and loop F, but which data proves this? e.g. A plot of PC1 and PC2 over residue number might help.

      The PCA analyses have been enriched. Figure 3-Source Data 1. shows the dominance of PC1 and PC2. Because the binding energy match was sufficient to identify affinity states, we did not explore additional PCs. Residue-wise PC1 and PC2 analysis and comparison with RMSF are in Figure 2-figure supplement 2. PC1 and PC2 both correlate with fluctuations in loops C and F. Overlap analysis in different runs is shown in Figure 3-figure supplement 1. Lower variance in a particular region of the PCA landscape indicates that the system frequently visits these states, suggesting stability (a preference for these conformations).

      The authors map the -kTln rho as a free energy for each simulation as a function of PC1 & PC2. It is important to reveal how well that PC1-2 space was sampled, and how those maps converged over time. The shapes of the maps and the relative depths of the wells look very different for each agonist. If the maps were sampled well and converged, the free energies themselves would tell us the stabilities of each state. Instead, the authors do not even mention this and instead talk about "variance" being the indicator of stability, stating that m3 is most stable in all cases. While I can believe 200ns could not converge a PC1-2 map and that meaningful delta G values might not be obtained from them, the issue of lack of sampling must be dealt with. On page 12 they write "Although the bottom of the well for 3 energy minima from PCA represent the most stable overall conformation of the protein, they do not convey direct information regarding agonist stability or orientation". The reasons why not must be explained; as they should do just that if the two order parameters PC1 and PC2 captured the slowest degrees of freedom for binding and sampling was sufficient. The authors write that "For all agonists and trajectories, m3 had the least variance (was most stable), again supporting convergence by 200 ns." Again the issue of actual free energy values in the maps needs to be dealt with. The probabilities expressed as -kTln rho in kcal/mol might suggest that m2 is the most stable. Instead, the authors base stability only on variance (I guess breadth of the well?), where m3 may be more localised in the chosen PC space, despite apparently having less preference during the MD (not the lowest free energy in the maps).

      The motivations and justifications for the use of approximate PBSA energetics instead of atomistic MD free energies should be dealt with in the manuscript, with limitations more clearly discussed. Rather than using modern all-atom MD free energy methods for relative or absolute binding free energies, the author selects clusters from their identified states and does Poisson-Boltzmann estimates (electrostatic, vdW, surface area, vibrational entropy). I do believe the following sentence does not begin to deal with the limitations of that method: "there are limitations with regard to MM-PBSA accurately predicting absolute binding free energies (Genheden & Ryde, 2015; Hou et al., 2011) that depends on the parameterization of the ligand (Oostenbrink et al., 2004)." What are the assumptions and limitations in taking continuum electrostatics (presumably with parameters for dielectric constants and their assignments to regions after discarding solvent), surface area (with its assumptions and limitations), and of course assuming vibration of a normal mode can capture entropy. On page 30, regarding their vibrational entropy estimate, they write that the "entropy term provides insights into the disorder within the system, as well as how this disorder changes during the binding process". It is important that the extent of disorder captured by the vibrational estimate be discussed, as it is not obvious that it has captured entropy involving multiple minima on the system's true 3N-dimensional energy surface, and especially the contribution from solvent disorder in bound Vs dissociated states.

      As discussed above, errors in the free energy estimates need to be more faithfully represented, as fractional errors are not meaningful. On page 21 the authors write "The match improved when free energy ratios rather than absolute values were compared." But a ratio of free energies is not a typical or expected measure of error in delta G. They also write "For ACh and CCh, there is good agreement between.Gm1 and GLA and between.Gm3 and GHA. For these agonists, in silico values overestimated experimental ones only by ~8% and ~25%. The agreement was not as good for the other 2 agonists, as calculated values overestimated experimental ones by ~45%(Ebt) and ~130% (Ebt). However, the fractional overestimation was approximately the same for GLA and GHA." See the above comment on how this may misrepresent the error. On page 21 they write, in relation to their large fractional errors, that they "do not know the origin of this factor but speculate that it could be caused by errors in ligand parameterization". However the estimates from the PBSA approach are, by design, only approximate. Both errors in parameterisation (and their likely origin) and the approximate model used, need discussion.

      Again, the goal of calculating binding free energy was to identify structural correspondence to LA and HA and not to obtain absolute binding free energy values. Along with the least variance (distribution) for the principle component for m3, it also had the highest binding free energy. An association of m1 to LA and m3 to HA was done after comparing them to experimental values (efficiencies). This comparison not only validates our approach but also underscores the utility of PBSA in supplementing MD and PCA analyses with broader energetics perspectives.

      Reviewer #3 (Public Review):

      Weaknesses:

      Although the match in simulated vs experimental energies for two ligands was very good, the calculated energies for two other ligands were significantly different than the experiment. It is unclear to what extent the choice of method for the energy calculations influenced the results. See above.

      A control simulation, such as for an apo site, is lacking. Figure 2-figure supplement 2. shows the results of 200 ns MD simulations of the apo structure (n=2).

      Reviewer #4 (Public Review):

      Weaknesses:

      Timescales (200 ns) do not capture global rearrangements of the extracellular domain, let alone gating transitions of the channel pore, though this work may provide a launching point for more extended simulations. A more general concern is the reproducibility of the simulations, and how representative states are defined. It is not clear whether replicates were included in principal component analysis or subsequent binding energy calculations, nor how simulation intervals were associated with specific states.

      We are interested eventually in using MD to study the full isomerization, but these investigations are for the future and likely will involve full length pentamers and longer timescales. However, in response to this query we have in the Discussion raised this issue and offer speculations. See above, PCA has be compared between replicates (Figure 3-figure supplement 1).

      Structural analysis largely focuses on snapshots, with limited direct evidence of consistency across replicates or clusters. Figure legends and tables could be clarified.

      Snapshots and distance measurements (Figure 6-table supplement 1) were extracted from m1, m2 and m3 plateau regions of trajectories. Incorporated in the legend.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      This study gives interesting insights into the possible dynamics of ligand binding in ACh receptors and establishes some prerequisites for necessary and urgent further work. The broad interest in this receptor class means this work will have some reach.

      Suggestions:

      (1) I found the citation of relevant literature to be rather limited. In the following paper, the agonist glutamate was shown to bind in two different orientations, and also to convert. These are much longer simulations than what is presented here (nearly 50 µs), which allowed a richer view of conformational changes and ligand binding dynamics in the AMPA Receptor. Albert Lau has published similar work on NMDA, delta, and kainate receptors, including some of it in eLife. Perhaps the authors could draw some helpful comparisons with this work.

      Yu A et al. (2018) Neurotransmitter Funneling Optimizes Glutamate Receptor Kinetics. Neuron

      Likewise, the comparison to a similar piece of work on glycine receptors (not cited, https://pubs.acs.org/doi/10.1021/bi500815f) could be instructive. Several similar computational techniques were used, and interactions observed (in the simulations) between the agonist and the receptor were tested in the context of wet experiments. In the absence of an equivalent process in this paper (no findings were tested using an orthogonal approach, only compared against known results, from perhaps a narrow spectrum of papers), we have to view the major findings of the paper (docking in cis that leads to a ligand somersault) with some hesitancy.

      The Gharpure 2019 paper is cited in the context of the delta subunit but this paper was about a3b4 neuronal nicotinic receptors. This could be tidied up. Also, the simulations from that paper could be used as an index of the stability of the HA state (if ligand orientation is being cited as transferrable, other observations could be too).

      New citations have been added. It is difficult to generalize from Yu A and Yu R eta al, because in neither study was the ligand orientation associated with LA versus HA binding energy.

      (2) "To start, we associated the agonist orientation in the hold end states as cis in AC-LA versus trans in AC-HA."

      I think this a valid start, but one is left with the feeling that this is all we have and the validity of the starting state is not tested. What was really shown here? Is the docking reliable? What evidence can the authors summon for the ligand orientation that they use as a starting structure? In addition to docking energies, the match between PBSA and electrophysiology Gs and temporal sequence (m1-m2-m3) support the assignment.

      Given that these simulations cover a circumscribed part of the binding process, I think the limitations should be acknowledged. Indeed the authors do mention a number of remaining open questions.

      Paragraphs regarding 'catch' have been added to the Discussion.

      (3) Results around line 90. Hypothetical structures and states that were determined from Markov analyses are discussed as if they are well understood and identified. Plausible though these are, I think the text should underline at least the source of such information. In these simulations, a further intermediate has been identified.

      The model in Figure 1B was first published in 2012 and has been used and extended over the intervening years. In our lab, catch-and-hold is standard. We have published many papers (in top journals), plus reviews, regarding this scheme. We made presentations that are on Youtube. Here, at the end of the Introduction we now cite a new review article (Biophysical Journal, 2024). I am not sure what more we can do to raise awareness regarding catch and hold.

      (4) The figures are dense and could be better organised. Figure 2 is key but has a muddled organization. The placement of the panel label (C) makes it look like the top row (0 ns) is part of (A). Panel B- what is shown in the oval inset (not labeled or in legend). Why not show more than one view, perhaps a sequence of time points? It is confusing to change the colour of the loops in (C). Please show the individual values in D.

      Figure 2 has been redone.

      (5) A lot is made of the aK145 salt bridge with aD200 and the distances - but I didn't see any measurements, or time course. This part is vague to the point of having no meaning ("bridge tightening").

      We present a Table of distance measurements in the SI (Figure 6-table supplement 1).

      Reviewer #2 (Recommendations For The Authors):

      All main comments have been given in the above review. There are a few other minor comments below.

      The 4 agonists examined were acetylcholine (ACh), carbamylcholine (CCh), epibatidine (Ebt), and epiboxidine (Ebx). Could the choices be motivated for the reader?

      New in Methods: the agonists are about the same size yet represent different efficiency classes (citation to companion eLife paper). One of our (unmet) objectives was to understand the structural correlates of agonist efficiency.

      The authors write that state structures generated in the MD simulation were identified by aligning free energy values with those from experiments. It would be good to explain to the reader, in the introduction, how LA and HA free energies were extracted from experiments, rather than relying on them to read older papers.

      In the Introduction, we say that to get G, just measure an equilibrium constant and take the log. We think it is excessive to explain in detail in this paper how to measure the equilibrium binding constants (several methods suffice). However, we have added in Methods our basic approach: measure KLA and L2 by using electrophysiology, and compute KHA from the thermodynamic cycle using L0. We think this paper is best understood in the context of its companion, also in eLife.

      In all equilibrium equations of the type A to B (e.g. on page 5), rather than using "=" signs it would be much better to use equilibrium reversible arrow symbols.

      It is incorporated.

      Reviewer #3 (Recommendations For The Authors):

      (1) Although the match in simulated vs experimental energies for two ligands was very good, the calculated energies for Ebt and Ebx were significantly different than the experiment. Are there any alternative methods for calculating binding energies from the MD simulations that could be readily compared to?

      See above. We did not use more sophisticated energy calculations because we already knew the answers. Our objective was to identify states, not to calculate energies.

      (2) It would be nice to see control simulations of an apo site to ensure that the conformational changes during the MD are due to the ligands and not an artifact of the way the system is set up. I am primarily asking about this as the simulation of the isolated ECDs for the binding site interface seems like it may be unhappy without the neighboring domains that would normally surround it. On that note, was the protein constrained in any way during the MD?

      Apo simulation results are presented in Figure 2-figure supplement 2. The dimer interface seems to be adequate (stable).

      (3) Figure 4A-B: Should the colors for m1 and m3 be reversed?

      Colors have been changed and a bar chart has been added.

      Reviewer #4 (Recommendations For The Authors):

      (1) Although simulations are commendably run in triplicate, it is difficult in some places to discern their consistency.

      (1a) Table S1 provides important quantification of deviations in different replicates and with different agonists. Please confirm that the reported values are accurate. All values reported for the epibatidine system are identical to those reported for carbamylcholine, which seems statistically improbable. Similarly, runs 1 and 3 with epiboxidine seem identical to one another, and runs 1 and 2 with acetylcholine are nearly the same.

      Figure 2-Source Data 1 has been corrected.

      (1b) In reference to Figure S3, the authors comment that the simulated system (one replicate with carbamylcholine) converges within 0.5 Å RMSD of a desensitized experimental structure. This seems amazing; please specify over what atoms this deviation was calculated and with reference to what alignment. It would be interesting to know the reproducibility of this remarkable convergence in additional replicates or with other ligands; for example, Figure 5 indicates that loop C transitions to a lesser extent in the context of epibatidine than other agonists.

      The comparison was for the entire dimer ECD; 0.5 Å is the result. It may be worthwhile to pursue this remarkable convergence, but not in this paper. Here, we are concerned with identifying ACLA and ACHA. Similarity between ACHA and AD structures is for a different study.

      (1c) For principal-component and subsequent analyses, it appears that only one trajectory was considered for each system. Please clarify whether this is the case; if so, a rationale for the selection would be helpful, and some indication of how reproducible other replicates are expected to be.

      We have added new PCA results (Results, Figure 3-figure supplement 1) that show comparable principal components in other replicates.

      (2) Figure 3 shows free energy landscapes defined by principal components of fluctuation in Cα positions.

      (2a) Do experimental structures (e.g. PDB IDs 6UWZ, 7QL6u) project onto any of these landscapes in informative ways?

      6UWZ.pdb matches well with the apo (7QKO.pdb), comparable to m1, and 7QL6.pdb with the m3.

      (2b) Please indicate the meaning of colored regions in the righthand panels.

      The color panels in the top left panel indicate the colored regions in the righthand panel also, which is indicative of direction and magnitude of changes with PC1 and PC2.

      (2c) Please also check the legend; do the porcupine plots really "indicate the direction and magnitude of changes between PC1 and PC2," or rather between negative and positive values of each principal component?

      It indicates the direction and magnitude of changes with PC1 and PC2.

      (3) It would be helpful to clarify how trajectory segments were assigned to specific minima, particularly m2 and m3.

      (3a) Please verify the timeframes associated with the m2 minima, reported as "20-50 ns [with acetylcholine], 50-60 ns [with carbamylcholine], 60-100 ns [with epibatidine, and] 100-120 ns [with epiboxidine]." It seems improbable that these intervals would interleave so precisely in independent systems. Furthermore, the intervals associated with acetylcholine and epiboxidine do not appear to correspond to the m2 regions indicated in Figure S8.

      Times are given in Figure 4-Source Data 1 and Figure 3-figure supplement 2. The m2 classification is based on loop displacement as well as agonist orientation. For all agonists, the selection was strictly from PCA and cluster analysis.

      (3b) The text (and legend to Figure 3) indicate that 180+ ns of each trajectory was assigned to m3, which seems surprisingly consistent. However, Figure S5 indicates this minimum is more variable, appearing at 160 ns with acetylcholine but at 186 ns with carbamylcholine. Please clarify.

      see above: the selection was from PCA and cluster analysis. Times are in Figure 3-figure supplement 2 and also in Figure 4-Source Data 1 (none in Fig. 3 legend).

      (3c) Figures 5, 6, S6, and S7 illustrate structural features of free-energy minima in each ligand system. Please clarify what is shown, e.g. a representative snapshot, centroid, or average structure from a particular prominent cluster associated with a given minimum.

      They are all representative snapshots (now in Methods). Snapshots and distance measurements (Figure 6-table supplement 1) were extracted from m1, m2 and m3 plateau regions of trajectories.

      (4) Figure S4 helpfully shows the behavior of a pentameric control system; however, some elements are unclear.

      (4a) The 2.5-6.5 Å jump in RMSD at ~40 ns seems abrupt; can it be clarified whether this corresponds to a transition to either m2 or m3 poses, or to another feature of e.g. alignment?

      Figure 2-figure supplement 4 left bottom is just the ligand. The jump is the flip, m1 to m2.

      (4b) It seems difficult to reconcile the apparently bimodal distribution of states with the proposed 3-state model. Into which RMSD peak would the m2 intermediate fall?

      The simulations are only to 100 ns, where we found a complete flip of the agonist represented in the histograms. This confirmed that dimer showed similar pattern as the pentamer. In depth analysis was only done only on dimers.

      (4c) The top panel is labeled "Com" with a graphical legend indicating "ACh." Does this indicate the ligand or, as described in the text legend, "the pentamer" (i.e. the receptor)? For both panels, please verify whether they are calculated on the basis of center-of-mass, heavy atoms, Cα, etc.

      "Com" (for complex) has been changed to system (protein+ligand).

      (5) Minor concerns:

      (5a) In Figures 1 and S3, correct the PDB references (6UWX and 7QL7 are not nAChRs).

      They are now corrected.

      (5b) In Figure 4, do all panels represent mean {plus minus} standard deviation calculated across all cluster-frames reported in Table 1?

      Yes.

      Also check the graphical legend in panel A: presumably the red bars correspond to m1/LA, and the blue to m3/HA?

      Corrected

      (5c) In the legend to Figure S1, please clarify that panel B is reproduced from Indurthi & Auerbach 2023.

      This figure has been deleted.

      (5d) As indicated in Figure S2, it seems surprising that the RMSF is so apparently low at the periphery, where the subunits should contact neighbors in the extracellular domain; how might the authors account for this? Specify whether these results apply to all replicates of each system.

      The redness in the periphery for all four systems indicates the magnitude of fluctuation. As we focus on the orthosteric site, we highlight the loops around the agonist binding pocket and kept other regions 75% transparent. We now include Apo simulations and the dimer appears to be stable even without an agonist present.

      (5e) Within each minimum in Figure S5, three "prominent" clusters appear to be colored (by heteroatom) with carbons in cyan, pink, and yellow respectively. If this is correct, note these colors in the text legend.

      Colors have been added to the legend.

      (5f) In Figure S6, note in the legend that key receptor sidechains are shown as spheres, with the ligand as balls-and-sticks, and that ligand conformations in both low- and high-affinity complexes are shown in both receptor states for comparison.

      This is now added in the legend.

      (5g) The legend to Figure S6 also notes "The agonists are as in Fig S4," but that figure contains a single replicate of a different system; please check this reference.

      This has been updated to Figure 5.

      (5h) In Figure S8, the colors in the epibatidine system appear different from the others.

      The colors are the same for m1, m2 and m3 in all systems including epibatidine.

      (5i) In Table 1, does "n clusters" indicate the number of simulation frames included in the three prominent clusters chosen for MM-PBSA analysis? Perhaps "n frames" would be more clear.

      It was a good suggestion. It has now been changed to ‘n frames’

      (5j) Pg 24-ln 453 presumably should read "...that separate it from m1 and m3..."

      This sentence is now changed in the discussion.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Thank you and the two reviewers for the thorough review of our manuscript. We thank you very much for the positive evaluation of our manuscript and your encouragement to continue in this fascinating topic. In this version we made minor changes in the text to address the comments and suggestion of the second reviewer and increase the clarity of the text.

      Reviewer #2 Recommendation to the authors

      We thank the reviewer for the sharp comments that help us improve the clarity of the paper. Below we list the changes we made to correct and revise the paper in accordance to the reviewer’s comments.

      (1) Line 90. Isn't the genus Paracentrotus?

      Yet it is, thank you. We corrected the typo.

      (2) Figure 1 and supplementary figure 2. To this reviewer supplementary Figure 2 doesn't really help the story as written in the paragraph from line 96-110. You want to report expression of ROCK in skeletogenic cells. You do that quite well in Figure 1. Since Fig. S2 reports whole embryo expression of ROCK when only 5% of the cells in the embryo are the subject of interest here, and the Axitinib is selective, presumably for skeletogenic cells, the relative lack of effect in Fig. S2 is not surprising and again, doesn't really help the theme you wish to establish by focusing on the role of ROCK in skeletogenic cells over time. If anything, the data reported in Fig. S2 shows that perturbation of VEGF signaling has very little effect embryo-wide, while Fig. 1 shows that perturbation of VEGF signaling has a noticeable effect on ROCK expression in skeletogenic cells. If you choose to keep Fig. S2, I recommend that you indicate that embryo-wide vs skeletogenic cell difference more succinctly than given at present. It will also strengthen your paragraph in lines 110-127.

      The importance of the western blot presented in Fig. S2 is to validate that the antibody recognizes a protein of the expected size. This strengthen the credibility of this commercial antibody to detect the sea urchin ROCK protein. We agree with the reviewer that the fact that the skeletogenic cells are less than 5% of the embryonic cells is important to explain why we didn’t see an affect of VEGFR inhibition in the western blot, and we changed the text to express it (lines 108-111): “Yet, this measurement was done on proteins extracted from whole embryos, of which the skeletogenic cells, where VEGFR is active, are less than 5% of the total cell mass (42). We therefore wanted to study the spatial expression of ROCK and specifically, its regulation in the skeletogenic cells.”

      (3) Comparison of Fig. 2 and Fig. S3. To me the reader is confused when Fig. S3 is 33hpf as reported in the text (but not in the figure legend), and Fig. 2 shows 2 day old embryos - on the figure and figure legend but not in the text. So, the reader sees the text indicating 33hpf and looks around and the figure 2 says 2dpf. Does that mean 33hpf = 2dpf, the reader is thinking. To clarify, I suggest including the 2dpf in the text or simply drop the time in the text and report it in the two figures. Further, in the middle of the paragraph 130-143 you switch from reporting on Fig.S3 to Fig. 2, yet the reader doesn't know that. The reader is still looking at Fig. S3. The problem here is that at 33hpf the skeleton doesn't yet show the reduction or abnormalities that are shown later at 2dpf in Fig. 2. In clarifying this paragraph both the reduction in ROCK expression and the subsequent alterations in growth and patterning of the skeleton will be clear to the reader.

      Thank you for raising this point. We added in the caption of Fig. S3 that the measurements were done in 33hpf. We also added in the text, that the observations of the skeletogenic phenotypes were done at 2dpf (48hpf). We made a break between the first paragraph discussing Fig. S3 and the paragraph discussing Fig. 2.

      (4) The experiment with Y27632, an inhibitor of ROCK, is significantly improved in this revision. The concern earlier was the possibility that at the concentration used there might be off-target effects since other kinases are affected by higher concentrations of this selective inhibitor. The authors have modified this component of the paper and performed experiments at lower concentrations where other reports indicate the inhibitor is highly selective for ROCK, and they still demonstrate an inhibition of skeletal production. This, plus the added citations greatly increases confidence that this inhibition is selective for ROCK, thus enabling a stronger conclusion that ROCK has a role in skeletal growth and patterning.

      Thank you for asking us to test this lower concentration which improved the credibility of our findings.

      Line 239 - should be: indicating instead of indicting We corrected that.

      (5) Line 402-403."The first step in generating the sea urchin spicules is the construction of the spicule cavity, a membrane filled with calcium carbonate and coated with F-actin (Fig. 8A)". I suggest more precise language. The way this now reads (above) is that somehow the spicule cavity is a membrane and that membrane is filled with CaCO3. And further the membrane is coated with F-actin. Isn't the spicule cavity what is filled with CaCO3? And isn't that cavity surrounded by a membrane? And the F-actin must be in the cortex of the cell since there is very little cytoplasm associated with the pseudopodial extensions that surround the spicule.

      We change this sentence to: “The first step in generating the sea urchin spicules is the construction of the spicule cavity where the mineral is engulfed in a membrane coated with F-actin” (lines 403-404). Our observations show that F-actin is enriched around the spicule cavity. It could be an extension of the cell cortex, but we did not prove it, so we prefer to simply describe what we saw.

      Line 405-408. Thank you for putting in this unknown. It is important to point out that while you've shown that ROCK contributes to regulation of actomyosin, it is not clear whether this is direct or indirect. You have also shown that ROCK somehow contributes to regulation of the GRN that leads to skeletogenesis. Thus, your data are consistent in showing that ROCK perturbation cripples normal skeletogenesis both via morpholino and with a selective inhibitor. Your last part of the discussion then offers speculation as to what might be affected specifically. That discussion sets the stage for digging even deeper to identify specific targets of ROCK activity.

      Thank you, we agree with you that there is an exciting road ahead of us!

    1. Author Response

      Reviewer #1 (Public Review):

      Weaknesses:

      The manuscript needs proper editing and is not complete. Some wordings lack precision and make it difficult to follow (e.g. line 98 "we assembled a chromosome-scale genome of ..." should read instead "we assembled a chromsome-scla genome sequence of ...". Also, panel Figure 2E is missing.

      We will make the suggested change of adding “sequence”. Concerning additional changes, we have carefully edited our manuscript and looked for any incomplete sections. Unfortunately, it is difficult to see what other issues are being raised here without any further information. And the example given is not helpful to ascertain what other changes may be necessary, since we cannot see any problem with the sentence “we assembled a chromosome-scale genome of” as this phrase is widely used in many similar publications.

      As for panel E of figure 2, it is not missing. The panel located to the right, just below “Target Cells”.

      The shortcomings of the manuscripts are not limited to the writing style, and important technical and technological information is missing or not clear enough, thereby preventing a proper evaluation of the resolution of the genomic resources provided:

      • Several RNASeq libraries from different tissues have been built to help annotate the genome and identify transcribed regions. This is fine. But all along the manuscript, gene expression changes are summarized into a single panel where it is not clear at all which tissue this comes from (whole embryo or a specific tissue ?), or whether it is a cumulative expression level computed across several tissues (and how it was computed) etc. This is essential information needed for data interpretation.

      No fertilised eggs or embryos have been sequenced, individual tissues derived from juvenile fish were used for the genome annotation and whole larval fish for the developmental analysis. We will specify in the figures and text that the results shown are from whole larvae, and add more detail to the material and methods section about which type of sample was analysed in which way.

      • The bioinformatic processing, especially of the assemble and annotation, is very poorly described. This is also a sensitive topic, as illustrated by the numerous "assemblathon" and "annotathon" initiatives to evaluate tools and workflows. Importantly, providing configuration files and in-depth description of workflows and parameter settings is highly recommended. This can be made available through data store services and documents even benefit from DOIs. This provides others with more information to evaluate the resolution of this work. No doubt that it is well done,but especially in the field of genome assembly and annotation, high resolution is VERY cost and time-intensive. Not surprisingly, most projects are conditioned by trade-offs between cost, time, and labor. The authors should provide others with the information needed to evaluate this.

      We will upload the code used to assemble and annotate this genome to a public repository or add it to the supplementary material.

      The genome assembly did not use a specific workflow (e.g., nextflow), but was done with a simple command and standard parameters in IPA. Scaffolding was carried out by Phase Genomics using their standardised proprietary workflow, of which a detailed description provided by Phase Genomics can be found in the supplementary material. The annotation workflow has been described in a previous publication already, but an in-depth description can also be found in the Material and methods section, including parameters used for specific steps. The RNA-seq mapping and analysis part has also been described in the Material and Methods section, including parameters and models for DESEq2.

      • Quantifications of T3 and T4 levels look fairly low and not so convincing. The work would clearly benefit from a discussion about why the signal is so low and what are the current technological limitations of these quantifications. This would really help (general) readers.

      We will add a comment on this in the manuscript as suggested. Basically, the T3/T4 levels are consistent with other published work in fish. In the present manuscript for grouper we have a peak level of 1.2 ng/g (1,200 pg/g) of T4 and 0.06 ng/g (60 pg/g) of T3. This is a higher level of T4 and comparable level of T3 to what was found in convict tang (Holzer et al. 2017; Figure 2) with 30 pg/g of T4 and 100 pg/g of T3. Of course, there are also examples with higher levels, such as clownfish (Roux et al. 2023; Figure 1), with 10 ng/g (10,000 pg/g) of T4 and 2 ng/g (2,000 pg/g) of T3.

      The differences could be due to different structure of fish tissues and therefore different hormone extraction efficiency, different hormone measurement protocols, different fish physiology, different fish size (e.g., the weighting of tiny grouper larvae is difficult and less precise than in convict tang). What is important is not the absolute level but the relative level, which shows the change within different larval stages of a species with identical extraction and measurement protocols. Which means our data is internally consistent and coherent with what the grouper literature says.

      Holzer, Guillaume, et al. "Fish larval recruitment to reefs is a thyroid hormone-mediated metamorphosis sensitive to the pesticide chlorpyrifos." Elife 6 (2017): e27595.

      Roux, Natacha, et al. "The multi-level regulation of clownfish metamorphosis by thyroid hormones." Cell Reports 42.7 (2023).

      • Differential analysis highlights up to ~ 15,000 differentially expressed genes (DEG), out of a predicted 26k genes. This corresponds to more than half of all genes. ANOVA-based differential analysis relies on the simple fact that only a minority of genes are DEG. Having >50% DEG is well beyond the validity of the method. This should be addressed, or at least discussed.

      As the reviewer notes, there are a large number of differentially expressed genes due to the fact that this is coming from a larval developmental transcriptome going from one day old larva to fully metamorphosed juveniles at around day 60.

      While DESeq2 indeed works on an assumption that most genes are not differentially expressed, this affects normalization but not hypothesis testing (Wald-test, LRT tests or ANOVA). Normalisation in DESeq2 is fairly robust to this assumption. According to the author of DESeq2, Micheal Love, DESeq2 is using the median ratio for normalisation, and as long as the number of up and down regulated genes is relatively even, DESeq2 will be able to handle the data. As part of our general quality control for this project we consulted the MA plots, which do not show any overrepresented up or down expression patterns. Additionally see Michael Love comment on comparing different tissues, which is also applicable here when comparing vastly different larval stages (https://support.bioconductor.org/p/63630/): “For experiments where all genes increase in expression across conditions, the median ratio method will not be able to capture this difference, but this is typically not the case for a tissue comparison, as there are many "housekeeping" genes with relatively similar expression pattern across tissues.”

      Reviewer #3 (Public Review):

      Weaknesses:

      However, the authors make substantial considerations that are not proven by experimental or functional data. In fact, this is a descriptive study that does not provide any functional evidence to support the claims made.

      We agree with the reviewer that our paper lacks functional experiments but despite that, the transcriptomic data clearly show the activation of TH and corticoid pathways during two distinct periods; an early activation between D1 and D10, and a second one between D32 and juvenile stage. These data are interesting as they call for further examination of 1) the possible interaction of corticoids and TH during metamorphosis, a question that is certainly not settled yet in teleost fishes, and 2) the existence of an early larval developmental step also involving TH and corticosteroids.

      Especially 2) is of interest and importance, since this early activation (unique to our knowledge in any teleost fish studied so far) raises a lot of new questions and once again will certainly be scrutinised by other groups in the years to come, therefore ensuring a good citation impact of our study. We hope that the reviewer, while disagreeing with some our statements, will recognize that our study will be stimulating at that level and that this is what scientific studies should do.

      The consideration that cortisol is involved in metamorphosis in teleosts has never been shown, and the only example cited by the authors (REF 20) clearly states that cortisol alone does not induce flatfish metamorphosis. In that work, the authors clearly state that in vivo cortisol treatment had no synergistic effect with TH in inducing metamorphosis. Moreover, in Senegalensis, the sole pre-otic CRH neuron number decreases during metamorphosis, further arguing that, at least in flatfish, cortisol is not involved in flatfish metamorphosis (PMID: 25575457).

      We will do our best to improve the clarity of the revised manuscript to avoid any misunderstanding about our claims. However, we would like to point out the semantic shift in the reviewer first sentence: Indeed “being involved” is not the same as “cortisol alone does not induce”. In ref 20 the authors explicitly wrote that “Cortisol further enhanced the effects of both T4 and T3, but was ineffective in the absence of thyroid hormones” and in our view this indeed corresponds to ”being involved in metamorphosis”.

      We are not claiming that cortisol alone is involved in metamorphosis as the reviewer suggests, but simply that there is a possible involvement of cortisol together with TH in metamorphosis. We stand on this claim as we indeed observed an activation of corticoid pathway genes around D32, which is sufficient to say it is involved. We do agree that functional experiments will be needed to properly demonstrate the involvement of corticoids in grouper metamorphosis, but this was not possible in the current study as it would imply to set up a full grouper life cycle in lab conditions which is impossible for the scope of this manuscript.

      We also mentioned in the discussion that the role of corticoids in fish larval development is still debated, and we agree that this remain a contentious issue.

      We wrote that “there is contrasting evidence of communication between these two pathways [TH and corticosteroids] in teleost fish with some data suggesting a synergic and other an antagonistic relationship. In terms of synergy, an increase in cortisol level concomitantly with an increase in TH levels has been observed in flatfish (ref 19), golden sea bream (ref 100) and silver sea bream (ref 101). Cortisol was also shown to enhance in vitro the action of TH on fin ray resorption (phenomenon occurring during flatfish metamorphosis) in flounder (ref 20). TH exposure increases MR and GR genes expression in zebrafish embryo (ref 55). It has also been shown that cortisol regulates local T3 bioavailability in the juvenile sole via regulation of deiodinase 2 in an organ-specific manner (ref 56) On the antagonistic side, it has been shown that experimentally induced hyperthyroidism in common carp, decreasing cortisol levels (ref 57), whereas cortisol exposure decreases TH levels in European eel (ref 58). Given this scattered evidence, the existence of a crosstalk active during teleost metamorphosis has never been formally demonstrated. The results we obtained in grouper are clearly indicating that HPI axis and cortisol synthesis are activated (i) during early development and (ii) during metamorphosis. This may suggest that in some aspect cortisol synthesis can work in concert with TH, as has been shown in several different contexts in amphibians (ref 17).” In the revised manuscript, we will also add the interesting case of the Senegal sole mentioned by the reviewer.

      In the last revision, we had also added that our results “brought a first insight into the potential role of corticoids in the metamorphosis of E. malabaricus and call for functional experiments directly testing a possible synergy” meaning that we clearly acknowledge that we are only revealing a hypothesis that remains to be tested. We later follow up with a discussion about the most novel observation and focus of our study, the increase in THs and cortisol during early development, which was unexpected and very intriguing. Again, these results suggest that there might be a link between the two, as has been shown in amphibians. This is typically the kind of results that should encourage more investigations into other fish species. Indeed, this has been pointed out by other authors and in particular by Bob Denver (probably the foremost expert on this topic) in Crespi and Denver 2012: “Elevation in HPA/I axis activity has been described prior to Metamorphosis in amphibians and fish, birth in mammals (reviewed in Crespi & Denver 2005a; Wada 2008)”. B. Denver also adds that: “Experiments in which GCs were elevated prior to metamorphosis or prior to hatching or birth (e.g. Weiss, Johnston & Moore 2007) or inhibited by treatments with GC synthesis blockers (e.g. metyrapone) or receptor antagonists (e.g. RU486, Glennemeir & Denver 2002) demonstrate that GCs play a causal role in precipitating these life-history transitions (also reviewed in Crespi & Denver 2005a; Wada 2008).” We believe the reviewer will be convinced by these elements coming from a colleague unanimously respected in the field.

      Furthermore, the authors need to recognise that the transcriptomic analysis is whole-body and that HPA axis genes are upregulated, which does not mean they are involved in regulating the HPT axis. The authors do not show that in thyrotrophs, any CRH receptor is expressed or in any other HPT axis-relevant cells and that changes in these genes correlate with changes in TSH expression. An in-situ hybridisation experiment showing co-expression on thyrotrophs of HPA genes and TSH could be a good start. However, the best scenario would be conducting cortisol treatment experiments to see if this hormone affects grouper metamorphosis.

      We agree that functional experiments are needed to validate our hypothesis. As the early peaks of expression levels observed for many genes were very intriguing for us, we did carry out thyroid hormones and goitrogenic treatment on young grouper larvae to test their effect on the morphological changes. Unfortunately, such experiments, already tricky on metamorphosing larvae, are even more risky on such tiny individuals just after hatching and we encountered high mortality rates. We must add that because we cannot establish a full grouper life cycle under lab conditions, we have done these experiment in the context of a commercial husbandry system in Japan, which while excellent limits the scope of possible experiments. We were thus not able to provide functional validation of our hypothesis. Such experiments will be a full project in itself, requiring setting up a rearing system suitable for both larval survival and economical constraints related to drug treatments. We were further limited by the spawning times of the grouper in the operational aquaculture farm, which are limited to a short time during each year. So even if we strongly agree with the necessity of conducting such experiments, we think that this is not in the scope of the present paper, but something future research can explore.

      High TSH and Tg levels usually parallel whole-body TH levels during teleost metamorphosis. However, in this study, high Tg expression levels are only achieved at the juvenile stage, whereas high TSH is achieved at D32, and at the juvenile stage, they are already at their lowest levels.

      This is exactly our point. We observe two peaks in TSH expression, one at D3 and one at D32. The peak at D3 coincides with high thyroid hormone levels on the same day, and while we have not measured TH at D32, existing literature shows that there is a peak in TH during that time (e.g., de Jesus et al., 1998). Similarly, there is a small peak of Tg at D3. Our manuscript focused more on the upregulation of these genes at D3, which has not been reported before in the literature and raised the question of the role of TH so early in the larval development, outside of the metamorphosis period.

      Regarding the respective levels of TSH and Tg, we first would like to add that their respective order of appearance before metamorphosis (TSH at D32, Tg after) is consistent with what we would expect. We agree however that the strong increase of Tg and TPO expression is later than expected. We will make this clear in the revised manuscript.

      It is very difficult to conclude anything with the TH and cortisol levels measurements. The authors only measured up until D10, whereas they argue that metamorphosis occurs at D32. In this way, these measurements could be more helpful if they focus on the correct developmental time. The data is irrelevant to their hypothesis.

      We respectfully disagree with the reviewer, considering that 1) TH levels have already been investigated in groupers coinciding with pigmentation changes and fin rays resorption, 2) that there is also evidence in numerous fish species that TH level increase is concomitant with increase of TH related genes, and 3) that we observed in our data an increase in the expression of TH related genes as well as pigmentation changes and fin rays resorption. Based on our experience in fish metamorphosis and the literature we can say confidently that those observations indicate that metamorphosis is occurring between D32 and the juvenile stage. To reinforce our point, we plan to add a figure to the revised manuscript, which puts our data in the context of earlier studies done in grouper. This will clearly show that our inference is correct. Additionally, we would like to point out that from our experience in several fish species transcriptomic data are more robust and precise than hormone measurements.

      However, as we were surprised by the activation of TH and corticoid pathway genes very early in the larval development (at D3), which is clearly outside of the metamorphosis period, we decided to measure TH and cortisol levels during this period of time to determine if whether or not there this surprising early activation was indeed corresponding to an increase in both TH and cortisol. As such observation has never been made in other teleost species (to our knowledge), and as we were wondering if gene activation was accompanied by hormonal increase, the measurements we did for TH and cortisol between D1 and D10 are relevant. We will make sure to improve the clarity of the revised version of the manuscript to avoid any confusion between the two periods we are studying: early larval development (between D1 and D10) and metamorphosis (between D32 and juvenile stage).

      Moreover, as stated in the previous review, a classical sign of teleost metamorphosis is the upregulation of TSHb and Tg, which does not occur at D32 therefore, it is very hard for me to accept that this is the metamorphic stage. With the lack of TH measurements, I cannot agree with the authors. I think this has to be toned down and made clear in the manuscript that D32 might be a putative metamorphic climax but that several aspects of biology work against it. Moreover, in D10, the authors show the highest cortisol level and lowest T4 and T3 levels. These observations are irreconcilable, with cortisol enhancing or participating in TH-driven metamorphosis.

      We thank the reviewer for this comment, but we think that there might be a misunderstanding here.

      (1) We clearly observed an increase of TSHb (that occurs between D18 and juvenile stage) and an increase of tg from D32 which coincide with the activation of other genes involved in TH pathway (dio2, dio3, and also a strong increase of TRb). All this and put in the context of what we know from previous grouper studies, clearly supports our conclusion that TH-regulated metamorphosis is starting at around D32 in grouper. We also observed morphological changes such as fin rays resorption and pigmentation changes between D32 and juvenile stage. Such morphological changes have already been associated as corresponding to metamorphosis in groupers (De Jesus et al 1998) as they occur during TH level increase, and they also happen to be under the control of TH in grouper (De Jesus et al 1998). Based on this study but also on studies (conducted on many other teleost species) showing that the increase of TH levels is always associated with an activation of TH pathway genes and morphological and pigmentation changes we concluded that metamorphosis of E. malabaricus occurs between D32 and juvenile stage. We will improve the clarity of the manuscript to make sure that our conclusion is based on our transcriptomic and morphological data plus the available literature.

      (2) We clearly observed another activation of TH related gene earlier in the development (between D1 and D10, with a surge of trhrs, tg and tpo at D3. As this activation was very unexpected for us, we decided to focus the analysis of TH levels between D1 and D10 and very interestingly we observed high level of T4 at D3 indicating that THs are instrumental very precociously in the larval development of the malabar grouper which has never been shown before. We declared line 195 that our “data reinforce the existence of two distinct periods of TH signalling activity, one early on at D3 and one late corresponding to classic metamorphosis at D32”. However, we agree that we could have been clearer and clearly explained that this early activation was very intriguing for us and that we wanted to investigate hormonal levels around that period. However, we never claimed anywhere in the manuscript that this early developmental period corresponds to metamorphosis. Something else is occurring and both TH and cortisol seem to be involved but further experiments need to be conducted to understand their role and their possible interaction.

      (3) Finally, regarding the comment about cortisol enhancing or participating in TH driven metamorphosis, our data clearly showed an activation of the corticoid pathway genes around metamorphosis (between D32 and juvenile stage) suggesting a potential implication of corticoids in metamorphosis, but we agree with the reviewer that further experiment are needed to test that. We never claimed that cortisol was enhancing or participating in metamorphosis, on the contrary we are “suggesting a possible interaction between TH and corticoid pathway during metamorphosis”. And we also say that our “results brought a first insight into the potential role of corticoids in the metamorphosis of E. malabaricus and call for functional experiments directly testing a possible synergy.” Nonetheless, we agree that some parts of our manuscript can be confusing in regards of cortisol synthesis during metamorphosis as we did not measure cortisol levels between D32 and juvenile stage. We will correct this in the revised version.

      Given this, the authors should quantify whole-body TH levels throughout the entire developmental window considered to determine where the peak is observed and how it correlates with the other hormonal genes/systems in the analysis.

      We did not measure TH levels at later stages as it has already been measured during Epinephelus coioides metamorphosis and the morphological changes observed in this species around the TH peak corresponds to what we observed in Epinephelus malabaricus around the peak of expression of TH pathway genes (see De Jesus et al., 1998 General and Comparative Endocrinology, 112:10-16). We are planning to add a figure reconciling all these data together. However, the main focus of this manuscript is the novel observation of the existence of an early activation period observed at D3, and for which we needed TH levels to determine if they were involved in another early developmental process (not related to metamorphosis). Our hypothesis is that this early activation might be related to the growth of fin rays necessary to enhance floatability during the oceanic larval dispersal. As we may have arrived at the explanation of this hypothesis too rapidly without setting up the context well enough, we will pay attention to improve that part too.

      Even though this is a solid technical paper and the data obtained is excellent, the conclusions drawn by the authors are not supported by their data, and at least hormonal levels should be present in parallel to the transcriptomic data. Furthermore, toning down some affirmations or even considering the different hypotheses available that are different from the ones suggested would be very positive.

      We thank the reviewer for acknowledging the solidity of the method of our paper and the quality of the results. We agree that there were several parts where our message is unclear, which we will address in the revised version of the manuscript to make sure there is no more confusion between the two distinct periods we studied in this paper (early larval development and metamorphosis). We will also make sure that our claims about TH/corticoids interaction during both periods remain hypothetical as we cannot yet, despite trials, sustain them with functional experiment.

    1. Author Response

      We provide here a provisional response to the Public Comments and main issues raised by the reviewers. We appreciate the opportunity to submit a revision and will give all of the reviewers’ comments careful consideration when modifying the manuscript.

      (1) BioRxiv version history.

      Reviewer 1 correctly noted that we have posted different versions of the paper on bioRxiv and that there were significant changes between the initial version and the one posted as part of the eLife preprint process. Here we provide a summary of that history.

      We initially posted a bioRxiv preprint in November, 2021 (Version 1) that included the results of two experiments. In Experiment 1, we compared conditions in which the stimulation frequency was at 2 kHz, 3.5 kHz, or 5.0 kHz. In Experiment 2, we replicated the 3.5 kHz condition of Experiment 1 and included two amplitude-modulated (AM) conditions, with a 3.5 kHz carrier signal modulated at 20 Hz or 140 Hz. Relative to the sham stimulation, non-modulated kTMP at 2 kHz and 3.5 kHz resulted in an increase in cortical excitability in Experiment 1. This effect was replicated in Experiment 2.

      In the original posting, we reported that there was an additional boost in excitability in the 20 Hz AM condition above that of the non-modulated condition. However, in re-examining the results, we recognized that the 20 Hz AM condition included an outlier that was pulling the group mean higher. We should have caught this outlier in the initial submission given that the resultant percent change for this individual is 3 standard deviations above the mean. Given the skew in the distribution, we also performed a log transform on the MEPs (which improves the normality and homoscedasticity of MEP distributions) and repeated the analysis. However, even here the participant’s results remained well outside the distribution. As such, we removed this participant and repeated all analyses. In this new analysis, there was no longer a significant difference between the 20 Hz AM and nonmodulated conditions in Experiment 2. Indeed, all three true stimulation conditions (nonmodulated, AM 20 Hz, AM 140 Hz) produced a similar boost in cortical excitability compared to sham. Thus, the results of Experiment 2 are consistent with those of Experiment 1, showing, in three new conditions, the efficacy of kHz stimulation on cortical excitability. But the results fail to provide evidence of an additional boost from amplitude modulation.

      We posted a second bioRxiv preprint in May, 2023 (Version 2) with the corrected results for Experiment 2, along with changes throughout the manuscript given the new analyses.

      Given the null results for the AM conditions, we decided to run a third experiment prior to submitting the work for publication. Here we used an alternative form of amplitude modulation (see Kasten et. al., NeuroImage 2018). In brief, we again observed a boost in cortical excitability in from non-modulated kTMP at 3.5 kHz, but no additional effect of amplitude modulation. This work is included in the third bioRrxiv preprint (Version 3), the paper that was submitted and reviewed at eLife.

      (2) Statistical analysis.

      Reviewer 1 raised a concern with the statistical analyses performed on aggregate data across experiments. We recognize that this is atypical and was certainly not part of an a priori plan. Here we describe our goal with the analyses and the thought process that led us to combine the data across the experiments.

      Our overarching aim is to examine the effect of corticospinal excitability of different kTMP waveforms (carrier frequency and amplitude modulated frequency) matched at the same estimated cortical E-field (2 V/m). Our core comparison was of the active conditions relative to a sham condition (E-field = 0.01 V/m). We included the non-modulated 3.5 kHz condition in Experiments 2 and 3 to provide a baseline from which we could assess whether amplitude modulation produced a measurable difference from that observed with non-modulated stimulation. Thus, this non-modulated condition as well as the sham condition was repeated in all three experiments. This provided an opportunity to examine the effect of kTMP with a relatively large sample, as well as assess how well the effects replicate, and resulted in the strategy we have taken in reporting the results.

      As a first step, we present the data from the 3.5 kHz non-modulated and sham conditions (including the individual participant data) for all three experiments in Figure 4. We used a linear mixed effect model to examine if there was an effect of Experiment (Exps 1, 2, 3) and observed no significant difference within each condition. Given this, we opted to pool the data for the sham and 3.5 kHz non-modulated conditions across the three experiments. Once data were pooled, we examined the effect of the carrier frequency and amplitude modulated frequency of the kTMP waveform.

      (3) Carry-over effects

      As suggested by Reviewer 1, we will examine in the revision if there is a carry-over effect across sessions (for the most part, 2-day intervals between sessions). For this, we will compare MEP amplitude in baseline blocks (pre-kTMP) across the four experimental sessions.

      Reviewer 1 also commented that mixing the single- and paired-pulse protocols might have impacted the results. While our a priori focus was on the single-pulse results, we wanted to include multiple probes given the novelty of our stimulation method. Mixing single- and different paired-pulse protocols has been relatively common in the noninvasive brain stimulation literature (e.g., Nitsche 2005, Huang et al, 2005, López-Alonso 2014, Batsikadze et al 2013) and we are unaware of any reports suggested that mixed designs (single and paired) distort the picture compared to pure designs (single only).

      (4) Sensation and Blinding

      Reviewer 2 bought up concerns about the sham condition and blinding of kTMP stimulation. We do think that kTMP is nearly ideal for blinding. The amplifier does emit an audible tone (at least for individuals with normal hearing) when set to an intensity to produce a 2 V/m E-field. For this reason, the participants and the experimenter wore ear plugs. Moreover, we played a 3.5 kHz tone in all conditions, including the sham condition, which effectively masked the amplifier sound. We measured the participant’s subjective rating of annoyance, pain, and muscle twitches after each kTMP session (active and sham). Using a linear mixed effect model, we found no difference between active and sham for each of these ratings suggesting that sensation was similar for active and sham (Fig 8). This matches our experience that kHz stimulation in the range used here has no perceptible sensation induced by the coil. To blind the experimenters (and participants) we used a coding system in which the experimenter typed in a number that had been randomly paired to a stimulation condition that varied across participants in a manner unknown to the experimenter.

      Reviewer 1 asked why we did not explicitly ask participants if they thought they were in an active or sham condition. This would certainly be a useful question. However, we did not want to alert them of the presence of a sham condition, preferring to simply describe the study as one testing a new method of non-invasive brain stimulation. Thus, we opted to focus on their subjective ratings of annoyance, pain, and finger twitches after kTMP stimulation for each experimental session.

    1. Author Response

      Provisional Response to Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      The work by Zeng et al. comprehensively explored the differences in the effects of leaf and soil microbes on the seed germination, seedling survival, and seedling growth of an invasive forb, Ageratina adenophora, and found evidence of stronger effects of leaf microbes on Ageratina compared with soil microbes, which were negative for seed germination and seedling survival but positive for seedling growth. By further DNA sequencing and fungal strain cultivation, the authors were able to identify some of the key microbial guilds that may facilitate such negative and positive feedback.

      Thank you very much for your assessment.

      Strengths:

      (1) The theoretic framework is well-established.

      (2) Relating the direction of plant-microbe feedback to certain microbial guilds is always hard, but the authors have done a great job of identifying and interpreting such relationships.

      Thank you very much for your assessment.

      Weaknesses:

      (1) In the G0 and G21 inoculation experiments, allelopathic effects from leaf litters had not been accounted for, while these two experiments happened to be the ones where negative feedback was detected.

      We did not directly test the allelopathic effects. However, our inoculation of sterile litter or soil indicated the potential allelopathic role in germination and seedling mortality. Interestingly, such allelopathic effects are elicited by leaf litter not by soil, which include delaying germination time (see Fig. 1a) and killing some seedlings (see Fig. 1c). Nonetheless, microbial effects are significantly more adverse than allelopathic (also see Fig. 1e). We will discuss this point in the resubmitted version.

      (2) The authors did not compare the fungal strains accumulated in dead seedlings to those accumulated in live seedlings to prove that the live seedlings indeed accumulated lower abundances of the strains that were identified to increase seedling mortality.

      Thanks for your concerns. We have not isolated fungi from healthy seedlings to make a comparative study. However, our team work previously found that the seedling-killing Allophoma strains obtained in this study had the same ITS genes as the leaf endophyte and leaf spot pathogen Allophoma associated with mature A. adenophora individual; some seedling-killing Alternaria also occur in healthy seedlings inoculated by leaf litter. We thus assumed that these seedling-killing fungi, e.g., Allophoma and Alternaria, likely exist in A. adenophora mature individual by a lifestyle switch from endophytic to pathogenic, and these fungi can kill seedling only at very early life stage of A. adenophora.

      Thus, we discussed this point as: “We did not isolate fungi from healthy seedlings in this study. However, a previous report revealed that the dominant genera in healthy seedlings inoculated with leaf litter were Didymella and Alternaria (Kai Fang et al., 2019). Based on these results, these fungal genera likely exist in A. adenophora by a lifestyle switch from endophytic to pathogenic. The virulence of these strains for seedling survival under certain conditions may play an essential role in limiting the population density of A. adenophora monocultures.” See Lines 416-435.

      Here, we also will consider adding more sentences to discuss your concerns in the resubmitted version as: “It is worth to explore the dynamic of these strains along with seedling development and to determine if these strains kill seedling only at very early stage.”

      (3) The data of seed germination and seedling mortality could have been analyzed in the same manner as that of seedling growth, which makes the whole result section more coherent. I don't understand why the authors had not calculated the response index (RI) for germination/mortality rate and conducted analyses on the correlation between these RIs with microbial compositions.

      Thanks so much. Response index (RI) was calculated as: (variablenon-sterile–variablesterile)/variablesterile)). Because mortality rates of some sterile groups were zero values, it is impossible to calculate their RIs. Relatively, microbes rarely affect seed germination time (GT) and rate (GR) (see Fig. 1a,b). Therefore, we preferred to make a direct comparison of their difference between non-sterile and sterile treatments (see also Figure S2), and we also conducted a correlation by these values with microbial compositions rather than by RIs (see Fig. 4).

      We will emphasis this point in the Materials and Methods when resubmit our revision.

      (4) The language of the manuscript could be improved to increase clarity.

      We will improve this in the resubmitted version.

      Reviewer #2 (Public Review):

      Summary:

      The study provides strong evidence that leaf microbes mediate self-limitation at an early life stage. It highlights the importance of leaf microbes in population establishment and community dynamics.

      Thank you very much for your assessment.

      The authors conducted three experiments to test their hypothesis, elucidating the effects of leaf and soil microbial communities on the seedling growth of A. adenophora at different stages, screening potential microbial sources associated with seed germination and seedling performance, and identifying the fungus related to seedling mortality. The conclusions are justified by their results. Overall, the paper is well-structured, providing clear and comprehensive information.

      Thank you very much for your assessment.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to Public Reviewer Comments

      We again thank the reviewers for the time and effort they clearly put into reviewing our manuscript. We have revised our manuscript to take into account the majority of their suggestions, primary among them being refinements of our model and classification approach, detailed sensitivity analysis of our model, and several new simulations. Their very constructive feedback has resulted in what we feel is a much-improved paper. In what follows, we respond to each of their points.

      Reviewer #1:

      COMMENT: The reviewer suggested that our control policy classification thresholds should be increased, especially if the behavioral labels are to be subsequently used to guide analyses of neural data which “is messy enough, but having trials being incorrectly labeled will make it even messier when trying to quantify differences in neural processing between strategies.”

      REPLY: We appreciate the observation and agree with the suggestion. In the revised manuscript, we simplified the model (as another reviewer suggested), which allowed for better training of the classifier. This enabled an increase in the threshold to 95% to have more confidence in the identified control strategies. Figures 7 and 8 were regenerated based on the new threshold.

      COMMENT: The reviewer asked if we could discuss what one might expect to observe neurally under the different control policies, and also suggested that an extension of this work could be to explore perturbation trials, which might further distinguish between the two control policies.

      REPLY: It is indeed interesting to speculate what neural activity could underlie these different behavioral signatures. As this task is novel to the field, it is difficult to predict what we might observe once we examine neural activity through the lens of these control regimes. We hope this will be the topic of future studies, and one aspect worthy of investigation is how neural activity prior to the start of the movement may reflect two different control objectives. Previous work has shown that motor cortex is highly active and specific as monkeys prepare for a cued movement and that this preparatory activity can take place without an imposed delay period (Ames et al., 2014; Cisek & Kalaska, 2005; Dekleva et al., 2018; Elsayed et al., 2016; Kaufman et al., 2014; Lara et al., 2018; Perich et al., 2018; Vyas et al., 2018; Zimnik & Churchland, 2021). It seems possible that the control strategies we observed correspond to different preparatory activity in the motor cortex. We added these speculations to the discussion.

      The reviewer’s suggestion to introduce perturbations to probe sensory processing is very good and was also suggested by another reviewer. We therefore conducted additional simulations in which we introduced perturbations (Supplementary Material; Figure S10). Indeed, in these model simulations the two control objectives separated more. However, testing these predictions via experiments must await future work.

      COMMENT: “It seems like a mix of lambda values are presented in Figure 5 and beyond. There needs to be some sort of analysis to verify that all strategies were equally used across lambda levels. Otherwise, apparent differences between control strategies may simply reflect changes in the difficulty of the task. It would also be useful to know if there were any trends across time?”

      REPLY: We appreciate and agree with the reviewer’s suggestion. We have added a complementary analysis of control objectives with respect to task difficulty, presented in the Supplementary Material (Figures S7 and S8). We demonstrate that, overall, the control objectives remain generally consistent throughout trials and difficulty levels. Therefore, it can be concluded that the difference in behavior associated with different control objectives does not depend on the trial sequence or difficulty of the task. A statement to this extent was added to the main text.

      COMMENT: “Figure 2 highlights key features of performance as a function of task difficulty. …However, there is a curious difference in hand/cursor Gain for Monkey J. Any insight as to the basis for this difference?”

      REPLY: The apparently different behavior of Monkey J in the hand/cursor RMS ratio could be due to subject-to-subject variability. Given that we have data from only two monkey subjects, we examined inter-individual variations between human subjects in the Supplementary Material by presenting individual hand/cursor gain data for all individual human subjects (Figure S1). As can be seen, there was indeed variability, with some subjects not exhibiting the same clear trend with task difficulty. However, on average, the RMS ratio shows a slight decrease as trials grow more difficult, as was earlier shown in Figure 2. We added a sentence about the possibility of inter-individual variations to address the difference in behavior of monkey J with reference to the supplementary material.

      Reviewer #2:

      (Reviewer #2's original review is with the first version of the Reviewed Preprint. Below is the authors' summary of those comments.)

      COMMENT: The reviewer commends the care and effort taken to characterize control policies that may be used to perform the CST, via dual human and monkey experiments and model simulations, noting the importance of doing so as a precursor to future neural recordings or BMI experiments. But the reviewer also wondered if it is all that surprising that different subjects might choose different strategies: “... it makes sense that different subjects might choose to favor different objectives, and also that they can do so when instructed. But has this taught us something about motor control or simply that there is a natural ambiguity built into the task?”

      REPLY: The redundancy in the task that allowed different solutions to achieve the task was deliberate, and the motivation for choosing this task for this study. We therefore did not regard the resulting subject-to-subject variability as a finding of our study. Rather, redundancy and inter-individual variability are features ubiquitous in all everyday actions and we explicitly wanted to examine behavior that is closer to such behavior. As commended by the reviewers, CST is a rich task that extends our research beyond the conventional highly-constrained reaching task. The goal of our study was to develop a computational account to identify and classify such differences to better leverage future neural analyses of such more complex behaviors. This choice of task has now been better motivated in the Introduction of the revised manuscript.

      COMMENT: The reviewer asks about our premise that subjects may use different control objectives in different trials, and whether instead a single policy may be a more parsimonious account for the different behavioral patterns in the data, given noise and instability in the system. In support of this view, the reviewer implemented a simple fixed controller and shared their own simulations to demonstrate its ability to generate different behavioral patterns simply by changing the gain of the controller. The reviewer concludes that our data “are potentially compatible with any of these interpretations, depending on which control-style model one prefers.”

      REPLY: We first address the reviewer’s concern that a simple “fixed” controller can account for the two types of behavioral patterns observed in Experiment 2 (instructed groups) by a small change in the control gain. We note that our controller is also fixed in terms of the plant, the actuator, and the sensory feedback loop; the only change we explore is in the relative weights of position vs. velocity in the Q matrix. This determines whether it is deviations in position or in velocity that predominate in the cost function. This, in turn, generates changes in the gain vector L in our model, since the optimal solution (i.e. the gains L that minimize the cost function) depends on the Q matrix as well as the dynamics of the plant (specifically, the lambda value). Hence, one could interpret the differences arising from changes in the control objective (the Q matrix) as changes in the gains of our “fixed” controller.

      More importantly, while the noise and instability in the system may indeed occasionally result in distinct behavioral patterns (and we have observed such cases in our simulations as well), these factors are far from giving an alternative account for the structural differences in the behavior that we attribute to the control objective. To substantiate this point, we performed additional simulations that are provided in the Supplementary Material (Figures S4—6). These simulations show that neither a change in noise nor in the relative cost of effort can account for the two distinct types of behavior. These differences are more consistently attributed to a change in the control objective.

      In addition, our approach provides a normative account of the control gains needed to simulate the observed data, as well as the control objectives that underlie those gains. As such, the two control policies in our model (Position and Velocity Control) resulted in control gains that captured the differences in the experimental groups (Experiment 2), both at the single trial and aggregate levels and across different task difficulties. Figure S9 in the Supplementary Material shows how the control gains differ between Position and Velocity Control in our model across different difficulty levels.

      We agree,with the reviewer’s overall point, that there are no doubt many models that can exhibit the variability observed in our experimental data, our simulations, or the reviewer’s simulations. Our study aimed to explore in detail not only the model’s ability to generate the variable behavior observed in experimental data, but also to match experimental results in terms of performance levels, gains, lags and correlations across a wide range of lambda values, wherein the only changes in the model were the lambda value and the control objective. Without the details of the reviewer’s model, we are unable to perform a detailed analysis of that model. Even so, we are not claiming that our model is the ‘ground truth,’ only that it is certainly a reasonable model, adopted from the literature, that provides intuitive and normative explanation about the performance of humans and monkeys over a range of metrics, system dynamics, and experimental conditions.

      Finally, we understand the reviewer’s concern regarding whether the trial-by-trial identification of control strategy in Figure 8 suggests that (uninstructed) subjects constantly switch control objectives between Position and Velocity. Although it is not unreasonable to imagine that individuals would intuitively try different strategies between ‘keeping the cursor still’ and ‘keeping the cursor at the center’ across trials, we agree that it is generally difficult to determine such trial-to-trial changes, especially when the behavior lies somewhere in between the two control objectives. In such cases, as we originally discussed in the manuscript, an alternative explanation could be a mixed control objective that generates behavior at the intersection of Position and Velocity Control, i.e., between the two slopes in Figure 8. We believe, however, that our modeling approach is still helpful in cases where performance is predominantly based on Position or Velocity Control. After all, the motivation for this study was to parse neural data into two classes associated with each control objective to potentially better identify structure underlying these behaviors.

      We clarified these points in the main text by adding further explanation in the Discussion section.

      COMMENT: The reviewer suggested additional experiments, such as perturbation trials, that might be useful to further explore the separability of control objectives. They also suggested that we temper our conclusion that our approach can reliably discriminate amongst different control policies on individual trials. Finally, the reviewer suggested that we modify our Introduction and/or Discussion to note past human/monkey research as well as investigations of minimization of velocity-error versus position-error in the smooth pursuit system.

      REPLY: We have expanded our simulations to investigate the effects of perturbation on the separability of different control objectives (Figure S10 in Supplementary Materials). We demonstrated that introducing perturbations more clearly differentiated between Position and Velocity Control. These results provide a good basis for further experimental verifications of the control objectives, but we defer these for future work.

      We also appreciate the additional past work that bridges human and monkey research that the reviewer highlights, including the related discussions in the eye movement literature on position versus velocity control. We have modified our Introduction and Discussion accordingly.

      Reviewer #3:

      COMMENT: The reviewer asked whether the observed differences in behavior might be due to some other factors besides the control policy, such as motor noise or effort cost, and suggested that we more systematically ruled out that possibility.

      REPLY: We appreciate and have heeded the reviewer’s suggestion. The revised manuscript now includes additional simulations in which the control objective was fixed to either Position or Velocity Control, while other parameters were systematically varied. Specifically, we examined the influence of the relative effort cost, the sensory delay, and motor noise, on performance. The results of these sensitivity analyses are presented in the Supplementary Material, Figures S4—6. In brief, we found that changing the relative effort cost, delay, or noise levels, mainly affected the success rate in performance (as expected), but did not affect the behavioral features originally associated with control objectives. We include a statement about this result in the main text with reference to the details provided in the Supplementary Material.

      COMMENT: The reviewer questioned our choice of classification features (RMS position and velocity) and wondered if other features might yield better class separation, such as the hand/cursor gain. In a similar vein, reviewer 2 suggested in their recommendations that we examine the width of the autocorrelation function as a potentially better feature.

      REPLY: We note first that our choice of cursor velocity and position stems from a dynamical systems perspective, where position-velocity phase-space analysis is common. However, we also explored other features as suggested. We found that they, too, exhibited overlap between the two different control objectives, and did not provide any significant improvement in classification performance (Figures S2 and S3; Supplementary Materials). Of course, that is not to say that a more exhaustive examination of features may not find ones that yield better classification performance than those we investigated, but that is beyond the scope of our study. We refer to this consideration of alternative metrics in the discussion.

      COMMENT: The reviewer notes that “It seems that the classification problem cannot be solved perfectly, at least on a single-trial level.” To address this point, the reviewer suggested that we conduct additional simulations under the two different control objectives, and quantify the misclassifications.

      REPLY: We appreciate the reviewer’s suggestion, and have conducted the additional simulations as suggested, the results of which are included in the revised manuscript.

      COMMENT: “The problem of inferring the control objective is framed as a dichotomy between position control and velocity control. In reality, however, it may be a continuum of possible objectives, based on the relative cost for position and velocity. How would the problem differ if the cost function is framed as estimating a parameter, rather than as a classification problem?”

      REPLY: A blended control strategy, formulated as a cost function that is a weighted combination of position and velocity costs, is indeed a possibility that we briefly discussed in the original manuscript. This possibility arises particularly for individuals whose performance metrics lie somewhere between the purely Position or purely Velocity Control. While our model allows for a weighted cost function, which we will explore in future work, we felt in this initial study that it was important to first identify the behavioral features unique to each control objective.

      Response to Recommendations for the Authors:

      Reviewer #1 (Recommendations For The Authors):

      None beyond those stated above.

      Reviewer #2 (Recommendations For The Authors):

      COMMENT: Line 166 states "According to equation (1), this behavior was equivalent to reducing the sum (𝑝 + 𝑥) when 𝜆 increased, so as to prevent rapid changes in cursor velocity". This doesn't seem right. In equation 1, velocity (not acceleration) depends on p+x. So a large p+x doesn't create a "rapid change in cursor velocity", but rather a rapid change in cursor position.

      REPLY: The reviewer is correct and we have corrected this misworded sentence; thank you for catching that.

      COMMENT: The reviewer points out the potential confusion readers may have, given our unclear use of ‘control strategy’ vs. ‘control policy’ vs. ‘control objective’. The reviewer suggests that “It would be helpful if this could be spelled out early and explicitly. 'Control strategy' seems perilously close to 'control policy', and it would be good to avoid that confusion. The authors might prefer to use the term 'cost function', which is really what is meant. Or they might prefer 'control objective', a term that they introduce as synonymous with 'control strategy'.”

      REPLY: We thank the reviewer for noting this ambiguity. We have clarified the language in the Introduction to explicitly note that by strategy, we mean the objective or cost function that subjects attempt to optimize. We then use ‘control objective’ consistently and removed the term ‘policy’ from the paper to avoid confusion. We also now use Position Control and Velocity Control as the labels for our two control objectives.

      COMMENT: The reviewer notes that in Figure 2B and the accompanying text in the manuscript, we need to be clearer about what is being correlated; namely, cursor and hand position.

      REPLY: Thank you for pointing out this lack of clarity, which we have corrected as suggested.

      COMMENT: The reviewer questions our attribution of decreasing lag with task difficulty as a consequence of subjects becoming more attentive/responsive when the task is harder, and points out that our model doesn’t include this possible influence yet the model reproduces the change in lag. The reviewer suggests that a more likely cause is due to phase lead in velocity compared to position, with velocity likely increasing with task difficulty, resulting in a phase advance in the response.

      REPLY: Our attribution of the decrease in lag with task difficulty being due to attention/motivation was a recapitulation of this point made in the paper by Quick et al. [2018]. But as noted by the reviewer, this potential influence on lag is not included in our model. Accordingly, the change in lag is more likely a reflection of the phase response of the closed loop system, which does change with task difficulty since the optimal gains depend upon the plant dynamics (i.e., the value of lambda). We have, therefore, deleted the text in question.

      COMMENT: “The Methods tell us rather a lot about the dynamics of the actual system, and the cost functions are also well defined. However, how they got from the cost function to the controller is not described. I was also a bit confused about the controller itself. Is the 50 ms delay assumed when deriving the controller or only when simulating it (the text seems to imply the latter, which might make sense given that it is hard to derive optimal controllers with a hard delay)? How similar (or dissimilar) are the controllers for the two objectives? Is the control policy (the matrix that multiplies state to get u) quite different, or only subtly?”

      REPLY: Thanks for pointing this out. For brevity, we had omitted the details and referred readers to the original paper (Todorov, 2005). However, we now revised the manuscript to now include all the details in the Methods section. Hence, the entire section on the model is new. This also necessitated updating all data figures (Figures 3, 4, 5, 6, 7, 8) as they contain modeling results.

      COMMENT: “Along similar lines, I had some minor to moderate confusions regarding the OFC model as described in the main text. Fig 3 shows a model with a state estimator, but it isn't explained how this works. …Here it isn't clear whether there is sensory noise, or a delay. The methods say a delay was included in the simulation (but perhaps not when deriving the controller?). Noise appears to have been added to u, but I'm guessing not to x or x'? The figure legend indicates that sensory feedback contains only some state variables, and that state estimation is used to estimate the rest. Presumably this uses a Kalman filter? Does it also use efference copy, as would be typical? My apologies if this was stated somewhere and I missed it. Either way, it would be good to add a bit more detail to the figure and/or figure legend.”

      REPLY: As the lack of detail evidently led to some confusion, we now more clearly spell out the details of the model in the Methods, including the state estimation procedure.

      COMMENT: The reviewer wondered why we chose to plot mean velocity vs. mean position as in Figure 5, noting that, “ignoring scale, all scatter plots would be identical if the vertical axis were final position (because mean velocity determines final position). So what this plot is really examining is the correlation between final position and average position. Under position control, the autocorrelation of position is short, and thus final position tends to have little to do with average position. Under velocity control, the autocorrelation of position is long, and thus final position tends to agree with average position. Given this, why not just analyze this in terms of the autocorrelation of position? This is expected to be much broader under velocity control (where they are not corrected) than under position control (where they are, and thus disappear or reverse quickly). To me, thinking of the result in terms of autocorrelation is more natural.”

      REPLY: The reviewer is correct that the scatter plots in Fig. 5 would be the same (to within a scale factor of the vertical axis) had we plotted final position vs. mean position instead of mean velocity vs. mean position as we did. Our preference for mean velocity vs. mean position stems from a dynamical systems perspective, where position-velocity phase-space analysis is common. We now mention these perspectives in the revised manuscript for the benefit of the reader.

      As suggested, we also investigated the width of the (temporal) autocorrelation function (acf) of cursor position for 200 simulated position control trials and 200 simulated velocity control trials, at four different lambda values (50 simulated trials per lambda). Figs. S2A and B (Supplementary Materials) show example trials and histograms of the acf width, respectively. As the reviewer surmised, velocity control trials tend to have wider acfs than position control trials. However, as with the metrics we chose to analyze, there is overlap and there is no visible benefit for the classification.

      COMMENT: “I think equation ten is incorrect, but would be correct if the identity matrix were added? Also, why is the last term of B set to 1/(Tau*M). What is M? Is it mass (which above was lowercase m)? If so, mass should also be included in A (it would be needed in two places in the last column). Or if we assume m = 1, then just ignore mass everywhere, including here and equation 5. Or perhaps I'm confused, and M is something else?”

      REPLY: Thanks for pointing this out. The Matrix A shown in the paper is for the continuous-time representation of the model. However, as the reviewer correctly mentioned, for the discrete-time implementation of the model, a modification (identity matrix) was added in our simulations. We have now clarified this in the Methods section of the revised manuscript. Also, as correctly pointed out, M is the mass of the hand, which depending on whether the hand acceleration (d^2 p/dt^2) or hand force (F) are taken as the state, it can be included in the A matrix. In our case, the A matrix is modified according to the state vector. Similarly, the B matrix is also modified. This is now clarified in the Methods section of the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      COMMENT: “Equations 4-8 are written in continuous time, but Equation 9 is written in discrete time. Then Equation 10 is in discrete time. This needs to be tidied up. … I would suggest being more detailed and systematic, perhaps formulating the control problem in continuous time and then converting to discrete time.”

      REPLY: Thank you for this helpful suggestion. The model section in the Methods has been expanded to provide further details of the equation of motion, the discretization process, the control law calculation and the state estimation process.

      COMMENT: “It seems slightly odd for the observation to include only position and velocity of the cursor. Presumably participants can also observe the state of their own hand through proprioception (even if it were occluded). How would it affect the model predictions if the other states were observable?”

      REPLY: Thanks for pointing this out. We initially included only cursor position and velocity since we felt that was the most prominent state feedback, and the system is observable in that case. Nevertheless, we revised the manuscript and repeated all simulations using a full observability matrix. Our findings and conclusions remain unchanged. With the changes in the modeling, the figures were also updated (Fig.3, 4, 5, 6, 7, 8).

      COMMENT: “It seems unnecessary to include the acceleration of the cursor in the formulation of the model. …the acceleration is not even part of the observed state according to line 668… I think the model could therefore be simplified by omitting cursor acceleration from the state vector.”

      REPLY: We agree. We have simplified the model, and generated new simulations and figures. Our results and conclusions were unchanged by this modification. With the changes in the modeling, the figures were also updated (Fig.3, 4, 5, 6, 7, 8).

      COMMENT: “In the cost function, it's not clear why any states other than position and velocity of the cursor need to have non-zero values. …The choice to have the cost coefficient for these other states be 1 is completely arbitrary… If the point is that the contribution of these other costs should be negligible, then why not just set them to 0?”

      REPLY: We agree, and have made this change in the Methods section. Our findings and conclusions were unaffected.

      COMMENT: “It seems that the cost matrices were specified after transforming to discrete-time. It is possible however (and perhaps recommended) to formulate in continuous time and convert to discrete time. This can be done cleanly and quite straightforwardly using matrix exponentials. Depending on the discretization timestep, this can also naturally lead to non-zero costs for other states in the discrete-time formulation even if they were zero under continuous time. … A similar comment applies to discretization of the noise.”

      REPLY: Thanks for the suggestion. We have expanded on the discretization process in our Methods section, which uses a common approximation of the matrix exponentiation method.

      COMMENT: “Most of the parameters of the model seem to be chosen arbitrarily. I think this is okay as the point is to illustrate that the kinds of behaviors observed are within the scope of the model. However, it would be helpful to provide some rationale as to how the parameters were chosen. e.g. Were they taken directly from prior literature, or were they hand-tuned to approximately match observed behavior?”

      REPLY: We have revised the manuscript to more clearly note that the noise parameters, as well as parameters of the mechanical system (mass, muscle force, time scale, etc) in our model were taken from previous publications (Todorov, 2005, Cluff et al. 2019). As described in the manuscript, the parameter values of the cost function (Q matrix) were obtained by tuning the parameters to achieve a similar range of success rate with the model as observed in the experimental data. This is now clarified in the Methods section.

      COMMENT: “The ‘true’ cost function for this task is actually a 'well' in position space - zero cost within the screen and very high cost elsewhere. In principle, it might be possible to derive the optimal control policy for this more veridical cost function. It would be interesting to consider whether or not this model might reproduce the observed behaviors.”

      REPLY: This is indeed a very interesting suggestion, but difficult to implement based on the current optimal feedback control framework. However, this is interesting to consider in future work.

      Minor Comments:

      COMMENT: “In Figs 4 and 5, the data points are drawn from different conditions with varying values of lambda. How did the structure of this data depend on lambda? Might it be possible to illustrate in the figure (e.g. the shade/color of each dot) what the difficulty was for each trial?”

      REPLY: We performed additional analyses to show the effects of task difficulty on the choice of control objective. Overall, we found that the main behavioral characteristics of the control objective remained fairly unchanged across different task difficulties or across time. The results of this analysis are included in Fig. S7 and S8 of the Supplementary Materials.

      COMMENT: “Should mention trial duration (6s) in the main narrative of the intro/results.”

      REPLY: We now mention this detail when we describe the task for the first time.

      COMMENT: “As an alternative to training on synthetic data (which might not match behavior that precisely, and was also presumably fitted to subject data at some level) it might be worth considering to do a cross-validation analysis, i.e. train the classifier on subsets of the data with one participant removed each time, and classify on the held-out participant.”

      REPLY: This is indeed a valid point. The main reason to train the classifier based on model simulations was two-fold: first, to have confidence in the training data, as the experimental data was limited and noisy, which would result in less reliable classifications; and second, the model simulations are available for different contexts and conditions, where experimental data is not necessarily available. The latter is a more practical reason to be able to identify control objectives for any subject (who received no instructions), without having to collect training data from matching control subjects who received explicit instructions. Nonetheless, we appreciate the reviewer’s recommendation and will consider that for our future studies.

      COMMENT: “line 690 - Presumably the optimal policy was calculated without factoring in any delay (this would be tricky to do), but the 50ms delay was incorporated at the time of simulation?”

      REPLY: The discretization of the system equations allowed us to incorporate the delay in the system dynamics and solve for the optimal controller with the delay present. This was done simply by system augmentation (e.g., Crevecoeur et al., 2019), where the states of the system in the current time-step were augmented with the states from the 5 preceding time-steps to form the new state vector x(t)_aug =[x(t) , x(t-1) , … , x(t-d) ]. Similarly, the matrices A, B, and H from the system dynamics could be expanded accordingly to form the new dynamical system:

      $$x(t+1){aug} = A{aug} * x(t){aug} + B{aug} * u$$

      Then, the optimal control was implemented on the new (augmented) system dynamics.

      We have revised the manuscript (Methods) to clarify this issue.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The present study's main aim is to investigate the mechanism of how VirR controls the magnitude of MEV release in Mtb. The authors used various techniques, including genetics, transcriptomics, proteomics, and ultrastructural and biochemical methods. Several observations were made to link VirR-mediated vesiculogenesis with PG metabolism, lipid metabolism, and cell wall permeability. Finally, the authors presented evidence of a direct physical interaction of VirR with the LCP proteins involved in linking PG with AG, providing clues that VirR might act as a scaffold for LCP proteins and remodel the cell wall of Mtb. Since the Mtb cell wall provides a formidable anatomical barrier for the entry of antibiotics, targeting VirR might weaken the permeability of the pathogen along with the stimulation of the immune system due to enhanced vesiculogenesis. Therefore, VirR could be an excellent drug target. Overall, the study is an essential area of TB biology.

      Strengths:

      The authors have done a commendable job of comprehensively examining the phenotypes associated with the VirR mutant using various techniques. Application of Cryo-EM technology confirmed increased thickness and altered arrangement of CM-L1 layer. The authors also confirmed that increased vesicle release in the mutant was not due to cell lysis, which contrasts with studies in other bacterial species.

      Another strength of the manuscript is that biochemical experiments show altered permeability and PG turnover in the mutant, which fits with later experiments where authors provide evidence of a direct physical interaction of VirR with LCP proteins.

      Transcriptomics and proteomics data were helpful in making connections with lipid metabolism, which the authors confirmed by analyzing the lipids and metabolites of the mutant.

      Lastly, using three approaches, the authors confirm that VirR interacts with LCP proteins in Mtb via the LytR_C terminal domain.

      Altogether, the work is comprehensive, experiments are designed well, and conclusions are made based on the data generated after verification using multiple complementary approaches.

      Weaknesses:

      The major weakness is that the mechanism of VirR-mediated EV release remains enigmatic. Most of the findings are observational and only associate enhanced vesiculogenesis observed in the VirR mutant with cell wall permeability and PG metabolism. The authors suggest that EV release occurs during cell division when PG is most fragile. However, this has yet to be tested in the manuscript - the AFM of the VirR mutant, which produces thicker PG with more pore density, displays enhanced vesiculogenesis. No evidence was presented to show that the PG of the mutant is fragile, and there are differences in cell division to explain increased vesiculogenesis. These observations, counterintuitive to the authors' hypothesis, need detailed experimental verification.

      Response: We thank the reviewer for this comments. We would like to convince this reviewer about the fact that the VirR mutant is truly caring a more fragile PG. We will perfume additional experiments that would support this notion. We will determine the degree of PG release to the extracellular space and run additional mass spectrometry data on isolated PG.

      Transcriptomic data only adds a little substantial. Transcriptomic data do not correlate with the proteomics data. It remains unclear how VirR deregulates transcription. TLCs of lipids are not quantitative. For example, the TLC image of PDIM is poor; quantitative estimation needs metabolic labeling of lipids with radioactive precursors. Further, change in PDIMs is likely to affect other lipids (SL-1, PAT/DAT) that share a common precursor (propionyl- CoA).

      Response: We agree with the reviewer that TLC analysis is not quantitative. Additional TLCs will be run to investigate other lipids sharing common precursors. At the present time, we can not run radioactive experiments on the lab.

      The connection of cholesterol with cell wall permeability is tenuous. Cholesterol will serve as a carbon source and contribute to the biosynthesis of methyl-branched lipids such as PDIM, SL-1, and PAD/DAT. Carbon sources also affect other aspects of physiology (redox, respiration, ATP), which can directly affect permeability and import/export of drugs. Authors should investigate whether restoration of the normal level of permeability and EV release is not due to the maintenance of cell wall lipid balance upon cholesterol exposure of the VirR mutant.

      Response: We concur with the reviewer that cholesterol as sole carbon source is introducing many changes in Mtb cells beside permeability. Our central hypothesis regarding this data is that cholesterol will make Mtb cell membrane less fluid and this fact will make Ev release to be reduced. We will try to measure membrane fluidity in the presence and absence of cholesterol. However, permeability changes in Mtb cells can be manifested at different levels of the cell envelope. This would suggest that the increased permeability observed in the VirR mutant, could be different than that of observed upon TRZ treatment. The main point on this is that vesiculogenesis could be a general process responding to changes in permeability regardless of the cell envelope compartment affected. We need to define experiments here, but we will try to demonstrate this.

      Finally, protein interaction data is based on experiments done once without statistical analysis. If the interaction between VirR and LCP protein is expected on the mycobacterial membrane, how the SPLIT_GFP system expressed in the cytoplasm is physiologically relevant. No explanation was provided as to why VirR interacts with the truncated version of LCP proteins and not with the full-length proteins.

      Response: Split-GFP has been previously used with cell membrane proteins with success. However, we will repeat the experiments and perform statistics.

      Reviewer #2 (Public Review):

      Summary:

      In this work, Vivian Salgueiro et al. have comprehensively investigated the role of VirR in the vesicle production process in Mtb using state-of-the-art omics, imaging, and several biochemical assays. From the present study, authors have drawn a positive correlation between cell membrane permeability and vasculogenesis and implicated VirR in affecting membrane permeability, thereby impacting vasculogenesis.

      Strengths:

      The authors have discovered a critical factor (i.e. membrane permeability) that affects vesicle production and release in Mycobacteria, which can broadly be applied to other bacteria and may be of significant interest to other scientists in the field. Through omics and multiple targeted assays such as targeted metabolomics, PG isolation, analysis of Diaminopimelic acid and glycosyl composition of the cell wall, and, importantly, molecular interactions with PG-AG ligating canonical LCP proteins, the authors have established that VirR is a central scaffold at the cell envelope remodelling process which is critical for MEV production.

      Response: We thank the reviewer for this kind words.

      Weaknesses:

      Throughout the study, the authors have utilized a CRISPR knockout of VirR. VirR is a non-essential gene for the growth of Mtb; a null mutant of VirR would have been a better choice for the study.

      Response: We thank the reviewer for bringing up this issue. Contrary to predictions, we believe that virR is an essential gene as we have tried to delete it several times with no success. We used in the study a transposon mutant and its complementing strain since they have been the base of previous studies to establish their genetic implications in vesiculogenesis in Mtb. The choice of CRISPRi was run similar experiments in a background different from transposon mutagenesis. Our data, support similar phenotypes in term of vesicle release.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      More details about the classification and how it is trained

      We included a sentence in the introduction to clarify which data we are using: "In order to demonstrate this improvement, we apply our methods to two classification datasets: a synthetic dataset and a public clinical dataset where the predicted outcome is the survival of the patient"

      And about how the classifier is trained in the "Results" section: "we used the default parameters of the classifier, since our focus is comparing the different imputation methods"

      Availability of the code

      Now the code is publicly available in a github repository https://github.com/AstraZeneca/dpp_imp/ (see Availability of Data and Code section)

      Reviewer #2

      Clarifying that Determinantal Point Processes and their deterministic version have been introduced before but are applied for the first time for data imputation in this work:

      We added explanation in the 6th paragraph of the introduction that we use pre-existing DPP and deterministic-DPP algorithms for our imputation methods and include the references to avoid confusion

      We also added a paragraph at the end of the introduction to summarize this work's contribution

      Explaining the claim about the computational advantage of using quantum determinantal point processes for the imputation methods:

      In the fourth paragraph of the "Discussion" section (page 8), we give an imputation example by numerically comparing the classical and quantum algorithms running time for DPP sampling, which shows the advantage of using the quantum algorithm.

      Regarding running time for classical DPP and quantum DPP sampling algorithms:

      We included Table VIII (page 13) that compares the preprocessing and sampling complexities for both classical and quantum DPP algorithms, we consider the case where we sample d rows from an (n,d) matrix and n=O(d) which is usually the case for our DPP-Random Forest algorithm

      We added some details regarding the quantum advantage in the first paragraph of page 12

      Regarding the comment about the modest improvement of the DPP methods and questions about their practical benefit:

      As mentioned in the third paragraph of the "Discussion" section, we point out that the consistency of the improvement and the removal of variance as a result of using the DPP and deterministic DPP methods make our methods very beneficial to use on clinical data. Further exploration with different data sets can provide a more result in a more complete understanding of the practical advantages of the methods

      Algorithmic complexity of the deterministic DPP algorithm:

      Detailed in the last sentence of the "Determinantal Point Processes" subsection of the "Methods" section: O(N^2 d) for the preprocessing step and O(Nd^3) for the sampling step

      Running time for the quantum deterministic DPP sampling and how it is done in practice:

      While it is difficult to assess the real running time for the quantum detDPP algorithm for large circuits (100 or more qubits), due to the unavailability of such devices, we give more details about our practical implementation in the last paragraph of the "Methods" section. In our case (up to 10 qubits) we used 1000 shots to sample the highest probability elements.

      On which quantum simulator was used

      We point out in the first paragraph of page 5 that we employ the qiskit noiseless simulator

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This important study identifies the gene mamo as a new regulator of pigmentation in the silkworm Bombyx mori, a function that was previously unsuspected based on extensive work on Drosophila where the mamo gene is involved in gamete production. The evidence supporting the role of Bm-nano in pigmentation is convincing, including high-resolution linkage mapping of two mutant strains, expression profiling, and reproduction of the mutant phenotypes with state-of-the-art RNAi and CRISPR knock-out assays. While the discussion about genetic changes being guided or accelerated by the environment is extremely speculative and has little relevance for the findings presented, the work will be of interest to evolutionary biologists and geneticists studying color patterns and evolution of gene networks.

      Response: Thank you very much for your careful work. In the revised version, we conducted a comparative genomic analysis of the upstream regions of the Bm-mamo gene in 51 wild silkworms and 171 domesticated local silkworms. The analysis of nucleotide diversity (pi) and the fixation index (FSTs) of the Bm-mamo genome sequences in the wild and domesticated silkworm populations were also performed. The results showed that the Bm-mamo genome sequence of local silkworms was relatively conserved, while the upstream sequence of wild silkworms exhibited high nucleotide diversity. This finding suggested a high degree of variability in the regulatory region of the Bm-mamo gene, in wild strains. Additionally, the sequence in this region may have been fixed by domestication selection. We have optimized the description in the discussion section.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This papers performs fine-mapping of the silkworm mutants bd and its fertile allelic version, bdf, narrowing down the causal intervals to a small interval of a handful of genes. In this region, the gene orthologous to mamo is impaired by a large indel, and its function is later confirmed using expression profiling, RNAi, and CRISPR KO. All these experiments are convincingly showing that mamo is necessary for the suppression of melanic pigmentation in the silkworm larval integument.

      The authors also use in silico and in vitro assays to probe the potential effector genes that mamo may regulate.

      Strengths:

      The genotype-to-phenotype workflow, combining forward (mapping) and reverse genetics (RNAi and CRISPR loss-of-function assays) linking mamo to pigmentation are extremely convincing.

      This revision is a much improved manuscript and I command the authors for many of their edits.

      Response: Thank you very much for your careful work. With the help of reviewers and editors, we have revised the manuscript to improve its readability.

      I find the last part of the discussion, starting at "It is generally believed that changes in gene expression patterns are the result of the evolution of CREs", to be confusing.

      In this section, I believe the authors sequentially:

      • emphasize the role of CRE in morphological evolution (I agree)

      • emphasize that TF, and in particular their own CRE, are themselves important mutational targets of evolution (I agree, but the phrasing need to insist the authors are here talking about the CRE found at the TF locus, not the CRE bound by the TF).

      • use the stickleback Pel enhancer as an example, which I think is a good case study, but the authors also then make an argument about DNA fragility sites, which is hard to connect with the present study.

      • then continue on "DNA fragility" using the peppered moth and butterfly cortex locus. There is no evidence of DNA fragility at these loci, so the connection does not work. "The cortex gene locus is frequently mutated in Lepidoptera", the authors say. But a more accurate picture would be that the cortex locus is repeatedly involved in the generation of color pattern variants. Unlike for Pel fragile enhancer, we don't know if the causal mutations at this locus are repeatedly the same, and the haplotypes that have been described could be collateral rather than causal. Overall, it is important to clarify the idea that mutation bias is a possible factor explaining "genetic hotspots of evolution" (or genetic parallelism sensu 10.1038/nrg3483), but it is also possible that many genetic hotspots are repeated mutational targets because of their "optimal pleiotropy" (e.g. hub position in GRNs, such as mamo might be), or because of particularly modular CRE region that allow fine-tuning. Thus, I find the "fragility" argument misleading here. In fact the finding that "bd" and "bdf" alleles are different in nature is against the idea of a fragility bias (unless the authors can show increased mutation rates at this locus in a wild silkmoth species?). These alleles are also artificially-selected ie. they increased in frequency by breeding rather than natural selection in the wild, so while interesting for our understand of the genotype-phenotype map, they are not necessarily representative of the mutations that may underlie evolution in the wild.

      Response: Thank you very much for your careful work. DNA fragility is an interesting topic, but some explanations for DNA fragility are confusing. One study measured the rate of DNA double-strand breaks (DSBs) in yeast artificial chromosomes (YACs), which are chromosomes containing marine Pel that broke ~25 to 50 times more frequently than did the control. These authors believe that the increase in the mutation rate is caused by DNA sequence characteristics, particularly TG-dinucleotide repeats. Moreover, they found that adding a replication origin on the opposite side of Pel did not cause the fungus to switch fragile, making the forward sequence stable and the reverse complement fragile. Thus, Pel fragility is also dependent on the direction of DNA replication. In summary, they suggested that the special DNA sequence is the cause of DNA fragility. In addition, the sequence features associated with DNA fragility in the Pel region are also found in thousands of other positions in the stickleback and human genomes (Xie KT et al, 2019, science).

      In yeast artificial chromosomes (YACs), the characteristics of DNA sequences, such as TG-dinucleotide repeat sequences, may be important reasons for DNA fragility, and these breaks occur during DNA replication. However, the inserted sequence of YAC often undergoes deletion or recombination during cultivation and passage. In addition, yeast is a single-celled organism. Therefore, the results in yeast cannot represent the situation in multicellular organisms. If multicellular organisms are like this, there are several issues as follows:

      (1) The DNA replication process occurs separately in different multicellular organisms. Because DNA breakage and repair are independent, they can lead to the presence of different alleles in different cells. This can potentially lead to the occurrence of extensive chimeric organisms. However, we have not found such a situation in the genome sequencing of many multicellular organisms.

      (2) If the DNA sequence, TG-dinucleotide repeats, is the determining factor, the mutations near the sequence lose their strong correlation with environmental changes. The researchers conducted yeast artificial chromosome experiments in the same environment and found that the frequency of DNA breaks containing TG dinucleotide repeat sequences was 25 to 50 times greater than that of the control group. This means that, whether in the marine population or the lake population, this part of the sticklebacks’ genome has undergone frequent mutations. However, according to related research, populations of lake sticklebacks, rather than marine populations, often exhibit a decrease in the pelvic phenotype.

      (3) Researchers have found thousands of loci in the genome of sticklebacks and humans that contain such sequences (TG-dinucleotide repeats). This means that thousands of sites undergo frequent mutations during DNA replication. Unless these sites do not possess functionality, they will have some impact on the organism, even causing damage. Even if they are not functional sequences, these sequences will gradually be discarded or replaced during frequent mutations rather than being present in large quantities in the genome.

      Therefore, the study of DNA fragility in yeast cannot explain the situation in multicellular organisms.

      As you noted, we want to express that the frequent variation in the cortex gene should be regulated by targeted regulation involving the GRN in Lepidoptera. In addition, studies on specific epigenetic modifications discovered through the referenced fragile DNA sites suggest that DNA fragility is not determined by the DNA sequence (Ji F, 2020, Cell Res) but rather by other factors, such as epigenetic factors. The sequence features discovered at fragile DNA sites are traces of frequent mutations, not causes.

      In this revision, we analyzed the nucleotide diversity of the mamo genome in 51 wild and 171 domestic silkworms. We found high nucleic acid diversity from the third exon to the upstream region of this gene in wild silkworms. We randomly selected 12 wild silkworms and 12 domestic silkworms and compared their upstream sequences to approximately 1 kb. In wild silkworms, there is significant diversity in their upstream sequences. In domestic silkworms, the sequences are highly conserved, but in some silkworms, a long interspersed nuclear element (LINE) is inserted. This finding suggested that there is frequent variation in the sequence of this region in wild silkworms, while fixation occurs in domesticated silkworms. These genomic data are sourced from the pangenome of silkworms (Tong X, 2022, Nat Commun.). In the pangenomic research, 1078 strains (205 local strains, 194 improved strains, 632 mutant strains, and 47 wild silkworms), which included 545 third-generation sequencing genomes, were obtained. An online website was built to utilize these data (http://silkmeta.org.cn/). We warmly welcome you to use these data.

      In summary, for clearer expression, we have rewritten this section.

      Xie KT, Wang G, Thompson AC, Wucherpfennig JI, Reimchen TE, MacColl ADC, Schluter D, Bell MA, Vasquez KM, Kingsley DM. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science. 2019 Jan 4;363(6422):81-84. doi: 10.1126/science.aan1425.

      Ji F, Liao H, Pan S, Ouyang L, Jia F, Fu Z, Zhang F, Geng X, Wang X, Li T, Liu S, Syeda MZ, Chen H, Li W, Chen Z, Shen H, Ying S. Genome-wide high-resolution mapping of mitotic DNA synthesis sites and common fragile sites by direct sequencing. Cell Res. 2020 Nov;30(11):1009-1023. doi: 10.1038/s41422-020-0357-y.

      Tong X, Han MJ, Lu K, Tai S, Liang S, Liu Y, Hu H, Shen J, Long A, Zhan C, Ding X, Liu S, Gao Q, Zhang B, Zhou L, Tan D, Yuan Y, Guo N, Li YH, Wu Z, Liu L, Li C, Lu Y, Gai T, Zhang Y, Yang R, Qian H, Liu Y, Luo J, Zheng L, Lou J, Peng Y, Zuo W, Song J, He S, Wu S, Zou Y, Zhou L, Cheng L, Tang Y, Cheng G, Yuan L, He W, Xu J, Fu T, Xiao Y, Lei T, Xu A, Yin Y, Wang J, Monteiro A, Westhof E, Lu C, Tian Z, Wang W, Xiang Z, Dai F. High-resolution silkworm pan-genome provides genetic insights into artificial selection and ecological adaptation. Nat Commun. 2022 Sep 24;13(1):5619. doi: 10.1038/s41467-022-33366-x.

      Lu K, Pan Y, Shen J, Yang L, Zhan C, Liang S, Tai S, Wan L, Li T, Cheng T, Ma B, Pan G, He N, Lu C, Westhof E, Xiang Z, Han MJ, Tong X, Dai F. SilkMeta: a comprehensive platform for sharing and exploiting pan-genomic and multi-omic silkworm data. Nucleic Acids Res. 2024 Jan 5;52(D1):D1024-D1032. doi: 10.1093/nar/gkad956.

      Curiously, the last paragraph ("Some research suggests that common fragile sites...") elaborate on the idea that some sites of the genome are prone to mutation. The connection with mamo and the current article are extremely thin. There is here an attempt to connect meiotic and mitotic breaks to Bm-mamo, but this is confusing: it seems to propose Bm-mamo as a recruiter of epigenetic modulators that may drive higher mutation rates elsewhere. Not only I am not convinced by this argument without actual data, but this would not explain how the mutations at the Bm-mamo itself evolved.

      Response: Thank you very much for your careful work. This section mainly illustrates that DNA fragility is not determined by sequence but is regulated by other factors in animals. In fruit flies, they found that mamo is an important candidate gene for recombination hotspot setting in meiosis. First, we evaluated PRDM9, which plays an important role in setting recombination hotspots during meiosis. Our purpose in mentioning this information is to illustrate that chromosome recombination is a process of programmed double strand breaks and to answer another reviewer's question about programmed events in the genome. In summary, we suggest that some variations in DNA sequences are procedural results. We have optimized the description of this section in this version.

      On a more positive note, I find it fascinating that the authors identified a TF that clearly articulates or orchestrate larval pattern development, and that when it is deleted, can generate healthy individuals. In other words, while it is a TF with many targets, it is not too pleiotropic. This idea, that the genetically causal modulators of developmental evolution are regulatory genes, has been described elsewhere (e.g. Fig 4c in 10.1038/s41576-020-0234-z, and associated refs). To me, the beautiful findings about Bm-mamo make sense in the general, existing framework that developmental processes and regulatory networks "shape" the evolutionary potential and trajectories of organisms. There is a degree of "programmability" in the genomes, because some loci are particularly prone to modulate a given type of trait. Here, Bm-mamo, as a potentially regulator of both CPs and melanin pathway genes, appear to be a potent modulator of epithelial traits. Claiming that there are inherent mutational biases behind this is unwarranted.

      Response: Thank you very much for your careful work. I completely agree with your statement that the genome exhibits a certain degree of programmability. On the one hand, some transcription factors can precisely control the spatiotemporal expression levels of some structural genes (such as pigment synthesis genes). On the other hand, these transcription factors are also subject to strict expression regulation. Because the color pattern is complex, changes in single or minority structural genes result in incomplete or imprecise changes in coloring patterns. Nevertheless, several regulatory factors can regulate multiple downstream target genes. Changes in their expression patterns can lead to holistic and significant changes in color patterns. There are long intergenic regions upstream of many important transcription factors, dozens of kilobase pairs (Kb) to hundreds of Kb, which may contain many different regulatory elements for better control of their expression patterns. Therefore, gene regulatory networks can directly regulate transcription factors to modulate a given type of trait. Transcription factors and their downstream target genes can form a functional module, which is similar to a functional module in software or operating systems. This regulation of transcription factors is simpler in terms of steps, which are similar to a single click switch button. The gene regulatory network regulates these modules in response to environmental changes and is widely recognized.

      Some people do not agree that genetic variations can also be regulated. They claim that this is completely random. The infinite monkey theorem (Félix-Édouard-Justin-Émile Borel, 1909) states that if an infinite number of monkeys were given typewriters and an infinite amount of time, they would eventually produce the complete works of Shakespeare. Although this theory advocates randomness on the surface, its conclusions are full of inevitability (tail event). In nature, some things we observe do not have obvious regularity because they involve relatively complex factors, and the underlying logic is obscure and difficult to understand. We often name them random. However, as we gradually understand the logic behind this complex event, we can also recognize the procedural nature of this randomness.

      Previously, chromosomal recombination during meiosis was believed to be a random event. However, currently, it is believed that the process is procedural. The occurrence of meiotic recombination mentioned earlier indicates that the genome has the ability to self-set the position of double-strand breaks to form new allelic forms. Because meiotic recombination is programmed, transcription factors that recognize DNA sites, enzymes that cleave double strands, and DNA repair systems exist, programming can also introduce genetic variation. A study in plants has provided insights into this programmed mutation (Monroe JG, 2023, nature). Frequent changes in the expression patterns of some transcription factors occur between and/or within species. In this article, we only discuss the possible reasons for variations in the expression patterns of some transcription factors in a general manner and simple reasoning. We have added an analysis of the response of wild silkworms and improved the relevance of the discussion.

      Monroe JG, Srikant T, Carbonell-Bejerano P, Becker C, Lensink M, Exposito-Alonso M, Klein M, Hildebrandt J, Neumann M, Kliebenstein D, Weng ML, Imbert E, Ågren J, Rutter MT, Fenster CB, Weigel D. Mutation bias reflects natural selection in Arabidopsis thaliana. Nature. 2022 Feb;602(7895):101-105. doi: 10.1038/s41586-021-04269-6. Epub 2022 Jan 12. Erratum in: Nature. 2023 Aug;620(7973):

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Please structure your Discussion with section headers.

      Response: Thank you very much for your careful work. We have added relevant section headers.

      • As explained in my public review, I found the two last sections of the Discussion to be dispersed and confusing. I also must say that I carefully read the Response to Reviewers on this, which helped me to better understand the authors' intentions here. Please consider the revision of this Discussion as this feels extremely speculative difficult to connect with Bm-mamo.

      Response: Thank you very much for your careful work. We have rewritten this part of the content.

      • typo: were found near the TTS of yellow --> TSS

      Response: Thank you very much for your careful work. We have made these modifications.

      • l. 234 :"expression level of the 18 CP genes in the integument". Consider adding a mention of Figure 7 here, as only Fig. S10 is cited here.

      Response: Thank you very much for your careful work. We have made these modifications.

      • Editorial comment on the second half of the Abstract:

      Wu et al : "We found that Bm-mamo can comprehensively regulate the expression of related pigment synthesis and cuticular protein genes to form color patterns. This indicates that insects have a genetic basis for coordinate regulation of the structure and shape of the cuticle, as well as color patterns. This genetic basis provides the possibility for constructing the complex appearances of some insects. This study provides new insight into the regulation of color patterns."

      I respectfully suggest a more accurate rephrasing, where the methods are mentioned, and where the logical argument is more straightforward. For example

      "Using RNAi and CRISPR we show that Bm-mamo is a repressor or dark melanin patterns in the larval epithelium. Using in-vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also show that Bm-mamo likely regulate the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with a dual role of this transcription factor in regulating both the structure and shape of the cuticle and pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as in the construction more complex epithelial features in some insects."

      I hope this let the ideas of the original version transpire as the authors intended.

      Response: Thank you very much for your careful work. We have made these modifications.

    1. Author Response

      We would like to thank the reviewers for their thoughtful feedback on our work. One important point that they bring up is a potential issue with our method for accounting for excess NCO events that are detected due to increased marker resolution in the introgressed regions. The method we chose was to simulate average sized NCO tracts over both introgressed and non-introgressed windows to determine the expected increase in NCO detection due to marker density. We then took that expected increase and used it to correct our per-window NCO counts in all windows. We used these corrections for all results and analysis involving genomic windows (maps and genomewide comparisons) but did not include them when focusing on introgression-specific characteristics (e.g. analyzing fine-scale sequence differences around NCO tracts in introgressed regions). We chose this method based on previous work in the field and after some additional analyses on our own data that we did not include in the final manuscript. We will attempt to better communicate our decision making process and include some of the exploratory results that guided us in our revised manuscript. We look forward to responding to all comments and highlighting additional aspects of our findings that we think are of interest to the evolution and recombination communities, including significant changes to the recombination landscape between closely related strains and the impact of introgression on allelic shuffling.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      The study investigates the role of cylicin-1 (CYLC1) in sperm acrosome-nucleus connections and its clinical relevance to male infertility. Using mouse models, the researchers demonstrate that cylicin-1 is specifically expressed in the post acrosomal sheath-like region in spermatids and plays a crucial role in mediating acrosome-nucleus connections. Loss of CYLC1 results in severe male subfertility, characterized by acrosome detachment and aberrant head morphology in sperm. Further analysis of a large cohort of infertile men reveals CYLC1 variants in patients with sperm head deformities. The study provides valuable insights into the role of CYLC1 in male fertility and proposes CYLC1 variants as potential risk factors for human male infertility, emphasizing the importance of mouse models in understanding the pathogenicity of such variants.

      We appreciate the comprehensive summary of reviewer 1.

      Strengths:

      This article demonstrates notable strengths in various aspects. Firstly, the clarity and excellent writing style contribute to the accessibility of the content. Secondly, the employed techniques are not only relevant but also complementary, enhancing the robustness of the study. The precision in their experimental design and the meticulous interpretation of results reflect the scientific rigor maintained throughout the study. Furthermore, the decision to create a second mouse model with the exact CYLC1 mutation found in humans adds significant qualitative value to the research. This approach not only validates the clinical relevance of the identified variant but also strengthens the translational impact of the findings.

      We appreciate the positive comment of reviewer 1.

      Weaknesses:

      There are no obvious weaknesses. While a few minor refinements, as suggested in the recommendations to authors, could enhance the overall support for the data and the authors' messages, these suggested improvements in no way diminish the robustness of the already presented data.

      In the recommendation for the authors, reviewer 1 mentioned a recent study (Schneider et al., eLife, 2023) showing that Cylc1-KO mice exhibits a reduced sperm count, an observation not noted in our current study. We would like to comment that that main and most important phenotype of Cylc1-KO mice in both studies is quite similar, including male subfertility and abnormal head morphology. We think the different targeting strategy and mouse strain may cause this discrepancy. In Schneider’s and our current studies, the total motility abnormality of Cylc1-KO mice are not observed. We appreciate the suggestion of reviewer 1 to further examine the detailed parameters of motility such as VCL, VSL, and ALH. Given that the head deformation is the most obvious phenotype of Cylc1-KO mice and the focus of our study, we feel sorry that this detailed analysis of sperm motility was not performed in the current stage. Reviewer 1 also asked whether Cylc1-KO female mice are fertile or not. Given that Cylc1 is an X chromosome gene and Cylc1-KO (Cylc1-/Y) mice are severely subfertile, we do not obtain enough Cylc1-KO female mice to examine their fecundity. We also would like to thank reviewer 1 to point out several inaccurate descriptions.

      Reviewer #2 (Public Review):

      Summary:

      To verify the function of PT-associated protein CYLC1, the authors generated a Cylc1-KO mouse model and revealed that loss of cylicin-1 leads to severe male subfertility as a result of sperm head deformities and acrosome detachment. Then they also identified a CYLC1 variant by WES analysis from 19 infertile males with sperm head deformities. To prove the pathogenicity of the identified mutation site, they further generated Cylc1-mutant mice that carried a single amino acid change equivalent to the variant in human CYLC1. The Cylc1-mutant mice also exhibited male subfertility with detached acrosomes of sperm cells.

      We appreciate the comprehensive summary of reviewer 2.

      Strengths:

      The phenotypes observed in the Cylc1-KO mice provide strong evidence for the function of CYLC1 as a PT-associated protein in spermatogenesis and male infertility. Further mechanistic studies indicate that loss of cylicin-1 in mice may disrupt the connections between the inner acrosomal membrane and acroplaxome, leading to detached acrosomes of sperm cells.

      We appreciate the positive comment of reviewer 2.

      Weaknesses:

      The authors identified a missense mutation (c.1377G>T/p. K459N) from 19 infertile males with sperm head deformities. The information for the variant in Table 1 is insufficient to determine the pathogenicity and reliability of the mutation site. More information should be added, including all individuals in gnomAD, East Asians in gnomAD, 1000 Genomes Project for allele frequency in the human population; MutationTaster, M-CAP, FATHMM, and more other tools for function prediction. Then, the expression of CYLC1 in the spermatozoa from men with CYLC1 mutation should be explored by qPCR, Western blot, or IF staining analyses. Although 19 infertile males were found carrying the same missense mutation (c.1377G>T/p. K459N), their phenotypes are somewhat different. For example, sperm concentrations for individuals AAX765, BBA344, and 3086 are extremely low but this is not observed in other infertile males. Then, progressive motility for individuals AAT812, 3165, 3172, 3203, and 3209 are extremely low but this is also not observed in other infertile males. It is worth considering why different phenotypes are observed in probands carrying the same mutation.

      We appreciate the suggestion of reviewer 2. First, Table 1 shows the information of the variant identified in CYLC1 gene, including allele frequency in gnomAD and functional prediction by SIFT, PolyPhen-2, and CADD. Given that mutant mice is a gold standard to confirm the pathogenicity of a variant, we generate Cylc1-mutant mice and Cylc1-mutant mice exhibit male subfertility with sperm acrosome detachment. The animal evidence is much more solid than bioinformatics prediction to confirm the pathogenicity of the identified variant in the CYLC1 gene. Second, the expression of CYLC1 in the spermatozoa from patients have been examined by IF staining (Fig. 5B). Unfortunately, the patients declined to continue in the project to donate more semen for qPCR and Western blot analyses. Third, the reviewer 2 asks why not all patients with CYLC1 gene mutation show the identical phenotype. Although some patients exhibit low sperm count or reduced motility, sperm head deformities are the shared phenotype of 19 patients. Many factors, such as way of life, may affect sperm quality. Perfectly identical phenotype of all 19 patients carrying the CYLC1 mutation is idealistic and will not always happen in clinical diagnosis. We also appreciate other suggestions from reviewer 2.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We appreciate the insightful feedback provided by the editors and reviewers who have recognized the novelty of our study. We have mapped the spatial distribution of six endogenous somatic histone H1 variants within the nuclei of several human cell lines using specific antibodies, which strongly suggest functional differences between variants. We are submitting a revised version of the manuscript to accommodate the reviewers comments and recommendations.

      Reviewer #1 (Recommendations For The Authors):

      Minor Comments:

      (1) In Figure 1C, since H1.4 is uniformly distributed among the four sections (A1-A4), its levels are not expected to be significant among the four sections as depicted. Even the violin plots shown do not seem to be significantly different from each other. This requires an explanation.

      We agree with this reviewer that significant differences of H1.4 abundance within areas A1 to A4 seem to not exist, either looking at the images or the data violin plots, as discussed in the manuscript. Nonetheless, statistical testing gave this as significant, due to small differences and the elevated sample N of the analysis. It is clear that H1.4 does not show a relevant peripheral enrichment as shown for the other variants.

      (2) At the end, it would be better to include a figure panel depicting chart/table/pictorial representation, depicting the summary of the work done with respect to all the histone variants, as there are several histone H1 variants studied under different conditions and contexts.

      A table summarizing the location and characteristics of the different H1 variants has been included in the manuscript (Figure 6).

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors may consider adding controls for the specificity of the antibodies used for the studies. While the antibodies used here are commercial, it does not guarantee the quality for immunofluorescence, especially considering their unreliability in the past. The authors may consider including peptide/ recombinant protein-based adsorption controls in addition to knockdown or knockout controls. Having these data will strengthen the exciting observations presented in this MS and significantly increase the impact of the presented findings.

      We totally agree with the reviewers that the use of commercially available antibodies does not guarantee their quality and specificity. As this issue was crucial for our studies, we extensively assayed performance and specificity of the antibodies, using different approaches. The validations were shown in our previous publications where these antibodies where successfully used for ChIP-seq (Serna-Pujol et al. 2022 NAR 50:3892; Salinas-Pena et al. 2024 NAR doi 10.1093/nar/gkae014). In summary, performance of H1.0 (05-629l, Millipore), H1.2 (ab4086, abcam), H1.4 (702876; Invitrogen), H1.5 (711912, Invitrogen) and H1X (ab31972; abcam) antibodies was tested by Western-Blot, ChIP and proteomic analyses (all the results are included in Supplem. Figure 1 in Serna-Pujol et al. 2022 NAR 50:3892). Concretely, we tested specificity using inducible KDs for the depletion of each of the somatic H1 variants in T47D. We also checked that the antibodies did not recognize additional H1 variants using recombinant proteins or cell lines naturally lacking some of the variants. All the experiments confirmed that antibodies were variant-specific. In addition, when the corresponding epitope was absent, the antibodies did not gain new cross-reactivity with other variants. More recently, validation of the specificicity of the H1.3 antibody (ab203948) was performed following the same experimental approaches described for the rest of antibodies (Supplem. Figure 1 in Salinas-Pena et al. 2024 NAR doi 10.1093/nar/gkae014).

      (2) Histone H1 is overexpressed in several cancers. While the authors do not use an overexpression strategy, the cells used in this study are all cancer cell lines. The study would benefit greatly if some of the findings- primarily regarding the spatial distribution of the H1 were to reproduce in non-tumorigenic, diploid cells.

      We have also studied and discussed the spatial distribution of H1 variants in nontumorogenic cell lines 293T and IMR-90, and we have added this in the revised manuscript (Figure 5D and Figure 5-figure supplement 3). The nuclear radiality of H1.4 in 293T cells is also shown (Figure 5-figure supplement 4A).

      Reviewer #3 (Recommendations For The Authors):

      This is an interesting paper that provides convincing evidence of distinct distributions to individual histone H1 variants. There are several aspects of the study that leave me unconvinced that the study accurately captures histone H1 variant distributions.

      (1) Antibody accessibility: (see PMID: 32505195). One means to address this is to express a fluorescent protein-tagged version of histone H1 and demonstrate that the antibody can detect that tagged version of histone H1 independent of its location in the nucleus. In general, these FP-tagged H1s show a much more even distribution than what is observed here. Of course, that could reflect artifacts related to the fusion or the expression of the exogenous construct. However, even if all of the above are true, this will test the ability of the antibodies to recognize their epitopes in different chromatin environments. The fluorescent protein tag enables unambiguous knowledge of the presence or absence of the H1 histone.

      We have used cells expressing HA-tagged H1.0 variant and performed immunofluorescence with HA and H1.0 antibody to investigate co-localization, to test whether an H1 antibodiy recognize all the tagged protein in different chromatin environments or irrespective of its location in the nucleus. A very high correlation between the two antibodies has been found (Figure 1-figure supplement 1B).

      (2) At high concentrations, the fluorescence signal intensity can be quenched. For example, this is common with high-affinity histone H3 serine 10 phosphorylation antibodies in late interphase/prophase nuclei. The artifact can be minimized by serial dilution of the antibody and identifying the minimum usable concentration for immunofluorescence. While I am not certain that this is taking place here, the rate and manner that the intensity drops off from the periphery in the peripheral H1 variant distribution are very similar in appearance. There are biological explanations related to constraints on diffusion that one could imagine also explaining the data so I'm not stating that this must be an artefact. However, I am concerned that it might be. An improved staining may reveal the same result but more convincingly.

      We have performed immunofluorescence with serial dilutions of the H1.3 antibody to show that peripheral distribution was not due to fluorescence signal intensity quenching (Figure 1figure supplement 1A).

      (3) Histone H1 is highly mobile and there is some concern that they could reorganize during the relatively long period of time that it takes to fully fix the cells for both ChIP and immunofluorescence. This should be acknowledged in the manuscript.

      We have added this reviewer’ concern in the Discussion section.

      (4) The paper would benefit from a more rigorous quantification of histone H1 subtypes. Mass spectrometry would be ideal but more classical techniques such as 2D AU-SDS PAGE, HPLC, etc...would be an improvement over immunoblotting. The authors did not explain the quantification of the immunoblots and the assignment of relative contributions of H1 subtypes to the individual coommassie bands in the Image J section of methods, which is referred to as the method of quantification in the immunoblotting methods.

      We have further explained how the relative quantification of H1 variants in different cell lines was performed (Methods section). We agree that more sophisticated mass spectrometrybased quantification is desirable and we are collaborating to do this using internal H1 peptide controls (Parallel Reaction Monitoring), but this is out of the scope of this manuscript as the observed patterns of distribution of H1 variants do not depend on mild differences in variants abundance. Only the absence of H1.3 and H1.5 in some cell lines alters the distribution of other variants.

      Additional author responses to the Public Review comments made by some Reviewer:

      (1) Respect to the functional significance of the results presented here, we want to stress that as a consequence of the differential distribution and abundance of H1 variants among cell types, depletion of different variants has different consequences. For example, H1.2 depletion but not others has a great impact on chromatin compaction. Besides, cell lines lacking H1.3/H1.5 expression present a basal up-regulation of some Interferon stimulated genes (ISGs) and particular repetive elements, as it was previously described upon induced depletion of H1.2/H1.4 in a breast cancer cell line or in pancreatic adenocarcinomas with lower levels of replication-dependent H1 variants (Izquierdo et al. 2017 NAR 45:11622). So, our results reinforce the existing link between H1 content and immune signature. We have added this data in the revised manuscript (Figure 5-figure supplement 5).

      Moreover, we also analyzed the chromatin structural changes upon combined depletion of H1.2 and H1.4. Combined H1.2/H1.4 depletion triggers a global chromatin decompaction, which supports previous observations from ATAC-Seq and Hi-C experiments in these cells (Izquierdo et al. 2017 NAR 45:11622; Serna-Pujol et al. 2022 NAR 50:3892). Although H1 content is more compromised in these cells (30% total H1 reduction) compared to single H1 KDs, the phenotype observed could not be recapitulated when other H1 KD combinations, in which total H1 content was reduced similarly, were investigated (Izquierdo et al. 2017 NAR 45:11622), supporting that the deleterious defects were due to the non-redundant role of H1.2 and H1.4 proteins. Indeed, this manuscript supports this notion, as H1.2 and H1.4 show a different genomewide and nuclear distribution.

      (2) Our immunofluorescence data, together with ChIP-seq data, do not discard binding of H1 variants to a great variety of chromatin, but show enrichment or preferential binding to certain regions or chromatin types. Our data on the interphase nuclei does not suggest at all any type of quenching or saturation. Obviously, detection with antibodies depends on epitope accessibility, just like all immunofluorescence data ever published, and we have acknowledged that post-translational modifications of H1 may occlude antibody accessibility as some phospho-H1 antibodies give distribution patterns different than total/unmodified H1 antibodies. Thus, we cannot exclude that specific modified-H1s exhibit particular distribution patterns that are not being recapitulated in our data. This represents another layer of complexity in H1 diversity and we agree that exploration of the repertoire of H1 PTMs and their functional roles are an interesting matter of study that needs to be addressed. Still, our data is highly relevant as it demonstrates for the first time the unique distribution patterns of H1 variants among multiple cell lines and it does not use overexpression of tagged H1 variants that in our experience may produce mislocalization of H1s.

      (3) We do have investigated co-localization of H1 variants with HP1alpha protein and we have added this data in the revised version of this manuscript (Figure 1-figure supplement 1C-D).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment:

      The authors report a novel hepatic lncRNA FincoR regulating FXR with therapeutic implications in the treatment of MASH. The findings are important and use an appropriate methodology in line with the current state-of-the-art, with convincing support for the claims.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the article titled "Hammerhead-type FXR agonists induce an eRNA FincoR that ameliorates nonalcoholic steatohepatitis in mice," the authors explore the role of the Farnesoid X Receptor (FXR) in treating metabolic disorders like NASH. They identify a new liver-specific long non-coding RNA (lncRNA), FincoR, regulated by FXR, notably induced by agonists such as tropifexor. The study shows that FincoR plays a significant role in enhancing the efficacy of tropifexor in mitigating liver fibrosis and inflammation associated with NASH, suggesting its potential as a novel therapeutic target. The study makes a promising contribution to understanding the role of FincoR in alleviating liver fibrosis in NASH, providing initial insights into the mechanisms involved. While it offers a valuable starting point, there is potential for further exploration into the functional roles of FincoR and their specific actions in human NASH cases. Building upon the current findings to elucidate more detailed mechanistic pathways through which FincoR exerts its therapeutic effects in liver disease would elevate the research's significance and potential impact in the field.

      Strengths:

      This study stands out for its comprehensive and unbiased approach to investigating the role of FincoR, a liver-specific lncRNA, in the treatment of NASH. Key strengths include: 1) The application of advanced sequencing methods like GRO-seq and RNA-seq offered a comprehensive and unbiased view of the transcriptional changes induced by tropifexor, particularly highlighting the role of FincoR. 2) Utilizing a genetic mouse model of FXR KO and a FincoR liver-specific knockdown (FincoR-LKD) mouse model provided a controlled and relevant environment for studying NASH, allowing for precise assessment of tropifexor's therapeutic effects. 3) The inclusion of tropifexor, an FDAapproved FXR agonist, adds significant clinical relevance to the study. It bridges the gap between experimental research and potential therapeutic application, providing a direct pathway for translating these findings into real-world clinical benefits for NASH patients. 4) The study's rigorous experimental design, incorporating both negative and positive controls, ensured that the results were specifically attributable to the action of FincoR and tropifexor.

      Weaknesses:

      The study presents several notable weaknesses that could be addressed to strengthen its findings and conclusions: 1) The authors focus on FincoR, but do not extensively test other lncRNAs identified in Figure 1A. A more comprehensive approach, such as rescue experiments with these lncRNAs, would provide a better understanding of whether similar roles are played by other lncRNAs in mitigating NASH. 2) FincoR was chosen for further study primarily because it is the most upregulated lncRNA induced by GW4064. Including another GW4064-induced lncRNA as a control in functional studies would strengthen the argument for FincoR's unique role in NASH. 3) The study does not conclusively demonstrate whether FincoR is specifically expressed in hepatocytes or other liver cell types. Conducting FincoR RNA-FISH with immunofluorescent experiments or RT-PCR, using markers for different liver cell types, would clarify its expression profile. 4) Understanding the absolute copy number of FincoR is crucial. Determining whether there are sufficient copies of FincoR to function as proposed would lend more credibility to its suggested role. 5) The manuscript, although technically proficient, does not thoroughly address the relevance of these findings to human NASH. Questions like the conservation of FincoR in humans and its potential role in human NASH should be discussed.

      Reviewer #2 (Public Review):

      Summary:

      Nonalcoholic fatty liver disease (NASH), recently renamed as metabolic dysfunctionassociated steatohepatitis (MASH) is a leading cause of liver-related death. Farnesoid X receptor (FXR) is a promising drug target for treating NASH and several drugs targeting FXR are under clinical investigation for their efficacy in treating NASH. The authors intended to address whether FXR mediates its hepatic protective effects through the regulation of lncRNAs, which would provide novel insights into the pharmacological targeting of FXR for NASH treatment. The authors went from an unbiased transcriptomics profiling to identify a novel enhancer-derived lncRNA FincoR enriched in the liver and showed that the knockdown of FincoR in a murine NASH model attenuated part of the effect of tropifexor, an FXR agonist, namely inflammation and fibrosis, but not steatosis. This study provides a framework for how one can investigate the role of noncoding genes in pharmacological intervention targeting known protein-coding genes. Given that many disease-associated genetic variants are located in the non-coding regions, this study, together with others, may provide useful information for improved and individualized treatment for metabolic disorders.

      Strengths:

      The study leverages both transcriptional profile and epigenetic signatures to identify the top candidate eRNA for further study. The subsequent biochemical characterization of FincoR using FXR-KO mice combined with Gro-seq and Luciferase reporter assays convincingly demonstrates this eRNA as a FXR transcriptional target sensitive to FXR agonists. The use of in vitro culture cells and the in vivo mouse model of NASH provide multi-level evaluation of the context-dependent importance of the FincoR downstream of FXR in the regulation of functions related to liver dysfunction.

      Weaknesses:

      As discussed, future work to dissect the mechanisms by which FincoR facilitates the action of FXR and its agonists is warranted. It would be helpful if the authors could base this on the current understanding of eRNA modes of action and the observed biochemical features of FincoR to speculate potential molecular mechanisms explaining the observed functional phenotype. It is unclear if this eRNA is conserved in humans in any way, which will provide relevance to human disease. Additionally, the eRNA knockdown was achieved by deletion of an upstream region of the eRNA transcription. A more direct approach to alter eRNA levels, e.g., overexpression of FincoR in the liver would provide important data to interpret its functional regulation.

      We thank the Editor and Reviewers for their constructive comments. We believe we have addressed all of the issues (detailed below) and the revisions have greatly strengthened the manuscript.

      Reviewer 1:

      The study presents several notable weaknesses that could be addressed to strengthen its findings and conclusions:

      (1) The authors focus on FincoR, but do not extensively test other lncRNAs identified in Figure 1A. A more comprehensive approach, such as rescue experiments with these lncRNAs, would provide a better understanding of whether similar roles are played by other lncRNAs in mitigating NASH.

      (2) FincoR was chosen for further study primarily because it is the most upregulated lncRNA induced by GW4064. Including another GW4064-induced lncRNA as a control in functional studies would strengthen the argument for FincoR's unique role in NASH.

      (3) The study does not conclusively demonstrate whether FincoR is specifically expressed in hepatocytes or other liver cell types. Conducting FincoR RNA-FISH with immunofluorescent experiments or RT-PCR, using markers for different liver cell types, would clarify its expression profile.

      (4) Understanding the absolute copy number of FincoR is crucial. Determining whether there are sufficient copies of FincoR to function as proposed would lend more credibility to its suggested role.

      Response to 1 - 4): We thank Reviewer 1 for the positive comments on the strength of our work, including the open-ended approach, the novel eRNA FincoR and its strong relevance to liver disease. We also value the constructive feedback provided by the reviewer and agree that additional studies are important to fully understand the mechanisms of FincoR and the functional significance of other FXR-induced lncRNAs. In this manuscript we report the discovery and initial characterization of FincoR, as well as its potential function in FXR action in response to hammerhead agonists, but a number of interesting questions are raised. Future experiments, as suggested by reviewer, will be needed to examine the role of other FXR-induced lncRNAs, the potential role of FincoR induction by other nuclear receptors with binding sites at FincoR, whether FincoR is expressed in liver cell types in addition to hepatocytes, and the expression abundance of FincoR. These are all excellent suggestions for future experimentation which we feel are beyond the scope of the present report. For example, generating a genetic CRISPR/Cas9 of another lncRNA is not trial as it takes a significant amount of work with murine models. Also, we did not mean to exclude if other lncRNAs induced by FXR also bear functions. Technically, rescue experiment is not possible as FincoR RNA can be potentially very long (~10 kb if estimated by RNA-seq pattern in Fig.1C), and it is not feasible now to properly express it by exogenous vectors to ensure the expression levels are similar to endogenous ones. We therefore consider that these important questions are more suitable for future work to fully address. Our belief is that a comprehensive exploration of FXR-regulated lncRNAs holds the potential to unveil novel insights crucial for the development of therapies targeting NASH and other metabolic diseases. The study of FincoR is the beginning of this area of research.

      (5) The manuscript, although technically proficient, does not thoroughly address the relevance of these findings to human NASH. Questions like the conservation of FincoR in humans and its potential role in human NASH should be discussed.

      Response: These are important questions. To respond to the reviewer’s comment, new experiments are presented in our final revised manuscript in which we utilized mouse models of NAFLD/NASH and cholestatic liver injury to determine FincoR’s role in these diseases. Hepatic FincoR levels were significantly increased in mice fed with high fat diet (HFD) for 12 weeks (Supplementary Figure S1A) and in mice fed a HFD with high fructose (HFHF) in drinking water for 12 weeks (Supplementary Figure S1B). Elevated hepatic FincoR levels were also observed in mice treated with α-naphthylisothiocyanate (ANIT), a chemical inducer of liver cholestasis (Supplementary Figure S1C), and in mice with bile duct ligation (BDL), a surgical method to induce cholestatic liver injury (Supplementary Figure S1D).

      In terms of the human relevance, we have provided additional information and figures showing that there is sequence similarity between mouse FincoR and a human loci. FincoR sequence is moderately conserved between mice and humans as displayed in the UCSC genome browser (Supplementary Figure S1E). Annotation of these conserved human sequences revealed that they overlap with a functionally uncharacterized human lncRNA XR_007061585.1 (Supplementary Figure S1F). Further, we conducted qRT-PCR experiment from human patient’s RNA samples, which demonstrated that hepatic lncRNA XR_007061585.1 levels are elevated in patients with NAFLD and PBC, but not in severe NASH-fibrosis patients (Supplementary Figure S1G, H). These results demonstrate that hepatic levels of a potential human analog of FincoR are elevated in NAFLD and PBC patients, which is consistent with FincoR’s upregulation in mouse models of chronic liver disease with hepatic inflammation and liver injury. Whether human lncRNA XR_007061585.1 is entirely analogous to mouse FincoR in terms of functions and mechanisms, and whether the elevation of this human lncRNA has a role in liver disease progression or is an adaptive response to liver injury remains to be determined.

      Reviewer #2 (Recommendations For The Authors):

      (1) In the introduction Line 96, "..., while the vast majority are transcribed into ncRNAs" may not be accurate. Please refer to Pointing and Haerty Annu Rev 2022 for a related discussion.

      Response: We would like to thank the reviewer for pointing out this inaccurate information in the introduction. We have changed the content in the text, “While a significant portion of the genome was initially thought to be "junk DNA", it has been established that many non-coding regions give rise to functional non-coding RNAs.”

      (2) Figure 5: the authors should provide a clear illustration demonstrating the sequence targeted by the sgRNA in relation to the transcriptional and epigenetic profile (i.e., RNAseq and H3K27ac ChIP-seq data).

      Response: The illustration (Figure 5-figure supplement 1A, right panel) demonstrating the sequence targeted by the sgRNA has been updated as suggested by the reviewer.

      In this model, the upstream of FincoR is deleted, leading to the inhibition of FincoR transcription. Does the deleted region include FXR binding sites? If so, would the phenotype be due to the deletion of these binding sequences, rather than the decreased FincoR transcripts? Accordingly, the limitation or alternative interpretation should be discussed.

      Response: The reviewer made a good point. The deleted region includes FXR binding sites so that we cannot rule out decreased binding of FXR or decreased transcription of the region per se, in addition to the decreased levels of FincoR, to bear a role in the phenotypic changes we observed. In the final revision, we have added discussion of this alternative (6th paragraph in the revised discussion section).

      (3) Figure 6C, the images should be accompanied by quantification. It appears the FincoR-KD shows a visible difference as compared to Tropifexor-treated control mice, which does not match entirely what is written in the results.

      Response: The quantitation of Oil Red O staining has been done as suggested by the reviewer (Figure 6C). The result is consistent with the triglyceride result showing that tropifexor treatment markedly reduced neutral lipids determined by Oil Red O staining of liver sections (Figure 6C) and liver TG levels (Figure 6D) and these beneficial effects on reducing fatty liver were not altered by FincoR.

      (4) Figure 7, does AST show the same pattern as ALT? As indicated from Line 335, "tropifexor treatment reduced mRNA levels of several genes that promote fibrosis (Col1a1, Col1a2, ...)". Fig. 7D does not seem to match the description of Col1a1. Authors may need to modify the results.

      Response: AST has been measured and has the same pattern as ALT. The new data have been added to Figure 7B. Col1a1 expression has been re-measured and the results have been updated in Figure 7D.

      (5) Is FincoR level reduced in NASH conditions?

      Response: We thank the Reviewer for this question. We now added new data to examine the levels of FincoR in mouse liver disease models and also examined levels of a potential human analog of FincoR in human liver specimens from PBC, NAFLD, and NASH patients. Please see our new data and description above in the response to comment 5 by Reviewer 1 (most data now included in the new Supplementary Figure S1).

      (6) Please provide information on the conservation of FincoR (DNA and RNA) in humans. This would be important to provide the human disease relevance.

      Response: As described above in the response to comment 5 of reviewer 1, a human loci shows sequence similarity to mouse FincoR and this conserved region has an annotated uncharacterized human lncRNA. We also examined the levels of this human homolog in human diseased liver samples. Our new results demonstrate that hepatic levels of a potential human analog of FincoR are elevated in NAFLD and PBC patients, which is consistent with FincoR’s upregulation in mouse models of chronic liver disease with hepatic inflammation and liver injury. Whether human lncRNA XR_007061585.1 is entirely analogous to mouse FincoR in terms of functions and mechanisms, and whether the elevation of this human lncRNA has a role in liver disease progression or is an adaptive response to liver injury remains to be determined.

      (7) Several discussion points for the authors' consideration:

      (7.1) human-mouse conservation as alluded to in #6;

      Response: Potential human-mouse conservation is discussed with new data in the last paragraph of the Results section.

      (7.2) potential molecular mechanism involved in FincoR-regulated hepatocyte function;

      Response: We thank Reviewer for this comment. We have added more discussion as shown below: “RNA inside the cells usually associates with different RNA-binding proteins (RBPs). To predict those potential binding proteins of FincoR. Additional bioinformatic analysis identified proteins that potentially binding FincoR, including KHDRBS1, RBM38, YBX2 and YBX3 (Supplemental Table S5). These findings and potential functions of the binding proteins are discussed in the 5th paragraph of the discussion section in the final revised manuscript. Whether these predicted RBPs interact with FincoR and the underlying mechanisms will need to be investigated in future experimentation to understand the mechanisms involved in FincoR-regulated hepatocyte function.”

      (7.3) any disease-associated SNPs in the FincoR locus.

      Response: No SNPs were noted in the annotation of the human loci with sequence similarity to mouse FincoR in the NCBI genome data viewer.

      (7.4) the in vitro induction of FincoR is transient but in vivo this occurs after 12 days of drug treatment. How do the authors reconcile the differential induction patterns?

      Response: To clarify, the induction of FincoR after a single dose of GW4064 in vivo was transient, peaked within 1 h and then declined gradually (Figure 1-figure Supplement 1C). In the tropifexor treatment protocol (also in vivo), the mice were treated daily with tropifexor for 12 days so that the multiple doses maintained FincoR induction. The beneficial effect of tropifexor by inducing FincoR, therefore, accumulated over the 12 days.

      It is worthy to note that we failed to see induction of FincoR in isolated primary mouse hepatocytes treated with GW4064 in vitro. We can only detect FincoR in primary hepatocytes isolated from GW4064-treated mice liver. This may be due to the loss of key factors mediating FincoR induction in the cultured primary hepatocytes.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript describes valuable information on how the extraocular muscles (EOM) are preserved in a mouse model of familial Amyotrophic lateral sclerosis (ALS) that carries a G93A mutation in the Sod1 gene. The authors provide convincing evidence of how the integrity of neuromuscular junction is preserved in EOM but not in limb and diaphragm muscles of G93A mice. Overall, this interesting work provides new evidence regarding the etiopathogenesis of ALS and insights for the development of therapeutic targets to slow the loss of neuromuscular function in ALS.

      Public Reviews:

      Reviewer#1 (Public Review):

      Summary:

      The study explores the mechanisms that preserve satellite cell function in extraocular muscles (EOMs) in a mouse model of familial Amyotrophic lateral sclerosis (ALS) that carries the G93A mutation in the Sod1 gene. ALS is a fatal neuromuscular disorder driven by motor neuron degeneration, leading to progressive wasting of most skeletal muscles but not EOM. The study first established that integrity of neuromuscular junction (NMJ) is preserved in EOM but not in limb and diaphragm muscles of G93A mice, and sodium butyrate (NaBu) treatment partially improves NMJ integrity in limb and diaphragm muscles of G93A mice. They also found a loss of synaptic satellite cells and renewability of cultured myoblasts in hindlimb and diaphragm muscles of G93A mice, but not in EOM, and NaBu treatment restores myoblast renewability. Using RNA-seq analysis, they identify that exon guidance molecules, particularly Cxcl12, are highly expressed in EOM myoblasts, along with more sustainable renewability. Using a neuromuscular co-culture model, they convincingly show that AAV-mediated Cxcl12 expression in G93A myotubes enhances motor axon extension and innervation. Strikingly, NaBu-mediated preservation of NMJ in limb muscles of G93A mice is associated with elevated expression of Cxcl12 in satellite cells and improved renewability of myoblasts. These results together offer molecular insights into genes critical for maintaining satellite cell function and revealing a mechanism through which NaBu ameliorates ALS.

      Strengths:

      Combination of in vivo and cell culture models. Nice imaging of NMJ and associated satellite cells. Using motoneuron-myotube coculture to establish the mechanism. Tested and illustrated a mechanism through which a clinically used drug ameliorates ALS.

      Weaknesses:

      Data presentation could be improved (see details in the Recommendation for Authors).

      It would have been nice to have included G93A motoneurons in the coculture study.

      This is indeed a plan of our future study. In the revised version, we discussed the limitation of not including G93A motor neurons in the coculture assay. (Page 11, Line 445-448)

      “However, it is possible that motor neurons carrying ALS mutations will respond differently to Cxcl12 mediated axon guidance than WT motor neurons. This is a limitation of the current study which will be investigated in future co-culture studies.”

      Reviewer #2 (Public Review):

      Summary:

      The work is potentially interesting as it outlines the role of satellite cells in supporting the functional decline of skeletal muscle due to the denervation process. In this context the authors analyze the functional and molecular characteristics of satellite cells in different muscle types differently affected by the degenerative process in the ALS model.

      Strengths:

      The work illustrates a relevant aspect of the differences in stem cell potential in different skeletal muscles in a mouse model of the disease through a considerable amount of data and experimental models.

      Weaknesses:

      However, there are some criticisms of the structuring of the results:

      It is not clear how many animals were used in each experimental group (Figs 1 and 2, Fig. 2-9). In particular, it is unclear whether the dots in the histograms represent biological or technical replicates. Furthermore, the gender used in experimental groups is never specified. This last point appears to be important considering the gender differences observed in the SOD1G93A mouse model.

      The original quantification data and mouse gender specification were actually listed in the corresponding supplementary tables. We now added the gender specification and number of the mice used in all corresponding figure legends. The number of mice used for sorting SCs from different muscles were also specified in the Methods section in the revised manuscript. (Page 12, Line 489-493).

      We also added one more supplementary figure (Figure 1-figure supplement 2) to compare the innervation status between male and female mice. The following description has been added in the updated manuscript (Page 3-4; Line 125-130):

      “The data shown in Figure 1B has also been replotted to compare the innervation status between male and female mice (Figure 1- figure supplement 2). In terms of well- or partially- innervated ratios, there are no significant gender difference observed in our experimental condition, in which the muscle samples were collected at the end stage of the disease, although there is marginally lower “poorly innervated ratio” in the EDL muscle of G93A female mice compared to G93A male mice.”

      However, we acknowledge that the current study has limitations to fully detect cross-gender differences in our experiments due to low “n” numbers per gender. We hope this is understandable as we have to split limited resource of ALS G93A mice between different kinds of experiments, including NMJ integrity assessment, peri-nuclear SC abundance assessment, whole muscle-qPCR, cell sorting for imaging, cell sorting for RNA-Seq, cell-sorting for qPCR, cell-sorting for neuromuscular co-culture, etc., in this pioneer study. However, we do intend to gradually build up “n” numbers for characterization of cross-gender difference in our ongoing studies.

      As to what the dots in each plot represent, we have inserted the description in each relevant figure legend as detailed below:

      For Fig 1, each dot represents quantification result from a single mouse. Please see Figure 1-figure supplement 1, Figure 1-figure supplement 2 and Figure 1-table supplement 1 for NMJs measured per muscle type per gender. Briefly, EDL, soleus and diaphragm muscles were from 4 male and 6 female mice per group; WT EOM group was from 4 male and 4 female mice; G93A EOM group was from 3 male and 4 female mice; G93A EOM with NaBu feeding group was from 6 female mice.

      For Fig 2, each dot represents quantification result from a single mouse. Please see Figure 2-table supplement 1 for NMJs measured per muscle type per gender. Briefly, WT EDL group was from 2 male and 2 female mice; G93A EDL group was from 3 male and 3 female mice; G93A EDL with NaBu feeding group was from 2 male and 4 female mice; WT soleus group was from 2 male and 3 female mice; G93A soleus group was from 3 male and 2 female mice; G93A soleus with NaBu feeding group was from 1 male and 4 female mice; WT diaphragm group was from 1 male and 4 female mice; G93A diaphragm group was from 1 male and 4 female mice; G93A diaphragm with NaBu feeding group was from 4 female mice; WT EOM group was from 1 male and 3 female mice; G93A EOM group was from 5 female mice; G93A EOM with NaBu feeding group was from 1 male and 3 female mice.

      For Fig 3, each dot in the box-and-dot plots represents result from one round of sorting. WT HL SCs were from 8 male and 6 female mice; G93A HL SCs were from 9 male and 5 female mice; WT diaphragm SCs were from 6 male and 3 female mice; G93A diaphragm SCs were from 12 male and 5 female mice. WT EOM SCs were from 6 batches of male and 1 batch of female mice (each batch contains 5-6 mice of the same gender). G93A EOM SCs were from 5 batches of male and 2 batches of female mice.

      *Please note these results were from sorting in which the FACS profiles were recorded. Not all rounds of sorting were with FACS profile recorded.

      For Fig 4A, each dot in the box-and-dot plots represents one image analyzed. For WT HL SCs, 94 images from 3 rounds of sorting; For WT Dia SCs, 107 images from 3 rounds of sorting; For WT EOM SCs, 75 images from 3 rounds of sorting; For G93A HL SCs, 96 images from 3 rounds of sorting; For G93A Dia SCs, 62 images from 3 rounds of sorting; For G93A EOM SCs, 79 images from 3 rounds of sorting. For the 3 rounds of sorting, 1 was from male and 2 were from female mice.

      *Please note that the number of mice used for sorting SCs in different muscles were specified in the Method Section in the revised manuscript. (Page 12, Line 489-493)

      For Fig 4B, each dot in the box-and-dot plots represents one image analyzed. For WT HL SCs, 52 images from 3 rounds of sorting; For WT Dia SCs, 51 images from 3 rounds of sorting; For WT EOM SCs, 51 images from 3 rounds of sorting; For G93A HL SCs, 52 images from 3 rounds of sorting; For G93A Dia SCs, 47 images from 3 rounds of sorting; For G93A EOM SCs, 56 images from 3 rounds of sorting. For the 3 rounds of sorting, 1 was from male and 2 were from female mice.

      For Fig 5A, each dot in the box-and-dot plots represents one replicate of culture. HL SCs were from male mice.

      For Fig 5B, each dot in the box-and-dot plots represents one image analyzed. For G93A HL SCs, 52 images from 3 rounds of sorting; 1-day NaBu treatment, 45 images from 3 rounds of sorting; 3-day NaBu treatment, 51 images from 3 rounds of sorting; For G93A Dia SCs, 47 images from 3 rounds of sorting; 1-day NaBu treatment, 60 images from 3 rounds of sorting; 3-day NaBu treatment, 57 images from 3 rounds of sorting. For the 3 rounds of sorting, 2 were from male and 1 was from female mice.

      For Fig 6, all samples used for bulk RNA-Seq were from female mice.

      For Fig 7C, each dot in the box-and-dot plots represents one replicate of culture. RNA samples were collected from 3-6 rounds of sorting and sorted cells were seeded into 3 dishes as replicates. WT HL SCs were from 3 male and 1 female mice. WT diaphragm SCs were from 2 male and 2 female mice; WT EOM SCs were from 3 male mice; G93A HL SCs were from 4 male and 2 female mice. G93A diaphragm SCs were from 1 male and 3 female mice; G93A EOM SCs were from 3 male mice.

      For Fig 7D, each dot in the box-and-dot plots represents one replicate of culture. RNA samples were collected from 6 rounds of sorting and sorted cells were seeded into 3 dishes as replicates. G93A HL SCs were from 4 male and 2 female mice; G93A diaphragm SCs were from 2 male and 4 female mice.

      For Fig 8D, each dot in the box-and-dot plot represents one neurite measured. HL and EOM SCs used for co-culture experiments were all from male mice.

      For Fig 9D, each dot in the box-and-dot plot represents one image analyzed. HL and EOM SCs used for co-culture experiments were all from male mice.

      For Figure 1-figure supplement 1, each dot in the box-and-dot plots represents quantification result from one mouse. Please also see Figure 1-table supplement 2. Briefly, muscles in WT and G93A groups were from 3 male and 3 female mice per group; G93A EDL with NaBu feeding group was from 3 male and 3 female mice. G93A soleus with NaBu feeding group was from 2 male and 3 female mice; G93A diaphragm with NaBu feeding group was from 2 male and 4 female mice; G93A EOM with NaBu feeding group was from 4 male and 2 female mice.

      The first paragraph of the results lacks a functional analysis of the motor decline of the animals after the administration of sodium butyrate. The authors, in fact, administered NaBu around 90 days of age while in previous work the drug had been administered at a pre-symptomatic age. It would therefore be useful, to make the message more effective, to characterize the locomotor functions of the treated animals in parallel with the histological evidence of the integrity of the NMJ.

      We are still in the process of collecting locomotor function data for G93A mice with and without NaBu treatment. We plan to report them in a future manuscript while this manuscript focuses on the molecular and histological aspect. Additionally, in the revised manuscript, we revised the rationale of the NaBu treatment starting after the disease onset. (Page 4, Line 131-134)

      “In the previous study, NaBu treatment initiated at a pre-symptomatic age delayed disease progression in G93A mice. As treatment of ALS patients is initiated after symptoms appear, we further tested whether NaBu treatment started after disease onset (at the age of 3 months, 2% NaBu in water for 1 month) was effective in preserving NMJ integrity.”

      Figure 5 should be completed with the administration of NaBu also to the satellite cells isolated from the WT mouse, the same for figure 9 where AAV-CMV-Cxcl12 transduction of WT myotubes is missing. We appreciate the reviewer’s suggestion of conducting the additional experiment with AAV-delivery of CXCL12 into the myotubes derived from the WT mice. Extensive studies by other investigators have been performed with butyrate on satellite cells derived from WT mice. To name a few here: Fiszman et al., 1980 (DOI: 10.1016/0014-4827(80)90467-X); Johnston et al., 1992 (DOI: 10.1128/mcb.12.11.5123-5130.1992); Lezzi et al., 2002 (DOI: 10.1073/pnas.112218599). To avoid performing redundant experiments, we focus on the effect of butyrate on the proliferation and differentiation of SCs derived from G93A mice. Thanks to the reviewer’s comment, we added additional discussion in the Results section (Page 6, line 216-217). Regarding the effect of Cxcl12, published studies have demonstrated its role in promoting axon growth. To name a few here: Negro et al., 2017 (DOI: 10.15252/emmm.201607257); Lieberam et al., 2005 (DOI: 10.1016/j.neuron.2005.08.011); Whitman et al., 2018 (DOI: 10.1167/iovs.18-25190). (Page 10, line 434, 440-442).

      In the experiment illustrated in Figure 8, treatment of cell cultures with NaBu would improve the outcome as well as the interference of Cxcl12 expression in myotubes derived from G93A EOM SC (Fig.9) would strengthen the specificity of this protein in axon guidance in this NMJ typical of a spared muscle in ALS.

      This is a great suggestion. Our study demonstrated the overexpression of CXCL12 in G93A myotube can enhance the axonal guidance and innervation of the co-cultured myotube/moto-neurons. We have also demonstrated the NaBu treatment can enhance the expression of CXCL12 and slow ALS progression. Combining NaBu treatment with CXCL12 overexpression may indeed have additive therapeutic benefits to slow ALS progression. We have added this statement in the revised Discussion. (Page 11, Line 466-468)

      In the "materials and methods" section the paragraph relating to the methods used for statistical analysis is missing.

      We have added it accordingly. (Page 15, Line 631-636)

      Reviewer #3 (Public Review):

      Summary:

      In their paper, Li et al. investigate the transcriptome of satellite cells obtained from different muscle types including hindlimb, diaphragm, and extraocular muscles (EOM) from wild-type and G93A transgenic mice (end-stage ALS) in order to identify potential factors involved in the maintenance of the neuromuscular junction. The underlying hypothesis is that since EOMs are largely spared from this debilitating disease, they may secrete NMJ-protective factors. The results of their transcriptome analysis identified several axon guidance molecules including the chemokine Cxcl12, which are particularly enriched in EOM-derived satellite cells. Transduction of hindlimb-derived satellite cells with AAV encoding Cxcl12 reverted hindlimb-derived myotubes from the G93A mice into myotubes sharing phenotypic characteristics similar to those of EOM-derived satellite cells. Additionally, the authors were able to demonstrate that EOM-derived satellite cell myotube cultures are capable of enhancing axon extensions and innervation in co-culture experiments.

      Strengths:

      The strength of the paper is that the authors successfully isolated and purified different populations of satellite cells, compared their transcriptomes, identified specific factors released by EOM-derived satellite cells, overexpressed one of these factors (the chemokine Cxcl12) by AAV-mediated transduction of hindlimb-derived satellite cells. The transduced cells were then able to support axon guidance and NMJ integrity. They also show that administration of Na butyrate to mice decreased NMJ denervation and satellite cell depletion of hind limbs. Furthermore, the addition of Na Butyrate to hindlimb-derived satellite cell myotube cultures increased Cxcl12 expression. These are impressive results providing important insights for the development of therapeutic targets to slow the loss of neuromuscular function characterizing ALS.

      Weaknesses:

      Several important aspects have not been addressed by the authors, these include the following points which weaken the conclusions and interpretation of the results.

      (a) Na Butyrate was shown to extend the survival of G93A mice by Zhang et al. Na butyrate has a variety of biological effects, for example, anti-inflammatory effects inhibit mitochondrial oxidative stress, positively influence mitochondrial function, is a class I / II HDAC inhibitor, etc. What is the mechanism underlying its beneficial effects both in the context of mouse muscle function in the ALS G93A mice and in the in vitro myotube assay? Cytokine quantification as well as histone acetylation/methylation can be assessed experimentally and this is an important point that has not been appropriately investigated.

      Great suggestion by the reviewer.

      Our previous publications (DOI: 10.3390/biom12020333; DOI: 10.3390/ijms22147412) have shown the beneficial roles of NaBu in ameliorating mitochondrial function in both motor neuron-like cells and adult muscle fibers. A focus of the current study is to test whether NaBu treatment also affect the SCs by regulating their gene transcription. Regarding the potential on HDAC/acetylation modification, there are previous studies by other investigators. We have added these references in the Discussion (Page 11, line 466-468).

      (b) In the context of satellite cell characterization, on lines 151-152 the authors state that soleus muscles were excluded from further studies since they have a higher content of slow twitch fibers and are more similar to the diaphragm. This justification is not valid in the context of ALS as well as many other muscle disorders. Indeed, soleus and diaphragm muscles contain a high proportion of slow twitch fibers (up to 80% and 50% respectively) but soleus muscles are more spared than diaphragm muscles. What makes soleus muscles (and EOMs) more resistant to ALS NMJ injury? Satellite cells from soleus muscles need to be characterized in detail as well.

      We agree with the reviewer’s comment that our original statement is misleading regarding the difference between soleus and diaphragm muscles in terms of the content of slow twitch fibers. Our histological studies revealed similar defects in denervation of diaphragm and soleus muscles derived from the G93A mice. Most importantly, the degree of NMJ degeneration and atrophy is less severe in soleus compared to other hindlimb muscles, such as EDL, during ALS progression. We have cited related studies such as Valdez et al., 2012 (DOI: 10.1371/journal.pone.0034640), Atkin et al., 2005 (DOI: 10.1016/j.nmd.2005.02.005). To avoid any confusion, we have removed the original statement and revised the paragraph (Page 4, line 159-162).

      “The three groups were determined because they represent the most severely affected, moderately affected and least affected muscles by ALS progression, respectively. Soleus was not included in the hindlimb SCs pool because its less affected than other hindlimb muscles based on our study and others [6,42].”

      Furthermore, EOMs are complex muscles, containing many types of fibers and expressing different myosin heavy chain isoforms and muscle proteins. The fact that in mice both the globular layer and orbital layers of EOMs express slow myosin heavy chain isoform as well as myosin heavy chain 2X, 2A, and 2B (Zhou et al., 2010 IOVIS 51:6355-6363) also indicates that the sparing is not directly linked to the fast or slow twitch nature of the muscle fiber. This needs to be considered.

      We greatly appreciate your suggestions and have included these points in the revised Discussion. “It is known that EOMs are complex muscles. Besides the developmental myosin isoforms, EOMs also express both adult fast and slow myosin contractile elements (Zhou et al., 2010 IOVIS 51:6355-6363), suggesting that the sparing may not be solely linked to the fast or slow twitch nature of the muscle fiber, rather the changes in SCs may play a pivotal role in preserving the EOM function during the progression of ALS. ” (Page 9, line 389-392)

      (c) In the context of myotube formation from cultured satellite cells on lines 178-179 the authors stained the myotubes for myosin heavy chain. Because of the diversity of myosin heavy chain isoforms and different muscle origins of the satellite cells investigated, the isoform of myosin heavy chain expressed by the myotubes needs to be tested and described. It is not sufficient to state anti-MYH.

      We used the pan-anti-MYH antibody (MF20 from DSHB) for the immunostaining of myosin heavy chain for identification of the differentiated myotubes. As described in the commercial website: https://dshb.biology.uiowa.edu/MF-20), FM20 recognizes all myosin heavy chain isoforms. We are happy to examine whether specific myosin heavy chain isoforms may contribute to the differences observed in future studies.

      (d) The original RNAseq results have not been deposited and while it is true that the authors have analyzed the results and described them in Figures 6 and 7 and relative supplements, the original data needs to be shown both as an xls list as a Volcano plots (q value versus log2 fold change). This will facilitate the independent interpretation of the results by the readers as some transcripts may not be listed. As presented it is rather difficult to identify which transcripts aside from Cxcl12 are commonly upregulated. Can the data be presented in a more visual way?

      We have uploaded the Fastq files and the text files containing TPM values to the Gene Expression Omnibus (GEO) database and included the GEO access number GSE249484 in the revised text. Per recommendation of the reviewer, we have added supplementary tables for Figure 6, to list the top 20 differentially expressed genes (ranked by Log2FC, both the upregulated and downregulated) comparing 1) EOM SCs to their hindlimb and diaphragm counterparts (Figure 6-table supplement 1); 2) G93A SCs to WT SCs of the same muscle origin (Figure 6-table supplement 2); 3) G93A hindlimb and diaphragm SCs with 3 day-NaBu treatment to those without (Figure 6-table supplement 3). (Page 6, Line 237-257)

      (e) There is no section describing the statistical analysis methods used. In many figures, more than 2 groups are compared so the authors need to use an ANOVA followed by a post hoc test.

      Thank for the comments. We have added it accordingly. (Page 15, Line 631-636)

      The authors have achieved their aim in showing that satellite cells derived from EOMs have a distinct transcriptome and that this may be the basis of their sparing in ALS. Furthermore, this work may help develop future therapeutic interventions for patients with ALS.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The prevailing hypothesis of ALS is that motoneuron degeneration subsequently induces muscle atrophy and wasting. However, evidence also suggests that ALS is a muscle disease independent of motoneuron degeneration. The results from the current study support the latter. The RNA-seq data from cultured myoblasts (without innervation) suggest cell cell-autonomous effect of G93A on muscle cells. While the current analyses in this study identify axon guidance pathways in EOM satellite cells that may underlie their unique gene program that enhances motoneuron function, the powerfulness of the RNA-seq data is underutilized. I suggest that the authors explore the RNA-seq further by comparing genes and pathways altered by G93A in various muscles to better pinpoint how G93A influences satellite cell function.

      Thanks for the comments and advice. Further analysis of the RNA-seq data is planned. As our original sequencing provider became unavailable to us since last year, we are currently negotiating with other sequencing providers. We have deposited the raw data files into the GEO database (GSE249484) to foster further analyses by other researcher teams.

      To address the reviewer’s concern, we have added three more supplementary tables for Figure 6, which list the top 20 differentially expressed genes (DEG) (ranked by Log2FC, both the upregulated and downregulated) comparing 1) EOM SCs to their hindlimb and diaphragm counterparts (new Figure 6-table supplement 1); 2) G93A SCs to WT SCs of the same muscle origin (new Figure 6-table supplement 2); 3) G93A hindlimb and diaphragm SCs with and without 3 day-NaBu treatment (new Figure 6-table supplement 3). These three DEG lists are discussed in the results section of the revised manuscript as following (Page 6, Line 237-257).

      Figure 4 presentation could be improved by adopting a similar comparison (WT vs G93A) as used in Figure 1-3. The current comparison is not straightforward. In addition, a magnified image of panel A would demonstrate the loss of myoblast homeostasis more clearly. (AKA Figure 2B)

      The WT vs G93A comparison was presented in the supplementary figure of Figure 4 (Figure 4-figure supplement 1 in the previous version, and now in Figure 4-figure supplement 2 in the revised version).

      As requested, we have added magnified single channel representative images of cultured SCs in the new Figure 4-figure supplement 1 in the revised manuscript.

      Co-culture results in Figure 8 are very impressive. It would be nice if the data were quantified. The figure legend states that panel D is the quantification, but I don't see panel D. As the study used rat motoneurons (presumably SOD1 wildtype), it is unknown if G93A motoneurons would respond to muscle-derived CXCL12 similarly to the wildtype motoneurons. This information is crucial for understanding whether the SOD1 mutant ALS1 is a motoneuron disease or muscle disease or both. Some discussion should be provided to reflect the limitation (of not including G93A motoneurons in the coculture).

      Panel D (the quantification data) was presented in the original figure setting (but may not be obvious). We have now revised Figure 8 to enlarge panel D to clearly present the quantification data.

      We acknowledge the limitation of not including mutant G93A motor neurons in the coculture assay, and have added this important point (and our future plans to do so) in the discussion section of the revised manuscript: (Page 11, Line 445-448)

      “However, it is possible that motor neurons carrying ALS mutations may respond differently to Cxcl12 mediated axon guidance than WT motor neurons. This is a limitation of the current study, which will be investigated in future co-culture studies.”

      Reviewer #2 (Recommendations For The Authors):

      Line 108. The sentence: "Z-stack scans of glycerol-cleared 109 whole muscles were obtained using a high working distance lens in a confocal microscope. The z-stacks were compacted into 2D images by maximal intensity projection" and should be moved to the material and methods section.

      Removed from the Result section and added to the Method section as recommended (Page 13, Line 564-568).

      Linea 113. The sentence: " In order to quantify the extent of denervation in a categorical manner, NMJs were arbitrarily defined as "well innervated" if SYP staining was present in >60% of the BTX positive area, "partially innervated" if between 60% and 30%, and "poorly innervated" if SYP staining corresponded to less than 30% of the BTX positive area" has already been written in the figure legend.

      Thanks for the advice. We have rephrased the sentence to remove the redundant part.

      In lines 445-7, it would be better to indicate the enzymatic units instead of the concentrations.

      We included enzymatic units for the four enzymes in the Methods Section of revised manuscript (Page 12, Line 497-499).

      Reviewer #3 (Recommendations for The Authors):

      There are several points that need to be addressed by the authors including:

      (a) The authors need to provide experimental evidence as to the mode of action of Na Butyrate and more specifically whether its beneficial effect is mediated by its anti-inflammatory action, inhibition of HDACs, or the combination of several mechanisms. Additionally, it should be clearer why Na Butyrate was administered. The sentence referring to reference 36 is not sufficient and some mechanistic insight needs to be provided in the results section.

      Thanks for the great suggestion. We have revised the Results section accordingly to clarify the rationale for NaBu usage (please also see our detailed response to your suggestion above). (Page 4, line 131-134)

      (b) Their reason for excluding soleus-derived-satellite cells from the analysis is not valid. Soleus muscles are "more" speared than diaphragm muscles and analysis may help shed light on this observation.

      Please see our response to your question (b) in the above public review section.

      (c) DATA AVAILABILITY: The RNAseq raw untransformed data has not been provided and Volcano plots are also not shown. I find it quite difficult to follow the results of the RNAseq experiments and this is central to the interpretation of the paper's results. Ideally, one should be able to look at the data and draw his/her own conclusions but as it stands this is difficult to do.

      We have uploaded the raw FastQ files and the excel files containing TPM values to the GEO database with the access number GSE249484.

      (d) A detailed description of all statistical tests that were used needs to be provided.

      Yes, this has been added to the revised manuscript.

      (e) Many figure legends are incomplete and some panels are not described appropriately, indicating that the authors need to thoroughly revise all aspects of the manuscript.

      We have extensively edited the figure legends to address the issues raised by reviewers.

      (f) Line 96-98: it is unlikely that muscles from ALS patients will be biopsied frequently. Furthermore, what biomarkers exactly could be followed in patients in response to therapy? This is unclear.

      While it is true that it is not generally part of the diagnostic workup for ALS, muscle biopsy is increasingly being used pre- and post-treatment in ALS clinical trials to examine responses to potential new therapies. Muscle biopsy is also being explored in several ongoing studies as a potential ALS-relevant peripheral tissue amenable to biopsy (as opposed to brain or spinal cord) for predictive, pharmacodynamic, and prognostic biomarkers. This includes studies attempting to recapitulate pathophysiological patient clusters observed in CNS autopsy tissues and studies to detect aberrant TDP-43 aggregates in intramuscular nerve twigs, among others. Indeed, Dr. Ostrow’s clinical duties include performing muscle biopsies and interpreting muscle pathology, and he is involved in several ongoing studies attempting to correlate postmortem CNS and muscle analyses for these purposes.

      To avoid potential controversy on the feasibility of multiple biopsies, we rephrased the sentence as follows (Page 3, Line 96-98)

      “Characterizing the distinct EOM SC transcriptomic pattern could provide clues for identifying potential biomarkers in therapeutic trials in both ALS patients and animal models, in addition to identifying therapeutic targets.”

      (g) Line 388-389. What do the authors mean by this sentence? It is not clear.

      Thanks for the comment, we have expended the discussion to make it clearer in the revision. (Page 10, Line 428-431)

      “It is possible that the more frequent self-renewal and spontaneous activation of EOM SCs contribute to higher rate of mitochondrial DNA replication, leading to accelerated spreading of mitochondrial DNA defects, resulting in higher proportion of COX-deficient myofibers than other muscles”.

      (h) Were the experimenters blinded as to the results shown in Figures 2, 7, 8, and 9?

      We endeavored to blind experiments whenever possible. Not all experiments were blinded due to logistic complexity and the clear difference in microscopic and gross appearances of wild-type and mutant muscle. The differences observed in Figures 2, 7, 8, 9 are qualitative (ie more than just quantitative), which should minimize the impact of possible human bias. Additionally, we employed multiple different experimental approaches to assess our hypotheses.

      For Fig 2, the physical appearance is notably different between G93A and WT muscles. The different innervation status (Fig 2A) is also not amenable to blinding.

      For Fig 7, the expression level of Hmga2, Notch3 and Cxcl12 detected by the qPCR assay are substantially greater in EOM derived SCs than counterparts from other muscles, and these results are also consistent with RNA-Seq, immunofluorescence assays. For Fig 8, the overexpression of Cxcl12 and the coculture with EOM SC derived myotubes not only increased the length of the longest neurites but also promoted axon branching, which can be easily observed.

      For Fig 9, only the EOM SC derived myotubes were capable of aligning the neurites along with them on a global scale. This qualitative difference is easy to appreciate, even under low magnification.

      (i) Line 64 -65 The authors refer to a very old paper by Fischer et al in 2002 for the expression profile of EOMs. There are more recent papers including that of Eckhardt et al. (eLife 2023, 12:e83618) showing the differences in proteome between EOMs and soleus and EOMs and EDL muscles. There are more than 2000 (and not 300!!) differentially expressed proteins.

      Thank you for the newly published reference. We have revised the Introduction section to include this new proteomic study. (Page 2, Line 64-69)

      (j) Figure 7 C. The Y axis is mislabeled as they should be log2 fold change and not the growth conditions.

      Thank you for catching this. We have fixed it.

      (k) In all figures, if each symbol represents the results obtained on 1 mouse, this needs to be clearly stated. What do the panels on the right of Figures 4 and 5B show?

      Thanks for the comments. For Figure 1B and 2C, as well as Figure 1-figure supplement 1B, one dot in the box-and-dot plots represents result obtained from 1 mouse. For Figure 3B, one dot represents one round of sorting. Generally, one mouse was euthanized for each round of sorting for HL and diaphragm SCs. But the sorting of EOM SCs could take up to 6 mice (as the EOMs are much smaller). For Figure 4 and 5B, each dot represents one image analyzed. All images were collected from three rounds of sorting. For Figure 5A, each dot represents one replicate of culture. For Figure 5B, each dot represents one image analyzed. All images were collected from three rounds of sorting. We have indicated those details in the revision.

      Please also see our response to the 1st question of Reviewer 2 in the public review section.

      (l) Figure 6 Table supplement 3 does NOT show the FDR but only the log2 fold change. Please amend.

      We have amended the supplementary table accordingly.

    1. Author Response

      We would like to thank the editors for giving us an opportunity to address the insightful comments made by the referees. In our response to the comments, we provide a guide to important information that may have been overlooked, and hope to elaborate on the context for better evaluating this study.

      As mentioned in the introduction of our manuscript, mosquito-transmitted diseases cause nearly a million deaths every year and significant worldwide morbidity. Moreover, the geographical range of mosquito vectors is rapidly expanding due to climate change and mosquito-borne disease risks are emerging in new parts of the world. DEET was discovered in the 1940s and has remained the primary insect repellent for >70 years in the developed world. The US Environmental Protection Agency (EPA) regulates mosquito repellents, and DEET-based commercial products are typically assigned protection times that vary with concentration. Products with lower concentration need repeated applications, whereas those with higher concentrations feel oily and cost more.

      We also mentioned that DEET inhibits mammalian cation channels and human acetylcholinesterase. The latter is a target of carbamate insecticides that are commonly used in disease-endemic areas, raising additional concerns about prolonged use of DEET. DEET is also a solvent and damages several forms of plastics, synthetic fabrics, and painted . Unfortunately, DEET has been of little value in disease control in Africa and Asia. Even in developed countries, a natural, cosmetically pleasant alternative could benefit millions of people who currently avoid repellents.

      Innovation in finding new repellents has been slow due to limitations in current research approaches and high costs for EPA registration (specially for synthetic compounds). Since DEET only five additional actives have been approved by the EPA for repellent products. In the 20+ years since discovery of insect odorant receptors from genomes, not a single novel repellent compound has been identified registered by the EPA. Thus, there is a both a strong need for new approaches to find insect repellents and need for new active ingredients that are safe and strategically effective. In fact, this goal of finding new mosquito repellents has been the topic of multiple Gates Foundation Grand Challenge grants, and numerous NIH funded grants to many research groups around the world.

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors set up a pipeline to predict insect repellents that are pleasant and safe for humans. This is done by daisy-chaining a new classification model based on predicting repellents with a published model on predicting human perception. Models use a feature-engineered selection of chemical features to make their predictions. The predicted molecules are then validated against a proxy humanoid (heated brick) and its safety is tested by molecular assays of human cells. The humanistic approach to modeling these authors have taken (which considers cosmetic/aesthetic appeal and safety) is novel and a necessary step for consumer usage. However, the importance of pleasantness over effectiveness is still up for debate (DEET is unpleasant but still used often) and the generalization of safety tests is unknown and assumed. The effectiveness of the prediction models is also still warranted. They pass the authors' own behavioral tests, but their contribution to the field is unknown as both models (new and published) have not been rigorously benchmarked to previous models. Moreover, the author's breadth of literature in this field is sparse, ignoring directly related studies.

      Strengths:

      Humanistic approach to modeling considers pleasantness and safety. Chaining models can help limit the candidate odorants from the vastness of odor space.

      Weaknesses:

      The current models need to be bench-marked against leading models predicting similar outcomes. Similarly, many of these papers need to be addressed and discussed in the introduction. The authors might even consider their data sources for model training to increase performance and lexical categorization for interoperability. For instance, the Dravnikes data lexicon, currently used in the human perception lexicon, has been highly criticized for its overlapping and hard-to-interpret descriptive terms ("FRAGRANT", "AROMATIC").

      Human Perception:

      Khan, R. M., Luk, C. H., Flinker, A., Aggarwal, A., Lapid, H., Haddad, R., & Sobel, N. (2007). Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. Journal of Neuroscience, 27(37), 10015-10023.

      Keller, A., Gerkin, R. C., Guan, Y., Dhurandhar, A., Turu, G., Szalai, B., ... & Meyer, P. (2017). Predicting human olfactory perception from chemical features of odor molecules. Science, 355(6327), 820-826.

      Gutiérrez, E. D., Dhurandhar, A., Keller, A., Meyer, P., & Cecchi, G. A. (2018). Predicting natural language descriptions of mono-molecular odorants. Nature communications, 9(1), 4979.

      Lee, B. K., Mayhew, E. J., Sanchez-Lengeling, B., Wei, J. N., Qian, W. W., Little, K. A., ... & Wiltschko, A. B. (2023). A principal odor map unifies diverse tasks in olfactory perception. Science, 381(6661), 999-1006.

      Author Response: The human perception predictions were performed using models that we had reported in two earlier publications: Kowalewski & Ray, iScience (2020b) and Kowalewski, Huynh & Ray, Chem. Senses (2021). Three of the four references pointed out by the referee were cited in these prior studies, which involved computational validation by predicting on a test set of the data which was left out of training (as typically done), and also predicting across different human studies with a high degree of success. A rigorous benchmarking of the odor perception models was done in Kowalewski, Huynh & Ray, Chem. Senses (2021) and a mini-review published in the same issue of the journal by Gerkin, Chem. Senses, (2021). This included a favorable comparison with the two references indicated by the referee: Keller et al. Science (2017) as well as the Gutiérrez et. al. Nat. Communication (2018). The 4th reference, Lee et al, Science (2023) describes a neural network approach and was published much after our mosquito behavior studies were completed. Although using an advanced Neural network model Lee et al. worked with 2-D structures of compounds in contrast to our 3-D approach. They also did not report cross-study validations or comparisons with Keller et al, 2017 or benchmark to past studies, so it is difficult to compare advances if any.

      The intent of the current study was to move beyond testing approaches, of which there are many, and instead work on a practical use case. As we see it, it is not necessarily the prediction of fragrance character or quality alone that matters but overlap with other predicted bioactivities. From the perspective of human use, a molecule with a pleasing scent that also repels insects is likely to be far more useful than one with an unappealing scent. Accordingly, our task in this study was to select molecules that fit into specific use categories: display strong insect repellency, have pleasing scent profiles, are natural in origin and are potentially repurposed from flavors and fragrances.

      Insect Repellents:

      Wright, R. H. (1956). Physical basis of insect repellency. Nature, 178(4534), 638-638.

      Katritzky, A. R., Wang, Z., Slavov, S., Tsikolia, M., Dobchev, D., Akhmedov, N. G., ... & Linthicum, K. J. (2008). Synthesis and bioassay of improved mosquito repellents predicted from chemical structure. Proceedings of the National Academy of Sciences, 105(21), 7359-7364.

      Bernier, U. R., & Tsikolia, M. (2011). Development of Novel Repellents Using Structure− Activity Modeling of Compounds in the USDA Archival Database. In Recent Developments in Invertebrate Repellents (pp. 21-46). American Chemical Society.

      Author response: The Katritzky et. al. PNAS (2008) paper is cited in our study, and we have indicated that the chemical analogs reported therein are part of the training data set in our study. We thank the reviewer for pointing us to the book chapter by Bernier & Tsikolia (2011), which reviews the QSAR approaches taken for repellent discovery and in large measure focuses on the Katritzky et. al. PNAS (2008) paper. We did cite two relevant studies by Uli Bernier, but agree that citation of the book chapter would make a nice addition.

      The current study assumes that insect repellents repel via their odor valence to the insect, but this is not accurate. Insect repellents also mask the body odor of humans making them hard to locate. The authors need to consult the literature to understand the localization and landing mechanisms of insects to their hosts. Here, they will understand that heat alone is not the attractant as their behavioral assay would have you believe. I suggest the authors test other behaviour assays to show more convincing evidence of effectiveness. See the following studies:

      De Obaldia, M. E., Morita, T., Dedmon, L. C., Boehmler, D. J., Jiang, C. S., Zeledon, E. V., ... & Vosshall, L. B. (2022). Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell, 185(22), 4099-4116.

      McBride, C. S., Baier, F., Omondi, A. B., Spitzer, S. A., Lutomiah, J., Sang, R., ... & Vosshall, L. B. (2014). Evolution of mosquito preference for humans linked to an odorant receptor. Nature, 515(7526), 222-227.

      Wei, J. N., Vlot, M., Sanchez-Lengeling, B., Lee, B. K., Berning, L., Vos, M. W., ... & Dechering, K. J. (2022). A deep learning and digital archaeology approach for mosquito repellent discovery. bioRxiv, 2022-09.

      Author response: In this study we took an unbiased approach to compile the training data set, including several known insect repellents of varying chemical structures and volatility, for most of which there is no information on how they are sensed by insects. Not surprisingly, the repellents we identified are varied in structure and in functional groups, and are likely detected in more than one way by the mosquitoes, using olfactory and/or gustatory systems. We did not consider “masking” of skin attraction as a factor in the training data set in this study, which precluded the need to discuss the papers pointed out by the referee in any detail. In fact there is an extremely vast and rich body of literature regarding human skin odor, CO2 and breath emanations, which includes our own contributions of research and review articles that are not discussed in the current paper.

      We did in fact conduct human arm-in-cage experiments with a few of the compounds reported in this study using female Aedes aegypti mosquitoes; a preprint describes the smaller scale analysis, the results of which show strong repellency, in Boyle et. al. bioRxiv (2016) https://doi.org/10.1101/060178 (Figure 4). However, heat offers a practical proxy for evaluating prospective repellents in a high-throughput manner. It would certainly be desirable to further evaluate additional candidates from the heat attraction assay with human subjects in the future.

      We thank the reviewer for pointing out the preprint by Wei, et. al. bioRxiv (2022). Our approaches differ in that Wei et al do not consider properties such as fragrance and toxicity. We also cannot assume that their newer neural network model is superior because although the model uses a large training dataset, it does not use 3D chemical structures that are extremely relevant for biological activity. While very little information is available for the actives reported in Wei et. al., we independently evaluated their top compounds similar or better than DEET (CAS#3731-16-6, 4282-32-0, 2040-04-2, 32940-15-1 and 3446-90-0) and could not find information about toxicity, smell, or natural source. In contrast, the top repellents that we identify here as similar or better than DEET (N=8) are all classified as GRAS (Generally Regarded as Safe) compounds by the Flavor and Extract Manufacturers (FEMA), are all naturally occurring (plum, jasmin, mushroom, grapes, etc), and have pleasant smells. The Dermal toxicity values in rabbits are known for six of our compounds and are at the best possible levels (5000mg/kg).

      Reviewer #2 (Public Review):

      Summary:

      This is an interesting study that seeks to identify novel mosquito repellents that smell attractive to humans.

      Strengths:

      The combination of standard machine learning methods with mosquito behavioral tests is a strength.

      Weaknesses:

      The study would be strengthened by describing how other modern ML approaches (RF, decision trees) would classify and identify other potential repellents.

      Author response: The current approach already shows a success rate >85% for repellency coefficient >0.5 and identifies eight naturally occurring GRAS compounds with repellency as strong as or greater than DEET. This substantially expands the repertoire of strong natural repellents. Since the 1950s only six active ingredients have been registered by US EPA for use in topical repellents, of which only two are natural in origin (Oil of lemon eucalyptus and catmint oil) and they typically do not protect as well as DEET does. That being said, we have since explored other predictive algorithms, for instance Neural Networks. The experimental evaluation of these newer pipelines will take significant resources and time and will be the focus of future grants.

      A comparison in the repellent activity between DEET and the top ten hits identified in this new study indicates little change in repellent activity (~3%), suggesting that DEET remains the gold standard. Without additional toxicity tests, the study is arguably incremental. The study's novelty should be better clarified.

      Author response: There is an urgent need to find new insect repellents that have better chances of being adopted by people who avoid DEET, such as in Africa and Asia. Having more natural actives that are effective, expands the tools against disease transmitting mosquitoes. As mentioned above, the top repellents that we identified as similar to or better than DEET (N=8) are all classified as GRAS (Generally Regarded as Safe) compounds by the Flavor and Extract Manufacturers (FEMA), are all naturally occurring (plum, jasmin, mushroom, grapes), and have pleasant smells. The Dermal toxicity values in rabbits are known for six and they are of the best possible levels (5000mg/kg).

      The Methods in the repellency tests are sparse, and more information would be useful. Testing the top repellents at low doses (<<1%) and for long periods (2-12 h) would strengthen the manuscript. Without this information, the manuscript is lacking in depth.

      Author response: The US Environmental Protection Agency (EPA) regulates mosquito repellents, and DEET-based commercial products are typically assigned protection times that vary with concentration (10% ~2 hrs, 30% ~5hrs, 100% ~8hrs). These would be the relevant concentrations for testing protection times on human volunteers, not lower as suggested. Such studies fall within the realm of EPA registration efforts, involving extensive GLP-testing for safety, physical chemistry, and Human Subjects Board approvals. This is outside the scope of the current study and is typically accomplished during development efforts.

      Testing human subjects on their olfactory perceptions of the repellents would also increase the depth and utility of the manuscript. Without additional experiments, the authors' conclusions lack support and have limited impact on the state-of-the-art.

      This manuscript is a mix of different approaches, which makes it lack cohesion. There is the ML method for classifying new repellents that smell good, but no testing of the repellents on human volunteers. The repellents are not tested at realistic concentrations and durations. And the calcium mobilization test is strange and makes little sense in the context of the other experiments and framing of the manuscript.

      Author response: The human olfaction validation that we present in this paper is consistent with most current publications in the field (for example, Keller et al, Gutiérrez et al.). More systematic validation of the human odor character prediction pipelines used was presented in two previous papers Kowalewski & Ray, iScience (2020b) and Kowalewski, Huynh & Ray, Chem. Senses (2021) and a mini-review published in the same issue of the journal by Gerkin, Chem. Senses, (2021).

      Reviewer #3 (Public Review):

      While I am not a specialist in this field, I do have some knowledge of the subject matter and the computational aspects involved. The authors employ simple machine learning techniques (such as SVM) for the following purposes:

      (a) Prediction of aversive valence.

      (b) Predicting anti-repellent chemicals.

      (c) Predicting calcium mobilization.

      The approach is commonplace in chemoinformatics literature.

      Weaknesses:

      • All the above models are presented discretely, making it difficult to discern experiment design principles and connectedness.

      • The ML work is rudimentary, lacking adequate details. Chemoinformatics has reached great heights, and SVM does not seem contemporary.

      • There is significant existing research on finding repellents.

      Author response: In the current study, we aimed to showcase how computational research may be combined with basic science to create scalable pipelines that address real world problems, rather than to demonstrate methodological novelty of chemoinformatics approaches. Specifically we wanted to use different predictive models to identify compounds that display strong insect repellency, have pleasing scent profiles, are natural in origin and are potentially repurposed from flavors and fragrances. Unfortunately, there is very little existing research on insect repellents that have these types of properties, which would make them better candidates for EPA registration. Most tested compounds are synthetic, and are often analogs of known repellents like DEET, and necessitate substantial time and resources to register. Moreover the identities of chemosensory receptors that are responsible for repellency to DEET and other compounds, and that are conserved across Anopheles, Aedes and Culex mosquitoes are not known.

      It is true that the field of cheminformatics has experimented with a variety of newer approaches, based in part on neural networks (e.g., Graph Neural Networks and graph embeddings to encode chemical structure rather than a more conventional Extended Connectivity Fingerprint (ECFP)). Importantly, however, novelty does not imply usefulness. The mosquito behavior experiments that we present show a very high success rate (>85%), validating our approach and identifying several excellent candidates already.

      Strengths:

      • Authors attempt to make a case for calcium mobilization in the context of repellency. This aspect sounds interesting but is not surprising.

      • Behavioral profiling of repellents could be useful.

      Author Comment: We thank the referee for this comment. We have indeed done behavioral profiling for several repellents that evoke calcium mobilization, but we do not see any clear correlation thus far.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript presents a valuable approach to exploring CD4+ T-cell response in mice across stimuli and tissues through the analysis of their T-cell receptor repertoires. The authors use a transgenic mouse model, in which the possible diversity of the T-cell receptor repertoire is reduced, such that each of a diverse set of immune exposures elicits more detectably consistent T-cell responses across different individuals. However, whereas the proposed experimental system could be utilized to study convergent T-cell responses, the analyses done in this manuscript are incomplete and do not support the claims due to limitations in the statistical analyses and lack of data/code access.

      We worked to address the reviewers' concerns below, point-by-point.

      All data on immune repertoires are deposited here: https://figshare.com/articles/dataset/Convergence_plasticity_and_tissue_residence_of_regulatory_and_effector_T_cell_response/22226155

      We added the Data availability statement to the manuscript.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors investigate the alpha chain TCR landscape in conventional vs regulatory CD4 T cells. Overall I think it is a very well thought out and executed study with interesting conclusions. The authors have investigated CDR3 alpha repertoires coupled with a transgenic fixed CDR3beta in a mouse system.

      Strengths:

      • One of a kind evidence and dataset.

      • State-of-the-art analyses using tools that are well-accepted in the literature.

      • Interesting conclusions on the breadth of immune response to challenges across different types of challenges (tumor, viral and parasitic).

      Thank you for the positive view.

      Weaknesses:

      • Some conclusions regarding the eCD4->eTreg transition are not so strong using only the data.

      The overlaps between the top-nucleotide clones in both LLC and PYMT challenges are prominently above the average, and this result is reproducible in lungs and skin, so we have no doubts based on these data. Further experiments with different methods, including tracking the clonal fates, should clarify and confirm/correct/disprove our findings.

      • Some formatting issues.

      We are working on the manuscript to correct minor errors and formatting.

      Reviewer #2 (Public Review):

      This study investigates T-cell repertoire responses in a mouse model with a transgenic beta chain, such that all T-cells in all mice share a fixed beta chain, and repertoire diversity is determined solely by alpha chain rearrangements. Each mouse is exposed to one of a few distinct immune challenges, sacrificed, and T-cells are sampled from multiple tissues. FACS is used to sort CD4 and Treg cell populations from each sample, and TCR repertoire sequencing from UMI-tagged cDNA is done.

      Various analyses using repertoire diversity, overlap, and clustering are presented to support several principal findings: 1) TCR repertoires in this fixed beta system have highly distinct clonal compositions for each immune challenge and each cell type, 2) these are highly consistent across mice, so that mice with shared challenges have shared clones, and 3) induction of CD4-to-Treg cell type transitions is challenge-specific.

      The beta chain used for this mouse model was previously isolated based on specificity for Ovalbumin. Because the beta chain is essential for determining TCR antigen specificity, and is highly diverse in wildtype mice, I found it surprising that these mice are reported to have robust and consistently focused clonal responses to very diverse immune challenges, for which a fixed OVA-specific beta chain is unlikely to be useful. The authors don't comment on this aspect of their findings, but I would think it is not expected a priori that this would work. If this does work as reported, it is a valuable model system: due to massively reduced diversity, the TCR repertoire response is much more stereotyped across individual samples, and it is much easier to detect challenge-specific TCRs via the statistics of convergent responses.

      This was to some extent expected, since these mice live almost normally and have productive adaptive immune responses and protection. In real life, there are frequent TCR-pMHC interactions where the TCR-alpha chain dominates (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701794/; https://pubmed.ncbi.nlm.nih.gov/37047500/). On the fixed TCR-beta background this mechanics starts working full-fledged, essentially substituting TCR-beta diversity, at the extent of relatively simplified TCRab repertoire and probably higher cross-reactivity.

      We agree that this is a valuable model, for sure, and indicated this in the last sentence of our Discussion. Now we are also adding this point to the abstract.

      While the data and analyses present interesting signals, they are flawed in several ways that undermine the reported findings. I summarize below what I think are the most substantive data and analysis issues.

      (1) There may be systematic inconsistencies in repertoire sampling depth that are not described in the manuscript. Looking at the supplementary tables (and making some plots), I found that the control samples (mice with mock challenge) have consistently much shallower sampling-in terms of both read count and UMI count-compared with the other challenge samples. There is also a strong pattern of lower counts for Treg vs CD4 cell samples within each challenge.

      The immune response of control mice is less extensive, as it should be. Just like the fact that the number of Tregs in tissues is lower than CD4, this is normal. So this all follows the expectations. But please note that we were very accurate everywhere with appropriate data normalisation, using all our previous extensive experience (https://pubmed.ncbi.nlm.nih.gov/29080364/).

      In particular (now adding more relevant details to Methods):

      For diversity metrics calculations, we randomly sampled an equal number of 1000 UMI from each cloneset. Samples with UMI < 700 were excluded from analysis.

      For amino acid overlap metrics calculations, we selected top-1000 largest clonotypes from each cloneset. Samples with clonotype counts < 700 were excluded from analysis.

      For nucleotide overlaps metrics calculations (eCD4-eTreg), we selected top-100 clonotypes from each cloneset. Samples with clonotypes < 100 were excluded from analysis.

      The top N clonotypes were selected as the top N clonotypes after randomly shuffling the sequences and aligning them in descending order. This was done in order to get rid of the alphabetical order for clonotypes with equal counts (e.g. count = 1 or 2).

      Downsampling was carried out using software vdjtools v.1.2.1.

      (2) FACS data are not reported. Although the graphical abstract shows a schematic FACS plot, there are no such plots in the manuscript. Related to the issue above, it would be important to know the FACS cell counts for each sample.

      Yes, we agree that this is valuable information that should be provided. Unfortunately, this data has not been preserved.

      (3) For diversity estimation, UMI-wise downsampling was performed to normalize samples to 1000 random UMIs, but this procedure is not validated (the optimal normalization would require downsampling cells). What is the influence of possible sampling depth discrepancies mentioned above on diversity estimation? All of the Treg control samples have fewer than 1000 total UMIs-doesn't that pose a problem for sampling 1000 random UMIs?

      Indeed, I simulated this procedure and found systematic effects on diversity estimates when taking samples of different numbers of cells (each with a simulated UMI count) from the same underlying repertoire, even after normalizing to 1000 random UMIs. I don't think UMI downsampling corrects for cell sampling depth differences in diversity estimation, so it's not clear that the trends in Fig 1A are not artifactual-they would seem to show higher diversity for control samples, but these are the very same samples with an apparent systematic sampling depth bias.

      We evaluated this approach through all our work, and summarised in the ref: https://pubmed.ncbi.nlm.nih.gov/29080364/. Altogether, normalising to the same count of randomly sampled UMI seems to be the best approach (although, preferably, the initial sequencing depth should be essentially higher for all samples than the sampling threshold used). Initial sorting of identical numbers of cells and ideally uniform library preparation and sequencing is generally not realistic and does not work in the real world, while UMI downsampling does the same work much better.

      (4) The Figures may be inconsistent with the data. I downloaded the Supplementary Table corresponding to Fig 1 and made my own version of panels A-C. This looked quite different from the diversity estimations depicted in the manuscript. The data does not match the scale or trends shown in the manuscript figure.

      There was a wrong column for Chao1, now correcting. Also, please note that we only used samples with > 700 UMI. Supplementary Table now corrected accordingly. Also, please note that Figure 1 shows the results for lung samples only.

      (5) For the overlap analysis, a different kind of normalization was performed, but also not validated. Instead of sampling 1000 UMIs, the repertoires were reduced to their top 1000 most frequent clones. It is not made clear why a different normalization would be needed here. There are several samples (including all Treg control samples) with only a couple hundred clones. It's also likely that the noted systematic sampling depth differences may drive the separation seen in MDS1 between Treg and CD4 cell types. I also simulated this alternative downsampling procedure and found strong effects on MDS clustering due to sampling effects alone.

      That’s right, for the overlap analysis (which values are mathematically proportional to the clonotype counts in both compared repertoires, so the difference in the counts causes major biases) the right way to do it is to choose the same number of clonotypes. See Ref. https://pubmed.ncbi.nlm.nih.gov/29080364/.

      We kept only samples with > 700 for the overlap analyses. Some relatively poor samples are present in all challenges, while MDS1 localization has clear reproducible logic, so we are confident in these results.

      It is not made clear how the overlap scores were converted to distances for MDS. It's hard to interpret this without seeing the overlap matrix.

      This is a built-in feature in VDJtools software (https://pubmed.ncbi.nlm.nih.gov/26606115/). See also here: https://vdjtools-doc.readthedocs.io/en/master/overlap.html.

      (6) The cluster analysis is superficial, and appears to have been cherry-picked. The clusters reported in the main text have illegibly small logo plots, and no information about V/J gene enrichments. More importantly, as the caption states they were chosen from the columns of a large (and messier-looking) cluster matrix in the supplementary figure based on association with each specific challenge. There's no detail about how this association was calculated, or how it controlled for multiple tests. I don't think it is legitimate to simply display a set of clusters that visually correlate; in a sufficiently wide random matrix you will find columns that seem to correlate with any given pattern across rows.

      Particular CDR3 sequences and VJ segments do not mean much for the results of this manuscript. Logos are given just for visual explanation of how the consensus motifs of the clusters look like.

      We now add two more Supplementary Tables and a Supplementary Figure with full information about clusters.

      We disagree that the Supplementary Figure 1 (representing all the clusters) looks “messy”. Vice versa, it is surprisingly “digital”, showing the clear patterns of responses and homings. This becomes clear if you visually study it for a while. But yes, it is too big to let the reader focus on this or that aspect. That is why we need to select TCR clusters to illustrate this or that aspect discussed in the work, but they were selected from the overall already structured picture.

      (7) The findings on differential plasticity and CD4 to Treg conversion are not supported. If CD4 cells are converting to Tregs, we expect more nucleotide-level overlap of clones. This intuition makes sense. But it seems that this section affirms the consequent: variation in nucleotide-level clone overlap is a readout of variation in CD4 to Treg conversion. It is claimed, based on elevated nucleotide-level overlap, that the LLC and PYMT challenges induce conversion more readily than the other challenges. It is not noted in the textual interpretations, but Fig 4 also shows that the control samples had a substantially elevated nucleotide-level overlap. There is no mention of a null hypothesis for what we'd expect if there was no induced conversion going on at all. This is a reduced-diversity mouse model, so convergent recombination is more likely than usual, and the challenges could be expected to differ in the parts of TCR sequence space they induce focus on. They use the top 100 clones for normalization in this case, but don't say why (this is the 3rd distinct normalization procedure).

      Your point is absolutely correct: “This is a reduced-diversity mouse model, so convergent recombination is more likely than usual”. Distinct normalisation procedure was required to focus on the most expanded clonotypes to avoid the tail of (presumably cross-reactive) and identical TCRs present in all repertoires in these limited-repertoire mice. So we downsampled as strictly as possible to minimise this background signal of nucleotide overlap, and only this strict downsampling to the top-100 clonotypes allowed us to visualise the difference between the challenges. This is a sort of too complicated explanation that would overload the manuscript. But your comments and our answers will be available to the reader who wants to go into all the details.

      The observed (at this strict downsampling) overlaps between the top-nucleotide clones in both LLC and PYMT challenges are prominently above the average, and this result is reproducible in lungs and skin, so we have no doubts in interpretations based on these data. Further experiments with different methods, including tracking the clonal fates, should clarify and confirm/correct/disprove our findings.

      Although interpretations of the reported findings are limited due to the issues above, this is an interesting model system in which to explore convergent responses. Follow-up experimental work could validate some of the reported signals, and the data set may also be useful for other specific questions.

      Yes, thank you for your really thorough analysis. We fully agree with your conclusion.

      Reviewer #3 (Public Review):

      Nakonechnaya et al present a valuable and comprehensive exploration of CD4+ T cell response in mice across stimuli and tissues through the analysis of their TCR-alpha repertoires.

      The authors compare repertoires by looking at the relative overlap of shared clonotypes and observe that they sometimes cluster by tissue and sometimes by stimulus. They also compare different CD4+ subsets (conventional and Tregs) and find distinct yet convergent responses with occasional plasticity across subsets for some stimuli.

      The observed lack of a general behaviour highlights the need for careful comparison of immune repertoires across cell subsets and tissues in order to better understand their role in the adaptive immune response.

      In conclusion, this is an important paper to the community as it suggests several future directions of exploration.

      Unfortunately, the lack of code and data availability does not allow the reproducibility of the results.

      Thank you for your positive view.

      All data on immune repertoires are deposited here: https://figshare.com/articles/dataset/Convergence_plasticity_and_tissue_residence_of_regulatory_and_effector_T_cell_response/22226155

      We added the Data availability statement to the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • In the manuscript at "yielding 13,369 {plus minus} 1,255 UMI-labeled TCRα cDNA molecules and 3233 {plus minus} 310 TCRα CDR3 clonotypes per sample" I'm not sure how can there be fewer unique DNA molecules than clonotypes in each sample.

      That was our mistake for sure, now corrected.

      • In the manuscript at "This indicates that the amplitude and focused nature of the effector and regulatory T cell response in lungs is generally comparable."

      I'm not sure it's possible to conclude that a drop in diversity in all conditions necessarily signals a focused nature. Since at this stage, the nature of the colotypes was not compared between conditions, it is not possible to claim a focused nature of the response.

      We have softened the wording:

      "This could indicate that the amplitude and focused nature of the effector and regulatory T cell response in lungs is generally comparable."

      • What are your thoughts on why there is such a large overlap between Treg and Teff in the Lung in control? For some replicates it is almost as much as a post-LLC challenge!

      There is some natural dispersion in the data, which is generally expectable. The overlaps between the top-nucleotide clones in both LLC and PYMT challenges are prominently above the average, and this result is reproducible in lungs and skin, so we have no doubts based on these data. Further experiments with different methods, including tracking the clonal fates, should clarify and confirm/correct/disprove our findings.

      • In the manuscript at "These results indicate that distinct antigenic specificities are generally characteristic for eTreg cells that preferentially reside in particular lymphatic niches" I'm not sure we can conclude this from the Figure. Wouldn't you expect the samples to be grouped by color (the different challenges)? Maybe I'm not understanding the sentence!

      This is a different story, about resident Tregs, irrespective of the challenge.

      The whole explanation is here in the text:

      “Global CDR3α cluster analysis revealed that characteristic eTreg TCR motifs were present in distinct lymphatic tissues, including spleen and thymus, irrespective of the applied challenge (Supplementary Fig. 1). To better illustrate this phenomenon, we performed MDS analysis of CDR3α repertoires for distinct lymphatic tissues, excluding the lungs due to their otherwise dominant response to the current challenge. This analysis demonstrated close proximity of eTreg repertoires obtained from the same lymphatic tissues upon all lung challenges and across all animals (Fig. 5a, b). These results indicate that distinct antigenic specificities are generally characteristic for eTreg cells that preferentially reside in particular lymphatic niches. Notably, the convergence of lymphatic tissue-resident TCR repertoires was less prominent for the eCD4 T cells (Fig. 5c, d).”

      And in the abstract:

      “Additionally, our TCRα repertoire analysis demonstrated that distinct antigenic specificities are characteristic for eTreg cells residing in particular lymphatic tissues, regardless of the challenge, revealing the homing-specific, antigen-specific resident Treg populations. ”

      • In the manuscript at " Notably, the convergence of lymphatic tissue-resident TCR repertoires was less prominent for the eCD4 T cells ":

      5b and 5d seem to have the same pattern: Spleen and MLN group together, AxLN and IgLN together and thymus is separate. Do you mean to say that the groups are more diffuse? I feel like the pattern really is the same and it's likely due to some noise in the data…

      Yes, we just mean here that eTreg groups are less diffuse - means more convergent.

      • I'm not sold on the eCD4 to eTreg conversion evidence. Why only limit to the top 100 clones? The top 1000 clones were used in previous analyses! Moreover, the authors claim that calculating relative overlap (via F2) of matching CDR3+V+J genes is evidence of a conversion between eCD4 and eTreg. I think to convince myself of a real conversion, I would track the cells between groups, unfortunately, I'm not sure how to track this.. Maybe looking at the thymus population? For example, what is the overlap in the thymus vs. after the challenge? I don't have an answer on how to verify but I feel that this conclusion is a bit on the weaker end.

      Distinct normalisation procedure was required to focus on the most expanded clonotypes to avoid the tail of (presumably cross-reactive) and identical TCRs present in all repertoires in these limited-repertoire mice. So we downsampled as strictly as possible to minimise this background signal of nucleotide overlap, and only this strict downsampling to the top-100 clonotypes allowed us to visualise the difference between the challenges. This is a sort of too complicated explanation that would overload the manuscript. But your comments and our answers will be available to the reader who wants to go into all the details.

      The observed (at this strict downsampling) overlaps between the top-nucleotide clones in both LLC and PYMT challenges are prominently above the average, and this result is reproducible in lungs and skin, so we have no doubts in interpretations based on these data. Further experiments with different methods, including tracking the clonal fates, should clarify and confirm/correct/disprove our findings.

      • There is a nuance in the analysis between Figure 3 and Figure 5 which I think I am not grasping. Both Figures use the same method and the same data but what is different? I think the manuscript would benefit from making this crystal clear. The conclusions will likely be more evident as well!

      As explained in the text and above, on Figure 5 “we performed MDS analysis of CDR3α repertoires for distinct lymphatic tissues, excluding the lungs due to their otherwise dominant response to the current challenge.”

      The idea of this mini-chapter of the manuscript is to reveal tissue-resident Tregs, distinct for distinct tissues, resident there in all these mice, irrespectively of the challenge we applied. And they are really there (!).

      • Do the authors plan to share their R scripts?

      All calculations were performed in VDJtools. R was only used to build figures. Corrected this in Methods.

      Minor typos and formatting issues to address:

      • Typo in Figure 2a the category should read "worm" instead of "warm"

      Corrected.

      • Figure 2a heatmap is missing a color bar indicating the value ranges

      The detailed information can be found in additional Supplementary materials.

      • Figure 2f is never mentioned in the manuscript!

      Corrected.

      • "eTreg repertoire upon lung challenge is reflected in the draining lymph node" - the word upon is of a lower size

      Corrected.

      • The authors should make the spelling of eTreg uniform across the manuscript (reg in subscript vs just lower case letters. Same goes for CDR3a vs CDR3\alpha

      Corrected.

      • Figure 4a-d p-values annotations are not shown. Is it because they are not significant?

      Corrected.

      • The spelling of FACS buffer should be uniform (FACs vs FACS, see methods)

      Corrected.

      • In the gating strategy, I would make a uniform annotation for the cluster of differentiation, for example, "CD44 high" vs "CD44^{hi}", pos vs + etc.

      Corrected.

      • Citation for MIGEC software (if available) is missing from methods

      Present in the text so probably sufficient.

      Reviewer #2 (Recommendations For The Authors):

      I noticed the data was made available via Figshare in the preprint, but there is no data availability statement in the current ms.

      We provided Data availability statement.

      The methods state that custom scripts were written to perform the various analyses. Those should be made available in a code repository, and linked in the ms.

      All calculations were performed in VDJtools. R was only used to build figures. Corrected this in Methods.

      The title mentioned "TCR repertoire prism", so I thought "prism" was the name of a new method or software. But then the word "prism" didn't appear anywhere in the ms.

      We just mean viewing or understanding something from a different perspective or through a lens that reveals different aspects or nuances.

      Figure 1D lacks an x-axis label.

      Worked on the figures in general.

      Reviewer #3 (Recommendations For The Authors):

      • The paper is very concise, possibly a bit too much. It could use additional explanations to properly affirm its relevance, for example:

      why the choice of fixing the CDR3beta background?

      To make repertoire more similar across the mice, and to track all the features of repertoire using only one chain.

      to what it is fixed?

      As explained in Methods:

      “C57BL/6J DO11.10 TCRβ transgenic mice (kindly provided by Philippa Marrack) and crossed to C57BL/6J Foxp3eGFP TCRa-/- mice.”

      What do you expect to see and not to see in this specific system and why it is important?

      As stated above: we expected repertoire to be more similar across the mice, and it is important to find antigen-specific TCR clusters across mice, and to be able to track all the features of the TCR repertoire using only one chain.

      Does this system induce more convergent responses? If so, can we extrapolate the results from this system to the full alpha-beta response?

      Such a model, compared to conventional mice, is much more powerful in terms of the ability of monitoring convergent TCR responses. At the same time, it behaves natural, mice live almost normally, so we believe it reflects natural behaviour of the full fledged alpha-beta T cell repertoire.

      • Is the lack of similarity of other tissues to Lung/MLN due to a lack of a response?

      As indicated in the title of the corresponding mini-chapter: “eTreg repertoire upon lung challenge is reflected in the draining lymph node”. And conclusion of this mini-chapter is that “these results demonstrate the selective tissue localization of the antigen-focused Treg response. ”

      Can you do a dendrogram like 2a for the other tissues to better clarify what is going on there? There is space in the supplementary material.

      We built lots of those, but in such single dimension mostly they are less informative compared to 2D MDS plots.

      • Figure 5 seems a bit out of place as it looks more related to Figure 2. It could maybe be integrated there, sent to supplementary or become Figure 3?

      This is a different story, about resident Tregs, irrespective of the challenge.

      The whole explanation is here in the text:

      “Global CDR3α cluster analysis revealed that characteristic eTreg TCR motifs were present in distinct lymphatic tissues, including spleen and thymus, irrespective of the applied challenge (Supplementary Fig. 1). To better illustrate this phenomenon, we performed MDS analysis of CDR3α repertoires for distinct lymphatic tissues, excluding the lungs due to their otherwise dominant response to the current challenge. This analysis demonstrated close proximity of eTreg repertoires obtained from the same lymphatic tissues upon all lung challenges and across all animals (Fig. 5a, b). These results indicate that distinct antigenic specificities are generally characteristic for eTreg cells that preferentially reside in particular lymphatic niches. Notably, the convergence of lymphatic tissue-resident TCR repertoires was less prominent for the eCD4 T cells (Fig. 5c, d).”

      And in the abstract:

      “Additionally, our TCRα repertoire analysis demonstrated that distinct antigenic specificities are characteristic for eTreg cells residing in particular lymphatic tissues, regardless of the challenge, revealing the homing-specific, antigen-specific resident Treg populations. ”

      • Have you explored more systematically the role of individual variability? If you stratify by individual, do you observe any trend? If not this is also an interesting observation to highlight and discuss.

      This is inside the calculations and figures/ one dot = 1 mice, so this natural variation is there inside.

      • Regarding the MDS plots: why are 2 dimensions the right amount? Maybe with 3, you can see both tissue specificity and stimuli contributions. Can you do a stress vs # dimensions plot to check what should be the right amount of dimensions to more accurately reproduce the distance matrix?

      Tissue specificity and stimuli contribution is hard to distinguish without focussing on appropriate samples, as we did on Fig. 3 and 5. The work is already not that simple as is, and attempting to analyse this in multidimensional space is far beyond our current abilities. But this is an interesting point for future work, thank you.

      • Figure 2: A better resolution is needed in order to properly resolve the logo plots at the bottom.

      Yes, we worked on Figures, and also provide new Supplementary Figure with all the logos.

      • No code or data are made available. There is also a lack of supplementary figures that complement and expand the results presented in the main text.

      We believe that the main text, although succinct, contains lots of information to analyse and conclusions (preliminary) to make. So we do not see it rational to overload it further.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      The manuscript investigates the role of membrane contact sites (MCSs) and sphingolipid metabolism in regulating vacuolar morphology in the yeast Saccharomyces cerevisiae. The authors show that tricalbin (1-3) deletion leads to vacuolar fragmentation and the accumulation of the sphingolipid phytosphingosine (PHS). They propose that PHS triggers vacuole division through MCSs and the nuclear-vacuolar junction (NVJ). The study presents some solid data and proposes potential mechanisms underlying vacuolar fragmentation driven by this pathway. Although the manuscript is clear in what the data indicates and what is more hypothetical, the story would benefit from providing more conclusive evidence to support these hypothesis. Overall, the study provides valuable insights into the connection between MCSs, lipid metabolism, and vacuole dynamics.

      We thank the positive review from the Reviewer #1. We hope that our hypotheses are supported by the "Author Response to Recommendations" and by further research in the future.

      Reviewer #2 (Public Review):

      This manuscript explores the mechanism underlying the accumulation of phytosphingosine (PHS) and its role in initiating vacuole fission. The study posits the involvement of membrane contact sites (MCSs) in two key stages of this process. Firstly, MCSs tethered by tricalbin between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi regulate the intracellular levels of PHS. Secondly, the amassed PHS triggers vacuole fission, most likely through the nuclear-vacuolar junction (NVJ). The authors propose that MCSs play a regulatory role in vacuole morphology via sphingolipid metabolism. While some results in the manuscript are intriguing, certain broad conclusions occasionally surpass the available data. Despite the authors' efforts to enhance the manuscript, certain aspects remain unclear. It is still uncertain whether subtle changes in PHS levels could induce such effects on vacuolar fission. Additionally, it is regrettable that the lipid measurements are not comparable with previous studies by the authors. Future advancements in methods for determining intracellular lipid transport and levels are anticipated to shed light on the remaining uncertainties in this study.

      We thank the careful comment from Reviewer #2. As Reviewer #2 pointed out, the mechanism of how slight changes in PHS levels can induce the vacuolar fission event is still uncovered in this manuscript. We sincerely consider that this issue has to be resolved in further study.

      Reviewer #3 (Public Review):

      In this manuscript, the authors investigated the effects of deletion of the ER-plasma membrane/Golgi tethering proteins tricalbins (Tcb1-3) on vacuolar morphology to demonstrate the role of membrane contact sites (MCSs) in regulating vacuolar morphology in Saccharomyces cerevisiae. Their data show that tricalbin deletion causes vacuolar fragmentation possibly in parallel with TORC1 pathway. In addition, their data reveal that levels of various lipids including ceramides, long-chain base (LCB)-1P, and phytosphingosine (PHS) are increased in tricalbin-deleted cells. The authors find that exogenously added PHS can induce vacuole fragmentation and by performing analyses of genes involved in sphingolipid metabolism, they conclude that vacuolar fragmentation in tricalbin-deleted cells is due to the accumulated PHS in these cells. Importantly, exogenous PHS- or tricalbin deletion-induced vacuole fragmentation was suppressed by loss of the nucleus vacuole junction (NVJ), suggesting the possibility that PHS transported from the ER to vacuoles via the NVJ triggers vacuole fission. Of note, the authors find that hyperosmotic shock increases intracellular PHS levels, suggesting a general role of PHS in vacuole fission in response to physiological vacuolar division-inducing stimuli. This work provides valuable insights into the relationship between MCS-mediated sphingolipid metabolism and vacuole morphology. The conclusions of this paper are mostly supported by their results, but inclusion of direct evidence indicating increased transport of PHS from the ER to vacuoles via NVJ in response to vacuolar division-inducing stimuli would have strengthened this study. There is another weakness in their claim that the transmembrane domain of Tcb3 contributes to the formation of the tricalbin complex which is sufficient for tethering ER to the plasma membrane and the Golgi complex. Their claim is based only on the structural simulation, but not on by biochemical experiments such as co-immunoprecipitation and pull-down.

      We appreciate the careful feedback from Reviewer #3. We have responded in the "Recommendations to Authors" section and hope it can partially support the weakness in our claim regarding the physical interaction between Tcb1, 2, and 3.

      Reviewer #1 (Recommendations For The Authors):

      I would suggest that the authors include some of the data (e.g., Tcb interactions) that they refer to in the response to the reviewers. I think that this could enhance the message in this manuscript. Also, maybe it's a typo and you were referring to some other image panel, but in the rebuttal letter a "Fig. S3B" is mentioned, but I could not find it.

      Following the suggestions of reviewers #1 and #3, we have added the data of co-immunoprecipitation which confirmed that Tcb3 binds to both Tcb1 and Tcb2 as Supplemental Figure 2. With this change, the person (Ms. Saku Sasaki) who performed this analysis was also added as a co-author.

      Also, we appreciate the careful remark and apologize for the mistake. In the previous Author's response, we mentioned the vacuole observation using SD medium, but this data was Fig 5C, not Fig S3B.

      Reviewer #3 (Recommendations For The Authors):

      I would recommend that the authors include the IP data mentioned in their rebuttal letter to show the interactions among Tcb1-3. Also, the authors should quantify all lipid species in Fig 5B, as shown in Fig 3A.

      Following the suggestions of reviewers #1 and #3, we have added the co-immunoprecipitation data (Fig S2). In a further study, we would like to test if the transmembrane domain of Tcb3 is sufficient for the interaction among Tcb1-3. Also, we quantified all lipid species and replaced the data in Fig 5B.

      Minor points:

      (1) The function of vps4 is not mentioned in the manuscript.

      (2) The function of Sur2p is not mentioned in the manuscript. It should be clearly mentioned that DHS is converted to PHS by Sur2p.

      (1) We have added text sections which mention that VPS4 is needed for normal ESCRT function, and its deletion is an example for inhibition of GFP-Cps1p transport into the vacuole.

      (2) We have added the text in the manuscript that states Sur2p is the hydroxylase that catalysis the conversion of DHS to PHS.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Overall, the magnitude of the effect size due to FNDC5 deficiency in both male and female mice is rather modest. Looking at the data from a qualitative perspective, it is clear that knockout females still lose bone during lactation and on the low calcium diet (LCD). It is difficult to assess the physiologic consequence of the modest quantitative 'protection' seen in FNDC5 mutants since the mutants still show clear and robust effects of lactation and LCD on all parameters measured. Similarly, the magnitude of the 'increased' cortical bone loss in FNDC5 mutant males is also modest and perhaps could be related to the fact that these mice are starting with slightly more cortical bone. Since the authors do not provide a convincing molecular explanation for why FNDC5 deficiency causes these somewhat subtle changes, I would like to offer a suggestion for the authors to consider (below, point #2) which might de-emphasize the focus of the manuscript on FNDC5. If the authors chose not to follow this suggestion, the manuscript could be strengthened by addressing the consequences of the modest changes observed in WT versus FNDC5 KO mice.

      Response: We agree that the magnitude of the effect size due to FNDC5 deficiency is modest with regards to the quantitative cortical bone parameters. However, if one examines the changes in osteocyte lacunar size and the mechanical properties of these bones, the differences are greater. As shown in Figure 3 E, the lacunar area of the WT females on a low calcium diet increases by over 30% and the KO by less than 20%, while in the males it is approximately 38% in WT compared to 46% in KO mice. According to Sims and Buenzli (PMID: 25708054) a potential total loss of ~16,000 mm3 (16 mL) of bone occurs through lactation in the human skeleton. This was based on our measurements in lactation-induced murine osteocytic osteolysis (Qing et al PMID: 22308018). They used our 2D section of tibiae from lactating mice showing an increase in lacunar size from 38 to 46 um2. In that paper we also showed that canalicular width is increased with lactation. Therefore, this would suggest a dramatic decrease in intracortical porosity due to the osteocyte lacunocanalicular system in female KO on a low calcium diet compared to WT females and a dramatic increase in KO males compared to WT males. Also, PTH was higher in the serum of female WT compared to female KO mice on a low calcium diet, the opposite for males in order to maintain normal calcium levels (See Table 1). Based on this data, using the FNDC5 null animals, we would speculate that the product of FNDC5, irisin, is having a highly significant effect on the ultrastructure of bone in both males and females challenged with a low calcium diet.

      (2) The bone RNA-seq findings reported in Figures 4-6 are quite interesting. Although Youlten et al previously reported that the osteocyte transcriptome is sex-dependent, the work here certainly advances that notion to a considerable degree and likely will be of high interest to investigators studying skeletal biology and sexual dimorphism in general. To this end, one direction for the authors to consider might be to refocus their manuscript toward sexually-dimorphic gene expression patterns in osteocytes and the different effects of LCD on male versus female mice. This would allow the authors to better emphasize these major findings, and to then use FNDC5 deficiency as an illustrative example of how sexually-dimorphic osteocytic gene expression patterns might be affected by deletion of an osteocyte-acting endocrine factor. Ideally, the authors would confirm RNA-seq data comparing male versus female mice in osteocytes using in situ hybridization or immunostaining.

      Response: Thank you for this suggestion. We have compared the different effects of LCD on male versus female mice in our revised version and have added a figure containing this information.

      (3) Along the lines of point #2 (above), the presentation of the RNA-seq studies in Figures 4-6 is somewhat confusing in that the volcano plot titles seem to be reversed. For example, Figure 4A is titled "WT M: WT F", but the genes in the upper right quadrant appear to be up-regulated in female cortical bone RNA samples. Should this plot instead be titled "WT F: WT M"? If so, then all other volcano plots should be re-titled as well.

      Response: We have now insured that the plots are appropriately labeled.

      (4) Have the authors compared male versus female transcriptomes of LCD mice?

      Response: We have now compared the male vs female transcriptomes of LCD mice and added an additional figure.

      (5) It would be appreciated if the authors could provide additional serum parameters (if possible) to clarify incomplete data in both lactation and low-calcium diet models: RANKL/OPG ratio, Ctx, PTHrP, and 1,25-dihydroxyvitamin D levels.

      Response: It is not possible to quantitate each of these as the serum has been exhausted. We have checked the RANKL/OPG ratio in the RNA seq and qPCR data using osteocyte enriched bone chips and found no difference.

      (6) Lastly, the data that overexpressing irisin improved bone properties in Fig 2G was somewhat confusing. Based on Kim et al.'s (2018) work, irisin injection increased sclerostin gene expression and serum levels, thus reducing bone formation. Were sclerostin levels affected by irisin overexpression in this study? Was irisin's role in modulating sclerostin levels attenuated with additional calcium deficiency?

      Response: We have not observed any differences in the osteocyte Sost mRNA expression between WT and KO normal and low-calcium-diet male and female mice in our RNAseq and qPCR data. As such, we did not check the Sost levels for the 2G experiment.

      Reviewer #2 (Public Review):

      Summary:

      The goal of this study was to examine the role of FNDC5 in the response of the murine skeleton to either lactation or a calcium-deficient diet. The authors find that female FNDC5 KO mice are somewhat protected from bone loss and osteocyte lacunar enlargement caused by either lactation or a calcium-deficient diet. In contrast, male FNDC5 KO mice lose more bone and have a greater enlargement of osteocyte lacunae than their wild-type controls. Based on these results, the authors conclude that in males irisin protects bone from calcium deficiency but that in females it promotes calcium removal from bone for lactation.

      While some of the conclusions of this study are supported by the results, it is not clear that the modest effects of FNDC5 deletion have an impact on calcium homeostasis or milk production.

      Specific comments:

      (1) The authors sometimes refer to FNDC5 and other times to irisin when describing causes for a particular outcome. Because irisin was not measured in any of the experiments, the authors should not conclude that lack of irisin is responsible. Along these lines, is there any evidence that either lactation or a calcium-deficient diet increases the production of irisin in mice?

      therefore we have extrapolated that the observed effects are due to a lack of circulating irisin. However, this does not rule out that Fndc5 itself could have a function, but this would have to be most likely in muscle and not in the osteocyte as we do not detect significant levels of irisin in either primary osteoblasts nor primary osteocytes compared to muscle and C2C12 cells. As such, we concluded that the phenotypical differences we saw in our experiments are due to a lack of irisin. We now address the reviewer’s point in the discussion. The measurement of irisin in the circulation with lactation or with low calcium diet of normal mice has not been performed.

      (2) The results of the irisin-rescue experiment shown in figure 2G cannot be appropriately interpreted without normal diet controls. In addition, some evidence that the AAV8-irisin virus actually increased irisin levels in the mice would strengthen the conclusion.

      Response: We do not have the normal diet controls at this time. We have quantitate tagged irisin in other AAV experiments and found highly significant expression

      (3) There is insufficient evidence to support the idea that the effect of FNDC5 on bone resorption and osteocytic osteolysis is important for the transfer of calcium from bone to milk. Previous studies by others have shown that bone resorption is not required to maintain milk or serum calcium when dietary calcium is sufficient but is critical if dietary calcium is low (Endo. 156:2762-73, 2015). To support the conclusions of the current study, it would be necessary to determine whether FNDC5 is required to maintain calcium levels when lactating mice lack sufficient dietary calcium.

      Response: We agree that it would be important to measure calcium levels in the milk to test the hypothesis that FNDC5 is important to maintain calcium levels in milk. However, as the calcium levels are normal in the serum, we are assuming they are normal in milk. This would require future experiments.

      (4) The amount of cortical bone loss due to lactation is very similar in both WT and FNDC5 KO mice. The results of the statistical analysis of the data presented in figure 1B are surprising given the very similar effect size of lactation. The key result from the 2-way ANOVA is whether there is an effect of genotype on the effect size of lactation (genotype-lactation interaction). The interaction terms were not provided. Similar concerns are noted for the results shown in figure 1G and H.

      Response: We agree, thanks. We will now add the interaction terms in the figure legends.

      (5) It is not clear what justifies the term 'primed' or 'activated' for resorption. Is there evidence that a certain level of TRAP expression lowers the threshold for osteocytic osteolysis in response to a stimulus?

      Response: The number of TRAP positive osteocytes in female KO mice are lower than in female WT. The number of TRAP positive osteocytes are lower in WT males compared to WT females. We propose that irisin plays a role in the number of TRAP positive osteocytes in normal, WT females by readying or preparing these cells to rapidly respond to low calcium. We will use the term ‘primed’ and will not use the term ‘activated’. We are open to any terminology or description as to why this is observed and what irisin could be doing to the osteocyte.

      Reviewer #3 (Public Review):

      Summary:

      Irisin has previously been demonstrated to be a muscle-secreted factor that affects skeletal homeostasis. Through the use of different experimental approaches, such as genetic knockout models, recombinant Irisin treatment, or different cell lines, the role of Irisin on skeletal homeostasis has been revealed to be more complex than previously thought and this warrants further examination of its role. Therefore, the current study sought to rigorously examine the effects of global Irisin knockout (KO) in male and female mouse bone. Authors demonstrated that in calcium-demanding settings, such as lactation or low-calcium diet, female Irisin KO mice lose less bone compared to wild-type (WT) female mice. Interestingly male Irisin KO mice exhibited worse skeletal deterioration compared to WT male mice when fed a low-calcium diet. When examined for transcriptomic profiles of osteocyte-enriched cortical bone, authors found that Irisin KO altered the expression of osteocytic osteolysis genes as well as steroid and fatty acid metabolism genes in males but not in females. These data support the authors' conclusion that Irisin regulates skeletal homeostasis in sex-dependent manner.

      Strengths:

      The major strength of the study is the rigorous examination of the effects of Irisin deletion in the settings of skeletal maturity and increased calcium demands in female and male mice. Since many of the common musculoskeletal disorders are dependent on sex, examining both sexes in the preclinical setting is crucial. Had the investigators only examined females or males in this study, the conclusions from each sex would have contradicted each other regarding the role of Irisin on bone. Also, the approaches are thorough and comprehensive that assess the functional (mechanical testing), morphological (microCT, BSEM, and histology), and cellular (RNA-seq) properties of bone.

      Weaknesses: One of the weaknesses of this study is a lack of detailed mechanistic analysis of why Irisin has a sex-dependent role on skeletal homeostasis. This absence is particularly notable in the osteocyte transcriptomic results where such data could have been used to further probe potential candidate pathways between LC females vs. LC males.

      Response: Our future studies will focus on understanding the molecular mechanism behind the sex-dependent effects of irisin. Our RNA seq data shows a significant difference in the lipid, steroid, and fat metabolism pathways between male and female mice, as well as between WT and KO mice. Future studies will focus on these pathways.

      Another weakness is authors did not present data that convincingly demonstrate that Irisin secretion is altered in the skeletal muscle between female vs. male WT mice in response to calcium restriction. The supplement skeletal muscle data only present functional and electrophysiolgical outcomes. Since Itgav or Itgb5 were not different in any of the experimental groups, it is assumed that the changes in the level of Irisin is responsible for the phenotypes observed in WT mice. Assessing Irisin expression will further strengthen the conclusion based on observing skeletal changes that occur in Irisin KO male and female mice.

      Response: The problem is that the commercial assays for irisin are not dependable, and results can differ widely across and beyond the physiologic range of 1-10 ng/ml. In part this is due to the nature of the polyclonal antibodies used and the resultant cross reactivity with other proteins. It was shown in Islam et al, 2021 (Nature Metabolism) that the commercial ELISAs were completely unreliable in mice and the only reliable method of measuring circulating irisin is mass spectrometry.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments:

      (1) Were there any low calcium diet food intake or body weight alterations between littermates and FDNC5 KO mice?

      Response: Yes, and we can now include the body weight data and the food intake data in the supplement. We do not observe any significant difference between the groups.

      (2) In Fig 1, ideally the authors would provide the osteocyte lacunar density along with the lacunar area.

      Response: We do not observe any difference in osteocyte density in any of the groups. There is not sufficient time within 2 weeks to see a change in osteocyte density because there is no new bone formation.

      (3) What is the author's comment on the involvement of irisin on TGF-B signaling since the authors observed peri lacunar remodeling in FDNC5 KO mice? Authors should also include this in the discussion section regarding the Irisin-TGF-B signaling in terms of observed increased matrix-related signals.

      Response: Perilacunar modeling is the removal followed by the replacement of the perilacunar and pericanilucular matrix as occurs with lactation (Qing et al 2012). Osteocytic osteolysis is the first half of that process where the matrix is removed. Alliston and colleagues generated transgenic mice with reduced expression of the TGFb Type II receptor in mice by using the Dmp1-Cre (PMID: 32282961). They clearly found a significant difference in bone parameters, the appearance of the osteocyte lacunocanalicular network, and markers of the osteocyte perilacunar remodeling between the sexes, however they did not compare the lacunar remodeling process in males as compared to females. The females were subjected to lactation and were found to be resistant to osteocytic osteolysis. To compare males and females, they would have had to challenge both sexes to a high calcium demanding condition such as low calcium diet as performed in the current study. Their study does suggest that TGF is involved in the osteocytic osteolysis that occurs with lactation. However, as the null males showed an abnormal lacunocanlicular network compared to wildtype males, this does not necessarily indicate a defect in perilacunar remodeling. It is more likely that the defect occurred during bone formation when osteoblasts were differentiating into osteocytes. Therefore, we will reference this paper regarding the role of TGF in osteocytic osteolysis in females with lactation but not in the comparison of males to females. We have examined the normalized expression of TGF1, 2, and 3 in the present study and found no significant differences in TGF1 or 2 in any of the groups, but did find significantly higher expression of TGF3 in females compared to males for WT (fdr < 0.05), LCD WT (fdr < 0.05), and Control KO (p value < 0.01). Perhaps this isoform is playing a major role in osteocytic osteolysis that occurs with lactation.

      (4) Did the authors compare the transcriptomic dataset between lactated female WT vs. KO groups? Or were the RNA-seq studies only performed on LCD study samples?

      Response: We have examined RNA sequence on the LCD study samples, and not in the lactating females.

      Reviewer #2 (Recommendations For The Authors):

      Line 401 on page 14 states that the sexes respond differently to calcium deficiency. Lacunar area increases in both sexes, so the response is very similar. What appears to be different between the sexes is the role of FNDC5 in this process.

      Response: Female WT mice have higher osteocyte lacunar area at baseline with normal diet compared to WT males. With the low calcium diet, lacunar area increases in both sexes, with female WTs having a greater increase. We agree that what appears to be different between the sexes is the role of FNDC5 when challenged with high calcium demand.

      Reviewer #3 (Recommendations For The Authors):

      • The authors state in the abstract and discussion that 'We propose Irisin ensures the survival of offspring by targeting the osteocytes...'. However, this appears to be over interpretation of their findings as they have not assessed the number of offspring surviving to weaning or their growth rate between WT and KO breeders.

      Response: That was a proposal and we agree that it could be an over interpretation. However we would like to keep this as a speculation that could be tested in future studies.

      • Figures 1 and 2 should include cortical Total Area (and maybe Marrow Cavity data from Supp as well). These data will help readers to assess whether the thinning of the cortex is driven by impaired periosteal expansion or accelerated endosteal resorption (or both). Marrow cavity area data seem to suggest increased endosteal resorption (Supp. Table 2), but unclear if periosteal expansion is altered.

      Response: The data are included in the supplementary tables. We do not observe any difference in the periosteal area between the groups.

      • To further support the author's statement that male KO mice exhibit different material properties of bone compared to WT mice, estimated elastic modulus should be calculated from the stiffness data (see https://doi.org/10.1002/jbmr.2539).

      Response: We looked at the elastic modulus and it requires a stress strain curve instead of the force displacement we used in our calculations, therefore we were not able to get the estimated elastic modulus from the raw data we have.

      • In Figure 3 there is no legend indicating females or males. Based on the data and results texts it is assumed that red is Female and blue is Male. However, please confirm in the figure legend.

      Response: This is now added in the figure legends.

      • Transcriptomic data should be deposited to NCBI GEO data repository. Also, please indicate whether cutoff p-value for DEG analysis was adjusted or not.

      Response: We have submitted our data to the GEO data repository: GSE242445. Significant genes were defined as genes with p-value less than 0.01 and absolute log2 fold change larger than 1. The p-value is not adjusted. This information is now added.

      • The statistical analysis section indicates that a two-way repeated-measure ANOVA was used. However, the data presented in the study are from independent groups, in which case repeated-measure statistical approaches should not be used. Please clarify the statistical tests that were used.

      Response: We now use regular ANOVA instead of repeated-measure ANOVA. Repeated-measure ANOVA is used for paired tests. The data remain significant.

      In summary, we thank the reviewers for their very useful and thoughtful suggestions for improving our manuscript.

    1. Author Response

      Reviewer #1 (Public Review):

      Response to reviewer 1 comments on “weaknesses”:

      “A weakness in the approach is the use of genetic models that do not offer complete deletion of the prolactin receptor from targeted neuronal populations...”

      We acknowledge that neither model used provided a complete deletion of the prolactin receptor (Prlr) from the targeted neuronal populations. We suspect that incomplete deletion of targeted genes is not uncommon in these sort of studies, but this remains the best approach to addressing our question, and we believe we have been thorough and transparent in reporting the degree of deletion observed. We thought we had appropriately discussed the implications of the low proportion of Kiss1 cells still expressing Prlr, but will certainly revisit to ensure it is discussed thoroughly. This does not detract, however, from the key conclusion that prolactin action is necessary for full suppression of fertility in lactation in the mouse.

      “Results showing no impact of progesterone on LH secretion during lactation are surprising, given the effectiveness of progesterone-containing birth control in lactating women...”

      We think that this comment misrepresents what has been done in our study. We did not report a lack of impact of progesterone, as exogenous progesterone was never administered to mice. We did, however, give mifepristone as a progesterone receptor antagonist to determine whether endogenous progesterone contributed to the suppression of kisspeptin neuronal activity. We found that mifepristone, at levels sufficient to terminate pregnancy, had no effect on pulsatile LH secretion in lactating mice. This is consistent with our prior observation that progesterone levels are low in mouse lactation, suggesting that progesterone does not contribute significantly to the suppression of kisspeptin neuronal activity during lactation in the mouse. We agree with the reviewer that if we had given exogenous progesterone, it likely would result in suppression of pulsatile LH secretion (as it does in women). Indeed, in other work, we have found that progesterone administration profoundly suppresses activity of the kisspeptin neurons in mice (https://doi.org/10.1210/en.2019-00193). But this was not the point of the present experiment. We will review how we have described this experiment to ensure that this is absolutely clear.

      “While the authors assert their findings may reflect an important role for prolactin in lactational infertility in other mammalian species, that remains to be seen….”

      We acknowledge that our study cannot address whether prolactin is necessary for the suppression of lactation in other mammalian species. We hope our data may stimulate a re-examination of this question in other species, however, as some of the prior methodology (such as using pharmacological suppression of prolactin) may have had off target effects that confound interpretation. We thought that this point was discussed appropriately in the manuscript but we will certainly check and make sure this is addressed suitably.

    1. Author Response

      The following is the authors’ response to the current reviews.

      eLife assessment

      This important study used Voltage Sensitive Dye Imaging (VSDI) to measure neural activity in the primary visual cortex of monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. The authors show convincingly that the initial effect of the mask ran counter to the behavioral effects of the mask, a pattern that reversed in the latter phase of the response. They interpret these results in terms of influences from the receptive field center, and although an alternative view that emphasizes the role of the receptive field surround also seems reasonable, this study stands as an interesting and important contribution to our understanding of mechanisms of visual perception.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings.

      The authors have done a good job responding to the main points of my previous review. One important question remains, as stated in that review:

      "My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry at al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here."

      Their rebuttal of my first review is not convincing -- I still believe that surround influences are important and perhaps predominant in determining the outcome of the experiments. This is particularly clear for the "paradoxical" dynamics that they observe, which seem exactly to reflect the behavior of the surround.

      The authors' arguments to the contrary are based on three main points. First, their stimuli cover the center and surround, unlike those of many previous experiments, so they argue that this somehow diminishes the impact of the surround. But the argument is not accompanied by data showing the effects of center stimuli alone or surround stimuli alone. Second, their model -- a normalization model -- does not need surround influences to account for the masking effect. Third, they cite human psychophysical masking results from their collaborators (Sebastian et al 2017), but do not cite an equally convincing demonstration that surround contrast creates potent orientation selective masking when presented alone (Petrov et al 2005, https://doi.org/10.1523/JNEUROSCI.2871-05.2005).

      At the end of the day, these issues will be resolved by further experiments, not argumentation. The paper stands as an excellent contribution, but it might be wise for the authors to be less doctrinaire in their interpretations.

      We thank the reviewer for their positive comments and constructive criticism. In general, we agree with the reviewer’s comments. Importantly, we do not claim that there is no effect from the surround. What we say in the discussion is:

      “Because our targets are added to the background rather than occluding it, it is likely that a significant portion of the behavioral and neural masking effects that we observe come from target-mask interactions at the target location rather than from the effect of the mask in the surround.”

      We still stand by this assessment. We also make the point that, at least within the framework of our delayed normalization model, there is no need for the normalization mechanism to extend beyond the center mechanism to account for our results, and even if the normalization mechanism is somewhat larger than the center, the overlap region at the center would still have a large contribution to the modulations. Overall, we agree that these issues will be need to be resolved by future experiments.

      For the reasons discussed in our previous reply, we disagree with the reviewers’ statement “…this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature”. For similar reasons we disagree with the statement “It is nice to see that VSDI results square well with those from prior extracellular recordings”.

      Reviewer #2 (Public Review):

      Summary

      In this experiment, Voltage Sensitive Dye Imaging (VSDI) was used to measure neural activity in macaque primary visual cortex in monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. Monkeys' ability to detect the target (indicated by a saccade to its location) was impaired by the mask, with the greatest impairment observed when the mask was matched in orientation to the target, as is also the case in human observers. VSDI signals were examined to test the hypothesis that the target-evoked response would be maximally suppressed by the mask when it matched the orientation of the target. In each recording session, fixation trials were used to map out the spatial response profile and orientation domains that would then be used to decode the responses on detection trials. VSDI signals were analyzed at two different scales: a coarse scale of the retinotopic response to the target and a finer scale of orientation domains within the stimulus-evoked response. Responses were recorded in three conditions: target alone, mask alone, and target presented with mask. Analyses were focused on the target evoked response in the presence of the mask, defined to be the difference in response evoked by the mask with target (target present) versus the mask alone (target absent). These were computed across five 50 msec bins (total, 250 msec, which was the duration of the mask (target present trials, 50% of trials) / mask + target (target present trials, 50% of trials). Analyses revealed that in an initial (transient) phase the target evoked response increased with similarity between target and mask orientation. As the authors note, this is surprising given that this was the condition where the mask maximally impaired detection of the target in behavior. Target evoked responses in a later ('sustained') phase fell off with orientation similarity, consistent with the behavioral effect. When analyzed at the coarser scale the target evoked response, integrated over the full 250 msec period showed a very modest dependence on mask orientation. The same pattern held when the data were analyzed on the finer orientation domain scale, with the effect of the mask in the transient phase running counter to the perceptual effect of the mask and the sustained response correlating the perceptual effect. The effect of the mask was more pronounced when analyzed at the scale.

      Strengths

      The work is on the whole very strong. The experiments are thoughtfully designed, the data collection methods are good, and the results are interesting. The separate analyses of data at a coarse scale that aggregates across orientation domains and a more local scale of orientation domains is a strength and it is reassuring that the effects at the more localized scale are more clearly related to behavior, as one would hope and expect. The results are strengthened by modeling work shown in Figure 8, which provides a sensible account of the population dynamics. The analyses of the relationship between VSDI data and behavior are well thought out and the apparent paradox of the anti-correlation between VSDI and behavior in the initial period of response, followed by a positive correlation in the sustained response period is intriguing.

      We thank the reviewer for their positive comments.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      None, except perhaps for a more balanced representation of the "surround" possibility in the Discussion. The Petrov et al paper (https://doi.org/10.1523/JNEUROSCI.2871-05.2005) should be considered and cited.

      As discussed above, we believe that our discussion of possible contribution from the surround is balanced. While the paper by Petrov et al is interesting, the stimuli used to study the surround effects are quite different (e.g., gap between center and surround, and the sharp edge of the surround inner boundary) so direct comparison with our results is not possible.

      Reviewer #2 (Recommendations For The Authors):

      The authors have addressed the questions/suggestions I raised in my review.


      The following is the authors’ response to the original reviews.

      We thank the reviewers for their helpful comments and suggestions.

      eLife assessment

      This is an important contribution that extends earlier single-unit work on orientation-specific center-surround interactions to the domain of population responses measured with Voltage Sensitive Dye (VSD) imaging and the first to relate these interactions to orientation-specific perceptual effects of masking. The authors provide convincing evidence of a pattern of results in which the initial effect of the mask seems to run counter to the behavioral effects of the mask, a pattern that reversed in the latter phase of the response. It seems likely that the physiological effects of masking reported here can be attributed to previously described signals from the receptive field surround.

      We thank the reviewers for bringing up the relation of our results to findings from previous orientation-specific center-surround interactions studies. In our final manuscript, we added a paragraph discussing this important issue. Briefly, for multiple reasons, we believe that the orientation-dependent behavioral and neural masking effects that we observe are unlikely to depend on previously described center-surround interactions in V1. First, in human subjects, perceptual similarity masking effects are almost entirely accounted for by target-mask interactions at the target location and are recapitulated when the mask has the same size and location as the target (Sebastian et al 2017). Second, in our computational model, the effect of mask orientation on the dynamics of the response are qualitatively the same if the mask is restricted to the size and location of the target while mask contrast is increased (Fig. 8 – figure supplement 3). Third, in our model, the results are qualitatively the same when the spatial pooling region for the normalization signal is the same as that for the excitation signal (Fig. 8 – figure supplement figure 1). These considerations suggest that center-surround interactions may not be necessary for neural and behavioral similarity masking effects with additive targets.

      We would also like to point out some key differences between the stimuli that we use and the ones used in most previous center-surround studies. First, in our experiments, the target and the mask were additive, while in most previous center-surround studies the target occludes the background. Such studies therefore restrict the mask effect to the surround, while in our study we allow target-mask interactions at the center. Second, most center-surround studies have a sharp-edged target/surround, while in our experiments no sharp edges were present. Unpublished results from our lab suggest that such sharp edges have a large impact on V1 population responses. A third key difference is that our stimuli were flashed for a short interval of 250 ms corresponding to a typical duration of a fixation in natural vision, while most previous center-surround studies used either longer-duration drifting stimuli or very short-duration random-order stimuli for reverse-correlation analysis.

      In addition, we would like to emphasize that our results go beyond previous studies in two important ways. First, we study the effect of similarity masking in behaving animals and quantitatively compare the effect of similarity masking on behavior and physiology in the same subjects and at the same time. Second, VSD imaging allows us to capture the dynamics of superficial V1 population responses over the entire population of millions of neurons activated by the target at two important spatial scales. Such results therefore complement electrophysiological studies that examine the activity of a very small subset of the active neurons.

      Public Reviews:

      Reviewer #1 (Public Review):

      This is a clear account of some interesting work. The experiments and analyses seem well done and the data are useful. It is nice to see that VSDI results square well with those from prior extracellular recordings. But the work may be less original than the authors propose, and their overall framing strikes me as odd. Some additional clarifications could make the contribution more clear.

      Please see our reply above regarding the agreement with previous studies and framing.

      My reading is that this is primarily a study of surround suppression with results that follow pretty directly from what we already know from that literature, and although they engage with some of the literature they do not directly mention surround suppression in the text. Their major effect - what they repeatedly describe as a "paradoxical" result in which the responses initially show a stronger response to matched targets and backgrounds and then reverse - seems to pretty clearly match the expected outcome of a stimulus that initially evokes additional excitation due to increased center contrast followed by slightly delayed surround suppression tuned to the same peak orientation. Their dynamics result seems entirely consistent with previous work, e.g. Henry et al 2020, particularly their Fig. 3 https://elifesciences.org/articles/54264, so it seems like a major oversight to not engage with that work at all, and to explain what exactly is new here.

      We thank the reviewer for the pointing out this previous work which we now cite in the final version of the manuscript. For the reasons discussed above, while this study is interesting and related to our work, we believe that our results are quite distinct.

      • In the discussion (lines 315-316), they state "in order to account for the reduced neural sensitivity with target-background similarity in the second phase of the response, the divisive normalization signal has to be orientation selective." I wonder whether they observed this in their modeling. That is, how robust were the normalization model results to the values of sigma_e and sigma_n? It would be useful to know how critical their various model parameters were for replicating the experimental effects, rather than just showing that a good account is possible.

      Thank you for this suggestion. In the final manuscript we include a supplementary figure that shows how the model’s predictions are affected by the orientation tuning and spatial extent of the normalization signal, and by the size and contrast of the mask (Fig. 8 – figure supplement 1-4).

      • The majority of their target/background contrast conditions were collected only in one animal. This is a minor limitation for work of this kind, but it might be an issue for some.

      We agree that this is a limitation of the current study. These are challenging experiments and we were unable to collect all target/background contrast combinations from both monkeys. However, in the common conditions, the results appear similar in the two animals, and the key results seem to be robust to the contrast combination in the animal in which a wider range of contrast combinations was tested. We added these points to the discussion in the final manuscript.

      • The authors point out (line 193-195) that "Because the first phase of the response is shorter than the second phase, when V1 response is integrated over both phases, the overall response is positively correlated with the behavioral masking effect." I wonder if this could be explored a bit more at the behavioral level - i.e. does the "similarity masking" they are trying to explain show sensitivity to presentation time?

      We agree that testing the effect of stimulus duration on similarity masking is interesting, but unfortunately, it is beyond the scope of the current study. We would also like to point out that the duration of the presentation was selected to match the typical time of fixation during natural behaviors, so much shorter or much longer stimulus durations would be less relevant for natural vision.

      • From Fig. 3 it looks like the imaging ROI may include some opercular V2. If so, it's plausible that something about the retinotopic or columnar windowing they used in analysis may remove V2 signals, but they don't comment. Maybe they could tell us how they ensured they only included V1?

      We thank the reviewer for this comment. As part of our experiments, we extract a detailed retinotopic map for each chamber, so we were able to ensure that the area used for the decoding analysis lays entirely within V1. We now incorporate this information in the final manuscript (Fig. 3 – figure supplement 1).

      • In the discussion (lines 278-283) they say "The positive correlation between the neural and behavioral masking effects occurred earlier and was more robust at the columnar scale than at the retinotopic scale, suggesting that behavioral performance in our task is dominated by columnar scale signals in the second phase of the response. To the best of our knowledge, this is the first demonstration of such decoupling between V1 responses at the retinotopic and columnar scales, and the first demonstration that columnar scale signals are a better predictor of behavioral performance in a detection task." I am having trouble finding where exactly they demonstrate this in the results. Is this just by comparison of Figs. 4E,K and 5E,K? I may just be missing something here, but the argument needs to be made more clearly since much of their claim to originality rests on it.

      We thank the reviewer for this comment. In the final manuscript we are more explicit when we discuss this point and refer to the relevant panels in Figs. 4, 5 and their figure supplements. To substantiate this key claim, we also report the timing of the transition between the two phases in all temporal correlation panels and report the neural-behavioral correlation for the integration period.

      Reviewer #2 (Public Review):

      Summary

      In this experiment, Voltage Sensitive Dye Imaging (VSDI) was used to measure neural activity in macaque primary visual cortex in monkeys trained to detect an oriented grating target that was presented either alone or against an oriented mask. Monkeys' ability to detect the target (indicated by a saccade to its location) was impaired by the mask, with the greatest impairment observed when the mask was matched in orientation to the target, as is also the case in human observers. VSDI signals were examined to test the hypothesis that the target-evoked response would be maximally suppressed by the mask when it matched the orientation of the target. In each recording session, fixation trials were used to map out the spatial response profile and orientation domains that would then be used to decode the responses on detection trials. VSDI signals were analyzed at two different scales: a coarse scale of the retinotopic response to the target and a finer scale of orientation domains within the stimulus-evoked response. Responses were recorded in three conditions: target alone, mask alone, and target presented with mask. Analyses were focused on the target evoked response in the presence of the mask, defined to be the difference in response evoked by the mask with target (target present) versus the mask alone (target absent). These were computed across five 50 msec bins (total, 250 msec, which was the duration of the mask (target present trials, 50% of trials) / mask + target (target present trials, 50% of trials). Analyses revealed that in an initial (transient) phase the target evoked response increased with similarity between target and mask orientation. As the authors note, this is surprising given that this was the condition where the mask maximally impaired detection of the target in behavior. Target evoked responses in a later ('sustained') phase fell off with orientation similarity, consistent with the behavioral effect. When analyzed at the coarser scale the target evoked response, integrated over the full 250 msec period showed a very modest dependence on mask orientation. The same pattern held when the data were analyzed on the finer orientation domain scale, with the effect of the mask in the transient phase running counter to the perceptual effect of the mask and the sustained response correlating the perceptual effect. The effect of the mask was more pronounced when analyzed at the scale.

      Strengths

      The work is on the whole very strong. The experiments are thoughtfully designed, the data collection methods are good, and the results are interesting. The separate analyses of data at a coarse scale that aggregates across orientation domains and a more local scale of orientation domains is a strength and it is reassuring that the effects at the more localized scale are more clearly related to behavior, as one would hope and expect. The results are strengthened by modeling work shown in Figure 8, which provides a sensible account of the population dynamics. The analyses of the relationship between VSDI data and behavior are well thought out and the apparent paradox of the anti-correlation between VSDI and behavior in the initial period of response, followed by a positive correlation in the sustained response period is intriguing.

      Points to Consider / Possible Improvements

      The biphasic nature of the relationship between neural and behavioral modulation by the mask and the surprising finding that the two are anticorrelated in the initial phase are left as a mystery. The paper would be more impactful if this mystery could be resolved.

      We thank the reviewer for the positive comments. In our view, while our results are surprising, there may not be a remaining mystery that needs to be resolved. As our model shows, the biphasic nature of V1’s response can be explained by a delayed orientation-tuned gain control. Our results are consistent with the hypothesis that perception is based on columnar-scale V1 signals that are integrated over an approximately 200 ms long period that incorporates both the early and the late phase of the response, since such decoded V1 signals are positively correlated with the behavioral similarity masking effect (Fig. 5D, J; Fig. 5 – figure supplement 1). We now explain this more clearly in the discussion of our final manuscript.

      The finding is based on analyses of the correlation between behavior and neural responses. This appears in the main body of the manuscript and is detailed in Figures S1 and S2, which show the correlation over time between behavior and target response for the retinotopic and columnar scale.

      One possible way of thinking of this transition from anti- to positive correlation with behavior is that it might reflect the dynamics of a competitive interaction between mask and target, with the initial phase reflecting predominantly the mask response, with the target emerging, on some trials, in the latter phase. On trials when the mask response is stronger, the probability of the target emerging in the latter phase, and triggering a hit, might be lower, potentially explaining the anticorrelation in the initial phase. The sustained response may be a mixture of trials on which the target response is or is not strong enough to overcome the effect of the mask sufficiently to trigger target detection.

      It would, I think, be worth examining this by testing whether target dynamics may vary, depending on whether the monkey detected the target (hit trials) or failed to detect the target (miss trials). Unless I missed it I do not think this analysis was done. Consistent with this possibility, the authors do note (lines 226-229) that "The trajectories in the target plus mask conditions are more complex. For example, when mask orientation is at +/- 45 deg to the target, the population response is initially dominated by the mask, but then in mid-flight, the population response changes direction and turns toward the direction of the target orientation." This suggests (to this reviewer, at least) that the emergence of a positive correlation between behavioral and neural effects in the latter phase of the response could reflect either a perceptual decision that the target is present or perhaps deployment of attention to the location of the target.

      It may be that this transition reflected detection, in which it might be more likely on hit trials than miss trials. Given the SNR it would presumably be difficult to do this analysis on a trial-by-trial basis, but the hit and miss trials (which make each make up about 1/2 of all trials) could be averaged separately to see if the mid-flight transition is more prominent on hit trials. If this is so for the +/- 45 degree case it would be good to see the same analysis for other combinations of target and mask. It would also be interesting to separate correct reject trials from false alarms, to determine whether the mid-flight transition tends to occur on false alarm trials.

      If these analyses do not reveal the predicted pattern, they might still merit a supplemental figure, for the sake of completeness.

      We thank the reviewer for suggesting this interesting possibility. The original analysis in the manuscript was based on both correct and incorrect trials, raising the possibility that our results reflect some contribution from decision- and/or attention-related signals rather than from low-level nonlinear encoding mechanisms in V1 that we postulate in our model (Fig. 8). To explore this possibility, we re-examined our results while excluding error trials. We found that our key results from Figs 4 and 5 – namely that there is an early transient phase in which the neural and behavioral similarity effects are anti-correlated, and a later sustained phase in which they are positively correlated – hold even for the subset of correct trials, reducing the possibility that decision/attention-related signals play a major role in explaning our results. We now include the results of this analysis as a supplementary figure in the final manuscript (Fig. 4 – figure supplement 2). While there may be some interesting differences in the response dynamics between correct and incorrect trials, the current study was not designed to address this question and the large number of conditions and small number of repeats that it necessitated make this data set suboptimal for examining these phenomena.

      References

      Sebastian S, Abrams J, Geisler WS. 2017. Constrained sampling experiments reveal principles of detection in natural scenes. Proc Natl Acad Sci U S A 114: E5731-e40

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to express our sincere appreciation for the invaluable comments provided by the reviewers and their constructive suggestions to enhance the quality of our manuscript. In response to their feedback, we have diligently revised and resubmitted our paper as an article, introducing five primary figures, seven supplementary figures, and two supplementary data files. Importantly, this work represents a noteworthy contribution to the field, presenting novel findings for the first time without any prior publication.

      Within the enclosed document, we have provided a comprehensive response to the reviewer comments, addressing each point in a meticulous and specific manner. We extend our sincere gratitude to the reviewers for their diligent examination of our manuscript and for offering insightful recommendations.

      In our latest revision, we have taken great care to respond to every reviewer's comment, ensuring that we clarify the manuscript and provide robust evidence where required. The primary focus of these revisions was to provide additional context regarding the cooperative role between PR-Set-7 and PARP-1 in the repression of metabolic genes, accompanied by a thorough description of the current state of the field. Substantial modifications and new analyses, presented in the supplemental figures, have been included to comprehensively address this concern.

      Another concern raised was regarding the interaction between PARP-1 and mono-methylated active histone marks, which was not adequately described in the previous version of our manuscript. In this revised version, we have updated our Fig. 1 and Supplemental Fig. S1 and introduced Supplemental Fig. S2 to properly demonstrate that PARP-1 binds to all mono-methylated active histone marks tested. Furthermore, we extensively revised the Discussion section of our manuscript to discuss the implications of this discovery and how it fits into the broader context of PARP-1 research.

      Addressing another reviewer's concern about the potential indirect regulation of transcription by PARP1 and PR-SET7, we revised the discussion section and incorporated findings from our recent study. These findings clearly demonstrate PARP1's binding to the loci of misregulated genes, suggesting a direct involvement in their regulation.

      Furthermore, we have improved the description of the reagents and Drosophila lines used in this study to provide a more comprehensive understanding for readers. Finally, we conducted a comprehensive revision of the entire manuscript to rectify the identified typos and grammatical errors.

      Enclosed, you will find a detailed, point-by-point response to each of the reviewer's comments, showcasing our commitment to addressing their concerns with precision.

      We firmly believe that our revisions successfully resolve all the concerns raised by the reviewers, and we are confident that this improved version of our manuscript contributes significantly to the scientific discourse.

      Reviewer #1:

      The study investigates the role of PARP-1 in transcriptional regulation. Biochemical and ChIP-seq analyses demonstrate specific binding of PARP-1 to active histone marks, particularly H4K20me, in polytene chromosomes of Drosophila third instar larvae. Under heat stress conditions, PARP-1's dynamic repositioning from the Hsp70 promoter to its gene body is observed, facilitating gene activation. PARP-1, in conjunction with PR-Set7, plays a crucial role in the activation of Hsp70 and a subset of heat shock genes, coinciding with an increase in H4K20me1 levels at these gene loci. This study proposes that H4K20me1 is a key facilitator of PARP-1 binding and gene regulation. However, there are several critical concerns that are yet to be addressed. The experimental validation and demonstration of results in the main manuscript are scant. Recent developments in the area are omitted, as an important publication hasn't been discussed anywhere in the work (PMID: 36434141). The proposed mechanism operates quite selectively, and any extrapolations require intensive scientific evidence.

      Major Comments:

      (1) PARP1 hypomorphic mutant validation data must be provided at RNA levels as the authors have mentioned about its global reduction in RNA levels.

      We sincerely appreciate Reviewer 1 for their meticulous review of our manuscript and for providing valuable insights. In response to the raised concern, we would like to highlight that the validation data for the PARP1 hypomorphic mutant at the RNA level has been previously documented in our study (PMID: 20371698), where we found that PARP1 RNA level was deeply impacted in parp1C03256. To enhance clarity, we have made corresponding modifications to the Materials and Methods section to explicitly articulate this aspect: parp-1C03256 significantly lowers the level of PARP-1 RNA and protein level (14) but also significantly diminishes the level of pADPr (11).

      We hope these revisions effectively address the reviewer's suggestion and contribute to a more comprehensive understanding of our findings.

      (2) The authors should provide immunoblot data for global Poly (ADP) ribosylation levels in PARP1 hypomorphic mutant condition as compared to the control. They must also provide the complete details of the mouse anti-pADPr antibody used in their immunoblot in Figure 5B.

      We extend our gratitude to Reviewer 1 for drawing attention to aspects requiring further clarification. In response to the inquiry about global Poly (ADP) ribosylation levels in the PARP1 hypomorphic mutant condition, we want to emphasize that our study extensively reported on the diminished levels of pADPr in comparison to the wildtype, as documented in our previous work (PMID: 21444826). To address this, we have incorporated pertinent details in the Materials and Methods section, providing a comprehensive account of our findings. parp-1C03256 significantly lowers the level of PARP-1 RNA and protein level (14) but also significantly diminishes the level of pADPr (11).

      Furthermore, in addressing the request for complete details of the mouse anti-pADPr antibody (10H) used in Figure 5B, we have taken steps to enhance transparency. The Materials and Methods section has been revised to incorporate more comprehensive information about the antibody, ensuring a clearer understanding of our experimental procedures. anti-pADPr (Mouse monoclonal, 1:500, 10H - sc-56198, Santa Cruz).

      We appreciate the reviewer's diligence in ensuring the robustness of our methodology, and we believe these modifications strengthen the overall quality and transparency of our study.

      (3) PR-Set7 mutant validation results should be provided in the main manuscript, as done by the authors using qRT-PCR. Also, immunoblot data for the PR-set7 null condition should be supplemented in the main manuscript as the authors have already mentioned their anti-PR-Set7 (Rabbit, 1:1000, Novus Biologicals, 44710002) antibody in the materials and methods section.

      We appreciate Reviewer 1's thorough examination of our manuscript and their constructive feedback. The pr-set7 null mutant has been rigorously characterized in a study conducted by Dr. Ruth Steward's laboratory (PMID: 15681608). Additionally, we employed our PR-SET7 antibody to validate the mutant, and the corresponding data can be found in Supplemental Figure 3. To enhance clarity, we have made necessary modifications to both the results and Materials and Methods sections, providing explicit details on the validation process. Result section: To validate our hypothesis, we initially confirmed that the pr-set720 mutant not only eliminated PR-SET7 RNA and protein but also abrogated H4K20me1 modification (Supplemental Fig.S3).

      Material and methods section: The pr-set720 null mutant was validated in (15) and we confirmed that this mutant abolishes PR-SET7 RNA and protein level but also leads to the absence of H4K20me1 (Supplemental Fig. S3).

      We believe these revisions address the reviewer's concerns and contribute to a more comprehensive presentation of our study.

      (4) The authors have probably missed out on a very important recent report (PMID: 36434141), suggesting the antagonistic nature of the PARP1 and PR-SET7 association. In light of these important observations, the authors must check for the levels of PR-SET7 in PARP1 hypomorphic conditions.

      We appreciate the insightful comment from Reviewer 1, drawing our attention to the recent study by Estève et al. (PMID: 36434141) highlighting the potential antagonistic relationship between PARP1 and PR-SET7. To address this important point, we have carefully examined the levels of PR-SET7 in PARP1 hypomorphic conditions.

      In response to this concern, we have added two new supplemental figures, Supplemental Fig. S4 and S5, which specifically address the impact of PARP1 deficiency on PR-Set7 expression. These figures clearly demonstrate that there were no significant changes observed in PR-SET7 RNA (Fig. S4) or protein levels (Fig. S5) in the absence of Parp1. This finding supports the conclusion that Parp1 is not directly involved in the regulation of PR-SET7 in Drosophila.

      Furthermore, we have updated the Results section to explicitly mention this observation:

      Interestingly, in the absence of PARP-1, neither PR-SET7 RNA nor protein levels were affected (Supplemental Fig. S4-5), indicating that PARP-1 is not directly implicated in the regulation of PR-SET7.

      Additionally, we have included information about the anti-H3 antibody used in Supplemental Fig. S4 in the Materials and Methods section: anti-H3 (Rabbit polyclonal, 1/1000, FL-136 sc-10809 Santa Cruz).

      We believe that these modifications effectively address the raised concern and provide a more comprehensive understanding of the relationship between PARP1 and PR-SET7 in our study. We hope these clarifications enhance the overall robustness and clarity of our findings.

      (5) Also, the results of the aforementioned study should be adequately discussed in the present study along with its implications in the same.

      We appreciate Reviewer 1's valuable suggestion to discuss the implications of the study by Estève et al. (PMID: 36434141) within the context of our own findings. Estève et al. reported a potential antagonistic relationship between PARP1 and PR-SET7, showing that a decrease in PARP1 proteins leads to an increase in PR-SET7 protein levels. In our investigation, however, we did not observe significant changes in PR-SET7 RNA and protein levels in the parp1C03256 mutant, as demonstrated in the newly added Supplemental Fig. S3 and S4.

      We acknowledge the discrepancy between our results and those of Estève et al., and we propose that this difference may be due to distinct experimental approach: Estève et al.'s study focused on mammalian cell populations and in vitro experiments, whereas our investigation employed Drosophila third-instar larvae as the whole organism model. It is plausible that regulatory mechanisms governing PR-SET7 differ between mammals and Drosophila. Another possibility is that PARP-1 may cooperate with PR-SET7 in the context of Drosophila development but could exhibit antagonistic roles against PR-SET7 in specific cell lines and under certain biological or developmental conditions.

      In the Discussion section, we have incorporated this information, stating: A recent study demonstrated that in human cells overexpressing PARP-1, PR-SET7/SET8 is degraded (33). This implies that the absence of PARP-1 might lead to increased levels of PR-SET7. However, in our study involving parp-1 mutant in Drosophila third-instar larvae, we observed a slightly different scenario: we detected a minor but not significant reduction in both PR-SET7 RNA and protein levels (Supplemental Fig.S4 and S5). This outcome stands in stark contrast to the previous study's findings. The discrepancy could be due to the distinct experimental approaches used: the previous research focused on mammalian cells and in vitro experiments, whereas our study examined the functions of PARP-1 in whole Drosophila third-instar larvae during development. Consequently, while PARP-1 may cooperate with PR-SET7 in the context of Drosophila development, it could exhibit antagonistic roles against PR-SET7 in specific cell lines and under certain biological or developmental conditions.

      We believe these modifications provide a comprehensive discussion of the observed discrepancies and enhance the overall interpretation of our findings. We hope that these clarifications satisfactorily address the concerns raised by Reviewer 1.

      (6) Gene transcriptional activation requires open chromatin and RNA polymerase II binding to the promoter. Since, differentially expressed genes in both PR-Set7 null and PARP1 hypomorph mutants, co-enriched with PARP-1 and H4K20me1 were mainly upregulated, the authors should provide RNA polymerase II occupancy data of these genes via RNA-Pol II ChIP-seq to further attest their claims.

      We appreciate the insightful comment from Reviewer 1 regarding the necessity for RNA-polymerase II (PolII) occupancy data to further support our claims on gene transcriptional activation. To address this concern, we conducted an analysis of PolII occupancy around genes co-enriched with PARP-1 and H4K20me1 that are upregulated in both pr-set720 and parp-1C03256 mutants during the third instar larvae stage. The results of this analysis have been included in the newly added supplemental Fig. S5.

      Our findings reveal that these upregulated genes exhibit higher PolII occupancy compared to other genes, both at their promoter regions and gene bodies, suggesting heightened activity during third instar larval stage in wild type animals (Supplemental Fig. S6). To further validate these results, we cross-referenced publicly available RNA-seq data at the same developmental stage, confirming that, on average, these upregulated genes display a 40% higher expression compared to other genes (supplemental Fig. S6B).

      Moreover, we would like to highlight the consistency of our current findings with our previous study (PMID: 38012002), where we reported the critical involvement of PARP-1 in tempering the expression of active metabolic genes at the end of the third instar larvae. The current data, suggesting a role for PR-SET7 in this regulatory process, adds another layer to our understanding of the nuanced control exerted by PARP-1 on the expression of active metabolic genes during this critical developmental transition.

      In light of these results, we have modified the Results section to emphasize these findings: Intriguingly, under wild-type conditions, these genes displayed expression levels approximately 40% higher than the average and demonstrated increased RNA-Polymerase II occupancy both at their promoter regions and gene bodies compared to other genes (supplemental Fig.S6), indicating their high activity in wild type context.

      Additionally, we have incorporated this information into the Discussion section to underscore the cooperative role of PARP-1 and PR-SET7 in repressing the expression of active metabolic genes: Notably, genes co-enriched with PARP-1 and H4K20me1, and are upregulated in both parp-1C03256 and pr-set720 mutants, are predominantly metabolic genes exhibiting high expression levels under wild-type conditions and a high occupancy of polymerase II both at their promoter region and gene body (Supplemental Fig. S6). In our previous study, we discovered that PARP-1 plays a crucial role in repressing highly active metabolic genes during the development of Drosophila by binding directly to their loci (34). Also, PARP-1 is required for maintaining optimum glucose and ATP levels at the third-instar larval stage (34). During Drosophila development, repression of metabolic genes is crucial for larval to pupal transition (35, 36). This repression is linked to the reduced energy requirements as the organism prepares for its sedentary pupal stage (35, 37). Notably, we observed that PARP-1 shows a high affinity for binding to the gene bodies of these metabolic genes (34).

      Our data indicates that in both parp-1 and pr-set7 mutant animals, there was a preferential repression of metabolic genes at sites where PARP-1 and H4K20me1 are co-bound (Fig.3E), while these metabolic genes are highly active during third-instar larval stage (Supplemental Fig.S6). Thus, we propose that the presence of H4K20me1 may be essential for the binding of PARP-1 at these gene bodies, contributing to their repression. Importantly, this mechanism of gene repression has broader developmental implications. As earlier stated, mutant animals lacking functional PARP-1 and PR-SET7 undergo developmental arrest during larval to pupal transition. This arrest could be directly linked to the disruption of the normal metabolic gene repression during development. Without the repressive action of PARP-1 and PR-SET7, key metabolic processes might remain unchecked, leading to metabolic imbalances that are incompatible with the normal progression to the pupal stage.

      Finaly, we have updated the Materials and Methods section to include information about the RNA-seq and PolII ChIP-seq datasets used: GSE15292 (RNA-polymerase II). In addition, we used the Developmental time-course RNA-seq dataset (54), SRP001065.

      We believe that these modifications comprehensively address Reviewer 1's concern and provide a more robust foundation for our claims regarding the role of PARP-1 and PR-SET7 in the transcriptional regulation of co-enriched genes during the critical developmental transition.

      (7) As discussed in Figure 4, the authors found transcriptional activation of group B genes even after a significant reduction of H3K20me1 in their gene body after heat shock. Given the dynamic equilibrium shift in epigenetic marks that regulate gene expression and their locus-specific transcriptional regulation, the authors should further look for the enrichment of other epigenetic marks and even H4K20me1 specific demethylases such as PHF8 (PMID: 20622854), and their cross-talk with PARP1 to further bridge the missing links of this tale. This will add more depth to this work.

      We appreciate the thoughtful input provided by Reviewer 1 and acknowledge the importance of exploring additional epigenetic marks and potential cross-talk association with PARP1 to enhance the depth of our study. Our investigation has primarily focused on the interplay between PR-SET7/H4K20me1 and PARP-1, as evidenced by the colocalization and robust binding affinity observed between PARP-1 and H4K20me1 (Fig 1C, 2B, and 3A). This interaction is particularly noteworthy in the context of regulating specific heat shock genes, as highlighted in Figure 4A. While we recognize the potential significance of examining a broader spectrum of epigenetic marks and considering the involvement of specific demethylases, such as PHF8 (PMID: 20622854), in this regulatory network, our research strategy is intentionally tailored to leverage the unique characteristics of the PR-SET7/H4K20me1 and PARP-1 interplay in Drosophila. A key consideration is the technical advantage afforded by the fact that PR-SET7 is the exclusive methylase responsible for H4K20 in Drosophila (PMID: 15681608), allowing for specific depletion of H4K20me1 without the confounding influence of other methyltransferases.

      This specificity is pivotal, especially given the similar developmental arrest patterns observed in both PR-SET7 and PARP-1 mutants. Such parallel phenotypes provide a distinct opportunity to delve deeply into the intricacies of their interaction during organismal development and in response to heat stress. Additionally, the identity of the demethylase for H4K20me1 in Drosophila remains unknown, further underscoring the rationale for our focused approach.

      While we acknowledge the broader implications of exploring additional epigenetic marks, we believe that our deliberate focus on the PR-SET7/H4K20me1 and PARP-1 pathway provides a unique and valuable perspective on the regulation of gene expression in Drosophila. We hope that this clarification addresses the concerns raised by Reviewer 1 and conveys the rationale behind our chosen research strategy.

      Reviewer #2:

      Summary:

      This study from Bamgbose et al. identifies a new and important interaction between H4K20me and Parp1 that regulates inducible genes during development and heat stress. The authors present convincing experiments that form a mostly complete manuscript that significantly contributes to our understanding of how Parp1 associates with target genes to regulate their expression.

      Strengths:

      The authors present 3 compelling experiments to support the interaction between Parp1 and H4K20me, including:

      (1) PR-Set7 mutants remove all K4K20me and phenocopy Parp mutant developmental arrest and defective heat shock protein induction.

      (2) PR-Set7 mutants have dramatically reduced Parp1 association with chromatin and reduced poly-ADP ribosylation.

      (3) Parp1 directly binds H4K20me in vitro.

      Weaknesses:

      (1) The histone array experiment in Fig1 strongly suggests that PARP binds to all mono-methylated histone residues (including H3K27, which is not discussed). Phosphorylation of nearby residues sometimes blocks this binding (S10 and T11 modifications block binding to K9me1, and S28P blocks binding to K27me1). However, H3S3P did not block H3K4me1, which may be worth highlighting. The H3K9me2/3 "blocking effect" is not nearly as strong as some of these other modifications, yet the authors chose to focus on it. Rather than focusing on subtle effects and the possibility that PARP "reads" a "histone code," the authors should consider focusing on the simple but dramatic observation that PARP binds pretty much all mono-methylated histone residues. This result is interesting because nucleosome mono-methylation is normally found on nucleosomes with high turnover rates (Chory et al. Mol Cell 2019)- which mostly occurs at promoters and highly transcribed genes. The author's binding experiments could help to partially explain this correlation because PARP could both bind mono-methylated nucleosomes and then further promote their turnover and lower methylation state.

      We appreciate the comprehensive review and valuable insights provided. In response to the comments, we have made substantial revisions to address the concerns and enhance the clarity of our findings. In Figure 1B, C, D, F, and G, we have expanded our data presentation to demonstrate PARP-1's binding affinity for H3K27me1. This addition is now incorporated into the revised results section. Additionally, we have updated Supplemental Fig.S1 and introduced new supplemental data (Supplemental Fig.S2) to illustrate the inhibition of PARP-1 binding by H3S10P, H3S28P, and H3T11P. The comprehensive exploration of PARP-1's interaction with mono-methylated histones, as suggested by the reviewer, is now more robustly documented in our revised figures and supplementary materials.

      Our Discussion section has been refined to articulate more clearly how PARP-1 may be selectively recruited to active chromatin domains through its interaction with mono-methylated histone marks. We have proposed a model where PARP-1 actively participates in the turnover process, contributing to the maintenance of an active chromatin environment. This proposed mechanism involves PARP-1 selectively binding to mono-methylated active histone marks associated with highly transcribed genes. Upon activation, PARP-1 undergoes automodification, leading to its release from chromatin and facilitating the reassembly of nucleosomes carrying the mono-methylated marks. The enzymatic action of Poly(ADP)-ribose glycohydrolase (PARG) subsequently cleaves pADPr, allowing for the restoration of PARP-1's binding affinity to mono-methylated active histone marks. This proposed hypothesis is consistent with existing research across various model organisms and aligns with the known association of PARP-1 with highly expressed genes, as well as its role in mediating nucleosome dynamics and assembly.

      Our Discussion section is modified a followed: Finaly, highly transcribed genes have been reported to present a high turnover of mono-methylated modifications, maintaining a state of low methylation (50). Then, our findings suggest that PARP-1 might actively participate in the turnover process to uphold an active chromatin environment. The proposed mechanism unfolds as follows: 1) PARP-1 selectively binds to mono-methylated active histone marks associated with highly transcribed genes. 2) Upon activation, PARP-1 undergoes automodification and is subsequently released from chromatin, facilitating the reassembly of nucleosomes carrying the mono-methylated marks. 3) The enzymatic action of Poly(ADP)-ribose glycohydrolase (PARG) cleaves pADPr, allowing for the restoration of PARP-1's binding affinity to mono-methylated active histone marks. This proposed hypothesis aligns cohesively with existing research conducted across various model organisms, including mice, Drosophila, and Humans (7, 23, 29, 51-53). Notably, previous studies have consistently demonstrated that PARP-1 predominantly associates with highly expressed genes and plays a crucial role in mediating nucleosome dynamics and assembly. Thus, our proposed model provides a molecular framework that may contribute to understanding the relationship between PARP-1 and the epigenetic regulation of gene expression. Further experimental validation is warranted to elucidate the precise details of this proposed mechanism and its implications in the broader context of chromatin dynamics and transcriptional control.

      We hope that these revisions address the reviewer's concerns and contribute to the overall strength and clarity of our manuscript.

      (2) The RNAseq analysis of Parp1/PR-Set7 mutants is reasonable, but there is a caveat to the author's conclusion (Line 251): "our results indicate H4K20me1 may be required for PARP-1 binding to preferentially repress metabolic genes and activate genes involved in neuron development at co-enriched genes." An alternative possibility is that many of the gene expression changes are indirect consequences of altered development induced by Parp1 or PR-Set7 mutants. For example, Parp1 could activate a transcription factor that represses the metabolic genes that they mention. The authors should consider discussing this possibility.

      We hope that these revisions address the reviewer's concerns and contribute to the overall strength and clarity of our manuscript.

      We extend our gratitude to Reviewer 2 for their thoughtful consideration of our manuscript and the insightful suggestion. In response to the raised concern regarding the conclusion on Line 251, where we proposed that "our results indicate H4K20me1 may be required for PARP-1 binding to preferentially repress metabolic genes and activate genes involved in neuron development at co-enriched genes," we acknowledge the alternative possibility suggested by the reviewer. It is plausible that many of the observed gene expression changes are indirect consequences of altered development induced in parp-1 or pr-set7 mutants. For example, PARP-1 could activates a transcription factor that represses the mentioned metabolic genes.

      To address this concern, we have revisited our data and incorporated relevant findings from one of our recent studies that utilized a ChIP-seq approach. The results from this study suggest a direct binding of PARP-1 to the loci of metabolic genes, providing support for the notion that PARP-1 may indeed directly regulate their expression (PMID: 37347109). We have updated the Discussion section to reflect this information, aiming to provide a more comprehensive perspective on the potential mechanisms underlying the observed gene expression changes: In our previous study, we discovered that PARP-1 plays a crucial role in repressing highly active metabolic genes during the development of Drosophila by binding directly to their loci (34). Also, PARP-1 is required for maintaining optimum glucose and ATP levels at the third-instar larval stage (34). During Drosophila development, repression of metabolic genes is crucial for larval to pupal transition (35, 36). This repression is linked to the reduced energy requirements as the organism prepares for its sedentary pupal stage (35, 37). Notably, we observed that PARP-1 shows a high affinity for binding to the gene bodies of these metabolic genes (34).

      We believe these modifications contribute to a more informed interpretation of our findings.

      (3) The section on the inducibility of heat shock genes is interesting but missing an important control that might significantly alter the author's conclusions. Hsp23 and Hsp83 (group B genes) are transcribed without heat shock, which likely explains why they have H4K20me without heat shock. The authors made the reasonable hypothesis that this H4K20me would recruit Parp-1 upon heat shock (line 270). However, they observed a decrease of H4K20me upon heat shock, which led them to conclude that "H4K20me may not be necessary for Parp1 binding/activation" (line 275). However, their RNA expression data (Fig4A) argues that both Parp1 and H40K20me are important for activation. An alternative possibility is that group B genes indeed recruit Parp1 (through H4K20me) upon heat shock, but then Parp1 promotes H3/H4 dissociation from group B genes. If Parp1 depletes H4, it will also deplete H4K20me1. To address this possibility, the authors should also do a ChIP for total H4 and plot both the raw signal of H4K20me1 and total H4 as well as the ratio of these signals. The authors could also note that Group A genes may similarly recruit Parp1 and deplete H3/H4 but with different kinetics than Group B genes because their basal state lacks H4K20me/Parp1. To test this possibility, the authors could measure Parp association, H4K20methylation, and H4 depletion at more time points after heat shock at both classes of genes.

      We thank Reviewer 2 for their valuable comment on our manuscript. We acknowledge your hypothesis suggesting that PARP-1 may induce H3/H4 dissociation from group B genes, potentially leading to a reduction in H4K20me1. However, our findings support a different interpretation.

      Our data indicate that while H4K20me1 is present under normal conditions at group B genes, its reduction following heat shock does not appear to hinder PARP-1's role in transcriptional activation (Fig 4A, C and E). We propose that the observed decrease in H4K20me1 might reflect a regulatory shift in chromatin structure that is conducive to transcriptional activation during heat shock, facilitated by PARP-1 independently of sustained H4K20me1 levels at group B genes. Additionally, the literature suggests a dual role for H4K20me1 in gene regulation, from facilitating transcriptional elongation in certain contexts to acting as a repressor in others.

      Unlike in group A genes which had low enrichment of H4K20me1 before heat shock (Fig 4B and D), the high enrichment of H4K20me1 in group B genes (Fig 4C and E) could imply a repressive role for this mark prior to heat stress. Thus, in the context of group B genes, it's conceivable that the removal of H4K20me1 might be necessary for their activation during heat stress. Thus, PR-SET7 may possess functions beyond its role as a histone methylase, which are crucial for activating group B genes under heat stress conditions. These functions could include methylation of non-histone substrates and non-catalytic activities.

      Furthermore, our analysis of gene expression in pr-set720 and parp-1C03256 mutants indicates that while PARP-1 and H4K20me1 interaction may have overlapping roles in gene regulation, they also possess distinct functions in the modulation of gene expression (Fig 3E). Thus, we propose that the relationship between PR-SET7 and PARP-1 in transcriptional regulation involves a complex regulatory mechanism that extends beyond the presence of H4K20me1.

      We modified the discussion section to address this point: Another plausible explanation could be that the recruitment of PARP-1 to group B genes loci promotes H4 dissociation and then leads to a reduction of H4K20me1. However, our findings suggest an alternative interpretation: the decrease in H4K20me1 at group B genes during heat shock does not seem to impede PARP-1's role in transcriptional activation, (Fig.4A, C and E). Rather than disrupting PARP-1 function, we propose that this reduction in H4K20me1 may signify a regulatory shift in chromatin structure, priming these genes for transcriptional activation during heat shock, with PARP-1 playing an independent facilitating role. Moreover, existing studies have highlighted the dual role of H4K20me1, acting as a promoter of transcription elongation in certain contexts and as a repressor in others (13, 25, 38, 39, 41-45). The elevated enrichment of H4K20me1 in group B genes under normal conditions may indicate a repressive state that requires alleviation for transcriptional activation. Additionally, we cannot discount the possibility of unique regulatory functions associated with PR-SET7, extending beyond its recognized role as a histone methylase. Non-catalytic activities and potential interactions with non-histone substrates might contribute to the nuanced control exerted by PR-SET7 on group B genes during heat stress (46, 47). Furthermore, our exploration of pr-set720 and ParpC03256 mutants reveals distinct roles for PARP-1 and H4K20me1 in modulating gene expression (Fig 3E). This reinforces the notion that the interplay between PR-SET7 and PARP-1 involves a multifaceted regulatory mechanism. Understanding the intricate relationship between these molecular players is crucial for elucidating the complexities of gene expression modulation under heat stress conditions.

      We hope that this modification will adequately address Reviewer 2 concerns and enhance the clarity of our conclusions.

      Reviewer #1 (Recommendations For The Authors):

      (1) Please check the entire manuscript for grammatical errors and typos. PR-set7 has been wrongly written as PR-ste7 in quite a few places in the manuscript. Poly (ADP)-ribosylation has been written as poly(ADP-ribosyl)ation in the last result heading. There are more such errors. Please rectify them.

      We express our sincere appreciation to Reviewer 1 for their meticulous review of our manuscript, and we acknowledge the importance of ensuring grammatical accuracy and clarity. We have taken your feedback seriously and conducted a comprehensive revision of the entire manuscript to rectify the identified typos and grammatical errors. We hope that these revisions contribute to an improved overall presentation of our research, and we appreciate the reviewer's diligence in ensuring the accuracy of the manuscript.

      (2) The authors can also look up publicly available mammalian ChIP-seq data for H4K20me1 and PARP1, in order to further ossify their findings and increase the breadth of their work.

      We appreciate the suggestion from Reviewer 1 and have taken steps to further validate and broaden the scope of our findings. Specifically, we compared the distribution of PARP1 and H4K20me1 in Human K562 cells. The results of this analysis revealed a correlation in their distribution, supporting the idea that the observed correlation between PARP-1 and H4K20me1 is not limited to fruit flies. We have incorporated these findings into the Results section and added a new Supplemental Fig. S6 to visually highlight this correlation: Finally, to extend the generalizability of our observations beyond Drosophila, we compared the distribution of PARP1 and H4K20me1 in Human K562 cells. Strikingly, we observed a correlation in their distribution, suggesting that the interplay between PARP-1 and H4K20me1 is not limited to fruit flies (Supplemental Fig. S6).

      We believe that this modification addresses Reviewer 1's suggestion by providing additional evidence that supports the broader relevance of our findings beyond the Drosophila model system.

      (3) Please discuss in greater detail how the PARP1-H4K20me1 axis orchestrates the repression program (metabolic pathways in this case) with proper references.

      We appreciate Reviewer 1's continued engagement with our manuscript and have adjusted the discussion section to provide a more detailed insight into how the PARP1-H4K20me1 axis orchestrates the repression program, particularly focusing on metabolic pathways. The modified discussion section now reads: In our previous study, we discovered that PARP-1 plays a crucial role in repressing highly active metabolic genes during the development of Drosophila by binding directly to their loci (34). Also, PARP-1 is required for maintaining optimum glucose and ATP levels at the third-instar larval stage (34). During Drosophila development, repression of metabolic genes is crucial for larval to pupal transition (35, 36). This repression is linked to the reduced energy requirements as the organism prepares for its sedentary pupal stage (35, 37). Notably, we observed that PARP-1 shows a high affinity for binding to the gene bodies of these metabolic genes (34). Our data indicates that in both parp-1 and pr-set7 mutant animals, there was a preferential repression of metabolic genes at sites where PARP-1 and H4K20me1 are co-bound (Fig.3E), while these metabolic genes are highly active during third-instar larval stage (Supplemental Fig.S6). Thus, we propose that the presence of H4K20me1 may be essential for the binding of PARP-1 at these gene bodies, contributing to their repression. Importantly, this mechanism of gene repression has broader developmental implications. As earlier stated, mutant animals lacking functional PARP-1 and PR-SET7 undergo developmental arrest during larval to pupal transition. This arrest could be directly linked to the disruption of the normal metabolic gene repression during development. Without the repressive action of PARP-1 and PR-SET7, key metabolic processes might remain unchecked, leading to metabolic imbalances that are incompatible with the normal progression to the pupal stage.

      We hope these modifications provide a more comprehensive discussion on how the PARP1-H4K20me1 axis influences the repression program, particularly within metabolic pathways, and how this mechanism contributes to the broader context of Drosophila development.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      eLife assessment

      This study presents a useful inventory of immune signatures that are correlated with cancer treatment-related pneumonitis. The data were collected and analysed using solid and validated methodology and can be used as a starting point for further functional studies.

      We sincerely thank the editor for their encouraging comments regarding our study. As rightly pointed out, this study indeed serves as a pivotal starting point for subsequent functional studies.

      Reviewer #2 (Recommendations For The Authors):

      I greatly appreciate the authors diligence in addressing all the suggested points. The paper now presents significantly stronger evidence to support the findings.

      I do have one final question: Could you clarify how the correlation presented in Supplementary Figure 3 was calculated? Is it a Pearson correlation of CTCAE grade directly to marker expression? Additionally, could you explain how the significance was determined? The authors mention a significant correlation for CCR7, but the heatmap displays similarly high values for CD7 and CD57. Finally, I'm curious about the absence of CD16 in the heatmap.

      Thank you for your insightful query. To clarify, the correlation shown in Supplementary Figure 3 was indeed calculated using the Pearson correlation coefficient. This involved correlating the CTCAE grade directly with the mean expression levels of each marker. The computations were conducted using GraphPad Prism version 9. Regarding the statistical significance, we defined a threshold of P < 0.05 as significant. Specifically, the P-values for CCR7, CD7, and CD57 were found to be 0.009, 0.035, and 0.039, respectively. Hence, while CCR7 showed a significant correlation, CD7 and CD57 also exhibited relatively high values, as correctly observed. We have added CD7 and CD57 along with CCR7 in the discussion section, though not to mention much for better focusing on CD16.

      CD16 was initially omitted from Supplementary Figure 3 to prevent redundancy and preserve data clarity. Nonetheless, in light of your query, we have included CD16 in the correlation matrix to provide a comprehensive view of its association with other markers.

      We hope this adequately addresses your question and further clarifies our findings.

      Reviewer #3 (Recommendations For The Authors):

      General suggestions for presentation in the future:

      It is essential to concretely define the numbers presented in all figures and plots. For example, in Figure 6 (I), what does it mean by "percentage representation of FCGR3A (CD16)"? Percentage of what? How did you calculate that? It is also important to show more statistics in general, for example, in dot plots like Figure 6 (H), where are the means and p-values? Little things like that completely change the impact of the figures. For the narrative of this paper, it is OK, but in the future, fine-tuning the presentation would massively improve the impact of the work which the contents deserve.

      Thank you for your insightful feedback. Addressing your concerns, I have revised Figure 6H and Figure 6I to provide a more precise and informative presentation of our data. In Figure 6H, the violin plots illustrate the expression intensity of FCGR3A (CD16) on CD4+ and CD8+ T cells. Each dot represents an individual cell within the BALF from both healthy controls (HC) and COVID-19 patients. This data was derived from the single-cell RNA-seq dataset GSE145926. To enhance clarity and statistical robustness, I have now included p-values directly in Figure 6H. Additionally, for a more comprehensive understanding, the means ± standard deviation (SD) have been incorporated into the main text of the manuscript.

      Regarding Figure 6I, it depicts the proportion of FCGR3A (CD16)-positive cells within the CD4+ and CD8+ T cell populations in BALF from HC and COVID-19 patients. The threshold for FCGR3A expression was set at 0.5. Upon further review and in response to your feedback, I realized an error in the calculation of the proportion of FCGR3A-positive cells among CD4+ and CD8+ T cells. Initially, the proportion of FCGR3A-positive CD4+ T cells was calculated in relation to the entire CD4+ T cell population, without differentiation between the groups. This has now been corrected, and the adjusted figures are presented in Figure 6I.

      I am grateful for the opportunity to refine these figures, as your suggestions have not only helped to correct the error but have also significantly enhanced the impact and clarity of our work. Your guidance has been instrumental in improving the overall quality and presentation of our research, ensuring that the findings are communicated effectively and accurately.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings on diabetogenic risk from colorectal cancer (CRC) treatment. The authors claim that postoperative screening for type 2 diabetes should be prioritized in CRC survivors with overweight/obesity, irrespective of the oncological treatment received. The evidence supporting the claims is solid but requires confirmation in different populations. These results have theoretical or practical implications and will be of interest to endocrinologists, oncologists, general practitioners, gastrointestinal surgeons, and policymakers working on CRC and diabetes.

      Author response: We thank you for taking the time to provide constructive feedback on our manuscript and for the useful suggestions. We have provided a point-by-point response to each of the reviewers’ comments with clearly marked changes to the manuscript.

      Public reviews

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors set out to determine whether colorectal cancer surgery site (right, left, rectal) and chemotherapy impact the subsequent risk of developing T2DM in the Danish national health register.

      Strengths:

      • The research question is conceptually interesting

      • The Danish national health register is a comprehensive health database

      • The data analysis was thorough and appropriate

      • The findings are interesting, and a little surprising that there was no impact of chemotherapy on the development of T2DM

      Weaknesses:

      This is not a weakness as such, but in the discussion, I would consider adding some brief comment on the international generalizability of the findings - e.g. demographic make up of the Danish population health register and background rates of DM and obesity in this population with CRC compared to countries on other continents.

      Author response: We agree that this information would be valuable. It has now been added in the Discussion section.

      Changes in manuscript: "In Denmark, the overall T2D prevalence is 6.9%25, lower than the global average in 2021 (10.5%) and also falls below the estimate of high-income countries (11.1%).26 Similarly, the obesity rate of 20% aligns with other Scandinavian countries and is below that of most high-income nations.27” (Page 8, line 256-258)

      A little more information would be helpful regarding how T2DM was diagnosed in the registry.

      Author response: We have now added a more thorough explanation of how T2D was diagnosed in the Methods section.

      Changes in manuscript: “Diabetes is defined as the second occurrence of any event across three types of inclusion events: 1) Diabetes diagnosed during hospitalisation 2) diabetes-specific services received at podiatrist 3) purchases of glucose lowering. Thus, if a patient developed transient T2D during chemotherapy treatment, it will only be an inclusion event if they purchase glucose lowering drugs. Individuals were classified as having T1D if they had received prescriptions for insulin combined with a diagnosis of type 1 from a medical hospital department. Otherwise, diabetes was classified as type 2.22” (Page 5, line 154-160)

      If someone did develop transient hyperglycemia requiring DM medications during chemotherapy, would the investigators have been able to identify these people?

      Author response: Yes, we have added a sentence in the Methods section.

      Changes in manuscript: “Thus, if a patient developed transient T2D during chemotherapy treatment, it will only be an inclusion event if they purchase glucose lowering drugs.” (Page 5, line 156-158)

      Would they have been classified as T2DM based on filling a prescription for DM meds for a period of time? Also, did the authors have information regarding time to development of T2DM after surgery?

      Author response: Yes, if they have 2 (or more) prescriptions of oral glucose lowering drugs. Yes, we have information regarding time to development of T2DM after surgery and found no difference between the groups.

      Changes in manuscript: Information on mean time to develop T2D post-surgery has now been added to Table 2.

      In the adjusted Models, the authors did not adjust for cancer stage, even though cancer stage appears to be very different between the chemo and no chemo groups. It would be interesting to know if it affects the results if the model adjusted for cancer stage

      Author response: We agree that adjustment for cancer stage would be a valuable information and we have performed the analysis and added a sentence in the Result section.

      Changes in manuscript: An adjusted analysis of cancer stage now appears in the Supplementary table 1.

      “Moreover, adjusting for cancer stage did not affect the results (Supplementary table 1).” (Page 7, line 219-220)

      It would be worthwhile to report if mortality rates were different between the groups during follow up, and if the authors investigated whether perhaps differences in mortality rates led to specific groups living longer, and therefore having more time to develop DM

      Author response: This situation is accounted for in the analysis by using Cox-regression analysis. This method accounts for the potential competing effect of mortality.

      Changes in manuscript: None.

      Overall, the authors achieved their aims, and the conclusions are supported by their results as reported.

      The results are unlikely to significantly change patient treatment or T2DM screening in this population. With some additional information, as described above, the results would be of interest to the community.

      Reviewer #2 (Public Review):

      Summary:

      The study showed the impact of cancer treatment on new onset of diabetes among patients with colorectal cancer using the national database. Findings reported that individuals with rectal cancer without chemotherapy were less likely to develop diabetes but among other groups, treatment didn't show any impact on the development of diabetes. BMI still played a significant role in developing diabetes regardless of treatment types.

      Strengths:

      One of the strengths of this study is innovative findings about the prognosis of colorectal cancer treatment stratified by treatment types. Especially, as it examined the impact of treatment on the risk of new chronic disease after diagnosis, it became significant evidence that suggests practical insights in developing a proper monitoring system for patients with colorectal cancer and their outcomes after treatment and diagnosis. It is imperative for providers to guide patients and caregivers to prevent adverse outcomes like new onset of chronic disease based on BMI and types of treatment. The next strength is the national database. As the study used the national database, the generalizability is validated.

      Weaknesses:

      Even though the study attempted to examine the impact of each treatment option, the dosage of chemotherapy and the types of chemotherapy were not able to be examined due to the data source.

      Author response: No unfortunately not. We agree that this would have been valuable information. This is stated in the original manuscript as a limitation. Please refer to page 10 line 305-306.

      Changes in manuscript: None.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor things:

      There are minor inconsistencies in the methods and results regarding BMI. In the methods, the authors state that BMI <18.5 and >/=40 were excluded, but these groups are included in Table 2.

      Author response: This has been corrected

      Changes in manuscript: BMI groups <18.5 and >/=40 are now excluded in Table 2. (Page 18)

      Line 204, I believe should be BMI 18.5-24.9, not 20-24.9.

      Author response: This has been corrected

      Changes in manuscript: “For each group (type of surgery ± chemotherapy), the HR for developing T2D depending on BMI subgroups was calculated by using Cox regression analysis adjusted for age, sex, year of surgery, and ASA score using normal weight (BMI:18.5-24.9) as the reference group.” (Page 6, line 184-186)

      Rather than showing the BMI mean in Table 1, it would be interesting to see the BMI breakdown by category.

      Author response: Yes, we agree. This analysis has now been added to Table 1

      Changes in manuscript: Please refer to Table 1

      Re line 215, I would consider rewriting to remove the multiple negatives -e.g. Radiation therapy in rectal resected had did not impact the incidence rate of T2D in the Rectal-No-Chemo group or Rectal-Chemo group

      Author response: This has been corrected. Please refer to the Result section.

      Changes in manuscript: “Radiation therapy in the rectal resected groups had no impact on the incidence rate of T2D (Table 2); and the unadjusted/adjusted HR of developing T2D was non-significant when comparing Rectal-No-Radiation patients with Rectal-Radiation patients (Table 3).” (Page 7, 223-225)

      Consider changing some of the "didn't"s in the discussion to "did not"

      Author response: This has been corrected.

      Changes in manuscript: Revised and corrected throughout the discussion.

      Reviewer #2 (Recommendations For The Authors):

      Some points need to be clarified and improved.

      In the method, patients with Type 1 Diabetes were excluded in the baseline but some patients were diagnosed with Type 1 diabetes after treatment and they were included in your analysis. It is interesting to identify Type 1 Diabetes after the treatment as an outcome, do you think that this diagnosis is caused by the treatment? And incidence rate or other HRs did not seem to include Type 1 Diabetes as stated in the methods. Did you exclude every Type 1 diabetes? If not, It needs to give further explanation about this outcome since the mechanism of Type 1 Diabetes and Type 2 Diabetes is different.

      Author response: This matter has now been clarified in the Methods section.

      Changes in manuscript: “Additionally, individuals diagnosed with Type 1 diabetes (T1D) either before or after surgery were excluded, along with those diagnosed with T2D preoperatively or within the first 2 weeks postoperatively, as the last group probably represents patients with preoperatively unknown pre-existing prediabetes or diabetes.22” (Page 4, line: 125-128)

      Despite limited existing findings, some studies actually reported the incidence rates of Type 2 Diabetes among patients with CRC (Singh S, Earle CC, Bae SJ, et al. Incidence of Diabetes in Colorectal Cancer Survivors. J Natl Cancer Inst. 2016;108(6):djv402. Published 2016 Feb 2. doi:10.1093/jnci/djv402; Khan NF, Mant D, Carpenter L, Forman D, Rose PW. Long-term health outcomes in a British cohort of breast, colorectal and prostate cancer survivors: a database study. Br J Cancer. 2011;105 Suppl 1(Suppl 1):S29-S37. doi:10.1038/bjc.2011.420; Jo A, Scarton L, O'Neal LJ, et al. New onset of type 2 diabetes as a complication after cancer diagnosis: A systematic review. Cancer Med. 2021;10(2):439-446. doi:10.1002/cam4.3666) whereas your study examined the impact of the different types of treatments.

      Author response: Our findings of T2D rate among CRC patients are now commented on in discussion section, and the abovementioned studies are included as references.

      Changes in manuscript: “This national cohort study demonstrated an IR of developing T2D after CRC surgery similar to previous studies.5,11” (Page 8, line 237-238)

      To strengthen the presentation, some places should be revised.

      • Line 216: it says that Table 1 showed no impact of radiation therapy on the incidence rate of T2D. However, either the interpretation or the table number seems wrong. Table 1 does not have this information. Correct this statement.

      • Line 239: There are typo and incomplete sentence. Check the sentence and correct the sentence.

      • Line 257-261: It may be a systematic issue to separate these two paragraphs. But two paragraphs seem related so make them one paragraph.

      Author response: These suggested changes have been made. Regarding line 216 the paragraph has been adjusted to the following:

      Changes in manuscript: “Radiation therapy in the rectal resected groups had no impact on the incidence rate of T2D (Table 2); and the unadjusted/adjusted HR of developing T2D was non-significant when comparing Rectal-No-Radiation patients with Rectal-Radiation patients (Table 3).” (Page 7, 223-225)

      Reference

      (1) Araghi M, Soerjomataram I, Jenkins M, et al. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144(12):2992-3000. doi:10.1002/ijc.32055

      (2) Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-691. doi:10.1136/gutjnl-2015-310912

      (3) González N, Prieto I, del Puerto-Nevado L, et al. 2017 Update on the Relationship between Diabetes and Colorectal Cancer: Epidemiology, Potential Molecular Mechanisms and Therapeutic Implications. Vol 8.; 2017. www.impactjournals.com/oncotarget

      (4) Mills KT, Bellows CF, Hoffman AE, Kelly TN, Gagliardi G. Diabetes mellitus and colorectal cancer prognosis: A meta-analysis. Dis Colon Rectum. 2013;56(11):1304-1319. doi:10.1097/DCR.0b013e3182a479f9

      (5) Singh S, Earle CC, Bae SJ, et al. Incidence of Diabetes in Colorectal Cancer Survivors. J Natl Cancer Inst. 2016;108(6). doi:10.1093/jnci/djv402

      (6) Xiao Y, Wang H, Tang Y, et al. Increased risk of diabetes in cancer survivors: a pooled analysis of 13 population-based cohort studies. ESMO Open. 2021;6(4). doi:10.1016/j.esmoop.2021.100218

      (7) Colorectal D, Nordcan 2019. 5-Year Age-Standardised Relative Survival (%), Males and Females. Accessed September 12, 2022. “https://nordcan.iarc.fr/en/dataviz/survival?cancers=520&set_scale=0&sexes=1_2&populations=208”" has been copied into your clipboard

      (8) Nano J, Dhana K, Asllanaj E, et al. Trajectories of BMI Before Diagnosis of Type 2 Diabetes: The Rotterdam Study. Obesity. 2020;28(6):1149-1156. doi:10.1002/oby.22802

      (9) Maddatu J, Anderson-Baucum E, Evans-Molina C. Smoking and the risk of type 2 diabetes. Translational Research. 2017;184:101-107. doi:10.1016/j.trsl.2017.02.004

      (10) Lega IC, Lipscombe LL. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr Rev. 2020;41(1). doi:10.1210/endrev/bnz014 (11) Jo A, Scarton L, O’Neal LTJ, et al. New onset of type 2 diabetes as a complication after cancer diagnosis: A systematic review. Cancer Med. 2021;10(2):439-446. doi:10.1002/cam4.3666

      (12) Feng JP, Yuan XL, Li M, et al. Secondary diabetes associated with 5-fluorouracil-based chemotherapy regimens in non-diabetic patients with colorectal cancer: Results from a single-centre cohort study. Colorectal Disease. 2013;15(1):27-33. doi:10.1111/j.1463-1318.2012.03097.x

      (13) Lee EK, Koo B, Hwangbo Y, et al. Incidence and disease course of new-onset diabetes mellitus in breast and colorectal cancer patients undergoing chemotherapy: A prospective multicenter cohort study. Diabetes Res Clin Pract. 2021;174. doi:10.1016/j.diabres.2021.108751

    1. Author Response

      The following is the authors’ response to the original reviews.

      We would like to thank the reviewer for the constructive comments. We have revised the papers to address the concerns. In summary, here is what we included in the revised version.

      • Statistical analysis using biological replicate datasets for WT and K40R doublet microtubule.

      • Addition figures for statistical analysis and MIP decorations in MEC17-KO and K40R.

      • Revised texts and figures to reflect the new changes, cite proper references and fix small errors throughout the text.

      Reviewer #1 (Public Review):

      Summary:

      The study "Effect of alpha-tubulin acetylation on the doublet microtubule structure" by S. Yang et al employs a multi-disciplinary approach, including cryo-electron microscopy (cryo-EM), molecular dynamics, and mass spectrometry, to investigate the impact of α-tubulin acetylation at the lysine 40 residue (αK40) on the structure and stability of doublet microtubules in cilia. The work reveals that αK40 acetylation exerts a small-scale, but significant, effect by influencing the lateral rotational angle of the microtubules, thereby affecting their stability. Additionally, the study provided an explanation of the relationship between αK40 acetylation and phosphorylation within cilia, despite that the details still remain elusive. Overall, these findings contribute to our understanding of how post-translational modifications can influence the structure, composition, stability, and functional properties of important cellular components like cilia.

      Strengths:

      (1) Multi-Disciplinary Approach: The study employs a robust combination of cryo-electron microscopy (cryo-EM), molecular dynamics, and mass spectrometry, providing a comprehensive analysis of the subject matter.

      (2) Significant Findings: The paper successfully demonstrates the impact of αK40 acetylation on the lateral rotational angles between protofilaments (inter-PF angles) of doublet microtubules in cilia, thereby affecting their stability. This adds valuable insights into the role of post-translational modifications in cellular components.

      (3) Exploration of Acetylation-Phosphorylation Relationship: The study also delves into the relationship between αK40 acetylation and phosphorylation within cilia, contributing to a broader understanding of post-translational modifications.

      (4) High-quality data: The authors are cryo-EM experts in the field and the data quality presented in the manuscript is excellent.

      (5) Depth of analysis: The authors analyzed the effects of αK40 acetylation in excellent depth which significantly improved our understanding of this system.

      Thank you for highlighting the strength of our paper.

      Weaknesses:

      I have no major concerns about this paper, but would recommend that a few minor issues be addressed.

      (1) Lack of Statistical Details: The review points out that the paper could benefit from providing more statistical details, such as the number of particles and maps used for analysis, randomization methods, and dataset splitting for statistical analyses.

      To address this, we analyzed the true biological replicate datasets (different cultures, cryo-EM vitrification and data collection) from WT and K40R. Since the MEC17-KO was collected as only one dataset, we decided to not divide the MEC-17 using randomization since the division does not lead to independent sets, which tends to yield identical results in the case of cryo-EM. The biological replicates help us to see how consistent is our structure data for interpretation. The information about the replicate dataset is now included in Table 1. The description of the analysis is highlighted in the manuscript and included in the Materials & Methods and Fig. S4.

      In summary, the biological replicate between the WT data indicates that the inter-PF rotation angles are significantly consistent between two biological replicates. On the other hand, there are variations in the inter-PF angles between two replicates of K40R data in the B-tubule (Fig. S4B).

      Overall, when pooling the data together ( 6 + 6 measurement points for WT dataset 1 & 2 and 6 + 6 measurement points for K40R dataset 1 & 2 and 6 measurement points for MEC17-KO) (Fig. S4), our analysis yields the same statistical significance as the average of all datasets (6 measurement points of the total averages for WT, K40R and MEC17-KO) (Fig. 3).

      In addition, the variation in inter-PF rotation angles between certain PF pairs within the K40R replicates (B7B8 and B9B10) is similar to the variation to MEC17-KO. This suggests that the deacetylation induces variation in inter-PF angles while the inter-PF angles are maintained consistently in WT.

      (2) Questionable Conclusion Regarding MIPs: The reviewer suggests caution in the paper's conclusion that "Acetylation of αK40 does not affect tubulin and MIPs." The reviewer recommends that this conclusion be more specific or supported by additional evidence to exclude all other possibilities.

      We now revised the text to make sure we do not overclaim that “Acetylation of αK40 does not affect tubulin and MIPs.” We now describe more specifically as “Lack acetylation of αK40 does not significantly affect tubulin and MIP interactions”. Also the text was edited to make the statement more specific.

      (3) Need for Additional Visual Data: The reviewer recommends that an enlarged local density map along with fitted PDB models be provided in a supplementary figure, such as Figure 4.

      We now include the density maps and fitted PDB models in Fig. 4 and Fig. S5. We also include more snapshots of the MIP in K40R and MEC17-KO in Figure S3.

      Overall, the paper is strong in its scientific approach and findings but could benefit from additional statistical rigor and clarification of certain conclusions.

      Page 11, Line 226: "cluster consists of only ~ acetylated", lacks the percentage. Please correct this.

      We corrected it.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations For The Authors):

      (1) V2 epitopes exhibit properties of CD4i epitopes in that they are largely absent from the native Env surface, probably by glycan-occlusion, but become more exposed upon CD4 binding. Although the V2-scaffolds were produced in GnTi- cells to produce highmannose proteins, it appears that no systematic analysis of glycan content or structure was carried out save for enzymatic deglycosylation of the constructs to sharpen bands on SDS-PAGE gels. It would be helpful if the authors could comment on how the lack of this information might impact their conclusions.

      We thank the reviewer for this comment.

      The lack of native glycan structures is a common phenomenon in all HIV studies involving in vitro cell culture-expressed envelope proteins.

      As the reviewer mentioned, it is clear that our V1V2 scaffolds produced in GnTi-cells contain the expected high-mannose glycans, as evident from a significant shift and sharpening of the protein bands on the SDS-PAGE gel upon deglycosylation with the PNGase enzyme.

      In our previously published studies by Chand et al.,2017* (ref. below), the V1V2 scaffolds were shown to bind to glycan-dependent PG9 antibody suggesting that the conformation of the PG9 epitope is retained in the high-mannose V1V2 scaffold. This information has also been added to the “Hypothesis and Experimental Design” section of the Results in the revised manuscript.

      Additionally, as shown in Results, the human antibodies elicited in study participants against native glycosylated envelope protein due to natural HIV-1 infection distinguished the H173 and Y 173 epitopes in the high-mannose scaffolds, which was also recapitulated in our mouse studies using the GnTi-expressed high-mannose V1V2 scaffolds as antigens.

      Therefore, it does not seem likely that differences in glycans per se majorly affected the binding or the conclusions from our studies.

      *Chand S, Messina EL, AlSalmi W, Ananthaswamy N, Gao G, Uritskiy G, Padilla-Sanchez V, Mahalingam M, Peachman KK, Robb ML, Rao M, Rao VB. Glycosylation and oligomeric state of the envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology. 2017 Aug;508:199-212. doi: 10.1016/j.virol.2017.05.016. Epub 2017 May 31. PMID: 28577856; PMCID: PMC5526109.

      (2) Similarly, the MD simulations appear to be performed without taking glycan structure/occupancy.

      We were unable to perform glycan-dependent MD simulation studies because of the high computational demands and also the technical limitations that existed at the time of the study several years ago. Therefore, we focused on the protein backbone of the short C-strand in the V2 region that lacks glycan sites and in previous published studies has been demonstrated as conformationally polymorphic.

      Since this C-strand epitope is the binding site for many V2-directed antibodies identified previously, we hypothesized that it is relevant to explore this small immunogenic epitope for its propensity to change conformation due to an escape mutation discovered at residue 173 in a natural HIV-1 infection. How might this epitope behave in MD simulations in the presence of different glycans requires further investigation.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      Liao et al leveraged two powerful genomics techniques-CUT&RUN and RNA sequencing-to identify genomic regions bound by and activated or inactivated by SMAD1, SMAD5, and the progesterone receptor during endometrial stromal cell decidualization. Additionally, the authors generated novel knock-in HA-SMAD1 and PA-SMAD5 tagged mice to combat antibody issues facing the field, generating a novel model to advance the study of BMP signaling in the female reproductive tract. During decidualization in a murine model, SMAD1/5 are bound to many genomic sites of genes important in decidualization and pregnancy and coregulated responses with progesterone receptor signaling.

      Strengths

      The authors utilized powerful next generation sequencing and identified important transcriptional mechanisms of SMAD1/5 and PGR during decidualization in vivo.

      Weaknesses<br /> None.

      Overall, the manuscript and study are well structured and provide critical mechanistic updates on the roles of SMAD1/5 in decidualization and preparation of the maternal endometrium for pregnancy.

      We thank you for the summary and consideration.

      Reviewer #2 (Public Review):

      Summary:

      Liao and colleagues generated tagged SMAD1 and SMAD5 mouse models and identified genome occupancy of these two factors in the uterus of these mice using the CUT&RUN assay. The authors used integrative bioinformatic approaches to identify putative SMAD1/5 direct downstream target genes and to catalog the SMAD1/5 and PGR genome co-localization pattern. The role of SMAD1/5 on stromal decidualization was assayed in vitro on primary human endometrial stromal cells. The new mouse models offer opportunities to further dissect SMAD1 and SMAD5 functions without the limitation from SMAD antibodies, which is significant. The CUT&RUN data further support the usefulness of these mouse models for this purpose.

      Strengths:

      The strength of this study is the novelty of new mouse models and the valuable cistromic data derived from these mice. Overall the present manuscript is an excellent resource paper for the field of reproductive biology.

      Weaknesses:

      The weakness of the present version of the manuscript includes the self-limited data analysis approaches such as the proximal promoter based bioinformatic filter and an outdated method on inferring the cell type composition. Evidence was provided for potential associations between SMAD1/5 and other major transcription factors. However, causal effects of SMAD1/5 on the genome occupancy of other major uterine transcription factors were discussed but not experimentally examined in the present manuscript, which is understandable.

      For data in Figure 2B, the current manuscript fails to elaborate the common and distinct features between clusters 1 and 3 as well as the biological significance of having two separate clusters for SMAD1. In addition, Figure S1A shows overlapping genome occupancy between SMAD1 and SMAD5, which is not clearly demonstrated in Figure 2B.

      Thank you for the comments. We’ve added additional interpretations in Lines 281-283, addressing the clustering results mentioned in Figure 2B as suggested. We do appreciate the overlapping genome occupancy in Cluster 1, although the signal intensities may differ between two groups.

      Lines 281-283:

      “Peaks in cluster 1 exhibit a shared enrichment for both SMAD1 and SMAD5, whereas clusters 2 and 3 demonstrate preferential enrichment for SMAD5 and SMAD1, respectively.”

      For data in Figure 5A, the result description does not provide adequate information to guide readers to full understanding of the data. The biological meaning behind the three PR clusters is not stated nor speculated. Moreover, Figure 5A and Figure S1B are inherently connected but fail to be adequately described in the main text.

      Thank you for the comments. We’ve added additional interpretations in Lines 415-421 discussing the clustering results mentioned in Figure 5A, together with Supplement Figure 1C (Former Supplement Figure 1B) as suggested.

      Lines 415-421:

      “Based on the k-means clustering results of the peaks, we demonstrated clusters with shared occupancy between SMAD1/5 and PR (cluster 1), preferential deposition in the SMAD1 (cluster 2), SMAD5 (cluster 4) and PR (clusters 3,5), respectively. Interestingly, between clusters 3 and 5, although the primary enrichment is for PR, overall, the signal intensities for SMAD5 are higher in cluster 5. Together with previous analysis on genes uniquely or commonly bound by SMAD1/5 (Supplement Figure 1A), we speculate such observation can be attributed to a subset of the genes that are potentially co-regulated by SMAD5 and PR.”

      Reviewer #3 (Public Review):

      Summary:

      As SMAD1/5 activities have previously been indistinguishable, these studies provide a new mouse model to finally understand unique downstream activation of SMAD1/5 target genes, a model useful for many scientific fields. Using CUT&RUN analyses with gene overlap comparisons and signaling pathway analyses, specific targets for SMAD1 versus SMAD5 were compared, identified, and interpreted. These data validate previous findings showing strong evidence that SMADs directly govern critical genes required for endometrial receptivity and decidualization, including cell adhesion and vascular development. Further, SMAD targets were overlapped with progesterone receptor binding sites to identify regions of potential synergistic regulation of implantation. The authors report strong correlations between progesterone receptor and SMAD1/5 direct targets to cooperatively promote embryo implantation. Finally, the authors validated SMAD1/5 gene regulation in primary human endometrial stromal cells. These studies provide a data-rich survey of SMAD family transcription, defining its role as a governor of early pregnancy.

      Strengths:

      This manuscript provides a valuable survey of SMAD1/5 direct transcriptional events at the time of receptivity. As embryo implantation is controlled by extensive epithelial to stromal molecular crosstalk and hormonal regulation in space and time, the authors state a strong, descriptive narrative defining how SMAD1/5 plays a central role at the site of this molecular orchestration. The implementation of cutting-edge techniques and models and simple comparative analyses provide a straightforward, yet elegant manuscript.

      Although the progesterone receptor exists as a major regulator of early pregnancy, the authors have demonstrated clear evidence that progesterone receptor with SMAD1/5 work in concert to molecularly regulate targets such as Sox17, Id2, Tgfbr2, Runx1, Foxo1 and more at embryo implantation. Additionally, the authors pinpoint other critical transcription factor motifs that work with SMADs and the progesterone receptor to promote early pregnancy transcriptional paradigms.

      Weaknesses:

      Although a wonderful new tool to ascertain SMAD1 versus SMAD5 downstream signaling, the importance of these factors in governing early pregnancy is not novel. Furthermore, functional validation studies are needed to confirm interactions at promoter regions. Additionally, the authors presume that all overlapped genes are shared between progesterone receptor and SMAD1/5, yet some peak representations do not overlap. Although, transcriptional activation can occur at the same time, they may not occur in the same complex. Thus, further confirmation of these transcriptional events is warranted.

      Thank you for the comments. We recognized this limitation and discussed future options regarding this in Lines 578-583.

      Lines 578-583:

      “In this study, we determined the overlapped transcriptional control between SMAD1/5 and PR at the gene level, and functionally validated the regulatory effect at the transcript level in a human stromal cell decidualization model. While we observe a subset of peak representations that do not overlap at the base pair level in the promoter regions, future functional screenings at the promoter level, such as luciferase reporter assays to assess transcriptional co-activation by SMAD1/5 and PR, will advance this study.”

      Since whole murine uterus was used for these studies, the specific functions of SMAD1/5 in the stroma versus the epithelium (versus the myometrium) remain unknown. Further work is needed to delineate binding and transcriptional activation of SMAD1/5 and the progesterone receptor in the uterine compartments.

      We thank the reviewer for the insightful comment. Given the multifaceted roles of SMAD1/5 play the female reproductive tract, we concur that future studies will benefit from a more compartmentalized approach, as discussed in Lines 526-538.

      Lines 526-538:

      “Published studies have shown that nuclear SMAD1/5 localize to the stroma and epithelium during the decidualization process at 4.5 dpc, during the window of implantation. Conditional deletion of SMAD1/5 exclusively in the uterine epithelium using lactoferrin-icre (Ltf-icre) results in severe subfertility due to impaired implantation and decidual development. Conditional deletion of SMAD1/5/4 exclusively in the cells from mesenchymal lineage (including uterine stroma) using anti-Mullerian hormone type 2 receptor cre (Amhr2-cre) results in infertility with defective decidualization. Given the essential roles of SMAD1/5 in both stroma and epithelium identified by previous studies, we believe that the transcriptional co-regulatory roles of SMAD1/5 and PR reported here using the whole uterus validates a relationship between SMAD1/5 and PR in both the stromal and epithelial compartments. However, it does not rule out potential coregulatory roles of SMAD1/5 and PR in the myometrium, immune cells, and/or endothelium, given that whole uterus was used. The specific transcriptional evaluations of SMAD1/5 in the stroma versus the epithelium would require future validations using single-cell sequencing and/or spatial transcriptomic analysis.”

      There are asynchronous gene responses in the SMAD1/5 ablated mouse model compared to the siRNA-treated human endometrial stromal cells. These differences can be confounding. Further investigation is needed to understand the meaning of these differences and as they relate to the entire SMAD transcriptome.

      Thank you for the comments. In the current study, we used human endometrial stromal cells as a model to validate our findings functionally, aiming to mimic the specific time point during decidualization. We acknowledge the similarities and differences between the mouse and human cell models, and this information needs to be considered when evaluating genome-wide effects on the transcriptome. This point is discussed ins Lines 589-597.

      Lines 589-597:

      “Since mice only undergo decidualization upon embryo implantation whilst human stromal cells undergo cyclic decidualization in each menstrual cycle in response to rising levels of progesterone, asynchronous gene responses may occur in comparison between mouse models and human cells. However, cellular transformation during decidualization is conserved between mice and humans, which makes findings in the mouse models a valuable and transferable resource to be evaluated in human tissues. Accordingly, our functional validation studies were performed using human endometrial stromal cells induced to decidualize in vitro for four days, which models the early phases of decidualization. Additional transcriptomic studies of the SMAD1/5 perturbations in human endometrial stromal cells will be of great resource in understanding the entire SMAD1/5 regulomes in humans.”

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      The inference on the cell type composition could use updated bioinformatic tools, which are purely computational without costly and time-consuming wet-lab resources. Perhaps this part of the description could be streamlined if the authors chose to use the method in the current version.

      We thank the reviewer for the suggestion. We added the analysis of the cell type composition using the updated tool CIBERSORTx (PMID:31061481) and included the results and discussion regarding the cell type composition changes in Supplement Figure 1B and Lines 392-407.

      Lines 392-407

      “To explore the major cell types regulated by SMAD1/5, first, we used CIBERSORTx to analyze and depict changes in the cell populations upon SMAD1/5 depletion in the mouse uterus during early pregnancy. By imputing the bulk uterine gene expression profiles to previously published mouse uterine single-cell datasets using CIBERSORTx, we were able to compare changes across both samples and cell types upon the SMAD1/5 perturbation in the mouse uterus. We highlight the proportional increase in the epithelial cells, as well as the decrease in the decidual stromal cells and smooth muscle cells in mice lacking uterine SMAD1/5 during the periimplantation phase (Supplement Figure 1B). Such cell populational changes are in line with the phenotypical observations of decidualization failure and excessive proliferation in the epithelial compartment. In addition, to explore the expression patterns of SMAD1/5 direct targets in human, we profiled the expression levels of the key “up-targets” and “down-targets” in the different cell types of the human endometrium. Using previously published single-cell RNA seq data of human endometrium, we visualized the expression patterns of suppressive targets and activating targets of SMAD1/5 (Figure 4E). Apart from the major epithelial and stromal compartments, SMAD1/5 target genes are also widely expressed in the immune cell populations. Such observations reinforced the importance of the BMP signaling pathways in establishing an immune-privileged environment at the maternal-fetal interface.”

    1. Author Response

      Reviewer #1 (Public Review):

      Reviewer 1: The structural part of this work is interesting, as it is the first structure of Pin1 with a ligand that bridges both domains. They might want to underline this - all other structures in the PDB have a single domain complex, but never both domains by a single longer peptide.

      Done. We have highlighted the novelty of the structure in the abstract, introduction (page 5); and discussion (section “The Pin1-PKC interface is described by a novel bivalent interaction mode”, page 24).

      Reviewer 1: I would however question the static representation of this structure - the 90{degree sign} kink in the peptide when complexed is probably one single snapshot, but I hardly believe the PPIase/WW domain orientation to be static. Unless the authors have additional information to stand by this static structure, this point merits being commented on in the manuscript.

      Done. Following the reviewer’s suggestion and to avoid the impression of “static” structure, we have added sentences that highlight the dynamic aspects of the complex evident from the entire ensemble representation of Figure 5-figure supplement 2:

      Page 15 (Results):

      “Of note, the linker region connecting the two domains retains its flexibility in the complex and confers some variability onto the relative positions of the WW and PPIase domains, as is evident from the ensemble representation of Figure 5-figure supplement 2. The complex exhibits novel structural features that distinguish it from all other structures of Pin1 complexes known to date. These features are highlighted in Fig. 6 using the lowest-energy structure of the ensemble.”

      Page 24 (Discussion): “Moreover, the retention of linker flexibility in the Pin1::pV5bII complex suggests that Pin1 can potentially adopt minor “extended” states that would not be readily detectable by ensemble-averaged methods such as solution NMR.”

      Also, in describing specific interactions in the section “Structural basis of the Pin1-PKCII C-term bivalent recognition mode”, we now note how many structures of the Pin1-pV5bII ensemble have those interactions.

      Reviewer 1: I would like to point out to literature that described for example the non-canonical binding (Yeh ES, Lew BO & Means AR (2006) The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J Biol Chem 281, 241-251. Pin1 recognizes cyclin E via a noncanonical pThr384- Gly385 motif [33] rather than the pThr380-Pro381 motif.). They mention briefly the absence of isomerase activity in similar TPP motifs, but this information might already come in the Results section.

      Done. We have incorporated this information in the Discussion section, page 25 (last paragraph).

      Reviewer 1: The expression levels of Pin1 and PKCa are amazingly linear (Fig 7A), but when they overexpress WT Pin1 in a KO line, with 3-4 times higher overexpression, the PKCa levels are hardly higher than in the original WT cell line.

      We thank Reviewer 1 for raising this interesting point. Our simple interpretation of the data is that physiological expression of Pin1 in the cell model we use is a limiting factor in the stimulated PKCa degradation pathway, but that Pin1 is no longer a limiting factor at higher expression levels. We now include this point in the Discussion, page 26.

      Reviewer 1: Also, the levels in the W34A/R68A/R69A (abolishing both WW and PPIase binding functions) are surprising, why would PKCa levels rise above the level found in the Pin1 KO cells?

      This result remains a puzzle but, as we are including all independent biological replicates in the analysis, the data are the data. Moreover, by assessing the functional complementation data to the KO by two-tailed t-test (see last point below), this effect does not reach statistical significance. Nonetheless, as the result is reproducible, we now comment on this effect in the Results, page 21. One speculation is this triple mutant has dominant negative properties imposed on some limiting factor in PKCa degradation that are revealed in the absence of WT Pin1. Considerably more work needs to be done to settle this issue. However, in light of the fact that this result does not conflict with the structural/biochemical data (rather, it is consistent with it), we hope this positive response satisfies the Reviewer.

      Reviewer 1: Finally, if even slight overexpression of the C113S catalytically inactive mutant leads to more efficient PKCa degradation than overexpression of the WT Pin1 (Figure 7C), it is hard to interpret. The conclusion that Pin1-mediated regulation of PKCa requires a bivalent interaction mode of Pin1 with PKCa independent of its catalytic activity do depend on these data, so they merit further analysis.

      We certainly had no intention of concluding that the C113S catalytically inactive mutant is more efficient with regard to promoting PKCa degradation than overexpression of the WT Pin1. That overstates the data. We concede that our organization of the Pin1 rescue data in the original Fig 7C confused the issue, and that the original text also invited conclusions that overstate the result. To correct this problem, we reorganized Fig. 7C to simplify the presentation by comparing the complementation data to the KO. All statistical comparisons are now to the KO cell line (not to WT as before) and we employ the two-tailed t-test to compare the data. Statistical significance is attained only for reconstituted WT and C113S Pin1 expression. The text is also appropriately revised to describe the results clearly. We trust the Reviewer agrees that the C113S data are compelling and are consistent with a noncanonical (noncatalytic) mode of PKCa regulation by Pin1. This is a major point of Fig 7C as it links the structural/biochemical data to a cellular context.

    1. Author Response

      eLife assessment

      This computational study is a valuable empirical investigation into the common trait of neurons in brains and artificial neural networks: responding effectively to both objects and their mirror im- ages and it focuses on uncovering conditions that lead to mirror symmetry in visual networks and the evidence convincingly demonstrates that learning contributes to expanding mirror symmetry tuning, given its presence in the data. Additionally, the paper delves into the transformation of face patches in primate visual hierarchy, shifting from view specificity to mirror symmetry to view invariance. It empirically analyzes factors behind similar effects in two network architec- tures, and key claims highlight the emergence of invariances in architectures with spatial pooling, driven by learning bilateral symmetry discrimination and importantly, these effects extend be- yond faces, suggesting broader relevance. Despite strong experiments, some interpretations lack explicit support, and the paper overlooks pre-training emergence of mirror symmetry.

      As detailed above, we have now analyzed several convolutional architectures and made a direct link between the artificial neural networks and neuronal data to further support our claims (refer to Figure 6, S10- 13).

      To address the concern about pre-training emergence of mirror symmetry, we conducted a new analysis inspecting unit-level response profile, following Baek and colleagues (2021). This analysis is described in detail below (response to R3). In brief, we found that the first fully connected layer in trained networks exhibits twice the number of mirror symmetric units found before training. In addition to our population-level observations (Fig. S2) and explicit training- dataset manipulations (Fig. 4), this finding supports the interpretation of training to discriminate among mirror- symmetric object categories as a major factor behind the emergence of mirror symmetric viewpoint tuning.

      Reviewer 1 (Public Review):

      By using deep convolutional neural networks (CNNs) as model for the visual system, this study aims at understanding and explaining the emergence of mirror-symmetric viewpoint tuning in the brain.

      Major strengths of the methods and results:

      1) The paper presents comprehensive, insightful and detailed analyses investigating how mirror- symmetric viewpoint tuning emergence in artificial neural networks, providing significant and novel insights into this complex process.

      2) The authors analyze reflection equivariance and invariance in both trained and untrained CNNs’ convolutional layers. This elucidates how object categorization training gives rise to mirror-symmetric invariance in the fully-connected layers.

      3) By training CNNs on small datasets of numbers and a small object set excluding faces, the authors demonstrate mirror-symmetric tuning’s potential to generalize to untrained categories and the necessity of view-invariant category training for its emergence.

      4) A further analysis probes the contribution of local versus global features to mirror-symmetric units in the first fully-connected layer of a network. This innovative analysis convincingly shows that local features alone suffice for the emergence of mirror-symmetric tuning in networks.

      5) The results make a clear prediction that mirror-symmetric tuning should also emerge for other bilaterally symmetric categories, opening avenues for future neural studies.

      We are grateful for your insightful feedback and the positive evaluation of our study on mirror-symmetric viewpoint tuning in neural networks. Your constructive comments considerably improved the manuscript. We eagerly look forward to exploring the future research avenues you have highlighted.

      Major weaknesses of the methods and results:

      Point 1.1) The authors propose a mirror-symmetric viewpoint tuning index, which, although innovative, complicates comparison with previous work and this choice is not well motivated. This index is based on correlating representational dissimilarity matrices (RDMs) with their flipped versions, a method differing from previous approaches.

      We have revised the Methods section to clarify the motivation for the mirror-symmetric viewpoint tuning index we introduced.

      Manuscript changes:

      Previous work quantified mirror-symmetry in RDMs by comparing neural RDMs to an idealized mirror- symmetric RDM (see Fig. 3c-iii in [14]). Although highly interpretable, such an idealized RDM encompasses implicit assumptions about representational geometry that are unrelated to mirror-symmetry. For example, consider a neural RDM reflecting perfect mirror-symmetric viewpoint tuning and wherein for each view, the distances among all of the exemplars are equal. Such a neural RDM would fit an idealized mirror- symmetric RDM better than a neural RDM reflecting perfect mirror-symmetric viewpoint tuning but with non-equidistant exemplars. In contrast, the measure proposed in Eq. 2 equals 1.0 in both cases.

      Point 1.2> Faces exhibit unique behavior in terms of the progression of mirror-symmetric viewpoint tuning and their training task and dataset dependency. Given that mirror-symmetric tuning has been identified in the brain for faces, it would be beneficial to discuss this observation and provide potential explanations.

      We revised the caption of Figure S1 to explicitly address this point:

      Manuscript changes:

      For face stimuli, there is a unique progression in mirror-symmetric viewpoint tuning: the index is negative for the convolutional layers and it abruptly becomes highly positive when transitioning to the first fully connected layer. The negative indices in the convolutional layers can be attributed to the image-space asymmetry of non-frontal faces; compared to other categories, faces demonstrate pronounced front-back asymmetry, which translates to asymmetric images for all but frontal views (Fig. S8). The features that drive the highly positive mirror-symmetric viewpoint tuning for faces in the fully connected layers are training-dependent (Fig. S2), and hence, may reflect asymmetric image features that do not elicit equivariant maps in low-level representations; for example, consider a profile view of a nose. Note that cars and boats elicit high mirror- symmetric viewpoint tuning indices already in early processing layers. This early mirror-symmetric tuning is independent of training (Fig. S2), and hence, may be driven by low-level features. Both of these object categories show pronounced quadrilateral symmetry, which translates to symmetric images for both frontal and side views (Fig. S8).

      Point 1.3: 3. Previous work reported critical differences between CNNs and neural represen- tations in area AL indicating that mirror-symmetric viewpoint tuning is less present than view invariance in CNNs compared to area AL. While such findings could potentially limit the use- fulness of CNNs as models for mirror-symmetric viewpoint tuning in the brain, they are not addressed in the study.

      This point is now addressed explicitly in the caption of Figure S9:

      Manuscript changes:

      Yildirim and colleagues [14] reported that CNNs trained on faces, notably VGGFace, exhibited lower mirror- symmetric viewpoint tuning compared to neural representations in area AL. Consistent with their findings, our results demonstrate that VGGFace, trained on face identification, has a low mirror-symmetric viewpoint tuning index. This is especially notable in comparison to ImageNet-trained models such as VGG16. This difference between VGG16 and VGGFace can be attributed to the distinct characteristics of their training datasets and objective functions. The VGGFace training task consists of mapping frontal face images to identities; this task may exclusively emphasize higher-level physiognomic information. In contrast, training on recognizing objects in natural images may result in a more detailed, view-dependent representation. To test this potential explanation, we measured the average correlation-distance between the fc6 representations of different views of the same face exemplar in VGGFace and VGG16 trained on ImageNet. The average correlation-distance between views is 0.70±0.04 in VGGFace and 0.93±0.04 in VGG16 trained on ImageNet. The converse correlation distance between different exemplars depicted from the same view is 0.84±0.14 in VGGFace and 0.58±0.06 in VGG16 trained on ImageNet. Therefore, as suggested by Yildirim and colleagues, training on face identification alone may result in representations that cannot explain intermediate levels of face processing.

      Point 1.4) The study’s results, while informative, are qualitative rather than quantitative, and lack direct comparison with neural data. This obscures the implications for neural mechanisms and their relevance to the broader field.

      We addressed this point by conducting a quantitative comparison between the architectures of various networks and neural response patterns in monkey face patches (see Figures 6, S10-S13, appearing above).

      Point 1.5) The study provides compelling evidence that learning to discriminate bilaterally symmetric objects (beyond faces) induces mirror-symmetric viewpoint tuning in the networks, qualitatively similar to the brain. Moreover, the results suggest that this tuning can, in principle, generalize beyond previously trained object categories. Overall, the study provides important conclusions regarding the emergence of mirror-symmetric viewpoint tuning in networks, and potentially the brain. However, the conducted analyses and results do not entirely address the question why mirror-symmetric viewpoint tuning emerges in networks or the brain. Specifically, the results leave open whether mirror-symmetric viewpoint tuning is indeed necessary to achieve view invariance for bilaterally symmetric objects.

      We believe that mirror-symmetric viewpoint tuning is not strictly necessary for achieving view-invariance. However, it is a plausible path from view-dependence to view invariance. We addressed this point in the updated limitations subsection of the discussion.

      Manuscript changes:

      A second consequence of the simulation-based nature of this study is that our findings only establish that mirror-symmetric viewpoint tuning is a viable computational means for achieving view invariance; they do not prove it to be a necessary condition. In fact, previous modeling studies [10, 19, 61] have demonstrated that a direct transition from view-specific processing to view invariance is possible. However, in practice, we observe that both CNNs and the face-patch network adopt solutions that include intermediate representations with mirror-symmetric viewpoint tuning.

      Taken together, this study moves us a step closer to uncovering the origins of mirror-symmetric tuning in networks, and has implications for more comprehensive investigations into this neural phenomenon in the brain. The methods of probing CNNs are innovative and could be applied to other questions in the field. This work will be of broad interest to cognitive neuroscientists, psychologists, and computer scientists.

      We appreciate your acknowledgment of our study’s contribution to understanding mirror-symmetric tuning in networks and its wider implications in the field.

      Reviewer 2 (Public Review);

      Strengths

      1) The statements made in the paper are precise, separating observations from inferences, with claims that are well supported by empirical evidence. Releasing the underlying code repository further bolsters the credibility and reproducibility. I especially appreciate the detailed discussion of limitations and future work.

      2) The main claims with respect to the two convolutional architectures are well supported by thorough analyses. The analyses are well-chosen and overall include good controls, such as changes in the training diet. Going beyond ”passive” empirical tests, the paper makes use of the fully accessible nature of computational models and includes more ”causal” insertion and deletion tests that support the necessity and sufficiency of local object features.

      3) Based on modeling results, the paper makes a testable prediction: that mirror-symmetric viewpoint tuning is not specific to faces and can also be observed in other bilaterally symmetric objects such as cars and chairs. To test this experimentally in primates (and potentially other model architectures), the stimulus set is available online.

      We express our gratitude for your constructive feedback. Your acknowledgment of the clarity of our statements and the robustness of our empirical evidence is greatly appreciated. We are also thankful for your recognition of our comprehensive analyses and the testable predictions arising from our work.

      Point 2.1: Weaknesses

      My main concern with this paper is in its choice of the two model architectures AlexNet and VGG. In an earlier study, Yildirim et al. (2020) found an inverse graphics network ”EIG” to better correspond to neural and behavioral data for face processing than VGG. All claims in the paper thus relate to a weaker model of the biological effects since this work does not analyze the EIG model. Since EIG follows an analysis-by-synthesis approach rather than standard classification training, it is unclear whether the claims in this paper generalize to this other model architecture. It is also unclear if the claims will hold for: 1) transformer architectures, 2) the HMAX architecture by Leibo et al. (2017) which has also been proposed as a computational explanation for mirror-symmetric tuning, and, as the authors note in the Discussion, 3) deeper architectures such as ResNet-50 which tend to better align to neural and behavioral data in general. These architectures include different computational motifs such as skip connections and a much smaller proportion of fully-connected layers which are a major focus of this work.

      Overall, I thus view the paper’s claims as limited to AlexNet- and VGG-like architectures, both of which fall behind state-of-the-art in their alignment to primates in general and also specifically for mirror-symmetric viewpoint tuning.

      We understand your concern regarding the choice of AlexNet and VGG architectures. The decision to focus on these models was driven by the need for a straightforward macroscopic correspondence between the layer structure of the artificial networks and the ventral visual stream. However, acknowledging this potential limitation of generality, we have expanded our analysis to include the EIG model, a transformer architecture, the HMAX model, and deeper convolutional architectures like ResNet-50 and ConvNeXt. Our revised analysis, detailed in Figures S1, S9, and S10-S13, incorporates these additional models and offers a comprehensive evaluation of their brain alignment and mirror-symmetric viewpoint tuning. We found that while the architectures indeed vary in their computational motifs, the emergence of mirror-symmetric viewpoint tuning is not exclusive to AlexNet and VGG. It occurs for every CNN we tested, exactly at the stage where equivariant feature maps are pooled globally. We believe that the new analyses extend the generality of our findings and remove the concern that our claims apply only to older, shallower networks.

      For details, please refer to Point 1 in the ’Essential Revisions’ section.

      Point 2.2: Minor weaknesses

      1) Figure 1A: since the relevance to primate brains is a major motivator of this work, the results from actual neural recordings should be shown and not just schematics. For instance, the mirror symmetry in AL is not as clean as the illustration (compare with Fig. 3 in Yildirim et al. 2020), and in the paper’s current form, this is not easily accessible to the reader.

      Thank you for your feedback regarding the presentation of neural recordings in Figure 1A. We have updated Figure 1A to include actual neural RDMs instead of the previous schematic representations.

      Point 2.3: 2. Figure 4 L832-845: The claims for the effect of training on mirror-symmetric viewpoint tuning are with respect to the training data only, but there are other differences between the models such as the number of epochs (250 for CIFAR-10 training, 200 for all other datasets), the learning rate (2.5 ∗ 10−4 for CIFAR-10, 10−4 for all others), the batch size (128 vs 64), etc. I do not expect these choices to make a major difference for your claims, but it would be much cleaner to keep everything but the training dataset consistent. Especially the different test accuracies worry me a bit (from 81% to 92%, and they appear different from the accuracy numbers in figure S4 e.g. for CIFAR-10 and asymSVHN), at the very least those should be comparable.

      We addressed this point by retraining the models while holding most of the hyperparameters constant. Specifically, we standardized the number of epochs, batch size, and weight decay. The remaining differences are necessitated by the characteristics of the specific training image sets used (natural images versus digits). Please note that we do not directly contrast models trained on CIFAR-10 and SVHN; the controlled comparisons are conducted while holding the SVHN training images constant, and are not confounded by hyperparameter choice.

      Manuscript changes:

      The networks’ weights and biases were initialized randomly using the uniform He initialization [70]. We trained the models using 250 epochs and a batch size of 256 images. The CIFAR-10 network was trained using stochastic gradient descent (SGD) optimizer starting with a learning rate of 10−3 and momentum of 0.9. The learning rate was halved every 20 epochs. The SVHN/symSVHN/asymSVHN networks were trained using the Adam optimizer. The initial learning rate was set to 10−5 and reduced by half every 50 epochs. The hyper-parameters were determined using the validation data. The models reached around 83% test accuracy (CIFAR-10: 81%, SVHN: 89%, symSVHN: 83%, asymSVHN: 80%). Fig. S4 shows the models’ learning curves.

      Point 2.4: 3. L681-685: The general statement made in the paper that ”deeper models lose their advantage as models of cortical representations” is not supported by the cited limited comparison on a single dataset. There are many potential confounds here with respect to prior work, e.g. the recording modality (fMRI vs electrodes), the stimulus set (62 images vs thousands), the models that were tested (9 vs hundreds), etc.

      We agree that the recording modality and stimulus set may play a critical role in determining model ranking. Since we generalized the analyses to deeper models, we removed this statement from the paper. While we still believe that shallower networks may prove to be better models of the visual cortex, this empirical question is out of the scope of the current manuscript.

      Reviewer 3

      This study aimed to explore the computational mechanisms of view invariance, driven by the observation that in some regions of monkey visual cortex, neurons show comparable responses to (1) a given face and (2) to the same face but horizontally flipped. Here they study this known phenomenon using AlexNet and other shallow neural networks, using an index for mirror symmetric viewpoint tuning based on representational similarity analyses. They find that this tuning is enhanced at fully connected- or global pooling layers (layers which combine spatial information), and that the invariance is prominent for horizontal- but not vertical- or rotational transformations. The study shows that mirror tuning can be learned when a given set of images are flipped horizontally and given the same label, but not if they are flipped and given different labels. They also show that networks learn this tuning by focusing on local features, not global configurations.

      We are grateful for your thorough reading, reflected by the comprehensive summary of our study and its main findings.

      Point 3.1) I found the study to be a mixed read. Some analyses were fascinating: for example, it was satisfying to see the use of well-controlled datasets to increase or decrease the rate of mirror-symmetry tuning. The insertion- and deletion¬ experiments were elegant tests to probe the mechanisms of mirror symmetry, asking if symmetry could arise from (1) global feature configurations (in a holistic sense) vs. (2) local features, with stronger evidence for the latter. These two sets of results were successful and interpretable. They stand in contrast with the first analysis, which relies on observations that do not seem justified. Specifically, Figure 2D shows mirror-symmetry tuning across 11 stages of image processing, from pixels space to fully connected layers. It shows that images from different object categories evoke considerably different tuning index values. The explanation for this result is that some categories, such as ”tools,” have ”bilaterally symmetric structure,” but this is not explicitly measured anywhere. ”Boats” are described as having ”front-back symmetry,” more so than flowers. One imagines flowers being extremely symmetric, but perhaps that depends on the metric. What is the metric? At first I thought it was the mirror-symmetric viewpoint tuning index in the image (pixel) space, but this cannot be, as the index for faces and flowers is negative, cars have no symmetry, and boats are positive. To support these descriptions, one must have an independent variable (for object class symmetry) that can be related to the dependent variable (the mirror-symmetric viewpoint tuning index). If it exists, it is not a part of the Results section. This omission undermines other parts of the Results section: ”some car models have an approximate front-back symmetry...however, a flower typically does not...” ”Some,” ”typically:” how many in the dataset exactly, and how often?

      We thank you for your insightful observation. You are correct that we did not refer to pixel-space symmetry; our descriptions relate to the 3D structure of the objects used in the study.

      Following this comment, we objectively quantified the symmetry planes of the 3D objects. Unfortunately, we do not have direct access to the proprietary 3D meshes of these objects, only to their renders. Therefore, we devised measures that assess the symmetry of the 3D objects through the symmetry they elicit in the different 2D renders.

      This analysis is described in the new supplemental figure S8. We believe that these measurements support the qualitative claims we made in the previous draft.

      Point 3.2) The description of CIFAR-10 as having bilaterally symmetric categories - are all these categories equally symmetric? If not, would such variability matter in terms of these results?

      When considering their 3D structure, all ten CIFAR10 categories exhibit pronounced left-right symmetry. These categories encompass vertebrate animals (birds, cats, deer, dogs, frogs, horses); They also include man-made vehicles (airplanes, cars, ships, and trucks), which, at least externally, are nearly perfectly symmetric by design. It is important to note that this symmetry pertains to the photographed 3D objects, rather than the images themselves, which could be highly asymmetric. Other axes of symmetry (e.g., back-front) in CIFAR10 cannot be measured without 3D representations of the objects.

      Point 3.3) These assessments of object category symmetry values are made before experiments are presented, so they are not interpretations of the results, and it would be circular to write it otherwise.

      We have changed the order so that the explanations follow the experimental results. This includes the relevant main text paragraph, as well as the relevant figure—both the order of panels and the phrasing of the figure caption.

      Point 3.4) Overall, my bigger concern is that the framing is misleading or at best incomplete. The manuscript successfully showed that if one introduces left-right symmetry to a dataset, the network will develop population-level representations that are also bilaterally symmetric. But the study does not explain that the model’s architecture and random weight distribution are sufficient for symmetry tuning to emerge, without training, just to a much more limited degree. Baek et al. showed in 2021 that viewpoint-invariant face-selective units and mirror-symmetric units emerge in untrained networks (”Face detection in untrained deep neural networks”; this current manuscript cites this paper but does not mention that mirror symmetry is a feature of the 2021 study). This current study also used untrained networks as controls (Fig. 3), and while they were useful in showing that learning boosts symmetry tuning, the results also clearly show that horizontal-reflection invariance is far from zero. So, the simple learning-driven explanation for the mirror-symmetric viewpoint tuning for faces is wrong: while (1) network training and (2) pooling are mechanisms that charge the development of mirror-symmetric tuning, the lottery ticket hypothesis is enough for its emergence. Faces and numbers are simple patterns, so the overparameterization of networks is enough to randomly create units that are tuned to these shapes and to wire many of them together. How learning shapes this process is an interesting direction, especially now that this current study has outlined its importance.

      We agree with the reviewer that random initialization may result in units that show mirror-symmetric viewpoint tuning for faces in the absence of training. In the revised manuscript, we quantify the occurrence of such units, first reported by Baek et al, in detail, and discuss the relation between Baek et al., 2021 and our work. In brief, our analysis affirms that units with mirror-symmetric viewpoint tuning for faces appear even in untrained CNNs, although we believe their rate is lower than previously reported. Regardless of the question of the exact proportion of such units, we believe it is unequivocal that at the population level, mirror-symmetric viewpoint tuning to faces (and other objects with a single plane of symmetry) is strongly training-dependent.

      First, we refer the reviewer to Figure S2, which directly demonstrates the effect of training on the population-level mirror symmetric viewpoint tuning:

      Note the non-mirror-symmetric reflection invariant tuning profile for faces in the untrained network.

      Second, the above-zero horizontal reflection-invariance referred by the reviewer (Figure 3) is distinct from mirror- symmetric viewpoint tuning; the latter requires both reflection-invariance and viewpoint tuning. More importantly, it was measured with respect to all of the object categories grouped together; this includes objects with quadrilateral symmetry, which elicit mirror-symmetric viewpoint tuning even in shallow layers and without training. To clarify the confusion that this grouping might have caused, we repeated the measurement of invariance in fc6, separately for each 3D object category:

      Disentangling the contributions of different categories to the reflection-invariance measurements, this analysis under-scores the necessity of training for the emergence of mirror-symmetric viewpoint symmetry.

      Last, we refer the reviewer to Figure S5, which shows that the symmetry of untrained convolutional filters has a narrow, zero-centered distribution. Indeed, the upper limit of this distribution includes filters with a certain degree of symmetry. This level of symmetry, however, becomes the lower limit of the filters’ symmetry distribution following training.

      Therefore, we believe that training induces a shift in the tuning of the unit population that is qualitatively distinct from, and not explained by, random-lottery-related mirror-symmetric viewpoint tuned units. In the revised manuscript, we clarify the distinction between mirror-symmetric viewpoint tuning at the population level and the existence of individual units showing pre-training mirror symmetric viewpoint tuning, as shown by Baek et al.

      Manuscript changes: (Discussion section)

      Our claim that mirror-symmetric viewpoint tuning is learning-dependent may seem to be in conflict with findings by Baek and colleagues [17]. Their work demonstrated that units with mirror-symmetric viewpoint tuning profile can emerge in randomly initialized networks. Reproducing Baek and colleagues’ analysis, we confirmed that such units occur in untrained networks (Fig. S15). However, we also identified that the original criterion for mirror-symmetric viewpoint tuning employed in [17] was satisfied by many units with asymmetric tuning profiles (Figs. S14 and S15). Once we applied a stricter criterion, we observed a more than twofold increase in mirror-symmetric units in the first fully connected layer of a trained network compared to untrained networks of the same architecture (Fig. S16). This finding highlights the critical role of training in the emergence of mirror-symmetric viewpoint tuning in neural networks also at the level of individual units.

      Point 3.5) Finally, it would help to cite other previous demonstrations of equivariance and mirror symmetry in neural networks. Chris Olah, Nick Cammarata, Chelsea Voss, Ludwig Schubert, and Gabriel Goh of OpenAI wrote of this phenomenon in 2020 (Distill journal).

      We added a reference to the study by Olah and colleagues (2020).

      Manuscript changes: (Discussion section)

      (see Olah and colleagues (2020) [60] for an exploration of emergent equivariance using activation maximiza- tion).

      Point 3.6) Some other observations that might help:

      I am enthusiastic about the experiments using different datasets to increase or decrease the rate of mirror-symmetry tuning (sets including CIFAR10, SVHN, symSVHN, asymSVHN); it is worth noting, however, that the lack of a ground truth metric for category symmetry is a problem here too. In the asymSVHN dataset, images are flipped and given different labels. If some categories are naturally symmetric after horizontal flips, such as images containing ”0” or ”8”, then changing the label is likely to disturb training. This would explain why the training loss is larger for this condition (Figure S4D).

      We now acknowledge that the inclusion of digits 0 and 8 reduces the accuracy of asymSVHN:

      Manuscript changes: (Figure S4 caption)

      Note that the accuracy of asymSVHN might be negatively affected by the inclusion of relatively symmetric categories such as 0 and 8.

      Our rationale for retaining these digits in the dataset was to manipulate the symmetry of the learned categories (compared to symSVHN) while keeping the images themselves constant.

      Regarding ground-truth symmetry of these dataset: For CIFAR-10, the relevant measure of symmetry pertains to the 3D structure of the photographed objects, which we believe is unequivocally symmetric (see Point 3.2). Note that 2D, pixel-space image symmetry is not directly indicative of symmetry in 3D.

      For SVHN, which consists of two-dimensional characters, the pixel-space symmetry of the images indeed reflects the objects’ symmetry. However, since we are worried that some readers might confuse our claims that relate to the symmetry of objects with claims (we did not make) about symmetry of 2D images, we prefer to avoid reporting measurements of image-space symmetry. We believe that our interpretation of the experiments with SVHN/symSVHN/asymSVHN holds even in the absence of such measurements.

      For your reference, we include here a quantification of image-space horizontal symmetry for each category of CIFAR-10 and SVHN:

      Point 3.7) It is puzzling why greyscale 3D rendered images are used. By using greyscale 3D render (at least as shown in the figures) the study proceeds as if the units are invariant under color transformations. Unfortunately, this is not true and using greyscale images impact the activations of different layers of Alexnet in a way that is not fully defined. Moreover, many units in shallow networks focus on color and exactly these units could be invariant to other transformation like the mirror symmetry, but grey scaling the images makes them inactive.

      We use grayscale 3D rendered images to align with the setting in other studies investigating mirror- symmetric viewpoint tuning, including Freiwald et al. (2010), Leibo et al. (2017), and Yildirim et al. (2020). The choice of using grayscale images in these studies is motivated by the need to dissociate face-processing from lower-level, hue-specific responses.

    1. Author Response

      Reviewer #1 (Public Review):

      In this manuscript, the authors perform a very thorough, extensive characterization of the impact of an iron-rich diet on multiple phenotypes in a wide range of inbred mouse strains. While a work of this type does not offer mechanistic insights, the value of the study lies not only in its immediate results but also in what it can offer to future researchers as they explore the genetic basis of iron levels and other related phenotypes in rodent studies. The creation of a web resource and the offer from the authors to share all available samples is particularly laudable, and helps to increase the accessibility of the work to other scientists. There is one shortcoming to the work however. To induce iron overload in mice in the main study in this work, mice were placed on an iron-rich diet that differed in its composition from the baseline diet in more than just iron. This could influence some of the phenotypes observed in this study.

      We thank the reviewer for their comments. We hope that this work can provide insight and/or support for a wide variety of future studies. Regarding the diets, yes, in our initial pilot study with 6 strains, the baseline diet was inadvertently not isocaloric with the high iron diet, and it also used a different source of cellulose and contained individual amino acids in ratios found in casein, instead of casein, which was used as the protein source for the high iron diet. The baseline metal composition however was the same. We included data from the pilot study in this manuscript because it provided some important early insight, but made sure to note this caveat since it could potentially affect some results. We added some additional text to the Methods section to help clarify this further. The other subsequently performed studies in this paper were not affected, for example the Control study performed in C57BL/6J has a baseline diet that matches the high iron diet except for iron. For our HMDP genetic study with 114 strains, we did not have a baseline group, so all mice were on the same high iron diet.

      Reviewer #2 (Public Review):

      Here, the authors tried to identify the genes and biological pathways underlying iron overload and its associated pathologies in mice. Several wet lab experiments and measurements alongside many bioinformatic analyses like GWAS, RNA-seq data analysis (DEG), eQTL analysis, TWAS, and gene-set enrichment analysis have been performed. The study design is good enough and the author tried to validate the results. The data have been submitted (Accession #: GSE230674) but are not public yet.

      Thank you very much for your detailed and thoughtful review and for helping us to improve our manuscript.

      1) The main issue of this manuscript is its length. It's too long, especially the result section. It's hard for readers to follow the paper. Moreover, you added results about other minerals, mostly copper, which seems too much (considering the fact that this study is about iron). The text doesn't have the required Integrity and focus. You should decide where you want to put the focus of this manuscript and I strongly recommend shortening the manuscript, try to be short and sweet as much as you can.

      Thank you for this helpful suggestion. We have moved or removed excess discussion from the Results section. We moved the specific GWAS results for copper and related red cell traits to the Supplementary text file “Supplementary File 24” so that only iron and triglyceride GWAS results are described in the main text. We kept in the discussion about the copper findings in the Discussion section, since we believe the deficiency is an important phenotype induced by the high iron diet that may impact other studies of dietary iron overload. We also believe that the copper and anemia GWAS loci may be of interest to some readers. We considered putting the copper and anemia findings in a separate manuscript, but ultimately decided to include it here, although we do agree it makes the manuscript longer.

      2) Also, the "Methods" section is long, some parts are over-detailed (mostly wet lab procedures) and some parts are not detailed enough. It seems the "Statistical analyses" part doesn't have extra information. I recommend removing the first paragraph and moving some of the information from the second paragraph to the right place in the Method section.

      We reorganized the first part of the statistical analyses section for clarity, and as mentioned further below, added in more detail regarding the GWAS significance thresholds:

      “Analyses were performed using GraphPad Prism (GraphPad Software, La Jolla, CA) and in R. P < 0.05 was considered significant for these tests and for bicor analyses. All reported P values are based on a two-sided hypothesis. The initial number of mice per group in the pilot (N = 6 per group) and Control studies (N = 8 per group) were determined based on previous studies where similar phenotypes were measured. For the HMDP study, permutation and simulation studies were previously used to test the statistical power of the HMDP using parameters including the variance explained by SNPs, genetic background, random errors, and the number of repeated measurements per strain (Bennett, Farber et al. 2010). Appropriate sample sizes to achieve adequate statistical power were determined based on previous analyses. Differences in sample sizes among the HMDP strains were due to differences in strain availability as determined by breeding success and losses. For GWAS, thresholds for significant (P < 4.1e-6; -log10P > 5.387) loci were defined using permutation as previously described (Bennett, Farber et al. 2010). The suggestive locus threshold (P < 4.1e-5; -log10P > 4.387) was based on reducing the significance threshold by one log unit. The cis eQTL GWAS threshold (P < 1e-4) was based on a calculated 1% FDR threshold of 1.73e-3, adjusted to 1e-4 to be slightly more conservative. The trans-eQTL threshold (P < 1e-6) was based on the 4.1e-6 threshold, adjusted to 1e-6 to be more conservative as well.”

      We tried moving the missing values notes in the second paragraph to the various method sections in the paper they apply to, but this led to much repetition and was in some cases not clear, so we decided to keep this information together in the statistical analyses section.

      3) Some part of your discussion section, is retelling the results. Please discuss your results and compare them with previous findings.

      We have revised the discussion to remove several parts that mostly just summarized the results and agree this improves the text. As mentioned above, we moved some discussion that was in the Results section to the Discussion section as well.

      4) Add detail about your GWAS model. As you had repeated samples from each strain, it's good to mention how you considered this. Also, show how you determined the significance threshold.

      Thank you for this suggestion. The GWAS software we used (FaST-LMM) derives a kinship matrix from the genotypes of the individuals considered in the analysis; this kinship matrix is used to correct for population structure including multiple individuals per strain.

      The trait GWAS significance threshold was determined using permutation analysis (Bennett, Farber et al. 2010). The suggestive GWAS threshold was based on reducing the significance threshold by one log unit. The cis eQTL GWAS threshold was based on a calculated 1% FDR threshold of 1.73e-3, adjusted to 1e-4 to be slightly more conservative. The trans-eQTL threshold was based on the 4.1e-6 threshold, adjusted to 1e-6 to be more conservative as well.

      To improve the text, we added to the Methods section under the “Genome-wide association analysis and heritability estimation” header the following:

      “Traits were quantile transformed to normalize the distribution and then GWAS was performed using the FaST-LMM program (Lippert, Listgarten et al. 2011), which corrects for population structure (including multiple samples per strain) by using a kinship matrix derived from the genotypes to be analyzed.”

      We also revised the GWAS threshold text to include more detail:

      “Analyses were performed using GraphPad Prism (GraphPad Software, La Jolla, CA) and in R. P < 0.05 was considered significant for these tests and for bicor analyses. All reported P values are based on a two-sided hypothesis. For GWAS, thresholds for significant (P < 4.1e-6; -log10P > 5.387) loci were defined using permutation as previously described (Bennett, Farber et al. 2010). The suggestive locus threshold (P < 4.1e-5; -log10P > 4.387) was based on reducing the significance threshold by one log unit. The cis eQTL GWAS threshold (P < 1e-4) was based on a calculated 1% FDR threshold of 1.73e-3, adjusted to 1e-4 to be slightly more conservative. The trans-eQTL threshold (P < 1e-6) was based on the 4.1e-6 threshold, adjusted to 1e-6 to be more conservative as well. “

      5) The abstract could be better. It also doesn't have a conclusion.

      We revised the abstract and added in a conclusion:

      “Tissue iron overload is a frequent pathologic finding in multiple disease states including non-alcoholic fatty liver disease (NAFLD), neurodegenerative disorders, cardiomyopathy, diabetes, and some forms of cancer. The role of iron, as a cause or consequence of disease progression and observed phenotypic manifestations, remains controversial. In addition, the impact of genetic variation on iron overload related phenotypes is unclear, and the identification of genetic modifiers is incomplete. Here, we used the Hybrid Mouse Diversity Panel (HMDP), consisting of over 100 genetically distinct mouse strains optimized for genome-wide association studies (GWAS) and systems genetics, to characterize the genetic architecture of dietary iron overload and pathology. Dietary iron overload was induced by feeding male mice (114 strains, 6-7 mice per strain on average) a high iron diet for six weeks, and then tissues were collected at 10-11 weeks of age. Liver metal levels and gene expression were measured by ICP-MS/ICP-AES and RNASeq, and lipids were measured by colorimetric assays. FaST-LMM was used for genetic mapping, and Metascape, WGCNA, and Mergeomics were used for pathway, module, and key driver bioinformatics analyses. Across the HMDP, we identified many traits that exhibited high inter-strain variability on the high iron diet, and we found a substantial contribution of genetics to many traits. Mice on the high iron diet accumulated iron in the liver, with a 6.5 fold difference across strain means. The iron loaded diet also led to a spectrum of copper deficiency and anemia, with liver copper levels highly positively correlated with red blood cell count, hemoglobin, and hematocrit. Hepatic steatosis of various severity was also observed histologically, with 52.5 fold variation in triglyceride levels across the strains. Most clinical traits examined had at least one significant GWAS locus, and notably, liver triglyceride and iron mapped most significantly to an overlapping locus on chromosome 7 that has not been previously associated with either trait. By genetically mapping liver mRNA expression, we identified cis- and trans-eQTL for thousands of genes, and we integrated this with trait correlation data to identify candidate causal genes at many trait loci. Using network modeling, significant key drivers for both iron and triglyceride accumulation were found to be involved in cholesterol biosynthesis and oxidative stress management. To make the full data set accessible and useable by others, we have made our data and analyses available on a resource website. Overall, our study confirms and expands upon the contribution of mouse genetic background to dietary iron overload and associated pathology. The numerous GWAS loci, candidate genes, and biological pathways identified here provide a rich public resource to drive further investigation.”

      6) Page 8, lines 4-7: Please remove these lines or move them to the Method section. The last paragraph of the introduction should clearly explain the goal of the study.

      We removed these lines and revised this paragraph for clarity:

      In order to gain further insight into genetic contributors to iron overload and associated pathology, we measured clinical traits and hepatic mRNA expression in 114 mouse strains fed a high iron diet. The mice are from a genetically diverse cohort known as the Hybrid Mouse Diversity Panel (HMDP), a panel optimized for systems genetics studies that has previously been used to examine numerous complex traits, including obesity, diabetes, atherosclerosis, heart failure, carbon tetrachloride induced liver fibrosis, and fatty liver disease (Lusis, Seldin et al. 2016; Seldin, Yang et al. 2019; Tuominen, Fuqua et al. 2021; Cao, Wang et al. 2022).

      7) Page 68, line 13: Explain the abbreviation (RINe) before use. Also, most probably it is RIN (RNA Integrity Number).

      Thank you for pointing this out. We updated the methods text as follows: “All samples had RNA integrity number equivalents (RINe) values greater than 8 as measured on an Agilent 2200 TapeStation (Agilent, Santa Clara, CA).” We also added RINe to the abbreviations section.

      8) The heritability estimates seem high and the 1% difference between broad- and narrow-sense heritability means there is almost no dominant and epistatic genetic variance between alleles affecting the studied trait (which is hard to accept). I recommend considering a within-group (strain) variance (common environmental effect) component in the model to absorb this source of variation in this component, so the genetic variance and consequently the heritability estimates would be more accurate. You also can consider this source of variance in your GWAS model.

      Thank you for bringing up these points. While we try to minimize environmental effects by keeping these mice and samples in as similar environmental and experimental conditions as feasible, some will remain. Thus, in our analyses, we try to factor in remaining environmental variation by using data from multiple mice per strain. The programs we used for GWAS and heritability calculations take into account within-group (strain) variance. We added the following sentence to the Methods section just after mention of the programs used to calculate heritability:

      “Both of the software packages used for heritability estimation account for environmental variance within strains.”

      We agree that the broad-sense and narrow-sense estimates are close to each other for many traits and that this suggests low levels of dominance and epistasis. A low level of non-additive genetic variance is not uncommon and theoretically predicted for complex traits, as has been reported previously and discussed in the references below:

      Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet. 2008 Feb 29;4(2):e1000008. doi: 10.1371/journal.pgen.1000008. PMID: 18454194

      Hivert V, Sidorenko J, Rohart F, Goddard ME, Yang J, Wray NR, Yengo L, Visscher PM. Estimation of non-additive genetic variance in human complex traits from a large sample of unrelated individuals. Am J Hum Genet. 2021 May 6;108(5):786-798. doi: 10.1016/j.ajhg.2021.02.014. Epub 2021 Apr 2. Erratum in: Am J Hum Genet. 2021 May 6;108(5):962. PMID: 33811805

      It has also been argued that many human GWAS studies, as well as studies using populations of mice designed for complex trait analyses, including the HMDP population, inherently lack the statistical power to detect epistasis:

      Buchner DA, Nadeau JH. Contrasting genetic architectures in different mouse reference populations used for studying complex traits. Genome Res. 2015 Jun;25(6):775-91. doi: 10.1101/gr.187450.114. Epub 2015 May 7. PMID: 25953951

      Taking all this together we would argue that it is not surprising to see the little difference between the narrow and broad heritability estimates for many traits in our study. To provide more context to the reader regarding how to interpret our heritability findings, we added the following text to the discussion section, under limitations:

      “Finally, in our study with the HMDP population, estimated broad and narrow sense heritabilities were similar for many traits, suggesting modest non-additive contributions (e.g dominance and epistasis) to the variance in these traits. While such results are common and theoretically predicted for complex traits (Hill, Goddard et al. 2008; Hivert, Sidorenko et al. 2021), our study population may also not be optimal for detection of these effects (Buchner and Nadeau 2015).”

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review):

      Summary:

      This study by Lee et al. is a direct follow-up on their previous study that described an evoluBonary conservancy among placental mammals of two moBfs (a transmembrane moBf and a juxtamembrane palmitoylaBon site) in CD4, an anBgen co-receptor, and showed their relevance for T-cell anBgen signaling. In this study, they describe the contribuBon of these two moBfs to the CD4-mediated anBgen signaling in the absence of CD4-LCK binding. Their approach was the comparison of anBgen-induced proximal TCR signaling and distal IL-2 producBon in 58-/- T-cell hybridoma expressing exogenous truncated version of CD4 (without the interacBon with LCK), called T1 with T1 version with the mutaBons in either or both of the conserved moBfs. They show that the T1 CD4 can support signaling to the extend similar to WT CD4, but the mutaBon of the conserved moBfs substanBally reduced the signaling. The authors conclude that the role of these moBfs is independent of the LCK-binding.

      Strengths:

      The authors convincingly show that T1 CD4, lacking the interacBon with LCK supports the TCR signaling and also that the two studied moBfs have a significant contribuBon to it.

      Weaknesses:

      The study has several weaknesses.

      (1) The whole study is based on a single experimental system, geneBcally modified 58-/- hybridoma. It is unclear at this moment, how the molecular moBfs studied here contribute to the signaling in a real T cell. The evoluBonary conservancy suggests that these moBfs are important for T cell biology. However, the LCK-binding moBf is conserved as well (perhaps even more) and it plays a very minor role in their model. Without verifying their results in primary cells, the quanBtaBve, but even qualitaBve, importance of these moBfs for T-cell signaling and biology is unclear. Although the authors discuss this issue in the Discussion, it should be noted in all important parts of the manuscript, where conclusions are made (abstract, end of introducBon, perhaps also in the Btle) that the results are coming from the hybridoma cells.

      We appreciate the Reviewer’s thoughWul comments and suggesBon. We now state in the abstract and introducBon that wet-lab experiments were performed with T cell hybridomas. We have also beXer highlighted work from Killeen and LiXman (PMID: 8355789) wherein they showed that C-terminally truncated CD4, which lacked the moBfs that mediate CD4-Lck interacBons, can drive CD4+ T cell development, proliferaBon, and T-helper funcBon because we now provide mechanisBc data to help explain those in vivo results. Also, as noted by the reviewer, we discuss how the sum of our data provides jusBficaBon for the investment in and use of mouse models to interrogate how the funcBonally important residues/moBfs idenBfied and studied here influence T cell biology.

      We will take the opportunity to reiterate here that, while the study is based on a well characterized, albeit single, wet-lab experimental system, the whole study is based on two lines of invesBgaBon. The other approach was a systems biology computaBonal approach that analyzes data from real-world experiments in a variety of jawed vertebrate species over evoluBon. Specifically, we used a computaBonal reconstrucBon of the evoluBonary history of CD4 by performing mulBple analyses of CD4 from 99 jawed vertebrates spanning ~435 million years of evoluBon. This analysis allowed us to idenBfy residues, and networks of evoluBonarily coupled residues, that are predicted to be funcBonally important in vivo. Like other systems biology approaches, this allowed us to look at the larger picture by evaluaBng data points that have emerged from constant tesBng and adjustments of CD4 funcBon in vivo through selecBon on an evoluBonary Bmescale in more jawed vertebrate species, and under more real-world condiBons, than can be tested in the laboratory. Our structure-funcBon analysis provided a second, wet-lab reducBonist experimental system to cross-validate that the residues idenBfied by our evoluBonary analysis are funcBonally significant. This experimental validaBon is criBcal and elevates the relevance of our studies above ad hoc observaBons. Our work also provides mechanisBc insights for why the residues studied here are funcBonally significant (i.e., key determinants of pMHCII-specific signaling iniBaBon). In short, using both systems allowed us to cross-validate the funcBonal significance of the residues within the GGXXG and (C/F)CV+C moBfs studied here by two independent methods.

      (2) Many of the experiments lack the negaBve control. I believe that two types of negaBve controls should be included in all experiments. First, hybridoma cells without CD4 (or with CD4 mutant unable to bind MHCII). Second, no pepBde control, i.e., acBvaBon of the hybridoma cells with the APC not loaded with the cognate pepBde. These controls are required to disBnguish the basal levels of phoshorylaBon and CD4-independent anBgen-induced phosphorylaBon to quanBfy, what is the contribuBon of the parBcular moBfs to the CD4-mediated support. Although these controls are included in some of the experiments, they are missing in other ones. The binding mutant appears in some FC results as a horizontal bar (without any error bar/variability), showing that CD4 does not give a huge advantage in these readouts. Why don't the authors show no pepBde controls here as well? Why the primary FC data (histograms) are not shown? Why neither of these two controls is shown for the % of responders plots? Although the IL-2 producBon is a very robust and convincing readout, the phosphoflow is much less sensiBve. It seems that the signaling is elevated only marginally. Without the menBoned controls and showing the raw data, the precise interpretaBon is not possible.

      These comments, and those in point #3, concern our flow cytometry-based analysis of early intracellular signaling events where we asked: how do the moBfs under invesBgaBon impact phosphorylaBon of CD3z, ZAP-70, and PLCg1 in response to agonist pMHCII? Thank you for poinBng out areas of confusion regarding these analyses. We will try to clarify here and have worked to clarify the text.

      Our approach was to mutate consBtuent residues within the moBfs that our evoluBonary analysis predicted to be funcBonally significant, compare the performance of the mutants to that of controls bearing WT moBfs, and then infer the funcBon of the moBfs based on the differenBal phenotype of the mutants relaBve to their controls. In most cases, the C-terminally truncated CD4-T1 mutant served as the appropriate CD4 control backbone against which to evaluate the phenotypes of the GGXXG and (C/F)CV+C moBf mutants. This is a convenBonal structure-funcBon strategy.

      All experiments included APCs expressing null pMHCII (Hb:I-Ek) as negaBve controls. These were a necessary component of the data analysis, explained further below, which involved background subtracBon of the signal from control or mutant T cell hybridomas bound to these negaBve control APCs from those bound to the agonist pMHCII (MCC:I-Ek). Doing so allowed us to establish a true signal over background for calculaBng percent responders and signaling intensity. These negaBve controls served the same purpose of APCs expressing I-Ek not loaded with cognate pepBde requested by the reviewer. It is important to note that we previously published that TCR-CD3-pMHCII interacBons reciprocally increase CD4-pMHCII dwell Bme, and vice versa, such that dwell Bmes of the 5c.c7 TCR and CD4 to the null Hb:I-Ek are both basal in this system relaBve to antagonist, weak agonist, and agonist pMHCII (PMID 29386113). A recent study using different techniques also concluded that TCR-CD3 and CD4 cooperaBvely enhance signaling to pMHCII (PMID 36396644). The use of the null pMHCII, Hb:I-Ek, in each experiment thus serves as a well-characterized negaBve control for both TCR and CD4 engagement in this experimental system with regards to assembly of the TCR-CD3 and CD4 around pMHCII to drive signaling. In our view, it is the most important negaBve control for interpreBng our results, and it is present in each experiment. In Fig 1B and related supplemental figures we compare the Cterminally truncated CD4-T1 mutant to the full-length WT CD4 to evaluate the contribuBons of the intracellular domains to early signaling events. We found no significant differences for pCD3z, pZAP-70, and pPLCg1 levels demonstraBng that, in our system, CD4 WT and T1 are staBsBcally indisBnguishable.

      In Fig 1C we asked: what is the contribuBon of CD4-pMHCII interacBons made by CD4 T1, which lacks the intracellular domain, using our CD4 T1Dbind mutant. Fig 2C and Table 3 show that pCD3z levels for T1Dbind were ~54% of T1, meaning that CD4 binding to pMHCII roughly doubles pCD3z levels (even without the intracellular domain). We also showed that the percent of responders were not different between the CD4 T1 and T1Dbind mutant in Fig 2C. The impact on ZAP-70 and PLCg1 are shown in Figure 2—figure supplement 4. These differences, including the magnitude of the decrease, were observed reproducibly (p<0.001) in three independently generated sets of lines. We believe that this analysis saBsfies the request by the reviewer for an analysis of the contribuBons of CD4 binding to pMHCII. We did not include this as a negaBve control in experiments evaluaBng the contribuBons of the GGXXG and (C/F)CV+C moBfs to CD4 T1 signaling because the quesBon being asked in those experiments was how do the moBfs impact signaling in the absence of the intracellular domain (i.e., within the CD4 T1 backbone, making CD4 T1 the proper comparator for the quesBon we were asking). We showed the average normalized intensity for the T1Dbind mutant, relaBve to T1, for this lower bound of signaling mediated by TCR-CD3-only as a doXed line in those figures to provide a reference point for the readers to evaluate and put into perspecBve how the mutants we generated impacted the overall contribuBon of CD4 to these early signaling events. The T1Dbind mutants were not always measured in the same experiment at the same Bme with other mutants, because the cell lines used were not always made at the same Bme, so we did not think it appropriate to graph the results together.

      We do not know how to interpret the comment “Although the IL-2 producBon is a very robust and convincing readout, the phosphoflow is much less sensiBve. It seems that the signaling is elevated only marginally.” We will offer our perspecBve that we do not know how to equate the sensiBvity of the phos-flow to the IL-2. Because the IL-2 is a signaling output, it results from signaling amplificaBon from the membrane to the nucleus. If CD3z phosphorylaBon is the iniBaBng event for a signaling cascade that leads to IL-2 gene transcripBon and transducBon, as is widely believed, our data strongly suggests that the ~2-fold difference in pCD3z levels between CD4 T1 and T1Dbind (Fig 2C/Table 3 data) contributes to the difference between no IL-2 output for T1Dbind and IL-2 output by T1 in this experimental system. Because CD4 WT and T1 have significantly different levels of IL-2 output, but show no significant differences in pCD3z, pZAP-70, or pPLCg1 levels, there are likely to be other differences we did not measure via other pathways that intersect at the nucleus. At many levels, biology works on gradients such that small differences can Bp a system in one direcBon or another. The kineBc discriminaBon model (PMID 8643643), which is thought to be a reasonable descripBon of the relaBonship between pMHC engagement and signaling outcomes, suggests that very small differences in molecular interacBons at the earliest stages of a response can lead to big differences in signaling outcome. We therefore have no basis at this juncture to think that ~2-fold differences in pCD3z levels could not account for bigger differences in signaling output such as IL-2.

      (3) The processing of the data is not clear. Some of the figures seem to be overprocessed. For instance, I am not sure what "Normalized % responders of pCD3zeta" means (e.g., Fig. 1C and elsewhere)? Why do not the authors show the actual % of pCD3zeta+ cells including the gaBng strategy? Why do the authors subtract the two histograms in Fig. 2- Fig.S3? It is very unusual.

      We did develop and implement a novel strategy for measuring the impact of our mutaBons on CD3z, ZAP-70, and PLCg1 phosphorylaBon. This was explained in more detail in our prior study. The instrucBons to authors indicated that we should not repeat methods in the current manuscript. However, we will go through the approach here, and address why we did not show primary FC histograms for all experiments from above. First, we think that a brief explanaBon as to what moBvated us to develop our approach will add to a beXer understanding:

      (1) For experimental and staBsBcal rigor, our goal was to perform both experimental and biological replicates by measuring and comparing the average of at least three independently generated sets of paired WT/T1 control Vs. mutant cells lines generated at different Bmes to determine the staBsBcal significance of the difference, if any, between averages of the control and mutant lines.

      (2) Our quesBons necessitated that we measure signals generated naturally by the cooperaBve engagement of cognate pMHCII by TCR-CD3 and CD4 on APCs, rather than through aCD3/aCD4 crosslinking.

      (3) We chose to use flow cytometry rather than bulk cell analysis by Western Bloung to analyze signaling occurring in cells that were engaged to the agonist APC in order to avoid diluBon of that signal by cells that are not engaged to APCs and not signaling. 4. For each experiment, we wanted to subtract background signals from cells bound to APCs expressing a null pMHCII (Hb:I-Ek) from signals generated by cells bound to APCs expressing agonist pMHCII (MCC:I-Ek). Doing so allowed us to idenBfy cells that are signaling (responders) to agonist over null pMHCII. The goal here was to quanBtate the level of signaling in an objecBve manner with a method that can be applied to all samples uniformly rather than seung a flow cytometry gate on posiBve cells (e.g. pCD3z) because gaBng is subjecBve and can vary from experiment to experiment. To put that another way, as detailed below, we used our subtracBon method to idenBfy signaling responders rather than seung a signaling gate on the posiBve populaBon.

      Regarding gaBng schemes, controls, and data processing:

      Figure 2—figure supplement 3 of the current study and Figure 6—figure supplement 1 of our prior study are designed to walk the reader through our experimental design, gaBng, data processing and thinking. Here we will provide a detailed explanaBon to complement the figure legend as well as the methods provided in our prior manuscript (see pt #4 below).

      We will refer to Figure 2—figure supplement 3 here:

      Panel A. The dot plots show our approach to idenBfying 5c.c7+ CD4+ 58a-b- T cell hybridomas (yaxis, GFP posiBve) coupled to M12 cells (x-axis, TagIt Violet) expressing the null pMHCII Hb:I-Ek (lev) or agonist pMHCII MCC:I-Ek (right). The gaBng shows the frequency of GFP+ T cell hybridomas that are bound to TagIt violet posiBve APCs (i.e., cell couples). The histogram on the right then shows the staining intensity for pCD3z on the x-axis for the 10,000 coupled events collected wherein the APCs express the null pMHCII (filled cyan) or the agonist pMHCII (black line).

      Panel B. The data presented here is the same as in Panel A, but for CD4 T1 cells.

      Panel C. The data presented here walks through how we idenBfy 5c.c7+ CD4+ 58a-b- T cell hybridomas responding (i.e., signaling) to agonist pMHCII, as well as the mean signaling intensity of the responding populaBon, in a gaBng-independent manner aver background subtracBon. For the lev graph, we exported the data for the histograms shown in Panel A from FlowJo 10 sovware and ploXed them here using Prism 9 as smoothed lines (500 nearest neighbors). The cyan line is therefore a replicate of the flow cytometry histogram shown in Panel A for pCD3z intensity from 5c.c7+ CD4+ 58a-b- T cell hybridomas coupled to M12 cells expressing the null pMHCII (Hb:I-Ek), while the black histogram is a replicate of the pCD3z intensity for 5c.c7+ CD4+ 58a-b- T cell hybridomas coupled to M12 cells expressing the agonist pMHCII (MCC:I-Ek). Next, to idenBfy the responding populaBon in a gaBng-independent manner, we used Excel to subtract the pCD3z intensity for the null pMHCII (cyan) negaBve control populaBon on a bin-by-bin bases from the pCD3z intensity for the agonist pMHCII (black) responding populaBon. We then transferred the background subtracted values to Prism 9 for smoothing and ploung (grey line: MCC:I-Ek minus Hb:I-Ek). The middle graph shows the same data processing for the data from Panel B for the CD4 T1 cells. Please note that the background subtracted grey line has negaBve values and posiBve values. The negaBve values represent intensity bins where signaling in response to agonist pMHCII leads to fewer cells per bin than in the null pMHCII populaBon that is not signaling, while the posiBve values represent bins of intensity where signaling cells outnumber non-signaling cells. The right graph in this panel shows the populaBons aver background subtracBon for intensity bins that had more cells with pCD3z signal in the agonist pMHCII populaBon than the null pMHCII populaBon (grey = WT full length CD4 and blue = T1). In short, the right graph shows idenBficaBon of those cells that are signaling in response to agonist pMHCII. This approach miBgated the need for subjecBve gaBng in FlowJo to idenBfy signaling cells (i.e., pCD3z posiBve) and allowed for background subtracBon which could not be done in FlowJo. We used this approach for all analyses of pCD3z, pZAP-70, and pPLCg1 in this study.

      The number of cells in these background-subtracted populaBons were divided by 10,000 (the number of events collected and analyzed) to calculate the percent of responding 5c.c7+ CD4+ 58a-b- T cell hybridomas, while the mean fluorescent intensity for the cells within these populaBon represent the signaling intensity.

      Panel D. The graph on the lev shows the mean fluorescence intensity (MFI) ± SEM for the posiBve signaling populaBon from the right graph of panel C. We see in this example comparing a WT and T1 cell line, generated at the same Bme from the same parental 58a-b- T cell hybridoma populaBon, that the T1 MFI is significantly greater than the WT. These intensity values represent one of the paired intensity values used in the main Fig 2B (Lev graph), where we show the paired MFI analysis of responding populaBons from 5 independently generated sets of cell lines. Please note that these single MFI values are directly derived from the flow cytometry histograms aver background subtracBon. Figure 2B, and similar figures, therefore equate to a disBllaBon of all of the histograms for the populaBons tested in a manner that we consider easier to digest than either overlaying all histograms or showing mulBple panels individually. It also conserves more space. This is why we only showed representaBve flow cytometry histograms, rather than all histograms.

      The graph on the right shows the % responders for the posiBve signaling populaBon from the right graph of panel C. Specifically, the total number of cells that were determined to be signaling in response to agonist pMHCII was divided by 10,000 (the number of coupled cells collected by flow cytometry) to determine the percent responders. These values represent one of five sets of values used to determine the average normalized percent responders (all normalized to WT). There was no significant difference between these two populaBons in terms of percent responders.

      Regarding graphing normalized values for the mean MFI for signaling intensity or the percent responders: in our first manuscript, we presented the individual MFI intensity values for matched pairs of cells as well as the actual percent responders per group. The feedback we received from colleagues on this presentaBon was that it was confusing, distracBng, and otherwise hard to digest. It was suggested to us by mulBple individuals that the normalized values would be preferable because it is easier and faster to understand. Upon reflecBon, we agreed with this feedback because the normalized presentaBon with staBsBcs allows for the two key relevant quesBons to be quickly evaluated: 1. Are the mutants different than the control? 2. By how much? We have lev the raw intensity values and well as the normalized intensity values in the version of record. Given the Reviewer’s comments, we have now graphed the average % responders instead of normalized values in the figures, and lev the normalized values in Table 3.

      (4) The manuscript lacks Materials and Methods. It only refers to the previous paper, which is very unusual. Although most of the methods are the same, they sBll should be menBoned here. Moreover, some of the mutants presented here were not generated in the previous study, as far as I understand. Perhaps the authors plan to include Materials and Methods during the revision...

      Because we submiXed this as a Research Advances arBcle we followed the journal instrucBons to reference the Materials and Methods in our prior publicaBon, upon which this work builds, as the methods used are the same. They are detailed in that study. We have now included a copy of the Materials and Methods for the eLife staff to determine how best to link with this manuscript. We have also included the gene sequences for the novel constructs used in this study. Thank you for poinBng out the omission.

      (5) Membrane rafts are a very controversial topic. I recommend the authors stick to the more consensual term "detergent resistant microdomains" in all cases/occurances.

      We agree this is a controversial topic with a variety of viewpoints. Because we are not experts in the field of membrane composition, we turned to the literature to inform our view of how best to refer to these membrane subdomains. In our reading, we found a 2006 meeting report from a Keystone symposium on lipid rafts and cell function authored by Linda Pike (PMID 16645198). At this meeting, a central focus was reaching a consensus on how best to refer to these domains. The consensus term agreed upon by this group was “membrane rafts”. Specifically, we will quote from this report published in the Journal of Lipid Research, ‘Together, the discussions permitted the generation of a definition for “lipid rafts” in an ad hoc session on the final day of the meeting. All participants were invited to contribute to this effort, and the work product reflects the consensus of this broad-based group…… First and foremost, the term “lipid raft” was discarded in favor of the term “membrane raft.”’ We chose to use the term “membrane raft” based on this consensus opinion.

      (6) Last, but not least, the mechanistic explanation (beyond the independence of LCK binding) of the role of these motifs is very unclear at the moment.

      We agree with this comment. One goal in making these results, and those in our prior study, available to the field at large is to provide evidence in support of our view that the dominant paradigm that is thought to explain the earliest events in T cell signaling needs re-evaluating. How T cell signaling is initiated in response to pMHCII is clearly more complex than is currently thought. However, out data is inconsistent with the dominant paradigm in which CD4 recruits Lck to TCR-CD3 to phosphorylate ITAMs to initiate signaling.

      Reviewer #2 (Public Review):

      Summary:

      The paper by Kuhn and colleagues follows upon a 2022 eLife paper in which they identified residues in CD4 constrained by evolutionary purifying selection in placental mammals and then performed functional analyses of these conserved sequences. They showed that sequences distinct from the CXC "clamp" involved in recruitment of Lck have critical roles in TCR signaling, and these include a glycine-rich motif in the transmembrane (TM) domain and the cyscontaining juxtamembrane (JM) motif that undergoes palmitoylation, both of which promote TCR signaling, and a cytoplasmic domain helical motif, also involved in Lck binding, that constrains signaling. Mutations in the transmembrane and juxtamembrane sequences led to reduced proximal signaling and IL-2 production in a hybridoma's response to antigen presentation, despite retention of abundant CD4 association with Lck in the detergent-soluble membrane fraction, presumably mislocalized outside of lipid rafts and distal to the TCR. A major conclusion of that study was that CD4 sequences required for Lck association, including the CXC "clasp" motif, are not as consequential for CD4 co-receptor function in TCR signaling as the conserved TM and JM motifs. However, the experiments did not determine whether the functions of the TM and JM motifs are dependent on the Lck-binding properties of CD4 - the mutations in those motifs could result in free Lck redistributing to associate with CD4 in signaling-incompetent membrane domains or could function independently of CD4-Lck association. The current study addresses this specific question.

      Using the same model system as in the earlier eLife paper (the entire methods section is a citation to the earlier paper), the authors show that truncation of the Lck-binding intracellular domain resulted in a moderate reduction in IL-2 response, as previously shown, but there was no apparent effect on proximal phosphorylation events (CD3z, Lck, ZAP70, PLCg1). They then evaluated a series of TM and JM motif mutations in the context of the truncated Lck-nonbinding molecule, and showed that these had substantially impaired co-receptor function in the IL-2 assay and reduced proximal signaling. The proximal signaling could be observed at high ligand density even with a MHC non-binding mutation in CD4, although there was still impaired IL-2 production. This result additionally illustrates that phosphorylation of the proximal signaling molecules is not sufficient to activate IL-2 expression in the context of antigen presentation.

      Strengths:

      The strength of the paper is the further clear demonstration that the classical model of CD4 coreceptor function (MHCII-binding CD4 bringing Lck to the TCR complex, for phosphorylation of the CD3 chain ITAMs and of the ZAP70 kinase) is not sufficient to explain TCR activation. The data, combined with the earlier eLife paper, further implicate the gly-rich TM sequence and the palmitoylation targets in the JM region as having critical roles in productive co-receptordependent TCR activation.

      Weaknesses:

      The major weakness of the paper is the lack of mechanistic insight into how the TM and JM motifs function. The new results are largely incremental in light of the earlier paper from this group as well as other literature, cited by the authors, that implicates "free" Lck, not associated with co-receptors, as having the major role in TCR activation. It is clear that the two motifs are important for CD4 function at low pMHCII ligand density. The proposal that they modulate interactions of TCR complex with cholesterol or other membrane lipids is an interesting one, and it would be worth further exploring by employing approaches that alter membrane lipid composition. The JM sequence presumably dictates localization within the membrane, by way of palmitoylation, which may be critical to regulate avidity of the TCR:CD4 complex for pMHCII or TCR complex allosteric effects that influence the activation threshold. Experiments that explore the basis of the mutant phenotype could substantially enhance the impact of this study.

      We appreciate these thoughtful comments and suggestions. We will restate what we wrote in our preliminary response to the reviews to explain the scope of the current study:

      To address comments about the limited scope of this study and referencing of the Methods secBon to our prior study, we would like to note that we submiXed the current study via the Research Advance mechanism. Our goal was to build upon the conclusions of our 2022 eLife publicaBon (PMID: 35861317) and address an unresolved quesBon from that study (as nicely summarized by Reviewer #2). In the current manuscript we present data from reducBonist experiments that were designed specifically for this purpose and, as noted by the reviewers, we provide answers to the quesBon being asked. We think that the Research Advance mechanism is an ideal opportunity to make these results available to the field given the stated purpose of such arBcles (for reference: “A Research Advance might use a new technique or a different experimental design to generate results that build upon the conclusions of the original research by, for example, providing new mechanis=c insights or extend the pathway under inves=ga=on…”). Now that we have provided evidence that CD4 does not recruit Lck to phosphorylate TCR-CD3 ITAMs in our system, nor do the GGXXG and (C/F)CV+C motifs play a role in enabling CD4 to regulate Lck proximity to TCR-CD3, we agree that it is important to form and test alternative hypotheses for how TCR-CD3 signaling is initiated.

    1. Author Response

      Reviewer #1 (Public Review):

      Combining functional MRI with a decoder, the authors probe the neural substrate of the double drift illusion in visual cortex. Their elegant behavioural paradigm keeps the actual retinal position of the stimulus stable while inducing the illusion with a combination of smooth pursuit and visual motion. The results show that the illusory drift path can be decoded from a signal in extrastriate visual area hMT+ but not other visual areas. Importantly, this can be done in the absence of spatial attention to the stimulus location.

      The particular strengths of this study lie in the elegant paradigm and the clear attentional control. The methodology of the decoder is powerful and at the same time straightforward, well explained, and well accepted in the literature. A potential weakness of the study is the lack of simultaneous eye movement recordings in the scanner. Such data could have provided further clarification of the potential underlying neural mechanism and whether differences in eye movements could contribute to the decoding of the visual illusion path. There are some controls that mitigate this.

      We have addressed the Reviewer's comment by repeating the fMRI experiment in a new group of subjects in which we were able to also obtain concurrent, high-quality eye tracking. When we initially conducted the experiment, it was not possible to perform eye tracking in the 7T scanner at NIH. Because of this limitation, we were forced to depend on careful eye tracking in a pre-scan behavioral experiment. But in the ensuing period of time, we have developed a protocol for obtaining high quality eye tracking with an Eyelink 1000 mounted in the bore of the scanner. Now that we have the ability to collect concurrent eye tracking, we repeated the fMRI experiment and found that our main fMRI result replicated (i.e, it was possible to decode the direction of the illusion from fMRI responses in hMT+). Additional, the concurrent fMRI eye tracking enabled us to make four important observations (see new Fig 4):

      First, subjects maintained stable fixation when the target was stationary during fixation and accurately pursued the vertically moving target during illusion (Fig 4). This analysis confirms that the drifting Gabor remained at a relatively fixed position on the retina during the illusory period.

      Second, there were no differences in microsaccades between any of the conditions. We quantified the direction, amplitude, and frequency of all saccades for each condition. While we did observe small rightward microsaccades, none of the microsaccade characteristics differed between conditions. The rightward microsaccades may have been due to the sustained eccentric leftward fixation. Or, it may have been due to attention to the right visual field stimulus (despite the foveal attention task). Or it may have reflected the known horizontal microsaccade bias. Regardless, we do not believe our fMRI results are related to microsaccades because these small saccades did not differ across condition.

      Finally, we wondered if small not-easily-quantified ocular deviations could have differed between conditions, and somehow result in differences in fMRI activity picked up by the decoding analysis. To test for this possibility, we trained a classier to discriminate condition based on the raw eye traces (just as we did in the main fMRI data analysis). But unlike the fMRI analysis, we found that it was not possible to decode the direction of the illusion from the eye traces themselves.

      We conclude that the ability to decode the illusion from fMRI responses were not due to differences in eye movements caused by the illusion.

      The authors provide important evidence for a potential neural substrate in the extrastriate visual cortex for encoding the perceived spatial location of a moving stimulus. This significantly extends previous studies that showed relevant spatiotopic signals outside visual cortex. Understanding the neural substrate and the underlying neural mechanisms for encoding perceived spatiotopic location are of broad importance for our understanding of the neural basis of sensory perception.

      We thank the Editor for this positive assessment of our work.

      Reviewer #3 (Public Review):

      The authors studied the neural basis of the double drift illusion, an illusion in which a Gabor drifting both horizontally within an aperture and moving vertically along a path appears to follow a diagonal trajectory, perceptually displaced off its true vertical path in the direction of the horizontal drift. The illusion is strong and its neural basis is intriguing. The authors suggest it can be used to address the locus of spatiotopic processing in the brain. They find that fMRI BOLD activity in hMT+ can be used to decode the illusory drift direction of the stimulus, even under conditions of withdrawn attention. They internally replicate this result and ensure it is not due to local motion. They interpret the finding to indicate that hMT+ contains spatiotopic information. This was a carefully designed and conducted study, and the manuscript writing and figures are clear.

      Despite the care that went into the study design and control experiments, I see some potential interpretational issues, and I am uncertain about the scientific advance. My main questions are about the interpretation of the findings, the possible confound of smooth pursuit eye movements, and the relation to previous studies, including previous fMRI studies of the same illusion. I also would like to see more thorough reporting of behavior.

      Major comments

      1) The authors motivate the study by saying that there have been conflicting results about which brain areas are involved in spatiotopic coding, but they did not give an indication about why there might be conflicting results or why the current study is suitable to address the previous discrepancies. Is this study simply adding another observation to the existing body of literature, or does it go beyond previous studies in a critical theoretical way?

      There have indeed been conflicting results in the literature. One idea that has received some prior support in the literature is that spatiotopic location information can depend on the task. Our experiment tests this idea by measuring cortical responses during an illusion that involves spatiotopic coding. Previous human fMRI studies reporting spatiotopic coding have not really linked cortical activity with the perception of spatiotopic coordinates. Hence, we feel that our results make a unique contribution to the field.

      2) The authors interpret the finding of illusory drift direction encoding in hMT+ to mean that hMT+ is coding the illusory spatial position of the stimulus. But could an alternative explanation be that hMT+ is coding the illusory global motion direction, and not the spatial position per se? If this is a possible account, then the result would still indicate that an illusory motion percept is reflected in hMT+ but it would seem not to answer the question about spatiotopic coding which motivated the paper.

      Here, the Reviewer suggests an interesting alternative explanation—that responses in MT pertain to the direction of global motion rather than stimulus position. However, this alternative possibility would still involve spatiotopic coding. In order for the brain to compute the direction of global motion of a stimulus that is at a fixed retinal position, some spatiotopic computation must occur. So, we do not agree with the Reviewers suggestion that this alternative explanation undermines the motivation of this study.

      3) It is good that the authors sought to rule out the possibility that smooth pursuit eye movements were driving the decoding results in hMT+, but I'm not sure they have yet convincingly done so. Decoding based on the pursuit selective voxels alone was very nearly significant (p = 0.052), which was not acknowledged in the text of the paper. Furthermore, because voxels that were both pursuit and stimulus selective were excluded from the pursuit selective ROI, decoding performance in that ROI may have been underestimated.

      To clarify, voxels that were identified by both localizers were NOT excluded from either ROI. When we repeated decoding (from Expt 2, Fig 3B) using disjoint voxel selection (i.e., analyzing voxels that only responded in the stim localizer, or only responded in the pursuit localizer, and excluding voxels that responded to both), we obtained qualitatively similar results, although the magnitude of the effects were smaller, which is not surprising given the much smaller number of voxels remaining in the ROI, and hence the disjoint ROIs only proved marginally significant in MT for the stim localizer (p=0.049).

      4) A previous fMRI study of the double drift illusion (Liu et al. 2019 Current Biology) also found above chance decoding of illusory drift direction in hMT+. The authors mention this study but do not discuss it, so it was unclear to me what the advance is of the current study over that study. The main differences I see are that in the current study, 1) the observer is also moving their eyes so that the double drift stimulus is theoretically stabilized on the retina, and 2) attention is withdrawn from the stimulus. But in both studies, hMT+ contains information about the illusory drift direction even though retinotopic information is the same, so it's not clear to me that the differences between these studies lead to fundamentally different interpretations.

      The results of Liu et al. are not relevant to the reference frame used to encode the stimulus. Because subjects were fixating in Liu et al., the encoding of the illusion could have been in either retinal or spatiotopic coordinates. In our study, the stimulus must have been encoded in spatiotopic coordinates. One interesting feature of Liu et al. is the issue of cross decoding the illusion and actual percept (training the decoder on veridical motion of different angles, and then testing the decoder on data collected during the illusion). One potentially interesting extension of the cross decoding approach would be to train the decoder on a version of the illusion involving fixation (as in Liu et al), but then testing the decoder on the illusion during pursuit. One would expect cross decoding if spatiotopic coordinates are used in both cases. We now discuss this possibility (Discussion: Relationship to a previous study of the double-drift illusion).

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study addresses the fundamentally unresolved question of why many thousands of small-effect loci contribute more to the heritability of a trait than the large-effect lead variants. The authors explore resource competition within the transcriptional machinery as one possible explanation with a simple theoretical model, concluding that the effects of resource competition would be too small to explain the heritability effects. The topic and approximation of the problem are very timely and offer an intuitive way to think about polygenic variation, but the analysis of the simple model appears to be incomplete, leaving the main claims only partially supported.

      We thank eLife for recognizing the importance of our work. We hope the revised manuscript addresses the reviewers’ reservations.

      Public Reviews:

      Reviewer #1 (Public Review):

      This study explores whether the extreme polygenicity of common traits can be explained in part by competition among genes for limiting molecular resources (such as RNA polymerases) involved in gene regulation. The authors hypothesise that such competition would cause the expression levels of all genes that utilise the same molecular resource to be correlated and could thus, in principle, partly explain weak trans-regulatory effects and the observation of highly polygenic architectures of gene expression. They study this hypothesis under a very simple model where the same molecule binds to regulatory elements of a large number m of genes, and conclude that this gives rise to trans-regulatory effects that scale as 1/m, and which may thus be negligible for large m.

      We thank the reviewer for their thorough and thoughtful review of our manuscript.

      The main limitation of this study lies in the details of the mathematical analysis, which does not adequately account for various small effects, whose magnitude scales inversely with the number m of genes that compete for the limiting molecular resource. In particular, the fraction of "free" molecule (which is unbound to any of the genes) also scales as 1/m, but is not accounted for in the analysis, making it difficult to assess whether the quantitative conclusions are indeed correct.

      It is explicitly accounted for in the supplement.

      Second, the questions raised in this study are better analysed in the framework of a sensitivity or perturbation analysis, i.e., by asking how changes in expression level or binding affinity at one gene (rather than the total expression level or total binding affinity) affect expression level at other genes. In the context of complex traits, where an increase in gene expression can either increase or decrease the trait, we believe the most important quantity of interest is variation in expression and, therefore, trait variation. Nevertheless, our results do show that the relative change in expression due to competition is also small.

      Thus, while the qualitative conclusion that resource competition in itself is unlikely to mediate trans-regulatory effects and explain highly polygenic architectures of gene expression traits probably holds, the mathematical reasoning used to arrive at this conclusion requires more care.

      In my opinion, the potential impact of this kind of analysis rests at least partly on the plausibility of the initial hypothesis- namely whether most molecular resources involved in gene regulation are indeed "limiting resources". This is not obvious, and may require a careful assessment of existing evidence, e..g., what is the concentration of bound vs. unbound molecular species (such as RNA polymerases) in various cell types?

      We intentionally looked at the most extreme case of extreme resource limitation, and we conclude that since extreme resource limitation is a small effect, the same would be true of weak resource limitation, when unbound molecules play an important role. We put more emphasis on this point in our revised text.

      Reviewer #1 (Recommendations For The Authors):

      While the main conclusion that resource competition in itself is unlikely to mediate trans effects and explain high levels of polygenicity may well be correct, I am not convinced that the mathematical reasoning presented in support of this conclusion is entirely correct. I will attempt to outline my concerns mainly in the context of section 2, since the arguments in sections 3 and 4 build upon this.

      (a) The key assumption underlying the approximations in equations 3, 4, and 5 is that there is very little free polymerase, in other words /_0 is a small quantity. However, the second and third terms that emerge in equation 7 are also small quantities and (as far as I can see) of the same order as /_0. Thus, one cannot simply use equation 4 or 5 as a starting point to derive eq. 7 and should instead use the exact x_i = (g_i [G])/ (1+g_tot [G]), in order to make sure that all (and not just some) terms that are similar in order of magnitude are accounted for in the analysis.

      The concentration of free polymerase is marked as [P], and we explicitly assume (just before eq. 2) that [P]<<[P]0 with [P]0 being the overall concentration of polymerase. This is a conservative assumption – we consider extreme resource competition with little free polymerase and since we since only a small effect in this extreme scenario we assume it would be a small effect also for less extreme scenarios. We put more emphasis on this point in our revised text.

      More concretely, the difference between the exact x_i = (g_i [G])/ (1+g_tot [G]) and the approximate x_i = (g_i / g_tot) is precisely 1/m (for large m) in the example considered line 246 onwards. Thus, I suspect that the conclusion that Var[x_i] = (1-1/m)Var[g_i] in that example is just an artefact of starting with eqs. 4 and 5. As a sanity check, it may be useful to actually simulate resource competition explicitly (maybe using a deterministic simulation) under the explicit model [PG_i] = g_i [G] and _0 = + Sum[[PG]_i , i=1,m] without making any further approximations to see if perturbations in g_i actually produce Order [1/m] effects in the variance of x_i for the example considered line 246 onwards (this would require simulating with a few different m and plotting Var[x_i] vs. m for example).

      The exact equation the reviewer is alluding to describes a scenario of non-extreme resource competition. If g_tot [G]>>1, i.e. if most polymerase is bound to a gene then x_i is equal to g_i/g_tot and this is the scenario we are considering of extreme competition. If g_tot [G]<<1, then x_i=g_i [G] and competition has no effect. While the intermediate case is interesting, we see no reason for the effects to be larger than in the extreme competition case. We have added the results of simulations in the supplement to validate our arguments.

      Lines 231-239: Because of the concerns highlighted above and questions about the validity of equation 7, I am not convinced that the interpretations given here and also in section 4 are correct.

      (b) Lines 219-230 (including equations 6 and 7): I think to address the question of whether genetic changes in cis-regulatory elements for a given gene have an effect on other genes (under this model of resource competition), it is better to spell out the argument in terms of Var[ dx_i ] rather than Var[x_i], where dx_i is the change in expression level at gene i due to changes at all m genes, dg_i is the change in gene activity due to (genetic) changes in the relevant regulatory elements associated with gene i etc. Var[ dx_i ] can then be expressed as a sum of Var[dg_i], Var[dg_tot] and Cov[d g_i, dg_tot]. However, I suspect that to do this correctly, one should not start with the approximate x_i=g_i/g_tot : see previous comment.

      The variance of the deviation from the mean is mathematically identical to the overall variance, Var[ dx_i ]= Var[ x_i ]. Our analysis is therefore equivalent to the suggested analysis.

      Somewhere in all of this, there is also an implicit assumption that E[dg_i] is zero, i.e, mutations are as likely to increase as to decrease binding affinities so that one needs to only consider Var[dx_i] and not E[dx_i]; this assumption should be spelled out.

      Our results concern the variation around trait means and therefore we have not included a possible mean effect of mutation, which would not affect the results but just shift the mean.

      Some minor comments (mostly related to the introduction and general context):

      • I think it would be worth connecting more with the literature on molecular competition and gene regulation (see e.g., How Molecular Competition Influences Fluxes in Gene Expression Networks, De Vos et al, Plos One 2011). Even though this literature does not frame questions in terms of "polygenicity of traits", these analyses address the same basic questions: to what extent do perturbations in gene expression at one gene affect other genes, or to what extent is there crosstalk between different genes or pathways?

      We have expanded our introduction to refer to De Vos et al, as well as a few other papers we have recently become aware of. (e.g., Jie Lin & Ariel Amir Nature Communications volume 9, Article number: 4496 (2018))

      • Lines 88-89: "supports the network component of the model" is a vague phrase that does not convey much. It would be useful to clarify and make this more precise.

      We have clarified this phrasing in the text.

      • Lines 113-114: In the context of "selective constraint", it may also be worth discussing previous work by one of the authors: "A population genetic interpretation of GWAS findings for human quantitative traits". What implications would stabilizing selection on multiple traits (as opposed to simple purifying selection) have for the distribution of variances across trait loci and the extent to which trait architectures appear to be polygenic?

      While most definitely of great interest to some of the authors, the distribution of variance across loci does not affect our results.

      References: Barton and Etheridge 2018 in line 54 is not the correct reference; it should be Barton et al 2017 (paper with Amandine Veber). Fisher 1919 in line 52 is actually Fisher 1918. The formatting of references in the next paragraph (and in various other places in the paper) is also a bit unusual, with some authors referred to by their full names and others only by their last. I believe that it may be useful to crosscheck references throughout the paper.

      We have crosschecked the references in the paper.

      Line 164: Some word appears to be missing here. Maybe bound -> bound to ?

      Fixed

      Reviewer #2 (Public Review):

      The question the authors pose is very simple and yet very important. Does the fact that many genes compete for Pol II to be transcribed explain why so many trans-eQTL contribute to the heritability of complex traits? That is, if a gene uses up a proportion of Pol II, does that in turn affect the transcriptional output of other genes relevant or even irrelevant for the trait in a way that their effect will be captured in a genome-wide association study? If yes, then the large number of genetic effects associated with variation in complex traits can be explained but such trans-propagating has effects on the transcriptional output of many genes.

      This is a very timely question given that we still don't understand how, mechanistically, so many genes can be involved in complex traits variation. Their approach to this question is very simple and it is framed in classic enzyme-substrate equations. The authors show that the trans-propagating effect is too small to explain the ~70% of heritability of complex traits that are associated with trans-effects. Their conclusion relies on the comparison of the order of magnitude of a) the quantifiable transcriptional effects due to Pol II competition, and b) the observed percentage of variance explained by trans effects (data coming from Liu et al 2019, from the same lab).

      The results shown in this manuscript rule out that competition for limited resources in the cell (not restricted to Pol II, but applicable to any other cellular resource like ribosomes, etc) could explain the heritability of complex traits.

      We thanked the Reviewer for his resounding support of our paper!

      Reviewer #2 (Recommendations For The Authors):

      The authors rely on simulated data, and although the conclusions hold in a biologically-realistic scenario given the big difference in effect sizes, I wonder if the authors could provide data from the literature (if available) that give the reader a point of reference for the steady state of cells in terms of free/occupied Pol II molecules and/or free/occupied transcription binding sites. This information won't change the conclusion of the manuscript, but it will put it in the context of real biological data.

      We have scoured the literature, but have not found readily available data with which to validate our results (beyond that which is already referenced).

      Reviewer #3 (Public Review):

      Human complex traits including common diseases are highly polygenic (influenced by thousands of loci). This observation is in need of an explanation. The authors of this manuscript propose a model that competition for a single global resource (such as RNA polymerase II) may lead to a highly polygenic architecture of traits. Following an analytical examination, the authors reject their hypothesis. This work is of clear interest to the field. It remains to be seen if the model covers the variety of possible competition models.

      We thank the Reviewer for his assessment, support and comments.

      Reviewer #3 (Recommendations For The Authors):

      This manuscript provides a straightforward and elegant quantitative argument that the competition for the RNA polymerase is not a significant source of trans-eQTLs and, more generally, of genetic variance of complex polygenic phenotypes. This is an unusual manuscript because the authors propose a hypothesis that they confidently reject based on a calculation. This negative result is intuitive. Still, the manuscript is of interest. Progress in understanding the highly polygenic architecture of complex traits is welcome, and the resource competition hypothesis is quite natural. I have three specific comments/concerns listed below.

      (1) The manuscripts states that V(x_i)=V(g_i/g_tot). Unless I am missing something, this seems to result from a very strong implicit assumption that all genetic variance is due to variation in the binding of RNA polymerase, while x_i_max is a constant. I would expect that x_i_max may also be genetically variable due to many effects unrelated to the Pol II binding (e.g. transcription rate, bursting, presence of R-loops etc.). I guess that the assumption made by the authors is conservative.

      Indeed. We made conservative assumptions throughout, aiming to consider the most extreme scenario in which resource competition may affect trait variation. Our logic being that if even under the most extreme scenario resource competition is a small effect then it is a small effect in all scenarios. We put more emphasis on this point in our revised text.

      (2) The manuscript focuses on the competition for RNA polymerase but suggests that the lesson learned is highly generalizable. However, it is an example of a single global limiting resource resulting in first-order kinetics. What happens in a realistic scenario of competition for multiple resources associated with transcription and with downstream processes (free ribonucleotides, spliceosome, polyadenylation machinery, ribosome, post-translational modifications)? It is possible that in most cases a single resource is a limiting factor, but an investigation (or even a brief discussion) of this question would support the claim that the results are generalizable.

      We expect competition for multiple resource to result in similarly weak effects. Since there is not a great number of such resources, we do not expect it to change our qualitative result. We added language to that effect in the main text.

      (3) Alternatively, what happens in a scenario of competition for multiple local resources shared by a few genes (co-factors, substrates, chaperones, micro-RNAs, post-translational modification factors such as kinases, degradation factors, scaffolding proteins)? In this case, each gene would compete for resources with a few other genes increasing polygenicity without a global competition with all other genes. Intuitively, a large set of such local competitions may lead to a highly polygenic architecture.

      This is indeed a scenario in which competition may be a large effect which we mention in our discussion. “the conclusions may differ in contexts where a very small number of genes compete for a highly limited resource, such as access to a particular molecular transporter”

    1. Author Response

      The following is the authors’ response to the previous reviews.

      We greatly appreciate your positive assessment and the suggestions by Reviewer #2 on the previous version of our manuscript, all of which are very helpful and have greatly improved our manuscript. We have added a description of Biomineralized columnar architecture in the Results section, added a discussion of the Family Eoobolidae, provided more details in the Material and Methods section, and revised other parts of the manuscript based on her/his comments. We are grateful that these comments have enhanced the overall quality of our manuscript. In this letter, we take the opportunity to note and discuss the various changes as below.

      Reviewer #2:

      (1) Two early Cambrian taxa of linguliform brachiopods are assigned to the family Eoobolidae. The taxa exhibit a columnar shell structure and the phylogenetic implications of this shell structure in relation to other early Cambrian families is discussed. It is the interesting idea regarding the evolution of shell structure.

      We thank Reviewer 2 very much for her/his very constructive suggestions. All the comments have been thoroughly considered, and introduced into the revised version of the manuscript.

      (2) The early record of shell structures of linguliform brachiopods is incomplete and partly contradictory. The authors maintain silence regarding contradictory information throughout the article to an extent that information is cited wrongly.

      We agree with Reviewer #2 that the early record of shell structure of linguliform brachiopods is incomplete and potentially in some instances contradictory. This situation is well demonstrated in the Introduction and Systematic Palaeontology sections of this paper. This is also the reason why we think the detailed investigation of early linguliform shell architectures is so important, and we hope this work will be useful for further comparative studies on brachiopod biomineralization. We also understand that more detailed studies of the complexity and diversity of linguliform brachiopod architectures (especially their early fossil representatives) require further investigation.

      (3) The article is written under the assumption that all eoobolids have a columnar shell structure. Thus, the previously claimed columnar structure of Eoobolus incipiens which has been re-illustrated in the paper is not convincing and could be interpreted in other ways.

      Yes, the type specimen of Eoobolus is poorly known and we do not know its shell structure, but the ornamentation, pseudointerarea etc. are well preserved and promote a character diagnosis. In this paper, we focus on the detailed study of Cambrian eoobolids with exquisitely well-preserved columns from the Cambrian Series 2 based on the collection of more than 30 thousand early Cambrian brachiopod specimens in China and Australia. With the wide preservation of columnar shells in early eoobolid specimens, it is likely that Eoobolus has columnar shell architecture, although there is no documentation of the shell structure from every single Eoobolus specimen.

      The secondary columns of Eoobolus incipiens is well demonstrated in Fig. 4a. The size of these columns can be well compared with the columns from other Eoobolus species and acrotretide brachiopods, which are quite different from the criss-cross baculae. As we noted in the manuscript, the columnar structure Eoobolus incipiens is very simple (short columns and less number of columnar units) and can be readily secondarily phosphatised. This is also the reason why it is hard to find the columnar shell architecture in early eoobolids.

      (4) The article needs a proper results section. The Discussion is mainly a review of published data. Other potential results are hidden in this "discussion".

      I would recommend to reorganize the paper and make it a solid presentation of the new taxa and other new results, i.e., have a solid Results section. The Discussion should discuss relevant points that relate to the new results rather than reviewing shell structure in general but skipping relevant parts such as the tertiary shell layer.

      We have reorganised the manuscript based on these comments. A general description of the biomineralized columnar architecture is added in the Results section. As the Supplementary section (main results) includes 7 figures and 3 tables, it will increase the size of the current paper if they are moved to the main text. We would prefer to keep the main results in the Supplementary based on the style and format of eLife.

      As the current information on the shell structures of early linguliform brachiopods is unclear, we need to review most of the previous studies on brachiopod shells in the first part of Discussion section. It will help the readers to follow our results and conclusion. So, we think some of the review content is necessary and helps build the Discussion section. The tertiary shell layer, which is not developed in our studied material, is not discussed in the current research.

      (5) In addition, a more elaborate Methods section is needed in which it is explained how the data for shell thicknesses and numbers of laminae was obtained.

      The potential evolutionary patterns that are discussed towards the end (summarized in Fig 6) are interesting but rather unconvincing as the way the data has been obtained has never been clarified. Shell thicknesses and numbers of laminae that built up the shell of several taxa are compared, but at no point it is stated where these measurements were taken. Shell thicknesses vary within a shell and also the presence of the never mentioned tertiary layer is modifying shell thicknesses. Hence, the presented data appears random and is not comparable. The obtained evolutionary patterns must be considered as dubious.

      A proper Methods section would be needed that explains how the data presented in Fig. 6 has been obtained. Plus it needs to be convincingly explained that the obtained data is in fact comparable and represents, e.g., equivalent areas of the shell in all involved taxa.

      All the information is added in the Material and Methods section. We are aware of the marginal accretionary secretion of brachiopod shells. It is well known that the shell at the posterior is thicker (usually the thickest) than that at the anterior, we did not note this in the previous manuscript. We have measured all the shell data (shell thickness and number of columnar unit) from the posterior part of the adult shell for all the studied taxa. And the measurements of diameter and height of orthogonal columns are performed on available adult specimens from this study and previously published literature. Consequently, the obtained data are comparable and represent equivalent areas of the shell on all involved taxa.

      In term of the tertiary shell layer, we do not find any evidence of this tertiary shell layer from our studied material. The tertiary shell layer is well developed in some recent and Palaeozoic lingulides (Holmer, 1989), but it is not recognised in the early eoobolides and acrotretides.

      (6) A critical revision of the family Eoobolidae and Lingulellotretidae including a revision of the type species of Eoobolus and Lingulellotreta is needed.

      Concerning the families Eoobolidae and Lingulellotretidae, we are aware of the current problematic situation of these families, and we have added more remarks regarding the Eoobolidae in the Systematic Palaeontology section of the manuscript. However, the revision of the families Eoobolidae and Lingulellotretidae falls outside the scope of this paper. We prefer to exclude it just now, as it will be part of an upcoming publication based on more material from China, Australia, Sweden and Estonia that we are currently working on.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript provides important insights into the degradation of a host tRNA modification enzyme TRMT1 by SARS-CoV-2 protease nsp5. The data convincingly support the main conclusions of the paper. These results will be of interest to virologists interested in studying the alterations in tRNA modifications, host methyltransferases, and viral infections.

      Public Reviews:

      Response to Public Reviews

      We appreciate the reviewers’ assessment that our findings are well supported and provide important insight to the field. We also thank the reviewers for their comments and suggestions that have improved the quality of this manuscript. Through the requested edits and experiments, we provide additional results in this revision that further support and extend our original findings.

      We acknowledge the major questions that remain to be addressed, including the biological relevance of TRMT1 cleavage by Nsp5. We note that elucidating the biological role of host protein cleavage by viral proteases has been a long-standing challenge. For example, several endogenous proteins have been identified as cleavage targets of HIV protease, but the functional relevance for many of these cases took decades to resolve or remain unknown to this day. Nonetheless, we have added additional experiments that suggest a possible role for TRMT1 and TRMT1 cleavage in SARS-CoV-2 pathobiology.

      Key additions in the revised manuscript include:

      • Subcellular localization of full-length TRMT1 and TRMT1 fragments (Supplemental Figure 4).

      • Experiments demonstrating that TRMT1 levels are reduced to near background levels in SARS-CoV-2 infected human cells at higher MOI (Figure 6C and D).

      • Results showing that expression of the non-cleavable TRMT1 mutant can promote virion particle infectivity (Figure 8).

      • The addition of an “Ideas and Speculation” subsection that is now being offered to authors by eLife.

      Reviewer #1 (Public Review):

      Zhang et al. investigate the hypothesis that tRNA methyl transferase 1 (TRMT1) is cleaved by NSP5 (nonstructural protein 5 or MPro), the SARS-CoV-2 main protease, during SARS-CoV-2 infection. They provide solid evidence that TRMT1 is a substrate of Nsp5, revealing an Nsp5 target consensus sequence and evidence of TRMT1 cleavage in cells. Their conclusions are exceptionally strong given the co-submission by D'Oliveira et al showing cleavage of TRMT1 in vitro by Nsp5. Separately, the authors convincingly demonstrate widespread downregulation of RNA modifications during CoV-2 infection, including a requirement for TRMT1 in efficient viral replication. This finding is congruent with the authors' previous work defining the impact of TRMT1 and m2,2g on global translation, which is most likely necessary to support infection and virion production. What still remains unclear is the functional relevance of TRMT1 cleavage by Nsp5 during infection. Based on the data provided here, TRMT1 cleavage may be an act by CoV2 to self-limit replication, as the expression of a non-cleavable TRMT1 (versus wild-type TRMT1) supports enhanced viral RNA expression at certain MOIs. Theoretically, TRMT1 cleavage should inactivate the modification activity of TRMT1, which the authors thoroughly and elegantly investigate with rigorous biochemical assays. However, only a minority of TRMT1 undergoes cleavage during infection in this study and thus whether TRMT1 cleavage serves an important functional role during CoV-2 replication will be an important topic for future work. The authors fairly assess their work in this regard. This study pushes forward the idea that control of tRNA expression and functionality is an important and understudied area of host-pathogen interaction.

      We thank the reviewer for the thoughtful assessment of our study.

      We acknowledge that only a minority of TRMT1 undergoes cleavage during infection at the originally tested MOI. However, the ~40% reduction in TRMT1 levels after infection with SARS-CoV-2 is quite substantial considering that the TRMT1 in the nucleus and mitochondria are likely to be inaccessible to Nsp5. Moreover, we detected a reduction in m2,2G modification in the infected human cells, providing evidence for a functional impact on TRMT1 activity (Figure 1C).

      To further test the effects of SARS-CoV-2 infection on endogenous TRMT1, we infected 293T cells at a higher MOI and measured TRMT1 levels. At MOI=5, we found that SARS-CoV-2 infection led to near complete depletion of TRMT1 in human cells. This result suggests that SARS-CoV-2 infection could have a profound impact on TRMT1 levels during pathogenesis. We have added this new experiment as Figures 6C and D.

      Weaknesses noted:

      The detection of the N-terminal TRMT1 fragment by western blot is not robust. The polyclonal antibody used to detect TRMT1 in this work cross-reacts with a non-specific protein product. Unfortunately, this obstructs the visualization of the predicted N-terminal TRMT1 fragment. It is unclear how the authors were able to perform densitometry, given the interference of the nonspecific band. Additionally, the replicates in the source data make it clear that the appearance of the N-terminal fragment "wisp" under the non-specific band is not seen in every replicate. Though the disappearance of this wisp with mutant Nsp5 and uncleavable TRMT1 is reassuring, the detection of the N-terminal fragment with the TRMT1 antibody should be assessed critically. Considering this group has strong research interests in TRMT1, I assume that attempts to make other antibodies have proved unfruitful. Additionally, N-terminal tagging of TRMT1 is predicted to disrupt the mitochondrial targeting signal, eliminating the potential for using alternative antibodies to see the N-terminal fragment.

      We agree that the anti-TRMT1 antibody used here is sub-optimal for detection of the N-terminal TRMT1 fragment. However, as noted by the Reviewer, we provided multiple ways of corroborating that the lower-molecular weight band detected in human cells expressing Nsp5 corresponds to the N-terminal TRMT1 fragment. We have shown that the TRMT1 cleavage band is not detectable in human cells expressing GFP or inactive Nsp5. This indicates that the lower molecular weight TRMT1 band only arises when active Nsp5 protease is expressed. Moreover, the TRMT1 cleavage band is not detectable in TRMT1-KO cell lines, demonstrating that the band arises from TRMT1 cleavage rather than a non-specific protein. We have also detected the C-terminal fragment if TRMT1 is over-expressed with Nsp5. In addition, we have shown that the mutation of the predicted Nsp5 cleavage site in TRMT1 abolishes the appearance of the N- and Cterminal cleavage fragments.

      Despite the drawbacks of this antibody, we identified gel running conditions that resolves the non-specific band from the N-terminal TRMT1 cleavage fragment. Thus, for quantification, we measured the total signal of both the cleavage band and the nonspecific band in all lanes (Figure 3). After normalization to actin, the total signal from the cleavage band and the non-specific band in the control lane from cells expressing GFP was subtracted from the lanes with cells expressing Nsp5 to calculate the signal arising from the cleavage band. We have updated our Materials and Methods to provide details on how we quantified the TRMT1 cleavage band.

      While we did test other antibodies against TRMT1, none of them were sensitive enough to detect TRMT1 cleavage fragments at endogenous levels. For example, we included results with an antibody targeting the C-terminus of TRMT1 that could not detect TRMT1 cleavage products at endogenous levels (Supplemental Figure 3). However, the antibody could detect the C-terminal TRMT1 fragments if TRMT1 was overexpressed with Nsp5 (Supplemental Figure 3).

      These technical issues reiterate the fact that the functional significance of TRMT1 cleavage during CoV-2 infection remains unclear. However, this study demonstrates an important finding that the tRNA modification landscape is altered during CoV-2 infection and that TRMT1 is an important host factor supporting CoV-2 replication.

      We agree that the functional relevance of TRMT1 cleavage by Nsp5 remains an open question. Thus, we have added an experiment to test the functional impact of TRMT1 on virion particle production and infectivity (Figure 8). We find that TRMT1 expression is required for optimal virus production, consistent with our observation that TRMT1deficient cells exhibit reduced viral RNA replication. In addition, we find that expression of the non-cleavable TRMT1 mutant can promote virion particle infectivity (Figure 8, TRMT1-Q530N). These results are consistent with the Reviewer’s conclusion that “TRMT1 cleavage may be an act by CoV-2 to self-limit replication, as the expression of a non-cleavable TRMT1 (versus wild-type TRMT1) supports enhanced viral RNA expression at certain MOIs”. We discuss the potential implications of this result and their functional relevance in the “Ideas and Speculation” subsection.

      Reviewer #2 (Public Review):

      Summary:

      The manuscript titled 'Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease' from K. Zhang et al. demonstrates that several RNA modifications are downregulated during SARS-CoV-2 infection including the widespread m2,2G methylation, which potentially contributes to changes in host translation. To understand the molecular basis behind this global hypomodification of RNA during infection, the authors focused on the human methyltransferase TRMT1 that catalyzes the m2,2G modification. They reveal that TRMT1 not only interacts with the main SARS-CoV-2 protease (Nsp5) in human cells but is also cleaved by Nsp5. To establish if TRMT1 cleavage by Nsp5 contributes to the reduction in m2,2G levels, the authors show compelling evidence that the TRMT1 fragments are incapable of methylating the RNA substrates due to loss of RNA binding by the catalytic domain. They further determine that expression of full-length TRMT1 is required for optimal SARS-CoV-2 replication in 293T cells. Nevertheless, the cleavage of TRMT1 was dispensable for SARS-CoV-2 replication hinting at the possibility that TRMT1 could be an off-target or fortuitous substrate of Nsp5. Overall, this study will be of interest to virologists and biologists studying the role of RNA modification and RNA modifying enzymes in viral infection.

      We thank the reviewer for the thoughtful assessment of our study.

      We agree with the possibility that TRMT1 could be a fortuitous substrate of Nsp5 due to the coincidental presence of a Nsp5 cleavage site in TRMT1. As considered in our Discussion section, TRMT1 cleavage could be a collateral effect of SARS-CoV-2 infection. While TRMT1 could be an off-target substrate during viral infection, the subsequent effect on tRNA modification levels could have physiological consequences on downstream processes that affect cellular health. This information could still be useful for understanding the pathophysiological consequences of SARS-CoV-2 infection in tissues.

      Strengths:

      • The authors use a state-of-the-art mass spectrometry approach to quantify RNA modifications in human cells infected with SARS-CoV-2.

      • The authors go to great length to demonstrate that SARS-CoV-2 main protease, Nsp5, interacts, and cleaves TRMT1 in cells and perform important controls when needed. They use a series of overexpression with strategically placed tags on both TRMT1 and Nsp5 to strengthen their observations.

      • The use of an inactive Nsp5 mutant (C145A) strongly supports the claim of the authors that Nsp5 is solely responsible for TRMT1 cleavage in cells.

      • Although the direct cleavage was not experimentally determined, the authors convincingly show that TRMT1 Q530N is not cleaved by Nsp5 suggesting that the predicted cleavage site at this position is most likely the bona fide region processed by Nsp5 in cells.

      • To understand the impact of TRMT1 cleavage on its RNA methylation activity, the authors rigorously test four protein constructs for their capacity not only to bind RNA but also to introduce the m2,2G modification. They demonstrate that the fragments resulting from TRMT1 cleavage are inactive and cannot methylate RNA. They further establish that the C-terminal region of TRMT1 (containing a zinc-finger domain) is the main binding site for RNA.

      • While 293T cells are unlikely an ideal model system to study SARS-CoV-2 infection, the authors use two cell lines and well-designed rescue experiments to uncover that TRMT1 is required for optimal SARS-CoV-2 replication.

      Weaknesses:

      • Immunoblo0ng is extensively used to probe for TRMT1 degradation by Nsp5 in this study. Regretfully, the polyclonal antibody used by the authors shows strong non-specific binding to other epitopes. This complicates the data interpretation and quantification since the cleaved TRMT1 band migrates very closely to a main non-specific band detected by the antibody (for instance Fig 3A). While this reviewer is concerned about the cross-contamination during quantification of the N-TRMT1, the loss of this faint cleaved band with the TRMT1 Q530N mutant is reassuring. Nevertheless, the poor behavior of this antibody for TRMT1 detection was already reported and the authors should have taken better precautions or designed a different strategy to circumvent the limitation of this antibody by relying on additional tags.

      We acknowledge the sub-optimal performance of the commercial anti-TRMT1 antibody used in our study. Nevertheless, we have provided multiple lines of evidence indicating that the lower molecular weight band detected using this antibody corresponds to the N-terminal TRMT1 fragment. As noted by the reviewer, we have shown that the lower molecular weight band disappears using the TRMT1-Q530N non-cleavable mutant. The lower molecular weight signal is also absent in TRMT1-KO cell lines expressing Nsp5. Moreover, we have shown that the TRMT1 cleavage band is undetectable in human cells expressing GFP or inactive Nsp5. We have also detected the C-terminal fragment when TRMT1 is over-expressed with Nsp5.

      As discussed in the response to Reviewer 1, we did consider alternative approaches for detecting the N-terminal fragment. We thought about tagging TRMT1 at the N-terminus so that we could detect the cleavage band using a different antibody. However, as noted by Reviewer 1, the tagging of TRMT1 at the N-terminus is likely to disrupt the mitochondrial targeting signal and alter the localization of TRMT1. In addition, we spent considerable time and effort testing alternative antibodies against TRMT1. However, none of them were effective at detecting the N- or C-terminal TRMT1 fragments. For example, we included results with a different antibody targeting the C-terminus of TRMT1 that could not detect TRMT1 cleavage products at endogenous levels but could detect them when TRMT1 was overexpressed with Nsp5 (Supplemental Figure 3).

      • While 293T cells are convenient to use, it is not a well-suited model system to study SARS-CoV2 infection and replication. Therefore, some of the conclusions from this study might not apply to better-suited cell systems such as Vero E6 cells or might not be observed in patient-infected cells.

      We acknowledge the potential caveats associated with using 293T human embryonic cells as a system for testing SARS-CoV2 replication. However, we note that 293T cells have been used as a physiological model for discovering and characterizing key aspects of SARS-CoV-2 biology, including viral replication. For example, SARS-CoV-2 has been shown to exhibit significant replication and virion production in 293T cells expressing ACE2 that can be inhibited by known SARS-CoV-2 antiviral compounds:

      https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(20)300045/fulltext

      https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444585/

      https://www.science.org/doi/10.1126/sciadv.add3867

      https://www.pnas.org/doi/full/10.1073/pnas.2025866118

      293T cells have also been demonstrated to exhibit cytopathic effects upon SARS-CoV-2 infection that are dependent upon the ACE2 receptor and mirror that of infected lung cells in culture and in patient tissues:

      https://www.embopress.org/doi/full/10.15252/embj.2020106267

      https://journals.asm.org/doi/full/10.1128/jvi.00002-22

      https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009715

      https://www.nature.com/articles/s41559-021-01407-1

      In addition to 293T cells, we have demonstrated that infection of MRC5 human pulmonary fibroblast cells with SARS-CoV-2 results in a decrease in TRMT1 levels and m2,2G modification (Figure 1). The reduction in TRMT1 levels in MRC5 cells after SARS-CoV-2 infection is similar to that observed in 293T cells.

      • The reduction of bulk TRMT1 levels is minor during infection of MRC5 cells with SARS-CoV-2 (Fig 1). This does not seem to agree with the more dramatic reduction in m2,2G modification levels. Cellular Localization experiments of TRMT1 would help clarify this. While TRMT1 is found in the cytoplasm and nucleus, it is possible that TRMT1 is more dramatically degraded in the cytoplasm due to easier access by Nsp5.

      We agree that the processing of newly synthesized TRMT1 in the cytoplasm is likely to be the main cause for the reduction of TRMT1 levels in the infected MRC5 cells. Thus, we followed the Reviewer’s suggestion to conduct cellular localization experiments of TRMT1 (Supplemental Figure 4). Through these experiments, we show that full-length TRMT1 exhibits localization to the cytoplasm, mitochondria, and nucleus, consistent with prior findings from our group and others. This result supports the conclusion that cytoplasmic TRMT1 is the likely target of Nsp5 cleavage while TRMT1 in the nucleus and mitochondria are inaccessible to Nsp5. We also note that the decrease in cytoplasmic TRMT1 could account for the reduction in m2,2G modifications if the cytoplasmic pool of TRMT1 is responsible for modifying any exported tRNAs that were not modified in the nucleus.

      • In Fig 6, the authors show that TRMT1 is required for optimal SARS-CoV-2 replication. This can be rescued by expressing TRMT1 (Fig 7). Nevertheless, it is unknown if the methylation activity of TRMT1 is required. The authors could have expressed an inactive TRMT1 mutant (by disrupting the SAM binding site) to establish if the RNA modification by TRMT1 is important for SARS-CoV-2 replication or if it is the protein backbone that might contribute to other processes.

      We agree that it would be interesting to test if the methylation activity of TRMT1 is important for optimal SARS-CoV-2 replication. However, the present study focuses on the cleavage of TRMT1 by Nsp5 and the biological effects of this cleavage. Thus, we feel that generating another human cell line lies outside the scope of this paper and would be an excellent idea for future studies. We thank the reviewer for the proposed experiment.

      • Fig 7, the authors used the Q530N variant to rescue SARS-CoV-2 replication in TRMT1 KO cells. This is an important experiment and unexpectedly reveals that TRMT1 cleavage by Nsp5 is not required for viral replication. To strengthen the claim of the authors that TRMT1 is required to promote viral replication and that its cleavage inhibits RNA methylation, the authors could express the TRMT1 N-terminal construct in the TRMT1 KO cells to assess if viral replication is restored or not to similar levels as WT TRMT1. This will further validate the potential biological importance of TRMT1 cleavage by Nsp5.

      Indeed, we did not expect to find that human cells expressing the TRMT1-Q530N variant exhibit higher levels of viral replication. This suggests that cleavage of TRMT1 is inhibitory for viral replication. To provide further support for this observation, we analyzed the viral titer and infectivity of supernatants derived from human cells expressing wildtype TRMT1 or TRMT1-Q530N. Consistent with our finding that TRMT1-Q530N cells contain more viral RNA, the media supernatants from TRMT1Q530N expressing cells exhibit higher viral titer and infectivity compared to supernatants from TRMT1-KO cells expressing wildtype TRMT1. These results provide additional evidence that TRMT1 is required to promote viral replication. Moreover, these findings suggest that TRMT1 cleavage and reduced protein synthesis could selflimit viral replication. The additional results have been added as Figure 8.

      • Fig 7 shows that the TRMT1 Q530N variant rescues SARS-CoV-2 replication to greater levels then WT TRMT1. The authors should discuss this in greater detail and its possible implications with their proposed statement. For instance, are m2,2G levels higher in Q530N compared to WT? Does Q530N co-elute with Nsp5 or is the interaction disrupted in cells?

      These are excellent points brought up by the Reviewer. As noted above, we have added an additional experiment that tests the functional relevance of TRMT1 expression and cleavage on virion production and infectivity (Figure 8). Moreover, we have followed the Reviewer’s suggestion and discussed the potential implications of these findings in the “Ideas and Speculation” subsection.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, the authors have used biochemical approaches to provide compelling evidence for the cleavage of TRMT1 by SARS-CoV-2 Nsp5 protease. This work is of wide interest to biochemists, cell biologists, and structural biologists in the coronavirus (CoV) field. Furthermore, it substantially advances the understanding of how CoV's interact with host factors during infection and modify cellular metabolism.

      We thank the reviewer for the thoughtful assessment of our study.

      Strengths:

      The authors provide multiple lines of biochemical evidence to report a TRMT1-Nsp5 interaction during SARS-CoV-2 infection. They show that the host enzyme TRMT1 is cleaved at a specific site and that it generates fragments that are incapable of functioning properly. This is an important result because TRMT1 is a critical player in host protein synthesis. This also advances our understanding of virus-host interactions during SARS-CoV-2 infections.

      Weaknesses:

      The major weakness is the lack of mechanistic insights into TRMT1-Nsp5 interactions. The authors have provided commendable biochemical data on proving the TRMT1-Nsp5 interaction but without clear mechanistic insights into when this interaction takes place in the context of SARS-CoV-2 propagation, what are the functional consequences of this interaction on host biology, and does this somehow benefit the infecting virus? I feel that the authors played it a bit safe despite having access to several reagents and an extremely promising research direction.

      We agree that our findings have prompted questions on the mechanistic and functional relevance of TRMT1 cleavage by Nsp5. To begin addressing the latter point, we have included a new experiment testing the impact of TRMT1 expression and cleavage on SARS-CoV-2 virus production and infectivity (Figure 8). We find that TRMT1-deficient cells infected with SARS-CoV-2 exhibit less virion production and the viruses produced are less infectious. Intriguingly, we find that expression of the non-cleavable TRMT1-Q530N variant in TRMT1-KO cells promotes an increase of viral titer as well as infectivity compared to expression of wildtype TRMT1. These results provide evidence for an unexpected role for TRMT1 expression in virus production and the generation of optimally infectious SARS-CoV-2 particles. We discuss the potential implications of this finding in the “Ideas and Speculation” subsection.

      We agree that understanding the timing and effects of Nsp5-TRMT1 interaction will be an important area of investigation moving forward. We would like to include additional time points beyond 24- and 48-hours post-infection. However, we have found that the MRC5-ACE2 cells exhibited increased levels of cell death at 72 and 96-hours postinfection that could confound results (Raymonda et al 2022). Moreover, we would like to know how the reduction in m2,2G modifications affects host tRNA biology and translation. However, these experiments involve large-scale methods such as tRNA sequencing and ribosome profiling which are outside the scope of our current studies and will be the subject of future efforts.

      We acknowledge the Reviewer’s assessment that we “played it a bit safe” in discussing the functional consequences of Nsp5-TRMT1 interaction. We aimed for a circumspect interpretation of our results and their biological implications, but might have been too cautious in our conclusions. Thus, we have added an “Ideas and Speculation” subsection that discusses possible reasons for how TRMT1 cleavage and interaction with Nsp5 could benefit the virus. We thank the Reviewer for pointing out this issue in our initial manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Having reviewed an earlier version of this manuscript, I appreciated the recent progress made by the authors. I felt the entire body of work is quite solid and the interpretations are clear and not overstated. One piece of data I thought deserved a sentence or two of discussion was the complementation assay with Q530N TRMT1. This experiment suggests the possibility that cleavage of TRMT1 by Nsp5 may be an act to self-limit replication, although this result could also be due to the elevated levels of Q530N TRMT1 expression compared to WT. I still think it is worthy of discussion. Another thing I would recommend is to include the length of infection by SARS-CoV-2 in the figure legends.

      We thank the reviewer for their positive response and constructive comments.

      We have followed the Reviewer’s suggestion to further discuss how cleavage of TRMT1 may act to self-limit replication in the “Ideas and Speculation” subsection. We have also included the length of infection by SARS-CoV-2 in the figure legends.

      Reviewer #2 (Recommendations For The Authors):

      In addition to the comments mentioned in the public review, this reviewer encourages the authors to address the following points:

      • Please clarify the rationale behind choosing 24 and 48 hours post-infection as time points for the analyses (Fig 1). One would expect even lower levels of TRMT1 and RNA modification after 72 and 96 hours post-infection.

      We chose the 24 and 48-hour time points since we have shown that MRC5 cells exhibit elevated accumulation of viral RNA at these time points (Raymonda et al 2022). However, at 72 and 96-hours post-infection, we have found that the MRC5-ACE2 cells exhibited cytopathic effects indicative of cell death that could confound results. We have included the rationale for these time points in our revised manuscript.

      • In Supplementary Figure 3, please add in the legend the meaning of the asterisk symbol.

      The asterisks denote non-specific bands that are still detectable in the TRMT1-KO cell line. We have updated the Figure Legend and thank the Reviewer for catching this omission.

      • In Supplementary Figure 3B, there is an intermediate band in lane 3 with C145A when using the antibody 609-659. The authors should clarify what that band is.

      The intermediate band in lane 3 (and in lane 6) of Supplemental Figure 3B represents non-specific detection of the Nsp5-C145A variant that exhibits extremely high levels of expression since it cannot self-cleave. We have clarified the identity of the band in the figure legend.

      Reviewer #3 (Recommendations For The Authors):

      I have only minor comments:

      Although the authors have done a commendable job of providing compelling biochemical evidence of TRMT1 cleavage by Nsp5, it is not clear how this enhances viral infection. The discussion presents the experimental findings and prior publications as a series of correlated observations without clearly specifying the mechanistic benefits of TRMT1 hijacking towards CoV propagation, or even proposing a mechanistic hypothesis to this end.

      We agree with the Reviewer that providing a mechanistic hypothesis on how TRMT1 cleavage impacts virus biology will help inform future studies. We have followed the Reviewer’s suggestion and discuss potential mechanisms in the “Ideas and Speculation” subsection.

      How do these experiments inform us about the cell biology of SARS-CoV- infections? Does Nsp5-mediated degradation start early in infection? Is the loss of TRMT1 sustained over the course of the infection? Do Nsp5 concentrations or relative amounts correlate with TRMT1 loss during this period? For instance, is there only a modest increase in Nsp5 levels from 24h to 48h? I would suggest adding a few more data points than just 24h and 48h in the cell culture experiments. As the manuscript stands right now, it will be a bit difficult for readers to appreciate the relevance of this study in its present form.

      These are excellent questions raised by the Reviewer. The temporal effects of SARSCoV-2 infection on TRMT1 levels will be an important area to dissect moving forward.

      As mentioned above, we would like to include additional time points beyond 24- and 48-hours post-infection. However, at 72 and 96-hours post-infection, we have found that the MRC5-ACE2 cells exhibited increased levels of cell death that could confound results.

      However, we do observe a correlation between the level of infection and the amount of TRMT1 depletion. In our newly added Figure 6C and 6D, we show that increasing the MOI leads to a concomitant increase in N-protein production that correlates with the amount of TRMT1 depletion. Moreover, we have added additional experiments to explore the biological relevance of our findings in terms of virion particle production and infectivity. We thank the reviewer for these insightful questions that have improved our manuscript and provide a foundation for future studies.

      Related to this previous comment: how do the authors rationalize their inference that TRMT1 is essential for SARS-CoV-2 infection, yet it is cleaved during the infection? What seems to be the advantage of this seemingly contradictory but possibly quite intriguing inference?

      We acknowledge the paradox that TRMT1 seems to be essential for SARS-CoV-2 replication but is cleaved during the infection. We propose several hypotheses to explain these findings:

      Hypothesis 1: TRMT1 could be a bystander target. The loss of TRMT1 expression leads to a decrease in modifications that impacts translation. This decrease in translation capacity of the infected cells would lead to decreased production of viral proteins and reduced viral replication. This could explain why TRMT1-deficient cells exhibit less virus production. This could also account for why the TRMT1-Q530N mutant might produce more virus. In this case, the cleavage of TRMT1 and biological effects on viral replication and virion production are coincidental. However, even if TRMT1 cleavage and inactivation does not impact viral replication or production, it would still be important to know the cellular impacts that contribute to disease pathogenesis.

      Hypothesis 2: The slight diminishment of viral replication due to host translation inhibition could outweigh the benefits of shutting down host responses dependent upon protein synthesis. The decrease in TRMT1-catalyzed tRNA modification caused by Nsp5 cleavage could severely inhibit host translation while viral translation can still be maintained through a tRNA pool optimized for viral translation, albeit at a slightly lower rate than if TRMT1 is not cleaved.

      Hypotheses 3: The Nsp5-TRMT1 interaction could allow the virus to bind tRNAs that are packaged in viral particles as suggested previously (Pena et al., 2022). The finding that expression of the non-cleavable TRMT1-Q530N variant enhances viral replication and infectivity supports the hypothesis that TRMT1 could facilitate tRNA uptake into viral particles. The packaging of specific tRNAs in viral particles could enhance viral translation in the subsequent round of infection, thereby enhancing infectivity and perhaps facilitating the species jump of SARS-CoV-2 towards hosts with incompatible codon bias.

      We have included these hypotheses in the new “Ideas and Speculation” subsection.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      After revision, I only have a few remaining remarks:

      l. 180 The authors write: We were able to process all 4 datasets with minimal adjustments to the default parameter values (Methods).

      But they still don't indicate how they vary parameters and how important this is for success or how this affects absolute measurements such as average cell length. Could they give a table of parameter values and some sense of sensitivity for any future user?

      We thank the reviewer for the suggestion. We see how this info is valuable for the user. We’ve added a table with the parameter values used for processing each dataset in the supplemental information, along with the default parameters for reference (lines 476 - 496). In that section we also discuss which parameters may affect the output measurements of cell size, etc.

      l. 192-193 They write 'The software performed well on BACMMAN, molyso and MoMa datasets.' Naming the datasets after the analysis methods used in the original papers could be confusing, as they analyse data with MM3. Not sure how best to resolve this, maybe using first author names instead.

      We thank the reviewer for pointing this out. We now refer to them with the first author names.

      Related to the request of ref. #1 for a video tutorial, the video currently displayed under the github readme.md section 'Usage guide' is not functional. And the video at the top of the same page is very short with minimal information.

      We thank the reviewer for letting us know the tutorial video was not functional. We’ve tested it on Linux, Mac and Windows machines on both Firefox and Chrome. We were not able to reproduce any problems for the video - could they let us know what browser / OS was used and any other specifics? If it’s easier, we can be reached through the Github page as well.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewers:

      We would like to thank all the reviewers and the editors for their thorough and helpful feedback on our work. Before addressing specific questions and points, we would like to make a general comment on a mechanistic aspect of this study. The reviewers correctly pointed out that our study does not reveal the molecular mechanism that leads to centromeric histone depletion specifically from meiotic chromosomes. Identifying this mechanism requires a deep and thorough understanding of how centromeric histones are loaded and centromeres are established each cell cycle, and how they are maintained over time in different cell types. To our knowledge, these mechanisms have not been described in plants. To add a further layer of complexity, it appears that the mechanisms governing CENH3 maintenance may be (partially) different in plant mitotic and meiotic cells, and the mechanistic basis of this difference is unknown. Obviously, these are interesting but also complex questions and their resolution will require considerable resources and effort, which we believe is beyond the scope of this manuscript. Nevertheless, our finding that CENH3 maintenance and centromere function in meiotic cells are sensitive to heat stress is an unexpected discovery with profound implications for plant adaptation, which provides a strong incentive for further exploration of centromere maintenance mechanisms in plants.

      Furthermore, we would like to apologize to reviewers for poor quality of pictures in the original submission. It was decreased by conversion to a pdf format during submission.

      eLife assessment

      This important study reports how heat stress affects centromere integrity by compromising the loading of the centromere protein CENH3 and by prolonging the spindle assembly checkpoint during male meiosis in Arabidopsis thaliana. The evidence supporting the claims by live cell imaging is convincing, although deeper mechanistic insight is lacking, making the study overall somewhat preliminary in nature. This work will be of interest to a broad audience of biologists working on how chromatin states are affected by stress conditions.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Khaitova and co-workers present here an analysis of centromere composition and function during elevated temperatures in the plant Arabidopsis. The work relates to the ongoing climate change during which spikes in high temperatures will be found. Hence, the paper addresses a timely subject.

      The authors start by confirming earlier studies that high temperatures reduce the fertility of Arabidopsis plants. Interestingly, a hypomorphic mutant of the centromeric histone variant CENH3 (CENP-A), which was previously described by the authors, sensitizes plants to heat and results in a drop in viable pollen and silique length. The drop in fertility coincides with the formation of micronuclei in meiosis and an extension of meiotic progression as revealed by live cell imaging. Based on this finding, the authors then show that at high temperatures, the fluorescence intensity of a YFP:CENH3 declines in meiosis but remarkably not in the surrounding cells (tapetum cells). In addition, the amount of BMF1 (a Bub1 homolog and part of the spindle assembly checkpoint) also appears to decline on the kinetochores of meiocytes as judged by BMF1 reporter line. However, whether this is dependent on a decline of CENH3 or represents a separate pathway is not clear.

      We provide new data in Figure S6 showing that BMF1 loading on centromeres is substantially reduced in cenh3-4 mutants. Thus, efficient tethering of BMF1 to centromeres depends on CENH3.

      Finally, the authors measure the duration of the spindle checkpoint and find that it is extended under high temperatures from which they conclude that the attachment of spindle fibers to kinetochores is compromised under heat.

      Strengths:

      This is an interesting and important paper as it links centromere organization/function to heat stress in plants. A major conclusion of the authors is that weakened centromeres, presumably by heat, may be less effective in establishing productive interactions with spindle microtubules.

      Weaknesses:

      The paper does not explain the molecular reason why CENH3 levels in meiocyctes are reduced or why the attachment of spindle fibers to kinetochore is less efficient at high versus low temperatures.

      While we cannot explain the molecular mechanism underlying temperature-dependent depletion of CENH3 in meiocytes, the less efficient attachment of microtubules to the kinetochores at higher temperatures is likely caused by reduced levels of CENH3, which result in smaller centromeres that are less effective in establishing productive microtubule-kinetochore attachments. Here (new Figure S6) and in our previous study (Capitao et al. 2021), we have shown that amount of centromere/kinetochore proteins is reduced at centromeres in cenh3-4 mutants, and that these plants exhibit prolonged SAC and slower chromosome biorientation.

      Reviewer #2 (Public Review):

      Summary:

      This work investigates how increased temperature affects pollen production and fertility of Arabidopsis thaliana plants grown at selected temperature conditions ranging from 16C to 30C. They report that pollen production and fertility decline with increasing temperature. To identify the cause of reduced pollen and fertility, they resort to living cell imaging of male meiotic cells to identify that the duration of meiosis increases with an increase in temperature. They also show that pollen sterility is associated with the increased presence of micronuclei likely originating from heat stress-induced impaired meiotic chromosome segregation. They correlate abnormal meiosis to weakened centromere caused by meiosis-specific defective loading of the centromere-specific histone H3 variant (CenH3) to the meiotic centromeres. Similar is the case with kinetochore-associated spindle assembly checkpoint(SAC) protein BMF1. Intriguingly, they observe a reverse trend of strong CENH3 presence in the somatic cells of the tapetum in contrast to reduced loading of CENH3 in male meiocytes with increasing temperature. In contrast to CENH3 and BMF1, the SAC protein BMF3 persists for longer periods than the WT control, based on which authors conclude that the heat stress prolongs the duration of SAC at metaphase I, which in turn extends the time of chromosome biorientation during meiosis I. The study provides preliminary insights into the processes that affect plant reproduction with increasing temperatures which may be relevant to develop climate-resilient cultivars.

      Strengths:

      The authors have mastered the live cell imaging of male meiocytes which is a technically demanding exercise, which they have successfully employed to examine the time course of meiosis in Arabidopsis thaliana plants exposed to different temperature conditions. In continuation, they also monitor the loading dynamics and resident time of fluorescently tagged centromere/kinetochore proteins and spindle assembly checkpoint proteins to precisely measure the time duration of respective proteins to study their precise dynamics and function in male meiosis.

      Weaknesses:

      Here the authors use only one representative centromere protein CENH3, one kinetochore-associated SAC protein BMF1, and the SAC protein BMF3 to conclude that heat stress impairs centromere function and prolongs SAC with increased temperatures. Centromere and its associated protein complex the kinetochores and the SAC contain a multitude of proteins, some of which are well characterized in Arabidopsis thaliana. Hence the authors could have used additional such tagged proteins to further strengthen their claim.

      Indeed, several other proteins have recently been characterized as centromere/kinetochore components and could have been included in the study to further validate the results presented. To strengthen our argument, we have added new experimental data (Figure S4) showing temperature-induced depletion of CENH3 in wild-type plants by immunocytology. Thus, we convincingly show that temperature stress reduces the amount of CENH3. This is likely to affect the loading of most kinetochore and centromeric proteins. Here (new Figure S6) and in our previous study (Capitao et al., 2021), we have shown that genetic depletion of CENH3 in cenh3-4 mutants results in reduced loading of CENPC, MIS12 and BMF1 at mitotic centromeres and reduced loading of BMF3 and BMF1 at meiotic centromeres. We also attempted to assess the levels of CENPC and MIS12 on meiotic chromosomes by immunocytology, but our antibodies, which work on mitotic spreads, did not stain meiotic chromosomes.

      Though the results presented here are interesting and solid, the study lacks a deeper mechanistic understanding of what causes the defective loading of CenH3 to the centromeres, and why the SAC protein BMF3 persists only at meiotic centromeres to prolong the spindle assembly checkpoint. Also, this observation should be interpreted in light of the fact that SAC is not that robust in plants as several null mutants of plant SAC components are known to grow as healthy as wild-type plants at normal growth conditions without any vegetative and reproductive defects.

      Thank you for raising this point. We are of the opinion that SAC operates and it is important in plants - we have added a citation to a preprint from the Schnittger lab (Lampou et al., 2023, BioRxiv) that was published while this manuscript was under review. We think this is the most comprehensive analysis of plant SAC to date, clearly showing that SAC delays progression to anaphase in the presence of spindle inhibitors, although adaptation eventually occurs and the cell cycle progresses. This is very similar to the situation in animals, which also undergo spindle adaptation in similar situations. The difference between plants and animals may be due to subsequent events, where plants are better able to tolerate genome instability and resume cell division in the presence of abnormal chromosome numbers. Robustness and redundancy may be another reason why plant mutants deficient in SAC do not show obvious growth retardation.

      One of the immediate responses to heat stress is the production of heat shock proteins(Hsps), which act as molecular chaperones to safeguard the proteome. It will be interesting to see if the expression levels of known HsPs can be correlated with their role in stabilizing the structure of SAC proteins like BMF1 to prolong its presence at the meiotic kinetochores.

      Indeed, the heat stress response is likely to be involved in this process. We sought to investigate the role of this pathway by analyzing Arabidopsis mutants deficient in HEAT-SHOCK FACTOR BINDING PROTEIN (HSBP), which acts as a negative regulator of the heat shock response. This experiment was prompted by the observation that hsbp mutants have reduced fertility. We expected that an unrestricted heat stress response might affect meiosis and pollen formation. However, our initial experiments did not show altered pollen viability in response to heat stress in hsbp plants and we did not pursue this line of research further.

      Reviewer #3 (Public Review):

      Summary:

      Khaitova et al. report the formation of micronuclei during Arabidopsis meiosis under elevated temperatures. Micronuclei form when chromosomes are not correctly collected to the cellular poles in dividing cells. This happens when whole chromosomes or fragments are not properly attached to the kinetochore microtubules. The incidence of micronuclei formation is shown to increase at elevated temperatures in wild-type and more so in the weak centromere histone mutant cenH3-4. The number of micronuclei formed at high temperatures in the recombination mutant spo11 is like that in wild-type, indicating that the increased sensitivity of cenh3-4 is not related to the putative role of cenh3 in recombination. The abundance of CENH3-GFP at the centromere declines with higher temperature and correlates with a decline in spindle assembly checkpoint factor BMF1-GFP at the centromeres. The reduction in CENH3-GFP under heat is observed in meiocytes whereas CENH3-GFP abundance increases in the tapetum, suggesting there is a differential regulation of centromere loading in these two cell types. These observations are in line with previous reports on haploidization mutants and their hypersensitivity to heat stress.

      Strengths:

      This paper is an important contribution to our insights into the impact of heat stress on sexual reproduction in plants.

      Weaknesses:

      While it is highly significant, I struggled to interpret the results because of the poor quality of the figures and the videos.

      We apologize for the poor quality of the figures. The figure resolution was drastically reduced during the conversion of the manuscript to pdf on publisher web site.

      Reviewer #1 (Recommendations For The Authors):

      To complete the presented analysis, it would be great to analyze the signal strength of the here-presented BMF3 reporter at high temps, see below for further reasoning.

      Quantification of the BMF3 signal is difficult - it is only transiently associated with kinetochores and its level changes over time. Nevertheless, analysis of our movies taken under the same microscope settings indicates that the amount of BMF3 decreases with increasing temperature. This is illustrated in the new Figure S6C.

      Conversely, how is the BMF1 and BMF3 signal strength in cenh3-4 mutants?

      We performed an analysis of BMF1 and BMF3 signal in cenh3-4 mutants and observed a reduced level of signal from both proteins (Figure S6). In the case of BMF1, no signal was detectable in either somatic or meiotic cells.

      How do the authors explain the reduction in BMF1 signal at 26 and 30{degree sign}C versus the extension of the duration of the SAC as measured by the persistence of a BMF3 signal (line 192: "...reduces the amount of CENH3 and the kinetochore protein BMF1 on meiotic centromeres, potentially affecting their functionality..." versus line 213: "...We observed that while the BMF3:GFP signal persisted, on average, for about 22.7 min at 21 and 26{degree sign}C, its appearance was prolonged to 40.5 min at 30{degree sign}C..."). Is the BMF3 signal also reduced at high temps (see question above)?

      This is a very interesting point. While we see reduced levels of both proteins under heat stress or in cenh3-4 plants, the effect on BMF1 is much more pronounced and becomes undetectable under these conditions. This contrasts with BMF3, which appears to be reduced but is still clearly visible. These data suggest that BMF1 is more sensitive to reduced levels of CENH3 and it further corroborates the findings from the Schnittger lab that BMF1 is not the core component of SAC.

      Line 18-20: The observation that heat stress reduces fertility has been made by several research teams before this study. I propose to write "confirm"/"support" etc. instead of "reveal" to avoid a (presumably not intended) false priority claim in the abstract.

      We apologize, this was unintentional and we cite the relevant literature in the article. We have rewritten the abstract to avoid this impression.

      Figure 2: The panel/legend appears to be a bit mixed up. Panel C is described in legend under A. In addition, I cannot find any blue arrows in panel A (which is described as panel B). Correspondingly, the references to the panels in this figure (lines 134/135 and following) need to be updated. I am also not sure how the meiocytes in this figure were stained. The dots look like centromeres but then their intensity rather increases with increasing temperature. If correct, how can this be reconciled with the authors' statement that centromeres decrease in size at higher temps?

      We apologize for the mix up. An early version of the Figure was accidentally submitted and we now corrected it. The Panel B shows DAPI stained meiocytes at the tetrad stage and examples of micronuclei are indicated by arrowheads.

      Line 520: Should read "genotype" not "phenotype".

      Corrected

      Reviewer #2 (Recommendations For The Authors):

      (1) It is intriguing that heat stress impairs only the centromeres and segregation of meiotic chromosomes but not the mitotic chromosomes. No analysis of mitotic divisions is provided in the manuscript. As they have generated marker lines, it is reasonable to examine the mitotic time course as well by live monitoring of root tissues exposed to similar temperature conditions as done for meiotic analysis. This will help to address the effect of heat stress on mitotic centromeres and its comparison with meiosis will provide a better picture. There are two likely outcomes during mitosis:

      (a) It is possible that the heat stress also slows down mitotic progression as well as is the case in meiosis as shown in this paper and hence it is important to examine those as well to compare and contrast the CENH3/BMF1 dynamics in mitosis and meiosis.

      (b) The second scenario is that there is no effect of heat stress on the centromere integrity of mitotic chromosomes. In fact, the authors show indirect evidence in support of this wherein the eYFP: CENH3 showed a strong signal in the tapetal cells (somatic origin) surrounding the male meiocytes (generative origin). It is interesting that somatic cells of the tapetum show a strong signal whereas the meiocytes lack this. The authors should elaborate on this contrasting result.

      The effect we observed seems to be specific to meiosis. We analyzed the progression of mitosis in root cells and we see a negligible effect of temperature on mitotic progression and no micronuclei formation. Interestingly, in terms of CENH3 loading, root cells show a slight decrease in CENH3 at 30°C, in contrast to the situation in tapetum cells. These and other data suggest a tissue/cell specific behavior of centromere maintenance and deserve further analysis. We plan to publish data on mitosis and tissue-specific aspects of CENH3 loading in a separate manuscript.

      (2) Spindle assembly checkpoint (SAC) comprises several core proteins that are recruited to the kinetochores to correct the errors during the defective cell cycle. Here the authors demonstrate the prolonged presence of BMF3 as the only proof to claim that heat stress prolongs the spindle assembly checkpoint during metaphase I. Have the authors observed the dynamics of any other SAC core components such as MAD1, MAD2, MPS1, BUB3, and the like during heat stress?

      No, we did not. We provide several independent lines of evidence that centromere structure and functionality are affected, and spindle checkpoint analysis is only one of them. At the time we designed these experiments, the only experimentally validated and well-characterized component of the SAC was BMF3, and we used only on this protein as SAC reporter because a general analysis of the SAC was not the primary goal of our study. While this paper was under review, a preprint from the Schnittger lab focusing on plant SAC was published that comprehensively analyzed these SAC components in Arabidopsis and provided a solid foundation and resources for further research in this direction. This study also uses BMF3 as a reporter for SAC in meiotic cells. It is noteworthy that despite using different microscopic methods and different plant reporter lines, our labs independently arrived at exactly the same duration of BMF3 association with the kinetochore (i.e. 22 min).

      (3) Is BMF1 a component of SAC or the kinetochore? I understand that BMF1 is a part of the core SAC ( Komaki and Schnittger, 2017) although it localizes to the kinetochore. There are well-characterized kinetochore proteins in Arabidopsis such as Mis12, NUF2, NNF1, and SPC24(MUN1) which the authors could have used as a kinetochore marker. Regardless, here the authors used it as a kinetochore marker. Being a part of SAC, one would expect the prolonged presence of BMF1 similar to BMF3 in the meiotic kinetochores but it is the other way. How to explain these contrasting results?

      As discussed in the public section of the review, BMF1 does not seem to be the core component of SAC. Furthermore, this protein localizes to centromeres/kinetochore throughout the cell cycle and therefore, it cannot be used as SAC reporter.

      (4) Micronuclei can form as a result of chromosome missegregation as shown for spo11-1 and also due to segregation error caused by DNA repair defects. Here it is not clear what is the origin of micronuclei. It is very hard to decipher from live cell imaging. A simple meiotic spread of anthers of different treatments would address the origin of micronuclei.

      Cytology cannot easily determine the origin of micronuclei in meiotic cells. Acentric fragments produced from aberrant DNA repair will still be cytologically detectable only after metaphase I as they are tethered to the remaining chromatin via cohesion. Therefore, we took advantage of spo11 mutants that do not form any meiotic breaks, and hence cannot generate acentric fragments by aberrant repair, to discriminate the origin of micronuclei. We reason that all micronuclei produced in spo11 plants originate from chromosome mis-segregation and their increase at elevated temperature support the notion that heat stress further impairs chromosome segregation.

      (5) Fig.1 B The microspores are not clearly visible in the alexander-stained anthers. It is not clear which is fertile and which is sterile. A better quality picture would be ideal to appreciate the fact.

      Again, we apologize for poor quality of pictures due to manuscript conversion.

      Reviewer #3 (Recommendations For The Authors):

      (1) In Figure 2, it should be pointed out where the micronuclei are. I see here and there a single bright spot. In Arabidopsis, we have noticed bright spots under stress conditions that are autofluorescent signals. It needs to be shown that these spots are not observed in non-GFP lines. Better image quality may help too.

      The micronuclei in Figure 2 are visualized by DAPI staining, not with GFP. The nuclei are now indicated by arrowheads.

      (2) It was not possible to see the centromeres in Figure 3 hence I could not verify the fluorescence intensities of CENH3 and BMF1. There is also something wrong with the color codes blue and red in fig3B, C, and D.

      Again, we apologize for poor quality of pictures due to manuscript conversion.

      (3) Also in the videos it would help to point out where the micronuclei are seen. At what stage were these nuclei quantified? Given that meiosis progression in the cenh3-4 mutant is slower, it may be necessary to wait long enough to see established micronuclei. This information is supposed to be presented in Figure 2C. However, the X-axis shows time, not number. So I presume Fig 2C shows the duration of meiosis stages in the mutant. In Fig 2B, it shows the number of micronuclei per lobe. However, to correlate the incidence of micronuclei formation and the frequency of polyad formation (inviable microspores), one needs the quantification of the numbers of meiocytes carrying micronuclei. Then one can correlate the number of pollen per anther (shown in Fig 1c) with the incidence of micronuclei formation. The question of whether the degree of fertility reduction is due to micronuclei formation is a major issue that should be clarified.

      Then micronuclei were not quantified from the movies, but from DAPI stained whole anthers at the tetrad stage as indicated in the main text. We also apologize for confusion with the Figure 2 as we mixed up the panels in the original submission. This has been corrected in the new submission.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This important study nicely integrates a breadth of experimental and computational data to address fundamental aspects of RNA methylation by an important for biology and health RNA methyltransferases (MTases).

      Strengths:

      The authors offer compelling and strong evidence, based on carefully performed work with appropriate and well-established techniques to shed light on aspects of the methyl transfer mechanism of the methyltransferase-like protein 3 (METTL3), which is part of the methyltransferase-like proteins 3 & 14 (METTL3-14) complex.

      Weaknesses:

      The significance of this foundational work is somewhat diminished mostly due to mostly efficient communication of certain aspects of this work. Parts of the manuscript are somewhat uneven and don't quite mesh well with one another. The manuscript could be enhanced by careful revision and significant textual and figure edits. Examples of recommended edits that would improve clarity and allow accessibility to a broader audience are highlighted in some detail below.

      We thank the reviewer for the positive evaluation of our work. We have followed the suggestions and modified the text and figures as detailed further in our answers to the specific recommendations.

      Reviewer #2 (Public Review):

      Summary:

      Caflisch and coworkers investigate the methyltransferase activity of the complex of methyltransferaselike proteins 3 and 14 (METTL3-14). To obtain a high-resolution description of the complete catalytic cycle they have carefully designed a combination of experiments and simulations. Starting from the identification of bisubstrate analogues (BAs) as binders to stabilise a putative transition state of the reaction, they have determined multiple crystal structures and validated relevant interactions by mutagenesis and enzymatic assays.

      Using the resolved structure and classical MD simulations they obtained a kinetic picture of the binding and release of the substrates. Of note, they accumulated very good statistics on these processes using 16 simulation replicates over a time scale of 500 ns. To compare the time scale of the release of the products with that of the catalytic step they performed state-of-the-art QM/MM free energy calculations (testing multiple levels of theory) and obtained a free energy barrier that indicates how the release of the product is slower than the catalytic step.

      Strengths:

      All the work proceeds through clear hypothesis testing based on a combination of literature and new results. Eventually, this allows them to present in Figure 10 a detailed step-by-step description of the catalytic cycle. The work is very well crafted and executed.

      We thank the reviewer for the positive evaluation of our work.

      Weaknesses:

      To fulfill its potential of guiding similar studies for other systems as well as to allow researchers to dig into their vast work, the authors should share the results of their simulations (trajectories, key structures, input files, protocols, and analysis) using repositories like Zenodo, the plumed-nest, figshare or alike.

      The reviewer is right. We have uploaded the simulation materials to Zenodo: the MD simulation data (trajectories, pdb files, parameter files), and the PLUMED file that was used for the DFTB3/MM metadynamics simulations. We provide the link in the “Data availability” section.

      Reviewer #3 (Public Review):

      Summary:

      The manuscript by Coberski et al describes a combined experimental and computational study aimed to shed light on the catalytic mechanism in a methyltransferase that transfers a methyl group from Sadenosylmethionine (SAM) to a substrate adenosine to form N6-methyladenosine (m6A).

      Strengths:

      The authors determine crystal structures in complex with so-called bi-substrate analogs that can bridge across the SAM and adenosine binding sites and mimic a transition state or intermediate of the methyltransfer reaction. The crystal structures suggest dynamical motions of the substrate(s) that are examined further using classical MD simulations. The authors then use QM/MM calculations to study the methyl-transfer process. Together with biochemical assays of ligand/substrate binding and enzyme turnover, the authors use this information to suggest what the key steps are in the catalytic cycle. The manuscript is in most places easy to read.

      We thank the reviewer for the positive evaluation of our work.

      Weaknesses:

      My main suggestion for the authors is that they show better how their conclusions are supported by the data. This includes how the electron density maps for example support the key interactions and water molecules in the active site and a better error analysis of the computational analyses.

      We thank the reviewer for the comments and suggestions. We have followed the suggestions and added error analysis of the computational results as well as additional figures (in the supplementary information) that illustrate key interactions and water molecules in the active site supported by the electron density.

      Reviewer #1 (Recommendations For The Authors):

      • The phrasing of the second sentence in the introduction is difficult to read. I am not sure it is necessary to define the DRACH motif if you are also giving the exact consensus sequence unless providing more context for other instances of the DRACH motif. Referring to this motif instead as "consensus sequence GGACU? may be more effective.

      The reviewer is right. We corrected the sentence accordingly.

      • In the second paragraph of the introduction, a further short description of how METTL3-14 is "involved" in diseases would be appreciated.

      We thank the reviewer for the comment. We made that clearer by including “by promoting the translation of genes involved in cell growth, differentiation, and apoptosis” together with a reference.

      • Is there any evidence that inhibiting METTL3-14 doesn't negatively impact healthy cells?

      We thank the reviewer for the question. Yes, there is such evidence and we added to the sentence “but not in normal non-leukaemic haemopoietic cells” together with a reference to make this point clearer.

      • Bringing up the MACOM complex in the third paragraph of the introduction is perhaps not necessary unless further discussing the MACOM complex later.

      The reviewer is right. We removed the mention of the MACOM complex.

      • Figure 1B: Color coding is difficult to distinguish on a screen and print out. More contrasting colors would be helpful.

      We thank the reviewer for the suggestion. We removed the transparency from the protein cartoon representation that was the reason for the low contrast.

      • The level of detail in the "MD simulations for mechanistic studies of RNA MTases" is not advised. Would strongly encourage condensing this section to improve clarity and accessibility to a larger audience.

      The reviewer is right. We removed non-essential parts of this paragraph.

      • Confirming the role of the hydroxyl in Y406 would be better supported by a Y406 -> F406 mutant because the A406 mutant could bind differently due to a loss of pi-stacking interactions.

      The purpose of the Y406A mutant was to eliminate the interaction of the aromatic sidechain with adenosine as seen from the structure with BA4. Since there is no involvement of the Y406-OH group with adenosine, mutating to F did not seem sufficient. Furthermore, by mutating Y406 to alanine, we also eliminate the possibility for a water-mediated hydrogen bond to the W398 backbone. Hence, with the alanine mutant we achieve the strongest possible effect on the enzymatic activity while the integrity of the active site is maintained as seen from the thermal shift assay.

      • For Figure 4D, can the authors justify why SAH was used as a metric for SAM binding instead of using SAM directly? Additionally, referring to the RNA as "ligand" instead of "RNA" in the Figure caption is more confusing than simply calling it RNA.

      We thank the reviewer for the comment. With the TSA, we wanted to show that with the adenosine binding mutants, the integrity of the METTL3 active site is still intact. It was shown that SAH is bound with higher affinity than SAM by METTL3 (DOI: 10.1016/j.celrep.2019.02.100). Since the magnitude of the thermal shift depends also on the affinity, we chose the higher-affinity binder SAH. There is no RNA per se shown in this figure. “Ligands” in the figure caption (A) refers to the three bound molecules that are shown and mentioned in the previous sentence: SAM, BA2, and BA4. “Ligand” in the figure caption (D) refers to “SAH” that was used in the experiment described and mentioned just after, but is now removed.

      • Figure 5D is very difficult to interpret. Removing the ribbons representing Y406 movement may make it easier to see. Color coding the Supplementary Movie 1 to match would be also helpful.

      The reviewer is right. We have changed the figure to make the different conformations of METTL3 and its Y406 sidechain clearer. However, we left the coloring of the different conformations as the colors are connected to different time points of the simulation. Following the suggestion of the reviewer we changed the coloring of SAM and AMP to match that of the supplementary movie.

      • Figure 10 is overwhelming as is. Removing the grey area around the binding sites and toning down the color of the substrate binding sites would help with visibility. The size of the chemical structures and illustrations is currently too small to easily be made out. A full page-sized figure may be beneficial for this figure.

      We agree with the reviewer and have changed the figure to make each reaction step clearer and better recognizable.

      Minor >edits

      • Change "Despite the growing knowledge on the diverse pathways" to "Despite growing knowledge of the diverse pathways involving METTL3-14".

      We corrected the sentence.

      • Perhaps use "redundant active site" instead of "degenerate active site".

      We changed the word as suggested.

      • Consider moving "The METTL3 MTase domain has the catalytically active SAM binding site and adopts a Rossmann fold that is characteristic of Class I SAM-dependent MTases" to before "METTL14 also has an MTase domain, however, with a degenerate active site of hitherto unknown function, and so-called RGG repeats at its C-terminus essential for RNA binding" to keep information about METTL3 together.

      We shifted the part of the text as suggested.

      • "Molecular dynamics studies have mainly focused on protein and bacterial MTases"? Does this mean bacterial MTases that methylate proteins?

      We thank the reviewer for the comment. This means bacterial MTases in general. The example that we mention is of a bacterial MTase that methylates a chemical precursor. We changed the sentence slightly to make that clearer.

      • In "Bisubstrate analogues bind in the METTL3 active site", please consider the following:

      • Change "and to investigate" to "and investigated".

      • Briefly describe the enzymatic assay in the main text.

      • Either more clearly defining "least potent" or change to "have the highest IC50 values".

      We made all the suggested changes to improve the description of the assay and its outcomes.

      • In Figure 3, remove some of the amino acid labels from panels A, C, and E for clarity, especially since panels B, D, and F more clearly demonstrate the interactions.

      We removed amino acids that were not involved in polar contacts and adapted the figure caption accordingly.

      • In panels 3D, 3F, and 4B, the lightning bolts are too small to make out as lightning bolts. An asterisk or other symbol may be easier to distinguish.

      We made the lightnings more than double the size to make them better recognizable.

      • In Figure 4C, no units are provided on the y-axis. Additionally, I do not believe the arrows indicating "Loss of activity" are necessary.

      These are arbitrary units as it is a ratio which is explained in the materials and methods section. We removed the arrows following the suggestion of the reviewer.

      • While demonstrating mutants with no activity still retain SAM binding is suggestive of the mutant impacting RNA binding, this would still be better supported with RNA binding studies. Electrophoretic mobility shift assays would be sufficient if Tm studies are time-consuming. While these experiments could be informative, we also acknowledge that they may be outside the scope of this current report.

      We thank the reviewer for suggesting these experiments and acknowledging that they would be outside of the scope of the current study. Such RNA binding experiments can turn out to be very time consuming, both in TSA and EMSA. The reason is mainly this: The RNA substrate must be chosen such that it binds sufficiently strong to the WT to cause an effect (thermal shift or electrophoretic mobility shift), but also to observe a clear difference in binding between WT and mutant proteins. Since many more residues of METTL3 and METTL14 contribite to RNA binding, the effects of individual mutants on affinity might be too small to be confidently detected in TSA or EMSA. In particular, we only identified the substrate adenosine binding residues, and mutating them and hence preventing adenosine binding alone, might not have a big effect on overall RNA binding affinity. The enzymatic assay that we used, on the other hand, is more sensitive since the detection is fluorescence based and quantifies the conversion of A to m6A in an RNA substrate, and more factors than just affinity play a role for enzymatic activity, such as correct orientation and stability of the adenosine in the active site and stabilization of the transision state.

      • A written narrative to accompany Supplementary Movie 1 would make it much more accessible to those unfamiliar with modeling and simulations.

      We thank the reviewer for the comment. We expanded the caption to the movie with a narrative describing different events at different time points in the movie.

      • Table 3 could be made clearer to those without MD experience by defining/indicating the top row as different computational models.

      The reviewer is right. We have added a footnote to Table 3 to clearly indicate the different density functional theory and semi-empirical density functional tight binding method used in this study. We also added another line in the table.

      • In the conclusion, the authors state "the height of the QM/MM free-energy barrier indicates that the methyl transfer step is not rate-determining." How does this compare to experimental data? Additional kinetic assays to demonstrate this experimentally would go a long way in convincing the reader of this conclusion.

      We thank the reviewer for the question. Kinetic assays have been performed for METTL3-14 and we mention and reference them in the text. We believe that further kinetic experiments would be outside of the scope of this study. Furthermore, the METTL3 mutants that we made show no activity in our enzymatic assay and hence kinetic studies would be probably impossible to do with them.<br /> As we show from QM/MM and describe in the text, the methyl cation in the SAM cofactor is transferred directly to the N6 position of the adenosine substrate. DFTB3/MM free energy simulations show that this mechanism has an energetic barrier of 15-16 kcal/mol. The turnover as published based on an enzymatic assay is 0.2-0.6 min-1 at ambient temperature which implies a barrier of ~20 kcal/mol. This value is higher than that determined for the methyl transfer alone as determined by QM/MM. Hence, in the overall mechanism, there must be a step that is slower than the methy transfer and hence we conclude that the methyl transfer is not the rate-limiting step.

      Reviewer #3 (Recommendations For The Authors):

      I only have a few comments about the work.

      (1) It would be good if the authors could show more of the data that is used as the basis for their conclusions. For example, IC50 values are presented (Table 1) without error estimates or an indication of the quality of the data that is used to estimate the data.

      We thank the reviewer for the suggestion. We included errors of the IC50 values and show the dose response curved from the enzymatic assay with the BAs as inhibitors in a new Supplementary Figure S1.

      (2) More substantially, it would be good to have a more detailed analysis of the crystal structures in terms of the properties that are mentioned/analysed. While the structures are relatively good (2.1 Å2.5Å), it is not clear to the reader how this data supports the interactions that are proposed. For example, the authors pinpoint a number of hydrogen bonding interactions and water molecules in the complexes. They might consider showing support for some of these in the electron density maps. Similarly, it would be good to show the densities that support the substantial differences of the Ade in the BA2 and BA4 complexes. These might be supplementary files. I note also that the structures are not yet released or available for analysis [which of course is a valid choice but also means that I cannot inspect the maps myself].

      We have added supplementary figures supporting the conformations of the BAs and their interactions with METTL3 with electron density, for BA1 and BA6 in Supplementary Figure S2, and for BA2 and BA4 in a new Supplementary Figure S3.

      (3) It would be useful with an error analysis of the off-rates estimated from the MD simulations and a discussion of the accuracy of these estimates. Even the slower dissociation events seem quite fast. What are the rough affinities of these molecules and how fast would the binding need to be to be compatible with the affinity and estimated off-rates?

      We expanded upon this in the results paragraph concerning the MD simulations. The affinities of METTL3-14 binding to AMP or m6AMP can be expected to be very low, with Kd values in the millimolar range. We have not measured these Kd values, nor have we found any published data, but we have conducted thermal shift assays with A and m6A and did not observe any significant thermal shifts in the melting temperature of METTL3-14 at high micromolar concentrations of these compounds, indicative of a very low binding affinity. This is to be expected because METTL3-14 should not methylate adenosines unspecifically but rather in the GGACU motif of substrate mRNA.

      (4) The authors use QM/MM simulations with metadynamics to estimate the energy profile of the methyl transfer reaction. They find a barrier of ca. 15 kcal/mol and suggest this to be compatible with the enzymatic turnover rate of ca. 0.3/min. Here it would be good with a clearer description of the possible sources of error and assumptions in making these statements. First, what is the error on the estimated energy profile from the metadynamics? The authors mention the analysis of progression of the PMF as a function of time, but that is in itself not a strong test for convergence (the PMF may stay constant if there is little sampling). What does the time series of the CV look like? Second, it seems as if the authors are assuming a large pre-exponential factor (10^9/s ?). Is that correct, and how sure are they of this value? Finally, when linking the barrier of the methyl-transfer reaction to the overall turnover rate it sounds like they assume that other parts of the reaction do not affect the turnover rate. Is that correctly understood, and what is the evidence for that? It sounds like the authors are saying that step 5 in the cycle (Figure 10) is limiting.

      We thank the reviewer for the questions. Accordingly, we have carried out additional simulations and statistical error analyses.

      (i) We have carried out two additional sets of multi-walker metadynamics simulations with the same setup as the original calculation, except for using different initial random seeds. Using the three independent sets of metadynamics simulations, we can better estimate the statistical uncertainty for the computed potential of mean force (PMF). We have updated the PMF in Fig. 8b, in which the solid curve represents the result averaged over three independent runs, and the shaded area represents the standard error of the mean of the three replicas. The figure caption of Fig. 8b is revised accordingly.

      (ii) To further illustrate the convergence behavior of the metadynamics simulations, we have included the following supplementary files: (1). Potentials of mean force computed with different numbers of deposited Gaussians are compared. (2). As suggested by the reviewer, we show the time series of the collective variable (CV) sampled by the 24 independent walkers during one set of metadynamics simulations. These results clearly indicate that the CV exhibits diffusive behaviors between the reactant and product regions, further supporting the adequate sampling and convergence of our metadynamics simulations.

      (iii) Regarding the issue of pre-factor used in the rate estimate, we have indeed used the common approximation of kT/h as in the regular transition state theory. Many studies in the literature support the use of this expression for very localized chemical reactions in enzymes. We have included several representative references along this line: (1) M. Garcia-Viloca, J. Gao, M. Karplus, D. G. Truhlar, How enzymes work: Analysis by modern rate theory and computer simulations, Science, 303, 186-195 (2004) (2) D. R. Glowacki, J. N. Harvey, A. J. Mulholland, Taking Ockham’s razor to enzyme dynamics and catalysis, Nat. Chem. 4, 169-176 (2012)

      (iv) Regarding the nature of the rate-limiting event, please see our response to reviewer 1.

      (5) The authors should ideally make the input files for their simulations available and deposit the plumed files in for example plumed-nest (as indicated in their reference 100).

      We agree with the reviewer. Accordingly, we have uploaded the PLUMED file that we have used for the DFTB3/MM metadynamics simulations (plumed.dat) together with the MD simulation trajectories to Zenodo.

      Minor

      (1) Many of the details in Figure 10 are very small and difficult to read without zooming in. Consider whether some parts could be made larger.

      The reviewer is right. We have changed the figure to make each reaction step clearer and better recognizable.

    1. Author Response:

      We would like to sincerely thank the referees and the editor for their time in considering our manuscript. The electrophysiology of bacteria is a fast-moving complex

      field and is proving contentious in places. We believe the peer review process of eLife provides an ideal mechanism to address the issues raised on our manuscript in an open and transparent manner. Hopefully we will encourage some more consensus in the field and help understand some of the inconsistencies in the current literature that are

      hampering progress.

      The editors stress the main issue raised was a single referee questioning the use of ThT as an indicator of membrane potential. We are well aware of the articles by the Pilizota group and we believe them to be scientifically flawed. The authors assume there are no voltage-gated ion channels in E. coli and then attempt to explain motility

      data based on a simple Nernstian battery model (they assume E. coli are unexcitable matter). This in turn leads them to conclude the membrane dye ThT is faulty, when in

      fact it is a problem with their simple battery model.

      In terms of the previous microbiology literature, the assumption of no voltage-gated ion channels in E. coli suggested by referee 2 is a highly contentious niche ideology. The majority of gene databases for E. coli have a number of ion-channels annotated as voltage sensitive due to comparative genetics studies e.g. try the https://bacteria.ensembl.org/ database (the search terms ‘voltage-gated coli’ give 2521 hits for genes, similarly you could check www.uniprot.org or www.biocyc.org) and M.M.Kuo, Y.Saimi, C.Kung, ‘Gain of function mutation indicate that E. coli Kch form a functional K + conduit in vivo’, EMBO Journal, 2003, 22, 16, 4049. Furthermore, recent microbiology reviews all agree that E. coli has a number of voltage-gated ion channels S.D.Beagle, S.W.Lockless, ‘Unappreciated roles for K + channels in bacterial physiology’,Trends in microbiology, 2021, 29, 10, 942-950. More emphatic experimental data is seen in spiking potentials that have been observed by many groups for E. coli, both directly using microelectrodes and indirectly using genetically expressed fluorophores, ‘Electrical spiking in bacterial biofilms’ E.Masi et al, Journal of the Royal Society Interface, 2015, 12, 102, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, J.M.Kralj, et al, Science, 2011, 333, 6040, 345 and ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 2023, 120, 3, e2208348120. The only mechanism currently known to cause spiking potentials in cells is due to positive feedback from voltage-gated ion channels (you need a mechanism to induce the oscillations). Indeed, people are starting to investigate the specific voltage-gated ion channels in E. coli and a role is emerging for calcium in addition to potassium e.g. ‘Genome-wide functional screen for calcium transients in E. coli identifies increased membrane potential adaptation to persistent DNA damage’, R.Luder, et al, J.Bacteriology, 2021, 203, 3, e00509.

      In terms of recent data from our own group, electrical impedance spectroscopy (EIS) experiments from E. coli indicate there are large conductivity changes associated with the Kch ion channels (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior',

      E.Akabuogu et al, ACS Nanoletters, 2024, in print). EIS experiments pr be the electrical phenomena of bacterial biofilms directly and do not depend on fluorophores i.e. they can’t be affected by ThT.

      Attempts to disprove the use of ThT to measure hyperpolarisation phenomena in E. coli using fluorescence microscopy also seem doomed to failure based on comparative control experiments. A wide range of other cationic fluorophores show similar behaviour to ThT e.g. the potassium sensitive dye used in our eLife article. Thus the behaviour of ThT appears to be generic for a range of cationic dyes and it implies a simple physical mechanism i.e. the positively charged dyes enter cells at low potentials. The elaborate photobleaching mechanism postulated by referee 2 seems most unlikely and is unable to explain our data (see below). ThT is photostable and chemically well- defined and it is therefore used almost universally in fluorescence assays for amyloids.

      A challenge with trying to use flagellar motility to measure intracellular potentials in live bacteria, as per referee 2’s many publications, is that a clutch is known to occur with E. coli e.g. ‘Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction’, Q.Han et al, Frontiers in Microbiology, 2023, 14. Thus bacteria with high membrane potentials can have low motility when their clutch is engaged. This makes sense, since otherwise bacterial motility would be enslaved to their membrane potentials, greatly restricting their ability to react to their environmental conditions. Without quantifying the dynamics of the clutch (e.g. the gene circuit) it seems challenging to deduce how the motor reacts to Nernstian potentials in vivo. As a result we are not convinced by any of the Pilizota group articles. The quantitative connection between motility and membrane potential is too tenuous.

      In conclusion, the articles questioning the use of ThT are scientifically flawed and based on a niche ideology that E. coli do not contain voltage-gated ion channels. The current work disproves the simple Nernstian battery (SNB) model expounded by Pilizota et al, unpersuasively represented in multiple publications by this one group in the literature (see below for critical synopses) and demonstrates the SNB models needs to be replaced by a model that includes excitability (demonstrating hyperpolarization of the membrane potential).

      In the language of physics, a non-linear oscillator model is needed to explain spiking potentials in bacteria and the simple battery models presented by Pilizota et al do not have the required non-linearities to oscillate (‘Nonlinear dynamics and chaos’, Steve Strogatz, Westview Press, 2014). Such non-linear models are the foundation for describing eukaryotic electrophysiology, e.g. Hodgkin and Huxley’s Nobel prize winning research (1963), but also the vast majority of modern extensions (‘Mathematical physiology’, J.Keener, J.Sneyd, Springer, 2009, ‘Cellular biophysis and modelling: a primer on the computational biology of excitable cells’, G.C.Smith, 2019, CUP, ‘Dynamical systems in neuroscience: the geometry of excitability and bursting’, E.M.Izhikevich, 2006, MIT and ‘Neuronal dynamics: from single neurons to networks and models of cognition’, W.Gerstner et al, 2014, CUP). The Pilizota group is using modelling tools from the 1930s that quickly were shown to be inadequate to describe eukaryotic cellular electrophysiology and the same is true for bacterial electrophysiology (see the ground breaking work of A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 7576, 59 for the use of Hodgkin-Huxley models with bacterial biofilms). Below we describe a critical synopsis of the articles cited by referee 2 and we then directly answer the specific points all the

      referees raise.

      Critical synopsis of the articles cited by referee 2:

      1) ‘Generalized workflow for characterization of Nernstian dyes and their effects on bacterial physiology’, L.Mancini et al, Biophysical Journal, 2020, 118, 1, 4-14.

      This is the central article used by referee 2 to argue that there are issues with the calibration of ThT for the measurement of membrane potentials. The authors use a simple Nernstian battery (SNB) model and unfortunately it is wrong when voltage-gated ion channels occur. Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model. Instead a Hodgkin Huxley model is needed, as shown in our eLife manuscript and multiple other studies (see above). Arrhenius kinetics are assumed in the SNB model for pumping with no real evidence and the generalized workflow involves ripping the flagella off the bacteria! The authors construct an elaborate ‘work flow’ to insure their ThT results can be interpreted using their erroneous SNB model over a limited range of parameters.

      2) ‘Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load’, C.J.Lo, et al, Biophysical Journal, 2007, 93, 1, 294.

      An odd de novo chimeric species is developed using an E. coli chassis which uses Na + instead of H + for the motility of its flagellar motor. It is not clear the relevance to wild type E. coli, due to the massive physiological perturbations involved. A SNB model is using to fit the data over a very limited parameter range with all the concomitant errors.

      3) Single-cell bacterial electrophysiology reveals mechanisms of stress-induced damage’, E.Krasnopeeva, et al, Biophysical Journal, 2019, 116, 2390.

      The abstract says ‘PMF defines the physiological state of the cell’. This statement is hyperbolic. An extremely wide range of molecules contribute to the physiological state of a cell. PMF does not even define the electrophysiology of the cell e.g. via the membrane potential. There are 0.2 M of K + compared with 0.0000001 M of H + in E. coli, so K + is arguably a million times more important for the membrane potential than H + and thus the electrophysiology! Equation (1) in the manuscript assumes no other ions are exchanged during the experiments other than H + . This is a very bad approximation when voltage-gated potassium ion channels move the majority ion (K + ) around! In our model Figure 4A is better explained by depolarisation due to K + channels closing than direct irreversible photodamage. Why does the THT fluorescence increase again for the second hyperpolarization event if the THT is supposed to be damaged? It does not make sense.

      4) ‘The proton motive force determines E. coli robustness to extracellular pH’, G.Terradot et al, 2024, preprint.

      This article expounds the SNB model once more. It still ignores the voltage-gated ion channels. Furthermore, it ignores the effect of the dominant ion in E. coli, K + . The manuscript is incorrect as a result and I would not recommend publication. In general, an important problem is being researched i.e. how the membrane potential of E. coli is related to motility, but there are serious flaws in the SNB approach and the experimental methodology appears tenuous.

      Answers to specific questions raised by the referees:

      Reviewer #1:

      Summary:<br /> Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      Strengths:<br /> - The authors report original data.<br /> - For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.<br /> - The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.<br /> - The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.<br /> - Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.

      We thank the referee for their positive evaluations and agree with these statements.

      Weaknesses:<br /> - Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.

      The electrical responses occur almost instantaneously when the stimulation with blue light begins i.e. it is too fast to be a build of pH. We are not sure what the referee means by

      Redox potential since it is an attribute of all chemicals that are able to donate/receive electrons. The electrical response to stress appears to be caused by ROS, since when ROS scavengers are added the electrical response is removed i.e. pH plays a very small minority role if any.

      - Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.

      We were enthusiastic at the start of the project to use the PROPs system in E. coli as presented by J.M.Krajl et al,‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, Science, 2011, 333, 6040, 345. However, the people we contacted in the microbiology community said that it had some technical issues and there have been no subsequent studies using PROPs in bacteria after the initial promising study. The fluorescent protein system recently presented in PNAS seems more promising, ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 120, 3, e2208348120.

      - Electrical signal propagation is an important aspect of the manuscript. However, a detailed quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.

      We have presented a more detailed account of the electrical wavefront modelling work and it is currently under review in a physical journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      - Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.

      Our recent electrical impedance spectroscopy publication provides further evidence that Kch is associated with large changes in conductivity as expected for a voltage-gated ion channel (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      - The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.

      That Kch has a photoprotective role is our current working hypothesis. The hypothesis fits with the data, but we are not saying we have proven it beyond all possible doubt.

      - The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).

      Our model is agnostic with respect to the mechanosensitivity of the ion channels, although we deduce that mechanosensitive ion channels contribute to ion channel Q.

      - Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.

      This is always an issue with electrophysiological modelling (compared with most heart and brain modelling studies we are very conservative in the choice of parameters for the bacteria). In terms of predicting the different phenomena observed, we believe the model is very successful.

      Reviewer #2:

      Summary of what the authors were trying to achieve:<br /> The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.

      We believe the Pilizota work is scientifically flawed.

      Major strengths and weaknesses of the methods and results:<br /> The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.

      The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.

      We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.

      I now go over each results section in the manuscript.

      Result section 1: Blue light triggers electrical spiking in single E. coli cells

      I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).

      The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.

      Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com]), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com]).

      We think the proton effect is a million times weaker than that due to potasium i.e. 0.2 M K+ versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.

      If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430 [ncbi.nlm.nih.gov]/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.

      The vast majority of cells continue to be viable. We do not think membrane damage is dominating.

      The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086 [pubmed.ncbi.nlm.nih.gov]/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2 [biorxiv.org]). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21 [journals.asm.org]), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] is membrane potential related, but not in a way that is characteristic of Nernstian dye.

      Our understanding of the literature is CCCP poisons the whole metabolism of the bacterial cells. The ATP driven K+channels will stop functioning and this is the dominant contributor to membrane potential.

      Result section 2: Membrane potential dynamics depend on the intercellular distance

      In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signalling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com]) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.

      Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee’s comments thus seem tenable.

      Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms

      In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2 [sciencedirect.com], the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191 [pubmed.ncbi.nlm.nih.gov]/), so such cytoplasmic staining seems possible.

      It is very easy to see if the illumination is flat (Köhler illumination) by comparing the intensity of background pixels on the detector. It was flat in our case. Protons have little to do with our work for reasons highlighted before. Differential membrane permittivity is a speculative phenomenon not well supported by any evidence and with no clear molecular mechanism.

      Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.

      The referee now contradicts themselves and wants a scale bar to be more visible. We have changed the scale bar.

      Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli

      First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.

      In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x [onlinelibrary.wiley.com]). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.

      The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibriate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.

      The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.

      We have good evidence form electrical impedance spectroscopy experiments that Kch increases the conductivity of biofilms  (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli

      In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com] especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.

      The simple Nernstian battery model proposed by Pilizota et al is erroneous in our opinion for reasons outlined above. We believe it will prove to be a dead end for bacterial electrophysiology studies.

      Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics

      This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.

      This is an erroneous niche opinion. Protons have little say in the membrane potential since there are so few of them. The membrane potential is mostly determined by K+.

      I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gK*n^4 for potassium, gNa*m^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).

      In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.

      Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144 [journals.plos.org])

      The reference is to a slightly more modern version of a simple Nernstian battery model. The model will not oscillate and thus will not help modelling membrane potentials in bacteria. We are unsure where the equilibrium requirement comes from (inadequate modelling of the dynamics?)

      Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.

      The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.

      The evidence for permeability changes in the membranes seems to be tenuous.

      A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113 [pnas.org]). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.

      We have reworded the discussion of Mscs since the literature appears to be ambiguous. We will try to run some electrical impedance spectroscopy experiments on the Msc mutants in the future to attempt to remove the ambiguity.

      Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.

      I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.

      Ok, but we disagree on the use of ThT.

      Aims achieved/results support their conclusions:

      The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      I do not think this publication should be published in its current format. It should be revised in light of the previous literature as discussed in detail above. I believe presenting it in it's current form on eLife pages would create unnecessary confusion.

      We believe many of the Pilizota group articles are scientifically flawed and are causing the confusion in the literature.

      Any other comments:

      I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 [journals.asm.org] found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.

      ThT was used successfully in previous studies of normal B. subtilis cells (by our own group and A.Prindle, ‘Spatial propagation of electrical signal in circular biofilms’, J.A.Blee et al, Physical Review E, 2019, 100, 052401, J.A.Blee et al, ‘Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light’, Physical Biology, 2020, 17, 2, 036001, A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 59-63). The connection to low metabolism pore research seems speculative.

      Reviewer #3:

      It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.

      In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.

      1. An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.

      ThT is a very bright fluorophore (much brighter than a GFP). It is clear from the images of non-stained samples that autofluorescence provides a negligible contribution to the fluorescence intensity in an image.

      2. The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).

      Photobleaching was negligible over the course of the experiments. We employed techniques such as reducing sample exposure time and using the appropriate light intensity to minimize photobleaching.

      3. It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.

      Unfortunately the fluorescent baseline is too weak to measure cleanly in this experiment. It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal (measurements in the eLife article and new potentiometry measurements).

      4. The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.

      We think the PMF plays a minority role in determining the membrane potential in E. coli. For reasons outlined before (H+ is a minority ion in E. coli compared with K+).

      5. Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.

      Both strains of bacterial has similar growth curve and also engaged in membrane potential dynamics for the duration of the experiment. We were interested in bacterial cells that observed membrane potential dynamics in the presence of the stress. Bacterial cells need to be alive to engage in membrane potential  dynamics (hyperpolarize) under stress conditions. Cells that engaged in membrane potential dynamics and later stained red were only counted after the entire duration. We believe that the wildtype handles the light stress better than the ∆kch mutant as measured with the PI.

      6. Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.

      Kirchhoff & Cypionka 2017 J Microbial Methods, using fluorescence microscopy, suggested that changes in membrane potential dynamics can introduce experimental bias when propidium iodide is used to confirm the viability of tge bacterial strains, B subtilis (DSM-10) and Dinoroseobacter shibae, that are starved of oxygen (via N2 gassing) for 2 hours. They attempted to support their findings by using CCCP in stopping the membrane potential dynamics (but never showed any pictoral or plotted data for this confirmatory experiment). In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia. We believe that the accumulation of PI in ∆kch mutant is not due to high membrane potential dynamics but is attributed to the PI, unbiasedly showing damaged/dead cells. We think that propidium iodide is good for this experiment. Propidium iodide is a dye that is extensively used in life sciences. PI has also been used in the study of bacterial electrophysiology (https://pubmed.ncbi.nlm.nih.gov/32343961/, ) and no membrane potential related bias was reported.

      Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.

      Comparison of small changes in the absolute intensities is problematic in such fluorescence experiments. We mean the shape of the traces is similar and they can be modelled using a HH model with similar parameters.

      The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.

      In our experiment, TMRM was used to confirm the dynamics observed using ThT. However, ThT appear to be more photostable than TMRM (especially towars the 2nd peak). The most interesting observation is that with both dyes, all phases of the membrane potential dynamics were conspicuous (the first peak, the quiescent period and the second peak). The time periods for these three episodes were also similar.

      A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.

      The key point is the comparison of standard errors on the standard deviation.

      In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.

      The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.

      We appreciate the reviewer for this important observation. We have made changes to the figures to address this confusion. The cell cover has no influence on the observed membrane potential dynamics. The entire biofilm was exposed to the same blue light at each time. Therefore all parts of the biofilm received equal amounts of the blue light intensity. The membrane potential dynamics was not influenced by cell density (see Fig 2C). 

      The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).

      A visual inspection of Video S6B shows a fast rise, a decrease in fluorescence and a second rise (supplementary figure 4B). The data for the fluorescence was carefully obtained using the imaris software. We created a curved geometry on each slice of the confocal stack. We analyzed the surfaces of this curved plane along the z-axis. This was carried out in imaris.

      3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.

      The analysis is considered in more detail in a more expansive modelling article, currently under peer review in a physics journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:

      1. In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.

      We have worded this differently to properly convey our results.

      2. In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.

      The calcium transients observed were not due to noise or artefacts.

      3. The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.

      The confusion stated here has now been addressed. Also it should be noted that while Fig 2.1 was obtained with LED light source, Fig S4A was obtained using a laser light source. While obtaining the confocal images (for Fig S4A ), the light intensity was controlled to further minimize photobleaching. Most importantly, there is an evidence of slow rise to the 2nd peak in Fig S4B. The first peak, quiescence and slow rise to second peak are evident.

    2. Author Response

      We would like to sincerely thank the referees and the editor for their time in considering our manuscript. The electrophysiology of bacteria is a fast-moving complex field and is proving contentious in places. We believe the peer review process of eLife provides an ideal mechanism to address the issues raised on our manuscript in an open and transparent manner. Hopefully we will encourage some more consensus in the field and help understand some of the inconsistencies in the current literature that are hampering progress.

      The editors stress the main issue raised was a single referee questioning the use of ThT as an indicator of membrane potential. We are well aware of the articles by the Pilizota group and we believe them to be scientifically flawed. The authors assume there are no voltage-gated ion channels in E. coli and then attempt to explain motility data based on a simple Nernstian battery model (they assume E. coli are unexcitable matter). This in turn leads them to conclude the membrane dye ThT is faulty, when in fact it is a problem with their simple battery model.

      In terms of the previous microbiology literature, the assumption of no voltage-gated ion channels in E. coli suggested by referee 2 is a highly contentious niche ideology. The majority of gene databases for E. coli have a number of ion-channels annotated as voltage sensitive due to comparative genetics studies e.g. try the https://bacteria.ensembl.org/ database (the search terms ‘voltage-gated coli’ give 2521 hits for genes, similarly you could check www.uniprot.org or www.biocyc.org) and M.M.Kuo, Y.Saimi, C.Kung, ‘Gain of function mutation indicate that E. coli Kch form a functional K+ conduit in vivo’, EMBO Journal, 2003, 22, 16, 4049. Furthermore, recent microbiology reviews all agree that E. coli has a number of voltage-gated ion channels S.D.Beagle, S.W.Lockless, ‘Unappreciated roles for K+ channels in bacterial physiology’, Trends in microbiology, 2021, 29, 10, 942-950. More emphatic experimental data is seen in spiking potentials that have been observed by many groups for E. coli, both directly using microelectrodes and indirectly using genetically expressed fluorophores, ‘Electrical spiking in bacterial biofilms’ E.Masi et al, Journal of the Royal Society Interface, 2015, 12, 102, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, J.M.Kralj, et al, Science, 2011, 333, 6040, 345 and ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 2023, 120, 3, e2208348120. The only mechanism currently known to cause spiking potentials in cells is due to positive feedback from voltage-gated ion channels (you need a mechanism to induce the oscillations). Indeed, people are starting to investigate the specific voltage-gated ion channels in E. coli and a role is emerging for calcium in addition to potassium e.g. ‘Genome-wide functional screen for calcium transients in E. coli identifies increased membrane potential adaptation to persistent DNA damage’, R.Luder, et al, J.Bacteriology, 2021, 203, 3, e00509.

      In terms of recent data from our own group, electrical impedance spectroscopy (EIS) experiments from E. coli indicate there are large conductivity changes associated with the Kch ion channels (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print). EIS experiments probe the electrical phenomena of bacterial biofilms directly and do not depend on fluorophores i.e. they can’t be affected by ThT.

      Attempts to disprove the use of ThT to measure hyperpolarisation phenomena in E. coli using fluorescence microscopy also seem doomed to failure based on comparative control experiments. A wide range of other cationic fluorophores show similar behaviour to ThT e.g. the potassium sensitive dye used in our eLife article. Thus the behaviour of ThT appears to be generic for a range of cationic dyes and it implies a simple physical mechanism i.e. the positively charged dyes enter cells at low potentials. The elaborate photobleaching mechanism postulated by referee 2 seems most unlikely and is unable to explain our data (see below). ThT is photostable and chemically well-defined and it is therefore used almost universally in fluorescence assays for amyloids.

      A challenge with trying to use flagellar motility to measure intracellular potentials in live bacteria, as per referee 2’s many publications, is that a clutch is known to occur with E. coli e.g. ‘Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction’, Q.Han et al, Frontiers in Microbiology, 2023, 14. Thus bacteria with high membrane potentials can have low motility when their clutch is engaged. This makes sense, since otherwise bacterial motility would be enslaved to their membrane potentials, greatly restricting their ability to react to their environmental conditions. Without quantifying the dynamics of the clutch (e.g. the gene circuit) it seems challenging to deduce how the motor reacts to Nernstian potentials in vivo. As a result we are not convinced by any of the Pilizota group articles. The quantitative connection between motility and membrane potential is too tenuous.

      In conclusion, the articles questioning the use of ThT are scientifically flawed and based on a niche ideology that E. coli do not contain voltage-gated ion channels. The current work disproves the simple Nernstian battery (SNB) model expounded by Pilizota et al, unpersuasively represented in multiple publications by this one group in the literature (see below for critical synopses) and demonstrates the SNB models needs to be replaced by a model that includes excitability (demonstrating hyperpolarization of the membrane potential).

      In the language of physics, a non-linear oscillator model is needed to explain spiking potentials in bacteria and the simple battery models presented by Pilizota et al do not have the required non-linearities to oscillate (‘Nonlinear dynamics and chaos’, Steve Strogatz, Westview Press, 2014). Such non-linear models are the foundation for describing eukaryotic electrophysiology, e.g. Hodgkin and Huxley’s Nobel prize winning research (1963), but also the vast majority of modern extensions (‘Mathematical physiology’, J.Keener, J.Sneyd, Springer, 2009, ‘Cellular biophysics and modelling: a primer on the computational biology of excitable cells’, G.C.Smith, 2019, CUP, ‘Dynamical systems in neuroscience: the geometry of excitability and bursting’, E.M.Izhikevich, 2006, MIT and ‘Neuronal dynamics: from single neurons to networks and models of cognition’, W.Gerstner et al, 2014, CUP). The Pilizota group is using modelling tools from the 1930s that quickly were shown to be inadequate to describe eukaryotic cellular electrophysiology and the same is true for bacterial electrophysiology (see the ground breaking work of A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 7576, 59 for the use of Hodgkin-Huxley models with bacterial biofilms). Below we describe a critical synopsis of the articles cited by referee 2 and we then directly answer the specific points all the referees raise.

      Critical synopsis of the articles cited by referee 2:

      (1) ‘Generalized workflow for characterization of Nernstian dyes and their effects on bacterial physiology’, L.Mancini et al, Biophysical Journal, 2020, 118, 1, 4-14.

      This is the central article used by referee 2 to argue that there are issues with the calibration of ThT for the measurement of membrane potentials. The authors use a simple Nernstian battery (SNB) model and unfortunately it is wrong when voltage-gated ion channels occur. Huge oscillations occur in the membrane potentials of E. coli that cannot be described by the SNB model. Instead a Hodgkin Huxley model is needed, as shown in our eLife manuscript and multiple other studies (see above). Arrhenius kinetics are assumed in the SNB model for pumping with no real evidence and the generalized workflow involves ripping the flagella off the bacteria! The authors construct an elaborate ‘work flow’ to insure their ThT results can be interpreted using their erroneous SNB model over a limited range of parameters.

      (2) ‘Non-equivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load’, C.J.Lo, et al, Biophysical Journal, 2007, 93, 1, 294.

      An odd de novo chimeric species is developed using an E. coli chassis which uses Na+ instead of H+ for the motility of its flagellar motor. It is not clear the relevance to wild type E. coli, due to the massive physiological perturbations involved. A SNB model is using to fit the data over a very limited parameter range with all the concomitant errors.

      (3) Single-cell bacterial electrophysiology reveals mechanisms of stress-induced damage’, E.Krasnopeeva, et al, Biophysical Journal, 2019, 116, 2390.

      The abstract says ‘PMF defines the physiological state of the cell’. This statement is hyperbolic. An extremely wide range of molecules contribute to the physiological state of a cell. PMF does not even define the electrophysiology of the cell e.g. via the membrane potential. There are 0.2 M of K+ compared with 0.0000001 M of H+ in E. coli, so K+ is arguably a million times more important for the membrane potential than H+ and thus the electrophysiology!

      Equation (1) in the manuscript assumes no other ions are exchanged during the experiments other than H+. This is a very bad approximation when voltage-gated potassium ion channels move the majority ion (K+) around!

      In our model Figure 4A is better explained by depolarisation due to K+ channels closing than direct irreversible photodamage. Why does the THT fluorescence increase again for the second hyperpolarization event if the THT is supposed to be damaged? It does not make sense.

      (4) ‘The proton motive force determines E. coli robustness to extracellular pH’, G.Terradot et al, 2024, preprint.

      This article expounds the SNB model once more. It still ignores the voltage-gated ion channels. Furthermore, it ignores the effect of the dominant ion in E. coli, K+. The manuscript is incorrect as a result and I would not recommend publication. In general, an important problem is being researched i.e. how the membrane potential of E. coli is related to motility, but there are serious flaws in the SNB approach and the experimental methodology appears tenuous.

      Answers to specific questions raised by the referees

      Reviewer #1 (Public Review):

      Summary: Cell-to-cell communication is essential for higher functions in bacterial biofilms. Electrical signals have proven effective in transmitting signals across biofilms. These signals are then used to coordinate cellular metabolisms or to increase antibiotic tolerance. Here, the authors have reported for the first time coordinated oscillation of membrane potential in E. coli biofilms that may have a functional role in photoprotection.

      Strengths:

      • The authors report original data.

      • For the first time, they showed that coordinated oscillations in membrane potential occur in E. Coli biofilms.

      • The authors revealed a complex two-phase dynamic involving distinct molecular response mechanisms.

      • The authors developed two rigorous models inspired by 1) Hodgkin-Huxley model for the temporal dynamics of membrane potential and 2) Fire-Diffuse-Fire model for the propagation of the electric signal.

      • Since its discovery by comparative genomics, the Kch ion channel has not been associated with any specific phenotype in E. coli. Here, the authors proposed a functional role for the putative K+ Kch channel : enhancing survival under photo-toxic conditions.

      We thank the referee for their positive evaluations and agree with these statements.

      Weaknesses:

      • Since the flow of fresh medium is stopped at the beginning of the acquisition, environmental parameters such as pH and RedOx potential are likely to vary significantly during the experiment. It is therefore important to exclude the contributions of these variations to ensure that the electrical response is only induced by light stimulation. Unfortunately, no control experiments were carried out to address this issue.

      The electrical responses occur almost instantaneously when the stimulation with blue light begins i.e. it is too fast to be a build of pH. We are not sure what the referee means by Redox potential since it is an attribute of all chemicals that are able to donate/receive electrons. The electrical response to stress appears to be caused by ROS, since when ROS scavengers are added the electrical response is removed i.e. pH plays a very small minority role if any.

      • Furthermore, the control parameter of the experiment (light stimulation) is the same as that used to measure the electrical response, i.e. through fluorescence excitation. The use of the PROPS system could solve this problem.

      We were enthusiastic at the start of the project to use the PROPs system in E. coli as presented by J.M.Krajl et al, ‘Electrical spiking in E. coli probed with a fluorescent voltage-indicating protein’, Science, 2011, 333, 6040, 345. However, the people we contacted in the microbiology community said that it had some technical issues and there have been no subsequent studies using PROPs in bacteria after the initial promising study. The fluorescent protein system recently presented in PNAS seems more promising, ‘Sensitive bacterial Vm sensors revealed the excitability of bacterial Vm and its role in antibiotic tolerance’, X.Jin et al, PNAS, 120, 3, e2208348120.

      Electrical signal propagation is an important aspect of the manuscript. However, a detailed >quantitative analysis of the spatial dynamics within the biofilm is lacking. In addition, it is unclear if the electrical signal propagates within the biofilm during the second peak regime, which is mediated by the Kch channel. This is an important question, given that the fire-diffuse-fire model is presented with emphasis on the role of K+ ions.

      We have presented a more detailed account of the electrical wavefront modelling work and it is currently under review in a physical journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      • Since deletion of the kch gene inhibits the long-term electrical response to light stimulation (regime II), the authors concluded that K+ ions play a role in the habituation response. However, Kch is a putative K+ ion channel. The use of specific drugs could help to clarify the role of K+ ions.

      Our recent electrical impedance spectroscopy publication provides further evidence that Kch is associated with large changes in conductivity as expected for a voltage-gated ion channel (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      • The manuscript as such does not allow us to properly conclude on the photo-protective role of the Kch ion channel.

      That Kch has a photoprotective role is our current working hypothesis. The hypothesis fits with the data, but we are not saying we have proven it beyond all possible doubt.

      • The link between membrane potential dynamics and mechanosensitivity is not captured in the equation for the Q-channel opening dynamics in the Hodgkin-Huxley model (Supp Eq 2).

      Our model is agnostic with respect to the mechanosensitivity of the ion channels, although we deduce that mechanosensitive ion channels contribute to ion channel Q.

      • Given the large number of parameters used in the models, it is hard to distinguish between prediction and fitting.

      This is always an issue with electrophysiological modelling (compared with most heart and brain modelling studies we are very conservative in the choice of parameters for the bacteria). In terms of predicting the different phenomena observed, we believe the model is very successful.

      Reviewer #2 (Public Review):

      Summary of what the authors were trying to achieve:

      The authors thought they studied membrane potential dynamics in E.coli biofilms. They thought so because they were unaware that the dye they used to report that membrane potential in E.coli, has been previously shown not to report it. Because of this, the interpretation of the authors' results is not accurate.

      We believe the Pilizota work is scientifically flawed.

      Major strengths and weaknesses of the methods and results:

      The strength of this work is that all the data is presented clearly, and accurately, as far as I can tell.

      The major critical weakness of this paper is the use of ThT dye as a membrane potential dye in E.coli. The work is unaware of a publication from 2020 https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] that demonstrates that ThT is not a membrane potential dye in E. coli. Therefore I think the results of this paper are misinterpreted. The same publication I reference above presents a protocol on how to carefully calibrate any candidate membrane potential dye in any given condition.

      We are aware of this study, but believe it to be scientifically flawed. We do not cite the article because we do not think it is a particularly useful contribution to the literature.

      I now go over each results section in the manuscript.

      Result section 1: Blue light triggers electrical spiking in single E. coli cells

      I do not think the title of the result section is correct for the following reasons. The above-referenced work demonstrates the loading profile one should expect from a Nernstian dye (Figure 1). It also demonstrates that ThT does not show that profile and explains why is this so. ThT only permeates the membrane under light exposure (Figure 5). This finding is consistent with blue light peroxidising the membrane (see also following work Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] on light-induced damage to the electrochemical gradient of protons-I am sure there are more references for this).

      The Pilizota group invokes some elaborate artefacts to explain the lack of agreement with a simple Nernstian battery model. The model is incorrect not the fluorophore.

      Please note that the loading profile (only observed under light) in the current manuscript in Figure 1B as well as in the video S1 is identical to that in Figure 3 from the above-referenced paper (i.e. https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com]), and corresponding videos S3 and S4. This kind of profile is exactly what one would expect theoretically if the light is simultaneously lowering the membrane potential as the ThT is equilibrating, see Figure S12 of that previous work. There, it is also demonstrated by the means of monitoring the speed of bacterial flagellar motor that the electrochemical gradient of protons is being lowered by the light. The authors state that applying the blue light for different time periods and over different time scales did not change the peak profile. This is expected if the light is lowering the electrochemical gradient of protons. But, in Figure S1, it is clear that it affected the timing of the peak, which is again expected, because the light affects the timing of the decay, and thus of the decay profile of the electrochemical gradient of protons (Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com]).

      We think the proton effect is a million times weaker than that due to potasium i.e. 0.2 M K+ versus 10-7 M H+. We can comfortably neglect the influx of H+ in our experiments.

      If find Figure S1D interesting. There authors load TMRM, which is a membrane voltage dye that has been used extensively (as far as I am aware this is the first reference for that and it has not been cited https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914430 [ncbi.nlm.nih.gov]/). As visible from the last TMRM reference I give, TMRM will only load the cells in Potassium Phosphate buffer with NaCl (and often we used EDTA to permeabilise the membrane). It is not fully clear (to me) whether here TMRM was prepared in rich media (it explicitly says so for ThT in Methods but not for TMRM), but it seems so. If this is the case, it likely also loads because of the damage to the membrane done with light, and therefore I am not surprised that the profiles are similar.

      The vast majority of cells continue to be viable. We do not think membrane damage is dominating.

      The authors then use CCCP. First, a small correction, as the authors state that it quenches membrane potential. CCCP is a protonophore (https://pubmed.ncbi.nlm.nih.gov/4962086 [pubmed.ncbi.nlm.nih.gov]/), so it collapses electrochemical gradient of protons. This means that it is possible, and this will depend on the type of pumps present in the cell, that CCCP collapses electrochemical gradient of protons, but the membrane potential is equal and opposite in sign to the DeltapH. So using CCCP does not automatically mean membrane potential will collapse (e.g. in some mammalian cells it does not need to be the case, but in E.coli it is https://www.biorxiv.org/content/10.1101/2021.11.19.469321v2 [biorxiv.org]). CCCP has also been recently found to be a substrate for TolC (https://journals.asm.org/doi/10.1128/mbio.00676-21 [journals.asm.org]), but at the concentrations the authors are using CCCP (100uM) that should not affect the results. However, the authors then state because they observed, in Figure S1E, a fast efflux of ions in all cells and no spiking dynamics this confirms that observed dynamics are membrane potential related. I do not agree that it does. First, Figure S1E, does not appear to show transients, instead, it is visible that after 50min treatment with 100uM CCCP, ThT dye shows no dynamics. The action of a Nernstian dye is defined. It is not sufficient that a charged molecule is affected in some way by electrical potential, this needs to be in a very specific way to be a Nernstian dye. Part of the profile of ThT loading observed in https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] is membrane potential related, but not in a way that is characteristic of Nernstian dye.

      Our understanding of the literature is CCCP poisons the whole metabolism of the bacterial cells. The ATP driven K+ channels will stop functioning and this is the dominant contributor to membrane potential.

      Result section 2: Membrane potential dynamics depend on the intercellular distance

      In this chapter, the authors report that the time to reach the first intensity peak during ThT loading is different when cells are in microclusters. They interpret this as electrical signalling in clusters because the peak is reached faster in microclusters (as opposed to slower because intuitively in these clusters cells could be shielded from light). However, shielding is one possibility. The other is that the membrane has changed in composition and/or the effective light power the cells can tolerate (with mechanisms to handle light-induced damage, some of which authors mention later in the paper) is lower. Given that these cells were left in a microfluidic chamber for 2h hours to attach in growth media according to Methods, there is sufficient time for that to happen. In Figure S12 C and D of that same paper from my group (https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com]) one can see the effects of peak intensity and timing of the peak on the permeability of the membrane. Therefore I do not think the distance is the explanation for what authors observe.

      Shielding would provide the reverse effect, since hyperpolarization begins in the dense centres of the biofilms. For the initial 2 hours the cells receive negligible blue light. Neither of the referee’s comments thus seem tenable.

      Result section 3: Emergence of synchronized global wavefronts in E. coli biofilms

      In this section, the authors exposed a mature biofilm to blue light. They observe that the intensity peak is reached faster in the cells in the middle. They interpret this as the ion-channel-mediated wavefronts moved from the center of the biofilm. As above, cells in the middle can have different membrane permeability to those at the periphery, and probably even more importantly, there is no light profile shown anywhere in SI/Methods. I could be wrong, but the SI3 A profile is consistent with a potential Gaussian beam profile visible in the field of view. In Methods, I find the light source for the blue light and the type of microscope but no comments on how 'flat' the illumination is across their field of view. This is critical to assess what they are observing in this result section. I do find it interesting that the ThT intensity collapsed from the edges of the biofilms. In the publication I mentioned https://www.sciencedirect.com/science/article/pii/S0006349519308793#app2 [sciencedirect.com], the collapse of fluorescence was not understood (other than it is not membrane potential related). It was observed in Figure 5A, C, and F, that at the point of peak, electrochemical gradient of protons is already collapsed, and that at the point of peak cell expands and cytoplasmic content leaks out. This means that this part of the ThT curve is not membrane potential related. The authors see that after the first peak collapsed there is a period of time where ThT does not stain the cells and then it starts again. If after the first peak the cellular content leaks, as we have observed, then staining that occurs much later could be simply staining of cytoplasmic positively charged content, and the timing of that depends on the dynamics of cytoplasmic content leakage (we observed this to be happening over 2h in individual cells). ThT is also a non-specific amyloid dye, and in starving E. coli cells formation of protein clusters has been observed (https://pubmed.ncbi.nlm.nih.gov/30472191 [pubmed.ncbi.nlm.nih.gov]/), so such cytoplasmic staining seems possible.

      It is very easy to see if the illumination is flat (Köhler illumination) by comparing the intensity of background pixels on the detector. It was flat in our case. Protons have little to do with our work for reasons highlighted before. Differential membrane permittivity is a speculative phenomenon not well supported by any evidence and with no clear molecular mechanism.

      Finally, I note that authors observe biofilms of different shapes and sizes and state that they observe similar intensity profiles, which could mean that my comment on 'flatness' of the field of view above is not a concern. However, the scale bar in Figure 2A is not legible, so I can't compare it to the variation of sizes of the biofilms in Figure 2C (67 to 280um). Based on this, I think that the illumination profile is still a concern.

      The referee now contradicts themselves and wants a scale bar to be more visible. We have changed the scale bar.

      Result section 4: Voltage-gated Kch potassium channels mediate ion-channel electrical oscillations in E. coli

      First I note at this point, given that I disagree that the data presented thus 'suggest that E. coli biofilms use electrical signaling to coordinate long-range responses to light stress' as the authors state, it gets harder to comment on the rest of the results.

      In this result section the authors look at the effect of Kch, a putative voltage-gated potassium channel, on ThT profile in E. coli cells. And they see a difference. It is worth noting that in the publication https://www.sciencedirect.com/science/article/pii/S0006349519308793 [sciencedirect.com] it is found that ThT is also likely a substrate for TolC (Figure 4), but that scenario could not be distinguished from the one where TolC mutant has a different membrane permeability (and there is a publication that suggests the latter is happening https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2010.07245.x [onlinelibrary.wiley.com]). Given this, it is also possible that Kch deletion affects the membrane permeability. I do note that in video S4 I seem to see more of, what appear to be, plasmolysed cells. The authors do not see the ThT intensity with this mutant that appears long after the initial peak has disappeared, as they see in WT. It is not clear how long they waited for this, as from Figure S3C it could simply be that the dynamics of this is a lot slower, e.g. Kch deletion changes membrane permeability.

      The work that TolC provides a possible passive pathway for ThT to leave cells seems slightly niche. It just demonstrates another mechanism for the cells to equilibriate the concentrations of ThT in a Nernstian manner i.e. driven by the membrane voltage.

      The authors themselves state that the evidence for Kch being a voltage-gated channel is indirect (line 54). I do not think there is a need to claim function from a ThT profile of E. coli mutants (nor do I believe it's good practice), given how accurate single-channel recordings are currently. To know the exact dependency on the membrane potential, ion channel recordings on this protein are needed first.

      We have good evidence form electrical impedance spectroscopy experiments that Kch increases the conductivity of biofilms (https://pubs.acs.org/doi/10.1021/acs.nanolett.3c04446, 'Electrical impedance spectroscopy with bacterial biofilms: neuronal-like behavior', E.Akabuogu et al, ACS Nanoletters, 2024, in print.

      Result section 5: Blue light influences ion-channel mediated membrane potential events in E. coli

      In this chapter the authors vary the light intensity and stain the cells with PI (this dye gets into the cells when the membrane becomes very permeable), and the extracellular environment with K+ dye (I have not yet worked carefully with this dye). They find that different amounts of light influence ThT dynamics. This is in line with previous literature (both papers I have been mentioning: Figure 4 https://www.sciencedirect.com/science/article/pii/S0006349519303923 [sciencedirect.com] and https://ars.els-cdn.com/content/image/1-s2.0-S0006349519308793-mmc6.pdf [ars.els-cdn.com] especially SI12), but does not add anything new. I think the results presented here can be explained with previously published theory and do not indicate that the ion-channel mediated membrane potential dynamics is a light stress relief process.

      The simple Nernstian battery model proposed by Pilizota et al is erroneous in our opinion for reasons outlined above. We believe it will prove to be a dead end for bacterial electrophysiology studies.

      Result section 6: Development of a Hodgkin-Huxley model for the observed membrane potential dynamics

      This results section starts with the authors stating: 'our data provide evidence that E. coli manages light stress through well-controlled modulation of its membrane potential dynamics'. As stated above, I think they are instead observing the process of ThT loading while the light is damaging the membrane and thus simultaneously collapsing the electrochemical gradient of protons. As stated above, this has been modelled before. And then, they observe a ThT staining that is independent from membrane potential.

      This is an erroneous niche opinion. Protons have little say in the membrane potential since there are so few of them. The membrane potential is mostly determined by K+.

      I will briefly comment on the Hodgkin Huxley (HH) based model. First, I think there is no evidence for two channels with different activation profiles as authors propose. But also, the HH model has been developed for neurons. There, the leakage and the pumping fluxes are both described by a constant representing conductivity, times the difference between the membrane potential and Nernst potential for the given ion. The conductivity in the model is given as gKn^4 for potassium, gNam^3*h sodium, and gL for leakage, where gK, gNa and gL were measured experimentally for neurons. And, n, m, and h are variables that describe the experimentally observed voltage-gated mechanism of neuronal sodium and potassium channels. (Please see Hodgkin AL, Huxley AF. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449-72 and Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500-44).

      In the 70 years since Hodgkin and Huxley first presented their model, a huge number of similar models have been proposed to describe cellular electrophysiology. We are not being hyperbolic when we state that the HH models for excitable cells are like the Schrödinger equation for molecules. We carefully adapted our HH model to reflect the currently understood electrophysiology of E. coli.

      Thus, in applying the model to describe bacterial electrophysiology one should ensure near equilibrium requirement holds (so that (V-VQ) etc terms in authors' equation Figure 5 B hold), and potassium and other channels in a given bacterium have similar gating properties to those found in neurons. I am not aware of such measurements in any bacteria, and therefore think the pump leak model of the electrophysiology of bacteria needs to start with fluxes that are more general (for example Keener JP, Sneyd J. 2009. Mathematical physiology: I: Cellular physiology. New York: Springer or https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000144 [journals.plos.org])

      The reference is to a slightly more modern version of a simple Nernstian battery model. The model will not oscillate and thus will not help modelling membrane potentials in bacteria. We are unsure where the equilibrium requirement comes from (inadequate modelling of the dynamics?)

      Result section 7: Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli.

      The results that Mcs channels affect the profile of ThT dye are interesting. It is again possible that the membrane permeability of these mutants has changed and therefore the dynamics have changed, so this needs to be checked first. I also note that our results show that the peak of ThT coincides with cell expansion. For this to be understood a model is needed that also takes into account the link between maintenance of electrochemical gradients of ions in the cell and osmotic pressure.

      The evidence for permeability changes in the membranes seems to be tenuous.

      A side note is that the authors state that the Msc responds to stress-related voltage changes. I think this is an overstatement. Mscs respond to predominantly membrane tension and are mostly nonspecific (see how their action recovers cellular volume in this publication https://www.pnas.org/doi/full/10.1073/pnas.1522185113 [pnas.org]). Authors cite references 35-39 to support this statement. These publications still state that these channels are predominantly membrane tension-gated. Some of the references state that the presence of external ions is important for tension-related gating but sometimes they gate spontaneously in the presence of certain ions. Other publications cited don't really look at gating with respect to ions (39 is on clustering). This is why I think the statement is somewhat misleading.

      We have reworded the discussion of Mscs since the literature appears to be ambiguous. We will try to run some electrical impedance spectroscopy experiments on the Msc mutants in the future to attempt to remove the ambiguity.

      Result section 8: Anomalous ion-channel-mediated wavefronts propagate light stress signals in 3D E. coli biofilms.

      I am not commenting on this result section, as it would only be applicable if ThT was membrane potential dye in E. coli.

      Ok, but we disagree on the use of ThT.

      Aims achieved/results support their conclusions:

      The authors clearly present their data. I am convinced that they have accurately presented everything they observed. However, I think their interpretation of the data and conclusions is inaccurate in line with the discussion I provided above.

      Likely impact of the work on the field, and the utility of the methods and data to the community:

      I do not think this publication should be published in its current format. It should be revised in light of the previous literature as discussed in detail above. I believe presenting it in it's current form on eLife pages would create unnecessary confusion.

      We believe many of the Pilizota group articles are scientifically flawed and are causing the confusion in the literature.

      Any other comments:

      I note, that while this work studies E. coli, it references papers in other bacteria using ThT. For example, in lines 35-36 authors state that bacteria (Bacillus subtilis in this case) in biofilms have been recently found to modulate membrane potential citing the relevant literature from 2015. It is worth noting that the most recent paper https://journals.asm.org/doi/10.1128/mbio.02220-23 [journals.asm.org] found that ThT binds to one or more proteins in the spore coat, suggesting that it does not act as a membrane potential in Bacillus spores. It is possible that it still reports membrane potential in Bacillus cells and the recent results are strictly spore-specific, but these should be kept in mind when using ThT with Bacillus.

      ThT was used successfully in previous studies of normal B. subtilis cells (by our own group and A.Prindle, ‘Spatial propagation of electrical signal in circular biofilms’, J.A.Blee et al, Physical Review E, 2019, 100, 052401, J.A.Blee et al, ‘Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light’, Physical Biology, 2020, 17, 2, 036001, A.Prindle et al, ‘Ion channels enable electrical communication in bacterial communities’, Nature, 2015, 527, 59-63). The connection to low metabolism pore research seems speculative.

      Reviewer #3 (Public Review):

      It has recently been demonstrated that bacteria in biofilms show changes in membrane potential in response to changes in their environment, and that these can propagate signals through the biofilm to coordinate bacterial behavior. Akabuogu et al. contribute to this exciting research area with a study of blue light-induced membrane potential dynamics in E. coli biofilms. They demonstrate that Thioflavin-T (ThT) intensity (a proxy for membrane potential) displays multiphasic dynamics in response to blue light treatment. They additionally use genetic manipulations to implicate the potassium channel Kch in the latter part of these dynamics. Mechanosensitive ion channels may also be involved, although these channels seem to have blue light-independent effects on membrane potential as well. In addition, there are challenges to the quantitative interpretation of ThT microscopy data which require consideration. The authors then explore whether these dynamics are involved in signaling at the community level. The authors suggest that cell firing is both more coordinated when cells are clustered and happens in waves in larger, 3D biofilms; however, in both cases evidence for these claims is incomplete. The authors present two simulations to describe the ThT data. The first of these simulations, a Hodgkin-Huxley model, indicates that the data are consistent with the activity of two ion channels with different kinetics; the Kch channel mutant, which ablates a specific portion of the response curve, is consistent with this. The second model is a fire-diffuse-fire model to describe wavefront propagation of membrane potential changes in a 3D biofilm; because the wavefront data are not presented clearly, the results of this model are difficult to interpret. Finally, the authors discuss whether these membrane potential changes could be involved in generating a protective response to blue light exposure; increased death in a Kch ion channel mutant upon blue light exposure suggests that this may be the case, but a no-light control is needed to clarify this.

      In a few instances, the paper is missing key control experiments that are important to the interpretation of the data. This makes it difficult to judge the meaning of some of the presented experiments.

      (1) An additional control for the effects of autofluorescence is very important. The authors conduct an experiment where they treat cells with CCCP and see that Thioflavin-T (ThT) dynamics do not change over the course of the experiment. They suggest that this demonstrates that autofluorescence does not impact their measurements. However, cellular autofluorescence depends on the physiological state of the cell, which is impacted by CCCP treatment. A much simpler and more direct experiment would be to repeat the measurement in the absence of ThT or any other stain. This experiment should be performed both in the wild-type strain and in the ∆kch mutant.

      ThT is a very bright fluorophore (much brighter than a GFP). It is clear from the images of non-stained samples that autofluorescence provides a negligible contribution to the fluorescence intensity in an image.

      (2) The effects of photobleaching should be considered. Of course, the intensity varies a lot over the course of the experiment in a way that photobleaching alone cannot explain. However, photobleaching can still contribute to the kinetics observed. Photobleaching can be assessed by changing the intensity, duration, or frequency of exposure to excitation light during the experiment. Considerations about photobleaching become particularly important when considering the effect of catalase on ThT intensity. The authors find that the decrease in ThT signal after the initial "spike" is attenuated by the addition of catalase; this is what would be predicted by catalase protecting ThT from photobleaching (indeed, catalase can be used to reduce photobleaching in time lapse imaging).

      Photobleaching was negligible over the course of the experiments. We employed techniques such as reducing sample exposure time and using the appropriate light intensity to minimize photobleaching.

      (3) It would be helpful to have a baseline of membrane potential fluctuations in the absence of the proposed stimulus (in this case, blue light). Including traces of membrane potential recorded without light present would help support the claim that these changes in membrane potential represent a blue light-specific stress response, as the authors suggest. Of course, ThT is blue, so if the excitation light for ThT is problematic for this experiment the alternative dye tetramethylrhodamine methyl ester perchlorate (TMRM) can be used instead.

      Unfortunately the fluorescent baseline is too weak to measure cleanly in this experiment. It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal (measurements in the eLife article and new potentiometry measurements).

      (4) The effects of ThT in combination with blue light should be more carefully considered. In mitochondria, a combination of high concentrations of blue light and ThT leads to disruption of the PMF (Skates et al. 2021 BioRXiv), and similarly, ThT treatment enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). If present in this experiment, this effect could confound the interpretation of the PMF dynamics reported in the paper.

      We think the PMF plays a minority role in determining the membrane potential in E. coli. For reasons outlined before (H+ is a minority ion in E. coli compared with K+).

      (5) Figures 4D - E indicate that a ∆kch mutant has increased propidium iodide (PI) staining in the presence of blue light; this is interpreted to mean that Kch-mediated membrane potential dynamics help protect cells from blue light. However, Live/Dead staining results in these strains in the absence of blue light are not reported. This means that the possibility that the ∆kch mutant has a general decrease in survival (independent of any effects of blue light) cannot be ruled out.

      Both strains of bacterial has similar growth curve and also engaged in membrane potential dynamics for the duration of the experiment. We were interested in bacterial cells that observed membrane potential dynamics in the presence of the stress. Bacterial cells need to be alive to engage in membrane potential dynamics (hyperpolarize) under stress conditions. Cells that engaged in membrane potential dynamics and later stained red were only counted after the entire duration. We believe that the wildtype handles the light stress better than the ∆kch mutant as measured with the PI.

      (6) Additionally in Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3AB), this complicates the interpretation of this experiment.

      Kirchhoff & Cypionka 2017 J Microbial Methods, using fluorescence microscopy, suggested that changes in membrane potential dynamics can introduce experimental bias when propidium iodide is used to confirm the viability of tge bacterial strains, B subtilis (DSM-10) and Dinoroseobacter shibae, that are starved of oxygen (via N2 gassing) for 2 hours. They attempted to support their findings by using CCCP in stopping the membrane potential dynamics (but never showed any pictoral or plotted data for this confirmatory experiment). In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia. We believe that the accumulation of PI in ∆kch mutant is not due to high membrane potential dynamics but is attributed to the PI, unbiasedly showing damaged/dead cells. We think that propidium iodide is good for this experiment. Propidium iodide is a dye that is extensively used in life sciences. PI has also been used in the study of bacterial electrophysiology (https://pubmed.ncbi.nlm.nih.gov/32343961/, ) and no membrane potential related bias was reported.

      Throughout the paper, many ThT intensity traces are compared, and described as "similar" or "dissimilar", without detailed discussion or a clear standard for comparison. For example, the two membrane potential curves in Fig. S1C are described as "similar" although they have very different shapes, whereas the curves in Fig. 1B and 1D are discussed in terms of their differences although they are evidently much more similar to one another. Without metrics or statistics to compare these curves, it is hard to interpret these claims. These comparative interpretations are additionally challenging because many of the figures in which average trace data are presented do not indicate standard deviation.

      Comparison of small changes in the absolute intensities is problematic in such fluorescence experiments. We mean the shape of the traces is similar and they can be modelled using a HH model with similar parameters.

      The differences between the TMRM and ThT curves that the authors show in Fig. S1C warrant further consideration. Some of the key features of the response in the ThT curve (on which much of the modeling work in the paper relies) are not very apparent in the TMRM data. It is not obvious to me which of these traces will be more representative of the actual underlying membrane potential dynamics.

      In our experiment, TMRM was used to confirm the dynamics observed using ThT. However, ThT appear to be more photostable than TMRM (especially towars the 2nd peak). The most interesting observation is that with both dyes, all phases of the membrane potential dynamics were conspicuous (the first peak, the quiescent period and the second peak). The time periods for these three episodes were also similar.

      A key claim in this paper (that dynamics of firing differ depending on whether cells are alone or in a colony) is underpinned by "time-to-first peak" analysis, but there are some challenges in interpreting these results. The authors report an average time-to-first peak of 7.34 min for the data in Figure 1B, but the average curve in Figure 1B peaks earlier than this. In Figure 1E, it appears that there are a handful of outliers in the "sparse cell" condition that likely explain this discrepancy. Either an outlier analysis should be done and the mean recomputed accordingly, or a more outlier-robust method like the median should be used instead. Then, a statistical comparison of these results will indicate whether there is a significant difference between them.

      The key point is the comparison of standard errors on the standard deviation.

      In two different 3D biofilm experiments, the authors report the propagation of wavefronts of membrane potential; I am unable to discern these wavefronts in the imaging data, and they are not clearly demonstrated by analysis.

      The first data set is presented in Figures 2A, 2B, and Video S3. The images and video are very difficult to interpret because of how the images have been scaled: the center of the biofilm is highly saturated, and the zero value has also been set too high to consistently observe the single cells surrounding the biofilm. With the images scaled this way, it is very difficult to assess dynamics. The time stamps in Video S3 and on the panels in Figure 2A also do not correspond to one another although the same biofilm is shown (and the time course in 2B is also different from what is indicated in 2B). In either case, it appears that the center of the biofilm is consistently brighter than the edges, and the intensity of all cells in the biofilm increases in tandem; by eye, propagating wavefronts (either directed toward the edge or the center) are not evident to me. Increased brightness at the center of the biofilm could be explained by increased cell thickness there (as is typical in this type of biofilm). From the image legend, it is not clear whether the image presented is a single confocal slice or a projection. Even if this is a single confocal slice, in both Video S3 and Figure 2A there are regions of "haze" from out-of-focus light evident, suggesting that light from other focal planes is nonetheless present. This seems to me to be a simpler explanation for the fluorescence dynamics observed in this experiment: cells are all following the same trajectory that corresponds to that seen for single cells, and the center is brighter because of increased biofilm thickness.

      We appreciate the reviewer for this important observation. We have made changes to the figures to address this confusion. The cell cover has no influence on the observed membrane potential dynamics. The entire biofilm was exposed to the same blue light at each time. Therefore all parts of the biofilm received equal amounts of the blue light intensity. The membrane potential dynamics was not influenced by cell density (see Fig 2C).

      The second data set is presented in Video S6B; I am similarly unable to see any wave propagation in this video. I observe only a consistent decrease in fluorescence intensity throughout the experiment that is spatially uniform (except for the bright, dynamic cells near the top; these presumably represent cells that are floating in the microfluidic and have newly arrived to the imaging region).

      A visual inspection of Video S6B shows a fast rise, a decrease in fluorescence and a second rise (supplementary figure 4B). The data for the fluorescence was carefully obtained using the imaris software. We created a curved geometry on each slice of the confocal stack. We analyzed the surfaces of this curved plane along the z-axis. This was carried out in imaris.

      3D imaging data can be difficult to interpret by eye, so it would perhaps be more helpful to demonstrate these propagating wavefronts by analysis; however, such analysis is not presented in a clear way. The legend in Figure 2B mentions a "wavefront trace", but there is no position information included - this trace instead seems to represent the average intensity trace of all cells. To demonstrate the propagation of a wavefront, this analysis should be shown for different subpopulations of cells at different positions from the center of the biofilm. Data is shown in Figure 8 that reflects the velocity of the wavefront as a function of biofilm position; however, because the wavefronts themselves are not evident in the data, it is difficult to interpret this analysis. The methods section additionally does not contain sufficient information about what these velocities represent and how they are calculated. Because of this, it is difficult for me to evaluate the section of the paper pertaining to wave propagation and the predicted biofilm critical size.

      The analysis is considered in more detail in a more expansive modelling article, currently under peer review in a physics journal, ‘Electrical signalling in three dimensional bacterial biofilms using an agent based fire-diffuse-fire model’, V.Martorelli, et al, 2024 https://www.biorxiv.org/content/10.1101/2023.11.17.567515v1

      There are some instances in the paper where claims are made that do not have data shown or are not evident in the cited data:

      (1) In the first results section, "When CCCP was added, we observed a fast efflux of ions in all cells"- the data figure pertaining to this experiment is in Fig. S1E, which does not show any ion efflux. The methods section does not mention how ion efflux was measured during CCCP treatment.

      We have worded this differently to properly convey our results.

      (2) In the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, it's hard to distinguish these fluctuations from measurement noise; a no-light control could help clarify this.

      The calcium transients observed were not due to noise or artefacts.

      (3) The authors state that the membrane potential dynamics simulated in Figure 7B are similar to those observed in 3D biofilms in Fig. S4B; however, the second peak is not clearly evident in Fig. S4B and it looks very different for the mature biofilm data reported in Fig. 2. I have some additional confusion about this data specifically: in the intensity trace shown in Fig. S4B, the intensity in the second frame is much higher than the first; this is not evident in Video S6B, in which the highest intensity is in the first frame at time 0. Similarly, the graph indicates that the intensity at 60 minutes is higher than the intensity at 4 minutes, but this is not the case in Fig. S4A or Video S6B.

      The confusion stated here has now been addressed. Also it should be noted that while Fig 2.1 was obtained with LED light source, Fig S4A was obtained using a laser light source. While obtaining the confocal images (for Fig S4A ), the light intensity was controlled to further minimize photobleaching. Most importantly, there is an evidence of slow rise to the 2nd peak in Fig S4B. The first peak, quiescence and slow rise to second peak are evident.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      (1) Fig. 3C needs the "still" for the movie of control C. owczarzaki (in Movie S1).

      We have now added a WT control in this figure panel.

      (2) The elongated cell shape is seen infrequently in control cells, and I wonder whether these events are transient inactivation of coHpo or coWts in these cells. Perhaps the authors could comment on this in the discussion.

      This is an interesting possibility and we have now included it in our discussion (Lines 401403).

      (3) Does C. owczarzaki normally aggregate or this is a lab-specific phenotype? For example, the slime mold Dictyostelium discoideum forms aggregates during its life cycle. Could some additional information about C. owczarzaki be added to the introduction?

      Unfortunately little is known about Capsaspora “in the wild”, as it was isolated as an endosymbiont from a laboratory strain of snails. However, some related filasterians isolated from natural environments also show aggregatve ability, indicating that aggregation is in fact a physiological process in this group of organisms. We have updated our introduction to include this fact (Line 78-80).

      Reviewer #2 (Recommendations For The Authors):

      The studies on Hippo signalling in Capsaspora are currently limited to genetic experiments and analysis of Yki/YAP localisation. Biochemical evidence that Co Wts phosphorylates Co Yki/YAP on a conserved serine residue(s) would give important further evidence that this essential signalling step in the animal Hippo pathway is conserved in Capsaspora. However, such experiments require antibodies that detect specific phosphorylation events, which might not be available at present. Is mass spectrometry of the phospho-proteome a potential approach that could be employed to investigate this? The benefit of this approach is it would give information on other Hippo pathway proteins and could be used to probe signalling events under different culture conditions (e.g., aggregate, non-aggregate).

      In response to this recommendation, we attempted to detect Phospho-coWts and PhosphocoHpo using commercial antibodies against mammalian their homologs, in the hope of cross-species reactivity. However, we could not detect a signal by Western blot. Thus better reagents or refinement of techniques beyond the scope of this article may be required to examine the phosphorylation of these Capsaspora proteins. There was a published report of Capsaspora phosphoproteome analysis (Sebe Pedros et al., 2016 Dev Cell), although phosphorylation of the conserved sites on coYki, coWts, and coHpo was not reported in this analysis, suggesting more targeted approaches may be needed to examine phosphorylation of these core Hippo pathway components.

      The following statement that Wts LOF is stronger than Hpo LOF Capsaspora is consistent with overgrowth phenotypes in flies and mammals:

      "Interestingly, we found that coWts-/- cells were significantly more likely to show nuclear mScarlet-coYki localization than coHpo-/- cells (Figure 1D), which is consistent with Hpo/MST independent activity of Wts/LATS previously reported in Drosophila and mammals (Zheng et al., 2015)."

      However, the following statement describes a stronger phenotype in Hpo LOF Capsaspora than Wts LOF:

      "As contractile cells in the coHpo mutant background tended to show a more extreme elongated morphology than the coWts mutant, we focused on the coHpo mutant for further analysis."

      Does this mean that Hpo can regulate actomyosin contractility in both Wts/Yki-dependent and independent manners? A genetic experiment, similar to those that have been performed in Drosophila and mammals could help to address this, e.g., what is the phenotype of Hpo, Yki Capsaspora and Wts, Yki double mutant Capsaspora? Do they phenocopy Yki LOF Capsaspora and are the actomyosin phenotypes associated with Hpo and Wts mutant Capsaspora completely or partially suppressed? The authors indicate that generation of double mutant Capsaspora is not technically possible at present, however.

      Indeed given available techniques the generation of such double mutants is not currently possible. With this phenotype (aberrant cytoskeletal dynamics), it is hard to say what a “stronger” phenotype is, and which mutant has the “stronger” phenotype. We have edited this statement to try and reflect this point (Line 208-209).

      Another outstanding question is whether the Hpo/Wts/Yki-related actomyosin phenotypes are linked to regulation of transcription by Yki, or are regulated non-transcriptionally. Indeed, a non-transcriptional role for Drosophila Yki in promoting actomyosin contractility has been reported (Fehon lab, Dev Cell, 2018). Generation of Scalloped/TEAD mutant Capsaspora would allow this question to be investigated. Alternatively, this could be explored using variant Co Yki transgenes, e.g., one a Co Yki transgene does not form a physical complex with Co Sd/TEAD and a Co Yki transgene that is targeted to the cell cortex.

      To address this point, we tested whether a conserved amino acid residue in coYki (F123) that is required for transcriptional activity of human YAP (in this case, F95) is required for the phenotypic effects of the coYki 4SA mutant. We found that, in contrast to expression of coYki 4SA, expression of a coYki 4SA F123A mutant showed no effect on cell or aggregate morphology. These new results, which support a requirement for transcriptional activity for coYki function, have now been added to Figure 7.

      Reviewer #3 (Recommendations For The Authors):

      Repetition from previous publication:

      (1) ej: last sentences of the abstract in both works: From Phillips et al. eLife 2022;0:e77598: "Taken together, these findings implicate an ancestral role for the Hippo pathway in cytoskeletal dynamics and multicellular morphogenesis predating the origin of animal multicellularity, which was co-opted during evolution to regulate cell proliferation".

      From this manuscript: "Together, these results implicate cytoskeletal regulation but not proliferation as an ancestral function of the Hippo pathway and uncover a novel role for Hippo signaling in regulating cell density in a proliferation-independent manner "

      Our two papers deal with different components of the Hippo pathway: Yorkie/YAP/coYki in Phillips et al. eLife 2022;0:e77598 and upstream kinases in the current paper. The fact that perturbing different components of the pathway leads to similar conclusions actually strengthens the overall conclusion. Nevertheless, to be more clear about the novelty of the current manuscript, we have now changed the current text from “Hippo pathway” to “Hippo kinase cascade”, to emphasize that the current analysis deals with kinases upstream of Yorkie/YAP/coYki (Lines 35, 368-371).

      (2) The authors claim that the change in localization of coYki in Hpo -/- and Wts -/- , being now able to enter the nucleus, is the demonstration that the nuclear regulation of Yki by the Hippo pathway is ancestral to animals. Nevertheless, the authors had already made this claim in their publication of eLife 2022, when they made a mutant version of Yki with the four conserved phosphorylation sites (Sebé-Padrós 2012) mutated. Figure 5 A to F in Phillips et al. eLife 2022;0:e77598. In their words "This regulation of coYki nuclear localization, along with the previous finding that coYki can induce the expression of Hippo pathway genes when expressed in Drosophila (Sebé-Pedrós et al., 2012), suggests that the function of coYki has a transcriptional regulator and Hippo pathway effector is conserved between Capsaspora and animals. ".

      I understand that the localization of Yki in the coHpo-/- and coWts-/- is needed as part of final proof that Hpo and Wts are the kinases that control Yki phosphorylation in C. owczarzaki, but does not constitute a completely new message and should be written like that. Figure 1C of the actual manuscript drives to the same conclusion as Figure 5 A to F in Phillips et al. eLife 2022;0:e77598

      We think that demonstrating that Hippo and Warts orthologs specifically are responsible for regulation of coYki localization is a very important finding: Many unicellular organisms encode Hippo, Warts, and/or Yorkie’s transcriptional factor partner Sd, but not Yorkie. Our understanding is that in these earlier-branching unicellular organisms, the Hippo/Warts kinase module and Sd-like proteins functioned in distinct signaling modules. Thus Yorkie has the interesting property of “fusing” these two distinct signaling modules when it emerged. In this framework, it is interesting to show that this “fusion” occurred in Capsaspora, the most distant known relative of animals with a Yorkie ortholog, indicating that this “fusion” event is very ancient. Although fleshing out of this idea is beyond the scope of this manuscript and we plan to write about it elsewhere, we have modified our discussion to point out the importance that Hippo and Warts specifically are upstream regulators of coYki.

      In Drosophila among the genes transcriptionally regulated by Yki, are the positive regulators of the Hippo pathway in order to down regulate the Yki production.

      (1) The authors don't explain if these upstream regulators of the Hippo pathway are conserved in C. owczarzaki.

      We have now indicated the conservation of some upstream Hippo pathway components (Line 69-71).

      (2) Also it would be important to know how much coYki is being active in the C. owczarzaki in the mutant lines of coHpo-/- and coWts-/- in respect to wt and also in respect to coYki 4SA, and how this is impacting the transcription and protein production of down stream genes of coYki. I think some transcriptional and proteomic data would be informative. At least for those genes related with cytoskeleton.

      We have now performed RNA-seq on the coHpo and coWts mutants to address the concerns above (See Figure 8 and the final section of Results).

      Related with the above. Among the downstream targets of coYki, the authors mentioned in their previous work (Phillips et al. eLife 2022;0:e77598) that B-integrins were up regulated in coYki -/- suggesting that B-integrins could be behind the stronger cell-substrate attachment observed in the coYki-/- mutant. It would be important to investigate if the integrin adhesome is now down regulated and how previous and new results are related to the stronger cellsubstrate attachment in the coHpo-/- and coWts-/- lines. It would be important that previous results on coYki-/-, a mutant line of the same pathway, are discussed in these two new mutant contexts.

      Two Capsaspora integrin beta genes were previously found to be upregulated in the coYki mutant (CAOG_05058 and CAOG_01283, from Phillips et al., 2022 eLife). In our coWts and coHpo mutant RNAseq data, we see that CAOG_05058 is upregulated in both coHpo and coWts mutants, whereas CAOG_01283 does not show significantly different expression in either the coHpo or coWts mutant. Because the CAOG_05058 expression data seems to go in the “opposite” direction than you might expect (i.e. not “down regulated” as the reviewer predicts), and because we see no change in expression in CAOG_01283, these results are difficult to interpret. Therefore the role of integrins in Capsaspora Hippo pathway mutant phenotypes is thus still an open question.

      Some cells from the coHpo-/- and coWts-/- mutant lines, show higher attachment to the substrate, which results in an elongated shape while the cell detaches from the substrate. The authors claim this phenotype as a contractile behavior in these cells. This behavior would be caused by changes in cytoskeleton regulation or increased number of microvilli or a change in the distribution of microvilli.

      (1) In my opinion, this phenotype can not be considered a behavior per se (the cells become round once they are free from the substrate, so the elongation is temporal and the contractile behavior is a consequence from this attachment to the substrate), so I would not say that the Hippo pathway controls a contractile behavior as the authors state as one of the main conclusions of the manuscript.

      Many cell behaviors are known to depend on external conditions, such as substrates, growth factors, nutrients, chemokines, etc., and are therefore “temporal” by the reviewer’s criteria. We therefore feel that the phenotype we describe here can be considered a cell behavior.

      (2) On the other hand I think that further efforts on microscopy or immunocytochemistry could be performed in order to discern among the different causes; more microvilli? change in microvilli distribution? change in the acto-myosin cytoskeleton? Moreover these options are not mutually exclusive and very likely the explanation is multifactorial.

      (3) coWts-/- has a different phenotype at the periphery of the aggregates than coHpo-/-. The authors use stable transfected lines with NMM-Venus to visualize microvilli. It would be interesting that further experiments using this tool would be performed in order to visualize putative differences of the cell membrane at the periphery in the two mutant genotypes.

      We have now performed experiments examining filopodia in round vs elongated cells using the NMM-venus marker, as well as differences in filopodial morphology within aggregates in the different genotypes. Our data and conclusions are included in our updated manuscript (Figure 3- figure supplement 1).

      The authors nicely inspect the consequences of the mutant lines coHpo-/- and coWts-/- in the formation of the aggregates. They find that the aggregates in these cases are more densely packed likely due to the higher attachment from microvilli, which they are able to revert by using myosin inhibitors.

      (1) As mentioned above, it would be interesting that further experiments are performed by using NMM-Venus transfection into the coHpo-/- and coWts-/-genotypes in order to visualize putative differences of the strength and distribution of the microvilli in the aggregates of these two mutant genotypes. These experiments would inform if more or less microvilli contacts are created in these lines and support a mechanical explanation of the denser aggregates in the mutant lines, as they now suggest in the discussion.

      We have now performed these experiments, and our data and conclusions are described in the updated manuscript (Figure 5- figure supplement 1).

      (2) On the other hand, myosin inhibition through blebbistatin increases the number of elongated cells in the mutant lines, demonstrating that myosin is necessary for the cells to resolve their substrate attachment and become round. In my view is confusing that myosin is needed for cells to become round again (wt phenotype) and at the same time myosin inhibition is needed for aggregates to become less dense (wt phenotype). Do they lose density because more elongated cells are now in the aggregate? These results look confusing to me and I think they should be better discussed. Again the above transfections of NMM-Venus into the coHpo-/- and coWts-/-genotypes could be informative.

      We have attempted to detect cells with an “elongated” morphology within WT and mutant aggregates but so far have been unable to visualize such cells. More advanced microscopy techniques at extended time scales may allow us to observe such things, but we believe such studies are beyond the scope of this manuscript.

      The authors do not connect and discuss their results with a very relevant study done in Drosophila, Xu J et al. Dev Cell. 2018; 46(3): 271-284.e5, where a transcriptionally independent role of Yki is characterized. In Drosophila, Yki has an important role in a positive feedback loop with myosin at the cortical part of the cell, which is especially relevant for cytoskeleton regulation.

      The results encountered by the authors in their previous study with coYki-/-, indicated that coYki was important for proper actin dynamics and cell shape in C. owczarzaki. At that moment they did not interrogate if this phenotype could be due to the lack of a possible role of coYki in the cortex and they argue that the phenotype was caused by the lack of transcription regulation of downstream genes of coYki, which actually many were cytoskeleton related.

      Because the cortex function of Yki is independent of regulation of Hpo and Wts, the authors could use these genotypes by comparing them with WT (where the cortical role of Yki should be the same) and coYki-/- to investigate if the cortex role of Yki, is conserved in C. owczarzaki. In Drosophila the cortex role of Yki has been suggested to control tension at the cell surface. Drosophila Yki at the cortex activates myosin II through the N-terminal part of the protein and establishes a positive feedback loop by down regulating the Hippo pathway and obtaining therefore more active DmYki into the nucleus. This mechanism has been proposed by Xu et al. to work as the link between sensing cell tensions at the surface with control of tissue proliferation.

      In my opinion these are relevant results in the field that should be addressed in this study or at least well discussed. Actually, I think they could be a great opportunity for investigating if a putative cortex role of Yki is ancestral to its role linked to the Hippo pathway.

      We have now addressed this study in our manuscript- please see our response to reviewer #2’s last comment above.

      It would be informative to understand how stable expression through hygromicin selection is achieved in the transfection experiments. Is the recombinant plasmid integrated in the genome? Or is it stable as an episome?

      We believe that the plasmids stably integrate, as we never lose fluorescent signal once established in a clonal line, even after extended culturing (>6 months). It may be worthwhile to definitely determine integration vs. episome in future studies.

      The authors do not speculate or discuss how cell tension and cell proliferation is different for a unicellular organism or a tissue (multicellular) and I think should be addressed since the contexts are different.

      This is an interesting and important point, which we plan to discuss in detail in an upcoming review article, as a proper discussion of this idea, we think, is beyond the scope of this manuscript.

      Minor point. The study should cite other unicellular holozoans that have been also developed into treatable organisms such as Monosiga brevicollis (Woznica A, Kumar A, et al 2021eLife 10:e70436) and Abeoforma whisleri (Faktorová, D., Nisbet, R.E.R., Fernández Robledo, J.A. et al. Nat Methods17, 481-494 (2020) in line 83 of the manuscript. I am sure the authors appreciate how much effort there is behind every non-model organism put forward as experimentally treatable and should be properly acknowledged.

      We agree, and we have now included these examples of non-model organism development in our manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      We thank all the reviewers for taking the time to assess and provide valuable feedback on the manuscript. We believe these comments helped clarify the manuscript’s prose, and the suggestions on the functionality and aim of the toolbox were globally incorporated into the following updates of the toolbox. Particularly, we would like to point out some changes that will help all reviewers, independently of their individual comments, to understand the current state of the toolbox and some systematic changes that were made to the manuscript.

      We have received a significant amount of feedback asking for a PyTorch implementation of the toolbox. Consequently, we decided to enact this, and the next version of the toolbox will be exclusively in PyTorch. We will maintain the Application Programming Interface (API) and tutorial documentation for the TensorFlow version of the toolbox on the online website. However, going forward we will focus exclusively on bug-fixing and expanding from the latest version of MotorNet, which will be in PyTorch. We now believe that the greater popularity of PyTorch in the academic community makes that choice more sustainable while helping a greater proportion of research projects.

      These changes led to a significant alteration of the MotorNet structure, which is reflected by changes made throughout the manuscript, most particularly in Figure 3 and Table 1. A beneficial side-effect of this is a much simpler structure for MotorNet which ought to contribute positively toward its usability by researchers in the neuroscience community.

      We also refactored some terminology to be more in line with current computational neuroscience vocabulary:

      • The term “plant”, which comes from industrial engineering and is more niche in neuroscience, has been replaced by “effector”.

      • The term “task” has been replaced by “environment” to match the gymnasium toolbox terminology, which MotorNet is now compatible with. Task objects essentially performed the same function as environment objects from the gymnasium toolbox.

      • The term “controller” has been replaced by “policy” throughout, as this term is more general.

      • The term “motor command” is very specific to the motor control subfield of neuroscience, and therefore is replaced by “action”, which is more commonplace for this modelling component in computational neuroscience and machine learning.

      Reviewer #1 (Public Review):

      Summary:

      Codol et al. present a toolbox that allows simulating biomechanically realistic effectors and training Artificial Neural Networks (ANNs) to control them. The paper provides a detailed explanation of how the toolbox is structured and several examples that demonstrate its usefulness.

      Main comments:

      (1) The paper is well written and easy to follow. The schematics help in understanding how the toolbox works and the examples provide an idea of the results that the user can obtain.

      We thank the reviewer for this comment.

      (2) As I understand it, the main purpose of the paper should be to facilitate the usage of the toolbox. For this reason, I have missed a more explicit link to the actual code. As I see it, researchers will read this paper to figure out whether they can use MotorNet to simulate their experiments, and how they should proceed if they decide to use it. I'd say the paper provides an answer to the first question and assures that the toolbox is very easy to install and use. Maybe the authors could support this claim by adding "snippets" of code that show the key steps in building an actual example.

      This is an important point, which we also considered when writing this paper. We instead decided to focus on the first approach, because it is easier to illustrate the scientific use of the toolbox using code or interactive (Jupyter) notebooks than a publication format. We find the “how to proceed” aspect of the toolbox can more easily and comprehensively be covered using online, interactive tutorials. Additionally, this allows us to update these tutorials as the toolbox evolves over different versions, while it is more difficult to update a scientific article. Consequently, we explicitly avoided code snippets on the article itself. However, we appreciate that the paper would gain in clarity if this was more explicitly stated early. We have modified the paper to include a pointer to where to find tutorials online. We added this at the last paragraph of the introduction section:

      “The interested reader may consult the full API documentation, including interactive tutorials on the toolbox website at https://motornet.org.”

      (3) The results provided in Figures 1, 4, 5 and 6 are useful, because they provide examples of the type of things one can do with the toolbox. I have a few comments that might help improving them:

      (a) The examples in Figures 1 and 5 seem a bit redundant (same effector, similar task). Maybe the authors could show an example with a different effector or task? (see point 4).

      The effectors from figures 1 and 5 are indeed very similar. However, the tasks in figure 1 and 5 present some important differences. The training procedure in figure 1 never includes any perturbations, while the one from figure 5 includes a wide range of perturbations of different magnitudes, timing and directions. The evaluation procedure of figure 1 includes center-out reaches with permanent viscous (proportional to velocity) external dynamics, while that of figure 5 are fixed, transient, square-shaped perturbation orthogonal to the reach direction. Finally, the networks in figure 1 undergo a second training procedure after evaluation while the network of figure 5 do not. While we agree that some variation of effectors would be beneficial, we do show examples of a point-mass effector in figure 6. Overall, figure 5 shows a task that is quite different from that of figure 1 with a similar effector, while the opposite is true for figure 6. We have modified the text to clarify this for the reader, by adding the following.

      End of 1st paragraph, section 2.4.

      “Therefore, the training protocol used for this task largely differed from section 2.1 in that the networks are exposed to a wide range of mechanical perturbations with varying characteristics.”

      1st paragraph of section 2.5

      […] this asymmetrical representation of PMDs during reaching movements did not occur when RNNs were trained to control an effector that lacked the geometrical properties of an arm such as illustrated in Figure 4c-e and section 2.1.

      (b) I missed a discussion on the relevance of the results shown in Figure 4. The moment arms are barely mentioned outside section 2.3. Are these results new? How can they help with motor control research?

      We thank the reviewer for this comment. This relates to a point from reviewer 2 indicating that the purpose of each section was sometimes difficult to grasp as one reads. Section 2.3 explains the biomechanical properties that the toolbox implements to improve realism of the effector. They are not new results in the sense that other toolboxes implement these features (though not in differentiable formats) and these properties of biological muscles are empirically well-established. However, they are important to understand what the toolbox provides, and consequently what constraints networks must accommodate to learn efficient control policies. An example of this is the results in figure 6, where a simple effector versus a more biomechanically complex effector will yield different neural representations.

      Regarding the manuscript itself, we agree that more clarity on the goal of every paragraph may improve the reader’s experience. Consequently, we ensured to specify such goals at the start of each section. Particularly, we clarify the purpose of section 2.3 by adding several sentences on this at the end of the first paragraph in that section. We also now clearly state the purpose of section 2.3 with the results of figure 6 and reference figure 4 in that section.

      (c) The results in Figure 6 are important, since one key asset of ANNs is that they provide access to the activity of the whole population of units that produces a given behavior. For this reason, I think it would be interesting to show the actual "empirical observations" that the results shown in Fig. 6 are replicating, hence allowing a direct comparison between the results obtained for biological and simulated neurons.

      These empirical observations are available from previous electrophysiological and modelling work. Particularly, polar histograms across reaching directions like panel C are displayed in figures 2 and 3 of Scott, Gribble, Graham, Cabel (2001, Nature). Colormaps of modelled unit activity across time and reaching directions like panel F are also displayed in figure 2 of Lillicrap, Scott (2013, Neuron). Electrophysiological recordings of M1 neurons during a similar task in non-human primates can also be seen on “Preserved neural population dynamics across animals performing similar behaviour” figure 2 B (https://doi.org/10.1101/2022.09.26.509498) and “Nonlinear manifolds underlie neural population activity during behaviour” figure 2 B as well (https://doi.org/10.1101/2023.07.18.549575). Note that these two pre-prints use the same dataset.

      We have added these citations to the text and made it explicit that they contain visualizations of similar modelling and empirical data for comparison:

      “This heterogeneous set of responses matches empirical observations in non-human primate primary motor cortex recordings (Churchland & Shenoy, 2007; Michaels et al., 2016) and replicate similar visualizations from previously published work (Fortunato et al., 2023; Lillicrap & Scott, 2013; Safaie et al., 2023).”

      (4) All examples in the paper use the arm26 plant as effector. Although the authors say that "users can easily declare their own custom-made effector and task objects if desired by subclassing the base Plant and Task class, respectively", this does not sound straightforward. Table 1 does not really clarify how to do it. Maybe an example that shows the actual code (see point 2) that creates a new plant (e.g. the 3-joint arm in Figure 7) would be useful.

      Subclassing is a Python process more than a MotorNet process, as python is an object-oriented language. Therefore, there are many Python tutorials on subclassing in the general sense that would be beneficial for that purpose. We have amended the main text to ensure that this is clearer to the reader.

      Subclassing a MotorNet object, in a more specific sense, requires overwriting some methods from the base MotorNet classes (e.g., Effector or Environment classes, which correspond to the original Plant and Task object, respectively). Since we made the decision (mentioned above) to not include code in the main text, we added tutorials to the online documentation, which include dedicated tutorials for MotorNet class subclassing. For instance, this tutorial showcases how to subclass Environment classes:

      https://colab.research.google.com/github/OlivierCodol/MotorNet/blob/master/examples/3-environments.ipynb

      (5) One potential limitation of the toolbox is that it is based on Tensorflow, when the field of Computational Neuroscience seems to be, or at least that's my impression, transitioning to pyTorch. How easy would it be to translate MotorNet to pyTorch? Maybe the authors could comment on this in the discussion.

      We have received a significant amount of feedback asking for a PyTorch implementation of the toolbox. Consequently, we decided to enact this, and the next version of the toolbox will be exclusively in PyTorch. We will maintain the Application Programming Interface (API) and tutorial documentation for the TensorFlow version of the toolbox on the online website. However, going forward we will focus exclusively on bug-fixing and expanding from the latest version of MotorNet, which will be in PyTorch. We now believe that the greater popularity of PyTorch in the academic community makes that choice more sustainable while helping a greater proportion of research projects.

      These changes led to a significant alteration of the MotorNet structure, which are reflected by changes made throughout the manuscript, notably in Figure 3 and Table 1.

      (6) Supervised learning (SL) is widely used in Systems Neuroscience, especially because it is faster than reinforcement learning (RL). Thus providing the possibility of training the ANNs with SL is an important asset of the toolbox. However, SL is not always ideal, especially when the optimal strategy is not known or when there are different alternative strategies and we want to know which is the one preferred by the subject. For instance, would it be possible to implement a setup in which the ANN has to choose between 2 different paths to reach a target? (e.g. Kaufman et al. 2015 eLife). In such a scenario, RL seems to be a more natural option Would it be easy to extend MotorNet so it allows training with RL? Maybe the authors could comment on this in the discussion.

      The new implementation of MotorNet that relies on PyTorch is already standardized to use an API that is compatible with Gymnasium. Gymnasium is a standard and popular interfacing toolbox used to link RL agents to environments. It is very well-documented and widely used, which will ensure that users who wish to employ RL to control MotorNet environments will be able to do so relatively effortlessly. We have added this point to accurately reflect the updated implementation, so users are aware that it is now a feature of the toolbox (new section 3.2.4.).

      Impact:

      MotorNet aims at simplifying the process of simulating complex experimental setups to rapidly test hypotheses about how the brain produces a specific movement. By providing an end-to-end pipeline to train ANNs on the simulated setup, it can greatly help guide experimenters to decide where to focus their experimental efforts.

      Additional context:

      Being the main result a toolbox, the paper is complemented by a GitHub repository and a documentation webpage. Both the repository and the webpage are well organized and easy to navigate. The webpage walks the user through the installation of the toolbox and the building of the effectors and the ANNs.

      Reviewer #2 (Public Review):

      MotorNet aims to provide a unified interface where the trained RNN controller exists within the same TensorFlow environment as the end effectors being controlled. This architecture provides a much simpler interface for the researcher to develop and iterate through computational hypotheses. In addition, the authors have built a set of biomechanically realistic end effectors (e.g., an 2 joint arm model with realistic muscles) within TensorFlow that are fully differentiable.

      MotorNet will prove a highly useful starting point for researchers interested in exploring the challenges of controlling movement with realistic muscle and joint dynamics. The architecture features a conveniently modular design and the inclusion of simpler arm models provides an approachable learning curve. Other state-of-the-art simulation engines offer realistic models of muscles and multi-joint arms and afford more complex object manipulation and contact dynamics than MotorNet. However, MotorNet's approach allows for direct optimization of the controller network via gradient descent rather than reinforcement learning, which is a compromise currently required when other simulation engines (as these engines' code cannot be differentiated through).

      The paper could be reorganized to provide clearer signposts as to what role each section plays (e.g., that the explanation of the moment arms of different joint models serves to illustrate the complexity of realistic biomechanics, rather than a novel discovery/exposition of this manuscript). Also, if possible, it would be valuable if the authors could provide more insight into whether gradient descent finds qualitatively different solutions to RL or other non gradient-based methods. This would strengthen the argument that a fully differentiable plant is useful beyond improving training time / computational power required (although this is a sufficiently important rationale per se).

      We thank the reviewer for these comments. We agree that more clarity on the section goals may improve the reader’s experience and ensured this is the case throughout the manuscript. Particularly, we added the following on the first paragraph of section 2.3, for which an explicit goal was most missing:

      “In this section we illustrate some of these biomechanical properties displayed by MotorNet effectors using specific examples. These properties are well-characterised in the biology and are often implemented in realistic biomechanical simulation software.”

      Regarding the potential difference in solutions obtained from reinforcement or supervised learning, this would represent a non-trivial amount of work to do so conclusively and so may not be within the scope of the current article. We do appreciate however that in some situations RL may be a more fitting approach to a given task design. In relation to this point we now specify in the discussion that the new API can accommodate interfacing with reinforcement learning toolboxes for those who may want to pursue this type of policy training approach when appropriate (new section 3.2.4.).

      Reviewer #3 (Public Review):

      Artificial neural networks have developed into a new research tool across various disciplines of neuroscience. However, specifically for studying neural control of movement it was extremely difficult to train those models, as they require not only simulating the neural network, but also the body parts one is interested in studying. The authors provide a solution to this problem which is built upon one of the main software packages used for deep learning (Tensorflow). This allows them to make use of state-of-the-art tools for training neural networks.

      They show that their toolbox is able to (re-)produce several commonly studied experiments e.g., planar reaching with and without loads. The toolbox is described in sufficient detail to get an overview of the functionality and the current state of what can be done with it. Although the authors state that only a few lines of code can reproduce such an experiment, they unfortunately don't provide any source code to reproduce their results (nor is it given in the respective repository).

      The possibility of adding code snippets to the article is something we originally considered, and which aligns with comment two from reviewer one (see above). Hopefully this provides a good overview of the motivation behind our choice not to add code to the article.

      The modularity of the presented toolbox makes it easy to exchange or modify single parts of an experiment e.g., the task or the neural network used as a controller. Together with the open-source nature of the toolbox, this will facilitate sharing and reproducibility across research labs.

      I can see how this paper can enable a whole set of new studies on neural control of movement and accelerate the turnover time for new ideas or hypotheses, as stated in the first paragraph of the Discussion section. Having such a low effort to run computational experiments will be definitely beneficial for the field of neural control of movement.

      We thank the reviewer for these comment.

    1. Author Response

      This important work presents a new methodology for the statistical analysis of fiber photometry data, improving statistical power while avoiding the bias inherent in the choices that are necessarily made when summarizing photometry data. The reanalysis of two recent photometry data sets, the simulations, and the mathematical detail provide convincing evidence for the utility of the method and the main conclusions, however, the discussion of the re-analyzed data is incomplete and would be improved by a deeper consideration of the limitations of the original data. In addition, consideration of other data sets and photometry methodologies including non-linear analysis tools, as well as a discussion of the importance of the data normalization are needed.

      Thank you for the thorough and positive review of our work! We will incorporate this feedback to strengthen the manuscript. Specifically, we plan to revise the Discussion section to include a deeper consideration of the limitations of the original data, a description of the capacities of our method for conducting non-linear analyses, and the role data normalization plays in applicability of our tool.

      Reviewer 1:

      Strengths:

      The framework the authors present is solid and well-explained. By reanalyzing formerly published data, the authors also further increase the significance of the proposed tool opening new avenues for reinterpreting already collected data.

      Weaknesses:

      However, this also leads to several questions. The normalization method employed for raw fiber photometry data is different from lab to lab. This imposes a significant challenge to applying a single tool of analysis.

      Thank you for the positive feedback, we will address your comments in our revision. We agree that any data pre-processing steps will have down-stream consequences on the statistical inference from our method. Note, though, that this would also be the case with standard analysis approaches (e.g., t-tests, correlations) applied to summary measures like AUCs. For that reason, we do not believe that variability in pre-processing is an impediment to widespread adoption of a standard analysis procedure. Rather, we argue that the sensitivity of analysis results to pre-processing choices underscores the need for establishing statistical techniques that reduce the need for pre-processing, and properly account for structure in the data arising from experimental designs. The reviewer brings up an excellent point that we can further elaborate on how our methods actually reduce the need for such pre-processing steps. Indeed, our method provides smooth estimation results along the functional domain (i.e., across trial timepoints), has the ability to adjust for between-trial and -animal heterogeneity, and provides a valid statistical inference framework that quantifies the resulting uncertainty. For example, adjustment for session-to-session variability in signal magnitudes or dynamics could be accounted for, at least in part, through the inclusion of session-level random effects. This heterogeneity would then influence the width of the confidence intervals. This stands in contrast to “sweeping it under the rug” with a pre-processing step that may have an unknown impact on the final statistical inferences. Similarly, the level of smoothing is at least in part selected as a function of the data, and again is accounted for directly in the equations used to construct confidence intervals. In sum, our method provides both a tool to account for challenges in the data, and a systematic framework to quantify the additional uncertainty that accompanies accounting for those data characteristics.

      Does the method that the authors propose work similarly efficiently whether the data are normalized in a running average dF/F as it is described in the cited papers? For example, trace smoothing using running averages (Jeong et al. 2022) in itself may lead to pattern dilution. The same question applies if the z-score is calculated based on various responses or even baselines.

      This is an important question given how common this practice is in the field. Briefly, application of pre-processing steps will change the interpretation of the results from our analysis method. For example, if one subtracts off a pre-trial baseline average from each trial timepoint, then the “definition of 0”, and the interpretation of coefficients and their statistical significance, changes. Similarly, if one scales the signal (e.g., divides the signal magnitude by a trial- or animal-specific baseline), then this changes the interpretation of the FLMM regression coefficients to be in terms of an animal-specific signal unit as opposed to a raw dF/F. This is, however, not specific to our technique, and pre-processing would have a similar influence on, for example, linear regression (and thus t-tests, ANOVAs and Pearson correlations) applied to summary measures. We agree with the reviewer that explicitly discussing this point will strengthen the paper.

      While it is difficult to make general claims about the anticipated performance of the method under all the potential pre-processing steps taken in the field, we believe that most common pre-processing strategies will not negatively influence the method’s performance or validity; they would, instead, change the interpretation of the results. We are releasing a series of vignettes to guide analysts through using our method and, to address your comment, we will add a section on interpretation after pre-processing.

      How reliable the method is if the data are non-stationary and the baselines undergo major changes between separate trials?

      This is an excellent question. We believe the statistical inferences will be valid and will properly quantify the uncertainty from non-stationarities, since our framework does not impose stationarity assumptions on the underlying process. It is worth mentioning that non-stationarity and high trial-to-trial variability may increase variance estimates if the model does not include a rich enough set of covariates to capture the source of the heterogeneity across trial baselines. However, this is a feature of our framework, rather than a bug, as it properly conveys to the analyst that high unaccounted for variability in the signal may result in high model uncertainty. Finally, mixed effects modeling provides a transparent, statistically reasonable, and flexible approach to account for between-session, and between-trial variability, a type of non-stationarity. We agree with the reviewer that this should be more explicitly discussed in the paper, and will do so.

      Finally, what is the rationale for not using non-linear analysis methods? Following the paper's logic, non-linear analysis can capture more information that is diluted by linear methods.

      Functional data analysis assumes that the function varies smoothly along the functional domain (i.e., across trial timepoints). It is a type of non-linear modeling technique over the functional domain since we do not assume a linear model (straight line). Therefore, our functional data analysis approach is able to capture more information that is diluted by linear models. While the basic form of our model assumes a linear change in the signal at a fixed trial timepoint, across trials/sessions, our package allows one to easily model changes with non-linear functions of covariates using splines or other basis functions. One must consider, however, the tradeoff between flexibility and interpretability when specifying potentially complex models.

      Reviewer 2

      Strengths:

      The open-source package in R using a similar syntax as the lme4 package for the implementation of this framework on photometry data enhances the accessibility, and usage by other researchers. Moreover, the decreased fitting time of the model in comparison with a similar package on simulated data, has the potential to be more easily adopted.

      The reanalysis of two studies using summary statistics on photometry data (Jeong et al., 2022; Coddington et al., 2023) highlights how trial-by-trial analysis at each time-point on the trial can reveal information obscured by averaging across trials. Furthermore, this work also exemplifies how session and subject variability can lead to opposite conclusions when not considered.

      Thank you for the positive assessment of our work!

      Weaknesses:

      Although this work has reanalyzed previous work that used summary statistics, it does not compare with other studies that use trial-by-trial photometry data across time-points in a trial.

      As described by the authors, fitting pointwise linear mixed models and performing t-test and Benjamini-Hochberg correction as performed in Lee et al. (2019) has some caveats. Using joint confidence intervals has the potential to improve statistical robustness, however, this is not directly shown with temporal data in this work. Furthermore, it is unclear how FLMM differs from the pointwise linear mixed modeling used in this work.

      We agree with the reviewers that providing more detail about the drawbacks of the approach applied in Lee et al., 2019 will strengthen the paper. We will add an example analysis applying the method proposed by Lee et al., 2019 to show how the set of timepoints at which coefficient estimates reach statistical significance can vary dramatically depending on the sampling rate one subsamples their data at, a highly undesirable property of this strategy. Our approach is robust to this, and still provides a multiple comparisons correction through the joint confidence intervals.

      In this work, FLMM usages included only one or two covariates. However, in complex behavioral experiments, where variables are correlated, more than two may be needed (see Simpson et al. (2023), Engelhard et al. (2019); Blanco-Pozo et al. (2024)). It is not clear from this work, how feasible computationally would be to fit such complex models, which would also include more complex random effects.

      This is a good point. In our experience, the code is still quite fast (often taking seconds to tens of seconds in our experience) on a standard laptop when fitting complex models that include, for example, 10 covariates, or complex random effect specifications on dataset sizes common in fiber photometry. In the manuscript, we included results from simpler models with few covariates in an attempt to show results from the FLMM versions of the standard analyses (e.g., correlations, t-tests) applied in Jeong et al., 2022. Our goal was to show that our method reveals effects obscured by standard analyses even in simple cases. Some of our models did, however, include complex nested random effects (e.g., the models described in Section 4.5.2).

      Like other mixed-model based analyses, our method becomes slower when the number of observations in the dataset is on the order of tens of thousands of observations. However, we coded the methods to be memory efficient so that even these larger analyses can be run on standard laptops. We thank the reviewer for this point, as we worked extremely hard to scale the method to be able to efficiently fit models commonly applied in neuroscience. Indeed, challenges with scalability were one of the main motivations for applying the estimation procedure that we did; in the appendix we show that the fit time of our approach is much faster than existing FLMM software such as the refund package function pffr(), especially for large sample sizes. While pffr() appears to scale exponentially with the number of clusters (e.g., animals), our method appears to scale linearly. We will more explicitly emphasize the scalability in the revision, since we agree this will strengthen the final manuscript.

      Reviewer #3

      Strengths:

      The statistical framework described provides a powerful way to analyze photometry data and potentially other similar signals. The provided package makes this methodology easy to implement and the extensively worked examples of reanalysis provide a useful guide to others on how to correctly specify models.

      Modeling the entire trial (function regression) removes the need to choose appropriate summary statistics, removing the opportunity to introduce bias, for example in searching for optimal windows in which to calculate the AUC. This is demonstrated in the re-analysis of Jeong et al., 2022, in which the AUC measures presented masked important details about how the photometry signal was changing.

      Meanwhile, using linear mixed methods allows for the estimation of random effects, which are an important consideration given the repeated-measures design of most photometry studies.

      Thank you for the positive assessment of our work!

      Weaknesses:

      While the availability of the software package (fastFMM), the provided code, and worked examples used in the paper are undoubtedly helpful to those wanting to use these methods, some concepts could be explained more thoroughly for a general neuroscience audience.

      We appreciate this and, to address your and other reviewers’ comments, we are creating a series of vignettes walking users through how to analyze photometry data with our package. We will include algebraic illustrations to help users gain familiarity with the regression modeling here.

      While the methodology is sound and the discussion of its benefits is good, the interpretation and discussion of the re-analyzed results are poor:

      In section 2.3, the authors use FLMM to identify an instance of Simpson's Paradox in the analysis of Jeong et al. (2022). While this phenomenon is evident in the original authors' metrics (replotted in Figure 5A), FLMM provides a convenient method to identify these effects while illustrating the deficiencies of the original authors' approach of concatenating a different number of sessions for each animal and ignoring potential within-session effects. The discussion of this result is muddled. Having identified the paradox, there is some appropriate speculation as to what is causing these opposing effects, particularly the decrease in sessions. In the discussion and appendices, the authors identify (1) changes in satiation/habitation/motivation, (2) the predictability of the rewards (presumably by the click of a solenoid valve) and (3) photobleaching as potential explanations of the decrease within days. Having identified these effects, but without strong evidence to rule all three out, the discussion of whether RPE or ANCCR matches these results is probably moot. In particular, the hypotheses developed by Jeong et al., were for a random (unpredictable) rewards experiment, whereas the evidence points to the rewards being sometimes predictable. The learning of that predictability (e.g. over sessions) and variation in predictability (e.g. by attention level to sounds of each mouse) significantly complicate the analysis. The FLMM analysis reveals the complexity of analyzing what is apparently a straightforward task design.

      While we are disappointed to hear the reviewer felt our initial interpretations and discussion were poor, the reviewer brings up an excellent point that we had not considered. They have convinced us that acknowledging and elaborating on this alternative perspective will strengthen the paper. We agree that the ANCCR/RPE model predictions were made for unpredictable rewards and, as the reviewer rightly points out, there is evidence that the animals sense the reward delivery. Regardless of the learning theory one adopts (RPE, ANCCR or others), we agree that this (potentially) learned predictability alone could account for the increase in signal magnitude across sessions.

      After reading the reviewer’s comments, we consulted with a number of researchers in this area, and several felt that a CS+ can serve as a reward, within itself. From this perspective, the rewards in the Jeong et al., 2022 experiment might still be considered unexpected. After discussing extensively with the authors of Jeong et al., 2022, it is clear that they went to enormous trouble to prevent the inadvertent generation of a CS+, and it is likely changes in pressure from the solenoid (rather than a sound) that served as a cue. This underscores the difficulty of preventing perception of reward delivery in practice. As this paper is focused on analysis approaches, we feel that we can contribute most thoughtfully to the dopamine–learning theory conversation by presenting both sides.

      Overall, we agree with the reviewer that future experiments will be needed for testing the accuracy of the models’ predictions for random (unpredicted) rewards. While we understand that our attempt to document our conversations with the Jeong et al., 2022 authors may have room for improvement, we hope the reviewer can appreciate that this was done with the best of intentions. We wish to emphasize that we also consulted with several other researchers in the field when crafting the discussion. The Jeong et al., 2022 authors could easily have avoided acknowledging the potential incompleteness of their theory, by claiming that our results do not invalidate their predictions for a random reward, as the reward was not unpredicted in the experiment (as a result of the inadvertent solenoid CS+). Instead, they went out of their way to emphasize that their experiment did test a random reward, and that our results do present problems for their theory. We think that engagement with re-analyses of one’s data, even when findings are inconvenient, is a good demonstration of open science practice. For that reason as well, we feel providing readers with a perspective on the entire discussion will contribute to the scientific discourse in this area.

      Finally, we would like to reiterate that this conversation is happening because our method, by analyzing the signal at every trial timepoint, revealed a neural signal that appears to indicate that the animals sense reward delivery. Ultimately, this was what we set out to do: help researchers ask questions of their data that they could not ask before. We believe that having a demonstration that we can indeed do this for a “live” issue is the most appropriate way of demonstrating the usefulness of the method.

      It is clear the reviewer put a lot of time into understanding what we did, and was very thoughtful about the feedback. We would like to thank the reviewer again for taking such care in reviewing our paper.

      If this paper is not trying to arbitrate between RPE and ANCCR, as stated in the text, the post hoc reasoning of the authors of Jeong et al 2022 provided in the discussion is not germane.

      While we appreciate that the post hoc reasoning of the authors of Jeong et al., 2022 may not seem germane, we would like to provide some context for its inclusion. As statisticians and computer scientists, our role is to create methods, and this often requires using open source data and recreating past analyses. This usually involves extensive conversation with authors about their data and analysis choices because, if we cannot reproduce their findings using their analysis methods, we cannot verify that results from our own methods are valid. As such, we prefer to conduct method development in a collaborative fashion, and we strive to constructively, and respectfully, discuss our results with the original authors. We feel that giving them the opportunity to suggest analyses, and express their point of view if our results conflict with their original conclusions, is important, and we do not want to discourage authors from making their datasets public. As such, we conducted numerous analyses at the suggestion of Jeong et al., 2022 and discussed the results over the course of many months. Indeed the analyses in the Appendix that the reviewer is referring to were conducted at the suggestion of the authors of Jeong et al., 2022, in an attempt to rule out alternative explanations. We nevertheless appreciate that our interpretations of these results can include some of the caveats suggested by the reviewer, and we will strive to improve these sections.

      Arbitrating between the models likely requires new experimental designs (removing the sound of the solenoid, satiety controls) or more complex models (e.g. with session effects, measures of predictability) that address the identified issues.

      We agree with the reviewer that the results suggest that new experimental designs will likely be necessary to adjudicate between models. It is our hope that, by weighing the different issues and interpretations, our paper might provide useful suggestions into what experimental designs would be most beneficial to rule out competing hypotheses in future data collection efforts. We believe that our methodology will strengthen our capacity to design new experiments and analyses. We will make the reviewer’s suggestions more explicit in the discussion by emphasizing the limitations of the original data.

      Of the three potential causes of within-session decreases, the photobleaching arguments advanced in the discussion and expanded greatly in the appendices are not convincing. The data being modeled is a processed signal (ΔF/F) with smoothing and baseline correction and this does not seem to have been considered in the argument.

      We are disappointed to hear that this extensive set of analyses, much of which was conducted at the suggestion of Jeong et al., 2022, was not convincing. We agree that acknowledging any pre-processing would provide useful context for the reader. We do wish to clarify that we analyzed the data that were made available online (raw data was not available). Moreover, for comparison with the authors’ results, we felt it was important to maintain the same pre-processing steps as they did. These conditions were held constant across analysis approaches; therefore, we think that the changes within-trial are likely not influenced substantially by these pre-processing choices. While we cannot speak definitively to the impact any of the processing conducted by the authors had on the results, we believe that it was likely minor, given that the timing of signals at other points in the trial, and in other experiments, were as expected (e.g., the signal rose rapidly after cue onset in Pavlovian tasks).

      Furthermore, the photometry readout is also a convolution of the actual concentration changes over time, influenced by the on-off kinetics of the sensor, which makes the interpretation of timing effects of photobleaching less obvious than presented here and more complex than the dyes considered in the cited reference used as a foundation for this line of reasoning.

      We appreciate the nuance of this point, and we will add it to our discussion. In response to your criticism, we have consulted with more experts in the field regarding the potential for bleaching in this data, and it is not clear to us why photobleaching would be visible in one time-window of a trial, but not at another (less than a second away), despite high dF/F magnitudes in both time-windows. We do wish to point out that, at the request of the authors, we analyzed many experiments from the same animals and in most cases did not observe other indications of photobleaching. Hence, it is not clear to us why this particular set of experiments would garner additional skepticism regarding the potential for photobleaching to invalidate results. While the role of photobleaching may be more complicated with this sensor than others in the references, that citation was included, at the suggestion of Jeong et al., 2022 simply as a way of acknowledging that non-linearities in photobleaching can occur.

      Within this discussion of photobleaching, the characterization of the background reward experiments used in part to consider photobleaching (appendix 7.3.2) is incorrect. In this experiment (Jeong et al., 2022), background rewards were only delivered in the inter-trial-interval (i.e. not between the CS+ and predicted reward as stated in the text). Both in the authors' description and in the data, there is a 6s before cue onset where rewards are not delivered and while not described in the text, the data suggests there is a period after a predicted reward when background rewards are not delivered. This complicates the comparison of this data to the random reward experiment.

      Thank you for pointing this out!! We will remove the parenthetical on page 18 of the appendix that incorrectly stated that rewards can occur between the CS+ and the predicted reward.

      The discussion of the lack of evidence for backpropagation, taken as evidence for ANCCR over RPE, is also weak.

      This point was meant to acknowledge that, although our method yields results that conflict with the conclusions described by Jeong et al., 2022 on data from some experiments, on other experiments our method supports their results. Again, we believe that a critical part of open science is acknowledging both areas where analyses support and conflict with those of the original authors. We agree with the reviewer that qualifying our results so as not to emphasize support for/against RPE/ANCCR will strengthen our paper, and we will make these changes.

      A more useful exercise than comparing FLMM to the methods and data of Jeong et al., 2022, would be to compare against the approach of Amo et al., 2022, which identifies backpropagation (data publicly available: DOI: 10.5061/dryad.hhmgqnkjw). The replication of a positive result would be more convincing of the sensitivity of the methodology than the replication of a negative result, which could be a result of many factors in the experimental design. Given that the Amo et al. analysis relies on identifying systematic changes in the timing of a signal over time, this would be particularly useful in understanding if the smoothing steps in FLMM obscure such changes.

      Thank you for this suggestion, and we agree this could be a useful analysis for the field. Your thoughtful review has convinced us that focusing on our statistical contribution will strengthen the paper, and we will make changes to further emphasize that we are not seeking to adjudicate between RPE/ANCCR. We only had space in the manuscript to include a subset of the analyses conducted on Jeong et al., 2022, and had to relegate the results from the Coddington et al., data to an appendix. Realistically, it would be hard for us to justify analyzing a third dataset. As you may surmise from the one we presented, reanalyzing a new dataset is usually very time consuming, and invariably requires extensive communication with the original authors. We did include numerous examples in our manuscript where we already replicated positive results, in a way that we believe demonstrates the sensitivity of the methodology. We have also been working with five groups at NIH and elsewhere using our approach, in experiments targeting different scientific questions. In fact, one paper that extensively applies our method and compares the results from those yielded by standard analysis of AUCs is already accepted and in press. Hence there should soon be additional demonstrations of what the method can do in less controversial settings. Finally, our forthcoming vignettes include additional analyses, not included in the manuscript, that replicate positive results. We take your point that our description of the data supporting one theory or the other should be qualified, and we will correct that. Again, your review was very thorough, and we appreciate your taking so much time to help us improve our work.

      Reviewer #2 (Recommendations For The Authors):

      First, I would like to commend the authors for the clarity of the paper, and for creating an open-source package that will help researchers more easily adopt this type of analysis.

      Thank you!

      I would suggest the authors consider adding to the manuscript, either some evidence or some intuition on how feasible would be to use FLMM for very complex model specifications, in terms of computational cost and model convergence.

      This is an excellent point and we will make this suggested change in the Methods and Discussion section in the next draft.

      From my understanding, this package might potentially be useful not just for photometry data but also for two-photon recordings for example. If so, I would also suggest the authors add to the discussion this potential use.

      We appreciate your thinking on this point, as it would definitely help expand use of the method. We included a brief point in the Discussion that this package would be useful for other techniques, but we will expand upon this.

      Reviewer #3 (Recommendations For The Authors):

      The authors should define 'function' in context, as well as provide greater detail of the alternate tests that FLMM is compared to in Figure 7. Given the novelty of estimating joint CIs, the authors should be clearer about how this should be reported and how this differs from pointwise CIs (and how this has been done in the past).

      Thank you, this is a very good point and will be critical for helping analysts describe and interpret results. We will add more detail to the Methods section on this point.

      The authors identify that many photometry studies are complex nested longitudinal designs, using the cohort of 8 animals used in five task designs of Jeong et al. 2022 as an example. The authors miss the opportunity to illustrate how FLMM might be useful in identifying the effects of subject characteristics (e.g. sex, CS+ cue identity).

      This is a great suggestion and we will add this important point to the discussion , especially in light of the factorial designs common in neuroscience experiments.

      In discussing the delay-length change experiment, it would be more accurate to say that proposed versions of RPE and ANCCR do not predict the specific change.

      We will make this change and agree this is a better phrasing.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Recommendations for the Authors):

      (1) Within the section on "optimized antigen retrieval", the authors mentioned that weak immunolabelling and strong non-specific labelling may be due to inadequate antigen retrieval. I wonder whether this interpretation is accurate. Could it also be due to inadequate antibody penetration?

      We appreciate the reviewer's comment and have revised our text to improve clarity. Regarding the SDS-electrophoresed sample (Figure S1a right), we acknowledge that the brain-surrounding background noise indicates insufficient antibody penetration. However, in the FLASH-processed sample (Figure S1a left), the background signal is uniformly distributed throughout the entire brain. Therefore, we conclude that incomplete antibody penetration is unlikely under this condition. Below is the revised paragraph:

      Revised manuscript, line 62-66: “We observed that both FLASH-processed and SDS-electrophoresed samples showed weak tyrosine hydroxylase (TH, a marker of dopaminergic neurons) signal (Figure S1a, Supporting Information). Additionally, we noticed that the FLASH-processed samples had almost no signal of NeuN, a marker of neuronal nuclei (Figure S1b left, Supporting Information), and exhibited strong non-specific background noise (Figure S1a left, Supporting Information). The presence of this background noise is considered an indicator of inadequate antigen retrieval.[48]”

      • Also, the authors mentioned the use of FLASH protocol and SDS-based electrophoresis for delipidation which were not described in the methods section.

      We have included the information in the revised Materials and Methods.

      Revised manuscript, line 418-426: S”HIELD processing, SDS-electrophoretic delipidation and FLASH delipidation. PFA-fixed specimens were incubated in SHIELD-OFF solution at 4 °C for 96 hours, followed by incubation for 24 hours in SHIELD-ON solution at 37 °C. All reagents were prepared using SHIELD kits (LifeCanvas Technologies, Seoul, South Korea) according to the manufacturer's instructions. For SDS-electrophoretic delipidation, SHIELD-processed specimens were placed in a stochastic electro-transport machine (SmartClear Pro II, LifeCanvas Technologies, Seoul, South Korea) running at a constant current of 1.2 A for 5-7 days. For FLASH delipidation, the SHIELD-processed specimens were placed in FLASH reagent (4% w/v SDS, 200 mM borate) and then incubated at 54 ℃ for 18 hours.[47] The delipidated specimens were washed with PBST at room temperature for at least 1 day.”

      • In addition, tyrosine hydroxylase (TH) should be a marker of "monoaminergic" neurons rather than specifically "dopaminergic" neurons.

      We appreciate the reviewer's correction. It is true that tyrosine hydroxylase (TH) is a marker for neurons that contain dopamine, norepinephrine, and epinephrine (catecholamines). However, the adrenergic and noradrenergic neurons are relatively few and are mostly located in the medulla and brain stem. Since we only monitoring the brain in this study, we wish to keep TH as an indicator of dopaminergic neurons.

      (2) It was mentioned that tissue integrity was retained following heating treatment during the MOCAT protocol. It would be useful to demonstrate any differences in structural distortion, if any, with before and after images with different delipidation agents.

      We have provided an additional supplementary figure (Figure S5 in the revised manuscript) to display the mouse brain at different stages of the MOCAT protocol, including pre-delipidation, post-delipidation, and post-RI-matching, to demonstrate the tissue integrity.

      Revised manuscript, line 135-137: “Figure S5 shows the gross views of the same mouse brain after undergoing 4% PFA fixation, paraffin processing, optimized antigen retrieval, and RI-matching, demonstrating intactness of the brain shape and preservation of tissue integrity.”

      (3) In this study, the authors have demonstrated the protocol could be successfully applied to FFPE specimens up to 15 years old. However, archival brain bank materials often have brain tissues with extended formalin fixation time. It may be useful to demonstrate that this technique can be utilised on FFPE tissues with long formalin fixation times.

      We appreciate the reviewer's suggestions. We have included an additional supplementary figure (Figure S6) to demonstrate the application of MOCAT to 3-month fixed mouse brain hemispheres. Although the long-term fixed specimens exhibited reduced TH intensity and S/N ratio, the major dopaminergic regions were labeled, and magnified images revealed details of cell bodies and neuronal fibers. These results suggest that MOCAT has the potential to be applied to long-term fixed specimens.

      The fluorescence intensity was more affected by fixation with formalin, which is methanol-stabilized and stronger, than with PFA. This indicates that a stronger antigen retrieval method may be a possible solution. However, achieving the right balance between antigen retrieval efficiency and tissue integrity will require additional testing and investigation.

      Revised manuscript, line 163 to 167: “We also applied MOCAT to 3-month fixed mouse brain hemispheres (Figure S6). Although the long-term fixed specimens exhibited reduced TH intensity and S/N ratio, the major dopaminergic regions were labeled, and magnified images revealed clear details of cell bodies and neuronal fibers. These results suggest that MOCAT has the potential to be applied to long-term fixed specimens.”

      Revised manuscript, line 346-351: “In the demonstration of MOCAT to 3-month fixed specimens, we observed that pontine reticular nucleus (Figure S6A, yellow arrowheads) lose TH-positive signals after long-term fixation. The fluorescence intensity was more affected by fixation with formalin, which is methanol-stabilized and stronger, than with PFA. The results indicate that a stronger antigen retrieval method may be a possible solution. However, achieving the right balance between antigen retrieval efficiency and tissue integrity will require additional testing and investigation.”

      (4) Whilst it is encouraging to see this protocol enables multi-round immunolabelling, further work is required to demonstrate there is no cross-reactivity in subsequent rounds of immunostaining following bleaching (e.g. Non-specific secondary antibody binding).

      We appreciate the reviewer for noting their concern and providing suggestions. To address this issue, we have examined the results of the second to fourth rounds of multi-round staining, as shown in Figure 3. In all three sequential rounds, we utilized rabbit primary antibodies and the same secondary antibodies. Our observations under a 3.6x objective (NA = 0.2) did not reveal any colocalization with the staining from the previous round. Hence, we conclude that cross-reactivity is not significant. However, we acknowledge the need for more comprehensive testing to completely rule out the possibility of cross-reactivity, such as employing antibodies from different hosts or utilizing different types of secondary antibodies (e.g., IgG, Fab2).

      Revised manuscript line 189-191: “The brain shape and structural integrity remained after 4 rounds of immunolabeling, and there is no cross-reactivity in subsequent rounds of immunostaining following bleaching. (Figure S11).”

      • Also, how was the structural integrity maintained for tissues after multiple rounds of heat-induced epitope retrieval?

      We have provided an additional supplementary figure (Figure S11 in the revised manuscript) to demonstrate the structural integrity after 4 rounds of immunolabeling.

      Revised manuscript line 189-191: “The brain shape and structural integrity remained after 4 rounds of immunolabeling, and there is no cross-reactivity in subsequent rounds of immunostaining following bleaching (Figure S11).”

      (5) It may be useful to have a side-by-side comparison in staining quality with equivalent sizes of rodent and human brain tissues as there appeared to be a reduction in clarity and staining quality at greater imaging depth for human tissues.

      We have provided an additional supplementary figure (Figure S12) to show the fluorescent images of TH- and Lectin-labeling in 1mm-thick human and mouse brain tissues at depths of 100 um, 500 um, and 900 um. For millimeter-sized samples, both human and mouse brains showed comparable levels of transparency, with no noticeable reduction in fluorescence signal at varying depths. In our forthcoming studies, we plan to conduct a more comprehensive comparison of centimeter-sized human and mouse brain tissues.

      (6) Lectin staining is used throughout this study to label vasculature of the brain. How specific is this as compared with other vasculature markers such as CD31?

      We appreciate the reviewer for addressing their concern. Lectins are nonimmune-origin carbohydrate-binding proteins that have been utilized to label the surface of the blood vessel lumen. On the other hand, CD31, CD34, etc. are immunomarkers of vascular endothelial cells. Numerous references have confirmed that lectin staining consistently co-localizes with CD31 immunoreactivity (Battistella et al. 2021; Miyawaki et al. 2020). However, in tumors, blood vessels lacking a lumen may display CD31 positive/Lectin negative conditions (Morikawa et al. 2002).

      (7) When discussing the applicability of MOCAT on the astrocytoma mouse model, there is a bit of confusion with regard to the terminology. As astrocytoma by default will be comprised of astrocytes, it may be useful to describe the tumour astrocytes as ASTS1CI-GFP positive astrocytes and immunolabelled astrocytes as GFAP-positive astrocytes.

      We thank the reviewer for their suggestions. To avoid confusion for readers, we have made modifications to the content and labeling of Figure 6A.

      Revised manuscript, line 213-219: “…we subjected an intact FFPE brain from an astrocytoma mouse model (see Materials and Methods) to the MOCAT pipeline to label tumor cells (ASTS1CI-GFP positive astrocytes) and GFAP-positive astrocytes (Figure 6A, C). Accordingly, we could segment GFAP-positive astrocytes surrounding the tumor (Figure 6B, D, and E) and classify them according to their distances from the tumor cells. Statistical analysis (Figure 6F) revealed that nearly half of the GFAP-positive astrocytes were within the tumor, with 63.9% being located near the tumor surface (±200 μm).”

      (8) Within the methods section, further details of the antibodies such as the clonality and immunogen should be included in the supplementary table.

      We appreciate the reviewer for their suggestions. In the revised version, we have included these details in Supplementary Table 1.

      • Furthermore, there is inadequate detail regarding multi-round immunolabelling and the precise timing of immunolabelling including lectin staining, various imaging parameters including the working distance of the lens and excitation laser used.

      We have added the experimental details of multi-round staining for Figure 3 in Supplementary Table 3. This table now includes information about the amounts and types of chemicals and antibodies used, as well as the laser wavelengths used for each round. The staining conditions (including labeling time, temperature, and buffer used) have been disclosed in Materials and Methods (see MOCAT pipeline/Electrophoretic immunolabeling). Furthermore, we have included the working distance and NA value of the objective lens used in MOCAT pipeline/Volumetric imaging and 3D visualization subsection.

      Revised manuscript, line 464-479: “Electrophoretic immunolabeling (active staining). The procedure was modified from the previously published eFLASH protocol[15] and was conducted in a SmartLabel System (LifeCanvas Technologies, Seoul, South Korea). The specimens were preincubated overnight at room temperature in sample buffer (240 mM Tris, 160 mM CAPS, 20% w/v D-sorbitol, 0.9% w/v sodium deoxycholate). Each preincubated specimen was placed in a sample cup (provided by the manufacturer with the SmartLabel System) containing primary, corresponding secondary antibodies and lectin diluted in 8 mL of sample buffer. Information on antibodies, lectin and their optimized quantities is detailed in Supplementary Table 1. The specimens in the sample cup and 500 mL of labeling buffer (240 mM Tris, 160 mM CAPS, 20% w/v D-sorbitol, 0.2% w/v sodium deoxycholate) were loaded into the SmartLabel System. The device was operated at a constant voltage of 90 V with a current limit of 400 mA. After 18 hours of electrophoresis, 300 mL of booster solution (20% w/v D-sorbitol, 60 mM boric acid) was added, and electrophoresis continued for 4 hours. During the labeling, the temperature inside the device was kept at 25 ℃. Labeled specimens were washed twice (3 hours per wash) with PTwH (1× PBS with 0.2% w/v Tween-20 and 10 μg/mL heparin),[23] and then post-fixed with 4% PFA at room temperature for 1 day. Post-fixed specimens were washed twice (3 hours per wash) with PBST to remove any residual PFA.”

      Revised manuscript, line 483-490: “Volumetric imaging and 3D visualization. For centimeter-scale specimens, images were acquired using a light-sheet microscope (SmartSPIM, LifeCanvas Technologies, Seoul, South Korea) with a 3.6x customized immersion objective (NA = 0.2, working distance = 1.2 cm). For samples <3 mm thick, imaging was performed using a multipoint confocal microscope (Andor Dragonfly 200, Oxford Instruments, UK) with objectives that were UMPLFLN10XW (10x, NA = 0.3, working distance = 3.5 mm), UMPLFLN20XW (20x, NA = 0.5, working distance = 3.5 mm), UMPLFLN40XW (40x, NA = 0.8, working distance = 3.3 mm). 3D visualization was performed using Imaris software (Imaris 9.5.0, Bitplane, Belfast, UK).”

      • Also, since refractive index homogenisation is an important step in tissue-clearing experiments, it may be useful to describe the components of NFC1 and NFC2 solutions used and provide images of the "cleared" tissues.

      We have included the image of a cleared mouse brain in Figure S5. Additionally, we have provided the refraction index of NFC1 and NFC2 in Materials and Methods (see MOCAT pipeline/Refractive index matching). However, the composition of NFC1 and NFC2, being commercialized products from Nebulem (Taiwan), is non-disclosable.

      Reviewer #2 (Public Review):

      Major Weaknesses:

      • There is no evidence of actual transparency of the entire mouse brain across different treatments. The suggested protocol is very good at removing lipids (as assessed by DiD staining) and by results of fluorescence registration deep within the brain. BUT, since in many places of the manuscript authors speak of "transparency" the reader will expect the typical picture in which control and processed brains are on top of a white graphical pattern that would evidence transparency (see as an example Figure 1 and 2 of Wan et al. 2018 (Neurophotonics. 2018 Jul;5(3):035007. doi: 10.1117/1.NPh.5.3.035007.)

      We thank the reviewer for their suggestions. We have provided an additional supplementary figure (Figure S5 in the revised manuscript) to demonstrate the transparency.

      • The manuscript lacks clarity on the applicability of MOCAT to regular formalin-fixed tissue and tissues other than the brain.

      We appreciate the reviewer's suggestions. We have included an additional supplementary figure (Figure S6) to demonstrate the application of MOCAT to a 3-month regular formalin-fixed mouse brain hemisphere. We observed that the major dopaminergic regions were still labeled, although with reduced intensity and S/N ratio. We also observed that the fluorescence intensity was more affected in formalin, which is methanol-stabilized and stronger, than in PFA, implying that a stronger antigen retrieval method may be possible to rescue the intensity. However, achieving the right balance between antigen retrieval efficiency and tissue integrity will require additional testing and investigation.

      Revised manuscript, line 163 to 167: “We also applied MOCAT to 3-month fixed mouse brain hemispheres (Figure S6). Although the long-term fixed specimens exhibited reduced TH intensity and S/N ratio, the major dopaminergic regions were labeled, and magnified images revealed clear details of cell bodies and neuronal fibers. These results suggest that MOCAT has the potential to be applied to long-term fixed specimens.”

      Revised manuscript, line 346-351: “In the demonstration of MOCAT to 3-month fixed specimens, we observed that pontine reticular nucleus (Figure S6A, yellow arrowheads) lose TH-positive signals after long-term fixation. The fluorescence intensity was more affected by fixation with formalin, which is methanol-stabilized and stronger, than with PFA. The results indicate that a stronger antigen retrieval method may be a possible solution. However, achieving the right balance between antigen retrieval efficiency and tissue integrity will require additional testing and investigation.”

      Regular formalin

      We agree with the reviewer and plan to investigate the potential use of MOCAT in tissues other than the brain in our subsequent studies.

      • Insufficient information is provided on the "epoxy treatment" or "hydrogel," and a more detailed explanation is warranted.

      We appreciate the reviewer's question. In response, we have included a paragraph in the Discussion section to clarify the appropriate timing for using epoxy or hydrogel in the MOCAT pipeline. However, the harsh conditions, such as pressure and heat, caused by external forces might damage specimens. To protect specimens from the harsh conditions caused by active staining, specimens could be strengthened by treatment with epoxy or acrylamide monomer to form a tissue-epoxy or tissue-hydrogel hybrid.[29,31] Laboratories that do not have adequate devices or handle small specimens could use passive immunolabeling instead and skip the step of epoxy or hydrogel pretreatment.

      Epoxy and acrylamide hydrogel can both strengthen tissue structures. However, in this study, we only used epoxy for treatment in combination with active electrophoretic staining. To avoid confusion and improve clarity, we have made modifications to Figure 1B and included epoxy processing in the MOCAT pipeline subsection within Materials and Methods.

      Revised manuscript, line 329-340: “In Figure 1B, we propose two staining strategies for samples with thicknesses less than 500 um and greater than 1 mm: passive immunolabeling and active immunolabeling. In passive immunolabeling, antibodies penetrate and reach their targets solely through diffusion, without any additional force. It takes approximately two months to passively stain a whole mouse brain.[26,28] Compared to passive immunolabeling, active immunolabeling uses an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process, reducing the required staining time for a whole mouse brain to one day. However, the harsh conditions, such as pressure and heat, caused by external forces might damage specimens. To protect specimens from the harsh conditions caused by active staining, specimens could be strengthened by treatment with epoxy or acrylamide monomer to form a tissue-epoxy or tissue-hydrogel hybrid.[29,31] Laboratories that do not have adequate devices or handle small specimens could use passive immunolabeling instead and skip the step of epoxy or hydrogel pretreatment.”

      • The differences between passive and active immunolabeling, as well as photobleaching data, should be addressed for a comprehensive understanding.

      We appreciate the reviewer's question. We have included a paragraph in the Discussion section to explain the differences between passive and active immunolabeling:

      Revised manuscript, line 329-340: “In Figure 1B, we propose two staining strategies for samples with thicknesses less than 500 um and greater than 1 mm: passive immunolabeling and active immunolabeling. In passive immunolabeling, antibodies penetrate and reach their targets solely through diffusion, without any additional force. It takes approximately two months to passively stain a whole mouse brain.[26,28] Compared to passive immunolabeling, active immunolabeling uses an external force, such as pressure, electrophoresis, etc., to facilitate antibody penetration and therefore significantly speed up the staining process, reducing the required staining time for a whole mouse brain to one day.”

      Regarding the effects of photobleaching, we have added Figure S10 to demonstrate the efficiency of using our approach.

      Revised manuscript, line 184-185: After imaging, we photobleached transparent RI-matched samples using a 100W LED white light to quench the previously labeled fluorophores (Figure S10).

      • The assertion that MOCAT can be rapidly applied in hospital pathology departments seems overstated due to the limited availability of light-sheet microscopes outside research labs.

      We thank the reviewer's question. Since the imaging depth primarily relies on the working distance of the objective lens, if a long working distance objective lens (such as UMPLFLN10XW from Olympys Inc.) is available, it is also possible to scan samples up to a thickness of approximately 3.5mm. However, confocal systems require longer scanning times, and in non-optical sectioning wide-field fluorescence microscopes like the Olympus BX series or ZEISS Axio imager series, deconvolution algorithms must be utilized to eliminate out-of-focus signals.

      Additionally, the epifluorescence system may also result in reduced fluorescent intensity in the deeper regions of the sample. If the fluorescent signal of the target is weak or exceeds the working distance of the objective lens, an alternative option is to send the sample to a microscopy or imaging facility core for scanning and further analysis.

      • The compatibility of MOCAT with genetically encoded fluorescent proteins remains unclear and warrants further investigation.

      We appreciate the reviewer's question. We have included a paragraph in the Discussion section to address this limitation of MOCAT:

      Revised manuscript, line 354-361: “Fourth, MOCAT is not compatible with endogenous fluorescence due to a reduction in fluorescence intensity caused by xylene and alcohol used in paraffin processing. Researchers who need to directly observe genetically encoded fluorescent proteins can utilize tissue-clearing methods such as 3DISCO, X-CLARITY, CUBIC, etc., which have been shown to minimize the decrease in fluorescence intensity. On the other hand, if researchers need to visualize transgenic fluorescent proteins along with other biomarkers, they can use MOCAT for delipidation and boost-immunolabeling to visualize the transgenic fluorescent proteins.”

      • The control of equivalent depths in cryosections for evaluating the intensity of DiD staining should be elaborated upon.

      We have included these information in the section of Materials and Methods:

      Revised manuscript, line 428-430: “Serial 20-µm-thick cryosections were cut from mouse brain slices (2-mm thick) of various treatment conditions for subsequent DiD or Oil red O staining. For DiD staining, cryosections (that were of approximately 0-40 µm depth) were post-fixed with 4% PFA at room temperature for 5 minutes.”

      • The composition of NFC1 and NFC2 solutions for refractive index matching should be provided.

      We have provided the refraction index of NFC1 and NFC2 in Materials and Methods (see MOCAT pipeline/Refractive index matching). However, the composition of NFC1 and NFC2, being commercialized products from Nebulem (Taiwan), is non-disclosable.

      Reviewer #2 (Recommendations for the Authors):

      • A larger readership would benefit from validating imaging depths using fluorescence microscopies commonly found in pathological departments (i.e. Confocal, 2-photon, epifluorescence+deconvolution, etc).

      We thank the reviewer's recommentation. Since the imaging depth primarily relies on the working distance of the objective lens, if a long working distance objective lens (such as UMPLFLN10XW from Olympys Inc.) is available, it is also possible to scan samples up to a thickness of approximately 3.5mm. However, confocal systems require longer scanning times, and in non-optical sectioning wide-field fluorescence microscopes like the Olympus BX series or ZEISS Axio imager series, deconvolution algorithms must be utilized to eliminate out-of-focus signals.

      Additionally, the epifluorescence system may also result in reduced fluorescent intensity in the deeper regions of the sample. If the fluorescent signal of the target is weak or exceeds the working distance of the objective lens, an alternative option is to send the sample to a microscopy or imaging facility core for scanning and further analysis.

      -Investigate the compatibility of MOCAT with genetically encoded fluorescent proteins, a common target in research specimens.

      We appreciate the reviewer's question. We have included a paragraph in the Discussion section to address this limitation of MOCAT:

      Revised manuscript, line 354-361: “Fourth, MOCAT is not compatible with endogenous fluorescence due to a reduction in fluorescence intensity caused by xylene and alcohol used in paraffin processing. Researchers who need to directly observe genetically encoded fluorescent proteins can utilize tissue-clearing methods such as 3DISCO, X-CLARITY, CUBIC, etc., which have been shown to minimize the decrease in fluorescence intensity. On the other hand, if researchers need to visualize transgenic fluorescent proteins along with other biomarkers, they can use MOCAT for delipidation and boost-immunolabeling to visualize the transgenic fluorescent proteins.” References:

      Battistella, Roberta et al. 2021. “Not All Lectins Are Equally Suitable for Labeling Rodent Vasculature.” International Journal of Molecular Sciences 22(21): 22. /pmc/articles/PMC8584019/ (January23, 2024).

      Miyawaki, Takeyuki et al. 2020. “Visualization and Molecular Characterization of Whole-Brain Vascular Networks with Capillary Resolution.” Nature Communications 2020 11:1 11(1): 1–11. https://www.nature.com/articles/s41467-020-14786-z (January23, 2024).

      Morikawa, Shunichi et al. 2002. “Abnormalities in Pericytes on Blood Vessels and Endothelial Sprouts in Tumors.” The American Journal of Pathology 160(3): 985–1000.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Satoshi Yamashita et al., investigate the physical mechanisms driving tissue bending using the cellular Potts Model, starting from a planar cellular monolayer. They argue that apical length-independent tension control alone cannot explain bending phenomena in the cellular Potts Model, contrasting with the vertex model. However, the evidence supporting this claim is incomplete. They conclude that an apical elastic term, with zero rest value (due to endocytosis/exocytosis), is necessary in constricting cells and that tissue bending can be enhanced by adding a supracellular myosin cable. Notably, a very high apical elastic constant promotes planar tissue configurations, opposing bending.

      Strengths:

      • The finding of the required mechanisms for tissue bending in the cellular Potts Model provides a more natural alternative for studying bending processes in situations with highly curved cells.

      • Despite viewing cellular delamination as an undesired outcome in this particular manuscript, the model's capability to naturally allow T1 events might prove useful for studying cell mechanics during out-of-plane extrusion.

      We thank the reviewer for the careful comments and insightful suggestions.

      Weaknesses:

      • The authors claim that the cellular Potts Model is unable to obtain the vertex model simulation results, but the lack of a substantial comparison undermines this assertion. No references are provided with vertex model simulations, employing similar setups and rules, and explaining tissue bending solely through an increase in a length-independent apical tension.

      We did not copy the parameters of the vertex models in the preceding studies because we also found that the apical, lateral, and basal surface tensions must be balanced otherwise the epithelial cell could not maintain the integrity (Supplementary Figure 1), while the ratio was outside of the suitable range in the preceding studies.

      • The apparent disparity between the two models is attributed to straight versus curved cellular junctions, with cells with a curved lateral junction achieving lower minimum energies at steady-state. However, a critical discussion on the impact of T1 events, allowing cellular delamination, is absent. Note that some of the cited vertex model works do not allow T1 events while allowing curvature.

      We appreciate the comment, and will add it to the discussion.

      • The suggested mechanism for inducing tissue bending in the cellular Potts Model, involving an apical elastic term, has been utilized in earlier studies, including a cited vertex model paper (Polyakov 2014). Consequently, the physical concept behind this implementation is not novel and warrants discussion.

      The reviewer is correct but Polyakov et al. assumed “that the cytoskeletal components lining the inside membrane surfaces of the cells provide these surfaces with springlike elastic properties” without justification. We assumed that the myosin activity generated not the elasticity but the contractility based on Labouesse et al. (2015), and expected that the surface elasticity corresponded with the membrane elasticity. Also, in the physical concept, we clarified how the contractility and the elasticity differently deformed the cells and tissue, and demonstrated why the elasticity was important for the apical constriction. We will add it to the discussion.

      • The absence of information on parameter values, initial condition creation, and boundary conditions in the manuscript hinders reproducibility. Additionally, the explanation for the chosen values and their unit conversion is lacking.

      We agree with the comment, and will add them to the methods.

      Reviewer #2 (Public Review):

      Summary:

      In their work, the authors study local mechanics in an invaginating epithelial tissue. The mostly computational work relies on the Cellular Potts model. The main result shows that an increased apical "contractility" is not sufficient to properly drive apical constriction and subsequent tissue invagination. The authors propose an alternative model, where they consider an alternative driver, namely the "apical surface elasticity".

      Strengths:

      It is surprising that despite the fact that apical constriction and tissue invagination are probably most studied processes in tissue morphogenesis, the underlying physical mechanisms are still not entirely understood. This work supports this notion by showing that simply increasing apical tension is perhaps not sufficient to locally constrict and invaginate a tissue.

      We thank the reviewer for recognizing the importance and novelty of our work.

      Weaknesses:

      The findings and claims in the manuscript are only partially supported. With the computational methodology for studying tissue mechanics being so well developed in the field, the authors could probably have done a more thorough job of supporting the main findings of their work.

      We thank the reviewer for the careful assessment and suggestions. However our simulation was computationally expensive, modeling the epithelium in an analytically calculable expression requires a lot of work, and it is beyond the scope of the present study.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      "Expanding the Drosophila toolkit for dual control of gene expression" by Zirin et al. aims to develop resources for simultaneous independent manipulation of multiple genes in Drosophila. The authors use CRISPR knock-ins to establish a collection of T2A-LexA and T2A-QF2 transgenes with expression patterns in a number of commonly studied organs and tissues. In addition to the transgenic lines that are established, the authors describe a number of plasmids that can be used to generate additional transgenes, including a plasmid to generate a dual insert of LexA and QF that can be resolved into a single insert using FLP/FRT-mediated recombination, and plasmids to generate RNAi reagents for the LexA and QF systems. Finally, the authors demonstrate that a subset of the LexA and QF lines that they generated can induce RNAi phenotypes when paired with LexAop or QUAS shRNA lines. In general, the claims of the paper are well supported by the evidence and the authors do a thorough job of validating the transgenic lines and characterizing their expression patterns.

      Strengths:

      • Numerous Gal4 lines allow for highly specific genetic manipulation in a wide range of organs and tissues, however, similar tissue-specific drivers using alternative binary expression systems are not currently well developed. This study provides a large number of tissue and organ-specific LexA and QF2 driver lines that should be broadly useful for the Drosophila community.

      • While a minority of the driver lines do not express the expected pattern (likely due to cryptic regulatory elements in the LexA or QF2 sequences), the ability to generate drivers using two different Gal4 alternatives mitigates this issue (as in nearly all cases at least one of the two systems produces a clean driver line with the expected expression pattern).

      • The use of LexA-GAD provides an additional degree of control as it is subject to Gal80 repression. This could prove to be particularly useful in cases where a researcher wishes to manipulate multiple genes using Gal4 and LexA-GAD drivers as the Gal80(ts) system could be used for simultaneous temporal control of both constructs.

      • The use of Fly Cell Atlas information to generate novel oenocyte-specific driver lines provides a useful proof-of-concept for constructing additional highly tissue-specific drivers.

      Weaknesses:

      • Since these reagents will most commonly be paired with existing Gal4 lines, adding information about corresponding Gal4 lines targeting these tissues and how faithfully the LexA and QF2 lines recapitulate these Gal4 patterns would be highly beneficial.

      It is outside the scope of this paper to analyze the expression patterns of the corresponding publicly available Gal4 lines. It is clear from the tissue specificity of the LexA-GAD and QF2 lines that they are expressed in the expected larval tissues based on the target genes. We have added a sentence in the discussion section noting “Further, we expect that there will also be differences between the expression pattern of corresponding Gal4 and the LexA-GAD/QF lines, as the latter were made by knock-in, while the former are often enhancer traps. However, based on our larval mounts and dissections, the stocks generated in this paper are highly specific to the expression pattern of the targeted genes.”

      • It is not stated in the manuscript if these transgenic lines and plasmids are currently publicly available. Information about how to obtain these reagents through Bloomington, Addgene, or TRiP should be added to the manuscript.

      We have added to the materials section that “All vectors described here that are required to produce new driver lines will be made available at Addgene.” And “All transgenic fly stocks described here will be made available at the Bloomington Drosophila Stock Center.”

      Reviewer #2 (Public Review):

      Zirin, Jusiak, and Lopes et al presented an efficient pipeline for making LexA-GAD and QF2 drivers. The tools can be combined with a large collection of existing GAL4 drivers for a dual genetic control of two cell populations. This is essential when studying inter-organ communications since most of the current genetic drivers are biased toward the expression of the central nervous system. In this manuscript, the authors described the methodology for efficiently generating T2A-LexA-GAD and T2A-QF2 knock-ins by CRISPR, targeting a number of genes with known tissue-specific expression patterns. The authors then validated and compared the expression of double as well as single drivers and found the tissue-specific expression results were largely consistent as expected. Finally, a collection of plasmids for LexA-GAD and QF,2 as well as the corresponding LexAop and QUAS plasmids were generated to facilitate the expansion of these tool kits. In general, this study will be of considerable interest to the fly community and the resources can be readily generalized to make drivers for other genes. I believe this toolkit will have a significant, immediate impact on the fly community.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Lines 56-57: Janelia Flylight lines are not necessarily brain-specific - this collection has or could be screened in other tissues.

      Correct. We have altered this sentence to read: However, these lines were developed primarily for brain expression. Although they are often expressed in other tissues, they are not well suited for experiments targeting non-neuronal cell types

      • Line 197 - I don't see the referenced Figure S1 in the reviewer materials. It appears this is actually referencing panels LL and MM in Figure 2.

      Correct. We have fixed this error.

      • No information on the injection efficiency to create the CRISPR knock-in lines is presented. I am guessing the efficiency will be similar to that of other reported HDR-based CRISPR knock-ins, but if this information is available it would be useful to include it so that others know what to expect when injecting these vectors.

      We did not systematically assay the injection efficiency. However, we can say that it was in line with previous descriptions of CRISPR-based plasmid and ‘drop-in’ HDR methods. We have added a note in the methods that “Knock-in efficiencies were comparable to previous reports (Kanca et al. 2019; Kanca et al. 2022).”

      • Demonstration of successful multi-manipulation would strengthen the paper.

      We do not feel that this is necessary as there have been many papers showing combinatorial Gal4+LexA/QF experiments. An example from our lab can be seen in PMID: 37582831.

      • Also, are there approaches for efficiently constructing pairs of UAS/LexAOp or UAS/QUAS shRNA lines that would potentially streamline the genetics for multi-manipulation? Otherwise, this could be rather cumbersome to implement as one needs to combine a Gal4 line, a LexA/QF2 line (which will be constrained as to its chromosomal location by the target gene), and separate UAS-shRNA and LexAop/QUAS-shRNA constructs into the same fly.

      There are some recent innovations that are useful in this respect. We have added a sentence to the discussion that says: “There remains an unmet need for a single vector that would allow for UAS/LexAop/QUAS control of different shRNAs. However, recent innovations in multi module vectors and multiplexed drug-based genetics allow researchers to more efficiently generate UAS/QUAS/lexAop transgenic fly strains (Matinyan et al. 2021; Wendler et al. 2022).”

      • In Figure 5 - is the difference for the hh inserts attributable to the driver line or the GFP/mCherry construct (or differential ability to detect GFP/mCherry)? One could try visualizing hhL(-Q) with the LexAop-GFP line. I guess that the correspondence between the nubbin and hh result suggests that maybe QF2 is suppressed in the wing pouch, but this could also be the difference in the reporter constructs and it would be interesting to know if this difference is truly attributable to the driver constructs from the standpoint of knowing how consistent the QF/LexA patterns are expected to be.

      The difference is not attributable to GFP versus mCherry or the specific LexAop and QUAS lines that we used in figure 5. We tested the double knock-in and derivative single knock-ins with various QUAS and lexAop reporters and always observed the same pattern.

      Reviewer #2 (Recommendations For The Authors):

      There are a few points that should be clarified. A list of these specific points is provided below with the view that this could help the preparations of a stronger, improved paper.

      Line 50-51: "There have been no systematic studies comparing the two systems, with only anecdotal evidence to support one system over the other." It is unclear to me what the anecdotal evidence the authors referred to. Could the authors elaborate more on this part?

      Based on an examination of QUAS brains, Potter et al, 2010 (PMID 20434990) makes the claim that “The low basal expression of QUAS and UAS reporters provides significant advantage compared to the lexA binary expression system.”

      Shearin et al., 2014 (PMID: 24451596) compared Gal4/UAS, LexA/LexAop, and QF/QUAS reporter strength with the nompC driver and found that the QF system produced the strongest expression.

      While these observations might be true in the nervous system, it isn’t clear that this extends to other tissues, nor what effect this would have on gene knockdown experiments.

      There have been some reports that have explored swapping out a Gal4 insertion for a LexA or QF at the same locus. For example, Gohl et al. 2011 PMID: (PMID 21473015) mentions that “the majority of the swaps captured most features of the original GAL4 expression patterns. In some cases, however, either prominent features of the GAL4 pattern were lost or we observed new expression patterns. These changes may have resulted from differences in the strength or responsiveness of reporter lines. Alternately, the swap may have modified some combination of enhancer spacing and sequence composition flanking the promoter.”

      Line 61-62: "On average, each StanEx line expresses LexA activity in five distinct cell types, with only one line showing expression in just one tissue..." What's the evidence to support this claim?

      This observation comes from Figure S3 of Kockel et al. 2016 (PMID: 27527793), where the authors “analyzed a subset of 76 StanEx lines that are unambiguously inserted within, or adjacent to, a single known gene.” We cited this reference in the preceding sentence. To clarify, we have added the citation again for line 61-62.

      Line 63-65: "These findings are consistent with prior studies indicating that enhancers very rarely produce expression patterns that are limited to a single cell type in a complex organism (Jenett et al. 2012)." It might be worth expanding on the use of the split system to achieve high cell-type-specificity. Especially, there are growing resources using split-intein and T2A-split-GAL4 with the prediction of genes from single-cell RNA sequencing datasets.

      We agree that the split system is currently the premier method to produce the most specific driver lines. Indeed, our group has recently published a paper on the split-intein Gal4 system (see PMID 37276389). However, the tradeoff is that split systems usually require generation of transgenic lines, which becomes impractical for research involving two independent binary transcriptional systems, as the user would need to combine at least three driver components into single stocks, plus the UAS/QUAS/LexAop insertions. The ideal would be to generate complementary split insertions on the same chromosome, but we think a discussion of this is tangential to the thrust of our work here.

      The authors did not fully discuss the rationale of using LexA-GAD vs LexA-p65 or VP16AD throughout the manuscript. I assumed the main reason for choosing LexA-GAD was to be compatible with GAL80 suppression. It might be worth explicitly stating in the result (e.g., line 123 or in the introduction). Also, did the authors observe weak transcriptional activation using LexA-GAD? It has been shown that the strength of transactional activation is much weaker for GAL4AD than the p65 or VP16AD. This might be worth noting in the manuscript as well.

      We did briefly mention in the introduction that one disadvantage of the Flylight lines is that they “use a p65 transcriptional activation domain and therefore are not compatible with the Gal80 temperature sensitive Gal4 repression system.” We have expanded on this issue in the introduction which now says: “We chose to use LexA with the Gal4 activation domain, rather than the p65 or VP16 activation domains to allow for temporal control by Gal80 (Lai and Lee 2006; Pfeiffer et al. 2010). We chose to use QF2 variant over the original QF, to avoid the toxicity reported for the latter (Riabinina et al. 2015).”

      We did not have any problems visualizing gene expression with fluorescent reporters. Nor did we have any difficulty obtaining knock-down phenotypes with ubiquitous drivers.

      Line 125-127. Is there a specific reason why the authors chose the SV40 terminator for the double driver construct but the Hsp70 terminator for the single driver construct?

      We found that the Hsp70 terminator gave slightly lower expression and decided to use this for the singles to avoid toxicity. For the doubles we chose the SV40, to compensate for reduced protein expressiojn of the second gene position.

      Line 144-146: "To verify the knock-ins, we PCR-amplified the genomic regions flanking the insertion sites and confirmed that the insertions were seamless and in-frame." Did the authors recover lines with indel introduced, resulting in out-of-frame insertion?

      Yes, we did see indels, which sometimes resulted in out of frame insertions, which were discarded. This result is in line with what we have observed with other CRISPR HDR knock-in experiments.

      The underlying reason might be out of the scope of this manuscript. However, it would still be helpful for the authors to speculate the potential reasons why the T2A-LexA-GAD and T2A-QF2 targeting the same insertion site showed very distinct expressions.

      It is outside the scope of this report to test this issue experimentally. We have a section in the discussion which does speculate as to the reason: “While we had no difficulty obtaining knock-ins for both types of activators, we did observe that for some target genes, the T2A-QF2 was only active in a subset of the expected gene expression pattern. In particular, we found that T2A-QF2 was difficult to express in the wing pouch. It may be that toxicity is an issue, and the weaker QF2w may be a better option for generating drivers in some organs (Riabinina and Potter 2016). Alternatively, differences in the LexA-GAD and QF2 sequences, and sequence length, could impact the function of nearby gene regulatory regions.”

      Regarding the observation that the existence of 3XP3-RFP marker can interfere with the expression of T2A-LexA-GAD and T2A-QF2 expression in a case-by-case manner, it might be worth emphasizing in the discussion that the proper removal of 3XP3-RFP marker by Cre/LoxP recombination is important.

      We have added the following to the discussion: “Importantly, our knock-in constructs contain the 3XP3-RFP cassette for screening transformants. Perhaps due to interaction between the 3XP3 promoter and the regulatory regions of the target gene, we occasionally saw misexpression of the LexA-GAD/QF2 in the 3XP3 domain. We have therefore prioritized Cre-Lox removal of the 3XP3-RFP cassette from our knock-in stocks, and advise that users of the plasmids described here likewise remove the marker, following successful knock-in.”

      For Fig. 5B, 5F-G, the authors should elaborate more in the result section. For example, lines 215-217: "We tested this with the hh and dpp lines and observed robust generation of both T2A-QF2 and T2A-LexA-GAD from hs-Flp; T2A-QF2-T2A-LexA-GAD parents (Figure 5B)." It is unclear what the authors mean by "robust generation". Also, there is no description of the results in Fig. 5F-G.

      We have expanded this section for figure 5B, which now reads: “We tested this with the hh and dpp lines and observed robust generation of both T2A-QF2 and T2A-LexA-GAD from hs-Flp; T2A-QF2-T2A-LexA-GAD parents (Figure 5B). In the case of the hh line, 15 out of 36 heat-shocked parents gave rise to at least one T2A-LexA-GAD progeny, with a mean of 14% recombinant offspring per parent. 20 out of 36 gave rise to at least one T2A-QF2 progeny, with a mean of 9% recombinant offspring per parent. In the case of the dpp line, 31 out of 32 heat-shocked parents gave rise to at least one T2A-LexA-GAD progeny, with a mean of 30% recombinant offspring per parent. 17 out of 32 gave rise to at least one T2A-QF2 progeny, with a mean of 9% recombinant offspring per parent.

      We have also added a description for Figure 5F-G, which reads: “Recombinants were also independently verified by PCR of the insertions (Figure 5F-G), where we observed the expected smaller band sizes in the derivative T2A-QF2 and T2A-LexA-GAD relative to the parental double driver.”

      Line 229, minor error: "Into these vectors, ..."

      We have edited this to read: “We cloned shRNAs targeting forked (f) and ebony (e) genes into these vectors and assayed their phenotypes when crossed to ubiquitous LexA-GAD and QF2 drivers.”

      Line 238-240: "Both Tub-LexA-GAD and Tub-QF2 drivers generated knockdown phenotypes in the thorax when crossed to f and e shRNA lines. However, the Tub-LexA-GAD phenotypes were stronger than those of Tub-QF2 (Figure 6C-D, F-G, I-J)." The stated "stronger phenotypes" are not clear to me. It might be worth elaborating more.

      We have further clarified this by changing it to: “However, the Tub-LexA-GAD phenotypes were stronger than those of Tub-QF2 (Figure 6C-D, F-G, I-J). For example, Tub-LexA-GAD produced a fully penetrant f bristle phenotype (Figure 6F) while some wild-type bristles remained on the thoraces of Tub-QF2 f knockdown (Figure 6G). Neither Tub-LexA-GAD or Tub-QF2 was able to achieve the strength of phenotype generated by the T2A-LexA-GAD da knock-in line (compare the darkness of the cuticle caused by e knockdown in Figure 6H-J).”

      Line 257-250: "Our collection of T2A-LexA-GAD and T2A-QF2 and double driver vectors can be easily adapted to target any gene for CRISPR knock-in, with a high probability that the resulting line will accurately reflect the expression of the endogenous locus" The authors could refer to the recent gene-specific Trojan GAL4/split-GAL4 work to support the idea that these gene-specific T2A-GAL4/split-GAL4 drivers reflect better than the enhancer-based drivers.

      We have added the following sentence to the discussion: “The specificity achieved with this approach can also be seen in recent efforts to build collections of gene specific T2A-Split-Gal4 and T2A-Gal4 insertions (Kanca et al. 2019; Chen et al. 2023; Ewen-Campen et al. 2023).”

      Line 630: "Removal of 3XP3-RFP eliminated gut and anal pad misexpression and did not affect glial cell expression." It would be helpful to add the annotation on Fig. 3B to show the location of glial cell expression.

      We have added arrowheads on Figure 3 and the legend now reads: “Removal of 3XP3-RFP eliminated gut and anal pad misexpression and did not affect glial cell expression (white arrowheads).

      Line 650-651: "The fat body mCherry expression is also present in the reporter stock and does not indicate LexA-GAD activity." I did not get what the authors were trying to convey. Where did the fat body mCherry expression come from? Please elaborate more.

      We have changed this section to explain that “The fat body mCherry expression (yellow arrowhead) is from leakiness of the reporter stock and does not indicate LexA-GAD activity.”

      Line 679-680: "forked shRNA produced a forked bristles phenotype." Please add the annotation on the figures to show where the phenotypes were.

      We have added arrowheads and asterisks to the figure. The legend now reads: “(E-G) forked shRNA produced a forked bristles phenotype (white arrowheads). Note that some bristles retain a more elongated wild-type morphology with the Tub-QF2 driven forked knockdown (G, yellow asterisk).”

      Fig 1D-E and 4A-B. There is no description throughout the manuscript about QA, QS regulation as well as little GAL80ts regulation. It will confuse readers with a little fly genetic background. Please include the introductions of these regulations of different binary expression systems.

      We have added a section in the introduction, which states: “We chose to use LexA with the Gal4 activation domain, rather than the p65 or VP16 activation domains to allow for temporal control by the temperature sensitive Gal4 repressor, Gal80 (Lai and Lee 2006; Pfeiffer et al. 2010). We chose to use QF2 variant over the original QF, to avoid the toxicity reported for the latter (Riabinina et al. 2015). Like Gal80-based modulation of LexA-GAD, QF2 activity can also be regulated temporally by expressing QS, a QF repressor. QS repression of QF can be released by feeding flies quinic acid (Riabinina and Potter 2016).”

      Fig. 2, there are several ND in the figure without any explanation in the manuscript (e.g. Mef2 and He). In addition, the expression patterns look quite different between T2A-LexA-GAD and T2A-QF2 for some genes (e.g., mex1, Myo31DF), but the authors did not mention any of them in the manuscript. Please elaborate more.

      We have altered the Figure 2 legend as follows: “(A-KK) T2A-LexA-GAD knock-in lines crossed to a LexAop-GFP reporter and T2A-QF2 knock-in lines crossed to a QUAS-GFP reporter. Panels show 3rd instar larva. GFP shows the driver line expression pattern. RFP shows the 3XP3 transformation marker, which labels the posterior gut and anal pads of the larva. Gene names and tissues are on the left. We failed to obtain LexA-GAD knock-ins for Mef2 (E) and He (DD). (LL-MM) 3rd instar imaginal disc from the insertions in the nubbin (nub) gene. Note that most of the lines are highly tissue-specific and are comparable between the LexA-GAD and QF2 knock-ins. Insertions in the daughterless gene (da) and nub are an exception, as the T2A-LexA-GAD, but not the T2A-QF2, gives the expected expression pattern. Insertions in the gut-specific genes mex1 (X-Y) and Myo31Df (Z-AA) also differed between the LexA-GAD and QF2 drivers.”

      We have also added a note on the inconsistency of mex1 and Myo31Df in the discussion: “While we had no difficulty obtaining knock-ins for both types of activators, we did observe that for some target genes, the T2A-QF2 was only active in a subset of the expected gene expression pattern. In particular, we found that T2A-QF2 was difficult to express in the wing pouch. Additionally, we found that the driver expression in the gut-specific genes, mex1 and Myo31Df differed between the LexA-GAD and QF2 transformants. In both cases the LexA-GAD was more broadly expressed along the length of the gut than the QF2. It may be that toxicity is an issue, and the weaker QF2w may be a better option for generating drivers in some organs (Riabinina and Potter 2016).”

      Fig. 4B, it is unclear why the hsp70 is present downstream of the enhancer of interest (upstream of T2A). Is it the molecular mark resulting from the cloning steps? Does it serve any specific purpose?

      This is the Drosophila hsp70 gene minimal promoter and is standard for many expression constructs in Drosophila. In the methods section we described how we made versions of the pMCS-T2A-QF2-T2A-LexA-GAD-WALIUM20 with and without tis minimal promoter: “We used pMCS-T2A-QF2-T2A-lexA0GAD-WALIUM20 for dpp-blk and pMCS-T2A-QF2-T2A-lexGAD-WALIUM20-alt (which lacks the hsp70 promoter) for Ilp2, since dpp-blk does not have a basal promoter, but the Ilp2 enhancer does.”

      Fig 5A. The resulting single T2A-QF2 and T2A LexA-GAD from the double driver parental lines retain the sequence of FRT3 upstream of the QF2 and LexA-GAD. I assume the FRT3 part will be translated and remain attached to QF2 and LexA-GAD. Is that correct? If so, would this cause any adverse effect?

      Correct. The FRT3 sequence is present in both the parental double and single derivatives. We can say that the additional amino acids do not prevent LexA-GAD or QF2 transcriptional activation. We do not know whether there may be other adverse effects, though we did not observe any.

      Fig. 5C-C'. It seems like the images of Fig. 5C-C' were the same as Fig. 4D-D'. If so, the authors should indicate that in the figure legend.

      We have made a note of this in the figure legend.

    1. Author Response:

      Reviewer #1:

      Summary:

      The authors use an innovative behavior assay (chamber preference test) and standard calcium imaging experiments on cultured dorsal root ganglion (DRG) neurons to evaluate the consequences of global knockout of TRPV1 and TRPM2, and overexpression of TRPV1, on warmth detection. They find a profound effect of TRPM2 elimination in the behavioral assay, whereas elimination of TRPV1 has the largest effect on neuronal responses. These findings are of importance, as there is still substantial discussion in the field regarding the contribution of TRP channels to different aspects of thermosensation.

      Strengths:

      The chamber preference test is an important innovation compared to the standard two-plate test, as it depends on thermal information sampled from the entire skin, as opposed to only the plantar side of the paws. With this assay, and the detailed analysis, the authors provide strong supporting evidence for the role of TRPM2 in warmth avoidance. The conceptual framework using the Drift Diffusion Model provides a first glimpse of how this decision of a mouse to change between temperatures can be interpreted and may form the basis for further analysis of thermosensory behavior.

      Weaknesses:

      The authors juxtapose these behavioral data with calcium imaging data using isolated DRG neurons. Here, there are a few aspects that are less convincing.

      (1) The authors study warmth responses using DRG neurons after three days of culturing. They propose that these "more accurately reflect the functional properties and abundance of warm-responsive sensory neurons that are found in behaving animals." However, the only argument to support this notion is that the fraction of neurons responding to warmth is lower after three days of culture. This could have many reasons, including loss of specific subpopulations of neurons, or any other (artificial?) alterations to the neurons' transcriptome due to the culturing. The isolated DRGs are not selected in any way, so also include neurons innervating viscera not involved in thermosensation. If the authors wish to address actual changes in sensory nerves involved in warmth sensing in TRPM2 or TRPV1 KO mice without disturbing the response profile as a result of the isolation procedure, other approaches would be needed (e.g. skin-nerve recordings or in vivo DRG imaging).

      We agree that there could be several reasons as to why the responses of cultured DRGs are reduced compared to the acute/short-term cultures. It is possible ––and likely–– that

      transcriptional changes happen over the course of the culturing period. It is also possible that it is a mere coincidence that the 3-day cultures have a response profile more similar to the in vivo situation than the acute cultures. In the revised manuscript, we will therefore tone down the claim that the 3-day cultures mirror the native conditions more appropriately.

      Nevertheless, our results clearly show that acute cultures have a response profile that is much more similar to damaged/”inflamed” neurons, irrespective of any comparison to the 3 daycultures. Therefore, we believe, it is helpful to include this data to make scientists aware that acute cultures are very different to non-inflamed native/in vivo DRG neurons that many researchers use in their experiments.

      In some experiments not shown in the first version of our manuscript, we applied the TRPchannel agonists Menthol, Capsaicin and AITC (mustard oil) consecutively in a few 3-day

      cultures. We also have Capsaicin responses from overnight cultures. We will attempt to correlate the percentage of the neurons responsive to these TRPV1, TRPM8 and TRPA1

      ion channel agonists in our cultures to the percentages of neurons found to express the respective TRP ion channels (TRPM8, TRPV1 and TRPA1) in vivo. While this type of

      analysis won’t prove that 3-day cultures are similar to the in vivo situation (even if there is good correlation between the in vitro and in vivo results), it might support the usage of 3-day cultures as a model.

      (2) The authors state that there is a reduction in warmth-sensitive DRG neurons in the TRPM2 knockout mice based on the data presented in Figure 2D. This is not convincing for the following reasons. First, the authors used t-tests (with FDR correction - yielding borderline significance) whereas three groups are compared here in three repetitive stimuli. This would require different statistics (e.g. ANOVA), and I am not convinced (based on a rapid assessment of the data) that such an analysis would yield any significant difference between WT and TRPM2 KO. Second, there seems to be a discrepancy between the plot and legend regarding the number of LOV analysed (21, 17, and 18 FOV according to the legend, compared to 18, 10, and 12 dots in the plot). Therefore, I would urge the authors to critically assess this part of the study and to reconsider whether the statement (and discussion) that "Trpm2 deletion reduces the proportion of warmth responders" should be maintained or abandoned.

      Yes, we agree that the statistical tests indicated by the referee are more appropriate/robust for the data shown in Figures 1F, 2D, and 4G.

      When we perform 2-way repeated measures ANOVA and subsequent multiple comparison test (with Dunnets correction) against Wildtype, for data shown in Fig. 2D, both the main effect (Genotype) and the interaction term (Stimulus x Genotype) are significant. The multiple comparison yields very similar result as in the current manuscript, with the difference that the TRPM2-KO data for the 2nd stimulus (~36°C) is borderline significant (with a p-value of p=0.050).

      Due to the possible dependence of the repeated temperature stimuli and the variability of each stimulus between FOVs (Fig. 2C), it is possible that a mixed-effect model that accounts for these effects is more appropriate.

      Similarly, for plots 1F and 4G, Genotype (either as main effect or as interaction with Time) is significant after a repeated measures two-way ANOVA. The multiple comparisons (with Bonferroni correction) only changed the results marginally at individual timepoints, without affecting the overall conclusions. The exception is Fig. 4G at 38°C, where the interaction of Time and Genotype is significant, but no individual timepoint-comparison is significant after Bonferroni correction.

      The main difference between the results presented above and the ones presented in the manuscript is the choice of the multiple comparison correction. We originally opted for the falsediscovery rate (FDR) approach as it is less prone to Type II errors (false negatives) than other methods such as Sidaks or Bonferroni, particularly when correcting for a large number of tests. However, we are mainly interested in whether the genotypes differ in their behavior in each temperature combination and the significant ANOVA tests for Fig. 1F and 4G support that point. The statistical test and comparison used in the current version of the manuscript, comparing behavior at individual/distinct timepoints, are interesting, but less relevant (and potentially distracting), as we do not go into the details about the behavior at any given/distinct timepoint in the assay.

      Therefore, and per suggestion of the reviewer, we will update the statistics in the revised version of the manuscript. Also, we will report the correct number of FOVs in the legend.

      (3) It remains unclear whether the clear behavioral effect seen in the TRPM2 knockout animals is at all related to TRPM2 functioning as a warmth sensor in sensory neurons. As discussed above, the effects of the TRPM2 KO on the proportion of warmth-sensing neurons are at most very subtle, and the authors did not use any pharmacological tool (in contrast to the use of capsaicin to probe for TRPV1 in Figures S3 and S4) to support a direct involvement of TRPM2 in the neuronal warmth responses. Behavioral experiments on sensory-neuron-specific TRPM2 knockout animals will be required to clarify this important point.

      As mentioned above, we will tone down the correlation between the cellular and behavioral data and further stress the possibility that the Trpm2-KO phenotype is possibly related to the function of the ion channel outside of DRGs.

      (4) The authors only use male mice, which is a significant limitation, especially considering known differences in warmth sensing between male and female animals and humans. The authors state "For this study, only male animals were used, as we aimed to compare our results with previous studies which exclusively used male animals (7, 8, 17, 43)." This statement is not correct: all four mentioned papers include behavioral data from both male and female mice! I recommend the authors to either include data from female mice or to clearly state that their study (in comparison with these other studies) only uses male mice.

      In the studies by Tan et al. And Vandevauw et al. Only male animals were used for the behavioral experiments. Yarmolinsky et al. And Paricio-Montesinons et al. used both males and females while, as far as we can tell, only Paricio-Montesions et al. Reported that no difference was observed between the sexes. This is a valid point though -- when our study started 6-7 years ago, we only used male mice (as did many other researchers) and this we would now do differently. Nevertheless, we included some female mice in these experiments and will reevaluate if the numbers are sufficient so that we can generalize the phenotypes to both sexes or report differences in the revised ms.

      Wildtypes are all C57bl/6N from the provider Janvier. Generally, all lines are backcrossed to C57bl/6 mice and additionally inbreeding was altered every 4-6 generations by crossing to C57bl/6. Exactly how many times the Trp channel KOs have been backcrossed to C57bl/6 mice we cannot exactly state.

      Reviewer #3:

      Summary and strengths:

      In the manuscript, Abd El Hay et al investigate the role of thermally sensitive ion channels TRPM2 and TRPV1 in warm preference and their dynamic response features to thermal stimulation. They develop a novel thermal preference task, where both the floor and air temperature are controlled, and conclude that mice likely integrate floor with air temperature to form a thermal preference. They go on to use knockout mice and show that TRPM2-/- mice play a role in the avoidance of warmer temperatures. Using a new approach for culturing DRG neurons they show the involvement of both channels in warm responsiveness and dynamics. This is an interesting study with novel methods that generate important new information on the different roles of TRPV1 and TRPM2 on thermal behavior.

      Open questions and weaknesses:

      (1) Differences in the response features of cells expressing TRPM2 and TRPV1 are central and interesting findings but need further validation (Figures 3 and 4). To show differences in the dynamics and the amplitude of responses across different lines and stimulus amplitudes more clearly, the authors should show the grand average population calcium response from all responsive neurons with error bars for all 3 groups for the different amplitudes of stimuli (as has been presented for the thermal stimuli traces). The authors should also provide a population analysis of the amplitude of the responses in all groups to all stimulus amplitudes. Prior work suggests that thermal detection is supported by an enhancement or suppression of the ongoing activity of sensory fibers innervating the skin. The authors should present any data on cells with ongoing activity.

      We will include grand average population analysis of the different groups in the revised version.

      Concerning the point about ongoing activity: We are not sure if it is possible in neuronal cultures to faithfully recapitulate ongoing activity. Ongoing activity has been mostly recorded in skinnerve preparations (or in older studies in other types of nerve recordings) and there are only very few studies that show ongoing activity in cultured experiments and then the ongoing activity only starts in sensory neuron cultures when cultured for even longer time periods than 3 days (Ref.: doi: 10.1152/jn.00158.2018). We have very few cells that show some spontaneous activity, but these are too few to draw any conclusions. In any case, nerve fibers might be necessary to drive ongoing activity which are absent from our cultures.

      (2) The authors should better place their findings in context with the literature and highlight the novelty of their findings. The introduction builds a story of a 'disconnect' or 'contradictory' findings about the role of TRPV1 and TRPM2 in warm detection. While there are some disparate findings in the literature, Tan and McNaughton (2016) show a role for TRPM2 in the avoidance of warmth in a similar task, Paricio et al. (2020) show a significant reduction in warm perception in TRPM2 and TRPV1 knock out lines and Yarmolinksy et al. (2016) show a reduction in warm perception with TRPV1 inactivation. All these papers are therefore in agreement with the authors finding of a role for these channels in warm behavior. The authors should change their introduction and discussion to more correctly discuss the findings of these studies and to better pinpoint the novelty of their own work.

      Paricio-Montesinos et al. argue that TRPM8 is crucial for the detection of warmth, as TRPM8-KO animals are incapable of learning the operant task. TRPM2-KO animals and, to a smaller extent TRPV1-KO animals, have reduced sensitivity in the task, but are still capable of learning/performing the task. However, in our chamber preference assay this is reversed: TRPM2-KO animals lose the ability to differentiate warm temperatures while TRPM8 appears to play no major role. A commonality between the two studies is that while TRPV1 affects the detection of warm temperatures in the different assays, this ion channel appears not to be crucial.

      Similarly, Yarmolinsky et al. show that Trpv1-inactivation only increases the error rate in their operant assay (from ~10% to ~30%), without testing TRPM2. And Tan et al. show the

      importance of TRPM2 in the preference task, without testing for TRPV1.

      More generally, the choice of the assay, being either an operant task (Paricio-Montesinos et al. and Yarmolinsky et al.) or a preference assay without training of the mice (Tan et al. and our data here), might be important and different TRP receptors may be relevant for different types of temperature assays, which we will extend on in the discussion in the revised manuscript. While our results generally agree with the previous studies, they add a different perspective on the analysis of the behavior (with correlation to cellular data). We will adjust the manuscript to highlight the advances more clearly.

      (3) The responses of 60 randomly selected cells are shown in Figure 2B. But, looking at the TRPM2-/- data, warm responses appear more obvious than in WTs and the weaker responders of the WT group appear weaker than the equivalent group in the TRPV1-/- and TRPM2-/- data. This does not necessarily invalidate the results, but it may suggest a problem in the data selection. Because the correct classification of warm-sensitive neurons is central to this part of the study more validation of the classifier should be presented. For example, the authors could state if they trained the classifier using equal amounts of cells, show some randomly selected cells that are warm-insensitive for all genotypes, and show the population average responses of warm-insensitive neurons.

      The classifier was trained on a balanced dataset of 1000 (500 responders and 500 nonresponders), manually labelled traces across all 5 temperature stimuli. The prediction accuracy was 98%. We will describe more clearly how the classifier was trained and include examples and also show the population average responses in the revised manuscript.

      (4) The interpretation of the main behavioral results and justification of the last figure is presented as the result of changes in sensing but differences in this behavior could be due to many factors and this needs clarification and discussion. (i) The authors mention that 'crucially temperature perception is not static' and suggest that there are fluctuating changes in perception over time and conclude that their modelling approach helps show changes in temperature detection. They imply that temperature perceptual threshold changes over time, but the mouse could just as easily have had exactly the same threshold throughout the task but their motivation (or some other cognitive variable) might vary causing them to change chamber. The authors should correct this. (ii) Likewise, from their fascinating and high-profile prior work the authors suggest a model of internal temperature sensing whereby TRPM2 expression in the hypothalamus acts as an internal sensory of body temperature. Given this, and the slow time course of the behavior in chambers with different ambient temperatures, couldn't the reason for the behavioral differences be due to central changes in hypothalamic processing rather than detection by skin temperature? If TRPM2-/- were selectively ablated from the skin or the hypothalamus (these experiments are not necessary for this paper) it might be possible to conclude whether sensation or body temperature is more likely the root cause of these effects but, without further experiments it is tough to conclude either way. (iii) Because the ambient temperature is controlled in this behavior, another hypothesis is that warm avoidance could be due to negative valence associated with breathing warm air, i.e. a result of sensation within the body in internal pathways, rather than sensing from the external skin. Overall, the authors should tone down conclusions about sensation and present a more detailed discussion of these points.

      We are sorry that the statement including the phrase “crucially temperature perception is not static” is ambiguous; what we meant to say is that with the mouse moving across the two chambers, the animal experiences different temperatures over time (not that the perceptual threshold of the mouse changes). We will clarify this stament in the revised version of the manuscript.

      But even so, it could be that some other variable (motivation etc) makes the mouse change the chamber; we hypothesize that this variable (whatever it might be) is still modulated by temperature (at least this would be the likeliest explanation that we see).

      As for the aspect of internal/hypothalamic temperature sensing: we have included this possibility already in the discussion but will further emphasize this possibility in the revised manuscript.

      As for the point of negative valence mediated by breathing in warm air: yes, presumably this could also be possible. The aspect of valence is in interesting aspect by itself: would the mice be rather repelled from the (uncomfortable) hot plate or more attracted to the (more comfortable) thermoneutral plate, or both? Something to elucidate in a different study.

      (5) It is an excellent idea to present a more in-depth analysis of the behavioral data collected during the preference task, beyond 'the mouse is on one side or the other'. However, the drift-diffusion approach is complex to interpret from the text in the results and the figures. The results text is not completely clear on which behavioral parameters are analyzed and terms like drift, noise, estimate, and evidence are not clearly defined. Currently, this section of the paper slightly confuses and takes the paper away from the central findings about dynamics and behavioral differences. It seems like they could come to similar conclusions with simpler analysis and simpler figures.

      We will reassess the description of the drift diffusion model and explain it more clearly. Additionally, we will assess whether we can introduce the drift diffusion model and analysis better at the beginning of the study, subsequent to Figure 1 to have the model and this type of analysis coherent with the first behavior results (instead of introducing the model only at the very end).

      (6) In Figure 2D the % of warm-sensitive neurons are shown for each genotype. Each data point is a field of view, however, reading the figure legend there appear to be more FOVs than data points (eg 10 data points for the TRPV1-/- but 17 FOVs). The authors should check this.

      We check and make sure that in the revised manuscript the number of FOVs mentioned in the legend and the number shown in the Figure 2D are in agreement.

      (7) Can the authors comment on why animals with over-expression of TRPV1 spend more time in the warmest chamber to start with at 38C and not at 34C?

      This is an interesting observation that we did not consider before. A closer look at Figure 4H reveals that the majority of the TRPV1-OX animals, have a proportionally long first visit to the 38°C room. We can only speculate why this is the case. We cannot rule out that this a technical shortcoming of the assay and how we conduced it – but we don’t observe this for the wildtype mice, thus it is rather unlikely a technical problem. It is possible that this is a type of “freezing-” (or “startle-“) behavior when the animals first encounter the 38°C temperature. Freezing behaviors in mice can be observed when sudden/threatening stimuli are applied. It is possible that, in the TRPV1-overexpressing animals, the initial encounter with 38°C leads to activation of a larger proportion of cells (compared to WT ctrls), possibly signaling a “painful” stimulus, and thus leading to this startle effect. It is noteworthy, however, that with more stringent repeated measure statistics applied as suggested by the referees, the difference at the first measured time point in Fig. 4G is not significantly different anymore (see comment #2 above. This does not rule out that this might be a true effect, but such a claim would benefit from additional experiments that test such and hypothesis more rigorously.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      Comment 1.1: The distinction of PIGS from nearby OPA, which has also been implied in navigation and ego-motion, is not as clear as it could be.

      Response1.1: The main “functional” distinction between TOS/OPA and PIGS is that TOS/OPA responds preferentially to moving vs. stationary stimuli (even concentric rings), likely due to its overlap with the retinotopic motion-selective visual area V3A, for which this is a defining functional property (e.g. Tootell et al., 1997, J Neurosci). In comparison, PIGS does not show such a motion-selectivity. Instead, PIGS responds preferentially to more complex forms of motion within scenes.

      Moreover, PIGS and TOS/OPA are located in differently relative to the retinotopic visual areas. Briefly, PIGS is located adjacent to areas IPS3-4 while TOS/OPA overlaps with areas V3A/B and IPS0 (V7). This point is now highlighted in the new experiment 3b and the new Figure 6. In this revision, we also tried to better highlight these point in sections 4.3, 4.4 and 4.5. (see also the response to the first comment from Reviewer #2).

      Reviewer 2:

      Comment 2.1: First, the scene-selective region identified appears to overlap with regions that have previously been identified in terms of their retinotopic properties. In particular, it is unclear whether this region overlaps with V7/IPS0 and/or IPS1. This is particularly important since prior work has shown that OPA often overlaps with v7/IPS0 (Silson et al, 2016, Journal of Vision). The findings would be much stronger if the authors could show how the location of PIGS relates to retinotopic areas (other than V6, which they do currently consider). I wonder if the authors have retinotopic mapping data for any of the participants included in this study. If not, the authors could always show atlas-based definitions of these areas (e.g. Wang et al, 2015, Cerebral Cortex).

      Response 2.1: We thank the reviewers for reminding us to more clearly delineate this issue of possible overlap, including the information provided by Silson et al, 2016. The issue of possible overlap between area TOS/OPA and the retinotopic visual areas, both in humans and non-human primates, was also clarified by our team in 2011 (Nasr et al., 2011). As you can see in Figure 6 (newly generated), and consistent with those previous studies, TOS/OPA overlaps with visual areas V3A/B and V7. Whereas PIGS is located more dorsally close to IPS3-4. As shown here, there is no overlap between PIGS and TOS/OPA and there is no overlap between PIGS and areas V3A/B and V7.

      To more directly address the reviewer’s concern, in this revision, we have added a new experiment (Experiment 3b) in which we have shown the relative position of PIGS and the retinotopic areas in two individual subjects (Figure 6). All the relevant points are also discussed in section 4.3.

      Comment 2.2: Second, recent studies have reported a region anterior to OPA that seems to be involved in scene memory (Steel et al, 2021, Nature Communications; Steel et al, 2023, The Journal of Neuroscience; Steel et al, 2023, biorXiv). Is this region distinct from PIGS? Based on the figures in those papers, the scene memory-related region is inferior to V7/IPS0, so characterizing the location of PIGS to V7/IPS0 as suggested above would be very helpful here as well. If PIGS overlaps with either of V7/IPS0 or the scene memory-related area described by Steel and colleagues, then arguably it is not a newly defined region (although the characterization provided here still provides new information).

      Response 2.2: The lateral-place memory area (LPMA) is located on the lateral brain surface, anterior relative to the IPS (see Figure 1 from Steel et al., 2021 and Figure 3 from Steel et al., 2023). In contrast, PIGS is located on the posterior brain surface, also posterior relative to the IPS. In other words, they are located on two different sides of a major brain sulcus. In this revision we have clarified this point, including the citations by Steel and colleagues in section 4.3.

      Comments 2.3: Another reason that it would be helpful to relate PIGS to this scene memory area is that this scene memory area has been shown to have activity related to the amount of visuospatial context (Steel et al, 2023, The Journal of Neuroscience). The conditions used to show the sensitivity of PIGS to ego-motion also differ in the visuospatial context that can be accessed from the stimuli. Even if PIGS appears distinct from the scene memory area, the degree of visuospatial context is an alternative account of what might be represented in PIGS.

      Response 2.3: The reviewer raises an interesting point. One minor confusion is that we may be inadvertently referring to two slightly different types of “visuospatial context”. Specifically, the stimuli used in the ego-motion experiment here (i.e. coherently vs. incoherently changing scenes) represent the same scenes, and the only difference between the two conditions is the sequence of images across the experimental blocks. In that sense, the two experimental conditions may be considered to have the same visuospatial “context”. However, it could be also argued that the coherently changing scenes provide more information about the environmental layout. In that case, considering the previous reports that PPA/TPA and RSC/MPA may also be involved in layout encoding (Epstein and Kanwisher 1998; Wolbers et al. 2011), we expected to see more activity within those regions in response to coherently compared incoherently changing scenes. These issues are now more explicitly discussed in the revised article (section 4.6).

      Reviewer 3:

      Comment 3.1: There are few weaknesses in this work. If pressed, I might say that the stimuli depicting ego-motion do not, strictly speaking, depict motion, but only apparent motion between 2s apart photographs. However, this choice was made to equate frame rates and motion contrast between the 'ego-motion' and a control condition, which is a useful and valid approach to the problem. Some choices for visualization of the results might be made differently; for example, outlines of the regions might be shown in more plots for easier comparison of activation locations, but this is a minor issue.

      Response 3.1: We thank the reviewer for these constructive suggestions, and we agree with their comment that the ego-motion stimuli are not smooth, even though they were refreshed every 100 ms. However, the stimuli were nevertheless coherent enough to activate areas V6 and MT, two major areas known to respond preferentially to coherent compared to incoherent motion.

      Reviewer #1 (Recommendations For The Authors):

      I enjoyed reading this article. I have a few suggestions for improvement:

      (1) Delineation from OPA: The OPA has been described in quite similar terms as PIGS, with its involvement in ego-motion (e.g., crawling, walking) and navigation in general (e.g., Dilks' recent work; Bonner and Epstein). The authors address the distinction in section 4.4. Unlike Kamps et al. (2016) and Jones et al. (2023), the authors found weak or no evidence for ego-motion in OPA. They explain this discrepancy with differences in refresh rates and different levels of spatial smoothing of the fMRI data. It is not clear why these fairly small methodological differences would lead to different findings of ego-motion in the OPA. Arguably, the OPA is the closest of the "established" scene areas to PIGS, both in anatomical location and in function. I would therefore appreciate a more detailed discussion of the differences between these two areas.

      Response: Jones et al. have also shown that ego-motion TOS/OPA activity when compared to scrambled scenes. This is fundamentally different than what we have shown here, which coherently vs. incoherently changing scenes (i.e. not a small difference). Also, Kamps et al. used static scenes as a control which, considering TOS/OPA motion-selectivity, have a large impact on TOS/OPA response.

      (2) Random effects analysis: The authors mention using a "random effects analysis" for several of their experiments. I would ask them to provide more details on what statistical models were used here. Were they purely random-effects models or actually mixed-effects models? What were the factors that entered into the analysis? Providing more detail would make the analysis techniques more transparent.

      Response: This point is now clarified in the Methods section.

      (3) Data and code availability: The authors write that data and code "are ready to be shared upon request." (section 2.5) In the spirit of transparency and openness, I strongly encourage the authors to make the data publicly available, e.g., on OSF or OpenNeuro. In particular, having probabilistic maps of PIGS available will allow other researchers to include PIGS in their analysis pipelines, making the current work more impactful.

      Response: We have made the probabilistic labels available to the public. This point is now highlighted in section 2.5.

      (4) Minor comments on the writing that caught my eye while reading the article:

      • Line 27: "in the human brain".

      Response: Done.

      -Line 30: I don't agree with the characterization of the previous model of scene perception as "simplistic." Adding one additional ROI makes it no less simplistic. Perhaps the authors can rephrase to make this slightly less antagonistic?

      Response: Done.

      • Line 71: it is not clear why NHPs are relevant here.

      Response: We decided to keep the text intact.

      • Line 138" "were randomized".

      Response: Done.

      • Line 152: "consisting".

      Response: Done.

      • Line 155: "sets" (plural).

      Response: Done.

      • Lines 253-255: Why were the 3T spatially smoothed but not the 7T data? This seems odd.

      Response: We kept the text intact.

      • Line 481: "we found strong motion selectivity" (remove "a").

      Response: Done.

      • Line 564: a word is missing, probably: "a stronger effect of ego-motion".

      Response: Done.

      • Line 591: "controlling spatial attention" (remove "the").

      Response: Done.

      • Line 591 and 594: Both sentences start with "However". I think the first of these should not because it is setting up the contrast for the second sentence.

      Response: Done.

      • Line 607: "higher-level" (hyphen).

      Response: Done.

      • Throughout the manuscript: adverbial phrases such as "(in)coherently changing" or "probabilistically localized" do not get a hyphen.

      Response: Done.

      Reviewer #2 (Recommendations For The Authors):

      The authors state that "All data, codes and stimuli are ready to be shared upon request". Ideally, these materials should be deposited in appropriate repositories (e.g. OpenMRI, GitHub) and not require readers to contact the authors to obtain such materials.

      Other Comments:

      (a) The title ("A previously undescribed scene-selective site is the key to encoding ego-motion in natural environments") is potentially misleading - the work was not conducted in a natural environment. At best, you could say they are 'naturalistic stimuli'. Also, in what sense is PIGS "key" to encoding ego-motion - the study just shows sensitivity to this factor.

      Response: We changed the title to “naturalistic environments”.

      (b) Figure 1 - I'm not sure what point the authors are trying to make with Figure 1. The comparison is between a highly smoothed, group fixed-effects analysis and a less-smoothed individual subject analysis. The differences between the two could reflect group vs. individual, highly-smoothed (5 mm) versus less-smoothed (2 mm), or differences in thresholding. If the thresholding were lower for the group analysis, it would probably start to look more similar to the individual subject. As it stands, this figure isn't particularly informative, it seems redundant with Figure 2, and Figure 1A is not even referenced in the main text. Further, fixed effects analyses are relatively uncommon in the recent literature, so their inclusion is unusual.

      Response: Figure 1A is a replication of the data/method used in Nasr et al., 2011 and it will help the readers see the difference between the “traditional” scene-selectivity maps generated based on group-averaging” vs. data from individual subjects. In this case, we decided not to change the Figure.

      (c) Figure 3 - why are the two sets of maps shown at different thresholds? For 3B given the larger sample size, it is expected that the extent of the significant activations will increase. Currently the higher threshold for 3B and the smaller range for 3A is making the sets of maps look more comparable.

      Response: As the reviewer noticed, the number of subjects is larger in Figure 3B compared to 3A. The main point of this figure is to show that the PIGS activity center does not vary across populations. Considering this point, we decided not to change this figure.

      (d) Figure 10 - why is the threshold lower than used for other figures? It would be helpful if there was consistent thresholding across figures.

      Response: Experiment 6 and Experiment 1 are based on different stimuli (see Methods). Also, among those subjects who participated in Experiment 1, two subjects did not participate in Experiment 6. These points are already highlighted in the text.

      (e) Figures - how about the AFNI approach of thresholding and showing sub-threshold data at the same time? (Taylor et al, 2023, Neuroimage).

      Response: We highly appreciate the methodology suggested by Taylor and colleagues. However, our main point here is to show the center of PIGS activity. In this condition, showing an unthresholded activity map doesn’t have any advantage over the current maps. Considering these points, we decided not to change the figures.

      (f) Coherent versus incoherent scenes - there are many differences between the coherent and incoherent scenes. Arguing that it must be ego-motion seems a little premature without further investigation. Activity anterior to OPA has been associated with the construction of an internal representation of a spatial environment (Steel et al., 2023, The Journal of Neuroscience). Could it be that this is the key effect, not really the ego-motion?

      Response: In this revision, we discussed the study by Steel et al., 2021 and 2023 in section 4.3.

      Reviewer #3 (Recommendations For The Authors):

      Overall, I think this is already an excellent contribution. The suggestions I have are minor and may help with the clarity of the results.

      (1) My main request of the authors would be to provide more points of reference in some of the figures with cortical maps. In many cases, the authors use arrows to point to the locations of activations of interest. However, the arrows in adjacent figures are often not placed in exactly the same places on maps that are meant to be compared. It would very much help the viewer to compare activations if the arrows pointing to activations or regions of interest were placed in identical locations for the same brains appearing in different sub-panels (e.g. in panels A and B of Figure 1). The underlying folds of the cortical surface provide some points of reference, but these are often occluded to different extents by data in figures that are meant to be compared.

      Response: To address the reviewer’s concern, we regenerated Figure 8 (Figure 7 in the previous submission) and we tried to put arrowheads in identical locations, as much as possible. Especially for PIGS, this point was also considered in Figures 2 and 3.

      (2) Outlines (such as those in Figure 5) are also very useful, and I would encourage broader use of them in other figures (e.g. Figures 7, 10, and 12). Figures 10 and 12 are on the fsaverage surface, so the same outlines could be used for them as for Figure 5.

      To be clear, it's possible to apprehend the results with the figures as they are, but I think a few small changes could help a lot.

      Response: In this revision, we added outlines to Figures 11 and 13 (Figure 10 and 12 in the previous submission). We did not add the outline to Figure 8 because it made it hard to see PIGS. Rather we used arrows (see the previous comment).

      Other minor points:

      In the method for Experiment 4, the authors write: "Other details of the experiment were similar to those in Experiment 1.". Similar or the same? The authors should clarify this statement, e.g. "the number of images per block, the number of blocks, the number of runs were the same as Experiment 1" - with any differences noted.

      Response: This point is now addressed in the Methods section.

      In Figure 8, it would be better to have the panel labels (A, B, C, D) in the upper left of each panel rather than the lower left.

      Response: We tried to keep the panels arrangement consistent across the figures. That is why letters are positioned like this.

      A final gentle suggestion: pycortex (http://github.com/gallantlab/pycortex) provides a means to visualize the flattened fsaveage surface with outlines for localized regions of interest and overlaid lines for major sulci. Though it is by no means necessary for publication, It would be lovely to see these results on that surface, which is freely available and downloadable via a pycortex command (surface here: https://figshare.com/articles/dataset/fsaverage_subject_for_pycortex/9916166)

      Response: We thank the reviewer for bringing pycortex to our attention. We will consider using it in our future studies.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents valuable findings characterising the genomic features of E. coli isolated from neonatal meningitis from seven countries, and documents bacterial persistence and reinfection in two case studies. The genomic analyses are solid, although the inclusion of a larger number of isolates from more diverse geographies would have strengthened the generalisability of findings. The work will be of interest to people involved in the management of neonatal meningitis patients, and those studying E. coli epidemiology, diversity, and pathogenesis.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study uses whole genome sequencing to characterise the population structure and genetic diversity of a collection of 58 isolates of E. coli associated with neonatal meningitis (NMEC) from seven countries, including 52 isolates that the authors sequenced themselves and a further 6 publicly available genome sequences. Additionally, the study used sequencing to investigate three case studies of apparent relapse. The data show that in all three cases, the relapse was caused by the same NMEC strain as the initial infection. In two cases they also found evidence for gut persistence of the NMEC strain, which may act as a reservoir for persistence and reinfection in neonates. This finding is of clinical importance as it suggests that decolonisation of the gut could be helpful in preventing relapse of meningitis in NMEC patients.

      Strengths:

      The study presents complete genome sequences for n=18 diverse isolates, which will serve as useful references for future studies of NMEC. The genomic analyses are high quality, the population genomic analyses are comprehensive and the case study investigations are convincing.

      We agree

      Weaknesses:

      The NMEC collection described in the study includes isolates from just seven countries. The majority (n=51/58, 88%) are from high-income countries in Europe, Australia, or North America; the rest are from Cambodia (n=7, 12%). Therefore it is not clear how well the results reflect the global diversity of NMEC, nor the populations of NMEC affecting the most populous regions.

      The virulence factors section highlights several potentially interesting genes that are present at apparently high frequency in the NMEC genomes; however, without knowing their frequency in the broader E. coli population it is hard to know the significance of this.

      We acknowledged the limitations of our NMEC collection in the Discussion. We agree the prevalence of virulence factors in our collection is interesting. The limited size of our collection prevented further evaluation of the prevalence of these virulence factors in a broader E. coli population.

      Reviewer #2 (Public Review):

      Summary:

      In this work, the authors present a robust genomic dataset profiling 58 isolates of neonatal meningitis-causing E. coli (NMEC), the largest such cohort to be profiled to date. The authors provide genomic information on virulence and antibiotic resistance genomic markers, as well as serotype and capsule information. They go on to probe three cases in which infants presented with recurrent febrile infection and meningitis and provide evidence indicating that the original isolate is likely causing the second infection and that an asymptomatic reservoir exists in the gut. Accompanying these results, the authors demonstrate that gut dysbiosis coincides with the meningitis.

      Strengths:

      The genomics work is meticulously done, utilizing long-read sequencing.

      The cohort of isolates is the largest to be sampled to date.

      The findings are significant, illuminating the presence of a gut reservoir in infants with repeating infection.

      We agree

      Weaknesses:

      Although the cohort of isolates is large, there is no global representation, entirely omitting Africa and the Americas. This is acknowledged by the group in the discussion, however, it would make the study much more compelling if there was global representation.

      We agree. In the Discussion we state this is likely a reflection of the difficulty in acquiring isolates causing neonatal meningitis, in particular from countries with limited microbiology and pathology resources.

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, Schembri et al performed a molecular analysis by WGS of 52 E. coli strains identified as "causing neonatal meningitis" from several countries and isolated from 1974 to 2020. Sequence types, virulence genes content as well as antibiotic-resistant genes are depicted. In the second part, they also described three cases of relapse and analysed their respective strains as well as the microbiome of three neonates during their relapse. For one patient the same E. coli strain was found in blood and stool (this patient had no meningitis). For two patients microbiome analysis revealed a severe dysbiosis.

      Major comments:

      Although the authors announce in their title that they study E. coli that cause neonatal meningitis and in methods stipulate that they had a collection of 52 NMEC, we found in Supplementary Table 1, 29 strains (therefore most of the strains) isolated from blood and not CSF. This is a major limitation since only strains isolated from CSF can be designated with certainty as NMEC even if a pleiocytose is observed in the CSF. A very troubling data is the description of patient two with a relapse infection. As stated in the text line 225, CSF microscopy was normal and culture was negative for this patient! Therefore it is clear that patient without meningitis has been included in this study.

      We have reviewed the clinical data for our 52 NMEC isolates, noting that for some of the older Finish isolates we relied on previous publications. This data is shown in Table S1. To address the Reviewer’s comment, we have added the following text to the methods section (new text underlined).

      ‘The collection comprised 42 isolates from confirmed meningitis cases (29 cultured from CSF and 13 cultured from blood) and 10 isolates from clinically diagnosed meningitis cases (all cultured from blood).’

      Patient 2 was initially diagnosed with meningitis based on a positive blood culture in the presence of CSF pleocytosis (>300 WBCs, >95% polymorphs). We understand there may be some confusion with reference to a relapsed infection, which we now more accurately describe as recrudescent invasive infection in the revised manuscript.

      Another major limitation (not stated in the discussion) is the absence of clinical information on neonates especially the weeks of gestation. It is well known that the risk of infection is dramatically increased in preterm neonates due to their immature immunity. Therefore E. coli causing infection in preterm neonates are not comparable to those causing infection in term neonates notably in their virulence gene content. Indeed, it is mentioned that at least eight strains did not possess a capsule, we can speculate that neonates were preterm, but this information is lacking. The ages of neonates are also lacking. The possible source of infection is not mentioned, notably urinary tract infection. This may have also an impact on the content of VF.

      We agree. In the Discussion we now note the following (new text underlined):

      ‘… we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants.’

      Submission to Medrxiv, a requirement for review of our manuscript at eLife, necessitated the removal of some patient identifying information, including precise age and detailed medical history.

      Sequence analysis reveals the predominance of ST95 and ST1193 in this collection. The high incidence of ST95 is not surprising and well previously described, therefore, the concluding sentence line 132 indicating that ST95 E. coli should exhibit specific virulence features associated with their capacity to cause NM does not add anything. On the contrary, the high incidence of ST1193 is of interest and should have been discussed more in detail. Which specific virulence factors do they harbor? Any hypothesis explaining their emergence in neonates?

      We compared the virulence factors of ST95 and ST1193 and summarized this information in Figure 4. We also discussed how the K1 polysialic acid capsule in ST95 and ST1193 could contribute to the emergence of these STs in NM. Specifically, we stated the following: ‘We speculate this is due to the prevailing K1 polysialic acid capsule serotype found in ST95 and the newly emerged ST1193 clone [22, 37] in combination with other virulence factors [15, 28, 29] (Figure 4) and the immature immune system of preterm infants.’

      In the paragraph depicted the VF it is only stated that ST95 contained significantly more VF than the ST1193 strains. And so what? By the way "significantly" is not documented: n=?, p=?

      We compared the prevalence of known virulence factors between ST95 and ST1193, and showed that ST95 strains in our collection contained significantly more virulence factors than the ST1193 strains. The P-value and the statistical test used were included in Supplementary Figure 3. To address the reviewers concern, we have now also added this to the main manuscript text as follows (new text underlined):

      ‘Direct comparison of virulence factors between ST95 and ST1193, the two most dominant NMEC STs, revealed that the ST95 isolates (n = 20) contained significantly more virulence factors than the ST1193 isolates (n=9), p-value < 0.001, Mann-Whitney two-tailed unpaired test (Supplementary Table 1, Supplementary Figure 3).’

      The complete sequence of 18 strains is not clear. Results of Supplementary Table 2 are presented in the text and are not discussed.

      NMEC isolates that were completely sequenced in this study are indicated in bold and marked with an asterisk in Figure 1. This information is indicated in the figure legend and was provided in the original submission. All information regarding genomic island composition and location, virulence genes and plasmid and prophage diversity is included in Supplementary Table 2. This information is highly descriptive and thus we elected not to include it as text in the main manuscript.

      46 years is a very long time for such a small number of strains, making it difficult to put forward epidemiological or evolutionary theories. In the analysis of antibiotic resistance, there are no ESBLs. However, Ding's article (reference 34) and other authors showed that ESBLs are emerging in E. coli neonatal infection. These strains are a major threat that should be studied, unfortunately, the authors haven't had the opportunity to characterize such strains in their manuscript.

      We agree 46 years is a long time-span. The study by Ding et al examined 56 isolates comprised of 25 different STs isolated in China from 2009-2015, with ST1193 (n=12) and ST95 (n=10) the most common. Our study examined 58 isolates comprised of 22 different STs isolated in seven different geographic regions from 1974-2020, with ST1193 (n=9) and ST95 (n=20) the most common. Thus, despite differences in the geographic regions from which isolates in the two studies were sourced, there are similarities in the most common STs identified. The fact that we observed less antibiotic resistance, including a lack of ESBL genes, in ST1193 is likely due to the different regions from which the isolates were sourced. We acknowledged and discussed the potential of ST1193 harbouring multidrug resistance including ESBLs in our manuscript as follows:

      ‘Concerningly, the ST1193 strains examined here carry genes encoding several aminoglycoside-modifying enzymes, generating a resistance profile that may lead to the clinical failure of empiric regimens such as ampicillin and gentamicin, a therapeutic combination used in many settings to treat NM and early-onset sepsis [35, 36]. This, in combination with reports of co-resistance to third-generation cephalosporins for some ST1193 strains [22, 34], would limit the choice of antibiotic treatment.’

      Second part of the manuscript:

      The three patients who relapsed had a late neonatal infection (> 3 days) with respective ages of 6 days, 7 weeks, and 3 weeks. We do not know whether they are former preterm newborns (no term specified) or whether they have received antibiotics in the meantime.

      As noted above, patient ages were not disclosed to comply with submission to Medrxiv, a requirement for review of our manuscript at eLife.

      Patient 1: Although this patient had a pleiocytose in CSF, the culture was negative which is surprising and no explanation is provided. Therefore, the diagnosis of meningitis is not certain. Pleiocytose without meningitis has been previously described in neonates with severe sepsis. Line 215: no immunological abnormalities were identified (no details are given).

      We respectfully disagree with the reviewer. The diagnosis of meningitis is made unequivocally by the presence of a clearly abnormal CSF microscopy (2430 WBCs) and an invasive E. coli from blood culture. This does not seem controversial to the authors. We had believed it unnecessary to include this corroborative evidence, but have added the following to support our assertion:

      ‘The child was diagnosed with meningitis based on a cerebrospinal fluid (CSF) pleocytosis (>2000 white blood cells; WBCs, low glucose, elevated protein), positive CSF E. coli PCR and a positive blood culture for E. coli (MS21522).’

      On the contrary, the authors are surprised by the statement that CSF pleocytosis occurs in neonatal sepsis ‘without meningitis’ and do not know of any definitions of neonatal meningitis that are not tied to the presence of a CSF pleocytosis. Furthermore, the later isolation of E. coli from the CSF during the relapsed infection re-enforces the initial diagnosis.

      Patient 2: This patient had a recurrence of bacteremia without meningitis (line 225: CSF microscopy was normal and culture negative!). This case should be deleted.

      In a similar vein to the previous comment, we respectfully assert that this patient has clear evidence of meningitis (330 WBCs in the CSF, taken 24h after initiation of antibiotic treatment). In this case, molecular testing was not performed as, under the principle of diagnostic stewardship, it was not considered necessary by the clinical microbiologists and treating clinicians following the culture of E. coli in the bloodstream. We agree that this is not a case of recurrent meningitis, but our intention was to highlight the recrudescence of an invasive infection (urinary sepsis requiring admission to hospital and intravenous antibiotics) which we hypothesise has arisen from the intestinal reservoir. We did not state that all patients suffered from relapsed meningitis.

      Despite this, to address this reviewers concern, we have changed all reference to ‘relapsed infection’ to now read ‘recrudescent invasive infection’ in the revised manuscript.

      Patient 3: This patient had two relapses which is exceptional and may suggest the existence of a congenital malformation or a neurological complication such as abscess or empyema therefore, "imaging studies" should be detailed.

      This patient underwent extensive imaging investigation to rule out a hidden source. This included repeated MRI imaging of head and spine, CT imaging of head and chest, USS imaging of abdomen and pelvis and nuclear medicine imaging to detect a subtle meningeal defect and CSF leak. All tests were normal, and no abscess or empyema found.

      We have modified the text to include this information:

      Text in original submission: ‘Imaging studies and immunological work-up were normal.’

      New text in revised manuscript (underlined): ‘Extensive imaging studies including repeated MRI imaging of the head and spine, CT imaging of the head and chest, ultrasound imaging of abdomen and pelvis, and nuclear medicine imaging did not show a congenital malformation or abscess. Immunological work-up did not show a known primary immunodeficiency. At two years of age, speech delay is reported but no other developmental abnormality.’

      The authors suggest a link between intestinal dysbiosis and relapse in three patients. However, the fecal microbiomes of patients without relapse were not analysed, so no comparison is possible. Moreover, dysbiosis after several weeks of antibiotic treatment in a patient hospitalized for a long time is not unexpected. Therefore, it's impossible to make any assumption or draw any conclusion. This part of the manuscript is purely descriptive. Finally, the authors should be more prudent when they state in line 289 "we also provide direct evidence to implicate the gut as a reservoir [...] antibiotic treatment". Indeed the gut colonization of the mothers with the same strain may be also a reservoir (as stated in the discussion line 336). Finally, the authors do not discuss the potential role of ceftriaxone vs cefotaxime in the dysbiosis observed. Ceftriaxone may have a major impact on the microbiota due to its digestive elimination.

      We addressed the limitations of our study in the Discussion, including that we did not have access to urine or stool samples from the mother of the infants that suffered recrudescence, and thus cannot rule out mother-to-child transmission as a mechanism of reinfection. We have now added that we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants. The limitations of our study are summarised as follows in the Discussion (new text underlined):

      ‘This study had several limitations. First, our NMEC strain collection was restricted to seven geographic regions, a reflection of the difficulty in acquiring strains causing this disease. Second, we did not have access to a complete set of stool samples spanning pre- and post-treatment in the patients that suffered NM and recrudescent invasive infection. This impacted our capacity to monitor E. coli persistence and evaluate the effect of antibiotic treatment on changes in the microbiome over time. Third, we did not have access to urine or stool samples from the mother of the infants that suffered recrudescence, and thus cannot rule out mother-to-child transmission as a mechanism of reinfection. Finally, we did not have clinical data on the weeks of gestation for all patients, and thus could not compare virulence factors from NMEC isolated from preterm versus term infants.’

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      It would be useful to mention the sample size (number of genomes analysed, n=58) in the abstract to give readers a sense of the scale of the analysis.

      We have added the number of genomes in the abstract as suggested (new text underlined).

      ‘Here we investigated the genomic relatedness of a collection of 58 NMEC strains spanning 1974-2020 and isolated from seven different geographic regions.’

      The term 'strain' is used throughout, it would be clearer to use 'isolates' to describe the biological material and 'genomes' when the unit being referred to is genome sequences. For example, lines 108-111 use 'strain' to mean the collection of 52 isolates but also uses 'strain' to mean the collection of 58 genomes including those of the 52 isolates that the authors sequenced plus a further 6 genomes of isolates that they do not have in their isolate collection.

      We have changed the term ‘strain’ to ‘isolate’ or ‘genome’ as suggested.

      Figure 1 (annotated phylogeny) is hard to read and interpret, as so much data is presented. It would assist readers if the authors could provide an interactive form of the phylogeny and metadata/genomic feature data discussed in the text, e.g. using microreact.org, so that details can be explored more easily.

      This is an excellent suggestion, and we created a project on microreact.org. This information has been added to the Figure 1 legend.

      https://microreact.org/project/oNfA4v16h3tQbqREoYtCXj-high-risk-escherichia-coli-clones-that-cause-neonatal-meningitis-and-association-with-recrudescent-infection.

      It would be useful to provide information on the frequency and/or distribution of the virulence factors in the broader E. coli population, to provide context for readers and to better understand the importance/significance of the high frequency of the reported virulence factors within NMEC.

      As noted above, we agree the prevalence of virulence factors in our collection is interesting. We discussed the prevalence of these virulence factors in our collection, and the detailed data is presented in Table S1. However, we also note a limitation in our study is the number of isolates, and thus we would prefer to avoid evaluation of the prevalence of these virulence factors in the context of a broader E. coli population. There are other studies that have examined NMEC virulence factors in the past; some examples are noted below, and we have now referenced these in our manuscript (note Ref 15 was suggested by Reviewer 3 in a comment below; PMID: 11920295).

      Ref 15: Johnson JR, Oswald E, O'Bryan TT, Kuskowski MA, Spanjaard L. Phylogenetic distribution of virulence-associated genes among Escherichia coli isolates associated with neonatal bacterial meningitis in the Netherlands. J Infect Dis 2002; 185(6): 774-84.

      Ref 28: Wijetunge DS, Gongati S, DebRoy C, et al. Characterizing the pathotype of neonatal meningitis causing Escherichia coli (NMEC). BMC Microbiol 2015; 15: 211.

      Ref 29: Bidet P, Mahjoub-Messai F, Blanco J, et al. Combined Multilocus Sequence Typing and O Serogrouping Distinguishes Escherichia coli Subtypes Associated with Infant Urosepsis and/or Meningitis. J Infect Dis. 2007; 196(2):297-303.

      I suggest avoiding the term 'global' to describe the collection, given that there are only seven countries included in the collection and two of the most populous continents (Africa and South America) are not represented at all.

      We agree, and now refer to our collection as ‘an NMEC strain collection from geographically diverse locations.’

      Reviewer #2 (Recommendations For The Authors):

      This is a suggestion regarding discussion/food for thought: This study sheds information on genomic features and indicates the presence of a reservoir in the infected infant. Previous studies have demonstrated the presence of a reservoir in the vaginas of women with recurrent UTIs. Is there any information as to whether the mothers of these infants, especially the three with recrudescent infection, had a UTI or recurrent UTI in their life? It may be worthwhile discussing the potential of testing for E. coli in expecting mothers, if they have a history of UTI.

      We do not have such data, and as indicated above we note this as a limitation of our study.

      It is unclear as written in the main text, as to whether all three cases of recrudescent infection come from the same geographical location. It would be easier to have this information in the corresponding main text, in addition to the supplement.

      The three cases of recrudescent invasive infection were from 3 different locations. We have added the information as following (new text underlined):

      ‘These patients were from different regions in Australia.’

      Reviewer #3 (Recommendations For The Authors):

      Line 48 and 67 change the word "devasting".

      Changed as suggested.

      Line 49 second most in full-term infants.

      Changed as suggested.

      Line 56 delete the sentence "antibiotic resistance genes occurred infrequently".

      We changed the sentence, which now reads (new text underlined):

      ‘Antibiotic resistance genes occurred infrequently in our collection’.

      Line 76 reference 10 is inappropriate.

      Reference 10 reported that 5/24 infants treated for neonatal Gram-negative bacillary meningitis over a 10-year period had a relapse of meningitis after the initial course of treatment. Four of the isolates that caused these relapsed infections were E. coli.

      To address the reviewers concern, we have altered the text as follows (new text underlined):

      ‘Moreover, NMEC is an important cause of relapsed infections in neonates [10]’.

      Line 83 several references related to serotypes are missing, notably doi.org/10.1086/339343.

      We have added this reference.

      Line 171 significantly? n=?, p=?

      The numbers and P-value were provided in the Supplementary Figure 3 legend. We have now added these to the text as follows:

      ‘Direct comparison of virulence factors between ST95 and ST1193, the two most dominant NMEC STs, revealed that the ST95 isolates (n = 20) contained significantly more virulence factors than the ST1193 isolates (n = 9); P-value < 0.001, Mann-Whitney two-tailed unpaired test (Supplementary Table 1, Supplementary Figure 3).”

      Figure 4 is not necessary.

      We respectfully disagree. Figure 4 provides an illustrative comparison of virulence factors between the two most dominant NMEC sequence types, ST95 and ST1193. We believe this will be informative for many readers.

      Line 311 "We speculate....of preterm infants" This sentence does not add anything to the discussion.

      We respectfully disagree and have kept the sentence. This reflects our opinion.

      Line 320 "clear clinical risk factors to explain... ». Term of neonates is missing.

      Updated as follows (new text underlined):

      ‘Although reported rarely, recrudescent invasive E. coli infection in NM patients, including several infants born pre-term, has been documented in single study reports [39, 40]. In these reports, infants received appropriate antibiotic treatment based on antibiogram profiling and no clear clinical risk factors to explain recrudescence were identified, highlighting our limited understanding of NM aetiology.’

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The emergence of catalytic self-replication of polymers is an important question in the context of the origin of life. Tkachenko and Maslov present a model in which such a catalytic polymer sequence emerges from a random pool of replicating polymers.

      Strengths:

      The model is part of a theme from many previous papers from the same authors and their colleagues. The model is interesting, technically correct, and demonstrates qualitatively new phenomena. It is good that the paper also makes a connection with possible experimental scenarios -- specifically, concrete proposals are made for testing the core ideas of the model. It would indeed be an exciting demonstration when such an experiment does indeed materialize.

      Weaknesses:

      Unlike the rest of the paper which is very tight in its arguments, I find that the discussion section is not so. Specifically, sentences such as " In fact, this can be seen as a special case of the classical error catastrophe" are a bit loose and not well substantiated -- although these are in the discussion section, I find this to be a weakness of an otherwise good paper. Tightening some of the arguments here will make it an excellent paper in my opinion.

      We followed the reviewer's recommendations by streamlining the discussion and removing the potentially confusing comparison to the classic error catastrophe.

      Reviewer #2 (Public Review):

      Summary:

      The replication of information-coding polymers and the emergence of catalytic ribozymes pose significant challenges, both experimentally and theoretically, in the study of the RNA world hypothesis. In this context, Tkachenko et al. put forth a novel hypothesis regarding a replication oligomer system based on a cleavage ribozyme. They initially highlighted that the breakage of oligomers could contribute to self-replication, provided that these fragments function as primers for subsequent replications. Next, they proposed a self-replicating system of oligomers founded on a hammerhead structure that catalyzes cleavage. By a simple dynamical model, they demonstrated that such a system is self-sustainable in certain parameter regimes. Furthermore, they delved into discussions regarding the potential emergence of such a system and the evolution toward further optimized ribozymes.

      Strengths: Although the cleavage (hammerhead) ribozyme has been discussed in the context of the origins of life, the authors are the first to discuss how they could be selected using a mathematical model as far as I know. The idea is simple: ribozyme activity creates fragments by breakage of an oligomer, which works as a primer for the ribozyme itself, resulting in a positive feedback system (i.e., autocatalytic sets in a broader sense). This potentially enables us to resolve at the same time problems on the (i) supply of new primers (but note that there is a major concern on this as described in the 'weakness'), and (ii) the sustaining of the cleavage ribozyme.

      Weaknesses:

      The major weakness of their theory is that the ends of the new primers, formed through the breakage/cleavage of polymers, must be chemically active (as the authors have already emphasized in the last paragraph of their discussion) to enable further elongation. Reactivating the ends of preexisting oligomers without enzymes, to the best of our current knowledge, could be a challenging task. Although their model heavily relies on this aspect, the authors do not elaborate on it.

      We have added a discussion of the need for chemical activation: "It is important to note that in the context of RNA, such bidirectional elongation requires chemical activation of the phosphate group at the 5' end of the primer to provide free energy for the newly formed covalent bond. Like the polymerization process itself, achieving this without enzymes is biochemically challenging. One might speculate that prebiotic evolution relied on inorganic catalysis, such as on mineral surfaces, or involved polymers other than today's RNA."

      We also included in the discussion a comment on a possible combination of our mechanism and the Virtual Circle Genome model that would avoid the need for bidirectional growth: "It may be possible to incorporate the selection mechanism proposed in this paper into the Virtual Circle Genome model. Such a hybrid approach would avoid the need for the biochemically problematic bidirectional growth while explaining the emergence of early catalytic activity unaffected by sequence scrambling"

      Another weakness is in the setup of their discussion on evolutionary dynamics. While they claim that their model is robust against replication errors, their approach to evolutionary dynamics appears unconventional, and it remains unclear under what conditions their assumptions are founded. They treat a whole set of oligos as a subject of evolution, rather than each individual oligo. This may necessitate more complex assumptions, such as the encapsulation of sets of oligos inside a protocell, to be adequately rationalized. Thus, it remains uncertain whether the system is indeed robust against replication errors in a more natural context. For example, if a mutant oligo, denoted as b', arises due to an error in the replication of oligo b, and if b' has lower catalytic activity but replicates more rapidly than b, it may ultimately come to dominate the system.

      We agree with the reviewer that the evolutionary dynamics in multi-species ecosystems are somewhat complicated and potentially confusing. To this end, we have added the following text and citations to our discussion: "Note that this fitness is defined at the level of the ecosystem, comprising all sequences in the chemostat, and is not necessarily attributable to individual members of that population. Over time, similar to microbial ecosystems, this population changes according to the laws of competitive exclusion [34, 35]". However, we would like to point out that we assume that our model operates in a chemostat-like environment, which can be realized, for example, in a prebiotic pool supplied with a constant flux of monomers. Thus, the evolutionary dynamics described by our equations do not require encapsulation of sets of oligos in a protocell followed by selection of these protocells.

      Reviewer #3 (Public Review):

      Summary:

      Non-enzymatic replication of RNA or a similar polymer is likely to be important for the origin of life. The authors present a model of how a functional catalytic sequence could emerge from a mixture of sequences undergoing non-enzymatic replication.

      Strengths:

      Interesting model describing details of the proposed replication mechanism.

      Weaknesses:

      A discussion of the virtual circular genome idea proposed in [33] is included in the discussion section together with the problem of sequence scrambling faced by this mechanism that was raised in [34]. However, the authors state that sequence scrambling is a special case of the classical error catastrophe. This should be reworded, because these phenomena are completely different. The error catastrophe occurs due to single-point mutational errors in a model that assumes that a complete template is being copied in one cycle. Sequence scrambling arises in models that assume cycles of melting and reannealing, in which case only part of a template is copied in one cycle. Scrambling is due to the many alternative ways in which pairs of sequences can reanneal. Many of these alternatives are incorrect and this leads to the disappearance of the original sequence. This problem exists even in the limit where there is zero mutational error rate. Therefore, it cannot be called a special case of the error catastrophe problem.

      We followed the reviewer's recommendations and removed the potentially confusing comparison to the classic error catastrophe.

      The authors seem to believe that their model avoids the scrambling problem. If this is the case, a clear explanation should be added about why this problem is avoided. Two possible points are mentioned.

      (i) Replication is bidirectional in this model. This seems like a small detail to me. I don't think it makes any difference to whether scrambling occurs.

      (ii) The functional activity is located in a short sequence region. I can imagine that if the length of a strand that is synthesized in a single cycle is long enough to cover the complete functional region, then sometimes the complete functional sequence can be copied in one cycle. Is this what is being argued? If so, it depends a lot on rates of primer extension and lengths of melting cycles etc, and some comment on this should be made.

      As we now explain in the text, while the scrambling problem itself is not completely avoided in our model, it does not affect the replication of the functionally relevant regions of the oligomers. Our key observation is that, due to the simplicity of the cleaving enzymes, the length of the functionally relevant region is much smaller than the scrambling-free length. This can be seen from a back-of-the-envelope estimate of the scrambling-free length added to the text: "...assuming the minimal hybridization length l_0=6 and random statistics of the master sequence, one gets the scrambling free length \sqrt{2 x 4^l_0}+l_0 ~100. This is an order of magnitude larger than both l_0 and the length of the core region of the hammerhead ribozyme."

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      I have evaluated that the authors have proposed a novel mechanism potentially relevant to the origins of life, and they have explained it with a sufficiently simple model. However, I recommend that they address the following issues, including those I raised in the public review:

      • Title: I believe that the title "Emergence of catalytic activity in ..." is rather broad. Could it be more specific to accurately represent the system described in the paper? For instance, "Selective advantage (or selection) of the hammerhead cleavage ribozyme in..." may better encapsulate the paper's focus.

      We thank the reviewer for this suggestion. However, our mechanism is not unique to hammerhead ribozymes. So we decided to keep the old title.

      • One theoretically non-trivial aspect is the stability of the cooperative structure. Could the authors provide a more detailed explanation of what drives the instability of the system and what mechanisms restore its stability? For example, in a similar self-reproducing oligomer system with ribozymes and their fragments (Kamimura et al. PLoS Comp. 2019), the symmetry of fragments breaks because they effectively suppress each other's replication. Also, it would be beneficial to clarify the necessary assumptions for stability. (For instance, the authors assumed that a_L can serve as a primer for only a, while a_R can serve for both a and b.).

      We thank the reviewer for bringing this interesting paper to our attention. The cooperative fixed point in our model is intrinsically dynamically stable. It is an interesting point why the replicase in Kamimura et al can be dynamically unstable, while the ligase in our model is always stable. However, it goes beyond the scope of our study. We added the following discussion to the manuscript: "Note that the stability of our cooperative fixed point is a non-trivial result. For example, in a related model by Kamimura et al. [34], the fixed point corresponding to a viable composite replicase is dynamically unstable and requires additional stabilization, e.g., by cell-like compartments."

      • As mentioned in the public review, a critical aspect of the practical applicability of the theory is whether cleaved oligos can be reactivated and further elongated, especially through non-enzymatic pathways. Alternatively, is it possible with the presence of enzymes? While I appreciate the conceptual beauty of their model, I recommend that they at least address the difficulty or feasibility of achieving this.

      We addressed this point in response to the public review

      • As also mentioned, in the section on evolutionary dynamics, it's essential to clarify the unit of evolution and the assumptions made. For a system-level evolution (i.e., all the sets of oligos, a and b can be the unit of evolution), more detailed assumptions are required, such as the presence of compartments whose growth is coupled with the replication of oligos inside, and the competition between these compartments. I recommend the authors clarify these points.

      We addressed this point in response to the public review

      Reviewer #3 (Recommendations For The Authors):

      Assuming that the above points can be addressed, this reviewer would support publication with minor modifications.

      We addressed all points in response to the public review

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The paper addresses the important question of how numerical information is represented in the human brain. Experimental findings are interpreted as providing evidence for a sensorimotor mechanism that involves channels, each tuned to a particular numerical range. However, the logic of the channel concept as employed here, as well as the claims regarding a sensorimotor basis for these channels, is incomplete and thus requires clarification and/or modification.

      Reviewer #1 Public Review

      Anobile and colleagues present a manuscript detailing an account of numerosity processing with an appeal to a two-channel model. Specifically, the authors propose that the perception of numerosity relies on (at least) two distinct channels for small and large numerosities, which should be evident in subject reports of perceived numerosity. To do this, the authors had subjects reproduce visual dot arrays of numerosities ranging from 8 to 32 dots, by having subjects repetitively press a response key at a pre-instructed rate (fast or slow) until the number of presses equaled the number of perceived dots. The subjects performed the task remarkably well, yet with a general bias to overestimate the number of presented dots. Further, no difference was observed in the precision of responses across numerosities, providing evidence for a scalar system. No differences between fast and slow tapping were observed. For behavioral analysis, the authors examined correlations between the Weber fractions for all presented numerosities. Here, it was found that the precision at each numerosity was similar to that at neighboring numerosities, but less similar to more distant ones. The authors then went on to conduct PCA and clustering analyses on the weber fractions, finding that the first two components exhibited an interaction with the presented numerosity, such that each was dominant at distinct lower and upper ranges and further well-fit by a log-Gaussian model consistent with the channel explanation proposed at the beginning.

      Overall, the authors provide compelling evidence for a two-channel system supporting numerosity processing that is instantiated in sensorimotor processes. A strength of the presented work is the principled approach the authors took to identify mechanisms, as well as the controls put in place to ensure adequate data for analysis. Some questions do remain in the data, and there are aspects of the presentation that could be adjusted.

      • The use of a binary colormap for the correlation matrix seems unnecessary. Binary colormaps between two opposing colors (with white in the middle) are best for results spanning positive and negative values (say, correlation values between -1 and +1), but the correlations here are all positive, so a uniform colormap should be applied. I can appreciate that the authors were trying to emphasize that a 2+ channel system would lead to lower correlations at larger ratios, but that's emphasized better in the numerical ratio line plots.

      We agree and now changed the colour maps accordingly (Fig 1 and 3, p. 4 and 11). Thank you.

      • In Figure 1, the correlation matrices in Figure 1 appear blurred out. I am not sure if this was intentional but suspect it was not, and so they should appear like those presented in Figure 3.

      Sorry about that, it was a rendering problem. Now fixed.

      • It's notable that the authors also collected data on a timing task to rule out a duration-based strategy in the numerosity task. If possible, it would be great to have the author also conduct the rest of the analyses on the duration task as well; that is, to look at WF correlation matrices/ratios as well as PCA. There is evidence that duration processing is also distinctly sensorimotor, and may also rely on similar channels. Evidence either for or against this would likely be of great interest.

      We agree that investigating the existence of temporal channels would be of great interest, but it is goes beyond the scope of the current study. Out of curiosity, however, we analysed the duration data. Interestingly, signatures of sensorimotor channels (correlation gradient as a function on duration distance) emerge. Interestingly, this does not hold when correlating number against duration data. These results (if confirmed) would indicate the existence of independent mechanisms for the time and numerosity perception. Our research agenda is now proceeding in this direction.

      • For the duration task, there was no fast-tapping condition. Why not? Was this to keep the overall task length short?

      Yes, this was the main reason.

      • The number of subjects/trials seems a bit odd. Why did some subjects perform both and not others? The targets say they were presented "between 25 and 30 times", but why was this variable at all?

      The two experimental conditions were demanding, lasting around 2 hours each. Some participants, unfortunately, were available for just one slot. To make the two conditions similarly powered, we added some extra non-shared participants. Trials were divided into blocks of 55 trials (5 repetitions for each target). Most of the participants performed 6 blocks in both conditions, few of them (again for availability limits) performed 5 blocks.

      • For the PCA analysis, my read of the methods and results is that this was done on all the data, across subjects. If the data were run on individual subjects and the resulting PCA components averaged, would the same results be found?

      We thank the reviewer for giving us the opportunity to clarify the technique.

      In brief: we measured precision (Weber Fraction) in translating digits (target numbers) into corresponding action sequences. This creates a m by n matrix, each column (n) representing a participant, each row (m) a target number. This matrix was then submitted to PCA. The analyses provided two components. Each target number was assigned with two loading scores: one representing the loading on the 1st and one on the 2nd component. These loadings were than displayed as a function of targets, to describe the tunings. This analysis, by its nature, is across-participants and cannot be performed on individual data.

      • For the data presented in Figure 2, it would be helpful to also see individual subject data underlaid on the plots to get a sense of individual differences. For the reproduced number, these will likely be clustered together given how small the error bars are, but for the WF data it may show how consistently "flat" the data are. Indeed, in other magnitude reproduction tasks, it is not uncommon to see the WF decrease as a function of target magnitude (or even increase). It may be possible that the reason for the observed findings is that some subjects get more variable (higher WFs) with larger target numbers and others get less variable (lower WFs).

      We agree and now added individual data, confirming flat WF distributions (Fig 2 B&D).

      • Regarding the two-channel model, I wonder how much the results would translate to different ranges of numerosities? For example, are the two channels supported here specific to these ranges of low and high numbers, or would there be a re-mapping to a higher range (say, 32 to 64 dots) or to a narrower range (say 16 to 32 dots). It would be helpful to know if there is any evidence for this kind of remapping.

      This is the first study measuring sensorimotor channels for the transformation of numbers into action sequences. Whether these channels are modulated by the numerical context is an interesting open question that we are exploring through specific experimental conditions (now discussed at p. 17, lines 451-460).

      Reviewer #2 Public Review

      The authors wish to apply established psychophysical methods to the study of number. Specifically, they wish to test the hypothesis - supported by their previous work - that human sensorimotor processes are tuned to specific number ranges. In a novel set of tasks, they ask participants to tap a button N times (either fast or slow), where N varies between 8 and 32 across trials. As I understood it, they then computed the Weber fraction (WF) for each participant for each number and correlated those values across participants and numbers. They find stronger correlations for nearby numbers than for distant numbers and interpret this as evidence of sensorimotor tuning functions. Two other analyses - cluster analyses and principal component analyses (PCA) - suggest that participants' performance relied on at least 2 mechanisms, one for encoding low numbers of taps (around 10) and another for encoding larger numbers (around 27).

      Strengths

      Individual differences can be a rich source of scientific insight and I applaud the authors for taking them seriously, and for exploring new avenues in the study of numerical cognition.

      Weaknesses

      Inter-subject-correlation

      The experiment "is based on the idea that interindividual variability conveys information that can reveal common sensory processes (Peterzell & Kennedy, 2016)" but I struggled to understand the logic of this technique. The authors explain it most clearly when they write "Regions of high intercorrelation between neighbouring stimuli intensity can be interpreted to imply that sets of stimuli are processed by the same (shared) underlying channel. This channel, while responding relatively more to its preferred stimulus, will also be activated by neighbouring stimuli that although slightly different from the preferred intensity, are nevertheless included in the same response distribution." As I understood it, the correlations are performed "between participants, for all targets values" - meaning that they are measuring the extent to which different participants' WFs vary together. But why is this a good measure of channels? This analysis seems to assume that if people have channels for numerical estimation, they will have the same channels, tuned to the same numerical ranges. But this is an empirical question - individual participants could have wildly different channels, and perhaps different numbers of channels (even in the tested range). If they do, then this between-subject analysis would mask these individual differences (despite the subtitle).

      Yes, the technique assumes that different individuals have similar channels, and the results confirm this. If everyone had different channels, or different numbers of channels, we would not have found this pattern of results: an ordered scaling of correlations as a function of numerical distance. As specified in the ms, however, this technique (at least as we used it) is not sensitive enough to identify the exact number of channels, so it may have smoothed the results, 'masking' the existence of more than two channels. To avoid possible confounds related to accuracy (reproduction biases), we used Weber Fraction, a standard index of normalized sensory precision (p. 7, lines 182-183).

      Different channels

      I had trouble understanding much of the analyses, and this may account for at least some of my confusion. That said, as I understand it, the results are meant to provide "evidence that tuned mechanisms exist in the human brain, with at least two different tunings" because of the results of the clustering analysis and PCA. However, as the authors acknowledge, "PCA aims to summarize the dataset with the minimal number of components (channels). We can therefore not exclude the possible existence of more than two (perhaps not fully independent) channels." So I believe this technique does not provide more evidence for the existence of 2 channels as for the existence of 4 or 8 or 11 channels, the upper bound for a task testing 11 different numbers. If we can conclude that people may have one channel per number, what does "channel" mean?

      We recognise that the technique is not particularly intuitive, and we apologize for the lack of clarity.

      To clarify: we measured the precision in translating digit numbers into action sequences. This was done for different target numbers (8, 10, 11, 13, 14, 16, 19, 21, 24, 28, 32) and with N participants. For each target number, and independently for each participant, we calculated the reproduction precision (Weber Fraction). The dataset comprised a matrix where each column represents a participant, and each row a target number. Each cell contains the corresponding Weber Fraction value. This dataset was then analysed with a simple correlation, across participants. For example, the WFs provided by the N participants when tested at the target number "8" were correlated with those obtained with the target number 10, 11, 13...32. The results show that the correlation between "8 and 10" (low numerical distance) was higher compared to that obtained correlating "8 with 32" (higher numerical distance). This pattern implies that the shared variance, between numbers, scales with numerical distance, across participants: implying the existence of channels aggregating similar numbers (i.e. tuning selectivity). On the same dataset we than ran a PCA. This analysis provides two main components. Within each component, each target number is assigned with a loading score: one for the 1st and one for the 2nd component. These loading were plotted as a function of targets, to describe the tunings shape (i.e. channels).

      As stated above, we cannot really say exactly how many channels exist. These results should be interpreted as evidence for the existence of at least two channels for the transformation of numerical symbols into action sequences. This is not an obvious result at-all. There is no evidence in the literature for the existence of such mechanism in humans. In the animal (crow), there were found as many channels as the numbers tested. This does not contrast with our 2-channel results, but (very likely) arises from the different resolution of the techniques. Single cell recording has surely higher resolution compared to our interindividual covariance approach. In short, we believe that the channels revealed here are likely a coarse summary representation of several underlying channels.

      We now tried to make these points clearer (p. 7 lines 186-196; p. 15 lines 382-384; p. 16 lines 401-402):

      Several other questions arose for me when thinking through this technique. If people did have two channels (at least in this range), why would they be so broad? Why would they be centered so near the ends of the tested range? Can such effects be explained by binning on the part of the participants, who might have categorized each number (knowingly or not) as either "small" or "large"? Whereas the experiment tested numbers 8-32, numbers are infinite - How could a small number of channels cover an infinite set? Or even the set 8-10,000? More broadly, I was unsure what advantages channels would have - that is - how in principle would having distinct channels for processing similar stimuli improve (rather than impede) discrimination abilities?

      This field of study is completely new, with many questions still open, including whether these channels are modulated by the numerical context such as the tested range and their extremes. The channels appear broad because, as stated above, they likely represent a coarse summary representation of several (probably sharper) underlying channels. We are now exploring the effect of numerical range and trying to modulate the tuning widths through ad-hoc experimental conditions. (p. 16 lines 401-402; p. 17 lines 450-459)

      No number perception

      I was uncertain about the analogy to studies of other continuous dimensions like spatial frequency, motion, and color. In those studies, participants view images with different spatial frequency, motion, or color - the analogy would be to see dot arrays containing different numbers of dots. Instead, here participants read written numerals (like "19"), symbols which themselves do not have any numerical properties to perceive. How does that difference change the interpretation of the effects? One disadvantage of using numerals is that they introduce a clear discontinuity: Our base-10 numerical system artificially chunks integers into decades, potentially causing category-boundary effects in people's reproductions.

      We used these sensory analogies to provide a flavour of the technique. The focus of the current study was on the individual differences in the numbers-to-actions transformation process. To this aim we decided to reduce the noise associated with the encoding of the sensory stimulus di per se. Digits encoding, at least with educated adults, is indeed noiseless, eliminating this source of variability. However, we agree that looking at non-symbolic formats would be interesting. We are now collecting data with dots and flash estimations. The results (so far) are largely in line with those found here, ensuring no chunking strategies, and confirming previous literature showing sensory numerosity selective channels in humans and animals. (p. 14 lines 351-355)

      Sensorimotor

      The authors wished to test for "sensorimotor mechanisms selective to numerosity" but it's not clear what makes their effects sensorimotor (or selective to numerosity, see below). It's true they found effects using a tapping task (which like all behaviour is sensorimotor), but it's not clear that this effect is specific to sensorimotor number reproduction. They might find similar effects for numerical comparison or estimation tasks. Such findings would suggest the effect may be a general feature of numerical cognition across modalities.

      Related to the above comment, the task here was to transform noiseless symbols (digits) into (noisy) numerical action sequences. Given that the source of variability is thus mainly driven by the sensory-to-action process, we believe that the task can be safely assumed to be considered sensorimotor in nature. (p. 14 lines 351-355)

      Yes, the same pattern of results might be found for numerical comparison or estimation tasks, but using non-symbolic formats (dots/flashes). Educated adults make no errors in naming or comparing such simple digits, making this covariance analysis impossible to be performed with digit verbal estimation or comparison tasks. However, to anticipate our future results, we have preliminary data for dots and flashes verbal estimation tasks (“how many?”). The data are suggesting similar results, consolidating the technique, and confirming the large literature showing sensory channels for purely visual numerosity. (p. 17 lines 453-455)

      Specific to numbers

      The authors argue that their effects are "number selective" but they do not provide compelling evidence for this selectivity. In principle, their main findings could be explained by the duration of tapping rather than the number of taps. They argue this is unlikely for two reasons. The first reason is that the overall pattern of results was unchanged across the fast and slow tapping conditions, but differences in duration were confounded with numerosity in both conditions, so the comparison is uninformative. (Given this, I am not sure what we stand to learn by comparing the two tapping speeds.) The second reason is that temporal reproduction was less precise in their control condition than numerical reproduction, but this logic is unclear: Participants could still use duration (or some combination of speed and duration) as a helpful cue to numerosity, even if their duration reproductions were imperfect. If the authors wish to test the role of duration, they might consider applying the same analytical techniques they use for numbers to their duration data. Perhaps participants show similar evidence for duration-selective channels, in the absence of number, as they do for other non-numerical domains (like spatial frequency).

      The fast and slow conditions were not meant to control for duration strategies but to test for the generalizability of the results over different tapping temporal dynamics (temporal frequency in this case). The results confirmed this.

      The control for duration strategies is the comparison between precision in reproducing durations or numbers. In the number-to-action task, participants were free to use any cues, including response duration. However, it is safe to assume that the performance is dominated by the most precise feature, number in this case. In other words, in the number task if participants were reproducing the time required to give a certain number of presses, then in the timing task, where they are explicitly reproducing the same durations, they should show no lower precision. The results are opposite to that prediction. (p. 16 lines 418-420)

      Theories of numerical cognition.

      An expansive literature on numerical cognition suggests that many animals, human children, and adults across cultures have two systems for representing numerosity without counting - one that can represent the exact cardinality of sets smaller than about 4 and another that represents the approximate number of larger sets (but see Cheyette & Piantadosi, 2020). The current paper would benefit from better relating its findings to this long lineage of theories and findings in numerical approximation across cultures, ages, and species.

      The numbers used in this work were well above the subitizing limit (>N7). Indeed, the WFs found showed no signs of subitizing discontinuities. We believe that discussing the literature on subitizing here is too far from the scope of the current work.

      Additional public comments from the Reviewing Editor:

      (1) What, in the present work, makes the case that the operative mechanism is sensorimotor? The authors frame the discussion around a sensorimotor number system but the evidence here could be seen as using a sensorimotor task as one way to get at an amodal number channel. For example, the authors could do the same experiment but have people watch a circle that flashes on and off for n times, with participants reporting the number of flashes (or shown a number and asked to say more or less). They could then apply the same analyses as used here. If they got the same results, it would seem that this would be an argument against the channels being sensorimotor. I suppose if they did NOT get results in the perceptual task, then they would have (much) stronger evidence that the channels are somehow sensorimotor in nature. Either way, an experiment along these lines would be essential for addressing the nature of the channels (tied to sensorimotor or not).

      We chose to use this task because the perception of simple digits (like those used here), at least in educated adults, is noiseless. This ensures that the inter-individual variability remaining on the table is that related to the motor transformation process. For this reason, we believe that the task can be safely considered sensorimotor (see also Kirschhock & Nieder, Number selective sensorimotor neurons in the crow translate perceived numerosity into number of actions, Nature comm, 2022). (p. 14 lines 351-355)

      This is not true for verbal numerosity estimation of non-symbolic stimuli (such as dots and/or series of events). It is well known that the estimation of the latter stimuli is noisy, and there would be no sensorimotor transformation processing in the task. The inter-individual variability in estimation precision and thus the measurable channels would then reflect sensory numerosity tunings. These have been revealed with various techniques in both humans and animals. However, we are now following this idea and we have preliminary data showing that sensory channels are also detectable by the technique used in the current study. This in not in contrast with the sensorimotor nature of the channels found here, but instead indicating the existence of both sensory and sensorimotor number channels.

      The authors may argue that results from other studies such as the 2016 target article make the case about a sensorimotor basis of these channels. While I don't have a great grasp of this literature, my take on the 2016 target article is that the point was not about sensorimotor channels but about interactions between action and vision. This seems more in line with the idea of amodal number channels and indeed, they speak about a "generalized number sense" in that paper.

      The 2016 paper showed that a short period of hand tapping (adaptation) can distort visual numerosity perception. The results implied the existence of sensorimotor number channels, integrating non-symbolic numerosity (dots/flashes) and actions. The current study goes beyond this, describing (for the first time) sensorimotor channels transforming symbolic numbers into action sequences. Whether these channels are also in charge to encode non-symbolic numerosity is an interesting open question that we are currently investigating with cross-tasks analyses. If the same channels are in charge to respond to non-symbolic numerosity (across space and time: dots and sequences of visual/auditory events) as well as to translate digits into actions, we could than speck about a generalized sensorimotor number sense. At present, this remains a possibility, to be tested. (p. 17 lines 450-459)

      (2) There is a need for clarification on the method for creating the correlation matrices. The authors write that they look at correlations between Weber fractions between participants. By "between" do they mean "across"? That is, they calculate the Weber fraction for each individual for each cell. Then for a given cell, you correlate its Weber fraction with every other cell, using the pairs for each individual. I would call this "across" not "between." Is this just a semantic thing or have I misunderstood the process?

      To make this concrete, consider the correlation for cell 10/11. I assume it is something like

      10 11

      Subj1 .25 .31

      Subj2 .13 .09

      Subj3 .22 .16

      Etc

      And correlation across participants will be the data point for the 10/11 cell in the matrix.

      It is a semantic error; this is exactly what we did: across participants.

      To clarify better: we measured the precision in transforming numbers into sequences of actions. This was done for different target numbers (8, 10, 11, 13, 14, 16, 19, 21, 24, 28, 32) and with N participants. For each target number, and independently for each participant, we than calculated the reproduction precision (Weber Fraction). The dataset then consists of a matrix where each column represents a participant, and each row a target number. Each cell contains the corresponding Weber Fraction. This dataset was then analysed with a simple correlation, across participants. For example, the WFs of the N participants obtained when testing the target number "8" were correlated with those obtained with the target numbers "10, 11, 13...32". The results show that the correlation between "8 and 10" (low numerical distance) was higher compared to that obtained correlating "8 with 32" (higher numerical distance). This pattern implies that the shared variance, between numbers (across participants) scales with numerical distance, in line with the existence of channels that aggregate similar numbers (tunings).

      (p. 7 lines 186-196)

      (3) The duration data should be analysed. While n is small, can't the authors correlate WFs across tasks? Suppose a similar pattern is observed, suggestive of >1 channel in this between-task correlation.

      One of the strengths of this technique is that it is very general, it can be applied to virtually every stimulus feature. We are currently collecting data to test the existence of generalised sensorimotor channels for continuous magnitudes: space, time, and numerosity. The logic is exactly as suggested. These correlational analyses however require (relatively) large samples and ad-hoc experimental conditions. We do not feel confident in providing messages on this with 9 participants. Out of curiosity, however, we analysed the data as requested and the results are interesting: signatures of sensorimotor channels emerge in both the number and duration tasks but NOT when analysed in conjunction (cross-task). If these results will be confirmed, would indicate the existence of separate mechanisms for the encoding of time and numerosity (and perhaps also space?).

      (4) The finding of similar results for fast and slow is quite interesting. And provides good motivation to do the duration control experiment. But two issues related to the control experiment:

      (4a) Why not look at the correlation matrix for the duration task? Was this not done because there were only 9 participants? If so, why the small n here?

      Yes, that is the reason. The aim of this work is not to investigate the existence of duration channels. This experimental condition was designed as a control for the use of non-numerical strategies in the number task. It worked well. The results were already obvious with 9 individuals (confirming Kirschhock & Nieder, Nature comm, 2022); we then did not consider necessary to continue in this direction. However, related to the previous point, we run a preliminary analysis on this small data set and (as mentioned above) signatures of sensorimotor channels (correlation gradients) emerge in both number and duration tasks but NOT when analysed in conjunction (cross-task), indicating different mechanism. We are now pursuing this issue using different number and duration tasks.

      (4b) I don't follow why greater precision on the tapping task compared to the duration task makes a strong case against the duration hypothesis. Is the argument that, if based on duration, there should be greater precision on the duration task since the tapping task would exhibit the variability from duration PLUS added noise from tapping? If this is the argument, this should be spelled out.

      Yes. The more precise feature dominates behaviour. In other words, in the number task if participants were reproducing the time required to give a certain number of presses, then in the timing task, where they are explicitly reproducing the same durations, they should show no lower precision. The results are opposite to that prediction. (p. 18 lines 418-420)

      (4c) Related to point 3 above, one would expect based on things like Rammsayer's study that duration judgments would also engage channels. Is the idea that these are different channels in the tapping task? There seems a good case to have participants do both tapping and duration tasks and then do the correlation matrices, comparing within and between tasks.

      Please see response to 3 and 4a.

      Recommendations for the authors:

      (1) On the logic of the channel concept as applied in the current context:

      While the authors present the numerical channel idea by analogy to how this concept is used for other features such as spatial frequency or orientation, there is no input to activate the channels-just a written numeral. The channel concept would mean that to respond to say, "16", you get output from multiple channels, with each weighted by its "tuning" to 16 such that the aggregate results in approximately 16 taps. This seems a bit odd: it would be like saying to draw, I use the output from my spatial frequency channels to create an image with a particular power spectrum. The logic of the channel concept in the current experimental context needs to be reviewed and clarified.

      The channel here reflects (probably) the activity of noisy neurons in charge to translate sensory information into a numerical motor output, such as those shown by Kirschhock & Nieder (Nature comm, 2022) in the crows. We used digits because their encoding (at least for such simple digits and educated adults) has no associated noise. The interindividual variability left, and analysed, is thus mainly associated with the motor transformation process, revealing sensorimotor channels.

      (2) A more thorough analysis of the duration task would strengthen the paper. The n is small for this interesting control condition and the analyses presented in the current version of the paper are limited. It is recommended to make this a fully powered test with complete analyses. Consider making this a new experiment in which participants do both the tapping and duration tasks to allow cross-modal analyses.

      We run some exploratory analyses on this, described in comments 3 and 4a. We prefer to leave this issue to dedicated future experiments (which are just started).

      (3) Expanded discussion of the limitations of the current study. The authors are clear that the methods don't provide a strong test of whether there are two or more than two channels. It would be useful to also comment on whether the estimated locations of the peaks are robust or if there is some sort of statistical bias for them to be at more extreme values. More generally, use the comments on the reviews to elaborate on various issues related to the channel concept.

      We addressed these issues in the ms (p. 17 lines 450-459).

      (4) Clarify the methods used to calculate the correlation matrix (see reviews).

      We now specified better the correlation analyses (p. 7 lines 186-196).

      (5) What is the basis for arguing that the mechanism under consideration is a "sensorimotor number system?" The data in this paper do not appear to provide evidence that the effects are linked to sensorimotor processes rather than reflect an amodal number system that is being accessed in their task through the motor system. At a minimum, present arguments for what motivates/justifies the sensorimotor claim or modify the paper to be neutral on this point.

      We now specified better the sensorimotor nature of the task used here (p. 14 lines 351-355; see also comment 1).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Review:

      Lujan et al make a significant contribution to the field by elucidating the essential role of TGN46 in cargo sorting and soluble protein secretion. TGN46 is a prominent TGN protein that cycles to the plasma membrane and it has been used as a TGN marker for many years, but its function has been a fundamental mystery.

      In parallel, it remains unclear how most secreted proteins are targeted from the Golgi to the cell surface. These molecules do not contain conserved sequence motifs or post-translation modifications such as lysosomal hydrolases. Cargo receptors for these secreted proteins have remained elusive.

      Therefore, these investigations are likely to have a significant influence on the field.

      To gain an insight into the molecular role of TGN46 in sorting, they systematically test the impact of the luminal, transmembrane, and cytosolic domains. Importantly and against the current thinking, they demonstrate that the luminal domain of TGN facilitates sorting. Interestingly, neither the cytosolic nor the length of the transmembrane domain of TGN46 plays a role in cargo export. The effects of TGN46 depletion are specific as membrane- associated VSVG remains unaffected.

      Interestingly, TGN46 luminal domain also plays an important role in the intracellular and intra-Golgi localization of TGN46, and it contains a positive signal for Golgi export in CARTS. Rigorous, well-performed data support the experimental evidence.

      A speculative part of the manuscript, with some accompanying experimental data, proposes that the luminal domain of TGN46 forms biomolecular condensates that help to capture cargo proteins for export.

      One important point to discuss is that the effects of TGN46 KO are partial, suggesting that TGN46 stimulates the Golgi export of PAUF but is not essential for this process. The incomplete block is apparent in Fig 1 and in Fig 5D.

      We thank the reviewers and the editorial team for their assessment and valuable feedback on our manuscript. Their supporting comments reinforce the significance of our findings.

      Regarding the specific point raised about the partial effects observed in the TGN46 KO cell line, we acknowledge the importance of this issue, and we have addressed it in more detail in the revised version of our manuscript. The partial effects observed when using the TGN46 KO cell line are likely caused by several factors:

      (1) It is important to consider the phenomenon of cell adaptation/compensation, which is documented to occur in gene knockout cell lines. Cells often respond to genetic perturbations by adapting to compensate the loss of a specific gene. These compensatory effects could potentially mitigate the full impact of TGN46 depletion and might explain the partial effects observed.

      (2) Our data indicate that the absence of TGN46 reduces PAUF secretion, but does not completely block its export. These results align with our proposed role TGN46 in cargo sorting. In its absence, the secretory proteins likely exit the TGN via alternative routes/mechanisms, such as "bulk flow" or by entering other transport carriers in an uncontrolled manner. The partial redistribution of the TGN46-∆lum mutant into VSVG carriers (Figure 4D) supports this likelihood. Importantly, similar situations are observed when unrelated sorting factors are depleted from the Golgi membranes. For example, when the cofilin/SPCA1/Cab45 sorting pathway is genetically disrupted, the secretion of this pathway's clients is inhibited but not completely halted (e.g., von Blume et al. Dev. Cell 2011; J. Cell Biol. 2012).

      (3) As suggested by the reviewers, it remains possible that TGN46 is not the sole player for cargo sorting. The existence of redundant or alternative mechanisms cannot be ruled out.

      In our revised manuscript, we have now provided a more in-depth discussion of these factors and their potential contributions to the observed partial effects in TGN46 KO cells (lines 447-463). We believe that a comprehensive exploration of these possibilities will improve our understanding of the role(s) of TGN46 in cargo sorting and TGN export.

      Recommendations for the authors: please note that you control which revisions to undertake from the public reviews and recommendations for the authors

      The reviewers were unanimously enthusiastic about your work. They felt that the manuscript could be significantly improved mostly through careful re-wording, additional explanations and some figure modifications.

      We thank the reviewers and the editorial team for their enthusiastic assessment of our findings. Their positive feedback is reassuring.

      We have now addressed the reviewers' suggestions to improve the clarity of our manuscript. Specifically, we have improved various aspects of the text that may have lacked clarity in the initial submission. This includes a thorough re-writing of respective sections to ensure that the content is more accessible and reader-friendly (see detailed answers to the additional points below). Furthermore, we have carefully followed the recommendations related to figure modifications.

      Please mention the species (human) in the title.

      We have changed the title according to the suggestion. The revised title now is: "Sorting of secretory proteins at the trans-Golgi network by human TGN46". In addition, we have also added the word "human" in the abstract ("... we identified the human transmembrane protein TGN46 as a receptor for the export of secretory cargo protein PAUF in CARTS ...").

      Additional points:

      The main Figures only show quantifications that are challenging to understand without fluorescence micrographs. We suggest putting the micrographs of the fluorescence images (Figures S2A and B) into the main Figure 2 (before 2B and 2C)-the same in Figures 3 and 4.

      Following the reviewers' suggestion, we have incorporated the fluorescence micrographs (included as figure supplements in the initial submission) into the main figures 2–5. Given that these additions have introduced a significant number of extra figure panels, we have carefully re-designed the figure layout to accommodate all the necessary information. This has involved that the FLIP data from old Figs. 2–4 is now included as a new Fig. 3; and the split of old Fig. 4 in the new Figs. 5,6. The supporting figures have also been rearranged accordingly. In addition, we have changed the color palette of the micrographs, in which now the dual-color images are presented in color-blind-friendly green and magenta, instead of green and red as previously. We believe that in this revised manuscript, all data and micrographs are clearly presented.

      For figures such as Fig. 1B, the mean and SD positions are hard to see for the data plotted as solid black dots. Maybe hollow circles would be better.

      The reviewers are right and we apologize for any difficulty in discerning the mean and SD positions from the figure. In our revised version, we have made the necessary modifications to all the figures where data points were plotted as solid black circles by converting them into empty black circles, as suggested by the reviewers.

      In the right side of Fig. 1A, is the difference in PAUF secretion between WT and KO cells truly significant? The meaning of the number of asterisks should be given in the legend. Only one asterisk is shown, suggesting that the significance is low.

      In our revised manuscript, we have included comprehensive information about the statistical significance, such as the statistical test used, p-values/asterisk meaning, and any other relevant details. In addition, we have included the lines connecting the individual data points corresponding to the different replicates of the secretion assays (WT vs KO).

      Experiments such as the one in Fig. 1C may be better described as iFRAP rather than FLIP.

      We appreciate the reviewers' attention to the experimental methods used, e.g., in Figure 1C. We actually performed FLIP experiments rather than iFRAP, and we acknowledge that this might not have been stated clearly in our initial submission. The distinction between iFRAP and FLIP lies in the frequency of photobleaching. In iFRAP, photobleaching occurs only once at the beginning of the experiment, whereas FLIP involves repeated photobleaching (FLIP is sometimes also referred to as "repeated iFRAP"), which was conducted in our experiments. Specifically, in our experiments we performed repeated photobleaching at a relatively slow rate (approximately once per minute; every two imaging frames).

      We understand the potential source of confusion, which may have arisen from the references we provided to introduce our FLIP experiments (Hirschberg et al. 1998; Patterson et al. 2008). In those papers, almost all results were obtained using iFRAP and not FLIP. In light of this feedback, we have made significant efforts in our revised manuscript to clarify the terminology and procedure used in our experiments (lines 148-154). These revisions have improved the understanding of our findings and we appreciate the reviewers' suggestions.

      When using iFRAP to measure the Golgi residence time of a TGN46 construct that has a cytosolic tail, shouldn't recycling from the plasma membrane be taken into account? Unlike a secreted protein, TGN46 will never show complete loss of signal from the Golgi.

      The reviewers are right: for a TGN46 construct that can efficiently recycle back to the TGN from the cell surface, an iFRAP experiment would not report solely the protein residence time at the Golgi. We concur with the reviewers, and we'd like to clarify that the reason we performed FLIP experiments, as opposed to iFRAP, was precisely to address this concern. In an iFRAP experiment, where photobleaching occurs only once at the beginning, the fluorescence decay within the Golgi area would indeed consist of two components: a decay due to the export of the protein and an increase in fluorescence due to the protein that had been exported (after the initial photobleaching) and then recycled back to the Golgi area. In contrast, our choice of conducting FLIP experiments, with repeated photobleaching of the pool of fluorescent protein outside the Golgi area (approximately once per minute), minimizes the influence of recycling. Consequently, the loss of fluorescence in the Golgi area in our FLIP experiments predominantly reflects the protein's export. We acknowledge that this distinction was not adequately communicated in our initial submission and we have emphasized these points in the revised version of the manuscript (lines 230-234).

      Lines 274 to 285 are confusing and controversial. The author argues that the transmembrane domain does not impact TGN localisation and cargo packaging. Later, they state, "These data further support the idea that the slower Golgi export rate of TGN46 mutants with short TMDs is a consequence of their compromised selective sorting into CARTS".

      We appreciate the reviewers' attention to the potential confusion regarding the impact of the TMD on TGN localization and cargo packaging. Actually, our results indicate that the length of the TMD does not seem to have an impact in intra-Golgi protein localization (Fig. 4B,C) but they do play a role in incorporation into CARTS (Fig. 4D,E). We have now clarified this in the text (lines 283-284; 296-297).

      That being said, these results were also surprising to us initially. However, upon closer examination of the amino acid sequence of the cytosolic domain of TGN46, we noticed a possible side effect of shortening its TMD. Shortening the TMD of TGN46 could lead to the partial burial of highly charged residues from TGN46 cytosolic tail (HHNKRK...) into the membrane, potentially affecting its behavior. For that reason, we constructed the TGN46 ∆cyt ST-TMD mutant, which features a short TMD (ST TMD) and lacks the potential interference from the cytosolic tail (see also lines 307-320). Notably, this mutant showed a phenotype similar to that of TGN46-Δcyt, and to that of full length TGN46, particularly in terms of intra-Golgi localization and CARTS specificity. We acknowledge that the interpretation of these results can be debated, and we have ensured that the revised manuscript captures these nuances. Additionally, we have realized that the organization and presentation of these results may have caused confusion, particularly concerning the placement of the results from the GFP-TGN46 ∆cyt ST-TMD mutant. To address this, we have reorganized old Figures 2 and 3 to ensure that the results of the GFP-TGN46 ∆cyt ST- TMD mutant are presented with the short TMD mutants. These adjustments have greatly improved the overall flow of our manuscript. We thank the reviewers for their valuable feedback.

      In lines 444-446 in the Discussion the argumentation is confusing. The experiment shows that the cytosolic domain of TGN46 has no impact on TGN46 localisation or cargo packaging into a nascent vesicle. At the same time, the authors mention that a cytosolic complex composed of Rab6 and p62 is required to generate CARTS.

      We are grateful for the reviewers' feedback regarding our argumentation in lines 444-446. Indeed, our results indicate that the cytosolic tail of TGN46 does not play a major role in packaging of TGN46 in CARTS and in PAUF secretion. However, it is important to acknowledge that our findings do not rule out the possibility that TGN46 might have a dual function at the TGN. It could potentially play a role in mediating or controlling the export of other cargo proteins by alternative mechanisms/routes, which could, in part, depend on its cytosolic domain.

      This complexity is consistent with the open question regarding the role of the cytosolic Rab6- p62 complex in CARTS biogenesis. Interestingly, in experiments reported in Jones et al. (1993), a Golgi budding assay was used to test the involvement of the cytosolic domains of TGN38 and TGN41 in budding of Golgi-derived carriers that contain the transmembrane cargo protein pIgA-R (polymeric IgA-receptor). The authors showed that the budding of these carriers was blocked upon incubation of the Golgi membranes with peptides against the cytosolic tail of TGN38/41 but not peptides against their lumenal domain. However, in the latter experiment, they used a peptide formed by the 15 N-terminal residues of TGN46, which might not functionally block the entire lumenal domain (>400 residues). Our results with reference to earlier results in the field will serve as a basis for further exploring the role(s) of TGN46 in cargo export beyond the scope of the present study.

      In summary, these are all very important points (we thank again the reviewers for highlighting them), which we have now carefully addressed in the revised version of our manuscript (lines 476-485).

      The phase separation experiments are exciting. However, they are not necessary. They may be more confusing than helpful for the following reasons:

      • The authors use very high protein concentrations and crowding reagents. Any protein would condense under these conditions.

      The protein was produced in bacteria so that it won't have post-translational modifications, especially glycosylation, possibly the most critical drivers of phase separation.

      There was no test of direct binding of PAUF with TGN46

      We appreciate that the reviewers share our excitement about our preliminary phase separation experiments. Likewise, while we initially included these experiments in the "Ideas and speculation" section due to their exciting nature, we concur with the reviewers that their preliminary nature and the experimental conditions used to obtain them raise valid concerns.

      In light of these considerations and to prevent any potential confusion for the readers, we have decided to follow the advice of the reviewers. We have removed the phase separation experiments and data from the revised manuscript. Instead, we have retained a simplified and concise "Ideas and speculation" section, in which we propose condensate formation as a potential mechanism by which TGN46 functions as a cargo sorter at the TGN (lines 580- 620).

      The authors reference S5A as the localisation between TGN46deltaLUM images, however, we believe they are referring to fig. S7.

      We apologize for the oversight in referencing the figure and thank the reviewers for bringing this to our attention. We have amended this in the revised version.

      The authors write "remarkably, the amino acid sequence of rat TGN38 is largely conserved amongst other species, including humans (>80% amino acid identity between rat TGN38 and human TGN46)". To understand if this is remarkable, the authors should use the average identity between rat and human proteins.

      We are grateful for the reviewer's insightful comment. Indeed, as the reviewer hints, the average identity between the rat and human proteomes is of the same order of magnitude as the identity reported between rat TGN38 and human TGN46. We therefore acknowledge that the term "remarkable" may not be suitable in this context and could lead to potential misinterpretation. In the revised version, we have removed the term "remarkably".

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript of Zhao et al. aimed at investigating the relationships between type 2 diabetes, bone mineral density (BMD) and fracture risk using Mendelian Randomization (MR) approach.

      The authors found that genetically predicted T2D was associated with higher BMD and lower risk of fracture, and suggested a mediated effect of RSPO3 level. Moreover, when stratified by the risk factors secondary to T2D, they observed that the effect of T2D on the risk of fracture decreased when the number of risk factors secondary to T2D decreased.

      Strengths:

      • Important question

      • Manuscript is overall clear and well-written

      • MR analyses have been conducted properly, which include the usage of various MR methods and sensitivity analyses, and likely meet the criteria of the MR-strobe checklist to report MR results.

      Response: Thanks.

      Weaknesses:

      • Previous MR studies on that topic have not been discussed

      Response: In the manuscript, we discussed the previous MR findings from Trajanoska et al., BMJ, 2018. This study assessed the effect of 15 clinical risk factors (including type 2 diabetes) on fracture risk. Now we have included the other two studies (Mitchell et al, Diabetologia, 2021; Ahmad et al JBMR, 2016) which took BMD as the exposure in the paragraph when we discussed the effects on BMD.

      • Multivariable MR could have been used to better assessed the mediative effect of BMI or RSPO3 on the relationships between T2D and fracture risk.

      Response: In revision, the inverse weighted multivariable MR model was used to estimate the direct effect of T2D upon the fracture and BMD adjusted for BMI with ‘MVMR’ R package (https://github.com/WSpiller/MVMR). Specifically, we first extracted the overlapping SNPs from the summary data for T2D, BMI and fracture. Then the independent significant SNPs (P<5×10−8 and R2<0.1) for either T2D or BMI were pooled as instruments. Additionally, we performed SNP harmonization to correct the orientation of alleles. Additionally, we performed SNP harmonization to correct the orientation of alleles. The results showed that increased risk of T2D has a direct effect that decreased fracture risk (OR=0.974, 95%CI=0.953-0.995, P=0.017 adjusted BMI), and BMI mediated 9.03% of the protective effect. The multivariable MR analysis suggested that T2D also showed direct effect on increased BMD after adjusting for BMI (β=0.042, 95%CI=0.026-0.057, P=1.92×10-7). We didn’t observe the direct effect of MRI-derived visceral (β=0.02, P=0.831) and abdominal subcutaneous (β=0.03, P=0.57) on fracture risk adjusted for RSPO3 expression. We have updated the Methods and Results accordingly.

      Reviewer #2 (Public Review):

      The authors employed the Mendelian Randomization method to analyze the association between type 2 diabetes (T2D) and fracture using the UK Biobank data. They found that "genetically predicted T2D was associated with higher BMD and lower risk of fracture". Additionally, they identified 10 loci that were associated with both T2D and fracture risk, with the SNP rs4580892 showing the highest signal. While the negative relationship between T2D and fracture has been previously observed, the discovery of these 10 loci adds an intriguing dimension to the findings, although the clinical implications remain uncertain.

      Response: We appreciate the reviewer's thoughtful evaluation of our study. The hypothesis and idea of this study is that the genetically determined type 2 diabetes might not be associated with higher risk of fracture, but the risk association could be observed. However, when stratified by the risk factors secondary to the disease, we observed that the effect of T2D on the risk of fracture decreased when the number of risk factors secondary to T2D decreased, and the association became non-significant if the T2D patients carried none of the risk factors. These results suggested that the risk factors secondary to type 2 diabetes might contribute more to the risk of fracture. Therefore, the clinical implications of our study might lie in the health management of type 2 diabetes patients. We suggest that it is important to manage the complications of type 2 diabetes to prevent the risk of fracture.

      Reviewer #1 (Recommendations For The Authors):

      • Introduction/discussion: findings from MR previously published on that topic have not been discussed in this manuscript (eg, Mitchell et al, Diabetologia, 2021; Ahmad et al JBMR, 2016);

      Response: In the manuscript, we discussed the previous MR findings from Trajanoska et al., BMJ, 2018. The study assessed the effect of 15 clinical risk factors (including type 2 diabetes) on fracture risk. Sorry that we missed the studies you mentioned, these two studies took BMD as the exposure, now we have included them in the paragraph where we discussed the effect of T2D on BMD (Page 14, Line 320-322).

      • In the one-sample MR analysis: I would suggest looking at whether the association between T2D GRS and fracture risk differ across fracture sites; in the hypothesis that BMI might be protective, performing the analysis separately for weight-bearing bones vs not weight-bearing bones would be interesting.

      Response: According to your suggestion, we further categorized fractures into weight-bearing bones (neck, vertebrae, pelvic, femur, tibia) and other bones (detailed codes have been added to Supplementary Table 16). When we regressed the observed fracture on the wGRS, it indicated that there was trend of protective association between T2D wGRS and both weight-bearing bones fracture (OR=0.9772, 95%CI=0.9552-0.9997, P=0.04737, N of fracture=8,992) and other bones fracture (OR=0.9838, 95%CI=0.9688-0.9991, P=0.0386, N of fracture=20,317) (Figure 1). We have updated the Methods and Results accordingly (Page 6, line 129-134 and Page 18, line 408-412).

      In this analysis, I would also suggest verifying the absence of sex interaction with T2D PRS on BMD and fracture risk

      Response: Thanks for your suggestion, we further estimated the effect of sex interaction on BMD and fracture risk with T2D wGRS × sex interaction term in regression model. And you are right, we found no interactions (sex with T2D wGRS) on fracture risk (P=0.5576) and BMD (P=0.66). Moreover, we conducted the stratified analysis by sex. When we regressed the observed fracture on the wGRS in male, we found that the genetically determined type 2 diabetes was also associated with lower risk of fracture (OR=0.977, P=0.015) (adjusting for reference age, sex, BMI, physical activity, fall history, HbA1c and medication treatments). In female, the direction of the association remained with no significance (OR=0.986, P=0.139). We tested the heterogeneity between male and female, and found no significant difference (Pheterogeneity= 0.457). Similarly, the genetically determined type 2 diabetes was associated with higher BMD in male (β=0.023, P=8.23×10-14) and female (β=0.022, P<2.0×10-16), and Pheterogeneity=0.6306 (Supplementary Figure 2). We have updated the Methods and Results accordingly (Page 6, line 134-139 and Page 19, line 425-429).

      • In the two-sample MR analysis: I would suggest performing a multivariable MR to look at the effect of T2D adjusted for BMI on BMD and fracture risk (see Burgess et al, AJE, 2016)

      Response: Thanks for your suggestion, in revision, the inverse weighted multivariable MR model was used to estimate the direct effect of T2D upon the fracture and BMD adjusted for BMI with ‘MVMR’ R package (https://github.com/WSpiller/MVMR). Specifically, we first extracted the overlapping SNPs from the summary data for T2D, BMI and fracture. Then the independent significant SNPs (P<5×10−8 and R2<0.1) for either T2D or BMI were pooled as instruments. Additionally, we performed SNP harmonization to correct the orientation of alleles. Additionally, we performed SNP harmonization to correct the orientation of alleles. The final IVs used in MVMR were presented in Supplementary Table 17. The results showed that increased risk of T2D has a direct effect that decreased fracture risk (OR=0.974, 95%CI=0.953-0.995, P=0.017 adjusted BMI) and increased BMD (β=0.042, 95%CI=0.026-0.057, P=1.92×10-7 adjusted BMI). We have updated the Methods and Results accordingly (Page 7, line 155-158, 162-164, and Page 20, line 456-465).

      • In the section "infer the shared genetics". In addition of using waist circumference and waist-hip ratio, it would have been interesting to use GWAS summary statistics for subcutaneous and visceral adiposity (Agrawal, Nat Comm, 2022), and look at through multivariable MR whether RSPO3 mediate the effect of subcutaneous fat on fracture risk.

      Response: Thanks for your suggestion, we downloaded the genetic summary data from Agrawal, Nat Comm, 2022, and performed the same SMR analysis as we did before. We found that higher expression of RSPO3 was associated with higher MRI-derived visceral (β=0.199, P=4.36×10-5). We have updated the Methods and Results accordingly (Page 9, line 206-208 and Page 22, line 494-495).

      We didn’t observe the direct effect of MRI-derived visceral (β=0.02, P=0.831) and abdominal subcutaneous (β=0.03, P=0.57) on fracture risk adjusted for RSPO3 expression.

      Reviewer #2 (Recommendations For The Authors):

      Specific comments

      Several concerns regarding the study's concept and methodology should be addressed before accepting the findings as credible. I would like to invite the authors to comment on the following points.

      (1) I find the authors' assertion that individuals with type 2 diabetes (T2D) exhibit both higher BMD and an increased risk of fracture to be unconvincing. The BMD measurement they refer to is based on areal BMD, which fails to account for the three-dimensional aspect of bone density. Existing evidence suggests that patients with T2D actually have lower trabecular bone scores (a predictor of fracture risk) compared to those without the condition. Furthermore, there is a lack of a clearly stated hypothesis underlying the study.

      Response: Yes, in this study, the bone mineral density measurement is based on areal BMD. We made this clear in Abstract. And we agree that other measurements, such as trabecular bone score and chest CT texture analysis, could provide additional valuable information in the evaluation of fracture risk, especially in type 2 diabetes patients. We have discussed this in the manuscript (Page 13, line 295-300). Epidemiologic studies from the past decade provided evidence that increased bone fracture risk is one of the complications of type 2 diabetes. but the areal BMD in type 2 diabetes patients could be normal or even higher (Botella Martinez et al., 2016; Romero-Diaz et al., 2021).

      In this study, we employed the mendelian randomization approach to investigate the relationship between type 2 diabetes and fracture/BMD, this method might facilitate the use of genetic data as instrumental variables to alleviate the bias of the unknown confounding factors. We found that the genetically predicted type 2 diabetes was associated with higher BMD and lower risk of fracture. That is to say, by alleviating the bias of the unknown confounding factors through MR analysis, the genetically predicted type 2 diabetes did not show bone paradox.

      We then performed observational analysis in UK Biobank, and found that type 2 diabetes was associated with higher risk of fracture and increased BMD. Further, we stratified the T2D patients with five secondary risk factors (BMI≤25kg/m2, no physical activity, falls in the last year, HbA1c≥47.5mmol/mol and antidiabetic medication treatment), and found that the effect of type 2 diabetes on the risk of fracture decreased when the risk factors secondary to type 2 diabetes decreased, and the association became not significant if the type 2 diabetes patients carried none of the risk factors. That is to say, the diabetic bone paradox might not exist if the secondary risk factors of type 2 diabetes were eliminated.

      The hypothesis and idea we want to deliver is that the genetically determined type 2 diabetes might not be associated with higher risk of fracture, but the association could be observed. However, when stratified by the risk factors secondary to the disease, we observed that the effect of T2D on the risk of fracture decreased when the number of risk factors secondary to T2D decreased, and the association became non-significant if the T2D patients carried none of the risk factors. These results suggested that the risk factors secondary to type 2 diabetes might contribute more to the risk of fracture. Therefore, it is important to manage the complications of type 2 diabetes to prevent the risk of fracture.

      In addition, although we observed type 2 diabetes was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. And the shared genetic architecture between type 2 diabetes and fracture suggested a top signal near RSPO3 gene. Higher expression of RSPO3 was associated with higher waist circumference and higher waist-hip ratio. These results suggested that relatively higher BMI in type 2 diabetes patients might benefit the higher BMD, as our previous study suggested that keeping moderate-high BMI (overweight) might be of benefit to old people in terms of fracture risk(Zhu et al., 2022).

      (2) It is not a good idea to solely concentrate on overall fracture risk as it may obscure the potential relationship between T2D and specific fracture sites, such as hip and vertebral fractures. By solely considering total fracture incidence, important associations at individual fracture sites could be overlooked. I would like to propose that the authors expand their analysis to include the examination of hip and vertebral fractures. By incorporating these specific fracture types into their study, a more comprehensive understanding of the association between T2D and fractures can be achieved.

      Response: This is a good suggestion, incorporating with the comments from another reviewer, and considering the sample size, we classified fractures into weight-bearing fractures (neck, vertebrae, pelvic, femur, tibia) and other bones (skull and facial, ribs, sternum, forearm, wrist and hand, foot and other unspecified body regions) fracture. We identified 6,582 (1.87%) participants with weight-bearing bones fracture and 9,586 (2.72%) participants with other bones fracture within the 352,879 UK Biobank participants. We observed a higher risk of fracture in the type 2 diabetes patients in the cox proportional hazards regression after adjusted for the reference age, sex, BMI, physical activity, fall history, HbA1c and medication treatments (weight-bearing bones fracture: HR=1.792, 95%CI 1.555-2.065, P=8.25×10-16; other bones fracture: HR=1.337, 95%CI 1.167-1.531, P=2.85×10−5), and additionally controlled for BMD (weight-bearing bones fracture: HR=1.850, 95%CI 1.602-2.136, P<2×10−16; other bones fracture: HR=1.377, 95%CI 1.199-1.580, P=5.54×10−6). We have updated the manuscript according in Results, Methods and Figures (Page 11, line 245-250; Page 24, line 540-547; Figure 4A).

      (3) I consider that there is an issue with combining data from both males and females in the analysis. It is widely recognized that women generally have a higher risk of fracture compared to men. Moreover, the association between BMD and fracture may vary between genders, and the risk of T2D is typically lower in women than in men. Therefore, I strongly recommend that the analysis be stratified by gender to account for these differences and provide a more accurate understanding of the relationships involved.

      Response: Thanks for your suggestion, we now add the stratified results by sex to each analysis. Briefly, in wGRS analysis, we found that the genetically determined type 2 diabetes was associated with lower risk of fracture in male (OR=0.977, 95%CI=0.958-0.995, P=0.015) (adjusting for reference age, sex, BMI, physical activity, fall history, HbA1c and medication treatments). The association in female was not significant, but the direction is the same as the male (OR=0.986, 95%CI=0.969-1.004, P=0.139). Meanwhile, the genetically determined type 2 diabetes was associated with higher BMD in both male (β=0.023, 95%CI=0.017-0.030, P=8.23×10−14) and female (β=0.022, 95%CI=0.017-0.026, P<2×10−16). In observational analysis, we observed a higher risk of fracture in the type 2 diabetes patients in the cox proportional hazards regression after adjusted for the reference age, sex, BMI, physical activity, fall history, HbA1c and medication treatments in male (HR=1.587, 95%CI 1.379-1.828, P=1.26×10−10) and female (HR=1.530, 95%CI 1.334-1.756, P=1.27×10−9), respectively. When we additionally controlled for BMD (HR=1.607, 95%CI 1.393-1.853, P=7.21×10−11 in male; HR=1.601, 95%CI 1.393-1.841, P=3.59×10−11 in female), we still observed increased risk of fracture in type 2 diabetes (Page 6, line 136-139; Page 11, line 241-243).

      (4) My understanding is that "BMD" in UK Biobank refers to estimated BMD derived from ultrasound measurements, rather than being directly measured using dual-energy X-ray absorptiometry (DXA). It would be helpful to clarify whether the BMD mentioned in the manuscript refers to estimated BMD or DXA-based BMD to ensure accurate interpretation of the results.

      Response: Yes, we used the BMD estimated from quantitative ultrasound measurement at heel as the outcome. Use of the device generates two variables, including speed of sound (SOS) and BUA (the slope between the attenuation of the sound signal and its frequency as it travels through the bone and soft tissue). Heel BMD was calculated by the following formula: BMD = 0.002592 ×(BUA+SOS)−3.687. We have made this clear in Methods (Page 23, line 526-530).

      (5) The clarification regarding the nature of the 13,817 individuals with T2D mentioned in Supplementary Table 9 is needed. It is unclear whether this figure represents incidence or prevalence. If it refers to incidence, it would be informative to specify the duration of the follow-up period for these individuals.

      Response: The UK Biobank data (application #41376), was applied in our study under a prospective design. We excluded participants if they were identified as follows: 1) ethnically identified as non-European (n =30,481); 2) diagnosed as type 1 diabetes (n=4,455); 3) diagnosed with diseases associated with bone loss (n=21,560); 4) diagnosed as fracture with known primary diseases (n=7,222) (Supplementary Table 15). For the 439,982 UK biobank samples, we focused the participants diagnosed with T2D within the 10-year period from 1 January 2006 to 31 December 2015, leaving 425,772 participants (with 14,860 type 2 diabetes patients). Here, each type 2 diabetes patient had a diagnosis date (i.e., the reference date), we first calculated the onset age, then among the participants who were free of T2D, we selected up to 27 participants (whenever possible) whose age at the reference date (± 3 years) could be matching to the onset age as referents. In total, 363,884 non-T2D referents were individually matched with 6-year age band at the reference date. We prospectively followed these type 2 diabetes patients and referents from the reference date until diagnosis of fracture, death, emigration, 19 April 2021 (diagnose a fracture of the last person in the cohort), whichever came first (with the mean duration of type 2 diabetes 8.34 years). Survival time was calculated based on whether the patient had a fracture. If individuals had a fracture, the survival time is calculated as the time of the first diagnosis of fracture minus the reference date. If individuals did not have a fracture, it was defined as the minimum time of the reference date to diagnose a fracture of the last person in the cohort (19 April 2021), death, or emigration date. We excluded 25,865 participants with fracture diagnosis date, or death or emigration before the reference date, leaving 352,879 participants included in the final analysis (13,817 type 2 diabetes patients and 339,062 referents). We identified 16,147 (4.6%) participants with fracture within the 352,879 UK Biobank participant. We have made this clear in the Methods and Results (Page 18, line 400-406; Page 22-23, line 506-523; Page 10, line 231-233).

      (6) I find the selection of participants for the analysis to be highly problematic. Supplementary Figure 1 suggests that individuals with a history of fracture were excluded from the study. However, it is well established that prior fracture history is a significant predictor of future fractures. Therefore, the exclusion of participants with prior fractures likely introduced selection bias into the analysis, potentially compromising the study's findings.

      Response: Sorry that we used a misleading term “secondary fracture” in the manuscript and figure. What we want to say here is that “the participants diagnosed as fracture with known primary diseases” (n=7,222), because we want to investigate the effect of diabetes on fracture, we should exclude other factures with known reason. We have changed the term in the manuscript and figure accordingly (Page 18, line 405-406; Supplementary Figure 1).

      Since this study is a prospective design, all the participants did not have fracture at the reference date, we prospectively followed these type 2 diabetes patients and referents from the reference date until diagnosis of fracture, death, emigration, 19 April 2021 (diagnose a fracture of the last person in the cohort), whichever came first. Therefore, each study subject either had one fracture or no fracture.

      (7) It is unclear what exactly is meant by "genetically predicted T2D." Could it possibly refer to the polygenic risk score derived from the variants associated with T2D? Clarification is needed regarding the methodology used to determine this "genetically predicted T2D" and its relation to the construction of a polygenic risk score based on T2D-associated variants.

      Response: In this study, we used weighted genetic risk score (wGRS) method and two-sample Mendelian Randomization (MR) method to estimate the effect of genetically predicted T2D on fracture. We constructed the wGRS for the individuals in the UK biobank (294,571 samples with genotypes) as a linear combination of the selected SNPs weighted by their β coefficients on type 2 diabetes: wGRS = β1 SNP1 + β2 SNP2 + … + βn SNPn. n is the number of instrumental variables. To validate the wGRS results, we also performed the two-sample MR analyses that is independent of UK Biobank samples. We used three two-sample MR approaches, the inverse variance weighting (IVW), simple median and MR-PRESSO approaches. Both methods took the genetically predicted type 2 diabetes as the exposure (See Methods Page 18, line 419-422; Page 19, line 439-440).

      (8) My understanding is that the Mendelian Randomization analysis relies on, among others, 2 assumptions: (1) the genetic marker is linked to the exposure (e.g., T2D), and (2) the genetic marker remains independent of the outcome (e.g., fracture) when considering the exposure and all confounding factors. In the authors' study, they identified 10 loci that exhibited associations with both T2D and fracture risk. This finding raises questions about whether the assumptions underlying Mendelian Randomization have been violated?

      Response: You're absolutely right. Because the presence of horizontal pleiotropy could bias the MR estimates, we additionally used the MR pleiotropy residual sum and outlier (MR-PRESSO) method. When we excluded pleiotropic variants using restrictive MR-PRESSO method, the causal association was still detected between type 2 diabetes and fracture (OR=0.967, 95%CI=0.945-0.989, P=0.004) (Page 6, line 146-149).

      (9) The analysis provided in Supplementary Table 10 appears to have certain limitations. From my understanding, the analysis treated fracture and BMD as outcome variables, with T2D regarded as the predictor variable. However, what is of interest is whether the association between T2D and fracture remains significant even after accounting for well-established risk factors for fractures, including BMD. It is crucial to determine whether the association between T2D and fracture is independent of these established risk factors. Therefore, I suggest the authors consider the following 3 models:

      Model 1: fracture ~ age + T2D

      Model 2: fracture ~ age + T2D + BMD

      Model 3: fracture ~ age + T2D + BMD + fracture history + falls

      Response: In our previous analysis, we have adjusted for 7 covariates (including fall history) in the basic model for fracture, i.e.

      fracture ~ T2D + age + sex + BMI + physical activity + HbA1c + medication treatments + fall history (Model 0)

      We have already included “fall history” in the basic model, according to your suggestion, we further considered an additional model for fracture by including BMD as the covariate:

      fracture ~ T2D + age + sex + BMI + physical activity + HbA1c + medication treatments + fall history + BMD (Model 1)

      We cannot include fracture history as the covariate because each study subject either had one fracture or no fracture, as we also answered in Question 6.

      In model 0, we observed a higher risk of fracture in the type 2 diabetes patients in the cox proportional hazards regression after adjusted for the clinical risk factors including reference age, sex, BMI, physical activity, HbA1c, medication treatments and fall history (HR=1.527, 95%CI=1.385-1.685, P<2.0×10-16). When we additionally controlled for BMD (model 1), we still observed increased risk of fracture in type 2 diabetes (model 1: HR=1.574, 95%CI=1.425-1.739, P<2.0×10-16) (Supplementary Table 11).

      We thank for your suggestion, and we have updated accordingly in Methods, Results, and Figures (Page 11, line 243-245; Page 24, line 539-540; Figure 4A).

      (11) The dichotomization of data presented in Figure 4 is not considered ideal, as this approach often leads to a loss of valuable information. It is strongly recommended that the authors reconsider their data analysis strategy and reanalyze the data using continuous variables, such as BMI and HbA1c, to capture a more nuanced understanding of the relationships involved.

      Response: We agree that dichotomization of data would lead to a loss of valuable information. In model 0 and model 1, we used the continuous variables in the analyses, we adjusted for the reference age, sex, BMI (as a continuous variable), physical activity, fall history, HbA1c (as a continuous variable) and medication treatments to analyze the relationship between type 2 diabetes and fracture in the cox proportional hazards regression. We have updated the Figure 4 accordingly.

      In stratified analyses, we took 5 clinical factors secondary to the diseases to classify the individuals at risk, for example, if an individual had BMI≤25kg/m2, no physical activity, falls in the last year, HbA1c≥47.5mmol/mol and antidiabetic medication treatment, this individual was identified to have 5 risk factors, and so forth. Finally, 2,303 patients carried none of the risk factors, 4,128 patients accompanied with one of the risk factors, and 4,252 patients carried at least two risk factors. We found that the effect of type 2 diabetes on the risk of fracture decreased when the risk factors secondary to type 2 diabetes decreased. We have made this clearer in the Methods and Results (Page 11, line 255-257; Page 24, line 548-552).

      (12) The conclusion of the study appears to be somewhat confusing. In the Abstract, the authors initially state that "genetically predicted T2D was associated with higher BMD and lower risk of fracture." However, later on, they write that "the genetically determined T2D might not be associated with a higher risk of fracture." This discrepancy raises uncertainty about the clear take-home message of the study.

      Response: Here we just want to deliver the same message by different statements, avoiding the repeat of writing. The take-home message we want to deliver is that the genetically determined type 2 diabetes might not be associated with higher risk of fracture, but the association could be observed, suggesting the risk factors secondary to type 2 diabetes might contribute more to the risk of fracture. Therefore, it is important to manage the complications of type 2 diabetes to prevent the risk of fracture, especially the 5 factors we investigated in this study.

      (13) Apologies if I offend) It seems that the authors lack comprehensive knowledge of the osteoporosis literature. In the Introduction, their definition of osteoporosis as "an age-related common disease characterized by low bone mass" is inadequate. It would be advisable for the authors to provide a more widely accepted and standard definition of osteoporosis to ensure accuracy and alignment with established definitions in the field.

      Response: Thanks for your suggestion. Now we changed the statement as follow “Osteoporosis is a common chronic disease characterized by low bone mass and disruption of bone microarchitecture. Fragility fracture is the ultimate outcome of poor bone health”.

      (14) There are several instances in which the authors use non-standard terminologies. For example, the use of the word 'effects' (in "the observed effect of T2D on fracture risk") is inappropriate since this study is observational in nature.

      Response: In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population. We have changed some of the words “effect” into “effect size” (whenever appropriate) to refer the Hazard ratio between T2D on fracture.

      (15) Please provide a reference for "diabetic bone paradox".

      Response: We have cited Botella Martínez et al, Endocrinol Nutr. 2016 and Romero-Díaz et al, Diabetes Ther. 2021 in both Introduction and Discussion (Page 3, line 76-77; Page 13, line 295-297).

      References

      Botella Martinez S, Varo Cenarruzabeitia N, Escalada San Martin J, Calleja Canelas A. The diabetic paradox: Bone mineral density and fracture in type 2 diabetes. Endocrinol Nutr. 2016, 63: 495-501.

      Romero-Diaz C, Duarte-Montero D, Gutierrez-Romero SA, Mendivil CO. Diabetes and bone fragility. Diabetes Ther. 2021, 12: 71-86.

      Zhu XW, Liu KQ, Yuan CD et al. General and abdominal obesity operate differently as influencing factors of fracture risk in old adults. iScience. 2022, 25: 104466.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This manuscript presented convincing single-cell transcriptomic data of hematopoietic cells and immunocytes in zebrafish kidney marrow and showed that these cells have distinctive responses to viral infection. The findings in this study suggest that zebrafish kidney is a secondary lymphatic organ and hematopoietic stem cells in zebrafish may exhibit trained immunity. This represents a valuable discovery of the unique features of the fish immune system.

      Public Reviews:

      Reviewer #1 (Public Review):

      Hu et al. performed sc-RNA-seq analyses of kidney cells with or without virus infection, vaccines, and vaccines+virus infections from pooled adult zebrafish. They compared within these experimental groups as well as kidney vs spleen. Their analyses identified expected populations but also revealed new hematopoietic stem/progenitor cell (HSPC), even in the spleen. Their analyses show that HSPCs in the kidney can respond to virus infection differentially and can be trained to recognize the same infection and argue that zebrafish kidney can serve as a secondary immune organ. The findings are important and interesting. The manuscript is well written and a pleasure to read. However, there are several issues with their figure presentation and figure qualities, as well as the lack of clarity in some of figure legends. Some of the data presentation can be improved for better clarity. It is also important to outline what is conserved and what is unique for fish.

      Major concerns:

      (1) The visualization for several figure panels is very poor. Please provide high resolution images and larger font sizes for gene list or Y and X axis labels. This includes Figure 1B, Figure 1-figure supplement 2, Figure 2B-2C, 3A-3D, 4F, 5B, 6G, Figure 6-figure supplement 1B, Figure 6-figure supplement 2. Figure 7B, 8C-8E, Figure 8-figure supplement 1., 10F, 10G-10J, Figure 10-figure supplement 1.

      Response: We apologize for the issue you have pointed out concerning the inadequate visualization of the graphic panels. It is likely that the formatting of the inserted images was altered during the manuscript upload process, leading to a reduction in resolution. However, the graphics uploaded as separate image files, specifically formatted as vector files in PDF format, preserve their high resolution even when zoomed in. Therefore, we kindly request the reviewer to consult the figures in the submission folder for a more detailed examination. We sincerely apologize for any inconvenience caused.

      (2) What are the figures at the end of the manuscript without any figure legends?

      Response: Thank you for bringing this issue to our attention. The last few figures that lack figure legends are actually supplementary figures included in the text. It is possible that they were automatically and repeatedly generated by the submission system. In the revised manuscript, we will take measures to ensure that this issue is avoided.

      (3) It would be better to use a Table to organize the gene signatures that define each unique population of immune cells such as T, B, NK, etc.

      Response: We greatly appreciate the valuable advice provided by the reviewer. As per the reviewer's recommendation, we have included a comprehensive display of all cell types and corresponding gene signatures in Supplementary File 1 of the revised manuscript.

      (4) What are the similarities for HSPC and immune cell populations between fish and man based on this research? It is better to form a table to compare and discuss.

      Response: Following the valuable suggestion of the reviewer, we have included an additional comparative analysis of HSPC and immune cell populations between zebrafish and humans. This information can be found in Supplementary file 8 and in the "Discussion" section (lines 684-685).

      (5) It is highly likely that sex and age could be the biological variation for how HSPC responds to virus infections and vaccination. The author should clearly state the fish sex and age from their samples and discuss their results taking into consideration of these variations.

      Response: We are grateful for the reviewer's insightful comments. To reduce inter-individual variations, zebrafish samples were selected randomly, with an equal distribution of males and females, during their prime youth period spanning from 3 to 12 months of age. We have included supplementary instructions regarding this selection process in the "Materials and Methods" section (lines 798-799).

      (6) The authors claim that the spleen and kidney share HSPCs. However, their data did not demonstrate this result clearly in Figure 4A. Perhaps they should use different color to make the overlay becoming more obvious? Or include a table to show which HSPCs are shared between the kidney and spleen? Are they sure if these are just HSPCs seeding the spleen to differentiate into B cells or other immune cells?

      Response: We express our gratitude to the reviewer for raising this issue. In this section, we would like to provide detailed explanations regarding this matter. It is important to note that the figures positioned on both the left and right sides of Figure 4A should be interpreted in a corresponding manner. The left-side figure represents the cellular composition from the spleen (depicted in light red) and the kidney (depicted in blue) across various cell types. Each data point in the left-side figure signifies an individual cell, with the two distinct colors indicating the origin of the cell. On the other hand, the right-side figure displays the varied colors representing different cell types. We want to emphasize that the spatial distribution and proportions of diverse cells in the tSNE plot on the right align consistently with the information presented in the left-side figure. This indicates the correspondence between the two plots and reinforces the validity of our findings. When interpreting the figures on the left and right sides of Figure 4A in a corresponding manner, it becomes evident that the overlapping HSPCs shared by both spleen and kidney predominantly reside in the HSPCs1 group (indicated as cluster 5 in the right-side figure). Additionally, there is also a small distribution of the overlapping HSPCs in the HSPCs2 group (cluster 8 in the right-side figure). These observations underline the presence of overlapping HSPCs in both the kidney and spleen. However, further clarification is required to fully comprehend the intricate correlation between the HSPCs in the kidney and spleen.

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns:

      (1) Figure 3C: why is 10 listed in between 1 and 2?

      Response: We appreciate the reviewer's comment. It is pertinent to mention that the graphs in Figure 3C underwent an automatic sorting process facilitated by the software during the analysis. It should be emphasized that the assigned positions resulting from this sorting process have no bearing on the outcomes of the analysis.

      (2) Figure 4A: difficult to assess the overlay between the kidney and spleen.

      Response: As mentioned above, the overlapping HSPCs shared by both the spleen and kidney are mainly distributed in the HSPCs1 group (cluster 5 in the right-side figure), with a small amount also found in the HSPCs2 group (cluster 8 in the right-side figure).

      (3) Figure 4C: What is this sample, kidney or spleen? Please specify.

      Response: Figure 4C represents an overlay of the spleen and kidney cells depicted in Figure 4B, which includes all cells of the spleen and kidney to show the differentiation trajectory of the cells. As per reviewer’s suggestion, we have made corresponding modification to the revised figure.

      (4) The manuscript is very long. Consider to focus on the major findings as the main figures and move the rest to the supplementary figures.

      Response: This article aimed to comprehensively understand the hematopoietic and immunological traits of zebrafish kidneys through a systematic study. As a result, a comprehensive presentation of the findings has been provided. Given that the figures currently integrated into the main text play a significant role in illustrating the principal outcomes of each section, we kindly request that these figures remain in the main body of the article. This will contribute to sustaining the structural coherence and readability of the manuscript. Thank you for taking our request into consideration.

      Reviewer #2 (Public Review):

      In this manuscript, the authors have meticulously constructed a comprehensive atlas delineating hematopoietic stem/progenitor cell (HSPC) and immune-cell types within the zebrafish kidney, employing single-cell transcriptome profiling analysis. Notably, these cell populations exhibited distinctive responses to viral infection. Intriguingly, the investigation revealed that HSPCs manifest positive reactivities to viral infection, indicating the effective induction of trained immunity in select HSPCs. Furthermore, the study unveiled the capacity for the generation of antigen-stimulated adaptive immunity within the kidney, suggesting a role for the zebrafish kidney as a secondary lymphoid organ. This research elucidates the distinctive features of the fish immune system and underscores the multifaceted biology of the kidney in ancient vertebrates.

      Response: We would like to express our gratitude to the reviewers for their overall positive feedback on our article.

      Reviewer #2 (Recommendations For The Authors):

      (1) The authors propose that zebrafish kidney is a dual-functional entity with functionalities of both primary and secondary lymphoid organs. Do the authors have any insights into the coordination of these two functions in the kidneys?

      Response: We are grateful for the valuable comments provided. We believe that the question raised by the reviewer poses an intriguing research topic, as it explores the intricate interaction between the hematopoietic and adaptive immune systems in the renal organ. This exploration holds significant value in understanding the underlying mechanisms. To accomplish this, advanced techniques such as spatiotemporal single-cell transcriptomics and dynamic cell tracking will be utilized to validate the interplay between hematopoietic and immune cell lineages.

      (2) Previous studies have found that fish IgZ/IgT specificity exists in mucosal immune organs. Is the expression of the zebrafish IgZ gene observed in the kidney? If so, is there any correlation with IgZ in mucosal immune organs?

      Response: Thank you for drawing attention to this matter. In our study, we observed the expression of the IgZ gene (ighz) in the zebrafish kidney, as shown in Figure 6. This discovery aligns with previous research and confirms its presence in B cells. While IgZ is known to function as an antibody in mucosal immunity, it remains unclear whether the development of its secretory cells (IgZ+ B cells) originates from the central immune system, such as the kidney. Our results suggest that IgZ+ B cells may have their origin in the kidney and then migrate through the peripheral circulation to carry out their functions in the local mucosal system. This finding is consistent with our earlier research, which demonstrated that zebrafish IgZ is not limited to mucosal immune organs but is also abundantly present in systemic immunity, including peripheral blood (Immunology. 2021; 162(1): 105-120).

      Reference:

      Ji, J. F. et al. Differential immune responses of immunoglobulin Z subclass members in antibacterial immunity in a zebrafish model. Immunology, 2021;162(1), 105-120.

      (3) Did the authors use the zebrafish genome or transcriptome for gene annotation? If the former, which version is used? Please supplement in the "Materials and methods".

      Response: We appreciate the comments provided by the reviewer. In this study, we utilized the zebrafish genome, specifically the GRCz11 version, to annotate genes. The detailed genome data can be found at http://asia.ensembl.org/Danio_rerio/Info/Index. We have incorporated this information into the "Materials and Methods" section of the revised manuscript (line 873).

      (4) Since the authors performed single-cell sequencing on leukocytes, why did several kidney cells, such as kidney multicellular cells and kidney mucin cells existed in the samples?

      Response: Thanks for the reviewer’s comments. It is important to acknowledge that inadvertent mixing of kidney cells might have occurred during the preparation of single-cell suspensions in our analyzed sample. However, it is pertinent to emphasize that our primary focus was the analysis of immune cells. Therefore, any minor contamination from kidney cells in the analyzed sample is considered negligible and does not significantly affect the main results of our analysis.

      (5) The application of "trained immunity," although currently popular, appears unsuitable in this context, as the current scenario involves a recall with the cognate antigen.

      Response: To our knowledge, trained immunity is generally recognized as the long-term memory of innate immunity based on transcriptional, epigenetic and metabolic modifications of myeloid cells, which are characterized by elevated pro-inflammatory responses to secondary stimuli, whether they are identical or different (Cell Host Microbe. 2012; 12(2): 223-32; Nat Immunol. 2021; 22(1): 2-6; J Clin Invest. 2022;132(7): e158468). Therefore, stimulation of cognate antigens can be considered as a form of training immunity, and we hope that it will be accepted in this context.

      References:

      (1) Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell host & microbe, 2012;12(2), 223-232.

      (2) Divangahi, M. et al. Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature immunology, 2021;22(1), 2-6.

      (3) Pernet, E. et al. Training can’t always lead to Olympic macrophages. Journal of Clinical Investigation, 2022;132(7), e158468.

      (6) The discovery that HSPC exhibits trained immune characteristics is novel. Do the authors have any insights into the biological significance of trained immunity in HSPCs concerning immune defense?

      Response: We propose that the generation of trained immunity in HSPCs holds significant physiological implications. This process may expedite the differentiation and activation of specific immune cells upon re-infection, thereby bolstering the body's immune defenses and pathogen clearance. Consequently, it may serve as an intelligent strategy for host defense against pathogens. However, additional research is required to confirm this hypothesis.

      (7) In the Figure 13I, the authors used CpG and CpG+TNP-KLH to stimulate zebrafish, but no corresponding experimental method was provided in the "Materials and methods". Please supplement.

      Response: Thanks for the reviewer’s careful reading. We have included corresponding supplementary instructions in the “Materials and methods” section (lines 1011-1018).

      (8) At line 187-190 in "Results", authors state that "It's noteworthy that cluster 11 exhibited high expression of genes ......, resembling a unique serpin-secreting cell population". Noteworthy is the fact that serpins play a role in diverse immunological processes, including coagulation, inflammation, as well as myeloid and lymphoid cell development. Could this renal cell cluster (kidney mucin cells) potentially harbor immunological functions?

      Response: Given the crucial role of serpins in various immunological processes, secreted serpins from this particular cell cluster likely possess significant immunological functions, suggesting the notable immunological capabilities of this cell group. Consequently, our forthcoming research aims to conduct a more comprehensive investigation of this specific cell population.

      (9) At line 171 in "Results", the number "6" in the "cluster 6" should not be italicized, please correct.

      Response: We have addressed this issue in the revised manuscript (line 170).

      (10) At line 937 in "Materials and methods", the authors isolated T/B lymphocytes through magnetic bead sorting. Please provide information on the source of the antibodies (rabbit anti-TCRα/β or mouse anti-IgM Ab).

      Response: We have included corresponding instructions in the “Materials and methods” section (lines 938-939).

    1. Author Response

      Reviewer #1 (Public Review):

      The author's goal was to determine the role of O-GlcNAc modification in associate learning in Drosophila using an odor discriminatory task. In particular, they sought to determine the population of O-GlcNAc modified proteins in a region of the brain critical for memory, the mushroom body. They provide compelling evidence that there are brain-region-specific populations of O-GlcNAc modified proteins and that in the mushroom body, proteins involved in translation represent a sizable, and larger fraction than elsewhere in the central nervous system. Using expression of a bacterial protein that cleaves O-GlcNAc in the mushroom body, they show both reductions in the levels of this modification and effects on associative learning. Further exploration of new protein synthesis in situ supports the hypothesis that O-GlcNAc modification affects the activity of the translational machinery and could provide the basis for learning deficits when O-GlcNAc levels are compromised. Rescue of deficits resulting from reductions in O-GlcNAc was achieved by over-expression of dMyc, a known regulator of ribosome biogenesis and translation. While the critical role of protein synthesis in learning is long established, and that O-GlcNAc modification regulates protein synthesis, this work connects O-GlcNAc modification in a specialized region of the brain to translation regulation and associative learning. The authors also provide a method for identification of O-GlcNAc modified proteins using a tissue-specific and inducible proximity-labelling method. This will provide a useful tool for further functional studies of O-GlcNAc modification.

      Thank you for summarizing our main findings and recognizing the usefulness of the tool reported here.

      Reviewer #2 (Public Review):

      In this report Yu et al. try to demonstrate how O-GlcNAcylation of ribosomal proteins in the mushroom body (MB) is required for protein synthesis and olfactory learning. The authors develop a new method combining the O-GlcNAc binding activity of an OGlcNAcase (OGN) and TurboID for efficient isolation. This novel method is a useful tool for the identification of O-GlcNAc modified proteins and closely interacting partners. Transgenic expression of this binder allows the authors to perform a profiling that can be time and tissue/region/cell specific. This novel tool is thoroughly tested to show it works in cultured cells, whole Drosophila and in a tissue specific manner expressing it pan-neuronally or specific regions of the brain.

      The authors had previously shown that reduced O-GlcNAcylation through transgenic expression of a highly active OGN affected olfactory learning. In this work the same approach is used to reduce O-GlcNAcylation in different brain regions to show that specific reduction in the adult MB reduced olfactory learning performance. As control OGN expression in the ellipsoid body has no effect on olfactory learning. Optic and antennal lobes could not be tested as OGN expression affected olfactory acuity. The most critical part of this finding is time specific expression of OGN in the adult in a tissue specific manner given the developmental defects it induces with earlier expression. The MB has a widely reported role in associative learning, therefore this finding while not unexpected it is satisfying.

      Thank you for recognizing the significance of our work.

      Yu et al. use their TurboID-OGA to identify O-GlcNAcylated proteomes in different brain regions. The authors focus on the MB given its role in associative learning and the effect of reduced O-GlcNAcylation in this region. Among other substrates several ribosomal proteins are found to be specifically O-GlcNAcylated to a greater extent in the MB compared to other brain regions.

      To demonstrate the role of MB O-GlcNAcylated ribosomes in protein synthesis an ex vivo OPP fluorescent assay is used in brains of flies expressing OGN or a mutant form lacking its catalytic and binding activities. The experiment shows reduced protein synthesis in the MB. In addition, the authors can increase protein synthesis inducing ribosomal biogenesis through the expression of dMyc. Flies expressing of dMyc and OGN together do not present the learning deficits of flies carrying only OGN. Protein synthesis in MB has been previously reported to be required for associative learning (for example Wu et al.2017 or Lin et al. 2022) and the present results bring further support. A link between ribosomal O-GlcNAcylation and protein synthesis could be a really interesting finding but, unfortunately the experiments presented in this work are still too preliminary.

      The experiments presented just focus on ribosomal proteins while these are just some of the O-GlcNAcylation substrates in the MB. While a correlation between ribosomal modification and protein synthesis is shown, a demonstration is not provided. Many other mechanisms and O-GlcNAcylation of other substrates could account for the same observations. For example, O-GlcNAcylation has been reported to have a role in protein synthesis affecting different translation initiation factors (Li et al 2018, Shu et al 2022). In vitro experiments where specific O-GlcNAcylation ribosomal components could be targeted are required. In addition, O-GlcNAcylation is also known to modify ribosomal-associated mRNAs. Experiments where specific mutations preventing O-GlcNAcylation in ribosomes could demonstrate a direct link of such ribosomal modifications in olfactory learning.

      We appreciate that you bring up a crucial point that our data fall short for a causal connection between O-GlcNAcylation of ribosomes and translational activity. We have made significant changes to the text throughout the manuscript to make our description more accurate.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      In this valuable study, the discovery and subsequent design of the AF03-NL chimeric antibody yielded a tool for studying filoviruses and provides a possible blueprint for future therapeutics. However, the data are incomplete and not presented clearly, which obscures flaws in the analyses and leaves unexplained phenomena. The work will be of interest to virologists studying antibodies.

      Author response: Thank for your very valuable comments. The ms has been revised substantially and some new data have been added to further support the conclusions.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary and Strengths:

      Zhang et al. conducted a study in which they isolated and characterized a Marburg virus (MARV) glycoprotein-specific antibody, AF-03. The antibody was obtained from a phage-display library. The study shows that AF-03 competes with the previously characterized MARV-neutralizing antibody MR78, which binds to the virus's receptor binding site. The authors also performed GP mutagenesis experiments to confirm that AF-03 binds near the receptor binding site. In addition, the study confirmed that AF-03, like MR78, can neutralize Ebola viruses with cleaved glycoproteins. Finally, the authors demonstrated that NPC2-fused AF-03 was effective in neutralizing several filovirus species.

      Weaknesses:

      (1) The main premise of this study is unclear. Flyak et al. in 2015 described the isolation and characterization of a large panel of neutralizing antibodies from a Marburg survivor (Flyak et al., Cell, 2015). Based on biochemical and structural characterization, Flyak proposed that the Marburg neutralizing antibodies bind to the NPC1 receptor binding side. In the same study, it has been shown that several MARV-neutralizing antibodies can bind to cleaved Ebola glycoproteins that were enzymatically treated to remove the mucin-like domain and glycan cap. In the following study, it has been shown that the bispecific-antibody strategy can be used to deliver Marburg-specific antibodies into the endosome, where they can neutralize Ebola viruses (Wec et al., Science 2016). Finally, the use of lysosome-resident protein NPC2 to deliver antibody cargos to late endosomes has been previously described (Wirchnianski et al., Front. Immunol, 2021). The above-mentioned studies are not referenced in the introduction. The authors state that "there is no licensed treatment or vaccine for Marburg [virus] infection." While this is true, there are human antibodies that recognize neutralizing epitopes - that information can't be excluded while providing the rationale for the study. Furthermore, the authors use the word "novel" to describe the AF-03 antibody. How novel is AF-03 if multiple Marburg-neutralizing antibodies were previously characterized in multiple studies? Since AF-03 competes with previously characterized MR78, it binds to the same antigenic region as MR78. AF-03 also has comparable neutralization potency as MR78.

      Author response: Thank for your valuable advice. In terms of the novelty of AF-03, the inhibition assay indicates that Q128/N129/C226 functions as key amino acids responsible for AF-03 neutralization given that the neutralizing capacity of AF-03 to pesudotyped virus harboring these mutants is impaired (see revised Fig. 2A left panel). Furthermore, ELISA assays show that mutation of Q128S-N129S or C226Y significantly disrupts the binding of GP to AF-03, while the neutralizing and binding capacity of MR78 to mutant GP and pseudovirus harboring C226Y instead of Q128S-N129S is not almost affected (see revised Fig. 2A right panel and 2B). Considering the fact that AF-03 and MR78 could compete with each other to bind to MARV GP (Fig. 2D). we thus make a conclusion that the epitopes of these two mAbs overlapped partially. Therefore, AF-03 is not a clone of MR78 and is a novel neutralizing mAb to MARV.

      The work from Wirchnianski and colleagues has been referenced actually in the ms (see Ref. 38). Although our strategy for the design of broad-spectrum neutralizing antibody refers to their work, we further expand the species being evaluated including RAVN and mutated EBOV strains. The results show that NPC2-fused AF-03 exhibits neutralizing activity to 10 filovirus species and 17 EBOV mutants (Fig. 6A and B). The work by Flyak et al. in 2015 that described the isolation and characterization of a large panel of neutralizing antibodies from a Marburg survivor has been cited in Introduction section accordingly.

      (2) Without the AF-03-MARV GP crystal structure, it's unclear how van der Waals interactions, H-bonds, and polar and electrostatic interactions can be evaluated. While authors use computer-guided homology modeling, this technique can't be used to determine critical interactions. Furthermore, Flyak et al. reported that binding to the NPC1 receptor binding site is the main mechanism of Marburg virus neutralization by human monoclonal antibodies. Since both AF-03 (this study) and MR78 (Flyak study) competed with each other, that information alone was sufficient for GP mutagenesis experiments that identified the NPC1 receptor binding site as the main region for mutagenesis.

      Author response: Computer-guided homology modeling has been exploited successfully in our lab to determine key residues responsible for the interaction between antigen and mAbs (Immunol Res. 2015, 62:377; Scand J Immunol. 2019, 90:e12777; Sci Rep. 2022, 12:8469; Front Immunol. 2022, 13:831536). We refer to the crystal structure of MARV GP and the complex of MR78 and GP reported previously (Cell 2015, 160:904) and then model the complex of MARV GP and AF-03. Although AF-03 and MR78 compete with each other, we show that the epitopes of these two mAbs just overlap partially (Fig. 2A-D).

      (3) The AF-03-GP affinity measurements were performed using bivalent IgG molecules and trimeric GP molecules. This format does not allow accurate measurements of affinity due to the avidity effect. The reported KD value is abnormally low due to avidity effects. The authors need to repeat the affinity experiments by immobilizing trimeric GPs and then adding monovalent AF-03 Fab.

      Author response: As shown in Fig. 1A, GP protein used in this work is not trimer but largely monomer composed of MLD-deleted GP1 and GP2, which may at a certain extent weaken the engagement between GP and AF-03. It is noteworthy that we re-done the SPR assays for the binding of AF-03 to GP and show that KD value is 4.71x10-11M (see revised Fig. 1C). This GP protein is thus available to the evaluation of mAb affinity. In addition, it is reasonable to utilize bivalent IgG to detect the affinity of mAb to monomeric GP since the affinity likely decreases significantly when monovalent Fab is used.

      Reviewer #2 (Public Review):

      Summary:

      The authors describe the discovery of a filovirus neutralizing antibody, AF03, by phage display, and its subsequent improvements to include NPC2 that resulted in a greater breadth of neutralization. Overall, the manuscript would benefit from considerable grammatical review, which would improve the communication of each point to the reader. The authors do not convincingly map the AF03 epitope, nor do they provide any strong support for their assumption that AF03 targets the NPC1 binding site. However, the authors do show that AF03 competes for MR78 binding to its epitope, and provides good support for the internalization of AF03-NL as the mechanism for improved breadth over the original AF03 antibody.

      Strengths:

      This study shows convincing binding to Marburgvirus GP and neutralization of Marburg viruses by AF03, as well as convincing neutralization of Ebolaviruses by AF03-NL. While there are no distinct populations of PE-stained cells shown by FACS in Figure 5A, the cell staining data in Figure 5C are compelling to a non-expert in endosomal staining like me. The control experiments in Figure 7 are compelling showing neutralization by AF03-NL but not AF03 or NPC2 alone or in combination. Altogether these data support the internalisation and stabilisation mechanism that is proposed for the gain in neutralization breadth observed for Ebolaviruses by AF03-NL over AF03 alone.

      Weaknesses:

      Overall, this reviewer is of the opinion that this paper is constructed haphazardly. For instance, the neutralization of mutant pseudoviruses is shown in Figure 2 before the concept of pseudovirus neutralization by AF03 is introduced in Figure 3. Similarly, the control experiments for AF03+NPC2 are described in Figure 7 after the data for breadth of neutralization are shown in Figure 6. GP quality controls are shown in Figure 2 after GP ELISAs / BLI experiments are done in Figure 1. This is disorienting for the reader.

      Author response: AF-03 production and its binding capacity to GP is determined in Fig. 1. The epitopes of AF-03 is identified in Fig. 2. The neutralizing activity of AF-03 to pseudotyped MARV in vitro and in vivo is detected in Fig. 3. The neutralizing activity of AF-03 to pseudotyped ebolavirus harboring cleaved GP is detected in Fig. 4. The endosome-delivering ability of AF03-NL is examined in Fig. 5. The neutralization of filovirus species and EBOV mutants by AF03-NL is detected in Fig. 6. The requirement of CI-MPR for neutralization activity of AF03-NL is determined in Fig. 7. We think that this arrangement is suitable.

      Figure 1: The visualisation of AF03 modelling and docking endeavours is extremely difficult to interpret. Firstly, there is no effort to orient the non-specialist reader with respect to the Marburgvirus GP model. Secondly, from the figures presented it is impossible to tell if the Fv docks perfectly onto the GP surface, or if there are violent clashes between the deeply penetrating AF03 CDRs and GP. This information would be better presented on a white background, perhaps showing GP in surface view from multiple angles and slices. The authors attempt to label potential interactions, but these are impossible to read, and labels should be added separately to appropriately oriented zoomed-in views.

      Author response: To be readily understood the rationale of computer-guided modeling, the descriptions in the Methods and Results section have been refined accordingly. In addition, the information of the theoretical structure was presented on white background (see revised Fig. 1D-F).

      Figure 2: The neutralization of mutant pseudoviruses cannot be properly assessed using bar graphs. These data should be plotted as neutralization curves as they were done for the wild-type neutralization data in Figure 3. The authors conclude that Q128 & N129 are contact residues, but the neutralization data for this mutant appear odd as the lowest two concentrations of AF03 show higher neutralization than the second highest AF03 concentration. Neutralization of T204/Q205/T206 (green), Y218 (orange), K222 (blue), or C226 (purple) appears to be better than neutralization of the wild-type MARV. The authors do not discuss this oddity. What are the IC50's? The omission of antibody concentrations on the x-axis and missing IC50 values give a sense of obscuring the data, and the manuscript would benefit from greater transparency, and be much easier to interpret if these were included. I am intrigued that the Q128S/N129S mutant is reported as having little effect on the neutralization of MR78. The bar graph appears to show some effect (difficult to interpret without neutralization curves and IC50 data), and indeed PDB:5UQY seems to suggest that these amino acids form a central component of the MR78 epitope (Q128 forms potential hydrogen bonds with CDRH1 Y35 and CDRL3 Y91, while N129 packs against the MR78 CDRH3 and potentially makes additional polar contact with the backbone). Lastly, since neutralization was tested in both HEK293T cells and Huh7 cells in Figure 3, the authors should clarify which cells were used for neutralization in Figure 2.

      Author response: Thank for your advice. Accordingly, in the revised ms, the neutralization curve of AF-03 and MR78 is presented in revised Fig. 2A. The neutralization of AF-03 to pseudotyped MARV harboring Q128S/N129S or C226Y is impaired significantly compared with WT MARV and those bearing other indicated mutations, while Q128S/N129S instead of C226Y mutation affect the neutralizing capacity of MR78 at a certain extent. This is consistent with the data on the binding of AF-03 or MR78 to MARV GP protein assayed by ELISA (see revised Fig. 2B). Overall, these results show that Q128/N129/C226 functions as key amino acids responsible for AF-03 neutralization.

      Figure 3: The first two images in Figure 3C showing bioluminescent intensity from pseudovirus-injected mice pretreated with either 10mg/kg or 3mg/kg AF03 are identical images. This is apparent from the location, shape, and intensity of the bioluminescence, as well as the identical foot placement of each mouse in these two panels. Currently, this figure is incomplete and should be corrected to show the different mice treated with either 10mg/kg or 3mg/kg of AF03.

      Author response: Thank for your carefulness. Indeed, it is our mistake. In the revised ms, this fault has been corrected. The correct images have been added (see revised Fig. 3C).

      Figure 4 would benefit from a control experiment without antibodies comparing infection with GP-cleaved and GP-uncleaved pseudoviruses. The paragraph describing these data was also difficult to read and would benefit from additional grammatical review.

      Author response: Accordingly, a control experiment comparing the infection of GP-cleaved with GP-uncleaved pseudoviruses is performed. The results show that The infection of pseudotyped ebolavirus harboring cleaved GP to host cells is comparable or stronger than those containing intact GP(see revised Fig. s1). Therefore, the data in Fig. 4 support the inhibition of cell entry of ebolavirus species harboring cleaved GP by AF-03, which is not attributed to the possible impairment of cell entry capacity of GPcl-containing ebolavirus. In addition, the sentences have been modified to be read smoothly.

      Figure 5: The authors should clarify in the methods section that the "mock" experiment included the PE anti-human IgG Fc antibody. Without this clarification, the lack of a distinct negative population in the FACS data could be interpreted as non-specific staining with PE. If the PE antibody was added at an equivalent concentration to all panels, what does the directionality of the arrowheads in Figure 5A (labelled PE) and 5B (labelled pHrodo Red) indicate?

      Author response: Thank for your advice. In the revised version, we denote that the mock is actually a human IgG isotype in the figure legend. The arrowheads denote the fluorescence intensity of PE or pHrodo on the lateral axis of the plots. Of course, herein the percentage of PE or pHrodo-positive cells is shown.

      Figure 6B: These data would benefit from the inclusion of IC50, transparency of antibody concentrations used, and consistency in the direction of antibody concentrations (increasing to the right or left of the x-axis) when compared to Figure 2.

      Author response: The concentration of antibody titrated is shown in figure legends. The direction of antibody concentrations is unified throughout the paper. Although IC50 is not included, these data clearly show that AF03-NL rather than AF-03 prominently inhibits the cell entry of EBOV mutants.

      Reviewer #1 (Recommendations For The Authors):

      Line 143: anti-human should be anti-human.

      Line 223: From the SDS-PAGE results, it's not clear that the AF-03 was expressed in the eukaryotic cell line. Please, rephrase the sentence.

      Line 263: ELISA experiments can't be used to determine affinity.

      Line 394: Flyak et al. generated human antibodies from PBMC samples of Marburg survivors, not plasma samples.

      Author response: According to reviewer's advice, the sentences have been modified or corrected to more accurately describe the results. As well, the grammatic errors in the ms have been corrected carefully.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Major Concerns:

      (1) An important point that the authors should clarify in this study is whether mice are detecting qualitative or quantitative differences between fresh and old cat saliva. Do the environmental conditions in which the old saliva was maintained cause degradation of Fel d 4, the main protein known for inducing a defensive response in rodents? (see Papes et al, 2010 again). If that is the case, one would expect that a lower concentration of Fel d 4 in the old saliva after protein degradation would result in reduced antipredator responses. Alternatively, if the authors believe that different proteins that are absent in the old saliva are contributing to the increased defensive responses observed with the fresh saliva, further protein quantification experiments should be performed. An important experiment to differentiate qualitative versus quantitative differences between the two types of saliva would be diluting the fresh saliva to verify if the amount of protein, rather than the type of protein, is the main factor regulating the behavioral differences.

      We thank the reviewer for their important suggestions. We agree that both the quality and quantity of molecular components in saliva undergo changes after the saliva is kept at room temperature for 4 hours. Our findings indicate that mice detect these changes through the VNO and adjust their defensive response patterns accordingly. For instance, freezing behavior is reduced in response to 4-hour-old saliva compared to fresh saliva. On the other hand, the duration of interaction with saliva (investigation behavior) remains low, and the stress hormone ACTH level is upregulated in both cases. A future study ought to identify the specific molecules—most likely proteins or peptides—in cat saliva responsible for these distinct defensive responses in mice. While Fel d 4 stands as one of the potential candidates as it has been shown to induce a form of defensive behavior in mice (Papes et al., 2010), there exists a possibility of a different molecule or a combination of multiple molecules playing a role. Once the molecules are identified, it is imperative to investigate how their quantity and quality change over time and how these factors correlate with freezing behavior in mice. Such an exploration will provide answers to this ethologically significant question raised by the reviewer. We added a paragraph in Discussion under the “The VNO as the sensor of predator cues that induce fear-related behavior” section to clarify this.

      (2) The authors claim that fresh saliva is recognized as an immediate danger by rodents, whereas old saliva is recognized as a trace of danger. However, the study lacks empirical tests to support this interpretation. With the current experimental tests, the behavioral differences between animals exposed to fresh vs. old saliva could be uniquely due to the reduced amount of the exact same protein (e.g., Fel d 4) in the two samples of saliva.

      As mentioned in response to comment 1, we agree with the alterations in both the quality and quantity of molecules within saliva after 4 hours. What we would like to emphasize in our current study is that mice detect these time-dependent changes through the VNO and subsequently adjust their defensive response patterns. Identifying the specific molecules responsible for inducing behavioral changes and investigating their time-dependent alterations is crucial in the next step. We added a paragraph in the Discussion under the 'The VNO as the sensor of predator cues that induce fear-related behavior' section to clarify this.

      (3) In Figure 4H, the authors state that there were no significant differences in the number of cFos-positive cells between the two saliva-exposed groups. However, this result disagrees with the next result section showing that fresh and old saliva differentially activate the VMH. It is unclear why cFos quantification and behavioral correlations were not performed in other upstream areas that connect the VNO to the VMH (e.g., BNST, MeA, and PMCo). That would provide a better understanding of how brain activity correlates with the different types of behaviors reported with the fresh vs. old saliva.

      We greatly appreciate this valuable advice. We added c-Fos immunoreactivity (IR) data in the BNST, MeApv, and PAG, together with the data for VMH as shown in new Figure 4G-J. Upon exposure to both fresh and old saliva, we observed an upregulation trend of cFos in the MeApv, VMH, and dPAG, but not in the BNST, compared to the control stimulus.

      Moreover, we conducted correlation analyses between the numbers of cFos-positive neurons and the duration of freezing behavior in those neural substrates, which have been added to new Figure 5. The numbers of cFos-IR signals in neurons in the BNST and dPAG did not correlate with the duration of freezing behavior in any of the exposure groups (Figure 5C, F). However, in addition to a significant positive correlation in the VMH for the fresh saliva-exposed group (R2 = 0.5708, 95% CI [-0.1449, 0.9714], p = 0.0412) (Figure 5E), we observed a similar positive correlation trend in the MeApv (R2 = 0.3854, 95% CI [0.3845, 0.9525], p = 0.0942), although it was not statistically significant possibly due to low sample numbers (Figure 5D).

      Based on these results, our current circuit model is as follows: different numbers of the VNO sensory neurons activated by fresh and old saliva result in differential excitation levels in mitral cells in the AOB. This, in turn, leads to the differential activation of targeting neural substrates, possibly MeApv, resulting in the differential activation of VMH neurons. This model is depicted in Figure 7 and discussed under the section of 'Differential processing of fresh and old saliva signals in the VNO-to-VMH pathway' in the Discussion."

      (4) The interpretation that fresh and old saliva activates different subpopulations of neurons in the VMH based on the observation that cFos positively correlates with freezing responses only with the fresh saliva lacks empirical evidence. To address this question, the authors should use two neuronal activity markers to track the response of the same population of VHM cells within the same animals during exposure to fresh vs. old saliva. Alternatively, they could use single-cell electrophysiology or imaging tools to demonstrate that cat saliva of distinct freshness activates different subpopulations of cells in the VMH. Any interpretation without a direct within-subject comparison or the use of cell-type markers would become merely speculative. Furthermore, the authors assume that differential activations of mitral cells between fresh and old saliva result in the differential activation of VMH subpopulations (page 13, line 3). However, there are intermediate structures between the mitral cells and the VMH, which are completely ignored in this study (e.g., BNST, medial amygdala).

      We appreciate this important feedback. We agree that performing a same-animal comparison for fresh and old saliva exposure will offer direct evidence of the differential activation of a sub-population of VMH neurons. However, there is technical difficulties. We have stimulated the same animal with the same or different types of swabs (e.g., Freshcontrol, fresh-fresh, fresh-old, or old-fresh) and observed that once mice were exposed to a saliva-containing swab and exhibited freezing behavior, they no longer made contact with the second swab within the timeframe when two different types of neuroactivity markers can be analyzed. As shown in Figure 2A, direct contact with the saliva swab is necessary for triggering saliva-elicited freezing behavior. Therefore, we concur that conducting further investigations into real-time neural activation responses to both fresh and old saliva within the same subjects, using an appropriate stimulus delivery method into the VNO, as demonstrated in (Bansal et al., 2021; Ben-Shaul et al., 2010; Bergan et al., 2014), would be useful to strengthen our argument.

      For the second part of the comment regarding the intermediate structures between the mitral cells and the VMH, please refer to our comment above in response to comment 3.

      (5) The authors incorrectly cited the Papes et al., 2010 article on several occasions across the manuscript. In the introduction, the authors cited the Papes et al 2010 study to make reference to the response of rodents to chemical cues, but the Papes et al. study did not use any of the chemical cues listed by the authors (e.g., fox feces, snake skin, cat fur, and cat collars). Instead, the Papes et al. 2010 article used the same chemical cue as the present study: cat saliva. The Papes et al. 2010 article was miscited again in the results section where the authors cited the study to make reference to other sources of cat odor that differ from the cat saliva such as cat fur and cat collars. Because the Papes et al. 2010 article has previously shown the involvement of Trpc2 receptors in the VNO for the detection of cat saliva and the subsequent expression of defensive behaviors by using Trpc2-KO mice, the authors should properly cite this study in the introduction and across the manuscript when making reference to their findings.

      The study conducted by Papes et al. in 2010 (Papes et al., 2010) explored mouse defensive responses triggered by native odors derived from three natural mouse predator species: cat, snake, and rat. These odors were derived from neck fur swabs, shed skin, and urine, respectively. Notably, all three types of samples induced defensive risk assessment and avoidance behaviors in mice. These responses were significantly diminished in Trpc2 knock-out (KO) mice, which lack the Trpc2 transduction channel in their vomeronasal sensory neurons, resulting in an impairment in transmitting sensory signals to the brain. Moreover, Papes et al. (2010) mentioned that, 'we did find cat saliva, a potential source of fur chemosignals, sufficient to induce c-Fos expression in the AOB and initiate defensive behavior.' While Papes et al. reported c-Fos expression in the AOB as well as behavioral responses induced by cat saliva in C57BL/6 mice, they did not provide information regarding the c-Fos expression or the defensive behavioral responses to cat saliva in Trpc2KO mice. Overall, we highly value these findings and explicitly state in the results section of our study that ‘Cat saliva has been considered as a source of predator cues found on cat fur and collars, which induce defensive behaviors in rodents (Engelke et al., 2021; Papes et al., 2010),’ providing the rationale for our utilization of cat saliva in our experimental design.

      (6) In the introduction, the authors hypothesized that the VNO detects predator cues and sends sensory signals to the VMH to trigger defensive behavioral decisions and stated that direct evidence to support this hypothesis is still missing. However, the evidence that cat saliva activates the VMH and that activity in the VMH is necessary for the expression of antipredator defensive response in rodents has been previously demonstrated in a study by Engelke et al., 2021 (PMID: 33947849), which was entirely omitted by the authors.

      We appreciate this insightful comment. Our original sentence meant that the direct evidence was missing for the hypothesis that the mouse VNO detects predator cues and sends sensory signals to the VMH, triggering appropriate defensive behavioral decisions. To clarify this, we altered the sentence (the last sentence of the second last paragraph in Introduction) to “However, how the sensory signals detected through the VNO-to-VMH circuitry modulate behavioral decisions in specific contexts remains elusive.

      The study in Engelke et al., 2021(Engelke et al., 2021) has shown that cat saliva activates the VMH and that activity in the VMH is necessary for the expression of antipredator defensive response, including freezing behavior, in rats. This important paper is now cited at multiple locations; page 4 line 16, page 9 line 8, and page 14 line 17. Interestingly, the vomeronasal receptor genes expressed in cat saliva-responsive VNO neurons, V2R-A4 subfamily genes, seem to have expanded independently within mice and rats, lacking direct V2R-A4 orthologues between mice and rats (Rocha et al. submitted). Therefore, exploring the sensory mechanism behind the induction of defensive behavioral responses in rats by cat saliva would be highly intriguing. Comparing the mechanism operating in rats with that observed in mice could offer valuable insights into understanding how the divergent sensory signaling pathways lead to the VMH-mediated defensive behavioral responses across different species.

      (7) In the discussion, the authors stated that their findings suggest that the induction of robust freezing behavior is mediated by a distinct subpopulation of VMH neurons. The authors should cite the study by Kennedy et al., 2020 (PMID: 32939094) that shows the involvement of VMH in the regulation of persistent internal states of fear, which may provide an alternative explanation for why distinct concentrations of saliva could result in different behavioral outcomes.

      We appreciate this valuable advice to cite this important paper. It is now cited at page 14 line 17 in the Discussion under “Differential activation of VMH neurons potentially underlying distinct intensities of freezing behavior.” We agree that it is intriguing to hypothesize that different freshness of cat saliva induces different degree of persistence of neural activity in a subpopulation of VMH neurons, which regulates the freezing behavior intensity.

      (8) The anatomical connectivity between the olfactory system and the ventromedial hypothalamus (VMH) in the abstract is unclear. The authors should clarify that the VMH does not receive direct inputs from the vomeronasal organ (VNO) nor the accessory olfactory bulb (AOB) as it seems in the current text.

      We apologize for the confusion caused by our statement in the abstract. The reviewer is correct that the VMH does not receive direct inputs from the VNO and AOB. The abstract now states: 'The vomeronasal organ (VNO) is one of the major sensory input channels through which predator cues are detected with ascending inputs to the medial hypothalamic nuclei, especially to the ventromedial hypothalamus (VMH), through the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST).’

      Reviewer #2 (Public Review):

      Weakness:

      The findings are relatively preliminary. The identities of the receptor and the ligand in the cat saliva that induces the behavior remain unclear. The identity of VMH cells that are activated by the cat saliva remains unclear. There is a lack of targeted functional manipulation to demonstrate the role of V2R-A4 or VMH cells in the behavioral response to cat saliva.

      We concur with the reviewer’s comments and agree with the necessity to explore the behavioral response to cat saliva in mice with V2R-A4 receptor(s) knocked out, alongside those with targeted functional manipulations in the VMH. These future studies will allow us to further elucidate the molecular and neural mechanisms underlying this sensory-tohypothalamic circuit.

      Reviewer #3 (Public Review):

      Weaknesses:

      (1) It is unclear if fresh and old saliva indeed alter the perceived imminence predation, as claimed by the authors. Prior work indicates that lower imminence induces anxiety-related actions, such as re-organization of meal patterns and avoidance of open spaces, while slightly higher imminence produces freezing. Here, the authors show that fresh and old predator saliva only provoke different amounts of freezing, rather than changing the topography of defensive behaviors, as explained above. Another prediction of predatory imminence theory would be that lower imminence induced by old saliva should produce stronger cortical activation, while fresh saliva would activate the amygdala, if these stimuli indeed correspond to significantly different levels of predation imminence.

      We thank the reviewer for this valuable insight. In our current study, we exclusively compared defensive behavioral responses to 15-minute-old and 4-hour-old cat saliva in mice within their home cages. In future studies, it would be intriguing to expand this investigation by examining behavioral changes in response to saliva collected at additional time points across diverse behavioral settings. Additionally, exploring neural activity in various brain regions in future studies would complement our understanding of these responses.

      (2) It is known that predator odors activate and require AOB, VNO, and VMH, thus replications of these findings are not novel, decreasing the impact of this work.

      We acknowledge the previous findings mentioned by the reviewer. Our finding in this paper is that cat saliva samples with different freshness predominantly activate different numbers of VNO sensory neurons expressing the same subfamily of sensory receptors, which results in differential activation of the downstream circuit to modulate behavioral outputs.

      (3) There is a lack of standard circuit dissection methods, such as characterizing the behavioral effects of increasing and decreasing the neural activity of relevant cell bodies and axonal projections, significantly decreasing the mechanistic insights generated by this work.

      We thank the reviewer for the valuable comments. We acknowledge that exploring the behavioral effects through the manipulation of specific cell types within defined neural substrates, along with characterizing circuit connectivity, is crucial to understand this circuit more thoroughly in future studies.

      (4) The correlation shown in Figure 5c may be spurious. It appears that the correlation is primarily driven by a single point (the green square point near the bottom left corner). All correlations should be calculated using Spearman correlation, which is non-parametric and less likely to show a large correlation due to a small number of outliers. Regardless of the correlation method used, there are too few points in Figure 5c to establish a reliable correlation. Please add more points to 5c.

      We thank the reviewer for this important suggestion. We assessed normality of the data using the Shapiro-Wilk and Kolmogorov-Smirnov tests, confirming that the dataset is parametric. We anticipate employing a larger sample size in future studies to further examine rigorous correlation patterns.

      (5) Some of the findings are disconnected from the story. For example, the authors show that V2R-A4-expressing cells are activated by predator odors. Are these cells more likely to be connected to the rest of the predatory defense circuit than other VNO cells?

      Yes, our hypothesis posits that V2R-A4-expressing VNO sensory neurons serve as receptor neurons for predator cues present in cat saliva. Additionally, we assume that these specific sensory neurons have stronger anatomical connections with the defensive circuit compared to VNO sensory neurons expressing other receptor subfamilies. In our modified Discussion section, we discussed this point under “V2R-A4 subfamily as the receptor for predator cues in cat saliva.”

      (6) Were there other behavioral differences induced by fresh compared to old saliva? Do they provoke differences in stretch-attend risk evaluation postures, number of approaches, the average distance to odor stimulus, the velocity of movements towards and away from the odor stimulus, etc?

      We appreciate the reviewer's valuable comments. We have now incorporated an analysis of stretch-sniff risk assessment behavior, presented in new Figure 1F (graph) and Supplemental Figure 1B (raster plot). Mice exhibited stretch-sniff risk assessment behavior, which remained consistent across control, fresh saliva, and old saliva swabs. Additionally, we have also included a raster plot for direct investigation, previously noted as ‘interaction’ in the original manuscript (Supplemental Figure 1C). Mice exposed to a swab containing either fresh or old saliva significantly avoided directly investigating the swab. In contrast, mice exposed to a clean control swab spent a significant amount of time directly investigating the swab, engaging in behaviors such as sniffing and chewing (Figure 1G). A comparison of temporal behavioral patterns revealed a slightly higher frequency of direct investigation behavior toward old saliva compared to fresh saliva at the beginning of the exposure period (Supplemental Figure 1C).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (A) In the discussion (page 13, line 13), the authors proposed approaches to isolate receptors among the V2R-A4 subfamily that could be responsible for the detection of predator cues in cat saliva such as mRNA profiling from cells isolated from VNO GCaMP imaging. However, the authors argue that this method can lead to false positive results. The authors should clarify what they mean by this exactly.

      We meant that pairing of kairomones and their cognate vomeronasal receptors is overall challenging, and subsequent confirmations by performing loss-of-function, as well as gainof-function studies, are necessary to avoid false positive receptor-ligand pairings. We modified the sentence in the discussion as follows: “…. as well as receptor mRNA profiling from isolated single cells activated by cat saliva in GcaMP imaging using the VNO slices in vitro (Haga-Yamanaka et al., 2014; Wong et al., 2020). Receptor candidates identified using either of the methods can be further confirmed by examining necessity and sufficiency for detecting cat saliva using genetically modified mouse lines.”

      (B) In the discussion, the authors mention that imminent predator cues present in the cat saliva activate a specific population of VMN neurons. However, the authors have not demonstrated that imminent predator cues exist and the differences between fresh and old saliva are not simply a matter of concentration and integrity of the same protein (see a similar concern in item 2 above).

      In alignment with our responses to the reviewer’s public comments 1 and 2, we acknowledge the changes in both the quality and quantity of molecules in cat saliva when kept at room temperature for 4 hours. Our findings demonstrate that mice detect this timedependent alteration through the VNO, leading to subsequent adjustments in their defensive response patterns. The identification of specific molecules responsible for inducing behavioral changes and an exploration of their time-dependent alterations are crucial steps in our ongoing research. To provide further clarification, we have added a paragraph in the discussion section under 'The VNO as the sensor of predator cues that induce fear-related behavior.’

      (C) In the introduction, the authors cite several studies and reviews that investigated sensory neural circuits that mediate behavioral responses to chemical predator cues in mice. However, the majority of these studies used rats. Therefore, it is recommended to instead indicate that these studies focus on using rodent models.

      We appreciate this insightful comment. We have now replaced the term 'mice/mouse' with 'rodents' in corresponding parts of the manuscript.

      (D)The description of the extended amygdala is unclear and gives the impression that the posteroventral part of the medial amygdala is also part of the extended amygdala (page 3, line 25).

      We appreciate the reviewer’s important feedback. We have removed the phrase 'the extended amygdala consisting of' from the text.

      (E) The authors should justify why they have focused on the role of V2R-A4 in cat saliva detection. As shown in the Figure 3A schematic, many other receptors within the V2R family could have been evaluated. Additionally, the authors should indicate how many mice were used for calculating the ratio for each receptor in Figure 3C, and a group comparison should be performed.

      As shown in Supplemental Figure 2 and Figure 3C, our initial investigation involved assessing the co-localization of pS6 signals with signals derived from in situ hybridization probes for all V2R subfamilies. Each probe was designed to recognize all the receptor genes within the subfamily under the tested conditions. This examination led to the identification of V2R-A4, whose probe signals overlap with pS6 signals induced by exposure to cat saliva. In Figure 3C, the percentage of total overlap between the in situ probe and pS6 signals in VNO sections was examined from n=3-6 animals, which is now mentioned in the modified figure legend.

      (F) The authors should make it clear to readers at the very beginning of the manuscript that the behavioral differences between fresh and old saliva are not caused by the inefficiency of the old cat saliva to induce defensive responses. Thus, other antipredator behavioral responses should be also quantified (e.g., avoidance time, number and time of investigations to the cat saliva source, risk-assessment, etc.)

      We appreciate this valuable comment from the reviewer. In the original version of our manuscript, we used the term 'interaction' to indicate 'direct interaction with the swab for investigation.' We have now replaced the term 'interaction' with 'direct investigation' and added the temporal patterns of these behavioral episodes in Supplemental Figure 1C. Our observations indicate that mice avoid directly investigating both fresh and old saliva compared to the control (Figure 1G). However, there is a slight increase in investigation behavior toward old saliva at the beginning of exposure compared to fresh saliva (Supplemental Figure 1C). Furthermore, we have included the duration (Figure 1F) and temporal patterns (Supplemental Figure 1B) of stretch-sniff risk assessment behavior. Notably, stretch-sniff behavior did not differ towards control, fresh, and old saliva swabs.

      (G) The selected representative images for Gαo- and pS6-labeled neurons in Figure 2 should have similar levels of DAPI labeling. Further, the plot depicting the duration of freezing as a function of pS6-IR signals in the VNO (Figure 2H) is difficult to follow. The authors should indicate on the graph which data points represent fresh or old cat saliva exposure, similar to the style used in Figure 5 plots.

      We have replaced the representative image in Figure 2E to align the DAPI intensity. Additionally, we updated the data points in Figure 2H and introduced a color code to indicate saliva types.

      (H) The schematic in Figure 4 is misleading because the AOB does not directly project to the VMH. The authors should explain which regions are conveying indirect predator information from AOB to VMH (see a similar concern in item 7 above).

      We thank the reviewer’s important feedback. We modified the image in Figure 4A to show the entire defensive behavior circuit initiated from the VNO.

      Reviewer #2 (Recommendations For The Authors):

      (1) This result suggests that V2R-A4 may be the dominant VR for mice to detect cat saliva.

      Future studies should determine the identity of the receptor and the ligand in the cat saliva. Additionally, the functional importance of V2R-A4 remains unclear. It is important to knockout the receptor and test changes in cat saliva-induced freezing.

      We concur with the reviewer’s comments and recognize the necessity of exploring the behavioral response to cat saliva in mice with V2R-A4 receptor(s) knocked out. Moreover, the identification of the ligand in cat saliva is critical for a deeper understanding of the molecular mechanisms in future studies.

      (2) AOB does not project to VMH directly. Other known important nodes for the predator defense circuit include MeApv, BNST, PMd, AHN, and PAG. It will be helpful to provide c-Fos data in those regions (especially MEA and BNST as they are between AOB and VMH) to provide a complete picture of how the brain processes cat saliva to induce the behavior change.

      We appreciate this important feedback by the reviewer. We have now added c-Fos expression analysis data in the BNST, MeApv, and PAG, in addition to the VMH. Upon exposure to fresh and old saliva, we observed the upregulation of cFos in the MeApv, VMH, and dPAG, but not in the BNST, compared to the control stimulus. The data are now shown in Figure 4G-J. Moreover, we also added correlation analyses between the numbers of cFospositive neurons and the duration of freezing behavior in those neural substrates to Figure 5. The numbers of cFos-IR signals in neurons in the BNST and dPAG, did not correlate with the duration of freezing behavior in any of the exposure groups (Figure 5C, F). However, in addition to a significant positive correlation in the fresh saliva-exposed group in the VMH (R2 = 0.5708, 95% CI [-0.1449, 0.9714], p = 0.0412) (Figure 5E), we observed a similar positive correlation trend in the MeApv (R2 = 0.3854, 95% CI [-0.3845, 0.9525], p = 0.0942), although it was not statistically significant possibly due to low sample numbers (Figure 5D). Based on these results, our current circuit model is as follows: different numbers of the VNO sensory neurons activated by fresh and old saliva result in differential excitation levels in mitral cells in the AOB. Differential excitation of mitral cells leads to the differential activation of targeting neural substrates, possibly MeApv, which results in differential activation of VMH neurons. This model is depicted in Figure 7 and discussed under the section of “Differential processing of fresh and old saliva signals in the VNO-toVMH pathway” in Discussion.

      (3) It is interesting that activation level difference in the VNO by old and fresh cat saliva does not transfer to AOB. It could be informative to examine the correlation between VNO and AOB p6/c-Fos cell number and AOB and VMH c-Fos cell number across animals to understand whether the activation levels across those regions are related. If they are not correlated, it could be helpful to add a discussion regarding potential reasons, e.g. neuromodulatory inputs to the AOB.

      We agree that analyzing the number of pS6/cFos-positive cells from all the regions in the same animals are ideal; however, due to technical difficulties, we were unable to collect the entire set of neural substrates from the same animals.

      (4) Please indicate n in all figure plots and specify what individual dots mean. In Figure 4h, there are 7 dots in the old saliva group, presumably indicating 7 animals. In Figure 6b, there appear to be more than 7 dots for the old cat saliva group. Are there more than 7 animals? If so, why are they not included in Figure 4h? If not, what does each dot mean? Note that each dot should represent an independent sample. One animal should not contribute more than one dot.

      We apologize for the confusion about Figure 6b. Each of these dots indicates the number of cFos signals in a single VMH hemisphere sample. The data used for this analysis were the same as the ones for the VMH used in Figure 4. This is now clarified in the figure legends.

      (5) The identification of a cluster of VMHdm cells uniquely activated by fresh cat saliva urine is interesting. It will be important to identify the molecular handle of the cells to facilitate further investigation. This could be achieved using either activity-dependent RNAseq or double in situ of saliva-induced c-Fos and candidate genes (candidate gene may be identified based on the known gene expression pattern).

      We agree that these experiments are very valuable. We would like to perform those experiments in future studies.

      Reviewer #3 (Recommendations For The Authors):

      (1) Please cite recent relevant papers showing VMH activity induced by predators, such as https://pubmed.ncbi.nlm.nih.gov/33115925/ and https://pubmed.ncbi.nlm.nih.gov/36788059/

      We thank the reviewer’s suggestion to cite these important papers. https://pubmed.ncbi.nlm.nih.gov/33115925/ (Esteban Masferrer et al., 2020) and https://pubmed.ncbi.nlm.nih.gov/36788059/ (Tobias et al., 2023) are now cited at page 14 line 17 in the Discussion under “Differential activation of VMH neurons potentially underlying distinct intensities of freezing behavior.”

      (2) Add complete statistical information in the figure legends of all figures, which should include n, name of test used, and exact p values.

      We included statistical analysis results in figure legends; for Figure 6B, we provided statistical analysis results in Supplemental Table 1.

      (3) Please paste all figure legends directly below their corresponding figure to make the manuscript easier to read.

      We have added figure legends directly below their corresponding figures.

      Editor's note:

      Should you choose to revise your manuscript, please include full statistical reporting including exact p-values wherever possible alongside the summary statistics (test statistic and df) and 95% confidence intervals. These should be reported for all key questions and not only when the p-value is less than 0.05.

      Statistics analysis results have been included in figure legends and supplemental table 1.

      References

      Bansal R, Nagel M, Stopkova R, Sofer Y, Kimchi T, Stopka P, Spehr M, Ben-Shaul Y. 2021. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biol 19:133.

      Ben-Shaul Y, Katz LC, Mooney R, Dulac C. 2010. In vivo vomeronasal stimulation reveals sensory encoding of conspeciic and allospeciic cues by the mouse accessory olfactory bulb. Proc Natl Acad Sci U S A 107:5172‒5177.

      Bergan JF, Ben-Shaul Y, Dulac C. 2014. Sex-speciic processing of social cues in the medial amygdala. Elife 3:e02743.

      Engelke DS, Zhang XO, OʼMalley JJ, Fernandez-Leon JA, Li S, Kirouac GJ, Beierlein M, Do-Monte FH. 2021. A hypothalamic-thalamostriatal circuit that controls approachavoidance conlict in rats. Nat Commun 12:2517.

      Esteban Masferrer M, Silva BA, Nomoto K, Lima SQ, Gross CT. 2020. Differential Encoding of Predator Fear in the Ventromedial Hypothalamus and Periaqueductal Grey. J Neurosci 40:9283‒9292.

      Papes F, Logan DW, Stowers L. 2010. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692‒703.

      Tobias BC, Schuette PJ, Maesta-Pereira S, Torossian A, Wang W, Sethi E, Adhikari A. 2023. Characterization of ventromedial hypothalamus activity during exposure to innate and conditioned threats. Eur J Neurosci 57:1053‒1067.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      PUBLIC REVIEWS

      Reviewer #1 (Public Review):

      In this study, the authors investigate the role of triglycerides in spermatogenesis. This work is based on their previous study (PMID: 31961851) on triglyceride sex differences in which they showed that somatic testicular cells play a role in whole body triglyceride homeostasis. In the current study, they show that lipid droplets (LDs) are significantly higher in the stem and progenitor cell (pre-meiotic) zone of the adult testis than in the meiotic spermatocyte stages. The distribution of LDs anti-correlates with the expression of the triglyceride lipase Brummer (Bmm), which has higher expression in spermatocytes than early germline stages. Analysis of a bmm mutant (bmm[1]) - a P-element insertion that is likely a hypomorphic - and its revertant (bmm[rev]) as a control shows that bmm acts autonomously in the germline to regulate LDs. In particular, the number of LDs is significantly higher in spermatocytes from bmm[1] mutants than from bmm[rev] controls. Testes from males with global loss of bmm (bmm[1]) are shorter than controls and have fewer differentiated spermatids. The zone of bam expression, typically close to the niche/hub in WT, is now many cell diameters away from the hub in bmm[1] mutants. There is an increase in the number of GSCs in bmm[1] homozygotes, but this phenotype is probably due to the enlarged hub. However, clonal analyses of GSCs lacking bmm indicate that a greater percentage of the GSC pool is composed of bmm[1]-mutant clones than of bmm[rev]-clones. This suggests that loss of bmm could impart a competitive advantage to GSCs, but this is not explored in greater detail. Despite the increase in number of GSCs that are bmm[1]-mutant clones, there is a significant reduction in the number of bmm[1]-mutant spermatocyte and post-meiotic clones. This suggests that fewer bmm[1]mutant germ cells differentiate than controls. To gain insights into triglyceride homeostasis in the absence of bmm, they perform mass spec-based lipidomic profiling. Analyses of these data support their model that triglycerides are the class of lipid most affected by loss of bmm, supporting their model that excess triglycerides are the cause of spermatogenetic defects in bmm[1]. Consistent with their model, a double mutant of bmm[1] and a diacylglycerol Oacyltransferase 1 called midway (mdy) reverts the bmm-mutant germline phenotypes.

      There are numerous strengths of this paper. First, the authors report rigorous measurements and statistical analyses throughout the study. Second, the authors utilize robust genetic analyses with loss-of-function mutants and lineage-specific knockdown. Third, they demonstrate the appropriate use of controls and markers. Fourth, they show rigorous lipidomic profiling. Lastly, their conclusions are appropriate for the results. In other words, they don't over-state the results. Overall, the rigorously quantified results support the major aim that appropriate regulation of triglycerides are needed in a germline cell-autonomous manner for spermatogenesis.

      This paper should have a positive impact on the field. First and foremost, there is limited knowledge about the role of lipid metabolism in spermatogenesis. The lipidomic data will be useful to researchers in the field who study various lipid species. Going forward, it will be very interesting to determine what triglycerides regulate in germline biology. In other words, what functions/pathways/processes in germ cells are negatively impacted by elevated triglycerides. And as the authors point out in the discussion, it will be important to determine what regulates bmm expression such that bmm is higher in later stages of germline differentiation.

      We thank the Reviewer for their positive assessment of our revised manuscript!

      Reviewer #2 (Public Review):

      Summary:

      Here, the authors show that neutral lipids play a role in spermatogenesis. Neutral lipids are components of lipid droplets, which are known to maintain lipid homeostasis, and to be involved in non-gonadal differentiation, survival, and energy. Lipid droplets are present in the testis in mice and Drosophila, but not much is known about the role of lipid droplets during spermatogenesis. The authors show that lipid droplets are present in early differentiating germ cells, and absent in spermatocytes. They further show a cell autonomous role for the lipase brummer in regulating lipid droplets and, in turn, spermatogenesis in the Drosophila testis. The data presented show that a relationship between lipid metabolism and spermatogenesis is congruous in mammals and flies, supporting Drosophila spermatogenesis as an effective model to uncover the role lipid droplets play in the testis.

      Strengths and weaknesses:

      The authors do a commendably thorough characterization of where lipid droplets are detected in normal testes: located in young somatic cells, and early differentiating germ cells. They use multiple control backgrounds in their analysis, including w[1118], Canton S, and Oregon R, which adds rigor to their interpretations. The authors employ markers that identify which lipid droplets are in somatic cells, and which are in germ cells. The authors use these markers to present measured distances of somatic and germ cell-derived lipid droplets from the hub. Because they can also measure the distance of somatic and germ cells with age-specific markers from the hub, these results allow the authors to correlate position of lipid droplets with the age of cells in which they are present. This analysis is clearly shown and well quantified.

      The quantification of lipid droplet distance from the hub is applied well in comparing brummer mutant testes to wild type controls. The authors measure the number of lipid droplets of specific diameters, and the spatial distribution of lipid droplets as a function of distance from the hub. These measurements quantitatively support their findings that lipid droplets are present in an expanded population of cells further from the hub in brummer mutants. The authors further quantify lipid droplets in germline clones of specified ages; the quantitative analysis here is displayed clearly and supports a cell autonomous role for brummer in regulating lipid droplets in spermatocytes.

      Data examining testis size and number of spermatids in brummer mutants clearly indicates the importance of regulating lipid droplets to spermatogenesis. The authors show beautiful images supported by rigorous quantification supporting their findings that brummer mutants have both smaller testes with fewer spermatids at both 29 and 25C. There is also significant data supporting defects in testis size, but not spermatid number, in 14-day-old brummer mutant animals compared to controls. Their analysis clearly shows an expanded region beyond the testis apex that includes younger germ cells, supporting a role for lipid droplets influencing germ cell differentiation during spermatogenesis.

      The authors present a series of data exploring a cell autonomous role for brummer in the germline, including clonal analysis and tissue specific manipulations. The clonal data indicating increased lipid droplets in spermatocyte clones, and a higher proportion of brummer mutant GSCs at the hub are convincing and supported by quantitation. The authors also show a tissue specific rescue of the brummer testis size phenotype by knocking down mdy specifically in germ cells, which is also supported by statistically significant quantitation. The authors present data examining the number of spermatocyte and post-meiotic clones 14 days after clonal induction. Their finding is significant with a p-value of 0.0496, which they acknowledge is less robust than their other data reported in this study, and could be a result of a low sample size. They indicate that future studies might validate these results with additional samples.

      The authors do a beautiful job of validating where they detect brummer-GFP by presenting their own pseudotime analysis of publicly available single cell RNA sequencing data. Their data is presented very clearly, and supports expression of brummer in older somatic and germline cells of the age when lipid droplets are normally not detected. The authors also present a thorough lipidomic analysis of animals lacking brummer to identify triglycerides as an important lipid droplet component regulating spermatogenesis.

      Impact:

      The authors present data supporting the broad significance of their findings across phyla. This data represents a key strength of this manuscript. The authors show that loss of a conserved triglyceride lipase impacts testis development and spermatogenesis, and that these impacts can be rescued by supplementing diet with medium-chain triglycerides. The authors point out that these findings represent a biological similarity between Drosophila and mice, supporting the relevance of the Drosophila testis as a model for understanding the role of lipid droplets in spermatogenesis. The connection buttresses the relevance of these findings and this model to a broad scientific community.

      We thank the Reviewer for their positive assessment of our revised paper!

      RECOMMENDATIONS FOR THE AUTHORS

      Reviewer #2 (Recommendations For The Authors):

      The authors addressed most of my recommendations in a way that is satisfactory to me. I would like a bit more information added to the methods section about how hub area was quantified. For example, did the authors measure area within a defined region in a single Z plane (perhaps the Z plane at the center of the hub, or the Z plane with the largest area)? Alternatively, did they authors measure area in a more 3 dimensional way, i.e. volume. Adding this information to the methods would satisfy all of my previous recommendations.

      We thank the Reviewer for pointing out that this information was not clear in the revised manuscript. We changed the methods section to clarify our methods as follows:

      “The hub was identified as the FasIII-positive area of the testis. Hub size was estimated by measuring the FasIII-positive area in a Z-projected image of the hub in each testis. Zprojections were made using the ‘sum slices’ function in Fiji.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In chicken embryos, the counter-rotating migration of epiblast cells on both sides of the forming primitive streak (PS), a process referred to as polonaise movements, has attracted longstanding interest as a paradigm of morphogenetic cell movements. However, the association between these cell movements and PS development is still controversial. This study investigated PS development and polonaise movements separately at their initial stage, showing that both could be uncoupled (at least at the initial phase), being activated via Vg1 signaling.

      Strengths of this study

      Polonaise movements, i.e., the circular cell migration of epiblast cells on both sides of the forming PS in avian embryos, have been the subject of research through live imaging and promoted the development of new tools to analyze quantitatively such movements. However, conclusions from previous studies remain controversial, at least partly due to the nature of perturbations to PS development and polonaise movements.

      This study performed the challenging technique of electroporation to successfully mark and manipulate Wnt/PCP pathways in unincubated chicken embryo cells at the initiation phase of these two processes. In addition, the authors separately altered PS development and polonaise movements: PS development was perturbed by inhibiting either the Wnt/PCP pathway or DNA synthesis using aphidicolin, while polonaise movements were modified by the development of a second PS after engrafting Vg1-expressing COS cells located at the opposite end of the blastoderm. The study concluded that Vg1 elicits both PS development and polonaise movements, which occur in a parallel and are not inter-dependent.

      To support these conclusions, particle image velocimetry (PIV) of cell trajectories captured by live imaging was performed. These tools delineated visually appealing cell movements and gave rise to vorticity profiles, adding more value to this study.

      Weaknesses of this study

      Engrafted Vg1-expressing COS cells located at the anterior end of the blastoderm elicited both the development of a second PS and marked bilateral polonaise movements while perturbing these movements along the original PS. How do polonaise movements along the second PS dominate over those along the normal PS? The authors suggested a model in which Vg1 acts in a graded or dose-dependent manner since engrafted COS cells over-expressed Vg1. This model can be tested by reducing the mass of engrafted COS cells. Although the authors propose performing this analysis in further investigations, it would be preferable to incorporate into this study for better consistency.

      We would like to express our gratitude to the editors and the reviewers for finding the valuable significances of our study and for giving thoughtful suggestions. We agree that it would be a logical next step to identify the driving mechanism(s) of the polonaise movements, although this is beyond the scope of the current study. Rather, it is the focus of ongoing studies, in which we are investigating how Vg1 works in this concentration context and resulting dose-dependent effect on downstream gene expression, in order to provide a comprehensive understanding of this interesting dual role of Vg1. The relationship between the intensity of Vg1 signaling and the polonaise movements can be tested by modifying the size of the Vg1/COS, as the reviewer pointed out.

      The authors claim that chicken embryo development is representative of "amniotes," but it does not hold for all groups. Avian and mammal species are exceptional among amniotes in the sense they develop a PS (e.g., Coolen et al. 2008). Moreover, in certain mammalian embryos like mouse embryos, cells laterally to the PS do not move much (Williams et al. 2012). The authors should avoid the generalization that chicken embryos unequivocally represent amniotes as opposed to the observed in non-amniote embryos. The observations in chicken embryos as they stand are significant enough.

      References:

      Coolen M, et al. (2008). Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One. 3(7):e2676. doi: 10.1371/journal.pone.0002676

      Williams M, et al. (2012). Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn. 241(2):270-283. doi: 10.1002/dvdy.23711

      We modified the following sentences to the summary and introduction of the revised version as below:

      In Summary:

      (p.1, Lines 9-11.) “Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline.”

      In Introduction:

      (p.2, Lines 43-46.) “In amniotes, particularly in avian gastrula (i.e. embryonic disc), a bilateral vortex-like counter-rotating cell flow, termed ‘polonaise movements’, occurs within the epiblast along the midline axis, prior to and during primitive streak (PS) formation.”

      Reviewer #2 (Public Review):

      Summary:

      The authors are interested in large-scale cell flow during gastrulation and in particular in the polonaise movement. This movement corresponds to a bilateral vortex-like counter-rotating cell flow and transport the mesendodermal cells allowing ingression of cells through the primitive streak and ultimately the formation of the mesoderm and endoderm. The authors specifically wanted to investigate the coupling of the polonaise movement and primitive streak to understand whether the polonaise movement is a consequence of the formation of the primitive streak or the other way around. They propose a model where the primitive streak elongation is not required for the cell flow but rather for its maintenance and that robust cell flow is not required for primitive streak extension.

      Strengths:

      Overall, the manuscript is well written with clear experimental designs. The authors have used live imaging and cell flow analysis in different conditions, where either the formation of the primitive streak or the cell flow was perturbed.

      Their live imaging and PIV-based analyses convincingly support their conclusions that primitive streak deformation or mitotic arrest do not impact the initiation of the polonaise movement but rather the location or maintenance of these rotations. They additionally showed that disruption of the polonaise movement in the authentic primitive streak by elegant addition of an ectopic primitive streak does not impact the original primitive streak elongation.

      Weaknesses:

      • When using the delta-DEP-GFP construct, the authors showed that they can manipulate the shape of the primitive streak without affecting the identity and number of primitive streak cells. It is not clear however how this can affect the shape, volume or adhesion of the cells. Some mechanistic insights would strengthen the paper.

      We appreciate the reviewer’s invaluable feedback. We agree that it would be informative to know how the ΔDEP-GFP construct led to PS deformation. This approach has been previously introduced by Voiculescu et al., (2007) to demonstrate an involvement of the Dsh(DEP) in PS shape regulation as described in text (please see pp4-5, lines 91-94 in Results and p13, lines 279-281 in Discussion). The previous study suggested that the Wnt/PCP pathway through Dsh(DEP) is a major regulator of cell intercalation, which plays an important role in PS morphogenesis (Voiculescu et al., 2007).

      • Overall, frequencies of observation are missing for a better view of the phenomenon. For example, do Vg1/Cos cells always disrupt the flow at the authentic primitive streak? Can replicate vector fields be integrated to reflect quantification?

      We agree and have added the numbers of embryos examined. In our experimental system, the Vg1/COS-implanted embryos always exhibited that the original polonaise movements along the authentic PS were always disrupted by the induced polonaise movements (n=4/4 embryos). The replicated vector fields were integrated to the Streamline and Vorticity plots (please see Fig. 1-4, Fig. S1, S4-7).

      • Since myosin cables have been shown to be instrumental for the polonaise movement, it would be interesting to better investigate how the manipulations by the delta-DEP-GFP construct, or Vg1/Cos affect the myosin cables (as shown in preliminary form for the aphidicolin-treated embryos).

      We agree that investigations of cytoskeletons and motor proteins would provide deeper understandings as to how the ΔDEP-GFP construct and perhaps Wnt/PCP components work in PS formation and morphogenesis. We plan to examine, as a future study, the patterns of the myosin cables in the ΔDEP-GFP-misexpressing or Vg1/COS-implanted embryos to get better understanding the mechanism(s) of the polonaise movements as the reviewer pointed out.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • The authors named the dominant-negative Dsh lacking DEP [dnDsh(deltaDEP)]-fused GFP as deltaDEP-GFP, presumably to distinguish it from the construct dnDsh-deltaPDZ previously reported. However, the prefix "dnDsh" conveys the critical function in the present study. The reviewer recommends spelling out dnDsh(deltaDEP)-GFP to clarify to readers which signal was manipulated.

      We agree that it is necessary to distinguish our construct used in this study from the dnDsh-deltaPDZ construct. We have, therefore, clarified the abbreviation in the main text as follows (please see pp 4-5, lines 91-97): ‘The DEP domain of Dishevelled (Dsh; a transducer protein of Wnt signaling) is responsible for the non-canonical Wnt/PCP pathway (43, 44), and misexpression of dominant-negative Dsh lacking DEP [dnDsh(ΔDEP)] leads to deformation of the midline structures, including the PS (21). Further, the Wnt/PCP pathway is involved in cellular polarity and migration, while the canonical Wnt pathway regulates cell proliferation (45). We refer the dnDsh(ΔDEP)-GFP construct that we generated, as ΔDEP-GFP, and tested its ability to alter cellular polarity, resulting in PS deformation’.

      • The authors described the "Vg1 plasmid DNA" as a gift from Claudio D. Stern and Jane Dodd. However, they should indicate the vector backbone, especially whether the vector carries the SV40 ori sequence. Ori-containing plasmids multiply after transfection as COS cells express the SV40T antigen, leading to protein overexpression.

      We added the name of the plasmid ‘pMT23-Vg1-myc-GDF1’ to the ‘Material and methods’ section (please see p25, line 574). pMT23 expression vector is a derivative of pMT21 (Hume and Dodd, 1993) and contains SV40 ori (Wong et al., 1985).

      Reviewer #2 (Recommendations For The Authors):

      • Most of the comments are indicated in the public review.

      • There are additionally minor modifications that would help readers interpret the figures. In Figure S1B and D, it is not clear to the reader what the asterisks indicate.

      We added the sentence ‘The white asterisks indicate GFP-expressing cells.’ to the figure legend of the Fig. S1 B and D (please see p34, line 874).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      In this manuscript, the authors used machine learning algorithm to analyze published exosome datasets to find biomarkers to differentiate exosomes of different origin.

      Strengths:

      The performance of the algorithm are generally of good quality.

      Weaknesses:

      The source datasets are heterogeneous as described in Figure 1 and Figure 2, or Line 72-75; and therefore questionable.

      Response: We thank the reviewer for this assessment. The commonly used biomarkers of exosomes exhibit heterogeneous presence and abundance within the exosomes derived from different cell lines, tissue, and biological fluids. The primary goal of this study was to identify universal exosomal biomarkers that remain consistent across different sources of exosomes, unaffected by potential isolation and quantification bias. This objective was achieved through an integration of datasets from different sources, which allowed for the subsequent identification of common proteins associated with exosomes. Among the 18 protein markers identified, it is noteworthy that they are universally abundant in all cell lines and their exosomes. We believe that despite the heterogeneity of the datasets used here, the identification of 18 universal protein markers in exosomes from diverse sources is a strength of this analysis.

      (1) Nomenclature: Extracellular vesicles (EVs) are small vesicles released by cells into the extracellular space, exhibiting high heterogeneity in origin across species. Exosomes are typically defined as being of multivesicular body origin. However, the absence of several crucial common exosomal markers, including CD63, suggests that the proteomics analysis may include various other vesicular and non-vesicular materials.

      Response: As we reported previously (Kugeratski et al., Nature Cell Biology, 2021), the commonly used exosomal markers, such as CD9, CD63 and CD81 exhibit heterogeneity with respect to presence and abundance in the exosomes derived from different cell types. For example, CD63 demonstrated remarkably lower abundance in the exosomes derived from Raji cell lines. In our study, the detection rate of CD63 (< 50%) is quite low in the tissue-derived exosomes, which is consistent with the observations made in another proteomics based study (Hoshino et al., Cell, 2020). Therefore, relying solely on these markers is inadequate for the comprehensive characterization of EVs as exosomes. Therefore, we conducted this study to identify universal protein markers of exosomes by integrating data from multiple sources, thereby circumventing potential confounding effects due to their diverse origins and other technical differences.

      (2) Line 90: IPA is not prior in the manuscript.

      Response: We provided the full definition of IPA (Ingenuity Pathway Analysis) in the revised manuscript.

      (3) Figure 2B: Considering the large number of variables, it is unsurprising that the 2D PCA (Principal Component Analysis) falls short in the classification task. Including a few additional dimensions (principal components) might have the potential to better distinguish the cancer groups from the control group.

      Response: Thank you for this insightful query. The purpose of utilizing PCA here is to appreciate the heterogeneity associated with exosomes from different studies. While we acknowledge that additional dimensions may be more useful in distinguishing between cancer and control exosomes, we believe that derived performance will remain inferior to the machine learning approach we developed here.

      (4) Figure 2D: Exosomes primarily derive from multivesicular bodies, rather than the plasma membrane. It remains unclear why the authors focus specifically on proteins in the plasma membrane. Is it intended to encompass all membrane proteins? Clarification is needed on this point.

      Response: A good point. This study attempted to identify protein biomarkers of exosomes originating from different sources. Our approach involved considering proteins present on the plasma membrane as potential biomarkers also because many of them have been detected on the surface of exosomes.

      (5) Figure 2F: The 18 identified proteins are also abundantly present in control cells, not solely in cancer-derived "exosomes." The statement in line 104 is misleading in this regard.

      Response: We apologize for the misleading sentence. We have revised the statement to state that “In total, we identified a set of 18 exosome protein markers that are present at a higher abundance in all exosomes examined”.

      (6) Figure 3B: Considering the definition of exosomes, CD63 and TSG101 should be present in all samples, and their absence raises concerns.

      Response: We understand the concern of the reviewer. In this Figure, we analyzed CD63 and TSG101 in tissue-derived exosomes. Our results are consistent with the previous study also shows the paucity of these makers in the tissue-derived exosomes (Hoshino et al., Cell, 2020). Our study highlights that CD63 and TSG101 cannot always identify exosomes from diverse cell lines and tissues. Such initial observations motivated us to conduct this study to identify the universal biomarkers of exosomes across different sources.

      (7) Figure 6G&H: Achieving an accuracy of 80% cannot be deemed "excellent."

      Response: We employed the word “excellent” in line 225 to describe the sensitivity and specificity associated with AUROC.

      (8) Other comments on methods: The manuscript lacks an explanation of the neural network structure and why it outperforms other methods. Additionally, details about the calculation of MI (mutual information), IPA, and other methods should be provided.

      Response: This is a good suggestion but in this work we did not employ the neural networks for the analysis. We provided additional details and explanations regarding the methodology for mutual information score calculation, as well as insights into the improved use of IPA and other relevant methods in the revised manuscript.

      Reviewer #2:

      Summary:

      This is a fine work on the development of computational approaches to detect cancer through exosomes. Exosomes are an emerging biomarker resource and have attracted considerable interests in the biomedical field. Kalluri and co-workers collected a large sample pool and used random forest to identify a group of protein markers that are universal to exosomes and to cancer exosomes. The results are very exciting and not only added new knowledge in cancer research but also a new and advanced method to detect cancer. Data was presented very nicely and the manuscript was well written.

      Strengths:

      Identified new biomarkers for cancer diagnosis via exosomes.

      Developed a new method to detect cancer non-invasively.

      Results were presented nicely and manuscript were well written.

      Weaknesses:

      N/A.

      Response: We appreciate the the enthusiastic assessment of our study by the reviewer.

      Reviewer #3:

      In the current study, Li et al. address the difficulty in early non-invasive cancer diagnosis due to the limitations of current diagnostic methods in terms of sensitivity and specificity. The study brings attention to exosomes - membrane-bound nanovesicles secreted by cells, containing DNA, RNA, and proteins reflective of their originating cells. Given the prevalence of exosomes in various biological fluids, they offer potential as reliable biomarkers. Notably, the manuscript introduces a new computational approach, rooted in machine learning, to differentiate cancers by analyzing a set of proteins associated with exosomes. Utilizing exosome protein datasets from diverse sources, including cell lines, tissues, and various biological fluids, the study spotlights five proteins as predominant universal exosome biomarkers. Furthermore, it delineates three distinct panels of proteins that can discern cancer exosomes from non-cancerous ones and assist in cancer subtype classification using random forest models. Impressively, the models based on proteins from plasma, serum, or urine exosomes achieve AUROC scores above 0.91, outperforming other algorithms such as Support Vector Machine, K Nearest Neighbor Classifier, and Gaussian Naive Bayes. Overall, the study presents a promising protein biomarker signature tied to cancer exosomes and proposes a machine learning-driven diagnostic method that could potentially revolutionize non-invasive cancer diagnosis.

      Response: We appreciate this positive assessment of our work.

      (1) The authors should clarify why they focused solely on protein markers. Why weren't RNA transcripts also considered? Do the authors see value in incorporating RNA/micro RNA transcripts to enhance diagnostic capabilities?"

      Response: This is a very important point for further consideration. The current datasets for exosomal proteins are extensive and generally proteins might offer distinct advantages in cancer diagnostics compared to nucleic acids due to their stability in exosomes and extended half-life (Schey et al., Methods, 2015). We do agree that the power of analysis can only get better if also add DNA, RNAs and other constituents and we hope to pursue such analysis in the future.

      (2) Can the identified exosomal markers also be evaluated as prognostic indicators?

      Response: We appreciate this intriguing question. Indeed, proteins such as apolipoprotein E (APOE) may serve as a potential prognostic marker in various cancers (Ren et al., Cancer Medicine, 2019). APOE is being extensively studied as a prognostic and diagnostic marker for multiple cancer types, including colorectal cancer (Martin et al., BMC Cancer, 2014), gastric cancer (Sakashita et al., Oncology Reports, 2008), pancreatic cancer (Chen et al., Medical Oncology, 2013; Xu et al., Tumor Biology, 2016), and human hepatocellular carcinoma (Yokoyama et al., International Journal of Oncology, 2006). In these studies, APOE levels were found to be elevated in the serum of cancer patients and correlated with survival outcomes.

      (3) The discussion should emphasize if the identified protein markers are tumor-specific or if they indicate, for instance, the patient's immune reaction to the tumor.

      Response: A good point. We believe that the identified biomarkers are tumor-specific and a significant number of these proteins have been previously associated with tumor initiation and progression. Further studies will likely identify immune response-related biomarkers when more in-depth tumor-level analyses are performed.

      References:

      Chen, J., Chen, L. J., Yang, R. B., Xia, Y. L., Zhou, H. C., Wu, W., Lu, Y., Hu, L. W., & Zhao, Y. (2013). Expression and clinical significance of apolipoprotein E in pancreatic ductal adenocarcinoma. Med Oncol, 30(2), 583. https://doi.org/10.1007/s12032-013-0583-y

      Hoshino, A., Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., Zambirinis, C. P., Rodrigues, G., Molina, H., Heissel, S., Mark, M. T., Steiner, L., Benito-Martin, A., Lucotti, S., Di Giannatale, A., Offer, K., Nakajima, M., Williams, C., Nogues, L., . . . Lyden, D. (2020). Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 182(4), 1044-1061 e1018. https://doi.org/10.1016/j.cell.2020.07.009

      Kugeratski, F. G., Hodge, K., Lilla, S., McAndrews, K. M., Zhou, X., Hwang, R. F., Zanivan, S., & Kalluri, R. (2021). Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker. Nat Cell Biol, 23(6), 631-641. https://doi.org/10.1038/s41556-021-00693-y

      Martin, P., Noonan, S., Mullen, M. P., Scaife, C., Tosetto, M., Nolan, B., Wynne, K., Hyland, J., Sheahan, K., Elia, G., O'Donoghue, D., Fennelly, D., & O'Sullivan, J. (2014). Predicting response to vascular endothelial growth factor inhibitor and chemotherapy in metastatic colorectal cancer. BMC Cancer, 14, 887. https://doi.org/10.1186/1471-2407-14-887

      Ren, L., Yi, J., Li, W., Zheng, X., Liu, J., Wang, J., & Du, G. (2019). Apolipoproteins and cancer. Cancer Med, 8(16), 7032-7043. https://doi.org/10.1002/cam4.2587

      Sakashita, K., Tanaka, F., Zhang, X., Mimori, K., Kamohara, Y., Inoue, H., Sawada, T., Hirakawa, K., & Mori, M. (2008). Clinical significance of ApoE expression in human gastric cancer. Oncol Rep, 20(6), 1313-1319. https://www.ncbi.nlm.nih.gov/pubmed/19020708

      Schey, K. L., Luther, J. M., & Rose, K. L. (2015). Proteomics characterization of exosome cargo. Methods, 87, 75-82. https://doi.org/10.1016/j.ymeth.2015.03.018

      Xu, X., Wan, J., Yuan, L., Ba, J., Feng, P., Long, W., Huang, H., Liu, P., Cai, Y., Liu, M., Luo, J., & Li, L. (2016). Serum levels of apolipoprotein E correlates with disease progression and poor prognosis in breast cancer. Tumour Biol. https://doi.org/10.1007/s13277-016-5453-8

      Yokoyama, Y., Kuramitsu, Y., Takashima, M., Iizuka, N., Terai, S., Oka, M., Nakamura, K., Okita, K., & Sakaida, I. (2006). Protein level of apolipoprotein E increased in human hepatocellular carcinoma. Int J Oncol, 28(3), 625-631. https://www.ncbi.nlm.nih.gov/pubmed/16465366

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This study presents fundamental new insights into vesicular monoamine transport and the binding pose of the clinical drug tetrabenazine (TBZ) to the mammalian VMAT2 transporter. Specifically, this study reports the first structure for the mammalian VMAT (SLC18) family of vesicular monoamine transporters. It provides insights into the mechanism by which this inhibitor traps VMAT2 into a 'dead-end' conformation. The structure also provides some evidence for a novel gating mechanism within VMAT2, which may have wider implications for understanding the mechanism of transport in the wider SLC18 family.

      Strengths:

      The structure is high quality, and the method used to determine the structure via fusing mVenus and the anti-GFP nanobody to the amino and carboxyl termini is novel. The binding and transport data are convincing and provide new insights into the role of conserved side chains within the SLC18 members. The binding position of TBZ is of high value, given its role in treating Huntington's chorea and for being a 'dead-end' inhibitor for VMAT2.

      We thank reviewer #1 for their constructive comments and input which we feel has greatly improved the manuscript.

      Reviewer #2 (Public Review):

      This public review is the same review that was posted earlier and has not been updated in response to our comments or to the revised manuscript. Please see our earlier response to these comments. We thank reviewer #2 for their input and we have incorporated many of these suggestions into our revised manuscript. With regard to the question of ‘how TBZ got there’, we have revised this sentence in the discussion to be more speculative. As pointed out earlier, our interpretation of the structure is based on a wealth of experimental and structural data which support our interpretations. Thus, our conclusions have not been overstated. This has been explained in our earlier public response and these key studies have been cited throughout the manuscript. We also note that reviewer #3 found the AlphaFold comparisons to be quite meaningful.

      Overview:

      As a report of the first structure of VMAT2, indeed the first structure of any vesicular monoamine transporter, this manuscript represents an important milestone in the field of neurotransmitter transport. VMAT2 belongs to a large family (the major facilitator superfamily, MFS) containing transporters from all living species. There is a wealth of information relating to the way that MFS transporters bind substrates, undergo conformational changes to transport them across the membrane and couple these events to the transmembrane movement of ions. VMAT2 couples the movement of protons out of synaptic vesicles to the vesicular uptake of biogenic amines (serotonin, dopamine and norepinephrine) from the cytoplasm. The new structure presented in this manuscript can be expected to contribute to an understanding of this proton/amine antiport process.

      The structure contains a molecule of the inhibitor TBZ bound in a central cavity, with no access to either luminal or cytoplasmic compartments. The authors carefully analyze which residues interact with bound TBZ and measure TBZ binding to VMAT2 mutated at some of those residues. These measurements allow well-reasoned conclusions about the differences in inhibitor selectivity between VMAT1 and VMAT2 and differences in affinity between TBZ derivatives.

      The structure also reveals polar networks within the protein and hydrophobic residues in positions that may allow them to open and close pathways between the central binding site and the cytoplasm or the vesicle lumen. The authors propose involvement of these networks and hydrophobic residues in coupling of transport to proton translocation and conformational changes. However, these proposals are quite speculative in the absence of supporting structures and experimentation that would test specific mechanistic details.

      Critique:

      Although the structure presented in this MS is clearly important, I feel that the authors have overstated several of the conclusions that can be drawn from it. I don't agree that the structure clearly indicates why TBZ is a non-competitive inhibitor; the proposal that specific hydrophobic residues function as gates will depend on lumen- and cytoplasm-facing structures for verification; the polar networks could have any number of functions - indeed it would be surprising if they were all involved in proton transport. Several of these issues could be resolved by a clearer illustration of the data, but I believe that a more rigorous description of the conclusions and where they fall between firm findings and speculation would help the reader put the results in perspective.

      Non-competitive inhibition occurs when the action of an inhibitor can't be overcome by increasing substrate concentration. The structure shows TBZ sequestered in the central cavity with no access to either cytoplasm or lumen. The explanation of competitive vs non-competitive inhibition depends entirely on how TBZ got there. If it bound from the cytoplasm, cytoplasmic substrate should have been able to compete with TBZ and overcome the inhibition. If it bound from the lumen, or from within the bilayer, cytoplasmic substrate would not be able to compete, and inhibition would be non-competitive. The structure does not tell us how TBZ got there, only that it was eventually occluded from both aqueous compartments and the bilayer.

      The issue of how VMAT2 opens access to the central binding site from luminal and cytoplasmic sides is an important and interesting one, and comparison with other MFS structures in cytoplasmic-open or extracellular/luminal-open is a very reasonable approach. However, any conclusions for VMAT2 should be clearly indicated as speculative in the absence of comparable open structures of VMAT2. As a matter of presentation, I found the illustrations in ED Fig. 6 to be less helpful than they could have been. Specifically, illustrations that focus on the proposed gates, comparing that region of the new structure with the corresponding region of either VGLUT or GLUT4 would better help the reader to compare the position of the proposed gate residues with the corresponding region of the open structure. I realize that is the intended purpose of ED Fig. 6b and 6c, but currently, those show the entire protein and a focus on the gate regions might make the proposed gate movements clearer. I also appreciate the difference between the Alphafold prediction and the new structure, but I'm not convinced that ED Fig. 6a adds anything helpful.

      The polar networks described in the manuscript provide interesting possibilities for interactions with substrates and protons whose binding to VMAT2 must control conformational change. Aside from the description of these networks, there is little evidence presented to assess the role of these networks in transport. Are the networks conserved in other closely related transporters? How could the interaction of the networks with substrate or protons affect conformational change? Of course, any potential role proposed for the networks would be highly speculative at this point, and any discussion of their role should point out their speculative nature and the need for experimental verification. Some speculation, however, can be useful for focusing the field's attention on future directions. However, statements in the abstract (three distinct polar networks... play a role in proton transduction.) and the discussion (...are likely also involved in mediating proton transduction.) should be clearly presented as speculation until they are validated experimentally.

      The strongest aspect of this work (aside from the structure itself) is the analysis of TBZ binding. I will comment on some minor points below, but there is one problematic aspect to this analysis. The discussion on how TBZ stabilizes the occluded conformation of VMAT2 is premature without structures of apo-VMAT2 and possibly structures with other ligands bound. We don't really know at this point whether VMAT2 might be in the same occluded conformation in the absence of TBZ. Any statements regarding the effect of interactions between VMAT2 and TBZ depend on demonstrating that TBZ has a conformational effect. The same applies to the discussion of the role of W318 on conformation and to the loops proposed to "occlude the luminal side of the transporter" (line 131).

      The description of VMAT2 mechanism makes many assumptions that are based on studies with other MFS transporters. Rather than stating these assumptions as fact (VMAT2 functions by alternating access...), it would be preferable to explain why a reader should believe these assumptions. In general, this discussion presents conclusions as established facts rather than proposals that need to be tested experimentally.

      The MD simulations are not described well enough for a general reader. What is the significance of the different runs? ED Fig. 4d is not high enough resolution to see the details.

      Reviewer #3 (Public Review):

      Summary:

      The vesicular monoamine transporter is a key component in neuronal signaling and is implicated in diseases such as Parkinson's. Understanding of monoamine processing and our ability to target that process therapeutically has been to date provided by structural modeling and extensive biochemical studies. However, structural data is required to establish these findings more firmly.

      Strengths:

      Dalton et al resolved a structure of VMAT2 in the presence of an important inhibitor, tetrabenazine, with the protein in detergent micelles, using cryo-EM and with the aid of protein domains fused to its N- and C-terminal ends, including one fluorescent protein that facilitated protein screening and purification. The resolution of the maps allows clear assignment of the amino acids in the core of the protein. The structure is in good agreement with a wealth of experimental and structural prediction data, and provides important insights into the binding site for tetrabenazine and selectivity relative to analogous compounds. The authors provide additional biochemical analyses that further support their findings. The comparison with AlphaFold models is enlightening.

      We appreciate this summary and thank reviewer #3 for their helpful suggestions to improve the manuscript.

      Weaknesses:

      The authors follow up their structures with molecular dynamics simulations of the tetrabenazine-bound state, and test several protonation states of acidic residues in the binding pocket, but not all possible combinations; thus, it is not clear the extent to which tetrabenazine rearrangements observed in these simulations are meaningful. Additional simulations of the substrate dopamine docked into this structure were also carried out, although it is unclear whether this "dead-end" occluded state is a relevant state for dopamine binding. The authors report release of dopamine during these simulations, but it is notable that this only occurs when all four acidic binding site residues were protonated and when an enhanced sampling approach was applied.

      As an occluded neurotransmitter bound structure has yet to be solved experimentally, it is not possible to address whether this state resembles the docked dopamine structure. However, it is reasonable to hypothesize that this is a relevant state for dopamine binding and if so, these simulations would be of great interest. The MD simulations which were performed are logical, based on the calculated pKa of the residues and the known pH of the vesicle lumen (5.5). Note that we have carried out a total of more than 2 microseconds of simulations, which required a significant computing time/memory allocation for the current runs in explicit water and membrane. To investigate all possible combinations, it would require at least 16 independent simulations, to be performed in duplicates, to vary protonation status of the four highlighted acidic residues alone, not including proper experimental replicates. We do not believe this to be a feasible suggestion, nor necessary given that the selected combinations were based on rational evaluation of on-path amino acids that were assessed to be potentially protonated.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We thank the editor for organizing the review of our manuscript. We have carefully read and analyzed the reviewers’ comments, addressed each criticism point-by-point as outlined below, and modified the manuscript and figures accordingly. In this regard, we would also like to take the opportunity to thank both reviewers for their thoughtful suggestions for improvement of our manuscript. We believe that our manuscript has improved as a result, and hope that it is now suitable for publication.

      Public Reviews:

      Reviewer #1 (Public Review):

      Aiming at the problem that Staphylococcus aureus can cause apoptosis of macrophages, the author found and verified that drug (R)-DI-87 can inhibit mammalian deoxycytidine kinase (dCK), weaken the killing effect of staphylococcus aureus on macrophages, and reduce the apoptosis of macrophages. And increase the infiltration of macrophages to the abscess, thus weakening the damage of Staphylococcus aureus to the host. This work provides new insights and ideas for understanding the effects of Staphylococcus aureus infection on host immunity and discovering corresponding therapeutic interventions.

      The logic of the study is commendable, and the design is reasonable.

      Some data related to the conclusion of the paper need to be supplemented, and some experimental details need to be described.

      Response: We thank the reviewer for the positive feedback along with the detailed and knowledgeable analysis of this paper. Specific details and comments on all raised concerns can be found below.

      Reviewer #2 (Public Review):

      Summary:

      In this study, Winstel and colleagues test if the deoxycytidine kinase inhibitor, (R)-DI-87 provides therapeutic benefit during infection with Staphylococcus aureus. The premise behind the current work is a series of prior studies that found that S. aureus can disable functional immune clearance by generating NET-derived deoxyribonucleosides to induce macrophage apoptosis via purine salvage. Here, the authors use in vitro and in vivo experiments with (R)-DI-87 to demonstrate that inhibition of deoxycytidine kinase prevents S. aureus-induced deoxyribonucleoside-mediated macrophage cell death, to bolster immune cell function and promote more effective clearance during infection. The authors conclude that (R)-DI-87 represents and potentially important Host-Directed Therapy (HDT) with good potential to promote natural clearance of infection without targeting the bacterium. Overall, the study represents an important next step in the exploration of purine salvage and deoxyribonucleoside toxicity as a targetable pathway to bolster infection clearance and provides early-stage evidence of the therapeutic potential of (R)-DI-87 during S. aureus infection.

      Response: We thank the reviewer for the thoughtful suggestions for improvement of our manuscript. Specific details and comments on all raised concerns can be found below.

      Strengths:

      The study has several strengths that support its conclusions:

      (1) Well-controlled in vitro studies that firmly establish (R)-DI-87 is capable of blocking deoxyribonucleoside-mediated apoptosis of immune cell lines and primary cells.

      (2) Solid evidence to support that administration of (R)-DI-87 can have therapeutic benefits during infection (reduced number of abscesses and reduced CFU).

      (3) Controls included to ascertain the degree to which (R)-DI-87 might have secondary effects on immune cell distribution.

      (4) Controls included to ascertain whether or not (R)-DI-87 has intrinsic antibacterial properties.

      Weaknesses:

      However, there are several important weaknesses related to the rigor of the research and the conclusions drawn. The most relevant weaknesses noted by this reviewer are:

      (1) Drawing firm conclusions about the therapeutic potential of (R)-DI-87 using only S. aureus strain Newman, a methicillin-susceptible S. aureus, that while a clinical isolate is not clearly representative of the strains of S. aureus causing infection in hospitals and communities. Newman also harbors an unusual mutation in a regulator that dramatically changes virulence factor gene expression. While the data with Newman remains valuable, the absence of consideration of other strains, including MRSA, makes it more difficult to support the relatively broad conclusions about therapeutic potential made by the authors.

      Response: We assume that this is a misunderstanding. S. aureus Newman is a patient-derived isolate and not a regulator mutant and/or laboratory strain (Duthie and Lorenz LL 1952, J Gen Microbiol 6(1-2), 95107). Its genome is fully sequenced (Baba et al. 2008, J Bacteriol 190(1):300-10) and it is highly virulent in mouse or human ex vivo models (e.g. Alonzo 3rd et al. 2013, Nature 493(7430):51-5.; DuMont et al. 2011, Mol Microbiol 79(3):814-25; Skaar et al. 2004, Science 305(5690):1626-8). Moreover, S. aureus Newman has served as a gold standard to study abscess formation in the past (e.g. Thammavongsa et al. 2013, Science 342(6160):863-6; Cheng et al. 2009, FASEB J 23(10):3393-404; Corbin et al. 2008, Science 319(5865):962-5) and has further also been used multiple times to test the therapeutic efficacy of antimicrobial or anti-infective agents in various animal models of infectious disease (e.g. Buckley et al. 2023, Cell Host Microbe 31(5):751-765.e11; Zhang et al. 2014, PNAS 111(37):13517-22; Richter et al. 2013, PNAS 110(9):3531-6). Apart from this, it is crucial to note that methicillin-sensitive isolates such as S. aureus Newman are typically more frequently isolated in hospitals as compared to MRSA. Specifically, public health system- and population-based surveillance studies clearly indicate that annual incidence rates for MSSA infections are dominant over those associated with MRSA infections (e.g. Gagliotti et al. 2021, Euro Surveill 26(46):2002094; Jackson et al. 2020, Clin Infect Dis 70(6):1021-1028; Laupland et al. 2013, Clin Microbiol Infect 19(5):465-71), even in groups at elevated risk (e.g. McMullan et al. 2016, JAMA Pediatr et al., 170(10):979-986; Ericson et al. 2015, JAMA Pediatr 169(12):1105-11). Although we understand and agree with the reviewer that certain MRSA clones can be a dominant cause of staphylococcal disease in specific geographic areas, we believe that S. aureus Newman adequately reflects staphylococcal isolates that cause the majority of infections in humans. In this regard, we would also like to highlight once more that (R)-DI-87 targets host dCK and not the bacterium. Accordingly, the antibiotic resistance status of S. aureus is not expected to impact our main findings and conclusions as (R)-DI-87 exclusively inhibits dCK, a key element of the mammalian purine salvage pathway.

      (2) In vitro (R)-DI-87 efficacy studies with dAdo and dGuo are strong, however, the authors do not test the in vitro efficacy of (R)-DI-87 using S. aureus. They have done this type of work in prior studies (See doi: 10.1073/pnas.1805622115 - Figure 5). If included it would greatly strengthen their argument that (R)-DI87 is directly affecting the S. aureus --> Nuclease --> AdsA macrophage-killing pathway. Without it, the evidence provided remains indirect, and several conclusions may be overstated.

      Response: We highly appreciate this comment and agree with the reviewer that such an experiment would support our main findings. Thus, we have performed additional experiments and took advantage of a previously described approach (Tantawy et al. 2022, Front Immunol 13:847171) to demonstrate that (R)DI-87-mediated inhibition of host dCK enhances macrophage survival upon treatment with culture media that had been conditioned by incubation with adsA-proficient or adsA-deficient staphylococci in the presence or absence of purine deoxyribonucleoside monophosphates. Our findings are described in the main text and in a new figure (Fig. 2K-L). Based on these new findings and together with our rAdsA-based approach (Fig. 2I-J), we are confident that (R)-DI-87 represents a suitable small molecule inhibitor of host dCK which can prevent host immune cell death induced by toxigenic products associated with the S. aureus Nuc/AdsA pathway.

      (3) Caspase-3 immunoblot experiments seem to suggest an alternative conclusion to what was made by the authors. They point out that Caspase-3 cleavage does not occur upon treatment with (R)-DI-87. However, the data seem to argue that there is almost no caspase-3 present in (R)-DI-87 treated cells (cleaved or uncleaved). Might this suggest that caspase-3 is not even produced when cells are not experiencing deoxyribonucleoside toxicity? Perhaps the authors could reconsider the interpretation of this data.

      Response: We believe that this is a misunderstanding. Our immunoblots (Fig. 3E-F) show only the processed forms of caspase-3. The antibody we have used can recognize full-length caspase-3 along with the p17 and p19 subunits that can result from cleavage. To clarify this point, we have slightly modified our main figure and provide the full immunoblots (Source data file) which clearly demonstrate that unprocessed caspase-3 (pro-caspase-3) is present in all samples. In this regard, we further note that caspase-3 can also form heterocomplexes with other proteins, presumably explaining some of the unknown bands in samples obtained from cells that have been exposed to death-effector deoxyribonucleosides. Additional bands are probably a result of cross-reactivity of the antibody and/or unspecific degradation of pro-caspase in cellular lysates.

      (4) There are some concerns over experimental rigor and clarity of the experimental design in the methods. The most important points noted by this reviewer are included here. (a.) There is no description of the number of replicates or representation of the Western blots and no uncropped blots are provided. (b.) the methods describing the treatment conditions for in vivo studies are not sufficiently clear. For example, it is hard to tell when (R)-DI-87 is first administered to mice. Is it immediately before the infection, immediately after, or at the same time? This has important implications for interpreting the results in terms of therapeutic potential. (c.) There are several statements made that (R)-DI-87 does not have a negative impact on the mice however, it is not sufficiently clear that the studies conducted are sufficient to make this broader claim that (R)-DI-87 has no impact on the animal, except as it relates to the distribution of immune cells, which is directly tested. (d.) there are no quantitative measures of apoptosis or macrophage infiltration, which impacts the rigor of these imaging experiments. (e.) only female mice are used in the in vivo studies. There is no justification provided for this choice; however, the rigor of the study design and the ability to draw conclusions about therapeutic potential is impacted in the absence of consideration of both sexes.

      Response: Thank you for raising these points here. (a) We have modified our figure legend and provide the full immunoblots (Source data file) in order to clarify this point. (b) Moreover, we now provide more experimental details on the treatment conditions that were used to administer (R)-DI-87 to mice (methods section). (c) Furthermore, we have conducted new experiments in order to demonstrate that administration of (R)-DI-87 has no impact on laboratory animals. Specifically, we provide new data along with additional text on organ cellularity following long-term exposure of mice to (R)-DI-87. In this regard, we have also applied our immuno-phenotyping approach to spleen tissues samples derived from mice that received (R)-DI-87 or vehicle. As outlined in our new results, neither developmental errors nor differences in lymphocyte development have been observed (new Fig. 4B-C; new supplementary Fig. 3). Together with our data on mouse body weight along with our immuno-phenotyping approach of blood cells (Fig. 4A and 4D) and the fact that (R)-DI-87 is extremely well tolerated in humans (personal communication; Kenneth A. Schultz, Trethera Corporation, Los Angeles, CA, USA), we are very confident that application of (R)-DI87 is safe and has no detrimental impact on the host. (d) Lastly, we would like to point out that due to the densely packed and extremely sticky cuff of immune cells within staphylococcal abscesses, it is technically not possible to extract enough abscess material required for a reliable quantification of apoptotic macrophages within infectious foci. Such an analysis would also not allow us to differentiate between lesion-infiltrating macrophages and macrophages that may reside at the periphery of the abscess. For these reasons, we have established a fluorescence microscopy-based approach to demonstrate increased macrophage infiltration rates into abscesses formed in organs of mice that have been treated with the dCK-specific inhibitor (R)-DI-87 (Fig. 5A-P). Nonetheless, we have slightly modified our figure and its legend in order to help the readership to localize S. aureus-derived tissue lesions and the periphery of abscesses in these images. (e) Finally, publicly available databases indicate that dCK is equally well expressed in various tissues in both sexes. Moreover, dCK is not encoded on a sex chromosome, neither in mice nor in humans. Thus, we believe that it is justified to test the in vivo efficacy of (R)-DI-87 in female mice. Nonetheless, we have conducted additional in vitro experiments to test whether (R)-DI-87 can protect male animal-derived BMDMs from death-effector deoxyribonucleosides in a manner similar to cells derived from female mice. As expected, we did not observe a sex-specific effect (new supplementary Fig. 5), and hope that this adequately addresses this point.

      (5) Animal studies show significant disease burden (CFU) even after administration of (R)-DI-87. Given the absence of robust clearance of infection, the author's claims read as an overstatement of the data. The authors may wish to reframe their conclusions to better highlight the potential benefit of this therapy at reducing severe disease but also to point out relevant limitations, especially considering that it does not lead to clearance in this model. In general, the consideration of the limitations of the proposed therapeutic approach, as uncovered by the data, is not present. A more nuanced consideration of the data and its interpretations, including both strengths and limitations, would greatly help to frame the study.

      Response: Thank you for raising this point here. To highlighting the limitations of our approach, we have modified several passages in the main text. Moreover, we have adjusted our discussion section accordingly.

      Reviewer #1 (Recommendations For The Authors):

      (1) In vivo experiments, the dose given to mice was 75mg/kg. How did the author determine the dose of this drug?

      Response: We thank the reviewer for this question, which gives us the chance to clarify this point. The experimental condition used to block host dCK in mice has been adopted from a previous publication (Chen et al. 2023, Immunology 168(1):152-169). To improve the overall quality of our current manuscript, we now included more background information addressing this point. Specifically, we have added additional in vivo and biochemical data along with more conclusive text to our results section to better explain the reason for the dose given to mice (new Fig. 4E).

      (2) The author established a mouse model of Staphylococcus aureus blood infection in vivo and divided four groups for related experiments. It is suggested that the authors should supplement the survival rate of mice in each group so that readers can understand the effect of the drug on the survival of mice with bloodstream infection.

      Response: While this is an interesting suggestion by the reviewer, we believe that this is beyond the scope of our study. In particular, the current study focused on analyzing the capacity of the dCK-specific inhibitor (R)-DI-87 to improve macrophage survival during staphylococcal abscess formation in an effort to lower bacterial loads in infected organ tissues. However, we agree with the reviewer that (R)-DI-87 might also help to improve further clinical syndromes of staphylococcal infections, including lethal bloodstream infection. We therefore modified parts of our discussion to address this point.

      (3) In the in vivo experiment, the author administered the drug by intragastric administration, but the treatment was for the bloodstream infection of Staphylococcus aureus, so the author needed to determine the actual effective concentration of the drug in the blood of mice.

      Response: We thank the reviewer for this comment and agree that inclusion of more background information and data would be a valuable addition to our manuscript. As outlined above, we have designed our in vivo experiments based on the methodology of a previous publication (Chen et al. 2023, Immunology 168(1):152-169). Similar to Chen and colleagues, we have also used a dose of 75 mg/kg of (R)-DI-87 that allows complete inhibition of host dCK in vivo. In this regard, we have now performed additional in vivo experiments to address this point. More precisely, we took advantage of a highly sensitive and LC-MS/MSbased method to measure accumulation of deoxycytidine, the natural substrate of host dCK, in mouse plasma upon administration of the dCK-specific inhibitor. As shown in our new Fig. 4E, administration of (R)-DI-87 at a dose of 75 mg/kg strongly increased deoxycytidine levels in mouse plasma thereby indicating that host dCK activity is completely blocked under these experimental conditions.

      (5) This work is to reduce the apoptosis of macrophages through drug inhibition of dck, but not directly inhibit the related virulence of Staphylococcus aureus. Therefore, it is suggested that the author modify the title to summarize the whole paper more accurately.

      Response: We agree with the reviewer that our manuscript’s title might be a bit misleading as (R)-DI-87 does not directly target the bacterium or staphylococcal virulence factors. Thus, we have modified the title of our revised manuscript to: “Targeting host deoxycytidine kinase mitigates Staphylococcus aureus abscess formation”.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Adelus and colleagues investigates the snRNA sequencing of endothelial cells isolated from deceased heart donor aortic trimmings. From n=6 donors, the authors have identified 5 distinct endothelial cell (EC) populations. The expression levels of a set of genes are different among the different donors and different EC clusters. Furthermore, treatment with IL1B, TGFB, or ERGsi decreased the proportion of some of these clusters and increased others, with some migratory and ECM-producing capacity. Another interesting observation in this study is that IL-1B alone induces a shift in the clusters and that is different from the TGFB-induced cells. However, ex vivo analyses showed most of the TGFB-induced population matched the in vitro observations. Another interesting finding of the work is that the authors detected SNPs linked to chromatin accessibility to the set of genes identified within these EC populations.

      Strengths:

      Overall, the work is intriguing and has some novel aspects to it, especially the link between ECderived EndMT in culture and comparing that with ex vivo atherosclerotic samples.

      In summary, we thank we thank Reviewer #1 for raising questions that prompted new speculations and clarifications of our data. We hope this Reviewer will now find our revised manuscript suitable for publication.

      Weaknesses:

      The experiments are lacking in controls, the purity of the isolation, and the use of multiple donors (deceased hearts) to draw conclusions. The lack of validation of the work is a concern.

      We thank Reviewer #1 for raising these concerns. Controls were not available in the public in vivo data, likely due to the systemic nature of coronary artery disease (CAD) and the logistical difficulty in obtaining arterial samples from healthy participants. With respect to our in vitro data, controls were included in the design. We agree that it is critical to validate functions of endothelial cell (EC) populations with functional studies, and this is the subject of ongoing and future work. Regarding asymmetry of donors, we aimed to have at least three replicate donors per condition. In the study design, we had to load genetically different donors per 10x lane, which is why we utilized different donors for each condition. We address the purity of isolation in our response to Reviewer #2 below.

      Reviewer #2 (Public Review):

      This study by Adelus et al. profiled the transcriptome and chromatin accessibility in cultured human aortic endothelial cells (ECs) at single-cell resolution. They also stimulated these cells with EC-activating agents, such as IL1b, TGFB2, or si-EGR, to knock down this master transcription factor in ECs. The results show a subpopulation, EC3, with the highest plasticity and sensitivity to perturbations. The authors also reviewed and meta-analyzed three independent publicly available scRNA-seq datasets, identifying two distinct EC subpopulations. Additionally, they aligned CAD-related SNPs with open chromatin regions in EC subpopulations. This study provides fundamental evidence to enrich our understanding of vascular ECs and highlights potential subpopulations that may contribute to health and diseases. The work exhibits the potential impact in the field. While the manuscript is comprehensive, there are some concerns that should be addressed.

      (1) My major concern is whether EC4 is derived from ECs. It seems that EC4 showed a lesser reaction to those perturbations and had lower expression levels of EC marker genes. Did the authors evaluate the purity of their isolated HAECs? Please discuss the potential cell lineage mapping of EC4.

      We thank Reviewer #2 for raising the question on the purity of isolation. We have now included this in the Discussion:

      “A major question raised by this work is the origin of cells in the mesenchymal cluster EC4. We originally hypothesized this cluster was the result of EndMT, which led to our investigations as to whether we could leverage EndMT-promoting exposures (IL1B, TGFB2, siERG) in vitro observe an expansion of treated cells in the EC4 population. To our surprise, the EC4 population did not expand. If anything, these exposures reduced the proportion of cells in ECs (Figure 4). Nonetheless, it remains a possibility that EC4 represents cells that had undergone EndMT in vivo prior to culture and that the exposures we presented in vitro were not sufficient to elicit a complete EndMT transition. Another viable hypothesis is that cells in EC4 are of SMC origin and have persisted in culture alongside their EC counterparts. Cells used in this study were isolated by luminal collagenase digestion of explanted aortic segments and were tested at early passage for EC phenotypic markers including VWF expression, cobblestone morphology, and uptake of acetylated LDL. Notably, these rigorous metrics to ensure pure EC isolation occurred prior to our group’s studies. In addition, if some of the isolated cells had undergone EndMT in vivo prior to isolation, it would be nearly impossible to distinguish their cell of origin after isolation since their collective molecular phenotypes would appear as an SMC. Without lineage tracing, which is currently not possible in human tissue explants, it would not be possible to distinguish cell origin. Nonetheless, this remains an important issue that is the subject of ongoing investigations. What we can confidently discern from these data is that these distinct cell subpopulations respond differently to the disease-relevant exposures of IL1B, TGFB2, and ERG depletion.”

      (2) Although all the donors are de-identified, is there any information about the severity of their vascular impairment, particularly in the case of patient 5, who exhibits the unique EC5?

      All donors are de-identified, and we only have access to their genotypes. We have now clarified this in Methods, “Tissue Procurement and Cell Culture”:” Primary HAECs were isolated from eight de-identified deceased heart donor aortic trimmings (belonging to three females and five males of Admixed Americans, European, and East Asian ancestries) at the University of California Los Angeles Hospital as described previously (42) (Table S7 in the Data Supplement). The only clinically relevant information collected for each donor was their genotype (Methods, “Genotyping and Multiplexing Cell Barcodes for Donor Identification”).”

      (3) The meta-analysis of the published datasets is comprehensive. The identified EC heterogeneity corresponds to their in vitro data. I am wondering, in terms of transcriptome, is there any similarity between endo1 and EC1/EC2, and also endo2 and EC3/EC4?

      This was addressed in Results, “Ex Vivo-derived Module Score Analysis Reveals Differences among In Vitro EC Subtypes and EndMT Stimuli”: “Cells scoring high for Endo1 are concentrated in the in vitro EC1 cluster, while cells scoring high in Endo2 are concentrated to the in vitro EC3 locale (Figure S7B-E in the Data Supplement).”

      (4) The in vitro data indicates that EC3 shows the highest plasticity and sensitivity to perturbations, which may act as the major subtype of ECs responding to risk factors. It's very interesting that CAD-related SNPs do not seem to be enriched in EC3. Please discuss this discrepancy.

      We thank Reviewer #2 for bringing up this interesting point, which we have now included in our Discussion: “While EC3 was found to be more sensitive to perturbations in our in vitro experiments, we did not expect to see CAD-related SNPs enriched in EC3 because plasticity does not necessarily imply a pathological process. Moreover, while EC3 and EC4 both have mesenchymal phenotypes, EC3 may represent a reversible state that is lacking in EC4. This hypothesis would explain the enrichment of EC4, but not EC3, in CAD-related SNPs.”

      (5) The last sentence in the legend of Figure 1 seems incomplete: 'Module scores are generated for each cell barcode with Seurat function AddModuleScore().'

      We have made changes to this sentence so that it now reads: “Module scores are generated for each cell barcode with the Seurat function AddModuleScore().”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The manuscript by Adelus and colleagues investigates the snRNA sequencing of endothelial cells isolated from deceased heart donor aortic trimmings. From n=6 donors, the authors have identified 5 distinct endothelial cell (EC) populations. The expression levels of a set of genes are different among the different donors and different EC clusters. Furthermore, treatment with IL1B, TGFB, or ERGsi decreased the proportion of some of these clusters and increased others, with some migratory and ECM-producing capacity. Another interesting observation in this study is that IL-1B alone induces a shift in the clusters and that is different from the TGFB-induced cells. However ex vivo analyses showed most of the TGFB-induced population are the ones that matched the in vitro observations. Another interesting finding of the work is that the authors detected SNPs linked to chromatin accessibility to the set of genes identified within these EC populations. Overall, the work is intriguing and has some novel aspects to it, especially the link between EC-derived EndMT in culture and comparing that with ex vivo atherosclerotic samples. However, the experiments are lacking in controls, the purity of the isolation, and the use of multiple donors (deceased hearts) to draw conclusions. The lack of validations for the work is a huge concern. Additional major and minor concerns are:

      Major concerns:

      (1) Abstract: line 15: ECs are a major cell type in atherosclerosis progression - That is a bold statement: What about macrophages and VSMCs?

      We have made changes to this sentence so that it now reads: “Endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) are major cell types in atherosclerosis progression, and heterogeneity in EC sub-phenotypes are becoming increasingly appreciated.”

      (2) Methods: The cells were isolated from the deceased heart by a device? What kind of device? Is it a standard method, showing a figure or data suggesting the purity of the isolates. Also, the authors mentioned that they assessed EC function, but no single figure suggests that. Why were the cells treated with fibronectin?

      We thank Reviewer #1 for bringing this to our attention. We did not isolate and identify the cells ourselves. This was done in a prior study as described in reference 41. The only function of the device was to hold the aortic explanted tissue in place so the luminal surface of the ECs could be digested with collagenase. We have made edits to clarify these points in Methods, “Tissue Procurement and Cell Culture”: “HAECs were isolated from the luminal surface of the aortic trimmings using collagenase, and identified by Navab et al. using their typical cobblestone morphology, presence of Factor VIII-related antigen, and uptake of acetylated LDL labeled with 1,1’-dioctadecyl-1-3,3,3’,3’-tetramethyl-indo-carbocyan-ine perchlorate (Di-acyetl-LD) (42).”

      (3) Why did the authors elect to treat each donor cell with different treatment types and different concentrations, also why 1ng/ml of IL-1B?

      We have addressed the study design asymmetry above. We chose the treatments because we questioned whether HAECs responded heterogeneously to these stimuli. We were interested in using these stimuli, because they have previously been used in vitro to induce EndMT and/or inflammation, two major pathophysiological processes in CAD. This is outlined in the Introduction: “We also quantified single cell responses to three perturbations known to be important in EC biology and atherosclerosis. The first was activation of transforming growth factor beta (TGFB) signaling, which is a hallmark of phenotypic transition and a regulator of EC heterogeneity (20, 30). The second was stimulation with the pro-inflammatory cytokine interleukin-1 beta (IL1B), which has been shown to model inflammation and EndMT in vitro (31-35), and whose inhibition reduced adverse cardiovascular events in a large clinical trial (36). The third perturbation utilized in our study was knock-down of the ETS related gene (ERG), which encodes a transcription factor of critical importance for EC fate specification and homeostasis (37-41).”

      (4) The justification for comparing the EC population in ERGsi is unclear? This was detected as the highest in EC2 but EC2 is not the main cell type across the donors.

      We include a justification for comparing the EC populations with siERG in the Introduction:

      “There are notable benefits and limitations for studying heterogeneity using in vitro and in vivo approaches in atherosclerosis research. In vitro approaches provide unique opportunities for interrogating consequences of genetic and chemical perturbations in highly controlled environments and are adept at identifying mechanistic relationships on accelerated timelines.”

      …and…

      “We… quantified single cell responses to three perturbations known to be important in EC biology and atherosclerosis…The third perturbation utilized in our study was knock-down of the ETS related gene (ERG), which encodes a transcription factor of critical importance for EC fate specification and homeostasis (37-41).”

      Notably, we found the highest proportion of cells in EC3 with siERG, not EC2:

      The one cluster exhibiting increased proportions of cells upon EndMT perturbations was EC3, with 3 of 4 EC IL1B-exposed donors having increased proportions in EC3 (p = 0.08 by 2-sided paired t-test; Figure 3A), 4 of 5 TGFB2-exposed donors having increased proportions (p = 0.04 by 2-sided paired t-test; Figure 3A), and 3 of 3 donors having increased EC3 proportions upon ERG knock-down (Figure 3B).

      (5) The different proportions of clusters per donor and their responses are different. These donors are from deceased hearts, could the postmortem induce changes in the ECs? The presence of SMC pathways in their analysis may indicate SMC contamination within the isolation rather than EndMT?

      We have now included the possibility of postmortem effects in the Discussion:

      “We cannot exclude the possibility that EC3 is an EndMT cluster, although we would have expected more significant deviation from clusters EC1 and EC2. It is also possible that the postmortem could induce changes in the ECs, or that the duration and doses of perturbations chosen were not sufficient to elicit complete EndMT.”

      As aforementioned, we addressed the purity of isolation within the Discussion.

      (6) Figure 4A is confusing, what do the dots indicate and the intersection size mean? What is the difference between Figure 4 C and 4 E?

      We have added a description of rows and columns to the legend for Figure 4A:

      “(A), Upset plots of up- and down-regulated DEGs across EC subtypes with siERG (grey), IL1B (pink), and TGFB2 (blue). Upset plots visualize intersections between sets in a matrix, where the columns of the matrix correspond to the sets, and the rows correspond to the intersections. Intersection size represents the number of genes at each intersection.”

      Figure 4E depicts up- and down-regulated DEGs that are mutually exclusive and shared between IL1B and siERG in EC3, whereas Figure 4C depecits up- and down-regulated DEGs with IL1B alone compared to siSCR in EC2, EC3, and EC4. This is described within the legend for Figure 4C and Figure 4E:

      “C), PEA for EC2-4 up- and down-regulated DEGs with IL1B compared to control media… (E), PEA comparing up- and down-regulated DEGs that are mutually exclusive and shared between IL1B and siERG in EC3.”

      (7) VSMCS 5 in Figure 5 is interesting, but it could be contaminated with SMCs in your EC population and they are SMCs indeed with some mesenchymal transdifferentiation?

      As abovementioned, we addressed the purity of isolation within the Discussion.

      Minor concerns:

      (1) All growth supplements, kits, and reagents should be provided with their sources and catalogue numbers.

      Sources and catalogue numbers have now been added to the following Methods sections:

      “Tissue Procurement and Cell Culture”: “Cells were grown in culture in M-199 (ThermoFisher Scientific, Waltham, MA, MT-10-060-CV) supplemented with 1.2% sodium pyruvate (ThermoFisher Scientific, cat. no. 11360070), 1% 100X Pen Strep Glutamine (ThermoFisher Scientific, cat. no. 10378016), 20% fetal bovine serum (FBS, GE Healthcare, Hyclone, Pittsburgh, PA), 1.6% Endothelial Cell Growth Serum (Corning, Corning, NY, cat. no. 356006), 1.6% heparin, and 10µL/50 mL Amphotericin B (ThermoFisher Scientific, cat. no. 15290018). HAECs at low passage (passage 3-6) were treated prior to harvest every 2 days for 7 days with either 10 ng/mL TGFB2 (ThermoFisher Scientific, cat. no. 302B2002CF), IL1B (ThermoFisher Scientific, cat. no. 201LB005CF), or no additional protein, or two doses of small interfering RNA for ERG locus (siERG; Table S18 in the Data Supplement), or randomized siRNA (siSCR; Table S18 in the Data Supplement).”

      …and…

      “siRNA Knock-down, qPCR, and Western Blotting”: “Knockdown of ERG was performed as previously described (40) using 1 nM siRNA oligonucleotides in OptiMEM (ThermoFisher Scientific, cat. no. 11058021) with Lipofectamine 2000 (ThermoFisher Scientific, cat. no. 11668030).”

      (2) The quantification of western blot how?

      Methods, “siRNA Knock-down, qPCR, and Western Blotting” now reads: “Western blots were quantified using ImageJ (76).”

      (3) All the supplemental figures are listed incorrectly in the manuscript. For example, the authors refer to Figure S11B which should be S10. Please review the manuscript throughout to refer to the correct figures.

      We thank Reviewer #1 for bringing this to our attention. Figure S4 was missing, leading to incorrectly listed supplemental figures for Figures S4-S12. Figure S4 has now been included, and Figures S4-S12 are now listed correctly within the manuscript text.

      (4) Please refer to IL-1B as IL-1beta, same with TGFB.

      We have left the terms as is, since it is also routine to refer to IL-1beta as IL1B, and TGFbeta as TGFB.

      (5) here are typos throughout the manuscript, such as 4C, VW Fexpression, VWFand VCAM-1.

      We could not locate typos “VW Fexpression” or “VWFand VCAM-1”. We do not consider “4C” a typo, as it refers to the temperature at which the centrifuge was set to in Methods, “Nuclear Dissociation and Library Preparation”: “Samples were centrifuged at 500 rcf for 5 minutes at 4C…”

      (6) Please define the abbreviations: line 69 and also cite the source of the use of aSMA/PECAM1 as EndMT?

      We have now included abbreviation definitions and the cited source for ECs that co-express aSMA/PECAM-1 in atherosclerotic lesions within the Introduction: “These studies have described an unexpectedly large number of cells co-expressing pairs of endothelial and mesenchymal proteins, including fibroblast activating protein/von Willebrand factor (FAP/VWF), fibroblastspecific protein-1/VWF (FSP-1/VWF), FAP/platelet-endothelial cell adhesion molecule-1 (CD31 or PECAM-1), FSP-1/CD31 (20), phosphorylation of TGFB signaling intermediary SMAD2/FGF receptor 1 (p-SMAD2/FGFR1) (22), and α-smooth muscle actin (αSMA)/PECAM-1 (23).”

      (7) The changes in % cells in cluster per donor per condition in Figure 3 are interesting, have the authors observed a change of one cluster at the expense of another i.e. do they transdifferentiate into another with different treatments?

      Figure 3 shows that as percent of cells in EC3 go up with TGFB or IL1B, they go down in EC4 with these treatments. This has been added to the Discussion: “Moreover, as the percent of cells in EC3 go up with TGFB or IL1B, they go down in EC4, suggesting trans-differentiation from EC4 into EC3 with these perturbations.”

      (8) Functional analysis of these clusters with and without treatment is required to confirm the EndMT.

      We do not claim that the cells underwent EndMT. Rather, we use pro-EndMT perturbations previously described in the literature to test whether ECs respond heterogeneously to stimuli which are relevant to CAD. We found that EC subtype was a greater determinant of cell state than treatment.

      (9) No blank line at 266. The break is in the middle of the sentence, also cytoplasmic cytoplasmic ribosomal proteins (typo?).

      We have revised these sentences to read: “Shared IL1B- and siERG-upregulated genes were enriched in COVID-19 adverse outcome pathway (WP4891; p-value 1.9x10-9) (52). Shared IL1B- and siERG-attenuated genes are enriched in several processes involving ribosomal proteins, including ribosome, cytoplasmic (CORUM:306; p-value 3.3x10-7), cytoplasmic ribosomal proteins (WP477; p-value 5.3x10-7), and peptide chain elongation (R-HSA-156902; pvalue 5.9x10-7) (Figure 4E).”

      (10) The sentence in line 321 "These observations support ....of human, seems incomplete.

      We revised these sentences to read: “Expected pathway enrichments are observed for annotated cell types, including NABA CORE MATRISOME (M5884; p-value 4.8x10-41) for fibroblasts, blood vessel development (GO:0001568; p-value 5.6x10-33) for ECs, and actin cytoskeleton organization (GO:0030036; p-value 1.3x10-15) for VSMCs (Figure S5D-G in the Data Supplement). These observations support the diverse composition of human atherosclerotic lesions.”

      (11) What do the authors mean by (at least partially) line 444?

      We revised this sentence to read: “In fact, the limited correlation with ex vivo data supports this interpretation.”

      (12) Some unrelated data in the paper, like supplemental figure 10B and supplemental figure 11?

      These data are relevant to methods, and have been kept.

      Reviewer #2 (Recommendations For The Authors):

      We need this work to expand our knowledge of endothelial biology. Please address my concerns to further strengthen this work.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors):

      Revised manuscript

      The authors have addressed most of my points, but I still have one outstanding concern about the statistics:

      My Original Question:

      I have a few concerns and questions that I would like to see addressed: 1) Figure 1L - the statistics are a little unusual here as the errors are across visual areas rather than across mice or hemispheres. This isn't ideal as ideally, we want to generalize the results across animals, not areas, and the results seem to be driven mostly by V1/RSC. I would like to see comparisons using mice as the statistical unit either in an ANOVA with areas as factors or post-hoc comparisons per area.

      Author Reply:

      Based on the assumption that visual cortex should respond to visual stimuli, we would have expected to find a difference between closed and open loop locomotion onset responses in all cell types in visual areas of cortex (a closed loop locomotion onset being the combination of locomotion and visual flow onset, while an open loop locomotion onset lacks the visual flow component). Thus, the first surprise was that in most cell types we found very little difference between these two locomotion onset types. Conversely, in Tlx3-positive L5 IT neurons the difference was apparent well outside of the visual areas of cortex (even though the difference was indeed strongest in V1/RSC). To quantify the extent to which closed and open loop locomotion onsets result in different activity patterns across dorsal cortex we performed the analyses shown in Figures 1L and 2. To make the point that the effect was observable on average across cortical areas, we used cortical area as a unit in Figure 1L. We have added the analysis shown in Figure 1L with mice as the statistical unit as Figure S4J and have added the ANOVA information to Table S1, as suggested.

      My revised question:

      The authors have only partially addressed my concerns here. I disagree with the authors that they were making a point about the effect being observable across visual areas. The primary statistical statement they are trying to make is that the similarity between open and closed-loop stimulation is different for Tlx mice, e.g. Line 122: "However, comparing locomotion onsets in mice that expressed GCaMP6 only in Tlx3 positive L5 IT neurons, we found that the activation pattern was strikingly different between closed and open loop conditions" and Line 172-3: "Thus, excitatory neurons of deep cortical layers exhibited the strongest differences between closed and open loop locomotion related activation". These statements are not correctly supported by the statistical analysis as presented in Figure 1L as it is the variability across mice that is relevant to draw this conclusion.

      In the example "However, comparing locomotion onsets in mice that expressed GCaMP6 only in Tlx3 positive L5 IT neurons, we found that the activation pattern was strikingly different between closed and open loop conditions (Figure 1D)" we talk about the example mouse shown. We have not changed phrasing here.

      We have, however, changed the way we talk about Figure 1L and S4J (the second example given by the reviewer), and have rephrased much of this paragraph. Please note, we have also changed Figure S4J to quantify the difference only for V1.

      This is partially addressed by Figure S4J where the authors show standard-errors across mice and report statistics across mice. In Table S1 the statistical test is reported to be a bootstrap test with mice as the statistical unit, however, according to line 985 this was a non-hierarchical bootstrap test. Does this mean that the authors resampled onsets without regard to which mouse they came from to regenerate the response-curves and recalculate the correlation coefficient? Or did they directly resample from the distribution of correlation coefficient values? I suspect the latter, but for some comparisons (e.g. Tlx3 vs PV) there are only two mice in one group, yielding two correlation coefficients, and resampling 2 values 10,000 times would lead to very biased statistics. Either way the approach is far from ideal. There is also no protection against multiple-comparisons in these tests.

      We have adapted Figure S4J to include only V1, where we find the largest effect (the text is adapted to reflect this) and have added individual data points as suggested in the following comment. The reviewer is correct that we created a bootstrap distribution by resampling correlation values. This means we are resampling 2, 3, 4, 6, 7, or 14 values depending on the comparison. This should now be clearer in the text. We agree that this is not ideal, but when using mice as a statistical unit, analysis is almost always underpowered. To the best of our knowledge, bootstrap resampling is the best approach to alleviate this problem. Regarding the concern for multiple comparisons: We have now adjusted the significance threshold in Figures 1L and S4J by dividing through the number of groups (here: 9 genotypes).

      The ANOVA reported in Table S1 for Figure S4J isn't described in the methods so I can't say what they did and it doesn't seem to be referred to in the text and is non-significant in any case. Figure S4J also only shows summary statistics whereas individual mice should be plotted. The correct statistical test is either a one-way ANOVA with one factor (genotype) with post-hoc tests between the Tlx3 genotype and the others with suitable multiple-comparisons corrections (this may be the non-significant test in table S1). Alternatively, a linear mixed effects model with Genotype as a fixed effect and Mouse as a random intercept term. This approach is more powerful as it would allow them to use data from all locomotion onsets, but it may struggle to fit datasets with only 2 members for certain genotypes. If they wish to make the more extended point that the pattern across visual areas differs between Tlx3 and other mice they could include 'Area' as another (fixed) factor in the design and look for an interaction with Genotype.

      The ANOVA was indeed a one-way ANOVA with one factor. We have added this information to the methods. As suggested, we have added individual data points to Figure S4J.

      I also agree with the other reviewers that the presentation of standard-errors in Figures 1F-K and elsewhere is somewhat misleading as these are s.e.m. across onsets without taking into account the hierarchical nature of the data. Across mice s.e.m. would give a more accurate view of the variability in the data across the population. I also understand that first averaging across onsets within mice before taking a grand-average throws away a lot of data and s.e.m.s will be considerably larger. The authors should consider linear mixed effects models as an optimal solution for estimating s.e.m. If this is not feasible then the authors could consider showing data from individual mice in a supplementary figure or at least reporting the number of onsets that came from each mouse.

      We have now changed all plots in which we show time course data of widefield calcium imaging to show a hierarchical bootstrap estimate of mean and 90% confidence interval of the mean estimate.

      Reviewer #2 (Recommendations For The Authors):

      Congratulations to the authors on the revision! The revised article has substantially improved, and I have no further comments. I am particularly reassured by the new hierarchical bootstrap analyses as well as by the new analysis with mouse as a statistical unit that reproduces the key finding from the analyses with region as a statistical unit. Moreover, the authors added a vehicle control condition which does not yield any results. Therefore, I have no further methodological concerns and removed my mention of this previous weakness from my public review. Also, the readability of the manuscript has much improved in the revised version. Congratulations again on this important work!

      We thank the reviewer for the help in improving the manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Comments on rebuttal:

      (1) It is greatly appreciated that the authors have improved aspects of their statistics, I have revised my comments accordingly.

      We are happy to hear.

      (2) However, I should clarify my comments regarding statistical concerns were not merely pertaining to a given Figure (e.g. Figure 1) I was only using it as an example. The authors have redone aspects of their analysis using N = number of mice (for statistics/trace figures), but is there a reason they cannot do this for other problematic figures/traces in the manuscript?

      Prompted also by reviewer 1, we have changed all time course plots in the manuscript to show a hierarchical bootstrap estimate of mean and 90% confidence interval of mean.

      Using mice as a statistical unit throughout the manuscript unfortunately is not viable in most cases, as we simply do not have enough mice in our dataset and statistical tests based on mice would be underpowered. The manuscript currently contains data from 77 mice, and we would likely need multiples of that to do statistics over mice.

      For Figure 1 - I do take the point why regions are being used as the independent N (though the authors justification should be made more clearly in the manuscript) making an N of 12 (though I am less clear why the same region across 2 hemispheres is counted as 2 Ns instead of 1; are they really independent?). However, I am less clear as to the choice in N in other figures. Could the authors clarify this more explicitly in the manuscript.

      We use regions as a statistical unit in Figures 6 and 7, S6-S8. Regarding the independence of hemispheres, this depends on cell type and region. E.g. activity in left V1 exhibits a higher correlation with activity left V2am than with right V2 (see Figure 5). On average callosal pairs exhibit correlation levels comparable to near cortical neighbors. See also, other work on the topic, for example (Calhoun et al., 2023).

      Regarding choice of N in other figures, this is either “recording session” or “pairs of regions”. We have made this clearer in the figure legends. In the case of testing using recording sessions, the idea is that each recording session constitutes a measurement. Measurements in the same mouse are not independent, and hence we use hierarchical bootstrap for all testing on recording sessions. The choice of “pairs of regions” for the correlation analysis follows from the use of regions as a statistical unit.

      (3) Regarding using N = locomotion onsets (or other definitions other than N = mice) when deriving trace averages/SEMs (for example, as in Figure 1) is visually misleading for the reader as it masks the true variability of the data, and even more misleading given that the authors do necessarily use that definition of N in their statistical tests associated with the data (as the authors commented). Whilst the authors have shown some traces with N=mice for some data, is there a reason they cannot do this for all figures in the manuscript? At the very least the practice of using other definitions of N for the purpose of showing trace averages/SEMs should be justified in the MS.

      We have replaced all time course plots that used SEM over events (for example locomotion onsets or visual stimuli) with a hierarchical bootstrap estimate of mean and 90% confidence interval of the mean throughout the manuscript. See also response to comment 2 above, and to reviewer 1, comment 4.

      References

      Calhoun, G., Chen, C.-T., Kanold, P.O., 2023. Bilateral widefield calcium imaging reveals circuit asymmetries and lateralized functional activation of the mouse auditory cortex. Proc. Natl. Acad. Sci. U. S. A. 120, e2219340120. https://doi.org/10.1073/pnas.2219340120

    1. Author Response

      The following is the authors’ response to the original reviews.

      To Reviewer #1

      We sincerely appreciate the constructive and insightful comments provided by the reviewer. Their valuable suggestions have been meticulously considered, leading to comprehensive modifications within the article.

      In addition, we want to stress that we have implemented a significant additional modification by introducing a new figure (Fig. 6). This figure highlights the collaborative impact of FMRP and Map1B on the microtubular structure of migrating neurons. We firmly believe that this molecular elucidation of the migration phenotype constitutes a noteworthy addition to our work.

      Public Review

      (1) We have taken the necessary steps to enhance the material and methods section of our neuronal migration analysis. We apologize for any initial lack of detail, including the omission of information on sinuosity index and directionality radar. Regarding the query about speed, we want to clarify that it indeed encompasses the percentage of pausing time. The speed is calculated by dividing the total distance traveled by the cell by the total time it migrated.

      (2) We would like to provide a clarification regarding the statistical analysis in our figures. The figures now represent the median, and the legend indicates the median along with the interquartile range. This approach is in line with the use of non-parametric analysis for variables that do not adhere to a normal distribution. Regrettably, in the previous version, there was an oversight in the figure legends where the mean, along with the standard error of the mean, was incorrectly stated instead of the intended representation of the median. We sincerely apologize for any confusion this may have caused. Moving forward, the corrected legend now accurately reflects the statistical measures used in the analysis.

      The global Kruskal Wallis analysis, followed by Dunn’s post hoc analysis, does indeed indicate that Fmr1 KD globally replicates the Fmr1-null phenotype. However, we concur with the reviewer's point regarding directionality, and we apologize for any lack of precision in the initial version. Upon further analysis, we have identified a significant difference in directionality (Fisher test p < 0.001). This more pronounced directionality defect in the KD could potentially be indicative of a lack of compensation, a factor that may not be at play in the Fmr1 null context. We appreciate the opportunity to address this issue and our revised version includes the necessary details to accurately convey these findings.

      (3) We appreciate the referee's agreement with our perspective.

      (4) In response to the recommendations from all referees, we have expanded both the introduction and discussion sections of our manuscript. The initial brevity of these sections was due to the short format we had initially chosen. We believe that these expansions contribute to a more comprehensive and nuanced presentation of our work, addressing the concerns raised by the referees.

      Recommendations for the authors

      The time stamp and scale bars were added.

      The median versus mean issue is addressed above.

      Figure numbering has been corrected (sorry for the mistake). The efficiency of CK is defined in the Mat and Met section.

      To Reviewer #2

      Public review

      We express our gratitude to the referee for their positive appreciation of our work. We have carefully considered their suggestions and have modified the article accordingly.

      In addition, as said to Referee #1, we want to stress that we have implemented a significant additional modification by introducing a new figure (Fig. 6). This figure highlights the collaborative impact of FMRP and Map1B on the microtubular structure of migrating neurons. We firmly believe that this molecular elucidation of the migration phenotype constitutes a noteworthy addition to our work.

      Recommendations for the authors

      (1) In light of the referee's recommendation, we conducted more resolutive staining of FMRP in SVZ neurons cultured in Matrigel, providing a more precise depiction of its subcellular localization (see Figure 1). Additionally, we have removed the sentence referring to growth cone staining, as it was not visibly present in cultured neurons. We appreciate the guidance from the referee in refining our study.

      (2) We have also added a new figure 4 with better staining of MAP1B in the RMS as well as a more resolutive MAP1B staining in cultured neurons.

      With all due respect, we maintain that the western blot experiments, conducted in three independent experiments, unequivocally support the conclusion of a 1.6X increase in MAP1B in the RMS of Fmr1null mutants, a trend observed in other systems.

      In accordance with the referee's suggestion, we endeavored to quantify RMS immunostainings. Regrettably, the results proved inconclusive. This outcome is not entirely unexpected, as immunostainings are recognized for their inherent challenges in quantification. The additional complexity introduced by neonate perfusion further contributes to the notable interindividual variability observed.

      (3) The efficiency of the two interfering RNAs is now documented in the text. Regarding the directionality radar, as highlighted for Ref 1 (public review, point #2), we acknowledge that, while Fmr1KD generally recapitulates the migratory phenotype of the Fmr1 mutants, more precise statistical analysis reveals differences in directionality, which is now documented. We apologize for the previous lack of precision.

      (4) The suggested experiment of overexpression is interesting but we faced challenges in its execution. Attempts to overexpress MAP1B through intraventricular electroporation of a CMV-MAP1B plasmid resulted in the immobilization of transfected cells in the SVZ, hindering further analysis of migration. We hypothesize that this outcome may be attributed to a discrepancy in the actual dosage of MAP1B in the mutants.

      (5) Concerning this point, and as mentioned above, we have incorporated a crucial piece of information into the manuscript, presented in Figure 6. The data reveal a severe disruption in the microtubular cage surrounding the nucleus of migrating neurons in Fmr1 mutants, a phenomenon rescued by MAP1B knock-down. Based on these findings, we believe we can confidently conclude that the microtubule-dependent functions of MAP1B play a role in the migratory phenotype of Fmr1 mutants. We consider this experiment to be a highly valuable addition to our work, shedding light on the underlying molecular mechanisms.

      To Reviewer #3

      We thank the referee for their insightful comments and have taken their consideration with great considerations.

      In addition and as said above, we want to stress that we have implemented a significant additional modification by introducing a new figure (Fig. 6). This figure highlights the collaborative impact of FMRP and Map1B on the microtubular structure of migrating neurons. We firmly believe that this molecular elucidation of the migration phenotype constitutes a noteworthy addition to our work.

      Public review

      With regard to the perceived 'incompleteness' of our work, we believe that the addition of Figure 6, illustrating the molecular underpinnings of the Fmr1 mutation on the microtubular cytoskeleton and its rescue in the MAP1B KD, significantly enhances the completeness of our study.

      In response to the comment on the introduction and discussion sections, we acknowledge that their brevity was due to the Short Format initially chosen. We have since expanded these sections, incorporating additional information about FMRP and MAP1B and their influences on migration.

      Regarding the La Fata article, as highlighted in our discussion, it's important to note that while the study did not strongly indicate an impact on radial locomotion per se, drawing conclusive results is challenging due to the relatively low number of analyzed neurons. Consequently, we do not believe that it poses a challenge to our findings.

      With respect to MAP1B overexpression, as previously mentioned in response to Ref #2, point 4, our attempts resulted in the inhibition of migration, potentially due to an overdosage of the protein.

      In terms of anatomical consequences, as highlighted in our discussion, while our neurons experience a delay in migration, they eventually reach their destination. Although a delay in migration may not directly result in significant anatomical anomalies, we acknowledge that the timing of differentiation can be crucial. As noted by Bocchi et al. (2017), a delay in the timing of differentiation for neurons reaching their target could lead to notable functional consequences. In any case, we have tOned down any references to the implication for the pathology.

      Recommendation for the authors

      • The size of the figures has been modified

      • The pausing time and sinuosity are now defined

      • The centrin-RFP labeling was indeed too weak in the previous version, which we corrected. We apologize for this.

      • Fig S3 has been revised to address concerns. Notably, the decision to present the two bands for Vinculin and MAP1B separately is intentional. The blot is cut to allow independent development due to the substantial difference in their development times. We believe this approach provides a more accurate representation of the data.

      • The numbering of the figures has been corrected. Sorry for the initial mistake.

      • The Mat and Meth section has been corrected. Please note that we did not use any culture insert in this study.

      • The tittle has been modified

      • Comments about the Map1B overexpression experiment are expressed above and in replies to ref #2.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this manuscript, Lee et al. compared encoding of odor identity and value by calcium signaling from neurons in the ventral pallidum (VP) in comparison to D1 and D2 neurons in the olfactory tubercle (OT).

      Strengths:

      They utilize a strong comparative approach, which allows the comparison of signals in two directly connected regions. First, they demonstrate that both D1 and D2 OT neurons project strongly to the VP, but not the VTA or other examined regions, in contrast to accumbal D1 neurons which project strongly to the VTA as well as the VP. They examine single unit calcium activity in a robust olfactory cue conditioning paradigm that allows them to differentiate encoding of olfactory identity versus value, by incorporating two different sucrose, neutral and air puff cues with different chemical characteristics. They then use multiple analytical approaches to demonstrate strong, low-dimensional encoding of cue value in the VP, and more robust, high-dimensional encoding of odor identity by both D1 and D2 OT neurons, though D1 OT neurons are still somewhat modulated by reward contingency/value. Finally, they utilize a modified conditioning paradigm that dissociates reward probability and lick vigor to demonstrate that VP encoding of cue value is not dependent on encoding of lick vigor during sucrose cues, and that separable populations of VP neurons encode cue value/sucrose probability and lick vigor.

      Weaknesses:

      The conclusions of the data are mostly well supported by the analyses, but the statistical analysis is somewhat limited and needs to be clarified and extended.

      (1) The manuscript includes limited direct statistical comparison of the neural populations, and many of the comparisons between the subregions are descriptive, including descriptions of the percentage of neurons having specific response types, or differences in effect sizes or differing "levels" of significance. An additional direct comparison of data from each subpopulation would help to confirm whether the differences reported are statistically meaningful.

      Response: We thank the reviewer for their helpful suggestions. As the reviewer noted, the first version of our manuscript had limited direct comparisons of single-neuron metrics across subpopulations. These analyses were also limited to the supplementary figures: 1) {SK vs. XK} and {SK vs. ST} decoder auROC (S10F), 2) Valence scores (S10G), and 3) S-cue confusion after MNR classification (S11D). We have now included the following statistical comparisons of single-neuron metrics across subpopulation: 1) % of neurons that respond to both S cues (Tables S10, S11), 2) % of neurons that have auROC >0.75 for {SK vs. XK}, {SK vs. PK}, and {SK vs. ST} (Tables S12-S17), 3) response magnitudes to S cues (Table S38), and 4) valence scores (Tables S44-46).

      (2) When hypothesis tests are conducted between the neural populations, it is not clear whether the authors have accounted for the random effect of the subject, or whether individual units were treated as fully independent. For instance, pairwise differences are reported in Figures 4I, 5G/I/L, and others, but the statistical methods are unclear. Assessment of the statistics is further limited by the lack of reporting of degrees of freedom. If the individual neurons are treated as independent in these analyses, it could increase the likelihood of

      Response: We have clarified when statistical analyses are comparing individual neurons vs. simultaneously recorded populations. Per the reviewer’s recommendation, we have also incorporated linear mixed-effects models when statistically analyzing individual neurons. Lastly, to further clarify the statistical analyses used, we have added multiple supplementary tables that better describe the statistical tests used and the relevant outputs.

      Reviewer #2 (Public Review):

      Summary:

      This work is interesting since the authors provide an in vivo analysis into how odor-associations may change as represented at the level of olfactory tubercle (presynaptic) and next at the level of the ventral pallidum (postsynaptic). First the authors start-off with a seemingly careful characterization of the anterograde and retrograde connectivity of dopamine 1 receptor (D1) and dopamine 2 receptor (D2) expressing medium spiny neurons in the olfactory tubercle and neurons in the ventral pallidum. From this work they claim that regardless of D1 or D2 expression, tubercle neurons mainly project to the lateral portion of the ventral pallidum. Next, to compare how odor-associated neuronal activity in the ventral pallidum and the olfactory tubercle (D1 vs D2 MSNs) transforms across association learning, the authors performed 2photon calcium imaging while mice engaged in a lick / no-lick task wherein two odors are associated with reward, two odors are associated with no outcome, and two odors are associated with an air puff.

      This manuscript builds off of prior work by several groups indicating that the olfactory tubercle neurons form flexible learned associations to odors by looking at outputs into the pallidum (but without looking specifically at palladial neurons that truly get input from tubercle I should highlight) and with that, this work is novel. We appreciated the use of a straight-forward odoroutcome behavioral paradigm and the careful computational methods and analyses utilized to disentangle the contributions of single neurons vs population level responses to behavior. With one exception from the Murthy lab, 2P imaging in the tubercle is a new frontier and that is appreciated - as is the 2P imaging in the pallidum which was well-supported by the histology. The anatomical work is also well presented.

      Overall the approach and methods are superb. The issues come when considering how the authors present the story and what conclusions are made from these data. Several key points before going into specifics about each are: 1) The authors can not conclude that their results are contradictory to prior results, 2) The authors over-interpret the results and do not discuss several key methodological issues. We were concerned with the ability to make strong claims regarding the circuitry presented, especially given how much the presented claims contradict prior work. There were also issues with the interpretability of neuronal encoding of value vs valence based on the present behavior (in which a distinction between the air puff and neutral trial types was not clear) and the imaging methodology (in which the neuronal populations analyzed were not clearly defined). In addition to toning down and rectifying some of the language and interpretations, we suggest including a study limitations section where these methodological and interpretation issues are discussed. Over-interpreting and playing up the significance of this work is unnecessary, especially given eLife's new review and publication policy. Readers should be given a sufficiently detailed and nuanced presentation of these thought-provoking results, and from there allowed to interpret the results as they want.

      Strengths:

      State-of-the-art approaches (as detailed above)

      Possible conceptual innovation in terms of looking into output from the olfactory tubercle which has yet to be investigated in this avenue.

      Weaknesses:

      On the first point regarding the authors repeated and unsupported claims that their results are contradictory. There are papers by numerous groups, in respected journals including this one, all together which used 5 different methods (cfos, photometry, 2P, units, fMRI), in animals ranging from humans to mice, which support that tubercle neurons reflect the emotional association of an odor, whether spontaneous or learned. With that, it is on the authors to not claim that their results contradict as if the other papers are suspect, but instead, from our standpoint it is on the authors to explain how and why their results differ from these other papers versus just simply saying they found something different [which at present is framed in a way that is 'correct' due to primacy if nothing else].

      Response: We acknowledge that the first version of the manuscript contained unnecessary disagreeing language. We do not think that our results are broadly in disagreement with the existing literature, but we do come to different conclusions about what the OT is representing. Namely, our comparison of valence encoding in OT to that in the VP strongly indicates that the anteromedial OT has a less robust representation of valence, and we argue that this reflects either an intermediate form of valence representation or potentially might not be important for valence representation at all. We have toned down our conclusions, made clear that we are only recording from one domain of the OT, limited our speculation to the discussion and added a “speculations” section.

      Second, onto the points of interpretation of results, there are several specific areas where this should be rectified. As is, the authors overinterpret their results and draw too far-reaching conclusions. This needs to be corrected.

      In particular, the claims that D1 and D2 neurons of the olfactory tubercle nearly exclusively send projections to the ventral pallidum must be interpreted with caution given that the authors injected an anterograde AAV into the anteromedial olfactory tubercle, and did not examine the projections from either the posterior or lateral portions of the olfactory tubercle. This is especially significant since the retrograde tracing performed from the ventral pallidum indicates that the lateral olfactory tubercle, not the medial olfactory tubercle, primarily projects to the ventral pallidum (Fig 1D-F), however this may be due to leakage into the nucleus accumbens, as seen in the supplementary figure, S1G.

      Response: We thank the reviewer for the point of caution. We have now made it clear that our conclusions are limited to the anteromedial portion of the OT, and other areas may have other projections.

      The same caution must be advised when interpreting the retrograde tracing performed in Fig 1G-I, since the neuronal tracer used and the laterality and rostral-caudal injection site within the VTA could result in different projection patterns and under- or over-labelling. Additionally, the metric used, %Fiber Density (Figure 1C), as in the percentage of 16-bit pixels within the region of interest with an intensity greater than 200, is semi-quantitative, and is more applicable for examining axonal fibers that pass through a region rather than the synaptic terminals (like with a synaptophysin fusion protein-based tracing paradigm) found within a region (puncta). The statements made in contrast to prior studies should therefore be softened, and these concerns should be addressed in the introduction, discussion, and the limitations section if added.

      Response: We have added statements to address these limitations.

      The other major concern is whether the behavioral data generated is indicative of the full spectrum of valence. The authors appropriately state that the mice "perceive" the air puff, yet based on their data the mice did not clearly experience the puff-associated odor as emotionally aversive (viz., negative valence). The way the authors describe these results, it seems they agree with this. With that, the authors can't say the puff is aversive without data to show such - that is an assumption which, while seemingly intuitive, is not supported by the data unfortunately. To elaborate more since this is important to the messaging of the paper: The authors utilized a simple behavioral design, wherein two molecular classes of odors were included in either a sucrose rewarded, neutral no outcome, or air puff punished trial type. The odor-outcome pairs were switched after three days, allowing the authors to compare neuronal responses on the basis of odor identity and the later associated outcome. While the mice showed clear learning of the rewarded trial types by an increase in anticipatory licking during the odor, they did not show any significant changes in behavior that indicated learning of the air puff trial type (change in running velocity or % maximal eye size), especially in contrast to the neutral trial type. This brings up the concern that either the odor-air puff aversive associations (to odors) were not learned, or that the neutral trial types, in which a reward was omitted, were just as aversive as the air puff to the rear, despite the lack of startle response - perhaps due to stimulus generalization between neutral and air puff odor. The possibility of lack of learning is addressed in the paragraph starting at line 578, but does not account for the possibility that the lack of reward is also sufficiently punishing. The authors also address the possibility that laterality in the VP contributed to the lack of neural responsivity observed, but should also include a statement regarding laterality in the olfactory tubercle, as described in https://doi.org/10.7554/eLife.25423 and https://doi.org/10.1523/JNEUROSCI.0073-15.2015, since the effects of modulating the lateral portion of the olfactory tubercle are not yet reported. Lastly, use of the term "reward processing" should be avoided/omitted since the authors did not specifically study the processing of reinforcers.

      Response: As the reviewer points out, we tried to be cautious interpreting the “aversive” odor response, and focused mainly on the reward association. This was discussed in the discussion. We don’t see the need to further add a redundent statement to a “limitations section”. We have also added a note about the previously identified laterality of the OT, which might account for lack of aversive responsive neurons in the OT. The reviewer makes an interesting suggestion that behavioral responses to airpuff-associated odors are not significantly different from un-associated because the lack of reward in this context is already aversive. We note that the walking velocity between reward- and puff-associated odor is significantly different, but not that to unassociated. This is in agreement with the suggestion, and we have added a statement to reflect this.

      Also, I would appreciate justification of the term "value". How specifically does the assay used assess value versus a more simplistic learned association which influences perceived hedonics or valence of the odors.

      Response: We have removed the term “value” with the exception of areas where we cite the work of others. We acknowledge that the word value is complicated in the incentive learning field and appreciate the suggestion. Our experimental design was meant to investigate learned association for positive and negative stimuli, thus valence is more appropriate and we have used this term.

      More information is needed regarding how neurons are identified day-to-day, both in textual additions to the Methods and also in terms of elaborating more in the results and/or figure legends about what neurons are included:

      (a) The ROI maps for identifying/indicating cells in the FOVs are nice to see and at the same time raise some concerns about how cells are identified and/or borders for those specific ROIs drawn. For instance, Figure 4, A & D, ROI #13 (cell #13) between those two panels is VERY different in shape/size. Also see ROIs 15 and 4. Why was an ROI map not made on day 1 and then that same map applied and registered to frames from consecutive imaging days in that same mouse? As it is new ROIs are drawn, smaller for some "cells" and larger for others. And at least in ROI #13 above, one ROI is about twice as large as the other. This inconsistency in the work flow and definition of the ROIs is needing to be addressed in Methods. Also, the authors should address if and how this could possibly impact their results.

      Response: We have added details and clarified the methods section to make this more clear. We note that we extracted calcium transients from the raw data with the the widely used Constrained Nonnegative Matrix Factorization (CNMF) algorithm. This processing algorithm simultaneously identifies spatial and temporal components using modeled kinetics of calcium transients and pre-trained CNN classifiers. Using 2-photon microscopy the optical resolution in the z plane is narrow and we may not always capture components of a neuron that look like “neurons”, but all ROIs were confirmed manually to ensure they were not artifacts.

      (b) Also, more details are needed in results and/or figure legends regarding the changes in cell numbers over days that are directly compared in the results. Some days there are 10% or more or less cells. Why? It is not the same population being compared in this case and so some Discussion of this is needed.

      Response: The shapes of the spatial components can vary across days due to nonrigid motion in the brain and/or miniscule differences in the imaging angle across days. Although we visually verified that we are imaging approximately the same z plane across days, we cannot (and do not) claim to image identical populations of neurons across days.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript describes a study of the olfactory tubercle in the context of reward representation in the brain. The authors do so by studying the responses of OT neurons to odors with various reward contingencies and compare systematically to the ventral pallidum. Through careful tracing, they present convincing anatomical evidence that the projection from the olfactory tubercle is restricted to the lateral portion of the ventral pallidum.

      Using a clever behavioral paradigm, the authors then investigate how D1 receptor- vs. D2 receptor-expressing neurons of the OT respond to odors as mice learn different contingencies. The authors find that, while the D1-expressing OT neurons are modulated marginally more by the rewarded odor than the D2-expressing OT neurons as mice learn the contingencies, this modulation is significantly less than is observed for the ventral pallidum. In addition, neither of the OT neuron classes shows significant modulation by the reward itself. In contrast, the OT neurons contained information that could distinguish odor identities. These observations have led the authors to conclude that the primary feature represented in the OT is not reward.

      Strengths:

      The highly localized projection pattern from olfactory tubercle to ventral pallidum is a valuable finding and suggests that studying this connection may give unique insights into the transformation of odor by reward association.

      Comparison of olfactory tubercle vs. ventral pallidum is a good strategy to further clarify the olfactory tubercle's position in value representation in the brain.

      Weaknesses:

      The authors' interpretation of the physiologic results - that a novel framework is needed to interpret the OT's role - requires more careful treatment.

      Response: We thank the reviewer for their recommendation. We have toned down the conclusiveness of our language in the discussion. Additionally, we have removed several speculative sentences from the concluding paragraph.

      Reviewer recommendations for Authors:

      We thank the reviewers for this helpful list of recommended changes to the manuscript.<br /> Regrettably, a few of the recommendations were overlooked in the revision, as indicated below.<br /> We do agree with the suggestions and plan to add appropriate changes to the version of record.

      Reviewer #1 (Recommendations For The Authors):

      If the comparisons mentioned in point 2 in the public review do not account for the lack of independence of individual neurons, I suggest the authors do so by either running linear mixed effects models with a random effect for subject, or one-way ANOVAs with a random effect of subject, where appropriate. The authors could also run analyses on summarized individual subject data (averages, % of neurons, etc.), though the authors would lose substantial power when assessing whether average changes differ between subjects in each recording group.

      We have clarified when statistical analyses are comparing individual neurons vs. simultaneously recorded populations. Per the reviewer’s recommendation, we have also incorporated linear mixed-effects models when statistically analyzing individual neurons. Lastly, to further clarify the statistical analyses used, we have added supplementary tables for every statistical test that better describe the parameters used and the relevant outputs.

      Reviewer #2 (Recommendations For The Authors):

      Of minor note, there are some symbols/special characters that did not translate in the figure caption for Figure 6C, repeated text between lines 700-705 and 707-712, and some other small grammatical errors. Additionally, the source of the anterograde tracing virus (AAV9-phSyn1FLEX-tdTomato-T2A-SypEGFP-WPRE) needs to be stated.

      Thank you for pointing these out. We have added description to the figure legend, and deleted the repeated lines and fixed grammatical errors. During the revision, we Regrettably overlooked the request to provide the source for the AAV9-phSyn1-FLEX-tdTomato-T2A-SypEGFP-WPRE. We agree that this small detail is important and will add it before publication of the version of record. This viral vector was purchased from The Salk Institute GT3 Core.

      Reviewer #3 (Recommendations For The Authors):

      The authors' interpretation of the physiologic results - that a novel framework is needed to interpret the OT's role - requires more careful treatment. As the authors note, there is rewardcontingency modulation in OT, especially when D1 neurons are compared against D2, as shown in Fig. 3D,E, Fig. 4I, and Fig. F,J. Though small in effect size, presumably, these modulations cannot be explained by the odor identity. These observations, to this reviewer, suggest the D1 neurons of OT have a component of cue-reward representation. In other words, rather than developing an entirely new framework, an alternative possibility that D1 neurons of OT occupy an intermediate stage in associating cues with reward (i.e., under the same framework, but occupying a different position in the emergence of value representation) should be considered.

      We thank the reviewer for this thoughtful comment. We have eliminated the statement that “novel framework is needed” and have been more conservative in our interpretations. We have also acknowledged that our results are not necessarily in conflict with existing literature, but we do draw different conclusions, namely that the anteromedial OT is not a robust valence encoding population in comparison to that in the VP. We appreciate the suggestion of the term “intermediate stage” in reward association and have now included this in the discussion. Lastly, we have limited broader speculation to a “speculation” section of the discussion.

      Related to the above point, have the authors analyzed if the similarities in the chemical structures correspond to perceptual and neural similarities? In the data presented in Figure S4, there are greater similarities in the population patterns within the same rewarding condition than within chemical groups. A comparison of the reward vs. chemical group (a simpler version of Fig. 5B) may be beneficial and take full advantage of the experimental design.

      This comparison already exists in 5B and lines 285-289 of results. In VP populations, the distribution was structured such that intervalence pairwise comparisons between sucrose-paired and not sucrose-paired odors (e.g. ||SK-PK|| and ||SK-XK||) were larger than intravalence pairwise comparisons (e.g. ||SK-ST||, or ||XK-XT||). OTD1 populations showed an intermediate trend where most intravalence pairwise distances were smaller than intervalence pairwise distances with the exception of ||SK-ST||.

      Related to the point about chemical similarities - is the smaller effect size (amount of modulation associated with reward contingency) in this study, compared to the study by Martiros et al, explained by the similarities of odorants used?

      This is an interesting point. Although the odorants we use are different from those in Martiros et al, we think it is unlikely to the basis of smaller effect size due to reward modulation. If OT represents odor in a population code, whereby identity is encoded in unique ensembles of activity, then variation in the expression of D1R between OT neurons could account for different effects in different ensembles. However, there is no evidence for such varied expression and it doesn’t seem like an ideal mechanism for the OT to broadly associate odor with reward. Moreover, we do not observe any differences in effect size of reward association between the different odorants used in our study. Rather, we think the difference between our findings is more likely to result from recording in different populations of neurons, which is addressed in lines 522-535.

      Regarding the data presented in Fig. 3I - the rewarded odor responses (Sk) are compared against neutral ones (Xk responses), but an S vs. P comparison may be informative, too. Even though the authors mention that the effect of air puff is subtle, the behavioral data presented in Fig. 2F and G suggest that these serve as aversive stimuli. For example, on day 4, the first day after the reward contingency switch, the licking levels seem the lowest for the P odors.

      We have added the S vs P comparison. Indeed, we had originally omitted this because the neural and behavioral response to puff cues was not robust. This is discussed in the discussion (lines 563-579), and our conclusions about aversive conditioning are cautious.

      Regarding the data presented in Fig. 4G: it is difficult to interpret the data when the data for day 1 reward period and day 3 reward cue period are combined. Or do the authors mean day 1 S cue and day 3 S cue?

      These data were based on an observation that some neurons in the VP only responded to sucrose (not odor) on day 1, but later became responsive to the associated odor on day 4. To quantify this, Fig. 4G shows the percentage of these neurons by reporting the percentage that were both responsive to sucrose (not odor) on day 1 and also rewarded odor on day 3. This is described in lines 260-274.

      Figure 6 presentation would benefit from a revision. For example, it is unclear if the water port becomes available for the "N" odors with 100% or 50% chance of reward delivery, and if so, how that happens. There are some errors e.g., colormap used for panel G; odors listed may be wrong in line 752 etc. It was unfortunately not possible to understand what was presented.

      We have added a schematic (Fig 6B) to better describe the movement of the port and details to the methods. The color scale was indeed inverted in panel G (now H), and it has been corrected. We have verified that the odors listed in the methods are correct. Although not included in the revision, in the version of record we will also add corresponding descriptors (e.g., LHi & Lx) to the odors in the methods for easier comparison.

      Minor comments

      For Figure 2H, an alternative description in the legend may be beneficial, as the phrasing is not intuitive. A suggested alternative is "licks in response to sugar-associated odors expressed as fraction of all odors".

      We appreciate the suggestion and have changed this to “licks during either sucrose cue expressed as a fraction of all licks during any odor.”

      Figure 2H: please explain the color code for crosses in the legend and the statistical comparison shown in the figure.

      We have added a legend to explain the color code and included a statement about the statistics in the legend with a link to a supplemental table for statistical parameters.

      Figure 3D: may contain mislabeling in the legend - the legend for 3D does not match the plot (legend refers to bar graph while plot shows line graphs)

      Unclear what is meant. 3D legend says: “Percentage of total neurons that were significantly excited or inhibited by each odor (Bonferroni- adjusted FDR < 0.05) as a function of time relative to odor. Lines represent the mean across biological replicates and the shaded area reflects the mean ± SEM.” This is not a bar plot and is not referred to as one. 3E does show bar plots and is correctly described in the legend.

      Figure 3M: uses letters to refer to cell populations that are identical to the roman numerals used in Fig 3 A-C as well as colours similar to the ones in Fig 3C. However, the cell groups are unrelated; splitting the figures or using a different nomenclature might help

      We have adapted a different color code that we think makes this more distinct.

      Figure 4I: statistical comparison shown in figure not explained (neither in main text nor legend)

      We have added a statement about the statistical comparison and referenced a supplementary table.

      Figure 5 D: color code appears to have a different range than the values shown (i.e. lower limit is 0.7 while the plot shows values below 0.7)

      We confirm this is not a mistake but a stylistic choice. The displayed color scale does only show values to lower limit of 0.7, while the lower limit of values is 0.67. Although the color for 0.67 is not shown in the scale it is approximately the same as the lower limit. The values are reported for full transparency and accuracy.

      Figure 5 G, I, & L: statistical comparison shown in figure not explained

      The comparisons have been explained in supplemental tables (S22-29) and referenced in the legend.

      Figure 5 I: meaning of symbols overlayed over bars not explained

      “Markers represent the mean across biological replicates” has been added.

      Figure 5 J&K: please state if error bars show SEM or SD; also please describe individual thinner lines in the legend

      This has been added to describe 5I. The same format applies to J&K.

      Figure 5L: please describe the individual crosses overlayed over bars in the legend

      Described in 5I.

      Figure S6A-C: please mention the odors used.

      S6A-C shows kinetics for the odor a-terpinene, which is now indicated in the legend.

      Line 129: mentions a 70 psi airpuff but methods say 75 psi - please clarify This has been corrected. 70 psi is the correct value.

      Line 134 typo: SP should be PK

      This has been corrected.

      Line 428: typo; should be cluster 3, not 2

      This has been corrected.

      Line 474 (and figure 6O): please explain what "P" is

      “P” is probability, used as P(S), as in probability of sucrose. This is defined in in line 466.

      Line 692: please describe the staining protocol in the methods (rather than just listing the antibodies and concentrations)

      We have added more details (lines 692-699).

      Line 707-712: duplicate text (identical to Line 700-705)

      This has been deleted.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study investigated transcriptional profiles of midbrain dopamine neurons using single nucleus RNA (snRNA) sequencing. The authors found more nuanced subgroups of dopamine neurons than previous studies, and idenfied some genes that are preferenally expressed in subpopulaons that are more vulnerable to neurochemical lesions using 6-hydroxydopamine (6OHDA). The reviewers found the results are solid, and the study is overall valuable, providing crical informaon on the heterogeneity and vulnerability of dopamine neurons although the scope is somewhat limited because the result with snRNA is similar to previous results and cell deaths were induced by 6OHDA injecons.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study by Yaghmaeian Salmani et al., the authors performed single-nuclei RNA sequencing of a large number of cells (>70,000) in the ventral midbrain. The authors focused on cells in the ventral tegmental area (VTA) and substana nigra (SN), which contain heterogeneous cell populaons comprising dopaminergic, GABAergic, and glutamatergic neurons. Dopamine neurons are known to consist of heterogeneous subtypes, and these cells have been implicated in various neuropsychiatric diseases. Thus, idenfying specific marker genes across different dopamine subpopulaons may allow researchers in future studies to develop dopamine subtype-specific targeng strategies that could have substanal translaonal implicaons for developing more specific therapies for neuropsychiatric diseases.

      A strength of the authors' approach compared to previous work is that a large number of cells were sequenced, which was achieved using snRNA-seq, which the authors found to be superior compared to scRNA-seq for reducing sampling bias. A weakness of the study is that relavely litle new informaon is provided as the results are largely consistent with previous studies (e.g., Poulin et al., 2014). Nevertheless, it should be noted that the authors found some more nuanced subdivisions in several genecally idenfied DA subtypes.

      On this point we respectfully disagree with the reviewer. In this study, over 30,000 mDA neurons have been analyzed at the genome-wide gene expression level, idenfying mDA territories and neighborhoods (that some may call “subtypes”), a descripon of the mDA neuron diversity that goes far beyond what has been published previously.

      Although several single-cell RNA sequencing studies of mDA neurons have added to our understanding of mDA diversity, they have been limited by the low numbers of sequenced mDA neurons. As the reviewer specifically referred to the study by Poulin et al., 2014, it should be noted that in this report, 159 mDA neurons were analyzed by qPCR – not by RNAseq – of 96 previously identified marker genes. Despite those limitaons, this was indeed a highly impressive study, suggesng five different mDA neuron subtypes (as compared to the 16 neighborhoods described here), published before the era of single-cell genome-wide gene expression methods and advanced bioinformac tools were available. On average, the following scRNAseq studies typically captured a few hundred mDA neurons - compared to over 30,000 in this study. None of the studies menoned in our manuscript were close to capturing the full diversity, and the informaon on mDA neuron diversity is, for this reason, somewhat fragmented in the scienfic literature. Indeed, the seven mDA “subtypes” described in the excellent reviews by Poulin et al., 2020 in Trends in Neurosciences and Garritsen et al., 2023 in Nature Neuroscience are integrated interpretaons of the results from numerous independent studies, each methodologically unique. Several previously idenfied groups, especially Vglut2+ populaons in VTA and SNpc, have been considered poorly defined. As menoned above, our findings in this study could reliably idenfy, by computaonal analyses and combinatorial marker expression in situ, 16 different neighborhoods within the mDA populaon and localize them in the ssue (Figure 4, Supplementary figures 4-1 to 4-3, described further in Supplementary Results). To menon three examples: Within Sox6+ SNpc, we idenfied four different variants (neighborhoods) with partly unique anatomical localizaon. In addion, the large group of mDA neurons referred to as the Pcsk6 territory has not been clearly defined in earlier studies. We also idenfied a novel mDA neuron group that is related to the previously well described Vip-expressing mDA neurons. These and other novel features are menoned in the manuscript and in Supplementary Figure 4-1 to 4-3.

      Although we have, for the consideraon of the space and intelligibility, characterized the 16 neighborhoods with only a few selected key marker genes, we have idenfied numerous addional novel markers, some of which are shown in dot plots in Figure 3 and Supplementary Figure 3, which can be used to characterize these groups further. We also provide all our sequencing data and our Padlock probe ISS data for anyone to download and analyze further, and we have made a web-based tool, CELLxGENE, available on our group’s website to facilitate exploraon of the different aspects of our dataset.

      Lastly, the authors performed molecular analysis of ventral midbrain cells in response to 6-OHDA exposure, which leads to the degeneraon of SN dopamine neurons, whereas VTA dopamine neurons are mainly unaffected. Based on this analysis, the authors idenfied several candidate genes that may be linked to neuronal vulnerability or resilience.

      Overall, the authors present a comprehensive mouse brain atlas detailing gene expression profiles of ventral midbrain cell populaons, which will be important to guide future studies that focus on understanding dopamine heterogeneity in health and disease.<br /> We thank the reviewer for poinng this out.

      Reviewer #2 (Public Review):

      In the manuscript by Salmani et al., the authors explore the transcriptomic characterizaon of dopamine neurons in order to explore which neurons are parcularly vulnerable to 6-OHDA-induced toxicity. To do this they perform single nucleus RNA sequencing of a large number of cells in the mouse midbrain in control animals and those exposed to 6-OHDA. This manuscript provides a detailed atlas of the transcriptome of various types of ventral midbrain cells - though the focus here is on dopaminergic cells, the data can be mined by other groups interested in other cell types as well.

      The results in terms of cell type classificaon are largely consistent with previous studies, though a more nuanced picture of cellular subtypes is portrayed here, a unique advantage of the large dataset obtained. The major advance here is exploring the transcriponal profile in the ventral midbrain of animals treated with 6-OHDA, highlighng potenal candidate genes that may influence vulnerability. This approach could be generalizable to invesgate how various experiences and insults alter unique cell subtypes in the midbrain, providing valuable informaon about how these smuli impact DA cell biology and which cells may be the most strongly affected.

      We appreciate these comments. We want to state that the study not only gives a more nuanced picture but goes far beyond previously published studies and provides a highly resolved and detailed atlas of mDA neurons. Thus, it clarifies poorly described diversity and idenfies enrely novel groups of diverse mDA neurons at the genome-wide gene expression level.

      Overall, the manuscript is relavely heavy on characterizaon and comparavely light on funconal interpretaon of findings. This limits the impact of the proposed work. It also isn't clear what the vulnerability factors may be in the neurons that die. Beyond the characterizaon of which neurons die - what is the reason that these neurons are suscepble to lesion? Also, the interpretaon of these findings is going to be limited by the fact that 6-OHDA is an injectable, and the effects depend on the accuracy of injecon targeng and the equal access of the toxin to access all cell populaons. Though the site of injecon (MFB) should hit most/all of the forebrain-projecng DA cells, the injecon sites for each animal were not characterized (and since the cells from animals were pooled, the effects of injecon targeng on the group data would be hard to determine in any case).

      We agree that the results are presented to provide a comprehensive and valuable resource rather than explaining molecular mechanisms. The reviewer points out that “what the vulnerability factors may be in the neurons that die” is unclear. However, our study was designed to answer the queson: What genes are enriched in clusters of mDA neurons that are parcularly likely to die aer toxic stress? Using single-cell analysis, we believe this queson had higher priority than atempng to idenfy gene expression changes occurring during the cell death process. We agree that we cannot answer why neurons are suscepble to lesions, only idenfy genes that correlate with either high or low sensivity. Thus, the genes we refer to as “vulnerability genes” and “resilience genes” are candidates for influencing differenal vulnerability. Hard evidence for such influence will require addional and extensive funconal analysis. As for the variability of injecon and the characterizaon of individual animals, we wish to menon the online interacve explorer available at htps://perlmannlab.org/resources/. It allows visualizaon of nuclei distribuon per territory and neighborhood for each mouse, making it easy to determine the cell loss rao and cell distribuon per animal. There is indeed variance in the proporons of intact/lesioned total nuclei per animal. This is also evident from the DAT autoradiographs shown for each lesioned animal and presented in Figure Supplement 5-1 A. Importantly, the relave UMAP distribuon of nuclei is quite similar between individual animals. To further invesgate this, we used Pearson’s Chi square test of independence with a conngency table for animals, each with two categorical variables as the proporon of nuclei from intact vs lesioned parts of the vMB (see added Supplementary figure 5-1 C ). This shows that – while there is a difference in the number of nuclei remaining aer lesioning – the relave distribuon among clusters and neighborhoods is similar between animals. We have clarified this point in the manuscript (see page 12 ).

      I am also not clear why the authors don't explore more about what the genes/pathways are that differenate these condions and why some cells are parcularly vulnerable or resilient. For example, one could run GO analyses, weighted gene co-expression network analysis, or any one of a number of analysis packages to highlight which genes/pathways may give rise to vulnerability or resilience. Since the manuscript is focused on idenfying cells and gene expression profiles that define vulnerability and resilience, there is much more that could have been done with this based on the data that the authors collected.

      We performed GO analysis for the genes upregulated and downregulated in the ML clusters (specific to the lesion condion) in the original manuscript (Please see figure supplement 7-1 C-E, and the newly added Supplementary file 10), but we agree with the reviewer that we could also have analyzed funconal categories of genes correlang with differenal vulnerability. Thus, we have used tools recently developed by Morabito et al., Cell Reports Methods (2023), and their hdWGCNA package to address this queson. This method is parcularly suitable for analyzing high-dimensional transcriptomics data such as single-cell RNA-seq or spaal transcriptomics. We calculated the coexpression network based on the lesioned nuclei of the mDA territories. Of the 9 co-expression modules calculated, one has the highest expression in Sox6 territory and has genes in common with the vulnerability module. Another co-expression module has genes in common with the resilience module and is most highly expressed in Otx2 and Ebf1 territories. We also did GO analysis for these co-expression modules and added addional GO analysis of the ML-enriched genes (see Supplementary Figure 7-1 D,E, the newly added Supplementary Figure 6-3, and the newly added Supplementary file 9). Text describing these addional analyses are menoned on page 15 and 17.

      In addition, we wish to emphasize our idenficaon of the genes we refer to as vulnerability and resilience modules in the previous version of the manuscript. Several of the genes were discussed in the previous version of the manuscript but we have now included more informaon on these genes, based on previously published studies and discuss their potenal funconal roles (see pages 22 & 23 in the Discussion).

      Another limitation of this study as presented is the missed opportunity to integrate it with the rich literature on midbrain dopamine (and non-dopamine) neuron subtypes. Many subtypes have been explored, with divergent funcons, and can usually be disnguished by either their projecon site, neurotransmiter identy, or both. Unfortunately, the projecon site does not seem to track parcularly well with transcriptomic idenes, aside from a few genes such as DAT or the DRD2 receptor. However, this could have been more thoroughly explored in this manuscript, either by introducing AAVretro barcodes through injecon into downstream brain sites, or through exisng evidence within their sequencing dataset. There are likely clear interpretaons from some of that literature, some of which may be more excing than others. For example, the authors note that vGluT2-expressing cells were part of the resilient territory. This might be because this is expressed in medially-located DA cells and not laterally-located ones, which tends to track which cells die and which don't.

      The manuscript consists of a comprehensive descripon of transcriponal diversity. Although of clear value, we believe that addional, comprehensive analysis that combines snRNAseq with, e.g., AAVretro barcodes must be done in a separate study. It should also be noted that we describe each territory and neighborhoods in the further detail in the Supplementary Results, which contains references to the relevant literature. In line with the comments, this secon has now been expanded with further references to relevant studies (see Supplementary Results related to Figure 4-figure supplements 1-3).

      It is not immediately clear why the authors used a relaxed gate for mCherry fluorescence in Figure 1. This makes it difficult to definively isolate dopaminergic neurons - or at least, neurons with a DATCre expression history. While the expression of TH/DAT should be able to give a fairly reliable idenficaon of these cells, the reason for this decision is not made clear in the text.

      We used a relaxed gang to ensure that we could capture nuclei expressing low levels of RFP, which we believe could be especially relevant for the lesioned dataset (see page 5). We did not find that it would be advantageous to use a more stringent gang that would risk losing all cells expressing no (or very low levels) RFP. Idenfying mDA neurons based on their typical markers is straighorward, as their transcriponal relaonship is evident from the expression profile of several markers, including transcripon factors such as Nr4a2, Pitx3, and En1. In addion, as pointed out in response to Reviewer #1, point 5, atypical DA neurons expressing Th and other mDA markers with no or low levels of Slc6a3 (DAT) were isolated. We believe the study is more complete by the inclusion of these cells. Moreover, we included a sufficiently large number of cells, which ensured a comprehensive analysis of mDA neurons in relaon to other cell types dissected from the ventral midbrain.

      Reviewer #1 (Recommendations For The Authors):

      (1) The authors state that a major advantage of their approach is that it prevents biased datasets when compared to methods that rely on capturing certain cell types. I was wondering if the authors could follow up on this topic with a more detailed descripon of their methodological advantages regarding potenal sampling bias. This is somewhat unclear to me, given that the results of the present study are largely consistent with previous work on this topic.

      As expanded on above (see response to the inial comment in the public review), we strongly disagree that there is litle novelty in our study. None of the previous studies come close to describing the mDA neuron populaon with a similar resoluon, which is unsurprising given the differences in the number of analyzed mDA neurons in this versus previous reports. We agree with the reviewer that our data is consistent with previous studies, when they are all combined. Thus, we idenfied mDA neuron groups that correspond (or roughly correspond) to major DA neuron groups idenfied in previous studies (see pages 8-14 in the Supplementary Results). However, the atlas presented here goes well beyond anything published in scope and resoluon. The diversity we define is comparable to findings that, with careful cross-paper analyses, can be stched together from previous single-cell studies. However, even such a combined analysis does not unravel the resoluon and diverse categorizaon of what we have demonstrated herein (16 neighborhoods in midbrain dopaminergic territories). Considering the well-established problems of dissociang and isolang whole neurons from adult brain ssue, this is likely due to sampling bias, resulng in an almost complete exclusion of some sub-populaons of neurons. We have added text on page 20 to clarify this point.

      (2) In the abstract, the authors state that their "results showed that differences between mDA neuron group could best be understood as a connuum without sharp differences between subtypes". However, I am not sure whether this is the most appropriate descripon of the authors' results, parcularly when looking at the schemac overview shown in Fig. 4F. To me, it seems more likely that genecally-defined DA subtypes overlap with discrete ventral midbrain subnuclei - parcularly in the case of Sox6-expressing cells, which are almost exclusively located in the SNc. In the case of genes that are specific for the VTA, there also seems to be a strong bias toward certain VTA subnuclei, although I agree that arguments can be made that there is some topographic organizaon along a dorso-ventral and medio-lateral gradient, which seems to be largely consistent with the anatomical locaon of projecon-defined dopamine neurons as described previously by Poulin et al., 2018 (Nature Neuroscience).

      What was meant by connuum must be interpreted in the context of the transcriponal landscape of mDA neurons and not their anatomical localizaon. As stated in the paper, the dendrogram depicon of mDA neurons’ transcriptome can be misinterpreted as an indicaon of sharp boundaries and discrete groups in transcriponal profiles. In contrast, we assert that differences between developmentally related mDA neurons are beter described as a connuum with areas in the gene expression landscape defined by the expression of shared genes but without sharp borders between them. We decided to name different areas within this connuum as “territories” at the higher hierarchical level and “neighborhoods” at the more highly resolved level. Hypothecally, such categorizaon can be even more fine-grained, but we find it unlikely that a resoluon beyond the neighborhood level is biologically relevant. As pointed out, the Sox6 territory is the territory that best qualifies as a disncve subtype, while mDA neurons in, e.g., the VTA consist of much higher and nuanced diversity. Importantly, all mDA neurons are much more related to each other than cell types lacking a common developmental origin, including hypothalamic DA neurons. Thus, our effort to define differences in such a gene expression connuum is, in our opinion, more accurate than conveying the message that the diversity consists of subtypes comparable in difference to other cell types that lack a close developmental relaonship with the mDA neuron populaon. Such disnct neuron types, despite using the same neurotransmiter as hypothalamic DA neurons, appear as disnct islands in the UMAP snRNA-seq landscape and typically harbor hundreds of differenally expressed genes. As pointed out in the Discussion, several other studies have noted similar difficules in defining different subtypes among related neurons in e.g. the cortex, striatum, and hippocampus (Kozareva et al., 2021; Saunders et al., 2018; Tasic et al., 2018; Yao et al., 2021). For example, Yao et al., 2021, used a similar hierarchical definion to avoid the implicaon that different groups (“neighborhoods” in this study) should be defined as disnct subtypes of neurons with obvious disncve funcons.

      (3) I recommend that the authors revise the introducon to include more current literature on this topic. The review by Bjoerklund and Dunnet, 2006, is very informave and important, but there is more current literature available that discusses anatomical, molecular, and funconal heterogeneity in the ventral midbrain. For example, it would be nice to incorporate recent work from the Awatramani lab on the mapping of the projecon of molecularly defined dopamine neurons (Poulin et al., 2018; Nature Neuroscience).

      We deliberately avoided including primary references to previously described diversity in the Introducon since numerous papers are relevant to cite. Instead, we refer to three essenal reviews, including the recent arcles from Awatramani and Pasterkamp. In the Supplementary Results related to Figure 4 (pages 8-14 in the Supplementary Results), we include many references and the Poulin 2018 paper. We believe that this is the appropriate place for a comprehensive discussion on anatomical, molecular, and funconal heterogeneity. In the revised manuscript's main body, we now emphasize that previous literature is discussed in the Supplementary Results (see page 11).

      (4) In Fig. 1C, the authors show a sample image demonstrang overlap between TH and mCherry, but this has not been quanfied. Similarly, there seem to be no sample images and quanficaon for the contralateral side that was exposed to 6-OHDA.

      The mouse lines used here (Dat-Cre and Rpl10a-mCherry) have been characterized before (Toskas et al., Science Advances 2022). The labelling colocalizes nearly fully with TH, with some excepons (see response below to point #5). We have now complemented with addional data showing an IHC image of one of the midbrain of a unilaterally lesioned mouse in Figure Supplement 5-1E.

      (5) The authors state that they focused their analysis on 33,052 nuclei expressing above-threshold levels of either Th OR Slc6a3. However, there seem to be cell populaons in the ventral midbrain of mice that express TH mRNA but not TH protein, and these cells do not seem to be bona fide dopamine neurons (see work from the Morales lab). Similarly, not all dopamine neurons may express DAT mRNA. I was wondering how these discrepancies may influence the authors' analysis and interpretaon.

      Indeed, the presence of cells lacking TH protein despite Th mRNA being expressed has been previously described. We also detected these cells across SNpc and VTA and now show these data as a newly added supplementary figure 2-1. In our dataset, the Gad2 territory, located in the ventromedial VTA, contains cells that express many typical mDA markers, such as Pitx3, but very low levels of TH protein. We have idenfied these based on Pitx3-EGFP and Gad2 mRNA co-expression (figure supplement 4-3). In other parts of VTA and SNpc, most cells seem to co-express Th mRNA and protein and are labeled with Dat-Cre. Also scatered in these areas, we could detect some rare mDA cells that lack TH protein. It should be noted that in our mDA territories other typical mDA neuron genes were expressed, such as Slc18a2, Ddc, Nr4a2 and Pitx3, and thus, they were not solely defined by the presence of Th and/or Slc6a3. Cells that do not have a history of DAT-expression, and therefore were not mCherry labelled, were also included in the analysis due to the relaxed gang used during FANS isolaon.

      (6) The sex and age of the mice that are used for the experiments are not stated in the Materials and Methods secon under "Mouse lines and genotyping".

      Thank you for pointing this out. This informaon has been added to the updated manuscript in the methods secon.

      Reviewer #2 (Recommendations For The Authors):

      I think that the manuscript can be significantly improved just by providing deeper analyses of the exisng data and linking them to the current state of the art in terms of defining midbrain dopamine neurons (e.g., by projecon). The dataset is likely richer than was explored in the manuscript and more valuable insights could be gleaned with a deeper analysis.

      Please see our response to Reviewer #2 (Public Review), regarding WGCNA analysis, and the comments on ML-based GO analysis, as well as the comments on the added secons in the supplementary results file.

    1. Author Response

      eLife assessment

      This study, which seeks to identify factors from the glial niche that support and maintain neural stem cells, unveils a novel role for ferritin in this process. Furthermore, the work shows that defects in larval brain development resulting from ferritin knockdown can be attributed to impaired Fe-S cluster activity and ATP production. These findings will be valuable to both oncologists and neurobiologists, though the supporting evidence is currently incomplete.

      Public Reviews

      Reviewer #1 (Public Review):

      Summary:

      This study unveils a novel role for ferritin in Drosophila larval brain development. Furthermore, it pinpoints that the observed defects in larval brain development resulting from ferritin knockdown are attributed to impaired Fe-S cluster activity and ATP production. In addition, knocking down ferritin genes suppressed the formation of brain tumors induced by brat or numb RNAi in Drosophila larval brains. Similarly, iron deficiency suppressed glioma in the mice model. Overall, this is a well-conducted and novel study.

      Strengths:

      Thorough analyses with the elucidation of molecular mechanisms.

      Weaknesses:

      Some of the conclusions are not well supported by the results presented.

      We really appreciate your review and positive feedback. As for weaknesses, we will try our best to solidate the related conclusions.

      Reviewer #2 (Public Review):

      Summary:

      Zhixin and collaborators have investigated if the molecular pathways present in glia play a role in the proliferation, maintenance, and differentiation of Neural Stem Cells. In this case, Drosophila Neuroblasts are used as models. The authors find that neuronal iron metabolism modulated by glial ferritin is an essential element for Neuroblast proliferation and differentiation. They show that loss of glial ferritin is sufficient to impact on the number of neuroblasts. Remarkably, the authors have identified that ferritin produced in the glia is secreted to be used as an iron source by the neurons. Therefore iron defects in glia have serious consequences in neuroblasts and likely vice versa. Interestingly, preventing iron absorption in the intestine is sufficient to reduce NB number. Furthermore, they have identified Zip13 as another regulator of the process. The evidence presented strongly indicates that loss of neuroblasts is due to premature differentiation rather than cell death.

      Strengths:

      • Comprenhensive analysis of the impact of glial iron metabolism in neuroblast behaviour by genetic and drug-based approaches as well as using a second model (mouse) for some validations.

      • Using cutting-edge methods such as RNAseq as well as very elegant and clean approaches such as RNAi-resistant lines or temperature-sensitive tools

      • Goes beyond the state of the art highlighting iron as a key element in neuroblast formation as well as as a target in tumor treatments.

      Weaknesses:

      Although the manuscripts have clear strengths, there are also some strong weaknesses that need to be addressed.

      • Some literature is missing

      Thanks for your reminder and we will add the missing literatures.

      • In general, the authors succeeded but in some cases, the authors´ claims are not fully supported by the evidence presented and additional experiments are critical to discriminate among different hypotheses.

      We are greatly grateful to the reviewer for recognizing our work, and we will support our conclusions with further evidence.

      • Moreover, some potential flaws might be present in the analysis of cell death and mitochondrial iron.

      We used Caspase-3 or TUNEL to indicate the apoptosis signal. Further, we overexpressed the anti-apoptosis gene p35 to inhibit apoptosis and found no rescue effect on neuroblast number. The results of these experiments are consistent.

      It is difficult to determine the mitochondrial iron of neuroblast, so we used indirect methods to test ferroptosis, such as TEM and iron (or iron chelator) supplement. We will perform more experiments according to recommendations to determine that.

      Reviewer #3 (Public Review):

      In this manuscript, Ma et al seek to identify stem cell niche factors. They perform an RNAi screen in glial cells and screen for candidates that support and maintain neuroblasts (NBs) in the developing fly brain. Through this, they identify two subunits of ferritin, which is a conserved protein that can store iron in cells in a non-toxic form and release it in a controlled manner when and where required. They present data to support the conclusion that ferritin produced in glia is released and taken up by NBs where it is utilised by enzymes in the Krebs cycle as well as in the electron transport chain. In its absence from glia, NBs are unable to generate sufficient energy for division and therefore prematurely differentiate via nuclear prospero resulting in small brains. The work will be of interest to those interested in neural stem cells and their non-cell autonomous control by niches.

      The past decade has seen a growing appreciation of how glial cells support and maintain NBs during development.

      The authors' discovery of glial-derived ferritin providing essential iron atoms for energy production is interesting and important. They have employed a variety of genetic tools and assays to uncover how ferritin in glia might support NBs. This is particularly challenging because there are no direct ways of assaying for iron or energy consumption in a cell-specific manner.

      There are however instances where conclusions are drawn to support the story being developed without considering the equally plausible alternative explanations that should ideally be addressed.

      For example, the data supporting the transfer of ferritin from glia to NBs was weak given the misexpression system used; the Shi[ts] experiment was also not convincing (perhaps they have more representative images?).

      Thanks for your comment. We have the negative control, which excludes the misexpression. As for Shits experiment, we will substitute for more representative images.

      The iron manipulation experiments are in the whole animal and it is likely that this affects general feeding behaviour, which is known to affect NB exit from quiescence and proliferative capacity. The loss of ferritin in the gut and iron chelators enhancing the NB phenotype are used as evidence that glia provide iron to NB to support their number and proliferation. Since the loss of NB is a phenotype that could result from many possible underlying causes (including low nutrition), this specific conclusion is one of many possibilities.

      Iron chelator (or iron salt) feeding is a common method for investigating metal metabolism in Drosophila[1-3]. And other metal chelators (such as copper and zinc chelator) do not have similar phenotype (data not shown), which can partially exclude this possibility. Further, iron absorption was blocked by knockdown of ferritin only in the iron cell region[1], a small part of midgut, which phenocopied iron chelator feeding, implying iron deficiency is probably the main cause of the phenotype. More importantly, iron chelator only enhances the NB phenotype in the ferritin knockdown group, not the control group, suggesting iron deficiency results in the phenotype, which rules out other possibilities.

      Similarly, knockdown of the FeS protein assembly components phenocopy glial ferritin knock down. Since iron is so important for the TCA and the ETC, this is not surprising, but the similarities in the two phenotypes seem insufficient to say that it's glial ferritin that's causing the lack of iron in the NB and therefore resulting in loss of NBs.

      It is hard to get this conclusion just by FeS protein assembly components knockdown, so we just used “implied” to describe this result. However, we combine several results to address this issue, including iron chelator feeding, ferritin knockdown in the midgut, the enhancement of phenotype by iron chelators, aconitase activity, GO enrichment, KEGG enrichment, and Zip13. These results pointed to the interpretation that iron deficiency in NBs caused by glial ferritin defects leads to NB loss.

      Pros RNAi will certainly result in an increase in NB numbers because the loss of pros results in an inability of NB progeny to differentiate. This (despite the slight increase in nuclear pros) is not sufficient to infer that glial ferritin knockdown results in premature differentiation of NBs via nuclear pros.

      First, pros RNAi, brat RNAi, or numb RNAi can each result in an inability of NB progeny to differentiate, respectively[4-6]. If the rescue of NB number by pros RNAi mainly relies on the differentiation block of NB progeny, brat RNAi or numb RNAi is expected to similarly rescue the NB number. However, our results showed that only pros RNAi could rescue the NB number, while brat RNAi or numb RNAi could not.

      Secondly, nuclear Pros represses genes required for self-renewal and is also required to activate genes for terminal differentiation[7]. Thus, Pros is kept in the cytoplasm and remains almost undetectable in the nuclei in normal NBs[8]. However, we observed the detectable Pros in the nuclei of some NBs after glial ferritin knockdown, and the NB number with detectable nuclear Pros was significantly increased when compared to control.

      Altogether, we conclude that NBs tend to undergo premature differentiation after glial ferritin knockdown.

      I recognise these are challenging to prove irrefutably, however, the frequency of such expansive interpretations of data is of concern.

      (1) Tang X, Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J, 2013,27(1):288-98

      (2) Xiao G, Liu ZH, Zhao M, et al. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep, 2019,26(3):748-58 e5

      (3) Mukherjee C, Kling T, Russo B, et al. Oligodendrocytes Provide Antioxidant Defense Function for Neurons by Secreting Ferritin Heavy Chain. Cell Metab, 2020,32(2):259-72 e10

      (4) Knoblich JA, Jan LY, Jan YN. Asymmetric Segregation of Numb and Prospero during Cell-Division. Nature, 1995,377(6550):624-7

      (5) Zacharioudaki E, Magadi SS, Delidakis C. bHLH-O proteins are crucial for neuroblast self-renewal and mediate Notch-induced overproliferation. Development, 2012,139(7):1258-69

      (6) Bello B, Reichert H, Hirth F. The brain tumor gene negatively regulates neural progenitor cell proliferation in the larval central brain of. Development, 2006,133(14):2639-48

      (7) Choksi SP, Southall TD, Bossing T, et al. Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Developmental Cell, 2006,11(6):775-89

      (8) Spana EP, Doe CQ. The Prospero Transcription Factor Is Asymmetrically Localized to the Cell Cortex during Neuroblast Mitosis in Drosophila. Development, 1995,121(10):3187-95

    1. Author Response

      The following is the authors’ response to the original reviews.

      We are grateful to the reviewers for recognizing the importance of our work on transcription-independent early recovery of proteasome activity. We also thank them for their thoughtful criticisms and suggested improvements, which we addressed in the revised version as described below.

      The reviewers and editors asked for data to support the model that early recovery of proteasome activity is due to accelerated proteasome assembly. This model is backed by published data that proteasome assembly intermediates increase dramatically in cells treated with proteasome inhibitors (Fig. 6 in Ref. 46 of the revised manuscript). We expanded the discussion of this paper in a paragraph that describes our model. Another key experiment to confirm this model would be to determine what fraction of nascent polypeptides is degraded within minutes after synthesis, which is not trivial, and Ibtisam ran out of time to conduct these experiments because she had to graduate in spring before the expiration of her visa. This type of experiment usually uses metabolic labeling by a heavy or radioactive amino acid that always includes a prior depletion of a non-labeled amino acid. However, the fundamental flaw of this approach, which is not recognized by the scientific community, is that depletion of an amino acid stresses cells and reduces the rate of protein synthesis, especially if this amino acid is methionine. Thus, this model is not easy to test, and should be considered a speculation. We therefore moved the description of this model, together with Fig. 4, into a separate "Ideas and Speculations" section and removed this model's description from the abstract.

      Reviewer 1 raised the possibility that a background band detected on the western blot of DDI2 KO cells could be a highly homologous protease DDI1. This is highly unlikely because, according to Protein Atlas, DDI1 is selectively expressed in the testis and is not expressed in the cell lines we used. Reviewer 1 also suggested that we should base our conclusion on Nrf1 KD, which we de-facto did because we confirmed that DDI2 KD blocks Nrf1 activation (Fig. 1d).

      In response to Reviewer 1 critiques regarding the presentation of proteasome subunits stability data in Fig. 4 (Ref. 45 of the revised manusript), we removed PSMB8 and replaced chaperons with the subunits of the 26S base. We changed color palettes, symbols, and axis scales to improve clarity.

      We acknowledged in the discussion that our work did not exclude DDI2 role in the recovery of proteasome after repeated pulse treatments, as suggested by Reviewer 1.

      We agree with Reviewer 2 that using “proteasome levels” is inaccurate when describing our activity measurement data. However, in the manuscript, we use "levels" only when discussing data in the literature. We believe measuring activity and not the total levels is more important because not all proteasomes are active, e.g., latent 20S proteasome core particles.

      Reviewer 3 expressed concern that our conclusions were based on data in HAP1 cells, which are haploid, and appear not very sensitive to proteasome inhibitors. This is why we used DDI2 KD in MDA-MB-231 and SUM149 cells, which are highly sensitive to proteasome inhibitors (Weyburne et al., Ref. 11). In our experience, full extent of proteasome inhibitor cytotoxicity is not revealed until 48hr after treatments, and viability determined at 12hr and 24hr as on Fig. 1c should not be used to determine sensitivity (it was used for activity assay normalization). We added a new supplementary figure showing that HAP1 cells are as sensitive to proteasome inhibitors as MDA-MD-231 cells when cell viability is assayed 48hr after treatment (new Fig. S2). Another panel on this new figure demonstrates that the baseline proteasome activity is very similar in HAP1, MD-MB-231 and SUM149 cells. We also added data demonstrating that inactivation of DDI2 by mutation does not change the recovery of proteasome activity in HCT-116 cells (new Fig. 1g). Recovery in MDA-MB-231, SUM149, and HCT-116 cells was measured at 18hr, which is still within the 12 – 24hr window when other investigators observed partially DDI2-dependent recovery.

      We have conducted an experiment in which we followed activity recovery for up to 72hr. We found that activity plateaued at 24hr and opted against the repeat because there were no changes. We feel that the manuscript should not include one biological replicate data. The fact that the recovery is incomplete and that cells seem to survive with lower levels of proteasome activity is interesting; however, investigating the molecular basis for this phenomenon is beyond the scope of the current project.

      We were not disputing the conclusions of previous studies that DDI2/Nrf1 is responsible for enhanced expression of proteasomal mRNA in cells continuously treated with proteasome inhibitors. In fact, we confirmed that pulse-treatment causes similar increase (Fig. 2b). As for papers that measured activity recovery after pulse treatment, we objectively discuss our results in the context of these papers. In response to Reviewers' recommendations and minor points:

      • We reviewed the revised version carefully to eliminate spelling and grammatical errors and typos.

      • We no longer refer to DDI2 as a novel protease, as suggested by Reviewer 1.

      • We agree with Reviewer 2 that our CHX results do not necessarily mean that recovery involves translation of proteasomal mRNAs, and we now conclude that proteasome recovery requires protein synthesis.

      • We revised Fig. 1c, 3a and 4a to improve clarity.

      • We have stated in the caption that data in Fig. 4a comes from Table S4 in Ref. 45.

      • We accepted an excellent suggestion of Reviewer 3 to change "recovery" to "early recovery" in the title.

      • Regarding Reviewer 3 request to assay activity recovery at additional time points before 12h, this was done in the cycloheximide experiment in Fig. 3A.

      • Even if we assume that the differences in the observed recovery activity in MDA-MB-231 cells (Fig. 1f) are statistically significant, which may implicate DDI2 involvement in the activity recovery, the percentage is still small, suggesting that most activity recovery is DDI2-independent.

      • We toned down the statement "the present findings suggest that DDI2 desensitizes cells to PI by a different mechanism," replacing "suggest" with "raise a possibility".

      • We indicated that only Bortezomib is approved for mantle cell lymphoma.

      • We changed the description of clinical dosing as suggested by Reviewer 3. We added a reference on PK of subcutaneous bortezomib (Ref. 9), even though the review we quoted (Ref. 7) discussed subcutaneous dosing.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The authors have addressed most of the points that were made. However, despite some things that may well be beyond the scope, I would like to insist on a few small points:

      Point 1: If the authors have conducted a gross analysis of cardiac morphology by histology already, they should include this data in the manuscript and comment with 1-2 sentences that "cardiac healing"..."is unlikely influenced by developmental defects".

      We agree with the reviewer that this analysis is important. Therefore, we are currently conducting an in-depth analysis of the cardiac phenotype of different mouse strains lacking distinct subpopulations of cardiac macrophages in development and non-stimulated (baseline) conditions, including functional, metabolic and even electrophysiological aspects. These analysis will also include FIRE mice. While a gross analysis in this mouse strain did not show pathologic aspects, we look forward to the very detailed tissue characterization before publishing any data from a first basic analysis.

      Point 7: There is still no legend in Figure 6: what is read? What is blue?

      We added the respective legend in the figure.

      Point 8: Please add the information on the background of mice used for the different FIRE mice into the methods part of the paper

      We added the information in the Methods Part (lines 344-347).

      Reviewer #2 (Recommendations For The Authors):

      The authors have responded to all questions. I have no further comments and congratulate the authors on their work.

      We thank the reviewer for their important questions and the constructive feedback.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      The delineation of MBOAT function is important with theoretical and practical implications in MAFLD, alcohol-induced hepatic steatosis, and lysosomal diseases. The strength of evidence is convincing using methodology in line with current state-of-the-art, with good support for the claims.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors provide mechanistic insights into how the loss of function of MBOAT7 promotes alcoholassociated liver disease. They showed that hepatocyte-specific genetic deletion of Mboat7 enhances ethanol-induced hepatic steatosis and increased ALT levels in a murine model of ethanol-induced liver disease. Through lipidomic profiling, they showed that mice with Mboat7 deletion demonstrated augmented ethanol-induced endosomal and lysosomal lipids, together with impaired transcription factor EB (TFEB)-mediated lysosomal biogenesis and accumulation of autophagosomes.

      Strengths:

      Alcohol-induced liver disease (ALD) and metabolic-associated steatotic liver disease (MASLD) are major global health problems, and polymorphism near the gene encoding MBOAT7 has been associated with these conditions. This paper is timely as it is important to gain insights on how loss of MBOAT function contributes to liver disease as this may eventually lead to therapeutic strategies. -The conclusions of the paper are mostly well supported by data.

      We sincerely thank Reviewer #1 for constructive feedback on this work.

      Weaknesses:

      (1) In regards to circulating levels of MBOAT7 products, a comparison of heavy drinkers with ALD versus heavy drinkers without ALD would be more clinically relevant.

      We agree this comparison would be an important comparison to make in future studies, but given the difficulties in accessing well-matched samples such as these we see this as beyond the scope of the current work.

      (2) A few typos need to be addressed. For Figure 1 - figure supplement 1, should the second column heading be "Heavy drinkers" instead of "Healthy drinkers"? Also, in the same figure, it is unclear what the "healthy" subcategory under MELD means.

      The typographical error was addressed in the main text and in all associated tables and figures.

      (3) Some of the data in the tables need to be addressed/discussed. For instance, the white blood cell count (WBC) in Figure 1 - figure supplement 1 for "healthy controls" is 34, compared to 13.51 for drinkers. A WBC of 34 is not at all healthy and should be explained. The vast difference between BMI and also between racial distribution within the two cohorts should also be explained. Is it possible that some of these differences contributed to the different levels of circulating MBOAT7 products that were measured?

      Sincere thanks for catching this error. In follow up, we found that some of our patient recruitment sites were using different units to report WBC counts (percent vs 1000/ml) and at this time we cannot retrospectively correct that difference. Therefore, we have incomplete WBC values for the cohort so elected to exclude that information to avoid confusing readers. A revised table is provided in revision reflecting these changes/ If we look at each site separately, values for WBC were in the normal range, so we do not think this is a major limitation of our studies. In regards to BMI and race: Race is not actually significant, but close. For BMI, there are 2 very low BMIs in the Heavy drinkers which bring that average down. We agree with Reviewer # 1 that race and / or BMI could impact MBOAT7, but larger cohorts are needed to detect such potential differences.

      (4) The representation of the statistical difference between the bars in the results figures by using alphabets is a bit confusing. For instance, in figure 2C, does that mean all the bars labelled A are significantly different from B? The solid black bar seems to be very similar to the open red bar; please double check.

      We apologize for this confusing presentation. Using the letter system, groups not sharing a common superscript differ statistically. Given this concern, we have gone back and reviewed all statistical comparisons and realized that there were several mistakes in the graph Figure 2C, Figure 3F and G, Figure 3-Supplementary Figure 1 F and Figure 3-Supplementary Figure 10H. The graphs themselves were not altered, but the denotation of statistical significance was updated with the correct letter superscripts.

      Reviewer #2 (Public Review):

      Summary:

      The work by Varadharajan et. al. explored a previously known genetic variant and its pathophysiology in the development of alcohol-associated liver injury. It provides a plausible mechanism for how varying levels of MBOAT7 could impact the lipid metabolomics of the cell, leading to a deleterious phenotype in MBOAT7 knockout. The authors further characterized the impact of the lipidomic changes and raised lysosomal biogenesis and autophagic flux as mechanisms of how MBOAT7 deletion causes the progression of ALD.

      Strengths:

      Connecting the GWAS data on MBOAT7 variants with plausible pathophysiology greatly enhances the translational relevance of these findings. The global lipidomic profiling of ALD mice is also very informative and may lead to other discoveries related to lipid handling pathways.

      We sincerely thank Reviewer #1 for constructive feedback on this work.

      Weaknesses:

      The rationale of why MBOAT7 metabolites are lower in heavy drinkers than in normal individuals is not well explained. MBOAT7 loss of function drives ALD, but unclear if MBOAT7 deletion also drives preference for alcohol or if alcohol inhibits MBOAT7 function. Presuming most individuals studied here were WT and expressed an appropriate level of MBOAT7?

      Although we were unable to genotype for the rs641738 SNP in the human subjects studied here, the original study by Buch et al. published in Nature Genetics performed cis expression quantitative trait lock (cis-eQTL) analyses to demonstrate that the minor disease-associated allele was associated with reduced MBOAT7 expression in subjects with alcohol-related cirrhosis. It is important to note that we did not see any evidence that alcohol preference was altered in either myeloid- or hepatocyte-specific Mboat7-knockout mice, given ethanol intake was similar in all genotypes. Additional studies are needed to address the possibility that MBOAT7 loss of function may promote alcohol preference, but we agree that this should be further investigated.

      Also, the discussion of mechanisms of MBOAT7-induced dysregulation of lysosomal biogenesis/autophagy, while very interesting, seems incomplete. It is not clear how MBOAT7 an enzyme involved in membrane phospholipid remodeling increases mTOR which leads to decreased TFEB target gene transcription.

      Although we agree with Reviewer #2 that mechanistic understanding by which MBOAT7 loss of function impacts mTOR activity and TFEB-driven lysosomal biogenesis is still incomplete, we do feel that the results published here will inform downstream investigation linking phosphatidylinositol remodeling to mTOR and TFEB. The MBOAT7 gene encodes an acyltransferase enzyme that specifically esterifies arachidonyl-CoA to lysophosphatidylinositol (LPI) to generate the predominant molecular species of phosphatidylinositol (PI) in cell membranes (38:4). It is well established that PI-related lipids can regulate membrane dynamics and signal transduction pathways. For instance PI-phosphates (PIPs) are dynamically shaped by PI kinases and phosphatases to play crucial roles in the regulation of a wide variety of cellular processes via specific interactions of PIP-binding proteins. Among PI phosphates, PI 3phosphate (PI3P) regulates vesicular trafficking pathways, including endocytosis, endosome-toGolgi retrograde transport, autophagy and mTOR signaling. Although additional work is needed to understand the molecular details of how MBOAT7-driven LPI acylation impacts mTOR and TFEB, it is not particularly surprising that PI lipid remodeling could broadly impact cell signaling.

      Furthermore, given the significant disturbances of global lipidomic profiling in MBOAT7 knockout, many pathways are potentially affected by this deletion. Further in vivo modeling that specifically addresses these pathways (TFEB targeting, mTOR inhibitor) would help strengthen the conclusions of this paper.

      We agree that further in vivo studies are needed that are beyond the scope of the current work.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      (1) p values are rather hard to read. For example, Figure 2c, Hepatocyte-specific deletion of Mboat7 resulted in enhanced ethanol-induced increases in liver weight. However, doesn't look like there is a significant difference between the 2 EtOH groups in Figure 2C? Same comment for Figure 2e, not sure if pair-fed groups had a significant difference.

      (2) Figure 2 Supp fig 1, what is the top band on the MBOAT7 WB?

      We have addressed these statistical comparison comments as described above. Although we cannot be sure, it is likely that the top band on the MBOAT7 Western blot is a non-specific band that shows up with the antibody combination used given there is equal intensity in the Mboat7flox/flox and the MSKO mice (Mboat7flox/flox+LysM-Cre).

  3. Feb 2024
    1. Author Response

      eLife assessment

      This manuscript provides useful information about the lipid metabolite 15d-PGJ2 as a potential regulator of myoblast senescence. The authors provide experimental evidence that 15d-PGJ2 inhibits myoblast proliferation and differentiation by binding and regulating HRas. However, the manuscript is incomplete in its current form, as it lacks robust support from the data regarding the main conclusions related to senescence and technical concerns related to the senescence models used in this study.

      Authors Response- We ae grateful to the editors and the reviewers for their time and comments in sharpening the science and the writing of the manuscript. We have attached a detailed response to emphasize that the manuscript does include robust evidence regarding the claims, which could have been missed during the review process. We have provided a better context for these points now.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors show that upon treatment with Doxorubicin (Doxo), there is an increase in senescence and inflammatory markers in the muscles. They also show these genes get upregulated in C2C12 myoblasts when treated with conditioned media or 15d-PGJ2. 15dPGJ2 induces cell death in the myoblasts, decreases proliferation (measured by cell numbers), and decreases differentiation and fusion. 15d-PGJ2 modified Cys184 of HRas, which is required for its activation as indicated by the FRET analysis with RAF RBD. They also showed that 15d-PGJ2 activates ERK signaling, but not Akt signaling, through the electrophilic center. 15d-PGJ2 inhibits Golgi localization of HRAS (only WT, not C181 or C184 mutant). They also showed that expressing the WT HRas followed by 15d-PGJ2 treatment led to a decrease in the levels of MHC mRNA and protein, and this defect is dependent on C184. This is a well-written manuscript with interesting insights into the mechanism of action of 15d-PGJ2. However, some clarification and experiments will help the paper advance the field significantly.

      Strengths:

      The data clearly shows that 15d-PGJ2 has a negative role in the myoblast cells and that it leads to modification of HRas protein. Moreover, the induction of biosynthetic enzymes in the PGD2 pathway also supports the induction of 15d-PGJ2 in Doxorubicin-treated cells. Both conditioned media experiments and the 15d-PGJ2 experiments show that 15d-PGJ2 could be the active component secreted by the senescent myoblasts.

      Weaknesses:

      The genes that are upregulated in the muscles upon injection with Doxo are also markers for inflammation. Since Doxo is also known to induce systemic inflammation, it is important to delineate these two effects (inflammatory cells vs senescent cells). The expression of beta Gal and other markers of senescence in the tissue sections will help to delineate these.

      As pointed out Doxo induces systemic inflammation along with inducing DNA damage-mediated senescence. Therefore, along with the inflammatory markers of the SASP (CXCL1/2, TNF1α, IL6, PTGS1/2, PTGDS) we also observed an increase in the mRNA levels of canonical markers of DNA damage-mediated senescence. We observed an increase in the mRNA levels of cell cycle and senescence associated proteins p16 and p21 (Fig. 1C). We also observed an increased nuclear accumulation of p21 (Fig. 1A) and increased levels of phosphorylated H2A.X in the nucleus (Fig. 1B). We will characterize other markers of senescence including senescence-associated β galactosidase in the revised manuscript.

      In Figure 2, where the defect in the differentiation of myoblasts upon treatment with 15d-PGJ2 is shown, most of the cells die within 48 hours at higher concentrations, making it difficult to perform the experiments. This also shows that 15d-PGJ2 was toxic to these cells. Lower concentrations show a decrease in the differentiation based on the lower number of nuclei in fibers and low expression of MyoD, MyoG, and MHC. However, it is unclear if this is due to increased cell death or defective differentiation. It would be a lot more informative if the cell count, cell division, and cell death could be plotted for these concentrations of the drug during the experiment.

      We only observed the death of cells at higher concentrations of 15d-PGJ2 (5 µM and 10 µM) (Fig. S2A), but not significantly at the 4 µM concentration used in Figure 2. This is the reason 4uM was used, and we should have clarified this. We will include viability data for the low concentration of 15d-PGJ2 (4 µM) in the revised manuscript.

      Also, in the myoblast experiments, are the effects of treatment with Dox reversible?

      The treatment with Doxorubicin is irreversible as the senescent phenotype was not reversed after withdrawal of Doxorubicin, even after 20 days.

      In Figure 3, most of the experiments are done at a high concentration, which induces almost complete cell death within 48 hours.

      Figure 3 is an acute experiment for only 1 hour, at which time no cell death was observed. Specifically, we measured the phosphorylation of Erk and Akt proteins after 1 hour of treatment with 15d-PGJ2 (10 µM) during which we did not observe any cell death.

      Even at such a high concentration of 15dPGJ2, the increase in ERK phosphorylation is minimal.

      We observe a ~30% increase in the phosphorylation of Erk proteins after treatment with 15d-PGJ¬2 in 0.2% serum medium compared to treatment with vehicle (DMSO). This is reproducible and significant.

      The experiment Figure 4C shows that C181 and C84 mutants of the HRas show higher levels in Golgi compared with WT. However, this could very well be due to the defect in palmitoylation rather than the modification with 15d-PGJ2.

      Our data does not suggest higher levels of C184S mutant in the Golgi compared with WT (Fig. S4A). We observed that the ratio of HRas levels in the Golgi to the HRas levels in the plasma membrane were similar in C2C12 cells expressing HRas C184S and HRas WT (Fig. S4A graph columns 1 and 5).

      Though the authors allude to the possibility that intracellular redistribution of HRas by 15d-PGJ2 requires C181 palmitoylation, the direct influence of C184 modification on C181 palmitoylation is not shown. To have a meaningful conclusion, the authors need to compare the palmitoylation and modification with 15d-PGJ2.

      Palmitoylation of HRas C181S is required for the localization of HRas at the plasma membrane. The inhibition of palmitoylation of C181, either by mutation (C181S) or treatment with protein palmitoyl transferase inhibitor (2-Bromopalmitate), results in the accumulation of HRas at Golgi(Rocks et al., 2005) (Fig. S4A). Modification of HRas at C184 by 15d-PGJ2 (Fig. 3A) could inhibit the palmitoylation of HRas at C181. However, our data does not support this hypothesis as modification of HRas WT by 15d-PGJ2 does not increase the level of HRas at the Golgi, like in the case of inhibition of cysteine palmitoylation due to C181S mutation.

      To test if the inhibition of myoblast differentiation depends on HRas, they overexpressed the HRas and mutants in the C2C12 lines. However, this experiment does not take the endogenous HRAs into consideration, especially when interpreting the C184 mutant. An appropriate experiment to test this would be to knock down or knock out HRas (or make knock-in mutations of C184) and show that the effect of 15d-PGJ2 disappears.

      Endogenous HRas (wild type) is present in the C2C12 cells overexpressing the EGFP-tagged HRas constructs. Therefore, we only observe a partial rescue in the differentiation after 15d-PGJ2 treatment in C2C12 cells expressing the C184S mutant (Fig. 4D and E). However, since HRas is expressed under high expression CMV promoter and in the absence of other regulatory elements, the overexpressed constructs do show a dominant effect over the endogenous HRas, showing cysteine mutant dependent inhibition of differentiation of myoblasts after treatment with 15d-PGJ2 (Fig. 4D and E).

      Moreover, in this specific experiment, it is difficult to interpret without a control with no HRas construct and another without the 15d-PGJ2 treatment.

      The mRNA levels of MyoD, MyoG, and MHC in C2C12 cells expressing HRas constructs after treatment with 15d-PGJ2 were normalized to the mRNA levels in C2C12 cells expressing corresponding constructs and were treated with vehicle (DMSO). mRNA levels in C2C12 cells treated with vehicle were not shown as they were normalized to 1. MHC protein levels in C2C12 cells expressing HRas constructs after 15d-PGJ2 treatment were normalized to that in C2C12 cells treated with vehicle (DMSO). Since the hypothesis to study the effect of HRas cysteine mutations on the differentiation of myoblasts after treatment with 15d-PGJ2, C2C12 cells expressing HRas WT serve as adequate control. Fig. 2 shows the effect of 15d-PGJ2 on muscle differentiation when HRas was not overexpressed.

      Moreover, the overall study does not delineate the toxic effects of 15d-PGJ2 from its effect on the differentiation. The inhibition of differentiation in C212 cells after treatment with 15d-PGJ2 cannot be attributed to the general toxicity of 15d-PGJ2 in cells. We show that the inhibition of differentiation of myoblasts after 15d-PGJ2 depends on modification of HRas at C184 i.e. failure to modify HRas at C184 (Fig. 3A) and resultant activation (Fig. 3B) by 15d-PGJ2 rescues this inhibition of differentiation of C2C12 cells (Fig. 4D and E), dissecting the inhibition of differentiation of myoblasts by 15d-PGJ2 from general toxic effects of 15d-PGJ2 on cell physiology.

      Please note that the effect of 15d-PGJ2 on cell physiology is context-specific. On one hand, 15d-PGJ2 has been shown to exert tumor-suppressor effects by inhibiting the proliferation of ovarian cancer cells and lung adenocarcinoma cells (de Jong et al., 2011; Slanovc et al., 2024), 15d-PGJ2 also exerts pro-carcinogenic effects by induction of epithelial to mesenchymal transition in breast cancer cells MCF7 and inhibition of tumor-suppressor protein p53 in MCF7 and PC-3 cells (Choi et al., 2020; Kim et al., 2010).

      Reviewer #2 (Public Review):

      Summary:

      In this study, Swarang and colleagues identified the lipid metabolite 15d-PGJ2 as a potential component of senescent myoblasts. They proposed that 15d-PGJ2 inhibits myoblast proliferation and differentiation by binding and regulating HRas, suggesting its potential as a target for restoring muscle homeostasis post-chemotherapy.

      Strengths:

      The regulation of HRas by 15d-PGJ2 is well controlled.

      Weaknesses:

      The novelty of the study is compromised as the activation of PGD and 15d-PGJ2, as well as the regulation of HRas and cell proliferation, have been previously reported.

      Literature does support this statement, and it is important to clarify this mis-impression for the field as whole

      Let us clarify-

      Covalent modification of HRas by 15d-PGJ2 has been reported only twice in the literature(Luis Oliva et al., 2003; Yamamoto et al., 2011) in fibroblasts and neurons respectively.

      Interaction between HRas and 15d-PGJ2 in skeletal muscles has not been shown before, even though both HRas and 15d-PGJ2 are shown to be key regulators of muscle homeostasis.

      Activation of HRas by 15d-PGJ2 was reported first by Luis Oliva et al (Luis Oliva et al., 2003). However, this study does not comment on the functional implications of activation of HRas signaling.

      Recently, our lab contributed to a study where the functional implication of activation of HRas signaling due to covalent modification by 15d-PGJ2 was shown in the maintenance of senescence phenotype (Wiley et al., 2021).

      15d-PGJ2 was shown to inhibit the differentiation of myoblasts by Hunter et al (Hunter et al., 2001). This study hypothesized that the inhibition of myoblast differentiation is via 15d-PGJ2 mediated activation of the PPARγ signaling, the study also showed inhibition of myoblast differentiation independent of PPARγ activity, suggesting the presence of other mechanisms.

      This is the first study to show a molecular mechanism where activation of HRas signaling in skeletal myoblasts due to covalent modification by 15d-PGJ2 at C184 of HRas inhibits the differentiation of skeletal myoblasts.

      Additionally, there are major technical concerns related to the senescence models, limiting data interpretation regarding the relevance to senescent cells.

      Major concerns:

      (1) The C2C12 cell line is not an ideal model for senescence study due to its immortalized nature and lack of normal p16 expression. A more suitable myoblasts model is recommended, with a more comprehensive characterization of senescence features.

      C2C12 is a good model for DNA damage based senescence that is used in this manuscript. It is not a models for replicative senescence since it is immortalized. In this study we show that C2C12 cells undergo DNA damage mediated senescence after treatment with Doxo. We also observe similar phenotype in MCF7 breast cancer cells and IMR90 lung fibroblasts after treatment with Doxo (Data will be updated in the supplementary figure 1). Also, several reports in the literature have shown induction of senescence in C2C12 cells. Moiseeva et al 2023 show induction of senescence in C2C12 cells after etoposide mediated DNA damage. Moustogiannis et al 2021 show induction of replicative senescence in C2C12 cells.

      (2) The source of increased PGD or its metabolites in the conditioned medium is unclear. Including other senescence models, such as replicative or oncogene-induced senescence, would strengthen the study.

      Fig. 1E shows time dependent increase in the expression of PGD2 biosynthetic enzymes in senescent C2C12 cells. Fig. 1F shows increase in the levels of 15d-PGJ2 secreted by senescent C2C12 cells in the conditioned medium. This data shows that senescent C2C12 cells are the source of PGD and its metabolites in the conditioned medium.

      Again, C2C12 is not suitable for replicative senescence due to its immortalized status.

      We and others have shown that C2C12 cells undergo senescence, and this manuscript only used DNA damage induced senescence.

      (3) In the in vivo part, it is unclear whether the increased expression of PTGS1, PTGS2, and PTGDS is due to senescence or other side effects of DOXO.

      We concur that this is a limitation of this study and the subsequent work will demonstrate the origin of prostaglandin biosynthesis after treatment with Doxo in vivo.

      (4) Figure 2A lacks an important control from non-senescent cells during the measurement of C2C12 differentiation in the presence of a conditioned medium.

      Figure 2A tests the effect of prostaglandin PGD2 and its metabolites secreted by the senescent cells on the differentiation of myoblasts. Therefore, we inhibited the synthesis of PGD2 in senescent cells by treatment with AT-56, and then collected the conditioned medium. Conditioned medium collected from senescent C2C12 cells treated with vehicle (DMSO) served as a control for the experiment, whereas differentiation of C2C12 cells without any treatment serves as a positive control.

      There is no explanation of how differentiation was quantified or how the fusion index was calculated.

      The fusion index was calculated using a published myotube analyzer software (Noë et al., 2022). Appropriate info will be added to the materials and methods section in the revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript offers a commendable exploration into the relationship between plasma omega-6/omega-3 fatty acid ratios and mortality outcomes.

      Strengths:

      The chosen study design and analytical techniques align well with the research objectives, and the results resonate with existing literature.

      Weaknesses:

      Lack of information on the selection criteria for participants; 5. The analysis of individual PUFAs is not appropriate; The definition of comorbidities is vague; The rationale of conducting the mediation analysis of blood biomarkers is not given.

      Thank you for your insightful feedback and for acknowledging the strengths of our manuscript, particularly regarding the alignment of our study design and analytical methods with our research objectives. Your recognition of how our results resonate with existing literature is greatly appreciated.

      Addressing the concerns you've raised:

      Selection Criteria for Participants: In the “Methods-Study population” section, we have outlined the exclusion criteria for participant selection. This information provides comprehensive insight into our methodology for selecting the study cohort.

      Analysis of Individual PUFAs: We acknowledge your concern regarding the analysis of individual PUFAs due to their inter-correlations in plasma levels. However, the correlations between omega-3% and omega-6% (r = -0.12) and between DHA% and LA% (r = 0.03) are actually low. Because DHA is one of omega-3 PUFAs, we did not include PUFAs in the same model. Similar considerations apply to LA and omega-6. We believe that exploring the effects of individual fatty acids adds valuable depth to our research. Both DHA and LA have been included in the same model due to their low correlation, with careful adjustments for confounding factors to provide a nuanced understanding of their individual impacts on mortality.

      Definition of Comorbidities: The definition of comorbidities, including hypertension, diabetes, and longstanding illness, is elaborated under the Methods section. These conditions were identified through self-reported data collected via the Assessment Centre Environment (ACE) touchscreen questionnaire, allowing us to capture a broad range of chronic conditions as reported by participants.

      Rationale for Mediation Analysis: Initially, our approach to mediation analysis included various blood biomarkers available in the UK Biobank database to explore the potential underlying pathways. However, upon considering your feedback regarding the overlap of fatty acids with lipid classes or lipid particles in plasma, we have decided to remove these elements from our mediation analysis.

      Reviewer #2 (Public Review):

      Summary:

      This study utilized a large sample from the UK Biobank which enhanced statistical robustness, employed a prospective design to establish clear temporal relationships, used objective biomarkers for assessing plasma omega-6/omega-3 ratio, and investigated various mortality causes including CVD and cancer for a holistic health understanding.

      Strengths:

      The authors used a large sample size, employed a prospective design, and investigated various mortality.

      Weaknesses:

      Analyzing n-3 and n-6 PUFAs separately might be less instructive. It might not be methodologically sound to treat TG, HDL, LDL, and apolipoproteins as mediators. It's imperative to exercise caution when drawing causal conclusions from the observed correlations. The manuscript might propose potential research trajectories.

      We are grateful for your thoughtful analysis of our study's strengths and for your constructive feedback on areas for improvement.

      Response to Weaknesses:

      Analyzing n-3 and n-6 PUFAs Separately: We recognize the challenge in analyzing n-3 and n-6 PUFAs separately due to their correlations. However, the correlation between n-3% and n-6% in UK Biobank was actually relatively low (r = -0.12). We include them in one model to test if both are associated with the outcomes after controlling for the effects of the other. Indeed, both were negatively associated with the mortality outcomes in our analysis. We believe our supplemental analysis of n-3 and n-6 PUFAs provides useful information to the readers, in addition to our findings based on the n-6/n-3 ratio.

      Mediation Analysis of TG, HDL, LDL, and Apolipoproteins: We appreciate your insight on the methodological considerations of treating these biomarkers as mediators. After careful review and in line with suggestions from another reviewer, we have removed these elements from our mediation analysis. This revision improves the net scientific rigor of our work, ensuring that our conclusions are drawn from the most robust and methodologically sound of our analyses.

      Causal Conclusions from Correlations: We fully agree with the need for caution in interpreting correlations in observational studies. To this end, we have avoided implying causality in our manuscript. Terms suggesting causality, like "protective effects," have been replaced with "inverse associations" to more accurately represent our findings. This adjustment enhances the clarity and accuracy of our conclusions.

      Proposing Future Research Trajectories: Recognizing the importance of advancing causal and mechanistic understanding in this field, we have called for future studies to further examine causality and characterize molecular mechanisms of the observed associations in our study.

      Reviewer #3 (Public Review):

      Summary:

      The authors are trying to find out whether the levels of omega-6 and omega-3 fatty acids in the blood are linked to the likelihood of dying from anything, of dying from cancer and of dying from cardiovascular disease. They use a large dataset called UK Biobank where fatty acid levels were measured in blood at the start of the study and what happened to the participants over the following years (average of 12.7 years) was followed. They find that both omega-6 AND omega-3 fatty acids were linked with less likelihood of dying from anything, from cancer and from cardiovascular disease. The effects of omega-3s were stronger. They then made a ratio of omega-6 to omega-3 fatty acids and found that as that ratio increased risk of dying also increased,. This supports the idea that omega-3s have stronger effects than omega-6s.

      Strengths:

      This is a large study (over 85,000 participants) with a good follow up period (average 12.7 years). Using blood levels of fatty acids is superior to using estimated dietary intakes. The authors take account of many variables that could interfere with the findings (confounding variables) - they do this using statistical methods.

      Weaknesses:

      There are several omega-6 and omega-3 fatty acids - it is not clear which ones were actually measured in this study

      Thank you for recognizing the strengths of our study, including the large sample size, the duration of follow-up, and our methodological approach to using blood levels of fatty acids and addressing potential confounders. Regarding the weakness you've highlighted, we understand the importance of specifying which omega-6 and omega-3 fatty acids were analyzed in our study. We have revised the Method section to provide detailed information about how the exposures were measured.

      Recommendations for the author:

      Reviewer #1 (Recommendations for the Authors):

      To elevate the manuscript's scholarly rigor, I propose the following refinements:

      (1) The manuscript lacks information on the selection criteria for participants and the representativeness of the UK Biobank cohort. It is important to provide details on how participants were selected and whether it is representative of the general population, which is crucial for assessing the generalizability of the findings.

      We appreciate the opportunity to clarify the participant selection criteria and the representativeness of the UK Biobank cohort within our manuscript. In the “Methods-Study population” section, we delineated the exclusion criteria: "Participants with cancer (n=37,736) or CVD (n=100,972), those who withdrew from the study (n=879), and those with incomplete data on the plasma omega-6/omega-3 ratio (n=277,372) were excluded from this study, leaving 85,425 participants, 6,461 died during follow-up, including 2,794 from cancer and 1,668 from CVD." To further address representativeness, we performed a sensitivity analysis, examining the baseline characteristics of participants included in our study relative to those omitted due to lack of exposure information. This analysis, presented in Additional file 2: Table S13, indicates comparable baseline characteristics across both participant groups, bolstering confidence in the representativeness of our study sample with the general UK Biobank participants.

      Regarding the UK Biobank's representativeness with the general population, we acknowledge that the cohort does not mirror the broader UK demographic in terms of socioeconomic and health profiles. Participants in the UK Biobank generally exhibit better health and higher socioeconomic status than the average UK resident, potentially influencing the disease prevalence and incidence rates. Nonetheless, the UK Biobank's extensive sample size and comprehensive exposure data enable the generation of valid estimates for exposure-disease associations. These estimates have been corroborated by findings from more demographically representative cohorts, as highlighted in the studies by Batty et al., and Fry et al..

      We recognize the importance of this aspect and will incorporate a discussion on the implications of these factors for the generalizability of our findings in the “Discussion-Limitations” section of our manuscript. We are grateful for this insightful comment and believe that this addition will enhance the manuscript's contribution to the field.

      Here is what we added in the “Discussion-Limitations” section of our manuscript: “Third, we acknowledged that the cohort did not mirror the broader UK demographic in terms of socioeconomic and health profiles. Participants in the UK Biobank generally exhibited better health and higher socioeconomic status than the average UK resident, potentially influencing the disease prevalence and incidence rates. Nonetheless, the UK Biobank's extensive sample size and comprehensive exposure data enable the generation of valid estimates for exposure-disease associations. These estimates have been corroborated by findings from more demographically representative cohorts47,48.”

      References:

      Batty, G. D., Gale, C. R., Kivimäki, M., et al. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020; 368: m131.

      Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population. Am J Epidemiol. 2017;186(9):1026–34.

      (2) The study sample included different ancestries which may introduce confounding from genetic background. As over 90% of the participants were of European ancestry, I recommend excluding individuals of non-European ancestry in the main analysis.

      Thank you for raising the concern regarding the inclusion of different ancestries in our study sample and the potential confounding. In our research, we have adhered to the widely accepted practice of including all participants in the study to ensure a comprehensive analysis. Recognizing the predominance of European ancestry within our cohort, which exceeds 90%, we have proactively incorporated ethnicity as a covariate in our statistical models to mitigate confounding influences.

      We also considered the feasibility of conducting a stratified analysis for non-European participants. However, the small sample sizes of non-European subgroups do not provide sufficient statistical power to yield reliable or meaningful separate analyses. Consequently, to maintain the integrity and robustness of our findings, we opted to include all participants in the main analysis, adjusting for ethnicity to account for potential confounders.

      (3) I noted that a large proportion of participants were excluded due to the lack of data on plasma PUFAs. Were the characteristics of these participants similar to the current analysis sample?

      Thank you for raising this very important point. According to UK Biobank, “The EDTA plasma samples were picked randomly and are therefore representative of the 502,543 participants in the full cohort.” (As detailed in Julkunen et al.) Moreover, as noted in our reply to comment #1 above, we performed a sensitivity analysis, examining the baseline characteristics of participants included in our study relative to those omitted due to lack of exposure information.

      The results of this analysis are detailed in Additional file 2: Table S13. They demonstrate that the baseline characteristics—such as age, gender, ethnicity, socioeconomic status, and lifestyle habits—are indeed similar between the two groups. This similarity supports the representativeness of our analysis sample and suggests that the exclusion of participants without plasma PUFA data does not introduce a bias that would undermine the validity of our study's findings.

      References:

      Julkunen H, Cichońska A, Tiainen M, et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023 Feb 3;14(1):604. doi: 10.1038/s41467-023-36231-7.

      (4) The methods section should include a detailed description of the measurement of plasma omega-6/omega-3 fatty acid ratio. It is important to provide information on the analytical techniques used and any quality control measures implemented to ensure the accuracy and reliability of the measurements. Importantly, were repeated measurements done?

      Thank you for raising this important point. The details of the metabolomic profiling have been described in previous UK Biobank publications. In this revision, we added a brief description of the measurement process and provided references to previous publications.

      Here is what we added in the “Methods- Ascertainment of exposure” section of our manuscript: “Metabolomic profiling of plasma samples was performed with high-throughput nuclear magnetic resonance (NMR) spectroscopy. At the time of this analysis (15 Mar 2023), UK Biobank released the Phase 1 metabolomic dataset, which covered a random selection of 118,461 plasma samples from the baseline recruitment. These samples were collected between 2007 and 2010 and had been stored in −80 °C freezers, while the NMR measurements took place between 2019 and 2020. Detailed descriptions could be found in previous publications about plasma sample preparation, NMR spectroscopy setup, quality control protocols, correction for sample dilution, verification with duplicate samples and internal controls, and comparisons with independent measurements from clinical chemistry assays20-22.”

      (5) The analysis of individual PUFAs is not appropriate because plasma levels of these PUFAs, including n-3 PUFAs and n-6 PUFAs, EPA, DHA and AA, are usually correlated. It is hard to differentiate these correlated FAs in Cox model. Whereas the ratio of n-6/n-3 is indeed more comprehensive, and the current analysis demonstrated this ratio as a good marker of mortality. Therefore, the analyses of individual PUFAs can be removed and only focus on the ratio of n-6/n-3.

      We resonate with the Reviewer regarding the importance of focusing on the ratio of n-6/n-3. Indeed, the ratio is our focus in this manuscript. We also acknowledge the Reviewer's concern regarding the inclusion of correlated covariates in one statistical model. In that specific analysis, the correlations between omega-3% and omega-6% (r = -0.12) and between DHA% and LA% (r = 0.03) are relatively low. Additionally, we also checked the model for multicollinearity and found that the variance inflation factors (VIFs) were within acceptable ranges. In the fully adjusted model that included omega-3% and omega-6%, all variables had VIFs below 1.13, with omega-3% at a VIF of 1.06 and omega-6% at a VIF of 1.12. Similarly, in the model including DHA% and LA%, all variables also exhibited VIFs under 1.13, with DHA% recording a VIF of 1.07 and LA% a VIF of 1.10. Because DHA is one of omega-3 PUFAs, we did not include them in the same model. We did not include LA and omega-6 in the same model, either. Because the ratio has two components and each component is the sum of multiple individual PUFAs, it is natural to ask which component is more important (e.g., omega-6 or omega-3?), which specific fatty acid is driving the effect of omega-3 PUFAs (e.g., ALA? Or the marine omega-3, EPA and DHA?). We received such feedback frequently when we presented our research previously. Therefore, as an effort to address them, we performed analysis of omega-3, omega-6, DHA, and LA. While we understand the complexities involved in differentiating the effects of individual fatty acids in a Cox model, we believe there is intrinsic value in exploring these relationships further. In our analysis, we have attempted to investigate the effects of individual PUFAs on mortality by including both DHA and LA within the same model due to their low correlation, making adjustments to account for confounding factors (As detailed in Additional file 2: Table S9). Our findings indicate significant inverse associations between both DHA and LA with all-cause, cancer, and cardiovascular disease (CVD) mortality. We agree with the Reviewer that the focus of our manuscript should be the ratio, but also hope the Reviewer will agree with us that keeping the results from individual PUFAs will provide additional useful information to the readers.

      (6) The definition of comorbidities (including hypertension, diabetes, and longstanding illness) is vague. Please clarify what diseases longstanding illness includes.

      We appreciate the request for clarification regarding the definition of comorbidities in our study, including the categorization of longstanding illness. The information regarding longstanding illnesses was obtained via the Assessment Centre Environment (ACE) touchscreen questionnaire. Participants were asked, "Do you have any long-standing illness, disability, or infirmity?" with the response options being “Yes,” “No,” “Do not know,” and “Prefer not to answer.” For the purposes of our analysis, participants who selected “Yes” were categorized as having a longstanding illness, while the remaining options were grouped as not having a longstanding illness.

      This method of classification aligns with our detailed explanation in the “Methods-Ascertainment of covariates” section of the manuscript, where we state that “Comorbidities, including hypertension, diabetes, and longstanding illness, were self-reported at baseline. Longstanding illness refers to any long-standing illness, disability, or infirmity, without other specific information.” It is important to note that this approach is consistent with established precedents in the field. Specifically, the paper by Li et al. in the BMJ utilized a similar definition for comorbidities, reinforcing the validity of our methodology.

      References:

      Li ZH, Zhong WF, Liu S, et al. Associations of habitual fish oil supplementation with cardiovascular outcomes and all cause mortality: evidence from a large population based cohort study. BMJ. 2020 Mar 4;368:m456.

      (7) The rationale of conducting the mediation analysis of blood biomarkers is not given. Since fatty acids can be formed as TG or bound with apolipoproteins in plasma, there is a large overlap of FAs with these biomarkers and thus it is not appropriate to analyze TG, HDL, LDL, and apolipoproteins as mediators.

      We are grateful for the insightful feedback regarding the mediation analysis of blood biomarkers. Our mediation analysis aimed to explore the possible biomarkers and biological processes that explain the effects of PUFAs on mortality. Upon reflection, we recognize the complexities introduced by the inherent overlap of fatty acids with different lipid particles and lipid classes in plasma. Considering the potential confounding this overlap presents, and in agreement with your recommendation, we have decided to remove the mediation analyses involving cholesterol, TG, HDL-C, LDL-C, Lp(a), ApoA, and ApoB from our study. We appreciate your guidance on this matter and have updated our manuscript accordingly to reflect these changes.

      Reviewer #2 (Recommendations for the Authors):

      (1) Analyzing n-3 and n-6 PUFAs separately might be less instructive given the inherent correlations among plasma levels of n-3 PUFAs and n-6 PUFAs. Also, some important specific PUFAs, such as ALA, AA, EPA, etc. were not available in the UK Biobank data though the authors tried to analyze LA and DHA. The n-6/n-3 ratio, as evidenced by the current analysis, offers a more holistic perspective and might be a superior mortality marker. Thus, I recommend shifting the focus solely to this ratio.

      Thank you for the thoughtful comment. Reviewer #1 raised a similar point (comment #5 above). We are glad that both reviewers recognized the importance of the omega-6/omega-3 ratio and agreed with us that the ratio should be the focus of the paper. Please also see our more detailed response above. Briefly, our manuscript centered on the ratio, while the supplemental analysis of omega-3%, omega-6%, DHA%, and LA% provided additional useful information. We included omega-3% and omega-6% in the same model because their correlation was relatively low (r = -0.12). We also checked the model for multicollinearity and found that the variance inflation factors (VIFs) for n-3 PUFAs and n-6 PUFAs were within acceptable ranges. In the fully adjusted model that included omega-3% and omega-6%, all variables had VIFs below 1.13, with omega-3% at a VIF of 1.06 and omega-6% at a VIF of 1.12. Similarly, in the model including DHA% and LA%, all variables also exhibited VIFs under 1.13, with DHA% recording a VIF of 1.07 and LA% a VIF of 1.10. Therefore, we decided to keep the content for omega-3 and omega-6 PUFAs. We hope that Reviewer will agree with us that this content only provides additional information to the readers.

      (2) It might not be methodologically sound to treat TG, HDL, LDL, and apolipoproteins as mediators. Since the model included comorbidities as covariates, hypercholesteremia and hypertriglyceridemia seemed to have been adjusted in the analysis. Thus, further adjusting these blood biomarkers for mediation analysis which overlapped with comorbidities is redundant.

      We appreciate your critical evaluation of our methodological approach. Your point is well-taken, especially in light of the fact that comorbidities such as hypercholesterolemia and hypertriglyceridemia have been accounted for as covariates in our model. This overlap, as you correctly identified, could indeed render the mediation analysis redundant. In concordance with your recommendation, and incorporating the comments of another reviewer, we have now omitted the mediation analysis involving these blood biomarkers from our study. We believe this adjustment strengthens the methodological soundness of our research and are thankful for your contribution to this refinement. We have updated our manuscript to reflect these changes and ensure our analysis remains robust and free from redundancy.

      (3) It's imperative to exercise caution when drawing causal conclusions from the observed correlations. The inherent constraints of observational studies, coupled with potential residual confounding or reverse causality, should be acknowledged.

      We concur with the caution against implying causality from correlations observed in our study. As such, we have carefully refrained from claiming any causal relationships within our paper. We acknowledge that the term "protective effects" could suggest a causal inference, and we have revised our language to describe these observations as "inverse associations" to more accurately reflect the nature of our findings.

      We have also addressed the inherent limitations of observational research in the Discussion section under 'limitations' of our manuscript. There, we recognize that while we have accounted for many confounders, the possibility of residual confounding cannot be entirely excluded. We also agree that reverse causality is a concern in observational studies. To mitigate this, we performed a sensitivity analysis excluding participants who died within the first year of follow-up. The results from this analysis, which are provided in Additional file 2: Table S12, show consistency with our main findings, suggesting that the observed associations are less likely to be predominantly driven by reverse causation. We are grateful for your insights, which have guided us in strengthening our manuscript and ensuring that our conclusions are presented with the appropriate scientific rigor.

      (4) To guide subsequent scholarly endeavors, the manuscript might propose potential research trajectories, such as spearheading randomized controlled trials to delve deeper into the causal nexus between plasma omega-6/omega-3 ratios and mortality outcomes or probing the mechanistic underpinnings of the observed correlations.

      We agree that conducting randomized controlled trials could illuminate the potential causal relationships between plasma PUFA biomarkers and mortality outcomes. While the primary focus of our manuscript is to report on associations, we acknowledge the importance of causal analysis in advancing the field. In our secondary analysis, we touched upon mediation effects of blood biomarkers, which could serve as a preliminary step towards establishing causality. Although our current work did not delve deeply into causal mechanisms, the results we have presented may indeed stimulate further exploration. By reporting our mediation analysis results, we aim to provide a foundation that other researchers might build upon. We hope that our work will act as a catalyst for more in-depth studies, such as RCTs or mechanistic investigations, to pursue the questions we have begun to explore.

      Following this recommendation, we have revised our Conclusion paragraph and added: “Our findings support the active management of a high circulating level of omega-3 fatty acids and a low omega-6/omega-3 ratio to prevent premature death. Future research is warranted to further test the causality, such as Mendelian randomization and randomized controlled trials. Mechanistic research, including comprehensive mediation analysis, in-depth experimental characterization in animal models or cell lines, and intervention studies, is also needed to unravel the molecular and physiological underpinnings.”

      Reviewer #3 (Recommendations for the Authors):

      (1) Line 32. Delete "a balanced" because a balanced o6:o3 cannot be defined.

      Thank you for pointing out the issue with the term "a balanced". Most authors agree with your observation that defining what constitutes a 'balanced' ratio can be ambiguous and potentially misleading. One author, JTB, disagrees that “balance” as a concept is unacceptably ambiguous or misleading. In response, we have removed the words from our manuscript.

      (2) In the abstract you should present the findings for omega-6 and omega-3 PUFAs first and then the findings for the ratio.

      We appreciate your suggestion to present the findings for omega-6 and omega-3 PUFAs prior to those for the ratio in the abstract. As laid out in the Background section, the ratio was our primary exposure of interest. So, we organized our manuscript by centering on the ratio. We are glad that both Reviewer #1 and #2 expressed a particular interest in the ratio findings and urged us to keep the ratio as the focus. We believe that this emphasis reflects the novel aspects of our research and aligns with the thematic structure of our manuscript.

      (3) Line 80. controversial should read uncertain.

      Thank you for the suggestion. We have changed “controversial” to “uncertain”.

      (4) It is unclear which fatty acids are included in total PUFAs, omega-6 PUFAs and omega-3 PUFAs. It is vital that this is specified.

      Thank you very much for your suggestion. We agree that it is important to clarify the specific fatty acids included in the analysis. In the revised manuscript, we emphasized that we analyzed “total omega-6 PUFAs” and “total omega-3 PUFAs”, while “LA is one type of omega-6 PUFAs” and “DHA is one type of omega-3 PUFAs”. We also revised the Method section of “Ascertainment of exposure” to provide more information about how the exposures were measured. Here is what we added in the “Methods- Ascertainment of exposure” section of our manuscript: “Five PUFAs-related biomarkers were directly measured in absolute concentration units (mmol/L), including total PUFAs, total omega-3 PUFAs, total omega-6 PUFAs, docosahexaenoic acid (DHA), and linoleic acid (LA). Of note, DHA is one type of omega-3 PUFAs, and LA is one type of omega-6 PUFAs. Our primary exposure of interest, the omega-6/omega-3 ratio, was calculated based on their absolute concentrations. We also performed supplemental analysis for four exposures, the percentages of omega-3 PUFAs, omega-6 PUFAs, DHA, and LA in total fatty acids (omega-3%, omega-6%, DHA%, and LA%), which were calculated by dividing their absolute concentrations to that of total fatty acids.”

    1. Author Response

      Reviewer #1 (Public Review):

      Weaknesses:

      The signaling pathway upstream of Maf1 remains unknown. In eukaryotes, Maf1 is a negative regulator of RNA pol III and is regulated by external signals via the TORC pathway. Since TORC components are absent in the apicomplexan lineage, one central question that remains open is how Maf1 is regulated in P. falciparum. Magnesium is probably not the sole stimulus involved, as suggested by the observation that Ile deprivation also down-regulates RNA pol III activity.

      We agree that there is still much to uncover relating to the PfMaf1 signaling pathway. While we still do not know each component, we have been able to link external factors (of course not limited to only magnesium) to the increased nuclear occupancy of PfMaf1. Other protein interactors that potentially regulate PfMaf1, while not confirmed, have been identified in plasma sample as candidates for future experiments to validate their potential involvement of RNA Pol III inhibition.

      The study does not address why MgCl2 levels vary depending on the clinical state. It is unclear whether plasma magnesium is increased during asymptomatic malaria or decreased during symptomatic infection, as the study does not include control groups with non-infected individuals. Along the same line, MgCl2 supplementation in parasite cultures was done at 3mM, which is higher than the highest concentrations observed in clinical samples.

      This reviewer raised a valid point. The plasma magnesium levels for the wet symptomatic samples (averaging [0.79mM]) were within the normal range of a healthy individual (between [0.75-0.95mM]) while the dry asymptomatic levels were above the normal range (averaging [1.13mM]). Ideally, we would have liked to have control uninfected plasma samples from individuals from The Gambia. Unfortunately, field studies and human volunteer studies do not always have all the ideal controls that in vitro studies have. We recognize that [3mM] is higher than the normal range for magnesium levels, which is why we included a revised Supplementary Figure 3A. This figure shows that magnesium concentrations as low as [1mM] (similar to the levels found in dry asymptomatic samples) reduced the expression of RNA Pol III-transcribed genes.

      Although the study provides biochemical evidence of Maf1 accumulation in the parasite nuclear fraction upon magnesium addition, this is not fully supported by the immunofluorescence experiments.

      We agree that the resolution of IFA images does not allow to support the WB data. We believe that the importance of the IFA Supplementary Figure is to show that PfMaf1 clusters together in foci, which has not been previously reported.

      Reviewer #2 (Public Review):

      Weaknesses:

      However, most analyses are rather preliminary as only very few (3-5) candidate genes are analyzed by qPCR instead of carrying out comprehensive analyses with a large qPCR panel or RNA-seq experiments with GO term analyses. Data presentation lacks clarity, the number of biological replicates is rather low and the statistical analyses need to be largely revised. Although the in vivo data from wet (mildly symptomatic) and dry (asymptomatic) season parasites with different expression levels of Pol III-regulated genes, var genes, and MgCl2 are interesting, the link between the in vitro data and the in vivo virulence of P. falciparum, which is made in many sections of the manuscript, should be toned down. Especially since (i) the only endothelial receptor studied is CD36, which is associated with parasite binding during mild malaria, and (ii) several studies provide contradictory data on MgCl2 levels during malaria and in different disease states, which is not further discussed, but the authors mainly focused on this external stimulus in their experiments.

      We agree that, ideally, we would have liked to do full RNA-seq on The Gambia samples. However, that was out of the scope of this project. The RNA samples were limited which is why we did not use more primers. We believe that an appropriate number of replicates was done for the experiments. The wet symptomatic samples from this study were from mildly symptomatic individuals, as stated in the manuscript. Therefore, CD36 was a relevant receptor to use for our studies.

      We agree that the published studies about magnesium levels in infected individuals are not always consistent. What these studies do not consider is the time of year, whether the infection occurred during the dry or wet season. These studies were also done in different regions of the world using different technologies. For this reason, we only highlight the observed difference observed in our field study data from The Gambia.

      Reviewer #3 (Public Review):

      Weaknesses:

      (1) The signals upstream of Maf1 remain rather a black box. 4 are tested - heat shock and low-glucose, which seem to suppress ALL transcription; low-Isoleucine and high magnesium, which suppress Pol3. Therefore the authors use Mg supplementation throughout as a 'starvation type' stimulus. They do not discuss why they didn't use amino acid limitation, which could be more easily rationalised physiologically. It may be for experimental simplicity (no need for dropout media) but this should be discussed, and ideally, sample experiments with low-IsoLeu should be done too, to see if the responses (e.g. cytoadhesion) are all the same.

      We agree that deprivation of isoleucine would have been another experimental assay for our study, but it also would not have been as novel as magnesium. While understanding the exact mechanism or involvement of magnesium as a stress condition was not the scope of this manuscript, we believe that our data will be valuable into demonstrating that external stimuli act on P. falciparum virulence gene expression via RNA Pol III inhibition. Since we also had plasma level data for magnesium, and not isoleucine, we believed it made for a better external factor to use for our in vitro studies.

      (2) The proteomics, conducted to seek partners of Maf1, is probably the weakest part. From Figure S3: the proteins highlighted in the text are clearly highly selected (as ones that might be relevant, e.g. phosphatases), but many others are more enriched. It would be good to see the whole list, and which GO terms actually came top in enrichment.

      We apologize if the reviewer did not see the attached supplementary Co-IP MS data. The file includes all proteins found in each sample as well as GO term analysis. For the purpose of this work, we highlight proteins potentially involved in the canonical role of Maf1 that have been shown in model organisms to reversibly inhibit RNA Pol III (phosphatases, RNA Pol III subunits).

      (3) Figure 3 shows the Maf1-low line has very poor growth after only 5 days but it is stated that no dead parasites are seen even after 8 cycles and the merozoites number is down only ~18 to 15... is this too small to account for such poor growth (~5-fold reduced in a single cycle, day 3-5)? It would additionally be interesting to see a cell-cycle length assessment and invasion assay, to see if Maf1-low parasites have further defects in growth.

      We agree with the reviewer that the observed reduced merozoite numbers may not the only cause of the reduced growth rate. Other factors in the PfMaf1 knock-down line may contribute to the observed poor growth.

    1. Author Response

      Our answer to reviewer #1 comments:

      We attempted to perform structural characterization of the ASK1 complex with TRX1, but were unable to prepare a sufficiently stable ASK1:TRX1 complex for cryo-EM analysis, probably due to their relatively weak interactions. Therefore, we subsequently decided to use HDX-MS to characterize the structural changes of ASK1 induced by interactions with TRX1.

      Detailed information about cryo-EM data processing including 2D classification averages, local resolution of the EM map and FSC figure are shown in Supporting Information, Supplementary Table S1 and Figures S1-S3.

      We fully agree with the reviewer that the presence of hydrogen bonding cannot be reliably described at this resolution. However, if there is a sufficient electron density in a given region and a corresponding hydrogen bond donor-acceptor pair in the model, this suggests the possible presence of such an interaction.

      Our answer to reviewer #2 comments:

      We are fully aware that the use of a C-terminally truncated construct limits this study due to the presumed role of the C-terminus in ASK1 dimerization. A C-terminally truncated construct consisting of TBD, CRR, and KD (residues 88-973) was used due to the low expression yield and solubility of full-length human ASK1.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Thank you and the two reviewers for the thorough review of our manuscript. We found the reviewer’s comments highly valuable and addressed them by the following additional experiments and changes in the text and the figures:

      (1) We measured the effect of ROCK MASO’s on the ROCK expression by immunostaining and observed a reduction in ROCK signal, supporting the downregulation of ROCK protein level under ROCK MASO’s (new Fig. S3).

      (2) We measured the effect of lower concertation of ROCK inhibitor, Y27632 (10µM), and observe the same phenotypes of skeletal loss, skeletal reduction and ectopic branching in this concentration (Fig. 2, S4). Importantly, these phenotypes were not observed when directly inhibiting PKA and PKC, in whole sea urchin embryos (1) and in skeletogenic cell cultures (2), further supporting the specificity of ROCK inhibitor.

      (3) We added a time course of Pl-ROCK expression and immunostaining of ROCK in the fertilized egg, that show that this gene is maternal and the protein is present in the egg Fig. 2SA-C.

      (4) We recorded F-actin in ROCK MASO’s and demonstrate that it is still detected around the spicules and their tips, similarly to ROCK inhibited embryos (new Fig.S3).

      (5) We revised the paper text and figures to provide a better description of our results, distinguish clearly between our data and our interpretations and emphasize the novelty of our findings.

      This paper demonstrates that ROCK, F-actin polymerization and actomyosin contractility play critical roles in biomineral growth and in shaping biomineral morphology in the sea urchin embryo, and that ROCK activity affects skeletogenic gene expression. Our findings together with previous reports of the role of actomyosin in Eukaryotes biomineralization, suggest that this molecular machinery is a part of the common molecular tool-kit used in biomineralization. The identification of a common molecular mechanism within the diverse gene regulatory networks, organic scaffolds and minerals that Eukaryote use to build their biominerals will be of high interest to the field of biomineralization and evolutionary biology. Furthermore, our paper portrays the interplay between the cellular and the genetic machinery that drives morphogenesis. We believe it would be of great interest to the broad readership of eLife and particularly to the fields of biomineralization, cell, developmental and evolutionary biology.

      Thank you very much for the helpful review of our paper.

      Reviewer #1 (Public Review):

      We thank the reviewer for the appreciation of our work the helpful comments that guided us to strengthen the experimental evidence for our conclusions and increase the paper’s clarity. Below are our responses to the specific comments:

      Major comments

      One MASO led to reduced skeleton formation while the other one additionally induced ectopic branching. How was the optimum concentration for the MASOs determined? Did the authors perform a dose-response curve? What is the reason for this difference? Which of the two MASOs can be validated by reduced ROCK protein abundance? Since the ROCK antibody works, I would like to see a control experiment on Rock protein abundance in control and ROCK MO injected larvae which is the gold-standard for validating the knock-down.

      We tested several MASO concentrations to identify a concentration where the control embryos injected with Random MASO were overall healthy and ROCK MASO’s showed clear phenotypes.

      To test the effect of ROCK MASO’s on ROCK protein levels we did immunostaining experiments that are now presented in new Fig. S3. We could not do Western blot for injected embryos since ROCK antibody requires thousands of embryos for Western blot, which is not feasible for injected embryos. Therefore, we tested the effect of the two translation ROCK MASO’s on ROCK abundance compared to uninjected and Random MASO injected embryos using immunostaining. We observed a reduction of ROCK signal, supporting the downregulation of ROCK protein level in these genetic perturbations (new Fig. S3).

      L212 "Together, these measurements show that ROCK is not required for the uptake of calcium into cells." But what about trafficking and exocytosis? As mentioned earlier, I think this is a really important point that needs to be confirmed to understand the function of ROCK in controlling calcification. In their previous study (reference 45) the authors demonstrated that they have superior techniques in measuring vesicle dynamics in vivo. Here an acute treatment with the ROCK inhibitor would be sufficient to test if calcein-positive vesicle motion, including the observed reduction in velocity close to the tissue skeleton interface, is affected by the inhibitor.

      We thank the reviewer for the appreciation of our previous work where we studied calcium vesicle dynamics in whole embryos (Winter et al, Plos Com Biol 2021). We agree with the reviewer that the best way to test directly the effect of ROCK on mineral deposition and vesicle kinetics is to observe it in live skeletogenic cells. However, in Winter et al 2021, we found that the skeleton (spicules) doesn’t grow when the embryos are immobilized in either control or treated embryos. We have to immobilize the embryos to record live timelapses of whole embryos. Hence, this means that we can not determine the role of ROCK or any other perturbation in vesicle trafficking and exocytosis based on experiments conducted in immobilized whole embryos, since skeletogenesis is arrested. We believe that we can do it in skeletogenic cell cultures and we are currently developing this assay for vesicle tracking, but this is beyond the scope of this current work.

      Is there a colocalization of ROCK and f-actin in the tips of the spicules? This would support the mechano-sensing-hypothesis by ROCK.

      Our studies show that F-actin is localized around the spicule cavity and in the cortex of the cells (Figs. 5 and 6) while ROCK is enriched in the skeletogenic cell bodies, with some localization near the skeletogenic cell membranes (Fig. 1). To directly address the reviewer question we immune-stained ROCK and F-actin in the same embryos, and showed that their sub-cellular localizations does not show a strong overlap (Fig. S3 Q-T). However, ROCK does not bind F-actin directly: ROCK activates another kinase, LimK that phosphorylates Cofilin that interacts with F-actin. Therefore, the fact that ROCK is not colocalized with F-actin does not support nor contradicts the possible role of ROCK in mechano-sensing.

      L 283. "F-actin is enriched at the tips of the spicules independently of ROCK activity" The results of this paragraph clearly demonstrate that ROCK inhibition has no effect on the localization of f-actin at the tips of the growing spicules. In addition, the new cell culture experiments underline this observation. Still, the central question that remains is, what is the interaction between ROCK, f-actin, and the mineralization process, that leads to the observed deformations? What does the f-actin signal look like in a branched phenotype or in larvae that failed to develop a skeleton (inhibition from Y20)?

      As we report in Fig. 6, and now on new Fig. S3, under ROCK late inhibition or in ROCK morphants, we still detect F-actin around the spicule and enriched at the tips. When ROCK is inhibited and the embryo fails to develop a skeleton, we observe Factin accumulation in the skeletogenic cells, but the F-actin is not organized (Fig. 5). As the spicule is absent in this condition, it is hard to conclude whether the effect on F-actin organization is direct or due to the absence of spicule in this condition. We stated that explicitly in the current version in the results, lines 324-326 and in the discussion, lines 405-408.

      Immunohistochemical analyses on f-actin localization and abundance should be additionally performed with ROCK knock-down phenotypes to confirm the pharmacological inhibition.

      We did that in our new Figure S3 and showed that ROCK morphant show the same F-actin localization at the tips like control and ROCK inhibited embryos.

      L 365 "...supporting its role in mineral deposition..." "...Overall, our studies indicate that ROCK activity....is essential for the formation of the spicule cavity......which could be essential for mineral deposition..." I think the authors need to do a better job in clearly separating between the potential processes impacted by ROCK perturbation. Is it stabilization and mechano-sensing in the spicule tip or the intracellular trafficking and deposition of the ACC? If the dataset does not allow for a definite conclusion, I suggest clearly separating the different possibilities combined with thorough discussion-based findings from other mineralizing systems where the interaction between ROCK and F-actin has been described.

      We thank the reviewer for this important comment. We believe that ROCK and the actomyosin are involved in both, mechano-sensing of the rigid biomineral and in the transport and exocytosis of mineral-bearing vesicles. In the current version we provide explicit explanations of these two hypotheses in the discussion section. The possible role in exocytosis and the experiments that are required to assess this role are described in lines 427-439, and the possible mechano-sensing role and effect on gene expression is described in lines 440-453.

      Reviewer #1 (Recommendations For The Authors):

      Minor comments

      L185 "These SR-µCT measurements show that the rate of mineral deposition is significantly reduced under ROCK inhibition." To correctly support this statement I would suggest to calculate the real growth rates (µm3 time-1). For example, an increase in volume from 6,850 µm3 at 48 hpf to 14,673 µm3 at 72 hpf would result in a growth rate of 7823 µm3 24h-1.

      We thank the reviewer for this suggestion. We calculated the rate of spicule growth as the reviewer suggested and we added this information in lines 218-221.

      L343: "This implies that....within the skeletogenic lineage." This concluding sentence is very speculative and therefore misplaced in the results section.

      We removed this sentence from the results section into the discussion, lines 443-445.

      L382: "The participation of F-actin and ROCK in polarized tip-growth and vesicle exocytosis has been observed in both, animals and plants." L407-409: "...F-actin could be regulating the localized exocytosis of mineral-bearing vesicles...." I think this is exactly the core question that remains unresolved in this study. To reduce speculations I strongly recommend addressing the effect of ROCK inhibition on vesicle trafficking and exocytosis (Monitoring of calcein-positive Vesicles in PMCs).

      We agree with the reviewer that this is a critical question that we would have address, but as we explained above, is beyond the scope of this study.

      Figure 5: The values below the scale bars in the newly added figures U+V are extremely small. Also, the Legend for this figure sounds incorrect. Should read: "...and skeletogenic cell cultures that were treated with 30µM ROCK inhibitor that was added at 48hpf and recorded at 72hpf.

      We increased the font near the scale bars and corrected the figure caption. Thanks for this and your other helpful comments!

      Reviewer #2 (Public Review):

      We thank the reviewer for raising the important issue of inhibitor concentration which led us to do additional experiments with lower concentration that were valuable and strengthen the manuscript. We also thank the reviewer for asking us to be clearer with the interpretation of the results. Below are our responses to the specific comments:

      My concerns are the interpretation of the experiments. The main overriding concern is a possible over-interpretation of the role of ROCK. In the literature that ROCK participates in many biological processes with a major contribution to the actin cytoskeleton. And when a function is attributed to ROCK, it is usually based on the determination of a protein that is phosphorylated by this kinase. Here that is not the case. The observation here is in most cases stunted growth of the spicule skeleton and some mis-patterning occurs or there is an absence of skeleton if the inhibitor is added prior to initiation of skeletal growth. They state in the abstract that ROCK impairs the organization of F-actin around the spicules. The evidence for that as a direct role is absent.

      We agree with the reviewer that since the spicule doesn’t form under ROCK continuous inhibition, it is unclear if the absence of F-actin around the spicule in this condition is a direct outcome of the lack of ROCK activation of F-actin polymerization, or an indirect outcome due to the lack of spicule to coat. We therefore deleted this line in the abstract and explicitly stated that we cannot conclude whether the impaired F-actin organization is directly due to ROCK effect on actin polymerization in the results, lines 324-326 and in the discussion, lines 405-408.

      They use morpholino data and ROCK inhibitor data to draw their conclusion. My main concern is the concentration of the inhibitor used since at the high concentrations used, the inhibitor chosen is known to inhibit other kinases as well as ROCK (PKA and PKC). They indicate that this inhibition is specifically in the skeletogenic cells based on the isolation of skeletogenic cells in culture and spicule production either under control or ROCK inhibition and they observe the same - stunting and branching or absence of skeletons if treated before skeletogenesis commences. Again, however, the high concentrations are known to inhibit the other kinases.

      In the previous version of the paper we used the range of 30-80µM Y-27632 to block ROCK activity. These concentrations are commonly used in mammalian systems and in Drosophila to block ROCK activity (3-8). The reviewer is correct stating that at high concentration, this inhibitor can block PKA and PKC. However, the affinity of the inhibitor for these kinases is more than 100 times lower than its affinity to ROCK as indicated by the biochemical Ki values reported in the manufactory datasheet: 0.14-0.22 μM for ROCK1, 0.3 μM for ROCK2, 25 μM for PKA and 26 μM for PKC.

      Importantly, these Ki values are based on biochemistry assays where the activity of the inhibitor is tested in-vitro with the purified protein. Therefore, these concentrations are not relevant to cell or embryo cultures where the inhibitor has to penetrate the cells and affect ROCK activity in-vivo. Y-27632 activity was studied both in-vitro and in-vivo in Narumiya, Ishizaki and Ufhata, Methods in Enzymology 2000 (9). This paper reports similar concentrations to the ones indicated in the manufactory datasheet for the in-vitro experiments, but shows that 10µM concentration or higher are effective in cell cultures. We therefore tested the effect of 10µM Y-27632 added at 0hpf (continuous inhibition) and at 25hpf (late inhibition) and added this information to Figs. 2 and S3. Continuous inhibition at this concentration resulted with three major phenotypes: skeletal loss, spicule initiations and small spicules with ectopic branching. This result supports our conclusion that ROCK activity is necessary for spicule formation, elongation and prevention of branching. Late inhibition in this concentration resulted with the majority of the embryos developing branched spicules, which is very similar to the effect of MyoII inhibition with Blebbistatin. This result again, supports the inference that ROCK activity is required for normal skeletal growth and the prevention of ectopic branching. Importantly, there are two papers were PKA and PKC were directly inhibited in whole sea urchin embryos (1) and in skeletogenic cell cultures (2). In both assays, PKC inhibition resulted with mild reduction of spicule length while PKA inhibition did not affect skeletal formation. Neither skeletal loss nor ectopic branching were ever observed under PKC or PKA inhibition, supporting the specific inhibition of ROCK by Y-27362. Furthermore, both genetic and pharmacological perturbations of ROCK resulted with significant reduction of skeletal growth and with the enhancement of ectopic branching. Therefore, we believe we provide convincing evidence for the role of ROCK in spicule formation, growth and prevention of branching. We revised Fig. 2 and S3 to include the 10µM Y-27632 data and the text describing the inhibition to include the explanations and references we provided here.

      They use blebbistatin and latrunculin and show that these known inhibitors of actin cytoskeleton lead to abnormal spiculogenesis, This coincidence is suggestive but is not proof that it is ROCK acts on the actomyosin cytoskeleton given the specificity concerns.

      As stated above, we believe that in the current vesion we overcame the specificity concerns and provided solid evidence that ROCK activity is necessary for spicule formation, growth and prevention of branching. Furthermore, the skeletogenic phenotypes of late 10µM Y-27632 are highly similar to those of MyoII inhibition (Blebbistatin) while the phenotypes of higher concetrations resemble the inhibition of actin polymerization by Latrunculin. We agree with the reviewer that: “This coincidence is suggestive but is not proof that ROCK acts on the actomyosin cytoskeleton” and we revise the discussion paragraph to differentiate between our solid findings and our speculations (lines 421-426): “These correlative similarities between ROCK and the actomyosin perturbations lead us to the following speculations: the low dosage of late ROCK inhibition is perturbing mostly ROCK activation of MyoII contractility while the higher dosage affects factors that control actin polymerization (Fig. 8F). Further studies in higher temporal and spatial resolution of MyoIIP activity and F-actin structures in control and under ROCK inhibition will enable us to test this.”

      Reviewer #2 (Recommendations For The Authors):

      The following areas require attention:

      (1) You begin and end the abstract with statements on evolution in which the actomyosin cytoskeleton is associated with skeletogenesis despite different GRNs, different contributing proteins, etc. You then move to ROCK and claim to reveal that ROCK is a central player in the process. As above, in the judgement of this reviewer, you fail to establish a direct role of ROCK to the actomyosin role in skeletogenesis. Sure, the ROCK inhibitors suggest that ROCK plays some kind of role in the process but you also indicate that ROCK could act on many processes, none of which you directly associate with the necessary activity of ROCK.

      We agree that our paper provides correlative similarities between the phenotypes of ROCK and those of direct pertrubations of the actomyosin network, and lacks causal relationship. We made this point clear throughout the current version of the manuscript.

      (2) In the abstract you report that ROCK inhibition impairs the actin cytoskeleton around the skeleton. In examining your images in Fig. 5 that is not the case. Based on Phalloidin staining, actin surrounds both the control and the ROCK-inhibited skeleton. The distribution of actin is the same in both cases. Myosin is also stained in this figure and it too shows similar staining both in experimental and control. So, to this reviewer, there is insufficient evidence to suggest that the actin cytoskeleton is impaired, and there is no evidence directly relating ROCK with that cytoskeleton. I'm not questioning the observation that inhibition of ROCK causes stunting and mispatterning of the skeleton. That you show and quantify well. The issue is the precise target of ROCK. Your data does not establish the specific cause. It could be the actin cytoskeleton but your experiments do not directly address that.

      Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (3) In parts of the manuscript you use the term filopodia and in other parts I think you use pseudopodia to refer to the same structure. Since Ettensohn has provided the most evidence on the organization of the skeletogenic syncytia, I suggest you use the same term he used for those cellular extensions.

      The filopodia and the pseudopodia are two distinct structures generated by the skeletogenic cells. The filopodia is the common cellular extension described in many cells, while the term “pseudopodia cable” describes the specific structure that forms between the skeletogenic cells in which the spicule cavity forms, in agreement with Prof. Ettensohn terminology.

      (4) In trying to find relationships you cite a number of previous papers at the end of the introduction. I went back to those papers and they describe (from your work) calcium exocytosis, plus filopodia formation, plus planar cell polarity, plus CDC42, any one of which could involve an actin cytoskeleton. You even cite a paper saying that perturbations of ROCK prevent spicule formation. I went back to that paper and that isn't the case. You then summarize the Introduction by relating ROCK and the actin cytoskeleton, thereby raising reader expectation that the two will be connected. As above, in reality, your evidence here does not connect the two.

      We thank the reviewer for giving us credit for all these works, but only the paper on vesicle kinetics is from our lab (winter et al 2021). As for Croce et al, 2006 that the reviewer refers to: in Fig. 9A, 75µM of Y-27632 is used to inhibit ROCK in the same sea urchin species that we use, and the phenotype is identical to what we observe – the skeletogenic cells are there, but the spicule is not formed. As mentioned above, in the current version we distinguished clearly between our solid findings and our interpretations.

      (5) You emphasize in Fig. 1 the inhibition of ROCK in the presence of VEGFR inhibition. However, at no place in the manuscript do you say anything about how VEGFR is inhibited, when it is inhibited, or how you know it is inhibited. That oversight must be corrected. You mention axitinib but don't say anything about what it does. Some readers may know its activity but many will not.

      We now indicate that we use Axitinib to block VEGFR in the results section (line 104) and in the methods section (lines 470-471).

      (6) Fig. 2. The use of Y27632 as a selective inhibitor of ROCK. According to data sheets from the manufacturer, at the levels used in your experiments, 120 µm, 80 µm and 30 µm, those levels of inhibitor also inhibit the activity of PKA and PKC (both inhibited at around 25 µm). This is concerning because of the literature indicating that activation of the VEGFR operates through PKA. Inhibition of PKA, then, would inhibit the activity of VEGF signaling. Thus, the inhibitory effects of Y27632 may actually not be attributed specifically to ROCK. Furthermore, the heading of this section states that ROCK activity controls initiation, growth, and morphology of the spicule. Yet, even in high levels of inhibitor spicule production is initiated. Yes, the growth and the morphology are compromised, but the initiation doesn't seem to be.

      The spicule fails to form under ROCK continuous inhibition in all concentrations (Fig. 2). Also, as we explained in details above, these Ki values are based on biochemical experiments with purified proteins and are not relevant to in-vivo use of the inhibitor. Yet, these Ki values demonstrate that the affinity of the inhibitor to ROCK is 100 higher than of its affinity to PKA and PKC. Specifically to the reviewer suggestion here: direct inhibition of PKA does not have skeletogenic phenotypes, not in whole embryos (1) and not in skeletogenic cell culture (2). Since we see the same skeletogenic phenotypes at low Y-27362 concentration and the genetic and pharmacological pertrubations of ROCK reconcile, we believe that these phenotypes can be atributed directly to ROCK.

      (7) The synchrotron study is very nice with two points that should be addressed. Again, a high concentration of Y27632 was used giving a caveat on ROCK specificity. And second, the blue and green calcein pulses are very nice but the recent paper by the Bradham group should be cited.

      We added a reference to Bradham recent paper on two calcein pulses (10).

      (8) Fig. 5 is where an attempt is made to associate ROCK inhibition to alterations in actomyosin. Again, a high concentration of the inhibitor is used casting doubt on whether it specifically inhibits ROCK. However, even if the inhibition is specific to ROCK the images do not provide convincing evidence that ROCK activity normally is directed toward actomyosin. This is crucial to the manuscript.

      As stated above, we addressed the specificity in this version and we modified the text to emphasize the correlation and not cuasation: Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (9) Again in Fig. 6 the inhibitor is used with the same concern about whether the effects noted are due to ROCK.

      Fig. 6 is now Fig. 7 – the effect of ROCK on gene expression and as explained above, we addressed the specificity in this version.

      (10) Lines 350-358. This interpretation falls apart without showing that the inhibitor is specific for ROCK as indicated above. Also, Fig. 5 is unconvincing in showing a difference in actin or myosin distribution in control vs ROCK inhibited embryos. Yes, the spicules are stunted, but whether actin or myosin have anything to do with that as a result of lack of ROCK activity is not demonstrated.

      As stated above, we addressed the specificity in the revised version and we modified the text to emphasize the correlation and not cuasation: Fig. 5 shows a clear difference between F-actin in control and under ROCK inhibition. In control F-actin is enriched around the spicule and under ROCK inhibition the spicule doesn’t form and disorganized F-actin is accumulated in the skeletogenic cells. Yet, as we stated above – this is not a proof for the direct effect of ROCK on F-actin polymerization, and we explain it explicitly in the results, lines 324-326 and in the discussion, lines 405-408.

      (11) Throughout, the manuscript spelling, grammar, and sentence structure will require extensive editing. The mistakes are numerous.

      We did our best to correct the spelling and grammar. If we still missed some mistakes, we would be happy to further correct them.

      References

      (1) Mitsunaga K, Shinohara S, Yasumasu I. Probable Contribution of Protein Phosphorylation by Protein Kinase C to Spicule Formation in Sea Urchin Embryos: (sea urchin/protein kinase C/spicule formation/H-7/HA1004). Dev Growth Differ. 1990;32(3):335-42.

      (2) Mitsunaga K, Shinohara S, Yasumasu I. Does Protein Phosphorylation by Protein Kinase C Support Pseudopodial Cable Growth in Cultured MicromereDerived Cells of the Sea Urchin, Hemicentrotus pulcherrimus?: (sea urchin/protein kinase C/spicule formation/phorbol ester/H-7). Dev Growth Differ. 1990;32(6):647-55.

      (3) Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, et al. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov. 2022;8(1):35.

      (4) Kagawa H, Javali A, Khoei HH, Sommer TM, Sestini G, Novatchkova M, et al. Human blastoids model blastocyst development and implantation. Nature. 2022;601(7894):600-5.

      (5) Canellas-Socias A, Cortina C, Hernando-Momblona X, Palomo-Ponce S, Mulholland EJ, Turon G, et al. Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature. 2022;611(7936):603-13.

      (6) Becker KN, Pettee KM, Sugrue A, Reinard KA, Schroeder JL, Eisenmann KM. The Cytoskeleton Effectors Rho-Kinase (ROCK) and Mammalian DiaphanousRelated (mDia) Formin Have Dynamic Roles in Tumor Microtube Formation in Invasive Glioblastoma Cells. Cells. 2022;11(9).

      (7) Segal D, Zaritsky A, Schejter ED, Shilo BZ. Feedback inhibition of actin on Rho mediates content release from large secretory vesicles. J Cell Biol. 2018;217(5):1815-26.

      (8) Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol. 2009;19(3):2605.

      (9) Narumiya S, Ishizaki T, Uehata M. Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 2000;325:273-84.

      (10) Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol. 2023;498:1-13.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The OSCA/TMEM63 channels have recently been identified as mechanosensitive channels. In a previous study, the authors found that OSCA subtypes (1, 2, and 3) respond differently to stretch and poke stimuli. For example, OSCA1.2 is activated by both poke and stretch, while OSCA3.1, responds strongly to stretch but poorly to poke stimuli. In this study, the authors use cryo-EM, mutagenesis, and electrophysiology to dissect the mechanistic determinants that underlie the channels' ability to respond to poke and stretch stimuli.

      The starting hypothesis of the study is that the mechanical activation of OSCA channels relies on the interactions between the protein and the lipid bilayer and that the differential responses to poke and stretch might stem from variations in the lipid-interacting regions of OSCA proteins. The authors specifically identify the amphipathic helix (AH), the fenestration, and the Beam Like Domain (BLD) as elements that might play a role in mechanosensing.

      The strength of this paper lies in the technically sound data - the structural work and electrophysiology are both very well done. For example, the authors produce a high-resolution OSCA3.1 structure which will be a useful tool for many future studies. Also, the study identifies several interesting mutants that seemingly uncouple the OSCA1.2 poke and stretch responses. These might be valuable in future studies of OSCA mechanosensation.

      However, the experimental approach employed by the authors to dissect the molecular mechanisms of poke and stretch falls short of enabling meaningful mechanistic conclusions. For example, we are left with several unanswered questions surrounding the role of AH and the fenestration lipids in mechanosensation: Is the AH really important for the poke response if mutating residues conserved between OSCA1.2 and OSCA3.1 disrupts the OSCA1.2 ability to respond to poke but mutating the OSCA1.2 AH to resemble that of OSCA3.1 results in no change to its "pokability"? Similar questions arise in response to the study of the fenestrationlining residues.

      We thank the reviewer for their feedback. We believe that the different OSCA1.2 mutants on their own suggest an involvement of the AH and fenestration-lining residues in its mechanosensitive response. We attribute the inability to restore the poke response of OSCA3.1 with similar mutations to its inherent high threshold to this particular stimulus and perhaps other structural differences, or a combination of them, that we did not probe in this study. We agree more work is required in the field to address these remaining questions and further dissect the difference between poke and stretch responses.

      Reviewer #2 (Public Review):

      Summary:

      Jojoa-Cruz et al. determined a high-resolution cryo-EM structure in the Arabidopsis thaliana (At) OSCA3.1 channel. Based on a structural comparison between OSCA3.1 and OSCA1.2 and the difference between these two paralogs in their mechanosensitivity to poking and membrane stretch, the authors performed structural-guided mutagenesis and tested the roles of three structural domains, including an amphipathic helix, a beam-like domain, and a lipid fenestration site at the pore domain, for mechanosensation of OSCA channels.

      Strengths:

      The authors successfully determined a structure of the AtOSCA3.1 channel reconstituted in lipid nanodiscs by cryo-EM to a high resolution of 2.6 Å. The high-resolution EM map enabled the authors to observe putative lipid EM densities at various sites where lipid molecules are associated with the channel. Overall, the structural data provides the information for comparison with other OSCA paralogs.

      In addition, the authors identified OSCA1.2 mutants that exhibit differential responses to mechanical stimulation by poking and membrane stretch (i.e., impaired response to poke assay but intact response to membrane stretch). This interesting behavior will be useful for further study on differentiating the mechanisms of OSCA activation by distinct mechanical stimuli.

      Major weakness:

      The major weaknesses of this study are the mutagenesis design and the functional characterization of the three structural domains - an amphipathic helix (AH), a beam-like domain (BLD), and the fenestration site at the pore, in OSCA mechanosensation.

      (1) First of all, it is confusing to the reviewer, whether the authors set out to test these structural domains as a direct sensor(s) of mechanical stimuli or as a coupling domain(s) for downstream channel opening and closing (gating). The data interpretations are vague in this regard as the authors tend to interpret the effects of mutations on the channel 'sensitivity' to different mechanical stimuli (poking or membrane stretch). The authors ought to dissect the molecular bases of sensing mechanical force and opening/closing (gating) the channel pore domain for the structural elements that they want to study.

      We agree with the reviewer that our data are unable to distinguish the transduction of a mechanical stimulus and channel gating. We set up to determine whether these features were involved in the mechanosensitive response. However, as the reviewer points out, evaluating whether they work as direct sensors or coupling domains would require a more involved experimental design that lies beyond the scope of this work. Thus, we do not claim in our study whether these features act as direct sensors of mechanosensitive stimuli or as coupling domains, only their involvement.

      Furthermore, the authors relied on the functional discrepancies between OSCA1.2 (sensitive to both membrane poking and stretch) and OSCA3.1 (little or weak sensitivity to poking but sensitive to membrane stretch). But the experimental data presented in the study are not clear to address the mechanisms of channel activation by poking vs. by stretch, and why the channels behave differently.

      We had hoped that when we switched regions of the OSCA1.2 and OSCA3.1 channels we would abolish poke-induced responses in OSCA1.2 and confer poke-induced sensitivity to OSCA3.1. We agree with the reviewer that we were not able to pinpoint the reason or multiple reasons, as it could be a compounded effect of several differences, that caused OSCA3.1 higher threshold and thus we could not confer to it an OSCA1.2-like phenotype. Yet, we shed some light on some of the structural differences that appear to contribute to OSCA3.1 behavior, as mutagenesis of OSCA1.2 to resemble this channel led to OSCA3.1-like phenotype.

      (2) The reviewer questions if the "apparent threshold" of poke-induced membrane displacement and the threshold of membrane stretch are good measures of the change in the channel sensitivity to the different mechanical stimuli.

      The best way to determine an accurate measure of sensitivity to mechanical stimuli is stretch applied to a patch of membrane. There are more complicating factors that influence the determination of "apparent threshold" in the whole cell poking assay, including visualizing when the probe first hits the cell (very difficult to see). With that said, the stretch assay has its own issues such as the creep of the membrane into the pipette glass which we try to minimize with positive pressure between tests.

      (3) Overall, the mutagenesis design in the various structural domains lacks logical coherence and the interpretation of the functional data is not sufficient to support the authors' hypothesis. Essentially the authors mutated several residues on the hotspot domains, observed some effects on the channel response to poking and membrane stretch, then interpreted the mutated residues/regions are critical for OSCA mechanosensation. Examples are as follows.

      In the section "Mutation of key residues in the amphipathic helix", the authors mutated W75 and L80, which are located on the N- and C-terminal of the AH in OSCA1.2, and mutated Pro in the OSCA1.2 AH to Arg at the equivalent position in OSCA3.1 AH. W75 and L80 are conserved between OSCA 1.2 and OSCA3.1. Mutations of W75 and/or L80 impaired OSCA1.2 activation by poking, but not by membrane stretch. In comparison, the wildtype OSCA3.1 which contains W and L at the equivalent position of its AH exhibits little or weak response to poking. The loss of response to poking in the OSCA1.2 W/L mutants does not indicate their roles in pokinginduced activation.

      Besides, the P2R mutation on OSCA1.2 AH showed no effect on the channel activation by poking, suggesting Arg in OSCA3.1 AH is not responsible for its weak response to poking. Together the mutagenesis of W75, L80, and P2R on OSCA1.2 AH does not support the hypothesis of the role of AH involved in OSCA mechanosensation.

      Mutagenesis of OSCA1.2 in the amphipathic helix for residues W75 and L80 suggests a role of the helix in the poke response in OSCA1.2, regardless of OSCA3.1 having the same residues. Furthermore, the lack of alteration in the response for mutant P77R suggests that specific residues of the helix are involved in this response and is not a case where any mutation in the helix will lead to a loss of function.

      OSCA3.1 WT exhibits a high-threshold response (near membrane rupture) in the poke assay without any mutations, and this could be due to other features, for example, the residues lining the membrane fenestration, as well as features not identified/probed in this study. We agree with the reviewer that the differences in the AH do not explain the different response to poke in OSCA1.2 and OSCA3.1, and we have added this statement explicitly in the discussion for clarification (line #251-252).

      In the section "Replacing the OSCA3.1 BLD in OSCA1.2", the authors replaced the BLD in OSCA 1.2 with that from OSCA3.1, and only observed slightly stronger displacement by poking stimuli. The authors still suggest that BLD "appears to play a role" in the channel sensitivity to poke despite the evidence not being strong.

      We agree with the reviewer that the experiments carried out show little difference between the response of OSCA1.2 WT and OSCA1.2 with OSCA3.1 BLD, and we have stated so (line #259: “Substituting the BLD of OSCA1.2 for that of OSCA3.1 had little effect on poke- or stretchactivated responses. Although these results suggest that the BLD may not be involved in modulating the MA response of OSCA1.2…”). However, the section of the discussion that the reviewer points out also considers evidence provided by recent reports from Zheng, et al. (Neuron, 2023) and Jojoa-Cruz, et al. (Structure, 2024) and we suggest an hypothesis to reconcile our findings with these new evidence.

      OSCA1.2 has four Lys residues in TM4 and TM6b at the pore fenestration site, which were shown to interact with the lipid phosphate head group, whereas two of the equivalent residues in OSCA3.1 are Ile. In the section "Substitution of potential lipid-interacting lysine residues", the authors made K435I/K536I double mutant for OSCA1.2 to mimic OSCA3.1 and observed poor response to poking but an intact response to stretch. Did the authors mutate the Ile residues in OSCA3.1 to Lys, and did the mutation confer channel sensitivity to poking stimuli resembling OSCA1.2? The reviewer thinks it is necessary to perform such an experiment, to thoroughly suggest the importance of the four Lys residues in lipid interaction for channel mechanoactivation.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are no longer able to perform such experiments.

      Reviewer #3 (Public Review):

      Summary:

      Jojoa-Cruz et al provide a new structure of At-OSCA3.1. The structure of OSCA 3.1 is similar to previous OSCA cryo-em structures of both OSCA3.1 and other homologues validating the new structure. Using the novel structure of OSCA3.1 as a guide they created several point mutations to investigate two different mechanosensitive modalities: poking and stretching. To investigate the ability of OSCA channels to gate in response to poking they created point mutations in OSCA1.2 to reduce sensitivity to poking based on the differences between the OSCA1.2 and 3.1 structures. Their results suggest that two separate regions are responsible for gating in response to poking and stretching.

      Strengths:

      Through a detailed structure-based analysis, the authors identified structural differences between OSCA3.1 and OSCA1.2. These subtle structural changes identify regions in the amphipathic helix and near the pore that are essential for the gating of OSCA1.2 in response to poking and stretching. The use of point mutations to understand how these regions are involved in mechanosensation clearly shows the role of these residues in mechanosensation.

      Weaknesses:

      In general, the point mutations selected all show significant alterations to the inherent mechanosensitive regions. This often suggests that any mutation would disrupt the function of the region, additional mutations that are similar in function to the WT channel would support the claims in the manuscript. Mutations in the amphipathic helix at W75 and L80 show reduced gating in response to poking stimuli. The gating observed occurs at poking depths similar to cellular rupture, the similarity in depths suggests that these mutations could be a complete loss of function. For example, a mutation to L80I or L80Q would show that the addition of the negative charge is responsible for this disruption not just a change in the steric space of the residue in an essential region.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have several questions regarding some of the aspects of your study:

      Mutation of the hydrophobic W75 and L80 in OSCA1.2 to charged residues significantly decreases the poke response in OSCA1.2 without affecting the stretch response. However, W75 and L80 are also present in OSCA3.1, which does not respond efficiently to poke. You conclude that these two residues are important for the poke response, but do not delve into why, if these residues are important, OSCA3.1 is not poke-sensitive.

      In addition, mutation of the OSCA1.2 AH to resemble that of OSCA3.1 does not produce channels that are less poke-sensitive. Given the data presented, if AH were a universal "poke sensor", one could also expect WT OSCA3.1 to exhibit a robust poke response, like OSCA1.2. Here I think it would be important to explain in more detail how this data might fit together.

      We thank the reviewer for bringing up this issue. We decided to test the importance of the AH due to the presence of similar structures in other mechanosensitive channels. Our data showed that single and double mutants of the AH of OSCA1.2 affected its poke response but not stretch. This supports the idea of the AH involvement in the poke response. Yet, we agree that the differences in the AH between OSCA1.2 and OSCA3.1 (P77R mutation) do not explain the higher threshold of OSCA3.1, we have explicitly added this in line #255. The particular OSCA3.1 phenotype may be due to other differences in the structure, for example, differences in the membrane fenestration area, or a combined effect of several differences, which we believe is more likely.

      I also have some questions about the protein-lipid interactions in the fenestration. A lipid has been observed in this location in both OSCA1.2 and OSCA3.1 structures. Mutation of the two OSCA1.2 lysines to isoleucines results in channels that are resistant to poke which leads to the conclusion that the interactions between the fenestration lysines and lipids are important for the poke response.

      Here, there are several questions that arise but are not answered:

      It is not shown what happens when OSCA3.1 isoleucines are mutated to lysines - do these mutants result in poke-able channels? Is the OSCA3.1 mechanosensing altered?

      We performed a preliminary test on OSCA3.1 I423K/I525K double mutant (n = 3). However, we did not see an increase in poke sensitivity. We attributed this to other unexplored differences in OSCA3.1 having an effect in channel mechanosensitivity.

      It is implied that the poke response is predicated on the lysine-lipid interaction. However, lipid densities are present in both OSCA1.2 and OSCA3.1 structures, indicating that both fenestrations interact with lipids. How can we be certain that the mutation of lysine to isoleucine does not disrupt an inter-protein interaction rather than a protein-lipid one? For example, the K435I mutation might disrupt interactions with D523 or the backbone of G527?

      The reviewer brings up a good point. We believe the phenotype seen is due to a different strength in the interaction between lipids and proteins, however, disrupted interaction with other residues is a valid alternative explanation. We agree that the suggested experiments will further clarify the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      Similarly, the effects of single lysine-to-isoleucine (K435I or K536I) mutations are not explored.

      The observed effect might be caused by only one of these substitutions.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      I also wanted to take this opportunity to ask a couple of philosophical (?) questions about using a mammalian system to study ion channels that have evolved to function in plants. Your study highlights the intimate relationship between the lipid bilayer and protein function/mechanosensitivity. Plant cells contain high levels of sterols and cerebrosides that would significantly affect both cell stiffness and the specific interactions that can be formed between the protein and the lipid bilayer. I wonder if the properties of the lipid bilayer might shift the thresholds for poke and/or stretch stimuli and if structural elements that do not appear to have a major role in mechanosensation in a mammalian cell (e.g., BLD) might be very influential in a lipid environment that more closely resembles that of a plant?

      Conversely, is it possible that OSCA channels are not poke-sensitive in plant cells? These questions are beyond the scope of your study, but they might be a nice addition to your discussion.

      The reviewer poses a great question. Electrophysiological approaches for studying plant mechanosensitive channels suffer the limitation of not being able to fully reconstitute the environment of a plant cell. To be able to patch the cell, the cell wall needs to be disposed of, which eliminates the tension generated from this structure onto the membrane. In that sense, performing these assays in plant cells or another system would not give us a fully accurate picture of the physiological thresholds of these channels. Given this limitation, we performed our study with mammalian cells given our expertise with them. Like the reviewer, we are also intrigued by the effect of different membrane compositions on the behavior of OSCA channels and how these channels will behave under physiological conditions, but we agree with the reviewer that these questions are out of the scope of our work. To address this point, in line #294 we have added: “It is also important to note that the membrane of a plant cell contains a different lipid composition than that of HEK293 cells used in our assays, and thus these lipids, or the plant cell wall, may alter how these channels respond to physiological stimuli.”

      Line 313 For structural studies, human codon-optimized OSCA3.1. Could you please clarify what this means?

      We have changed the phrase to “For structural studies, the OSCA3.1 (UniProt ID: Q9C8G5) coding sequence was synthesized using optimized codons for expression in human cells and subsequently cloned into the pcDNA3.1 vector” in line #327 to clarify this sentence.

      As a final comment, in the methods you use references to previously published work. I would strongly encourage you to replace these with experimental details.

      We understand the reviewer’s argument. However, this article falls under eLIFE’s Research Advances and will be linked to the original published work to which we reference the method. As suggested in the guidelines for this type of article, we only described the methods that were different from the original paper.

      Reviewer #2 (Recommendations For The Authors):

      (1) In line 85, provide C-alpha r.m.s.d. values for the structural alignment among OSCA3.1, OSCA1.1, and OSCA1.2 protomers.

      As requested, we have added the C-alpha RMSD in line #86.

      (2) In line 90, should the figure reference to Fig. 1d be Fig. 1e?

      We thank the reviewer for catching this error. We have corrected it in the manuscript.

      (3) In lines 89-94, what putative lipid is it resolved in the OSCA3.1 pore? Can the authors assign the lipid identity? Is this the same or different from the lipids resolved in OSCA1.2, OSCA1.1, and TMEM63?

      In the model, we have built the lipid as palmitic acid to represent a lipid tail, but the resolution in this area makes it difficult to ascertain the identity of said lipid, hence we cannot compare to lipids in other orthologs.

      (4) In lines 115-121, the authors describe the presence of AHs and their functional roles in MscL and TMEM16. It will be more informative if the authors can add figures to show the structure of MscL and highlight the analogous AH. In addition, the current Supplementary Fig. 6 is not informative so it should be improved. It is not clear to the reviewer why that stretch of helix in TMEM16 is equivalent or analogous to the AH in OSCAs, either sequence alignment or a detailed structural alignment is helpful to address this point. Also, in lines 120-121, it says this helix in TMEM16 "does not present amphipathic properties", please show the sequence or amphipathicity of the helix.

      We thank the reviewer for the feedback on this figure. Supplementary Fig. 6 has been thoroughly modified to address the reviewer’s concerns. We now include a panel showing the structure of MscL and its amphipathic helix. We have modified the alignment of OSCA3.1 to a TMEM16 homolog to make clearer the homologous positioning of the helices in question and zoom in to show their sequences.

      (5) In discussion, lines 249-257, the authors referred to a recent study that suggested three evolutionarily coupled residue pairs located on BLD and TM6b. The authors speculate that the reason they did not observe a significant effect of channel response to poke/stretch stimuli in the BLD swapping between OSCA1.2 and 3.1 is due to the 2 of 3 salt bridges remaining for the residue pairs. To test the importance of these residue pairs and their coupling for channel gating, instead of swapping the entire BLD, can the authors systematically mutate the residue pairs, disrupt the salt-bridge interactions, and analyze the effect on channel response to mechanical force?

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      (6) The reviewer suggests the authors tone down the elaboration of polymodal activation of OSCA by membrane poking and stretch.

      We believe the idea of polymodal activation is sufficiently toned down as we only postulate it as a possibility and following we give an alternative explanation based on methodological limitations: “Nonetheless, the discrepancy could be due to inherent methodological differences between these two assays, as whole-cell recordings during poking involve channels in inaccessible membranes (at the cell-substrate interface) and channel interactions with extracellular and intracellular components, while the stretch assay is limited to recording channels inside the patch.”

      (7) In lines 81-83, the authors described the BLD as showing increased flexibility, and the EM map at this region is less well resolved for registry assignment. In the method for cryo-EM image processing and Supplementary Fig. 1, the authors only carried out 3D refinement and classification at the full channel level. Have the authors attempted to do focus refinement or classification at the BLD domain in order to improve the local resolution or to sort out conformational heterogeneity? The reviewer suggests doing so because the BLD domain is a hot spot that the authors have proposed to play an important role in OSCA mechanosensation. Conformational changes identified in this region might provide insights into its role in the channel function.

      We thank the reviewer for this suggestion. We have performed focused classification on the BLD with and without surrounding regions and, in our hands, it did not improve the resolution or provide further insights.

      Reviewer #3 (Recommendations For The Authors):

      Here are a few specific minor corrections that should be addressed

      (1) In lines 117-135, in the discussion of Figure 2, the data shows an apparent increase in the poking threshold to gate W75K/L80E. The substantial increase in the depth required to gate the channel suggests that these channels are less sensitive to poking. Would it be possible to compare the depth at which these two patches show activity and the depth at which the other 22 cells ruptured? Line 161 mentions that the rupture threshold of HEK cells is close to the gating of OSCA3.1 at 13.8 µm.

      The distance just before the cell ruptured in 22 cells with no response was 12.5 +/- 2.5 um. The distance at which the cells ruptured was 0.5 um more (13 +/- 2.5 n=22). We have added this last value in line #137.

      (2) Would it be possible in Figures 2 panels b and c, 3, and figure 4 to label the WT as WT OSCA1.2?

      We thank the reviewer for pointing this out. We agree this modification will improve the clarity of the figures and have changed the figures to follow the reviewer’s suggestion.

      (3) Can you provide a western blot of the mutations described in Figure 2? This would provide insight into the amount of protein at the cell surface and available to respond to poking, the stretch data shows that these channels are in the membrane but does not show if they are in the membrane in similar quantities.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

      (4) The functional differences between the two channels are projected to be tied to several distinct point mutations, however, the data could be strengthened by additional point mutations at all sites to show that the phenotypes are due to the mutations specifically not just any mutation in the region.

      We thank the reviewer for this suggestion. We agree that the suggested experiments will further improve the quality of the results, but we are unable to perform such experiments due to the authors having moved on from the respective labs.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      This manuscript from Mukherjee et al examines potential connections between telomere length and tumor immune responses. This examination is based on the premise that telomeres and tumor immunity have each been shown to play separate, but important, roles in cancer progression and prognosis as well as prior correlative findings between telomere length and immunity. In keeping with a potential connection between telomere length and tumor immunity, the authors find that long telomere length is associated with reduced expression of the cytokine receptor IL1R1. Long telomere length is also associated with reduced TRF2 occupancy at the putative IL1R1 promoter. These observations lead the authors towards a model in which reduced telomere occupancy of TRF2 - due to telomere shortening - promotes IL1R1 transcription via recruitment of the p300 histone acetyltransferase. This model is based on earlier studies from this group (i.e. Mukherjee et al., 2019) which first proposed that telomere length can influence gene expression by enabling TRF2 binding and gene transactivation at telomere-distal sites. Further mechanistic work suggests that G-quadruplexes are important for TRF2 binding to IL1R1 promoter and that TRF2 acetylation is necessary for p300 recruitment. Complementary studies in human triple-negative breast cancer cells add potential clinical relevance but do not possess a direct connection to the proposed model. Overall, the article presents several interesting observations, but disconnection across central elements of the model and the marginal degree of the data leave open significant uncertainty regarding the conclusions.

      Strengths:

      Many of the key results are examined across multiple cell models.

      The authors propose a highly innovative model to explain their results.

      Weaknesses:

      Although the authors attempt to replicate most key results across multiple models, the results are often marginal or appear to lack statistical significance. For example, the reduction in IL1R1 protein levels observed in HT1080 cells that possess long telomeres relative to HT1080 short telomere cells appears to be modest (Supplementary Figure 1I). Associated changes in IL1R1 mRNA levels are similarly modest.

      Related to the point above, a lack of strong functional studies leaves an open question as to whether observed changes in IL1R1 expression across telomere short/long cancer cells are biologically meaningful.

      Statistical significance is described sporadically throughout the paper. Most major trends hold, but the statistical significance of the results is often unclear. For example, Figure 1A uses a statistical test to show statistically significant increases in TRF2 occupancy at the IL1R1 promoter in short telomere HT1080 relative to long telomere HT1080. However, similar experiments (i.e. Figure 2B, Figure 4A - D) lack statistical tests.

      TRF2 overexpression resulted in ~ 5-fold or more change in IL1R1 expression. Compared to this, telomere length-dependent alterations in IL1R1 expression, although about 2-fold, appear modest (~ 50% reduction in cells with long telomeres across different model systems used). Notably, this was consistent and significant across cell-based model systems and xenograft tumors (see Figure 1). Unlike TRF2 induction, telomere elongation or shortening vary within the permissible physiological limits of cells. This is likely to result in the observed variation in IL1R1 levels. For biological relevance, we further demonstrated that IL1 signalling in TNBC tissue and tumor organoids, and M2 macrophage infiltration, was significantly dependent on telomere length. Details of tests of significance were included in the individual figure legends. Based on the comment here we will expand on it in a dedicated paragraph in the methods section to make the information clearer for readers. We noticed that the stars (*) denoting statistical significance were omitted in some ChIP-experiment figures. This was likely an error during figure assembly for PDF conversion. We thank the reviewer for bringing this up; necessary changes will be made in the revised manuscript.

      Reviewer #2 (Public Review):

      This study highlights the role of telomeres in modulating IL-1 signaling and tumor immunity. The authors demonstrate a strong correlation between telomere length and IL-1 signaling by analyzing TNBC patient samples and tumor-derived organoids. Mechanistic insights revealed non-telomeric TRF2 binding at the IL-1R1. The observed effects on NF-kB signaling and subsequent alterations in cytokine expression contribute significantly to our understanding of the complex interplay between telomeres and the tumor microenvironment. Furthermore, the study reports that the length of telomeres and IL-1R1 expression is associated with TAM enrichment. However, the manuscript lacks in-depth mechanistic insights into how telomere length affects IL-1R1 expression. Overall, this work broadens our understanding of telomere biology.

      The mechanism of how telomere length affects IL1R1 expression involves sequestration and reallocation of TRF2 between telomeres and gene promoters (in this case, the IL1R1 promoter). We have previously shown this across multiple genomic sites (Mukherjee et al, 2018; reviewed in J. Biol. Chem. 2020, Trends in Genetics 2023). We have described this in the manuscript along with references citing the previous works. A scheme explaining the model was provided as Additional Supplementary Figure 1, along with a description of the mechanistic model.

      Figure 1-4 in main figures describe the molecular mechanism of telomere-dependent IL1R1 activation. This includes ChIP data for TRF2 on the IL1R1 promoter in long/short telomeres, as well as TRF2-mediated histone/p300 recruitment and IL1R1 gene expression. We further show how specific acetylation on TRF2 is crucial for TRF2-mediated IL1R1 regulation (Figure 5).

      Reviewer #3 (Public Review):

      Summary:

      In this manuscript, entitled "Telomere length sensitive regulation of Interleukin Receptor 1 type 1 (IL1R1) by the shelterin protein TRF2 modulates immune signalling in the tumour microenvironment", Dr. Mukherjee and colleagues pointed out clarifying the extra-telomeric role of TRF2 in regulating IL1R1 expression with consequent impact on TAMs tumor-infiltration.

      Strengths:

      Upon careful manuscript evaluation, I feel that the presented story is undoubtedly well conceived. At the technical level, experiments have been properly performed and the obtained results support the authors' conclusions.

      Weaknesses:

      Unfortunately, the covered topic is not particularly novel. In detail, the TRF2 capability of binding extratelomeric foci in cells with short telomeres has been well demonstrated in a previous work published by the same research group. The capability of TRF2 to regulate gene expression is well-known, the capability of TRF2 to interact with p300 has been already demonstrated and, finally, the capability of TRF2 to regulate TAMs infiltration (that is the effective novelty of the manuscript) appears as an obvious consequence of IL1R1 modulation (this is probably due to the current manuscript organization).

      Here we studied the TRF2-IL1R1 regulatory axis (not reported earlier by us or others) as a case of the telomere sequestration model that we described earlier (Mukherjee et al., 2018; reviewed in J. Biol. Chem. 2020, Trends in Genetics 2023). This manuscript demonstrates the effect of the TRF2-IL1R1 regulation on telomere-sensitive tumor macrophage recruitment. To the best of our knowledge, no previous study connects telomeres of tumor cells mechanistically to the tumor immune microenvironment. Here we focused on the IL1R1 promoter and provided mechanistic evidence for acetylated-TRF2 engaging the HAT p300 for epigenetically altering the promoter. This mechanism of TRF2 mediated activation has not been previously reported. Further, the function of a specific post translational modification (acetylation of the lysine residue 293K) of TRF2 in IL1R1 regulation is described for the first time. Additional experiments showed that TRF2-acetylation mutants, when targeted to the IL1R1 promoter, significantly alter the transcriptional state of the IL1R1 promoter. To our knowledge, the function of any TRF2 residue in transcriptional activation had not been previously described. Taken together, these demonstrate novel insights into the mechanism of TRF2-mediated gene regulation, that is telomere-sensitive, and affects the tumor-immune microenvironment. We are considering the suggestion to reorganize the manuscript to highlight the novel aspects of our work more convincingly.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      (1) Please expand methods with additional details related to cell co-culture, such as cell numbers and duration.

      We thank the reviewer for the careful reading and constructive suggestions and we are sorry to make you confused. We have added the experimental details (manuscript line 551-553) related to co-culture in the revised manuscript.

      (2) Please unify the writing of the abbreviation of small extracellular vesicles in the text, figure, and caption.

      Thank you for your comments. We have unified the abbreviation of extracellular vesicles to sEVs in the revised manuscript.

      (3) The effects of components other than sEVs in mechanically stimulated osteocyte CM on the proliferation of NSCLC cells should be evaluated.

      We evaluated the effects of SF, lEVs and sEVs in osteocyte CM on NSCLC cell proliferation under mechanical stimulation, and found that sEVs had the most obvious inhibition on NSCLC cell proliferation, as shown in the revised Supplemental Figure 4c, d.

      (4) In addition to osteocytes and osteoblasts, the effects of other types of cells on the proliferation of NSCLC cells should be detected. It is recommended to add at least one type of cell from an infrequent metastatic site of NSCLC as a negative control.

      We thank the reviewer for the suggestion. We added NCM460 cell line (derived from intestinal epithelium) as a negative control and found that NCM460 had no significant effect on NSCLC cell proliferation, as shown in Figure 1d. These experiments were conducted before our last submission.

      (5) The bone microenvironment is complex. It is recommended to evaluate the effect of bone marrow-derived sEVs on NSCLC to validate whether the tumor suppressive effect of osteocyte sEVs is unique.

      We thank the reviewer for the suggestion. We agree with the reviewer’s comments that the bone microenvironment is complex. We explored the effect of bone marrow-derived sEVs on NSCLC cell proliferation and found that bone marrow-derived sEVs promoted NSCLC cell proliferation, as shown in Supplemental Figure 2g, h in the revised manuscript.

      (6) The description of exercise preconditioning is not clear enough. It is recommended to supplement the pattern diagram to improve readability. Exercise preconditioning should be further discussed by the Authors.

      Thank you for your comments and we are sorry to make you confused. We have added the pattern diagram of the exercise preconditioning in Supplemental Figure 6a.

      Reviewer #2 (Recommendations For The Authors):

      (1) The histological images are analyzed in a qualitative manner, with no description of the methodology used. A quantitative assessment of the distance and level of Ki-67+ NSCLC cells needs to be performed in human and murine tissues. Because in bone metastases cancer cells are frequently mixed with bone marrow cells, the inclusion of a cell marker to identify NSCLC cells is needed for proper interpretation of the imaging data.

      We thank the reviewer for the careful reading and constructive suggestions. We conducted the suggested quantitative assessment and descripted the methodology in the revised manuscript. The results showed that Ki-67 was lower in tumor cells adjacent to bone tissue than in the surrounding tumor cells (Figure 1a, b).

      In order to effectively identify NSCLC cells in bone metastases, GFP-expressing NSCLC cells were used in the animal model. We have added the immunofluorescence analysis of GFP and CCND3 in Supplemental Figure 4e, 4g, 5 and 6b.

      (2) The authors rely on KI-67 as a marker of proliferation. Yet, it is intriguing that some osteocytes, non-proliferating cells by definition, are often positive for this marker, which questions the specificity of the staining. The authors should provide the proper immunostaining controls to check for specificity and use additional markers of proliferation to confirm these results.

      We thank the reviewer for the suggestions. Ki-67 staining was wildly used to determine the dormancy of tumor cells in previous studies [1-4]. To confirm the results of Ki-67 staining, we used cyclin D3 (CCND3) as an additional marker of proliferation as suggested by the reviewer. We added the immunofluorescence analysis of CCND3 in Supplemental Figure 4e, 4g, 5 and 6b, which is consistent with the result of the quantitative immunofluorescence analysis of KI-67.

      (3) The lack of proper controls in the in vivo experiments makes the interpretation of the data difficult. For instance, in the preconditioning experiment, it is likely that the bone mass increases. thus, these mice start with high bone mass than the control mice. The lack of a proper control (naive mice exposed to moderate exercise) does not allow testing if the presence of cancer cells still promotes bone loss in this group. The authors need to include naive mice or analyze the bones from the non-injected contralateral legs.

      We thank the reviewer for the thoughtful comments and we are sorry to make you confused. We absolutely agree with the reviewer that the bone mass increases after exercise preconditioning. Multiple tissues and organ systems are affected by exercise, initiating diverse homeostatic responses. Although exercise preconditioning effectively suppressed bone metastasis progression of NSCLC as mentioned in the previous manuscript, we cannot immediately conclude that it is completely dependent on osteocytes to function. The mechanism of exercise preconditioning in suppressing bone metastasis progression is complex which still need further exploration. The revised manuscript has expanded the discussion on this area (manuscript line 326-328).

      (4)Further, validating the in vivo work with other osteocyte-like cells or primary osteocytes would have strengthened the results.

      We thank the reviewer for the suggestion. We have conducted the experiments of co-culture of MLO-A5 (another type of osteogenic cell line) and NSCLC cells as shown in Supplemental Figure 1g. Not surprisingly, MLO-A5 cells also had an inhibitory effect on proliferation of NSCLC cells.

      (5) The data on miRNA99b-3p on NSCLC in Supplementary Figure 3 is not convincing. The positive cells are difficult to see and most of the osteocyte lack nuclei. Better data, in humans and the mouse model, is needed to confirm that osteocytes produce miRNA99b-3p.

      We thank the reviewer for the comments and we are sorry to make you confused. In this study, we used miRCURY LNA miRNA detection probes in ISH without staining the nuclei in the tissues, which method have been used in our previous studies with others [5-7]. Detailed experimental procedures for ISH of miRNA have been added in the revised manuscript (manuscript line 461-474).

      (6) The authors do not provide a piece of data supporting that osteocytes are responsible for any of the effects seen by the interventions done in the in vivo models. Osteocytes, as well as other bone cells, can respond to mechanical stimulation and thus could virtually be responsible for the protective effects of mechanical loading or moderate exercise. In vivo experiments demonstrating a direct role of osteocytes-produced miRNA99b-3p are needed to support the notion that osteocytes maintain tumor dormancy in NSCLC bone metastasis.

      We thank the reviewer for the thoughtful comments and suggestion. We constructed in vivo model by injecting with antagomir-NC and antagomir-99b-3p with mechanical loading [8]. The results showed that the injection of antagomiR-99b-3p could partially and effectively rescue the inhibitory effect on NSCLC cell proliferation (Figure 4i-k).

      (7) Further, the authors solely rely on Ki-67 as a marker of dormancy. Completing this analysis with an assessment of a dormant gene expression signature or in vivo studies assessing tumor dormancy directly would be needed to confirm this notion.

      We thank the reviewer for the suggestion. We conducted the suggested experiment by using CCND3 as an additional dormancy marker. We added the immunofluorescence analysis of CCND3 in Supplemental Figure 4e, 4g, 5 and 6b, which is consistent with the result of the quantitative immunofluorescence analysis of Ki-67.

      References

      [1] Guba M, Cernaianu G, Koehl G et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res, 2001, 61: 5575-9.

      [2] Bliss Sarah A, Sinha Garima, Sandiford Oleta A et al. Mesenchymal Stem Cell-Derived Exosomes Stimulate Cycling Quiescence and Early Breast Cancer Dormancy in Bone Marrow. Cancer Res, 2016, 76: 5832-5844.

      [3] Correia Ana Luísa, Guimaraes Joao C, Auf der Maur Priska et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021, 594: 566-571.

      [4] Hu Jing, Sánchez-Rivera Francisco J, Wang Zhenghan et al. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature, 2023, 616: 806-813.

      [5] Song Qiancheng, Xu Yuanfei, Yang Cuilan et al. miR-483-5p promotes invasion and metastasis of lung adenocarcinoma by targeting RhoGDI1 and ALCAM. Cancer Res, 2014, 74: 3031-42.

      [6] Carotenuto Pietro, Hedayat Somaieh, Fassan Matteo et al. Modulation of Biliary Cancer Chemo-Resistance Through MicroRNA-Mediated Rewiring of the Expansion of CD133+ Cells. Hepatology, 2020, 72: 982-996.

      [7] Lv Yan, Wang Yin, Song Yu et al. LncRNA PINK1-AS promotes Gαi1-driven gastric cancer tumorigenesis by sponging microRNA-200a. Oncogene, 2021, 40: 3826-3844.

      [8] Zhang Yun, Li Shuaijun, Jin Peisheng et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun, 2022, 13: 2447.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      TRIP13/Pch2 is a conserved essential regulator of meiotic recombination from yeast to humans. In this manuscript, the authors generated TRIP13 null mice and Flag-tagged TRIP13 knock-in mice to study its role in meiosis. They demonstrate that TRIP13 regulates MORMA domain proteins and is essential for meiotic completion and fertility. The main impact of this manuscript is its clarification of the in vivo function of TRIP13 during mouse meiosis and its previously unrecognized role as a dose-sensitive regulator of meiosis.

      Strengths:

      Two previously reported Trip13 mutations in mice are both hypomorphic alleles with distinct phenotypes, precluding a conclusion on its function. This study for the first time generated the TRIP13 null mice, definitively revealing the function of TRIP13 in meiosis. The authors also show the novel localization of TRIP13 at SC and its independence from the axial element components. The finding of dose-sensitive regulation of meiosis by TRIP13 has implications in understanding human meiosis and disease phenotypes.

      Weaknesses:

      This manuscript would be more impactful if more mechanistic advancements could be made. For example, the authors could follow up with one of the new interactors identified by MS to offer new insight into the molecular function of TRIP13.

      We agree that it would be interesting to follow up on new candidate interactors but think that it would be more feasible to follow up on them in future studies.

      Reviewer #2 (Public Review):

      Summary and Strengths:

      In this manuscript, Chotiner and colleagues demonstrated the localization of TRIP13 and clarified the phenotypes of Trip13-null mice in mouse meiosis. The meiotic phenotypes of Trip13 have been well characterized using the hypomorph alleles in the literature. However, the null phenotypes have not been examined, and the localization of TRIP13 was not clearly demonstrated. The study fills these important knowledge gaps in the field. The demonstration of TRIP13 localization to SC in mice provides an explanation of how HOMRA domain proteins are evicted from SC in diverse organisms. This conclusion was confirmed in both IF and TRIP13-tagged Tg mice. Further, the phenotypes of Trip13-null mice are very clear. The manuscript is well crafted, and the discussion section is well organized and comprehends the topic in the field. All in all, the manuscript will provide important knowledge in the field of meiosis.

      Weaknesses:

      The heterozygous phenotypes demonstrate that TRIP13 is a dosage-sensitive regulator of meiosis. In relation to this conclusion, as summarized in the discussion section, other mutants defective in meiotic recombination showed dosage-sensitive phenotypes. However, the authors did not examine meiotic recombination in the Trip13-null mice.

      Meiotic recombination was extensively characterized in Trip13 severe hypomorph mutants in two previous studies: gamma-H2AX, BLM, BRCA1, ATR, RPA, RAD51, DMC1, MLH1 (Li and Schimenti, 2007; Roig et al., 2010). All the meiotic defects in our Trip13-null mice were also present in Trip13 severe hypermorph mutants: meiotic arrest, defects in chromosomal synapsis, asynapsis at chromosomal ends, and accumulation of HORMAD1/2 on the SC axis. Therefore, the defects in meiotic recombination in Trip13-null mice are expected to be similar to those in Trip13 severe hypermorph mutants and thus we did not examine the proteins involved in meiotic recombination in the Trip13-null mutant.

      Reviewer #3 (Public Review):

      Summary:

      The authors perform a thorough examination of the phenotypes of a newly generated Trip13 null allele in mice, noting defects in chromosome synapsis and impact on localization of other key proteins (namely HORMADs) on meiotic chromosomes. The vast majority of data confirms observations of several prior studies of Trip13 alleles (moderate and severe hypomorphs). The original or primary aims of the study aren't clear, but it can be assumed that the authors wanted to better study the role of this protein in evicting HORMADs upon synapsis by studying phenotypes of mutants and better characterizing TRIP13 localization data (which they find localizes to the central element of synapsed chromosomes using a new epitope-tagged allele). Their data confirm prior reports and are consistent with localization data of the orthologous Pch2 protein in many other organisms.

      Strengths:

      The quality of data is high. Probably the most important data the authors find is that TRIP13 is localized along the CE of synapsed chromosomes. However, this was not unexpected because PCH2 is also similarly localized. Also, the authors use a clear null (deletion allele), whereas prior studies used hypomorphs.

      Weaknesses:

      There is limited new data; most are confirmatory or expected (i.e., SC localization), and thus the impact of this report is not high. The claim that TRIP13 "functions as a dosage-sensitive regulator of meiosis" is exaggerated in my opinion. Indeed, the authors make the observation that hets have a phenotype, but numerous genes have haploinsufficient phenotypes. In my opinion, it is a leap to extrapolate this to infer that TRIP13 is a "regulator" of meiosis. What is the definition of a meiosis regulator? Is it at the apex of the meiosis process, or is it a crucial cog of any aspect of meiosis?

      TRIP13 is not haploinsufficient, as Trip13 heterozygotes were still viable and fertile (albeit with defects in meiosis). TRIP13 is an ATPase and changes the conformation of meiosis-specific proteins such as HORMAD proteins. TRIP13 is essential for meiosis and its mutations cause defects in both meiotic recombination and chromosomal synapsis. Reviewer 1 stated that “TRIP13/Pch2 is a conserved essential regulator of meiotic recombination from yeast to humans”. Therefore, we feel that TRIP13 can be called a regulator of meiosis.

      Reviewer #1 (Recommendations For The Authors):

      A schematic illustration of SC structure, the components involved, and the main finding, would be helpful for readers to better understand the advancement made by this study.

      We have now added a schematic illustration in a new panel - Figure 7C.

      Fig. 1B, the stage with diplotene cells should be XII.

      The pachytene cells (Pac) were mis-labelled as diplotene cells. Corrected.

      Fig. 1C, color mislabeled.

      Corrected.

      Reviewer #2 (Recommendations For The Authors):

      The manuscript will provide important knowledge in the field of meiosis. I support the publication of this study. I have some suggestions to improve and polish the manuscript.

      Major points:

      (1) The heterozygous phenotypes demonstrate that TRIP13 is a dosage-sensitive regulator of meiosis. In relation to this conclusion, as summarized in the discussion section, other mutants defective in meiotic recombination showed dosage-sensitive phenotypes. Given the function of HORMAD1 in meiotic recombination, it would be informative if the authors could examine how major makers of meiotic recombination behave in Trip13-null meiosis.

      Please see our response to Weaknesses from Reviewer #2.

      (2) Relating to the above point, the complete lack of synapsis on the sex chromosomes in the Trip13-null meiosis is impressive. This result raises a question as to whether the pathway to designate XY-obligatory crossover (which can be detected with large foci of ANKRD31 and MEI4/REC114 at PAR) is affected or not. It would be interesting to examine whether the ANKRD31 and MEI4/REC114 foci are present on PAR in Trip13-null meiosis.

      We have performed immunofluorescent analysis of REC114 in spermatocytes. In Trip13-null pachytene-like spermatocytes, X and Y chromosomes are not synapsed. REC114 still formed one focus each on the unsynapsed X and Y chromosomes. We have added this new data in the Results as a new supplementary figure (Figure 4 -supplement 1).

      (3) Figure 4 can be improved if there are quantified data for each phenotype. These phenotypes look nearly complete, but it would be informative to show the penetrance of these phenotypes.

      Because some chromosomes have unsynapsed ends, resulting in two centromere or telomere foci, the total number of centromere or telomere foci is always higher in Trip13-null pachytene-like spermatocytes than wild type pachytene spermatocytes. Therefore, we did not count the foci of centromeres and telomeres. Consistently, the centromere and telomere markers localized as expected in both wild type and Trip13-null spermatocytes.

      (4) I am not fully convinced by these photos: "synapsed sister chromatids (Figure 6B)" and "Sycp2-/- spermatocytes formed short stretches of synapsis (Figure 6C)". The authors may try confocal microscopy with super-resolution deconvolution as they did for other data.

      These have been previously demonstrated. The “synapsed sister chromatids (Figure 6B)” were previously demonstrated by confocal microscopy with super-resolution deconvolution (Guan et al., 2020). The short stretches of synapsis in Sycp2-/- spermatocytes was previously demonstrated by electron microscopy (Tripartite SC structure) and SYCP1 immunofluorescence (Yang et al., 2006). We have revised the text by citing the previous evidence and the publications.

      Minor points:

      (1) Line 19-21: "Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC". These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. This information can be added to the abstract. Otherwise, it sounds like these are totally new findings, as written.

      This information is now added to the abstract: “These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles.”

      (2) The introduction section seems too long and contains unnecessary information. Some molecular details that are not touched in the result section can be deleted (e.g., Line 65-73).

      We would like to keep the molecular details on the two conformation states, as it provides biochemical background on TRIP13-HORMAD interactions.

      (3) Introduction, Line 92. A rationale can be added as to why the authors characterized the Trip13-null allele.

      a rationale has been added as follows: “To determine the effect of complete loss of TRIP13, we characterized Trip13-null mice.”

      (4) Line 205: Typo "TRRIP13". Corrected.

      Reviewer #3 (Recommendations For The Authors):

      Just a few recommendations:

      (1) In my opinion, the title is an overreach. "Regulator" invokes other concepts such as transcription factors.

      Please see our explanation in response to weaknesses from Reviewer #3.

      (2) The first sentence of the results deals with TRIP13 expression in only 3 tissues. The authors might look at more comprehensive RNA-seq data from mice and humans.

      We examined TRIP13 protein expression in 8 mouse tissues by WB and found that TRIP13 protein was abundant in testis but present at a very low level in ovary and liver (Figure 1A). We feel that readers can easily look up the relative transcript levels of Trip13 in more tissues from mice and humans from NCBI database under “Gene”.

      (3) The null allele is semi-lethal. Is body size affected? Were the mice abnormal in any other ways, given that TRIP13 has been implicated in other diseases and processes, and is expressed in other tissues (TRIP13 stands for Thyroid receptor interacting protein).

      The body weight of 2-3 month-old males was not significantly different between wild type (24.3±2.8 g, n=5) and Trip13 KO mice (22.8±1.7 g, n=5, p=0.3, Student’s t-Test). We have included the body weight information in the revised manuscript. We didn’t observe abnormal somatic defects in the viable Trip13-null mice, nor did the authors report any in the Trip13 hypomorph mutants in two previous studies (Li and Schimenti, 2007; Roig et al., 2010).

      (4) Line 276 : It would be nice to elaborate on the "spatial explanation."

      We meant that TRIP13 localizes to SC while HORMAD proteins are removed from SC upon chromosomal synapsis, thus providing a spatial explanation. However, we have now deleted “spatial”.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      However, there are several concerns to be explained more in this study. In addition, some results should be revised and updated.

      Thank you for your comments. The concerns were addressed by the description and experiment.

      Some results were revised and updated accordingly.

      Reviewer #2 (Public Review):

      The minor weakness of the study is inconsistent use of terminology throughout the manuscript, occasional logic-jump in their flow, and missing detailed description in methodologies used either in the text or Materials and Methods section, which can be easily rectified.

      Thank you for your review. We have revised the manuscript and corrected errors according to your comments.

      Reviewer #3 (Public Review):

      Importantly, besides the Miwi ubiquitination experiment which is performed in a heterologous and therefore may not be ideal for extracting conclusions, the possible involvement of ubiquitination was not shown for any other proteins that the authors found that interact with FBXO24. Could histones and transition proteins be targets of the proposed ubiquitin ligase activity of FBXO24, and in its absence, histone replacement is abrogated?

      Thank you for your comments. The histones and transition proteins were not found in the immunoprecipitates of FBXO24, suggesting they are not the direct targets of FBXO24, shown in Figure S3G.

      Miwi should be immunoprecipitated and Miwi ubiquitination should be detected (with WB or mass spec) in WT testis.

      We agree with this suggestion. In the revision, the expression and ubiquitination of MIWI were detected in WT testis by the immunoprecipitation and ubiquitination assay, as shown in Figure 8H.

      Therefore, the claim that FBXO24 is essential for piRNA biogenesis/production (lines 308, 314) is not appropriately supported.

      We appreciate the comment. We have revised the description and modified the claim on page 11.

      Reviewing Editor's note for revision

      (1) As noted by all three reviewers, as currently written the rationale to focus on MIWI is not entirely clear. A transitional narrative to focus on MIWI needs to be provided as well as an explanation for how the absence of FBXO24 as an E3 ubiquitin ligase is responsible for the observed mRNA and protein differential expression.

      We appreciate your comments. We have supplemented the transitional narrative by focusing on MIWI and explained mRNA and protein differential expression upon FBXO24 deletion, shown on Page 7 and Page 13, respectively.

      (2) As it can be indirect, mass spec detection of MIWI in testis co-IP and MIWI ubiquitination should be detected (with WB or mass spec) in WT testis.

      In the revision, the expression and ubiquitination of MIWI were detected in WT testis by the immunoprecipitation and ubiquitination assay, as shown in Figure 8H.

      (3) Please tone down the claim that FBXO24 is essential for piRNA biogenesis/production as it requires further evidence.

      We have revised the description and modified the claim on page 11.

      (4) Ontology analysis of the genes with abnormally spliced mRNAs to provide an explanation for developmental defects.

      In the revision, we have performed the ontology analysis and provided new data regarding the abnormally spliced genes, as shown in Figure S4D.

      Reviewer #1 (Recommendations For The Authors):

      Major comments

      (1) The authors performed mainly with the WT (or knock-in) and Fbxo24-knockout mouse model. Do the heterozygous males and their sperm have any physiological defects like FBXO24-deficient mice?

      This is a good question. We did the phenotype analysis and found that heterozygous males are all fertile, and their sperm do not have any physiological defects.

      (2) Fbxo24-KO sperm carries swollen mitochondria. How do the mitochondria affect sperm function?

      Thank you for raising this interesting question. Based on our data and published literature, the defective mitochondria were associated with energetic disturbances and reduced sperm motility, as shown on Page 12.

      (3) TEM images show that Fbxo24-KO spermatids carry swollen mitochondria and enlarged chromatoid bodies. How the swollen mitochondria and enlarged chromatid are defective for sperm motility and flagellar development, requires more explanation. In addition, it is unclear how the enlarged diameter of the chromatoid body is critical for normal sperm development.

      Thank you for your comments. The chromatoid bodies are considered to be engaged in mitochondrial sheath morphogenesis. Analysis of the chromatoid bodies' RNA content reveals enrichment of PIWI-interacting RNAs (piRNAs), further emphasizing the role of the chromatoid bodies in post-transcriptional regulation of spermatogenetic genes. We added this explanation on Page 12-13.

      (4) The authors only show band images to compare the protein amounts between WT and KO sperm and round spermatids. As the blots for loading controls are not clear, the authors should quantify the protein levels and perform a statistical comparison.

      We quantified the protein levels and performed a statistical comparison, as shown in Figure S3B.

      (5) The authors show the defective sperm head structure from Fbxo24-KO sperm in Figure 5. However, the Fbxo24-KO sperm heads seem quite normal in Figure 3. How many sperm show defective sperm head structure? In addition, the authors observed altered histone-to-protamine conversion in sperm, but it is unclear whether the altered nuclear protein conversion causes morphological defects in the sperm head.

      We appreciate the comments. In our study, we found over 80% of Fbxo24 KO sperm showed defective structure in the sperm head. Altered histone-to-protamine conversion caused the decondensed nucleus of Fbxo24 KO sperm. Notably, in many knockout mice studies, impaired chromatin condensation is frequently associated with abnormal sperm head morphology, as shown in reference 15 of Page 8.

      (6) The authors compare the protein levels of RNF8, PHF7, TSSK6, which participate in nuclear protein replacement in sperm. However, considering the sperm is the endpoint for the nuclear protein conversion, it is unclear to compare the protein levels in mature sperm. The authors might want to compare the protein levels in developing germ cells.

      Thank you for your comment. Yes, we actually detected the protein levels of RNF8, PHF7, and TSSK6 in the testes, not in sperm. We have corrected it in the Figure 5E. We apologize for our carelessness.

      (7)This reviewer suggests describing more rationales for how the authors focus on the MIWI protein. Also, it is wondered whether MIWI is also detected from testis co-IP mass spectrometry.

      We agree with this suggestion. Since MIWI was a core component of CB and also identified as an FBOX24 interacting partner from our immunoprecipitation-mass spectrometry (IP-MS) (Table S1), we focused on the examination of MIWI expression between WT and Fbxo24 KO testes. We have added this description in the revision (see lines 191-193 on page 7).

      (8) The authors need to provide a more detailed explanation for how the altered piRNA production affects physiological defects in germ cell development. In addition, it will be good to describe more how the piRNAs affect a broad range of mRNA levels.

      Thank you for your comments. The previously published studies have demonstrated that piRNAs could act as siRNAs to degrade specific mRNAs during male germ cell development and maturation. We have cited these studies on lines 369-372 of Page 13.

      (9) The authors observed an altered splicing process in the absence of FBXO24. However, it is a little bit confusing how the altered splicing events affect developmental defects. Therefore, the authors should state which mRNAs have undergone abnormal splicing processes and provide ontology analysis for the genes.

      We have performed the ontology analysis and showed the new data in Figure S4D.

      Minor comments

      (1) Figure 1A-C - Statistical comparison is missed. Numbers for biological replication should be described in corresponding legends.

      Thank you for your careful review. We have provided the statistical comparison and the numbers for biological replication in the legends of Figure 1A-C.

      (2) Figure 1E, F - Current images can't clearly resolve the nuclear localization of the FBXO24 testicular germ cells. To clarify the intracellular localization, the authors should provide images with higher resolution.

      The resolution of Figure 1E, F was improved, as suggested. Thank you!

      (3) Figure 1E, F - Scale bar information is missing.

      The scale bars of Figure 1E, F were provided.

      (4) It will be much better to show the predicted frameshift and early termination of the protein translation in Fbxo24-knockout mice.

      The predicted frameshift of Fbxo24-knockout mice was added and shown in Figure S1B.

      (5) It is required to provide primer information for qPCR.

      The primer information for qPCR was provided, as shown in Table S7.

      (6) The authors describe that Fbxo24-KO sperm show abrupt bending of the tail. However, the description is unclear and the sperm shown in Figure 3C seems quite normal. The authors should clarify the abnormal bending pattern of the tail and show quantified results.

      Thank you for pointing out this issue. In Fbxo24 KO sperm, abnormal bending of the sperm tails mainly included neck bending and midpiece bending. We have shown them in Figure S3A.

      (7) The authors mention that Fbxo24-KO sperm have swollen mitochondria at the midpiece, but this is also unclear. How many mitochondria are swollen in Fbxo24-KO sperm?

      This is a good question. However, since it is very difficult to observe all of the mitochondria in each sperm using the electronic microscope, we could not quantify the swollen mitochondria in Fbxo24 KO sperm.

      (8) Scale bar information is missed - Fig 3C insets, Fig 3D, Fig 3F insets, 4A insets, Figure 4C insets.

      All the scale bars have been added.

      (9) How many sperm have annulus defects? In Figure 3F, WT sperm does not have an annulus, which could be damaged during sample preparation. Is the annulus defects in Fbxo24-KO sperm consistent?

      Thank you for asking these questions. Based on our results, about 30% of Fbxo24 KO sperm showed defective annulus structure. Since both TEM (Figure 3F) and SEM (Figure 3G) results clearly showed the defective annulus structure of Fbxo24 KO sperm, we believe the annulus defects are consistent and highly unlikely caused by sample preparation.

      (10) A Cross-section image for the endpiece of Fbxo24-KO sperm is not suitable. There is a longitudinal column structure of the principal piece.

      Thank you for your comments. It is difficult to observe a completely longitudinal structure of sperm tail under TEM. The cross-section of the endpiece and principal piece allowed us know the structure of the axoneme, ODFs and fibrous sheath (FS).

      (11) The endpiece of Fbxo24-KO sperm seems to have a normal axoneme. Do all endpieces of Fbxo24KO sperm have normal axoneme? Also, the authors need to describe whether an axonemal structure is damaged and disrupted in all Fbxo24-KO sperm.

      Our TEM data showed the axonemal structure was impaired in the endpiece of Fbxo24 KO sperm (See right panels of Figure 3H). Moreover, based on the ultrastructure analysis of TEM, we found over 90% of Fbxo24 sperm had a damaged axonemal structure.

      (12) Reference blots in Fig 3I, 3J, 4E (left), 5C and 5E are quite faint. The authors should replace the blot images.

      Thank you for pointing out this. We have rerun Western blot multiple times but could not obtain better images due to antibody sensitivity. However, we quantified the protein levels and performed a statistical comparison, as shown in Figure S3B, to establish a good readout from these images for the readers.

      (13) Loading controls are required - 7D-H.

      Done as suggested. Thanks!

      (14) How do the authors measure the midpiece length? From where to where? This should be clarified.

      Good question. We measured the midpiece length from the sperm neck to the sperm annulus by MitoTracker staining. We have clarified this on Page 16.

      (15) How are the bands for Fbxo24 shifted during IP in Fig 7A?

      The protein modification in the interaction may cause the band shift.

      (16) There are several typos throughout the manuscript. Please check carefully and fix them.

      Thank you for your careful review. We have corrected and fixed all the typos as far as we can.

      Reviewer #2 (Recommendations For The Authors):

      Major comments

      (1) Please provide a schematic of HA-Fbxo24 knock-in construct and strategy together with knockout (Figure S2) or even separately early in Figure S1. The description of using the transgenic mouse is mentioned even earlier than the knockout but there are no citations or methods provided in the text other than that listed in Materials and Methods.

      Thank you for your suggestion. As suggested, the schematic of the HA-Fbxo24 knock-in strategy has been supplemented in Figure S2A. The description of using the transgenic mouse has been added to the results, as shown on page 4 of lines 102-103.

      Also, it is not clear to what extent the phenotypic and molecular characterization of HA-transgenic mice is performed. For example, Lines 134-139: The use of Fbxo24-HA labeled transgenic mice results in the rescue of spermatogenesis and fertility as shown in Figure 2F by measuring the litter size. It is not clear how this observation leads the author to state that this rescues defects in spermiogenesis. Please clarify how and what other measures are taken to support this conclusion. Is the observed infertility due to defects in spermatogenesis or spermiogenesis?

      Thank you for your question. We crossed FBXO24-HATag males with FBXO24−/− females to obtain FBXO24−/−; FBXO24-HATag males. We examined the testes volume and histological morphology of FBXO24−/−; FBXO24-HATag males and found that they were similar to FBXO24+/−; FBXO24-HATag littermates, indicating that spermatogenesis was restored, as shown in Figure S2H.

      (2) Line 107 vs Line 114: Please use the terminology spermatogenesis and spermiogenesis consistently throughout the text. Earlier in the introduction, the authors clearly defined that spermatogenesis involves three phases, with the third phase referred to as spermiogenesis. However, the author concludes in the first line that "FBXO24 plays a role during spermatogenesis" while summarizing at the end of the paragraph that this protein is "expressed in haploid spermatids specifically during spermiogenesis". Therefore, it is not clear whether the authors conclude that FBXO24 is important for all of spermatogenesis (line 107) or only for part of spermiogenesis (line 114). Another example is line 219 vs. 238: At this point in the manuscript, it is again unclear whether the authors want to study molecular changes during spermatogenesis or spermiogenesis upon FBXO24 depletion. Many examples of such cases throughout the text, and it is recommended to be consistent in using more restrictive terminology whenever applicable for a clear interpretation.

      We thank you for your careful review. We have double-checked the terminology of spermatogenesis and spermiogenesis and made it consistent throughout the text of the revised manuscript.

      (3) It is not clear how rampant/frequent the Fbxo24-knockout sperm show defects in head morphology based on Figures 3C, 3F, and 5A since it seems that there are some sperm showing relatively normallooking sperm heads. Please provide quantification.

      We have performed the quantification and found that over 80% of Fbxo24 KO sperm showed defective structures in the sperm head.

      (4) Figure 3B: The authors describe in the figure legend that 3 mice were analyzed in each group. The standard deviation for the WT analysis is missing, or if the author wanted to set the WT value to 100%, the bar and scale shown on the y-axis do not fit. The value for WT looks more like 95%.

      We have indeed analyzed sperm motility based on the WT value set at 100% and have revised Figure 3B in the revision. We apologize for this oversight.

      (5) Figure 3 B and C: It is not clear how the motility is measured. Is CASA used (not described in Methods). The conclusion about abnormal flagellar bending in KO spermatozoa cannot be drawn from the static microscopic images alone. Please provide more details of motility analysis together with videos of live cell imaging.

      The sperm motility was measured manually using a hemocytometer, according to the reference.

      We provided the details of sperm motility analysis in the Materials and Methods section on Page 16.

      (6) Figure 3 I and J: These are one of a few figures that are not supported by statistical analysis. In particular, for 3I, GAPDH controls of WT and KO protein do not show equal loading, which could explain the lower expression of the KO protein. Please show normalized bar graphs with multiple biological replicates or at least show a representee technical replicat that shows equal loading of GAPDH to better support the conclusion.

      Thank you for your suggestion. Statistical comparison of relative protein expression was supplemented, as shown in new Figure S3B.

      (7) Line 184: It is not clear how the authors define a swollen mitochondrion? Are there any size criteria (roundness) that can be measured to distinguish between a swollen and a non-swollen mitochondrion? It is recommended to use another terminology as often 'swollen' implies there is a difference in osmolarity but there is no experiment to support this implication.

      Thank you for your comment. We have changed the “swollen” to “vacuolar” in the revision, as shown on Page 7.

      (8) Figure S4, without a bright field image, it is hard to see the purity and morphology of the isolated prep. Please provide the bright field images together or as overlaid images.

      We agree with your comment. We have provided the overlaid images in new Figure S4A.

      (9) There is a big logic jump in what prompts the authors to look MIWI protein level and link the observation to MIWI/piRNA pathway in both Introduction and Results while it is one of the main findings. It is recommended to provide a better rationale and logical flow in the text.

      Thank you for your suggestion. We have added a sentence explaining why we wanted to focus on studying MIWI expression (see lines 190-193 on page 7).

      Minor comments

      (1) Please keep all the conventions of gene vs. protein nomenclature. For example, write the genes mentioned in the figures in italics with the first letter in Capital, as it is done in the main part. Proteins should be in ALL CAPITAL like FBXO24.

      The names of gene and protein have been revised in the revision, as suggested.

      (2) In the MM section, the name of the manufacturer and the location of the materials used are missing in several sections. Please go back through the MM section and add this information in the appropriate places.

      Done as suggested. Thank you!

      (3) On page 4, the authors mentioned that "Further qPCR analysis of developmental testes and purified testicular cells showed that FBXO24 mRNA was highly expressed in the round spermatids and elongating spermatids (Fig 1B-C)". Please include statistical analyses for Fig 1B-C as well as for Fig 1A to support the written statements.

      Statistical comparison was supplemented, as shown in Figure 1. P-values are denoted in figures by *p < 0.05.

      (4) Figure 3E: Please describe in more detail how the length of the midpiece was measured. Was it based on TEM images or based on fluorescent images using MitoTracker?

      As we responded to Reviewer #1, we measured the midpiece length from the sperm neck to the sperm annulus by MitoTracker staining. We have clarified this in the Method and Material section on Page 16.

      (5) Line 431: In the "Electron Microscopy" section of the MM part, the author should indicate the ascending ethanol series (%) used.

      Done as suggested. Thank you!

      (6) Line 432: The thickness of the sections prepared is missing, as well as an indication of the microtome used.

      We have added thickness and the microtome in the Method and Material section on Page 16.

      (7) Line 433: If the generated tiff files have been processed with Adobe Photoshop, this information is missing.

      We have provided information on the usage of Adobe Photoshop for the generation of tiff files on Page 17.

      (8) Lines 445, 452, 467: In some places in the paper, the temperature is written with a space between the number and {degree sign}C, and sometimes it is not. Please go through the paper and make it consistent. The usual spelling is 4{degree sign}C.

      We have gone through the manuscript and checked all the spelling of temperature writing to make them consistent. Thank you for careful review.

      (9) Line 469: The gel documentation system used is not mentioned.

      Done as suggested. Thank you!

      (10) Line 469: The 'TM' should be superscripted.

      Done as suggested.

      (11) Line 489: A space is missing between the changes and the parenthesis.

      Done as suggested.

      (12) Line 495-496: The authors write that the fractions enriched with round spermatids after sedimentation were collected manually. Was a determination of cell concentration - e.g., 2 x106 cells/ml -performed after collection of the cells? How were the cells stored until use? Please add the sedimentation time and used temperature.

      Store the cell in the 1´ Krebs buffer on ice. The cell sediment was through a BSA density gradient for 1.5 h at 4°C. The cell concentration was determined after collection, as shown on Page 18.

      (13) Line 505: spelling error. Instead of " manufacturer's procedure" it is written manufactures' instructions.

      The spelling error was corrected.

      (14) Line 520: Please write a short sentence on how the purification of the 16-40 nt long RNA was performed.

      The length of 16–40 nt RNA was enriched by polyacrylamide gel electrophoresis. We added this information on Page 19 of line 531.

      (15) Line 528: The version of the used GraphPad software is missing.

      The version of GraphPad software was supplemented, as shown on Page 19.

      (16) Line 677: For qPCR analyses, the number of mice analyzed (N) and a statistical evaluation are missing.

      The statistical comparison and the numbers for biological replication were added, as shown on Page 26.

      (17) Figure 3D: Please add a scale bar.

      Done as suggested. Thanks!

      (18) Line 371 and Line 377: Two times "in summary" is written. Please make one summary for the whole paper.

      This sentence was revised, as shown in Page 13.

      (19) Line 382: To be consistent in the whole paper, please write Figure 10 in bold letters.

      Done as suggested.

      (20) Please make the size and font of the references consistent with the main text.

      Done as suggested. Thanks again for your careful review.

      Reviewer #3 (Recommendations For The Authors):

      I would like to see the description of the FBXO24 immunoprecipitation experiment performed in HEK293T cells. This somatic cell line does not normally express Miwi, so how Miwi was detected in FBXO24 mCherry IP beads? It is not mentioned if Miwi is expressed from a recombinant vector in this experiment. Similarly, I would like to see a better description of the experiment described in the same paragraph towards the end of it with the ubiquitin peptides, it is not clear.

      Thank you for your comments. FBXO24-mCherry was expressed in HEK293T cells and the immunoprecipitates was incubated with the protein lysate of the testes (see lines 268-272 on Page 10). The description of the ubiquitin experiment was added as well, as shown in lines 283-286 on Page 10.

      Line 263: I think the term ectopic here is not appropriate, a correction is needed.

      We have changed “ectopic” to “increased” in the revision (see line 268 on Page 10).

      I would like the authors to provide a tentative explanation or evidence of why FBXO24 KO males are completely sterile, even though there are still mature sperm produced with some motility. Since there are defects in nuclear condensation it will be very relevant to check DNA damage/fragmentation, which could contribute to the sterility phenotype.

      This is a good suggestion. We reanalyzed the sperm DNA damage by TUNEL staining and shown the new data in Figure S3E-F.

      Line 213: There have been some conflicting reports about the role of RNF8 in spermiogenesis, but a recent report has shown that RNF8 is not involved in histone PTMs that mediate histone to protamine transition (Abe et al Biol Reprod 2021 https://doi.org/10.1093%2Fbiolre%2Fioab132).

      Thank you for your comment. We have cited this critical reference and discussed it in Discussion section on Page 12.

      Figure 7: I would like to see zoomed-out views of the affected exons, so that flanking unaffected exons can be used as a reference for unaffected splicing. Most of the genome browser views in this image only show affected exons and it is impossible to see if these alone are affected or if the reduced RNAseq coverage in those exons is a result of overall reduced mapped reads in these genes. Also, a fixed Y axis with the same max value should be shown for these genome browser snapshots so that the expression level is comparable between the two genotypes.

      Thank you for your comments. Loading control of RT-PCR and scale range of Y axis were added in new Figure 7.

      Minor corrections:

      Line 70: correct "..functions as protein-protein interaction..".

      Thank you for your careful review. We have corrected this sentence (see line 69 on Page 3).

      Line 101: correct "..qPCR analysis of developmental testis..".

      We have corrected this sentence (see line 100 on Page 4). Thanks again.

      Line 116: correct "..results in detective..".

      Corrected.

      Line 186: correct ".. explored..".

      Corrected.

      Line 218: correct ".. gene expressions.

      Corrected.

      Line 221: correct "..genes significantly differentiated expressed".

      Corrected.

      Line 241: FBXO24 was shown earlier in both cytoplasm and nucleus.

      We have changed “FBXO24 is mainly confined to the nucleus” to “FBXO24 expressed in the nucleus”, as shown in line 247 on Page 9.

      Line 501-502: correct "..reverse transcriptional".

      “reverse transcriptional” was changed into “reverse transcription”, showing in Page 18.

      Line 686: correct ".. deficiency male..".

      Corrected.

      Line 769: correct "..Western blots were adopted..".

      Corrected.

      Line 784: correct "..WT tesis..".

      Corrected.

      I cannot understand exactly what is shown in Figure 9B. Some elements marked on the X-axis are single base locations (-2K, TSS, +2K) and others are stretches of sequences so they cannot be equivalent. Why there is only an intron shown? There should be a measure of normalized expression on the Y-axis.

      Thank you for your questions. The X-axis means that genome segments were scaled to the same size and were calculated the signal abundance, which was analyzed by computeMatrix. Aim to know the piRNA source, piRNA was mapped to the gene body, including introns, CDS and UTRs. The value of the Y-axis is the normalized count.

      Figure 6F is not needed.

      Figure 6F was used to illustrate the number of different types of mRNA splicing upon FBXO24 deletion in the round spermatids. To better understand the splicing for the reader, we decided to keep it.

      The last two paragraphs of the discussion seem to be redundant.

      Thank you for pointing out this. We have revised the last two paragraphs of the discussion.

    1. Author Response

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Maestri et al. use an integrative framework to study the evolutionary history of coronaviruses. They find that coronaviruses arose recently rather than having undergone ancient codivergences with their mammalian hosts. Furthermore, recent host switching has occurred extensively, but typically between closely related species. Humans have acted as an intermediate host, especially between bats and other mammal species.

      Strengths:

      The study draws on a range of data sources to reconstruct the history of virus-host codivergence and host switching. The analyses include various tests of robustness and evaluations through simulation.

      Weaknesses:

      The analyses are limited to a single genetic marker (RdRp) from coronaviruses, but using other sections of the genome might lead to different conclusions. The genetic marker also lacks resolution for recent divergences, which precludes the detailed examination of recent host switches. Careful and detailed reconstruction of the timescale would be helpful for clarifying the evolutionary history of coronaviruses alongside their hosts.

      The use of a single short genetic marker (the RdRp palmprint region) from coronaviruses is indeed a limitation. However, this marker is the one that is currently used for routinely delimiting operational taxonomic units in RNA viruses and reconstructing their evolutionary history (Edgar et al. 2022, see also the Serratus project; https://serratus.io/); therefore, we took the conscious decision early on to rely on this expertise. Unfortunately, this marker cannot provide robust timescale reconstructions for coronavirus evolution (previous estimates of coronavirus origin range from around 10 thousand years ago to 293 million years ago depending on modeling assumptions). Only future genomic work across Coronaviridae that will characterize multiple genetic regions with different evolutionary rates will allow us to precisely elucidate the timescale of the evolutionary history of coronaviruses alongside their hosts. In the meantime, we show here that, while the RdRp palmprint region cannot by itself resolve the precise timescale of coronavirus evolution, it strongly suggests, when used along with cophylogenetic approaches, a recent evolutionary origin in bats.

      R. C. Edgar, et al., Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022).

      Reviewer #2 (Public Review):

      Summary:

      In their study titled "Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses," authors Benoît Perez-Lamarque, Renan Maestri, Anna Zhukova, and Hélène Morlon investigate the complex evolutionary history of coronaviruses, particularly those affecting mammals, including humans. The study focuses on unraveling the evolutionary trajectory of these viruses, which have shown a high propensity for causing pandemics, as evidenced by the SARS-CoV2 outbreak.

      The research addresses a significant gap in our understanding of the evolutionary dynamics of coronaviruses, particularly their history, patterns of host-to-host transmission, and geographical spread. These aspects are important for predicting and managing future pandemic scenarios.

      Historically, studies have employed cophylogenetic tests to explore virus-host relationships within the Coronaviridae family, often suggesting a long history of virus-host codiversification spanning millions of years. However, the team led by Perez-Lamarque proposes a novel phylogenetic framework that contrasts this traditional view. Their approach, which involves adapting gene tree-species tree reconciliation, is designed to robustly test the validity of two competing scenarios: an ancient origination and codiversification versus a more recent emergence and diversification through host switching.

      Upon applying this innovative framework to the study of coronaviruses and their mammalian hosts, the authors' findings challenge the prevailing notion of a deep evolutionary history. Instead, their results strongly support a scenario where coronaviruses have a more recent origin, likely in bat populations, followed by diversification predominantly through host-switching events. This diversification, interestingly, seems to occur preferentially within mammalian orders.

      A critical aspect of their findings is the identification of hotspots of coronavirus diversity, particularly in East Asia and Europe. These regions align with the proposed scenario of a relatively recent origin and subsequent localized host-switching events. The study also highlights the rarity of spillovers from bats to other species, yet underscores the relatively higher likelihood of such spillovers occurring towards humans, suggesting a significant role for humans as an intermediate host in the evolutionary journey of these viruses.

      The research also points out the high rates of host-switching within mammalian orders, including between humans, domesticated animals, and non-flying wild mammals.

      In conclusion, the study by Perez-Lamarque and colleagues presents an important quantitative advance in our understanding of the evolutionary history of mammalian coronaviruses. It suggests that the long-held belief in extensive virus-host codiversification may have been substantially overestimated, paving the way for a reevaluation of how we understand, predict, and potentially control the spread of these viruses.

      Strengths:

      The study is conceptually robust, and its conclusions are convincing.

      Weaknesses:

      Despite the availability of a dated host tree the authors were only able to use the "undated" model in ALE, with the dated method (which only allows time-consistent transfers) failing on their dataset (possibly due to dataset size?). Further exploration of the question would be potentially valuable.

      Our intuition is that ALE in its “dated” version did not necessarily fail on our dataset due to its size (ALE ran, but provided unrealistic parameter estimates and was not able to output possible reconciliations, as mentioned in our Material and Methods section). We think it most likely did not run because there is no pattern of codiversification: the coronavirus and mammal trees are so distinct that finding a reconciliation scenario between these trees with time-consistent transfers is very difficult and ALE fails at estimating an amalgamated likelihood for such an unlikely scenario. Following a suggestion from reviewer #3, we are going to try running the dated version of ALE independently on the alpha and beta-coronaviruses, resulting in smaller datasets. This will help us elucidate whether the dated version of ALE fails due to data size or the absence of a codiversification pattern.

      Reviewer #3 (Public Review):

      Summary:

      This work uses tools and concepts from co-phylogenetic analyses to reconstruct the evolutionary and diversification history of coronaviruses in mammals. It concludes that cross-species transmissions from bats to humans are a relatively common event (compared to bats to other species). Across all mammals, the diversification history of coronaviruses suggests that there is potential for further evolutionary diversification.

      Strengths:

      The article uses an interesting approach based on jointly looking at the extant network of coronaviruses-mammals interactions, and the phylogenetic history of both these organisms. The authors do an impressive job of explaining the challenges of reconstructing evolutionary dynamics for RNA viruses, and this helps readers appraise the relevance of their approach.

      Weaknesses:

      I remain unconvinced by the argument that sampling does not introduce substantial biases in the analyses. As the authors highlight, incomplete knowledge of the extant interactions would lead to a biased reconstruction of the diversification history. In a recent paper (Poisot et al. 2023, Patterns), we look at sampling biases in the virome of mammals and suggest that is a fairly prominent issue, that is furthermore structured by taxonomy, space, and phylogenetic position. Case in point, even for betacoronaviruses, there have been many newly confirmed hosts in recent years. For organisms that have received less intense scrutiny, I think a thorough discussion of potential gaps in data would be required (see for example Cohen et al. 2022, Nat. Comms).

      I was also surprised to see little discussion of the differences between alpha and beta coronaviruses - there is evidence that they may differ in their cross-species transmission (see Caraballo et al. 2022 Micr. Spectr.), which could call into question the relevance of treating all coronaviruses as a single, homogeneous group.

      Some of the discussions in this paper also echo previous work by e.g. Geoghegan et al. (see 2017, PLOS Pathogens), which I was surprised to not see discussed, as it is a much earlier investigation of the relative frequencies of co-divergence and host switches for different viral families, with a deep discussion of how this may structure future evolutionary dynamics.

      We totally agree that sampling biases in the virome of mammals is a prominent issue, which is why we conducted a series of sensitivity analyses to test their effect on our main conclusions. We thoroughly tested the effect of (i) the unequal sampling effort across mammalian species that have been screened and (ii) the unequal screening of mammalian species across the mammalian tree of life by subsampling the data to correct for the unequal sampling effort (see Supporting Information Text). In both cases, we still reported low support for a scenario of codiversification, the origin in bats in East Asia, the preferential host switches within mammalian orders, and the rare spillovers from bats to humans. The robustness of our findings to sampling biases may be explained by the fact that the cophylogenetic approach we used (ALE) explicitly accounts for undersampling by assuming that all host transfers involve unsampled intermediate hosts. To address the reviewer's comment, we will better underline the importance of sampling biases in our main text and include the suggested references. We will also better highlight our sensitivity analyses by moving them from the Supporting Information Text to the main text.

      We agree that distinguishing between alpha and beta coronaviruses will provide useful additional insights; we are going to run separate cophylogenetic analyses for these two sub-clades. We will report the results of these additional analyses in the revised manuscript, and put them in context with the existing literature about the two sub-clades.

      We were not aware of the work of Geoghegan et al. (see 2017, PLOS Pathogens), thank you for providing this reference that we will now discuss.

    1. Author Response

      Reviewer #1:

      This manuscript presents an extremely exciting and very timely analysis of the role that the nucleosome acidic patch plays in SWR1-catalyzed histone exchange. Intriguingly, SWR1 loses activity almost completely if any of the acidic patches are absent. To my knowledge, this makes SWR1 the first remodeler with such a unique and pronounced requirement for the acidic patch. The authors demonstrate that SWR1 affinity is dramatically reduced if at least one of the acidic patches is absent, pointing to a key role of the acidic patch in SWR1 binding to the nucleosome. The authors also pinpoint a specific subunit - Swc5 - that can bind nucleosomes, engage the acidic patch, and obtain a cryo-EM structure of Swc5 bound to a nucleosome. They also identify a conserved arginine-rich motif in this subunit that is critical for nucleosome binding and histone exchange in vitro and for SWR1 function in vivo. The authors provide evidence that suggests a direct interaction between this motif and the acidic patch.

      Strengths:

      The manuscript is well-written and the experimental data are of outstanding quality and importance for the field. This manuscript significantly expands our understanding of the fundamentally important and complex process of H2A.Z deposition by SWR1 and would be of great interest to a broad readership.

      We thank the reviewer for their enthusiastic and positive comments on our work.

      Reviewer #2:

      Summary:

      In this study, Baier et al. investigated the mechanism by which SWR1C recognizes nucleosomal substrates for the deposition of H2A.Z. Their data convincingly demonstrate that the nucleosome's acidic patch plays a crucial role in the substrate recognition by SWR1C. The authors presented clear evidence showing that Swc5 is a pivotal subunit involved in the interaction between SWR1C and the acidic patch. They pared down the specific region within Swc5 responsible for this interaction. However, two central assertions of the paper are less convincing. First, the data supporting the claim that the insertion of one Z-B dimer into the canonical nucleosome can stimulate SWR1C to insert the second Z-B dimer is somewhat questionable (see below). Given that this claim contradicts previous observations made by other groups, this hypothesis needs further testing to eliminate potential artifacts. Secondly, the claim that SWR1C simultaneously recognizes the acidic patch on both sides of the nucleosome also needs further investigation, as the assay used to establish this claim lacks the sensitivity necessary to distinguish any difference between nucleosomal substrates containing one or two intact acidic patches.

      Strengths:

      As mentioned in the summary, the authors presented clear evidence demonstrating the role of Swc5 in recognition of the nucleosome acidic patch. The identification of the specific region in Swc5 responsible for this interaction is important.

      We thank the reviewer for their careful critique of our work. Below we address each major concern.

      Major comments:

      (1) Figure 1B: It is unclear how much of the decrease in FRET is caused by the bleaching of fluorophores. The authors should include a negative control in which Z-B dimers are omitted from the reaction. In the absence of ZB dimers, SWR1C will not exchange histones. Therefore, any decrease in FRET should represent the bleaching of fluorophores on the nucleosomal substrate, allowing normalization of the FRET signal related to A-B eviction.

      In this manuscript, as well as in our two previous publications (Singh et al., 2019; Fan et al.,2022), we have presented the results of no enzyme controls, +/- ZB dimers, no ATP controls, or AMP-PNP controls for our FRET-based, H2A.Z deposition assay (see also Figure S3). We do not observe significant levels of photobleaching in this assay, either during ensemble measurements or in an smFRET experiment. To aid the reader, we have added the AMP-PNP data for the experiment shown in Figure 1B. The results show there is less than a 10% decrease in FRET over 30’, and the signal from the double acidic patch disrupted nucleosome is identical to this negative control.

      (2) Figure S3: The authors use the decrease in FRET signal as a metric of histone eviction. However, Figure S3 suggests that the FRET signal decrease could be due to DNA unwrapping. Histone exchange should not occur when SWR1C is incubated with AMP-PNP, as histone exchange requires ATP hydrolysis (10.7554/eLife.77352). And since the insertion of Z-B dimer and the eviction of A-B dimer are coupled, the decrease of FRET in the presence of AMP-PNP is unlikely due to histone eviction or exchange. Instead, the FRET decrease is likely due to DNA unwrapping (10.7554/eLife.77352). The authors should explicitly state what the loss of FRET means.

      We agree with the reviewer, that loss of FRET can be due to DNA unwrapping from the nucleosome. We have previously demonstrated this activity by SWR1C in our smFRET study (Fan et al., 2022). However, DNA unwrapping is highly reversible and has a time duration of only 1-3 seconds. We and others have not observed stable unwrapping of nucleosomes by SWR1C, but rather the stable loss of FRET reports on dimer eviction. We assume the reviewer is concerned about the rather large decrease in FRET signal shown in the AMP-PNP controls for Figure S3, panels A and D. For the other 7 panels, the decrease in FRET with AMP-PNP are minimal. In fact, if we average all of the AMP-PNP data points, the rate of FRET loss is not statistically different from no enzyme control reactions (nucleosome plus ZB dimers).

      Data for panels A and D used a 77NO nucleosomal substrate, with Cy3 labeling the linker distal dimer. This is our standard DNA fragment, and it was used in Figure 1B. The only difference between data sets is that the data shown in Fig 1B used nucleosome reconstituted with a Cy5-labelled histone octamer, rather than the hexasome assembly method used for Fig S3. Three points are important. First, for all of these substrates, we assembled 3 independent nucleosomes, and the results are highly reproducible. Two, we performed a total of 6 experiments for the 77NO-Cy5 substrates to ensure that the rates were accurate (+/-ATP). Third, and most important, we do not see this decrease in FRET signal in the absence of SWR1C (no enzyme control). This data was included in the data source file. Thus, it appears that there is significant SWR1C-induced nucleosome instability for these two hexasome-assembled substrates. We now note this in the legend to Figure S3. Key for this work, however, is that there is a large increase in the rate of FRET loss in the presence of ATP, and this rate is faster when a ZB dimer was present at the linker proximal location. In response to the last point, we state in the first paragraph of the results: “The dimer exchange activity of SWR1C is monitored by following the decrease in the 670 nm FRET signal due to eviction of the Cy5-labeled AB-Cy5 dimer (Figure 1A).”

      (3) Related to point 2. One way to distinguish nucleosomal DNA unwrapping from histone dimer eviction is that unwrapping is reversible, whereas A-B eviction is not. Therefore, if the authors remove AMP-PNP from the reaction chamber and a FRET signal reappears, then the initial loss of FRET was due to reversible DNA unwrapping. However, if the removal of AMP-PNP did not regain FRET, it means that the loss of FRET was likely due to A-B eviction. The authors should perform an AMP-PNP and/or ATP removal experiment to make sure the interpretation of the data is correct.

      See response to item 2 above

      (4) The nature of the error bars in Figure 1C is undefined; therefore, the statistical significance of the data is not interpretable.

      We apologize for not making this more explicit for each figure. The error bars report on 95% confidence intervals from at least 3 sets of experiments. This statement has been added to the legend.

      (5) The authors claim that the SWR1C requires intact acidic patches on both sides of the nucleosomes to exchange histone. This claim was based on the experiment in Figure 1C where they showed mutation of one of two acidic patches in the nucleosomal substrate is sufficient to inhibit SWR1C-mediated histone exchange activity. However, one could argue that the sensitivity of this assay is too low to distinguish any difference between nucleosomes with one (i.e., AB/AB-apm) versus two mutated acidic patches (i.e., AB-apm/AB-apm). The lack of sensitivity of the eviction assay can be seen when Figure 1B is taken into consideration. In the gel-shift assay, the AB-apm/AB-apm nucleosome exhibited a 10% SWR1C-mediated histone exchange activity compared to WT. However, in the eviction assay, the single AB/AB-apm mutant has no detectable activity. Therefore, to test their hypothesis, the authors should use the more sensitive in-gel histone exchange assay to see if the single AB/AB-apm mutant is more or equally active compared to the double AB-apm/AB-apm mutant.

      Our pincher model is based on three, independent sets of data, not just Figure 1C. First, as noted by the reviewer, we find that disruption of either acidic patch cripples the dimer exchange activity of SWR1C in the FRET-based assay. Whether the defect is identical to that of the double APM mutant nucleosome does not seem pertinent to the model. In a second set of assays, we used fluorescence polarization to quantify the binding affinity of SWR1C for wildtype nucleosomes, a double APM nucleosome, or each single APM nucleosome. Consistent with the pincher model, each single APM disruption decreases binding affinity at least 10-fold (below the sensitivity of the assay). Finally, we monitored the ability of different nucleosomes to stimulate the ATPase activity of SWR1C. Consistent with the pincher model, a single APM disruption was sufficient to eliminate nucleosome stimulation.

      (6) The authors claim that the AZ nucleosome is a better substrate than the AA nucleosome. This is a surprising result as previous studies showed that the two insertion steps of the two Z-B dimers are not cooperative (10.7554/eLife.77352 and 10.1016/J.CELREP.2019.12.006). The authors' claim was based on the eviction assay shown in Fig 1C. However, I am not sure how much variation in the eviction assay is contributed by different preparations of nucleosomes. The authors should use the in-gel assay to independently test this hypothesis.

      For all data shown in our manuscript, at least three different nucleosome preparations were used. The impact of a ZB dimer on the rates of dimer exchange was highly reproducible among different nucleosome preparations and experiments. We also see reproducible ZB stimulation for three different substrates – with ZB on the linker proximal side, the linker distal side, and on one side of a core particle. We do not believe that our data are inconsistent with previous studies. First, the previous work referenced by the reviewer performed dimer exchange reactions with a large excess of nucleosomes to SWR1C (catalytic conditions), whereas we used single turnover reactions. Secondly, our study is the first to use a homogenous, ZA heterotypic nucleosome as a substrate for SWR1C. All previous studies used a standard AA nucleosome, following the first and second rounds of dimer exchange that occur sequentially. And finally, we observe only a 20-30% increase in rate by a ZB dimer (e.g. 77N0 substrates), and such an increase was unlikely to have been detected by previous gel-based assays.

      Minor comments:

      (1) Abstract line 4: To say 'Numerous' studies have shown acidic patch impact chromatin remodeling enzymes activity may be too strong.

      Removed

      (2) Page 15, line 15: The authors claim that swc5∆ was inviable on formamide media. However, the data in Figure 8 shows cell growth in column 1 of swc5∆.

      The term ‘inviable’ has been replaced with ‘poor’ or ‘slow growth’

      (3) The authors should use standard yeast nomenclature when describing yeast genes and proteins. For example, for Figure 8 and legend, Swc5∆ was used to describe the yeast strain BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YBR231c::kanMX4. Instead, the authors should describe the swc5∆ mutant strain as BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0 swc5∆::kanMX4. Exogenous plasmid should also be indicated in italics and inside brackets, such as [SWC5-URA3] or [swc5(R219A)-URA3].

      We apologize for missing this mistake in the Figure 8 legend. We had inadvertently copied this from the euroscarf entry and forgot to edit the entry. We decided not to add all the plasmid names to the figure, as it was too cluttered. We state in the figure legend that the panels show growth of swc5 deletion strains harboring the indicated swc5 alleles on CEN/ARS plasmids.

      (4) According to Lin et al. 2017 NAR (doi: 10.1093/nar/gkx414), there is only one Swc5 subunit per SWR1C. Therefore, the pincher model proposed by the authors would suggest that there is a missing subunit that recognizes the second acidic patch. The authors should point out this fact in the discussion. However, as mentioned in Major comment 6, I am not sure if the pincer model is substantiated.

      In our discussion, we had noted that the published cryoEM structure had suggested that the Swc2 subunit likely interacts with the acidic patch on the dimer that is not targeted for replacement, and we proposed that Swc5 interacts with the acidic patch on the exchanging H2A/H2B dimer. We have now made this more clear in the text.

    1. Author Response

      The following is the authors’ response to the original reviews.

      We wish to thank the reviewers for their helpful insightful comments. Their concerns were mainly related to the interpretation of the data, help in clarifying our statements and improving our discussion.

      Reviewer #1 (Recommendations For The Authors):

      This is a very interesting study It involves the utilization of hippocampal neuronal cultures from syntaxin 1 knock-out mice. These cultures serve as a platform for monitoring changes in synaptic transmission through electrophysiological recording of postsynaptic currents, upon lentiviral infection with various isoforms, chimeras, and point mutations of syntaxins.

      The authors observe the following:

      (1) Syntaxin2 restores neuronal viability and can partially rescue Ca2+-evoked release in syntaxin1 knock-out neurons that it is much slower (cumulative charge transfer differences) and with a clearly smaller RRP than when rescued with syntaxin1. In contrast, syntaxin2-mediated rescue leads to a high increase in spontaneous release (Figure 1). Convincingly, the authors conclude that syntaxin 1 is optimized for fast phasic release and for clamping of spontaneous release, in comparison with syntaxin2.

      (2) The replacement of the SNARE domain (or its C-terminal part) of syntaxin1 by the SNARE domain of syntaxin2 (or its C-terminal part) rescues the fast kinetics, but not the amplitude, of Ca2+-evoked release. This is associated with a decrease in the size of the RRP and an increase in spontaneous release. The probability of vesicular release (PVR) is a little bit increased, which is intriguing because a little decrease would be expected instead according to the reduced RRP, indicating that an enhancement of Ca2-dependent fusion is occurring at the same time by unknown mechanisms as the authors properly point out. The replacement of the Analogous experiments in which the SNARE domain of syntaxin1 is replaced into syntaxin2, reveals the exitance of differential regulatory elements outside the SNARE domain.

      (3) Different constructs of syntaxin 1 and syntaxin 2 display different expression levels. On the other hand, the expression levels of Munc-18 are associated with the characteristics of the transfected specific syntaxin construct. In any case, the electrophysiological phenotypes cannot be consistently explained by changes in Munc-18.

      (4) Mutations in several residues of the outer surface of the C-terminal half of the syntaxin1 SNARE domain lead to alterations in the RRP and the frequency of spontaneous release, but the changes cannot attributed to a change in the net surface charge, because the alterations occur even in paired mutations in which electrical neutrality is conserved.

      Comments:

      (1) This is a comment regarding the interpretation of the results. In general, the decrease in the RRP size is associated with the increased frequency of spontaneous release due to unclamping. The authors claim that both phenomena seem to be independent of each other. In any case, how can the authors discard the possibility that the unclamping of spontaneous release leads to a decrease in the RRP size?

      The main argument against the reduction of the RRP being caused by the observed increase in the mEPSC frequency is based on kinetics of refilling and depletion. The average time a vesicle fuses spontaneously after it becomes primed is 500 – 1000 seconds (spontaneous vesicle release rate – STX1 Figure 1, Figure 2 and Figure 3). The time it takes to refill the RRP after depletion is in the order of 3 seconds (Rosenmund and Stevens, 1996). Therefore, the refilling of the RRP is more than 100 times faster. Even when the spontaneous release would increase 5 fold, this would lead to less than 5 % of the steady state depletion of the RRP.

      (2) The authors have analyzed the kinetics of mEPSCs and found differences (Fig2-Supp. Fig1; Fig2-Supp. Fig1). It would be interesting and pertinent to discuss these data in the context of potential phenotypes in the fusion pore kinetics involving syntaxin1 and syntaxin2 and their SNARE domains. Indeed, the figure will improve by including averaged traces of mEPSCs.

      We thank the reviewer for the idea. Upon closer examination of the changes in mEPSC rise time and mEPSC decay time we noticed a minor slowing in the mEPSC rise time from 0.443ms (SEM0.0067) of STX1A to 0.535ms (SEM0.0151) for STX1A-2(SNARE) or 0.507ms (SEM0.01251) for STX1A-2(Cter), while the mEPSC half widths did not change significantly. It is possible that the measured change is related to the detection algorithm as mEPSC detection at elevated frequencies becomes more difficult due to increased overlap of event, and we therefore prefer to refrain from making any mechanistic claims.

      Minor comments:

      (1) Fig2 J; Fig 3 J. It is difficult to distinguish between different colors and implementing a legend within the graph will be very helpful.

      (2) Fig3 H. Please change the color of the box plot for Stx1 A to improve the contrast with the individual data points.

      (3) Page 6. Line 225. "Figure 2D and E" should be corrected to "Figure 2C and D"

      (1) Colors were changed for clearer visualization. (2) Unfortunately, changing the color did not improve the contrast with the individual plots. However, the numerical data is all included in the data sheets of the corresponding figure. (3) The mistake was corrected.

      Reviewer #2 (Recommendations For The Authors):

      Line 135-136: Are cited numbers cited in the text mean and SEM? Please indicate.

      Line 139 and Figure 1G: The difference between purple and blue was very hard to see on my hard copy.

      Line 152: Reference to Figure 1L should probably be 1K.

      Line 183: Reference to Figure 2C should probably be Figure 2F.

      Line 225: Reference to Figure 2D and 2E should probably be 2C and 2D.

      Line 239: Reference to Figure 3I should probably be 3H.

      All typos were addressed and colors were changed for better visualization.

      Line 210-211: Sentence ("One of the benefits..") is hard to understand.

      Thank you for noticing this mistake, agreeably the the sentence did not add any important or new information and so it was deleted. Additionally, the message of the mentioned sentence was already clearly stated in lines 209-211.

      Figure 4E-H misses data for STX2, for the figure to be arranged like Figure 5.

      Given that STX1 is the endogenous syntaxin in hippocampal neurons, we use it at a control for all the analysis done in STX2 and STX2-chimera experimental groups, thus it is included in Figure 3 and 5.

      It appears that the authors do not present or discuss the Western Blot in Fig. 4D. Are the quantitative results of the Western Blot consistent with or different from the quantification of the immunostainings (Fig. 4B-C)? A similar question for Figure 5D, which also seems not to be presented.

      In terms of quantification, we have relied mainly on the ICC experiments because they test also for putative impairments in transport to the presynaptic compartment. Our WB data are overall consistent with the results, but were not used to quantitate expression of our syntaxin chimeras and mutations in the STX1-null hippocampal neuron model.

      Figure 6F-G: The normalization of spontaneous vesicular release rates is not clear, because the vesicular release rates already contain a normalization (mEPSC rate divided by RRP size). Is a further normalization of the STX1A condition informative? The authors should consider presenting the release rates themselves. In any case, the normalization should be presented/explained, at least in the legends.

      The reviewer is in principle correct. Due to the large number of experimental groups we had to perform recordings from multiple cultures, where not all experimental groups were present, while the WT STX1 was present as a consistent control. The reduce culture to culture variability, additional normalization to the WT control group was performed. However, we also included the raw data numerical values in the data-source sheets (Normalized and absolute), which produce a similar overall outcome.

      References to Figure 7 subpanels (A, B, and C) are missing.

      Thank you for the comment. We have integrated all panels into one for better representation and understanding since they are representative of one another.

      Lines 330-339 and Figure 7 in Discussion: the authors discuss that adding the non-cognate STX2 SNARE-domain to syntaxin-1 might destabilize the primed state and decrease the fusion energy barrier (as indicated in Figure 7C). What is the evidence that the decrease in RRP size is not caused solely by the depletion of the pool due to the increased spontaneous fusion?

      Please see the comments to major point 2 of reviewer 1.

      Statistics: Missing is the number of observations (n) for all data. Even if all data points are displayed, this should be stated.

      N numbers are included in the data sheets attached to each figure.

      The statement (start of Discussion,) that the SNARE-domain of STX1 'plays a minimal role in the regulation for Ca2+-evoked release' is somewhat puzzling, since without the SNARE-domain in STX1 there would be no Ca2+-evoked release. I guess these statements (similar statements are found elsewhere) are due to the interesting finding that STX2 leads to a decrease in release kinetics, compared to STX1, and this is not (entirely) due to differences in the SNARE-domain. I would suggest rephrasing the finding in terms of release kinetics. Also, the statement in the last sentence of the Abstract is not clear.

      Thank you for pointing this out and we agree that our experiments showed strong impact of the syntaxin isoform exchange on release kinetics and overall release output. A similar comment came also from reviewer #3 and so, we have addressed both comments as one.

      Our confusing statement resulted from the order of the presented results and our summarizing remarks for each section. Our statement reflected our finding that mutating residues in the C-terminal part of the STX1 SNARE motif affected only spontaneous release and RRP size but not release efficacy. We now state (pg. 6 lines 231-233) that the data observed from the comparison of “the results obtained from the Ca2+-evoked release between STX1 and STX2 support major regulatory differences of the domains outside of the SNARE domain between isoforms”.

      We have changed the abstract pg. 2 lines 55-56

      We have changed the introduction pg. 3 lines 102-105 for a better contextualization.

      We have changed the start of the discussion pg. 9 lines 250-252 for better contextualization.

      Reviewer #3 (Recommendations For The Authors):

      In this manuscript, Salazar-Lázaro et al. presented interesting data that C-terminal half of the Syx1 SNARE domain is responsible for clamping of spontaneous release, stabilizing RRP, and also Ca2+-evoked release. The authors routinely utilized the chimeric approach to replace the SNARE domain of Syx1 with its paralogue Syx2 and analyzed the neuronal activity through electrophysiology. The data are straightforward and fruitful. The conclusions are partly reasonable. One obvious drawback is that they did not explore the underlying mechanism. I think it is easy for the authors to carry out some simple assays to verify their hypothesis for the mechanism, instead of just talking about it in the discussion section. In all, I appreciate the data presented in the manuscript. If the authors could supply more data on the mechanisms, this would be important research in the field. Some critical comments are listed below:

      We thank the reviewer for his/her comments and suggestions.

      Major comments:

      (1) In pg.3, lines 102-104, the authors stated that 'We found that the C-terminal half of the SNARE domain of STX1.. ..while it is minimally involved in the regulation of Ca2+-evoked release.' But in pg.5, lines 174-176, they wrote that 'Replacement of the full-SNARE domain (STX1A-2(SNARE)) or the C-terminal half (STX1A-2(Cter)) of the SNARE domain of STX1A with the same domain from STX2 resulted in a reduction in the EPSC amplitude (Figure 2B).' and in pg.5-6, lines 197-199, they wrote that 'Taken together our results suggest that the C-terminal half of the SNARE domain of STX1A is involved in the regulation of the efficacy of Ca2+-evoked release, the formation of the RRP and in the clamping of spontaneous release.' It puzzles me a lot as to what the authors are really trying to express for the relationship between C-half of the SNARE complex and Ca2+-evoked release (i.e., minimally involved or significantly participate in the process?). Please clarify and reorganize the contexts.

      Please see our reply to the last comment of reviewer 2.

      (2) Figure 1-figure supplement 1, the authors should analyze Syx1/VGlut1 level additionally. And, if possible, compare the difference between Syx1/VGlut1 and Syx2/VGlut1.

      The levels of STX1/VGlut1 and STX2/VGlut1 were analyzed in detail in Figures 4 and 5.

      The direct comparison between the expression levels of these two proteins is not possible since affinities of the antibodies to the target proteins are different and can induce potential biases. While this could be overcome by the use of a FLAG-tag to the syntaxin proteins, we have not utilized this approach in this publication. We in addition inferred sufficient and comparable expression of both syntaxins from their ability to rescue some of syntaxin1 loss of function phenotypes.

      (3) Figure 2D only analyzed the EPSC half-width, could the author alternatively analyze the rise/decay time? Also, in Figure 3-figure supplement 1, does it refer to the kinetic parameters of Syx2-1A in Figure 3? It is very confused.

      We have changed the text accordingly and each parameter is referenced to its corresponding figure for clarity. As for the decay and rise time of STX1 and STX1-chimeras, they are in Figure 2-figure supplement 1A and B.

      (4) On pg.4, lines 151-152, 'Finally, no change was observed in the paired-pulse ratio (PPR) between STX1A and STX2 groups (Figure 1L).' does not contain any explanations and comments for this observation in the texts.

      The small EPSC amplitudes and altered kinetics on the STX2 constricts (Figure 1 and Figure 3) have made it more difficult to quantitate paired pulse experiments. Therefore, we preferred not to overinterpret these measurements. The findings that the paired pulse data were not significantly different, fit with the vesicular release probability measurements which showed no major changes. We have made our statement on this basis.

      (5) On pg.6, lines 235-236, the authors wrote that 'Additionally, we found that only STX2-1A(SNARE) and STX2-1A(Cter) could rescue the RRP to around double of what we measured from STX2 and STX2-1A(Nter) (figure 3F)'. However, in Figure 3F, the authors indicated 'n.s.' (p>0.05) for the differences between STX2 and STX2-1A(SNARE)/STX2-1A(Cter). It is perplexing how the authors interpret their data. Definitely, the p-value could not be arbitrarily used as a criterion of difference. An easier way is that indicating the exact p-values for each comparison (indicate in figure legends or list in tables).

      We apologize for any confusion, and hope the modification gives more clarity in our interpretation. The calculated p-values are included in attached data source tables and hope this will provide clarity to our comparative analysis. We have changed the text in pg 7 lines 238-241 and are cautious to overinterpret these results and rely more on the data observed in STX1A-chimeras, which show significant changes in the RRP.

      (6) I noticed that the authors preferred using 'xx% increase/decrease' or 'xx-fold increase/decrease' to interpret their inter-group data. I would doubt whether the interpretations are appropriate. First, it seems that most of the individual scatters from one set were not subject to Gaussian distribution; also, the authors utilized non-parameter tests to compare the differences. Second, the authors did not explicitly indicate the method to calculate the % or fold, e.g., by comparing mean value or median. I think it is a bad choice to use the median to calculate fold changes; meanwhile, the mean value would also be biased, given the fact that the data were not Gaussian-distributed. The authors should be cautious in interpreting their data.

      We thank the reviewer for pointing the inaccuracy of our descriptions and have included the parameter used to calculated the percentage and fold increase/decrease in the materials and methods section. Specifically, the mean. Our intention is to plainly state the amount of change seen in a parameter based on the observed changes in the mean value. We agree with the reviewer that interpreting this could be problematic if we are speculating possible mechanisms. Further test should be conducted as to state whether similar increase/decrease changes in a parameter are due to the disturbance of the same mechanisms or different. E.g., we discussed whether the regulation of SYT1 might be or not be the mechanism affected in some of the chimeras that show an increase in the spontaneous release rate, for the release rate observed in some is massively higher than that seen in SYT1-KO (Bouazza-Arostegui et al., 2022). It is tempting to speculate that it could be due to other mechanisms based on the differences in the changes. For this reason, we have given an array of possible mechanisms affected when we manipulate the SNARE domain of STX1.

      (7) The authors routinely analyzed the levels of Munc18-1 in neuronal lysates by WB and Munc18-1/VGlut1 by immunofluorescence in various Syx1 mutants. However, in my view, these assays were slightly indirect. It is evident that the SNARE domain of Syx1 participates in the binding to Munc18-1 according to the atomic structures (pdb entries: 3C98 and 7UDB). Meanwhile, Han et al. reported that K46E mutation (located in domain 1 of Munc18-1) strongly impairs Syx1 expression, Syx1-interaction, vesicle docking and secretion (Han et al., 2011, PMID: 21900502). Intriguingly, the residue K46 of Munc18-1, which is close to D231/R232 of Syx1, may have potential electrostatic contacts to D231 and R232 of Syx1. This is reminiscent of the possibility that Syx1D231/R232 and some Syx1-2 chimeras lost their normal function through their defective binding to Munc18-1.nmb, To better understand the underlying mechanism, the authors may need to carry out in vivo and/or in vitro binding analysis between syntaxin mutants/chimeras and Munc18-1. They also need to conduct more discussions about the issue.

      We express our gratitude for the identification of a previously overlooked aspect in our investigation of the interplay between Munc18-1 and STX1. In response, we have incorporated additional discourse on this matter in pg11 lines 419-431.

      Additionally, we appreciate the thoughtful suggestion regarding additional experiments to further explore the molecular relationship between Munc18-1 and STX1. We agree that co-immunoprecipitation experiments (either by using an antibody against Munc18-1 or STX1 and STX2) would offer greater insight into whether the binding of these proteins is affected in the isoform or the mutants. Notably, we performed immunoprecipitation experiments by using neuronal lysates of the corresponding groups and using STX1A and STX2 antibodies for the pull-downs. However, we were unable to co-IP Munc18-1 when doing so. Changing the conditions of the experiment did not yield better results and so these experiments remained inconclusive for the moment. For this reason, we included it as an open question and a potential concluding hypothesis of the molecular mechanism. However, Shi et al., 2021, have performed co-IP assays using Munc18-1-wt and a mutant form which affects the binding to the C-terminal half of the SNARE domain of STX, and STX1-wt and a STX mutants targeting some of our residues of interest and showed a decrease in the pulled-down levels of Munc18-1 using HeLa cells. We have made sure to mention the conclusion of this important publication in our discussion.

      (8) The third possible mechanism (i.e., interaction with Syt1) proposed by the authors seems more reasonable. However, the discussions raised by the authors were not enough. For instance, plenty of literature has indicated that Syt1 may participate in synaptic vesicle priming through stabilizing partially or fully assembled SNARE complex (Li et al., 2017, PMID: 28860966; Bacaj et al., 2015, PMID: 26437117; Mohrmann et al., 2013, PMID: 24005294; Wang et al., 2011; PMID: 22184197; Liu et al., 2009, PMID: 19515907); complexins are also SNARE binding modules that regulate synaptic exocytosis. Lack of complexins could lead to unclasping of spontaneous fusion of synaptic vesicles, though it causes severe Ca2+-triggered release at the same time (Maximov et al., 2009, PMID: 19164751). Meanwhile, different domains of complexin may accomplish different steps of SV fusion, early research had indicated that the C-terminal sequence of complexin is selectively required for clamping of spontaneous fusion and priming but not for Ca2+-triggered release (Kaeser-Woo et al., 2012, PMID: 22357870). Likewise, if possible, the authors may need to carry out in vivo and/or in vitro binding analysis to confirm their hypothesis.

      The exploration of complexin´s involvement was limited in our study primarily due to our methodological focus on comprehending molecular mechanisms concerning the sequence disparities between STX1 and STX2. Our laboratory has studied the role of Complexin extensively, and we certainly have had a possible involvement in mind. However, since the sites identified on syntaxin are either conserved between STX1 and STX2 or not close to the central or accessory helical domains of complexin, we did not perform experiments to test putative interactions, and we refrained from discussing complexin in this paper.

      (9) Lastly, I would suspect that whether the defects of Syx2 and Syx1 chimeras were caused by the SNARE complex itself, from another point of view that is different from the hypothesis raised by the authors. Changing the outward residues (or we say the solvent-accessible residues) of the SNARE complex may affect the stability, assembly kinetics, and energetics (Wang and Ma, 2022, PMID: 35810329; Zorman et al., 2014, PMID: 25180101), especially for the C-terminal halves. Is this another possible mechanism through which the C-terminus of Syx1 might contribute to SV priming and clamping of spontaneous release? The authors should at least conduct some discussions about the point.

      Thank you for this suggestion. We indeed assumed that since the hydrophobic layers of the SNARE domains that form the hydrophobic pocket of STX2 and STX1 are mainly conserved, that the intrinsic stability of the SNARE complex is largely unchanged. Additionally, Li et al., (2022) PMID: 35810329 examined the stability of the alfa-helix structure of the SNARE domain of SNAP25. And while they found no changes in the stability and formation of the alfa-helix when mutating outwards-facing residues for methodological purposes (bimane-tryptophan quenching), their study did not selectively explore the effect of mutations of outer-surface residues on the stability of the alfa-helix.

      Zorman et al., (2014) PMID: 25180101, as noted by the reviewer, observed that changes in the sequence of the SNARE domain (by using SNARE proteins from different trafficking systems (neuron, GLUT4, yeast…) correlated with changes in the step-wise SNARE complex assembly. However, they also did not selectively mutate the outer solvent-accessible residues, hindering conclusive speculations in the contribution of said residues on the kinetics and energetics of assembly and intrinsic stability of the SNARE complex.

      Upon petition of the reviewer, we have added this paragraph to discuss an additional mechanism:

      “As a final remark, it is possible that the changes in the spontaneous release rate and the priming stability may stem from a reduced stability of the SNARE complex itself through putative interactions between outer surface residues. Studies of the kinetics of assembly of the SNARE complex which mutate solvent-accessible residues in the C-terminal half of the SNARE domain of SYB2 have shown reduction in the stability of the SNARE complex assembly and are correlated with impaired fusion (Jiao et al., 2018). However, STX1 mutations of outward residues were inconclusive and were always accompanied by hydrophobic layer mutations (Jiao et al., 2018), which affect the assembly kinetics and energetics of the SNARE complex (Ma et al., 2015). Single molecule optical-tweezer studies have focused on the impact of regulatory molecules on the stability of assembly such as Munc18-1 (Ma et al., 2015; Jiao et al., 2018) and complexin (Hao et al., 2023), or on the intrinsic stability of the hydrophobic layers in the step-wise assembly of the SNARE complex (Gao et al., 2012; Ma et al., 2015; Zhang et al., 2017). Although the conserved hydrophobic layers in the SNARE domains of STX1A and STX2 (Figure 1) suggest unchanged zippering and intrinsic stability of the complex, further studies addressing the contribution of surface residues on the stability of the alfa-helix structure of the SNARE domain of STX1 (Li et al., 2022) or the stability of the SNARE complex should be conducted.”

      Minor comments:

      (1) In pg.6, line 236, 'figure 3F', the initial 'f' should be uppercased.

      (3) On pg.11, line 396, the section title 'The interaction of the C-terminus of de SNARE domain of STX1A with Munc18-1 in the stabilization of the primed pool of vesicles.' The word 'de' is confusing, please check.

      (4) In pg.12, line 446, the section title, should 'though' be 'through'?

      These comments have been acknowledged and changed. Thank you

      (2) In pg.7, line 239, '..had an increased PVR (Figure 3G), no change in the release rate (Figure 3I)', should Figure 3I be Figure 3H? and line 240, 'and an increase in short-term depression during 10Hz train stimulation (Figure 3I)', should Figure 3I be Figure 3J? If so, Figure 3I will not be cited in the texts and lack adequate interpretations. Please check.

      We apologize for the oversight in not referencing this specific subpanel of the figure and have incorporated the reference in the text. Additionally, our interpretation of this data is connected to the mechanisms that govern efficacy of Ca2+-evoked response, and its dependence on the integrity of the entire-SNARE domain. We wish to highlight the modifications made to the discussion on the regulation of the Ca2+-evoked response based on previous reviewer comment #1, and a similar comment from reviewer #2 (as stated previously).

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Visual Perceptual Learning (VPL) results in varying degrees of generalization to tasks or stimuli not seen during training. The question of which stimulus or task features predict whether learning will transfer to a different perceptual task has long been central in the field of perceptual learning, with numerous theories proposed to address it. This paper introduces a novel framework for understanding generalization in VPL, focusing on the form invariants of the training stimulus. Contrary to a previously proposed theory that task difficulty predicts the extent of generalization - suggesting that more challenging tasks yield less transfer to other tasks or stimuli - this paper offers an alternative perspective. It introduces the concept of task invariants and investigates how the structural stability of these invariants affects VPL and its generalization. The study finds that tasks with high-stability invariants are learned more quickly. However, training with low-stability invariants leads to greater generalization to tasks with higher stability, but not the reverse. This indicates that, at least based on the experiments in this paper, an easier training task results in less generalization, challenging previous theories that focus on task difficulty (or precision). Instead, this paper posits that the structural stability of stimulus or task invariants is the key factor in explaining VPL generalization across different tasks

      Strengths:

      • The paper effectively demonstrates that the difficulty of a perceptual task does not necessarily correlate with its learning generalization to other tasks, challenging previous theories in the field of Visual Perceptual Learning. Instead, it proposes a significant and novel approach, suggesting that the form invariants of training stimuli are more reliable predictors of learning generalization. The results consistently bolster this theory, underlining the role of invariant stability in forecasting the extent of VPL generalization across different tasks.

      • The experiments conducted in the study are thoughtfully designed and provide robust support for the central claim about the significance of form invariants in VPL generalization.

      Weaknesses:

      • The paper assumes a considerable familiarity with the Erlangen program and the definitions of invariants and their structural stability, potentially alienating readers who are not versed in these concepts. This assumption may hinder the understanding of the paper's theoretical rationale and the selection of stimuli for the experiments, particularly for those unfamiliar with the Erlangen program's application in psychophysics. A brief introduction to these key concepts would greatly enhance the paper's accessibility. The justification for the chosen stimuli and the design of the three experiments could be more thoroughly articulated.

      Response: We appreciate the reviewer's feedback regarding the accessibility of our paper. In response to this feedback, we plan to enhance the introduction section of our paper to provide a concise yet comprehensive overview of the key concepts of Erlangen program. Additionally, we will provide a more thorough justification for the selection of stimuli and the experimental design in our revised version, ensuring that readers understand the rationale behind our choices.

      • The paper does not clearly articulate how its proposed theory can be integrated with existing observations in the field of VPL. While it acknowledges previous theories on VPL generalization, the paper falls short in explaining how its framework might apply to classical tasks and stimuli that have been widely used in the VPL literature, such as orientation or motion discrimination with Gabors, vernier acuity, etc. It also does not provide insight into the application of this framework to more naturalistic tasks or stimuli. If the stability of invariants is a key factor in predicting a task's generalization potential, the paper should elucidate how to define the stability of new stimuli or tasks. This issue ties back to the earlier mentioned weakness: namely, the absence of a clear explanation of the Erlangen program and its relevant concepts.

      Response: Thanks for highlighting the need for better integration of our proposed theory with existing observations in the field of VPL. Unfortunately, the theoretical framework proposed in our study is based on the Klein’s Erlangen program and is only applicable to geometric shape stimuli. For VPL studies using stimuli and paradigms that are completely unrelated to geometric transformations (such as motion discrimination with Gabors or random dots, vernier acuity, spatial frequency discrimination, contrast detection or discrimination, etc.), our proposed theory does not apply. Some stimuli employed by VPL studies can be classified into certain geometric invariants. For instance, orientation discrimination with Gabors (Dosher & Lu, 2005) and texture discrimination task (F. Wang et al., 2016) both belong to tasks involving Euclidean invariants, and circle versus square discrimination (Kraft et al., 2010) belongs to tasks involving affine invariance. However, these studies do not simultaneously involve multiple geometric invariants of varying levels stability, and thus cannot be directly compared with our research. It is worth noting that while the Klein’s hierarchy of geometries, which our study focuses on, is rarely mentioned in the field of VPL, it does have connections with concepts such as 'global/local', 'coarse/fine', 'easy/difficulty', 'complex/simple': more stable invariants are closer to 'global', 'coarse', 'easy', 'complex', while less stable invariants are closer to 'local', 'fine', 'difficulty', 'simple'. Importantly, several VPL studies have found ‘fine-to-coarse’ or ‘local-to-global’ asymmetric transfer (Chang et al., 2014; N. Chen et al., 2016; Dosher & Lu, 2005), which seems consistent with the results of our study.

      In the introduction section of our revised version and subsequent full author response, we will provide a clear explanation of the Erlangen program and elucidate how to define the stability of new stimuli or tasks. In the discussion section of our revised version, we will compare our results to other studies concerned with the generalization of perceptual learning and speculate on how our proposed theory fit with existing observations in the field of VPL.

      • The paper does not convincingly establish the necessity of its introduced concept of invariant stability for interpreting the presented data. For instance, consider an alternative explanation: performing in the collinearity task requires orientation invariance. Therefore, it's straightforward that learning the collinearity task doesn't aid in performing the other two tasks (parallelism and orientation), which do require orientation estimation. Interestingly, orientation invariance is more characteristic of higher visual areas, which, consistent with the Reverse Hierarchy Theory, are engaged more rapidly in learning compared to lower visual areas. This simpler explanation, grounded in established concepts of VPL and the tuning properties of neurons across the visual cortex, can account for the observed effects, at least in one scenario. This approach has previously been used/proposed to explain VPL generalization, as seen in (Chowdhury and DeAngelis, Neuron, 2008), (Liu and Pack, Neuron, 2017), and (Bakhtiari et al., JoV, 2020). The question then is: how does the concept of invariant stability provide additional insights beyond this simpler explanation?

      Response: We appreciate the alternative explanation proposed by the reviewer and agree that it presents a valid perspective grounded in established concepts of VPL and neural tuning properties. However, performing in the collinearity and parallelism tasks both require orientation invariance. While utilizing the orientation invariance, as proposed by the reviewer, can explain the lack of transfer from collinearity or parallelism to orientation task, it cannot explain why collinearity does not transfer to parallelism.

      As stated in the response to the previous review, in the revised discussion section, we will compare our study with other studies (including the three papers mentioned by the reviewer), aiming to clarify the necessity of the concept of invariant stability for interpreting the observed data and understanding the mechanisms underlying VPL generalization.

      • While the paper discusses the transfer of learning between tasks with varying levels of invariant stability, the mechanism of this transfer within each invariant condition remains unclear. A more detailed analysis would involve keeping the invariant's stability constant while altering a feature of the stimulus in the test condition. For example, in the VPL literature, one of the primary methods for testing generalization is examining transfer to a new stimulus location. The paper does not address the expected outcomes of location transfer in relation to the stability of the invariant. Moreover, in the affine and Euclidean conditions one could maintain consistent orientations for the distractors and targets during training, then switch them in the testing phase to assess transfer within the same level of invariant structural stability.

      Response: Thanks for raising the issue regarding the mechanism of transfer within each invariant conditions. We plan to design an additional experiment that is similar in paradigm to Experiment 2, aiming to examine how VPL generalizes to a new test location within a single invariant stability level.

      • In the section detailing the modeling experiment using deep neural networks (DNN), the takeaway was unclear. While it was interesting to observe that the DNN exhibited a generalization pattern across conditions similar to that seen in the human experiments, the claim made in the abstract and introduction that the model provides a 'mechanistic' explanation for the phenomenon seems overstated. The pattern of weight changes across layers, as depicted in Figure 7, does not conclusively explain the observed variability in generalizations. Furthermore, the substantial weight change observed in the first two layers during the orientation discrimination task is somewhat counterintuitive. Given that neurons in early layers typically have smaller receptive fields and narrower tunings, one would expect this to result in less transfer, not more.

      Response: We appreciate the reviewer's feedback regarding the clarity of our DNN modeling experiment. We acknowledge that while DNNs have been demonstrated to serve as models for visual systems as well as VPL, the claim that the model provides a ‘mechanistic’ explanation for the phenomenon still overstated. In our revised version,

      We will attempt a more detailed analysis of the DNN model while providing a more explicit explanation of the findings from the DNN modeling experiment, emphasizing its implications for understanding the observed variability in generalizations.

      Additionally, the substantial weight change observed in the first two layers during the orientation discrimination task is not contradictory to the theoretical framework we proposed, instead, it aligns with our speculation regarding the neural mechanisms of VPL for geometric invariants. Specifically, it suggests that invariants with lower stability rely more on the plasticity of lower-level brain areas, thus exhibiting poorer generalization performance to new locations or stimulus features within each invariant conditions. However, it does not imply that their learning effects cannot transfer to invariants with higher stability.

      Reviewer #2 (Public Review):

      The strengths of this paper are clear: The authors are asking a novel question about geometric representation that would be relevant to a broad audience. Their question has a clear grounding in pre-existing mathematical concepts, that, to my knowledge, have been only minimally explored in cognitive science. Moreover, the data themselves are quite striking, such that my only concern would be that the data seem almost too clean. It is hard to know what to make of that, however. From one perspective, this is even more reason the results should be publicly available. Yet I am of the (perhaps unorthodox) opinion that reviewers should voice these gut reactions, even if it does not influence the evaluation otherwise. Below I offer some more concrete comments:

      (1) The justification for the designs is not well explained. The authors simply tell the audience in a single sentence that they test projective, affine, and Euclidean geometry. But despite my familiarity with these terms -- familiarity that many readers may not have -- I still had to pause for a very long time to make sense of how these considerations led to the stimuli that were created. I think the authors must, for a point that is so central to the paper, thoroughly explain exactly why the stimuli were designed the way that they were and how these designs map onto the theoretical constructs being tested.

      (2) I wondered if the design in Experiment 1 was flawed in one small but critical way. The goal of the parallelism stimuli, I gathered, was to have a set of items that is not parallel to the other set of items. But in doing that, isn't the manipulation effectively the same as the manipulation in the orientation stimuli? Both functionally involve just rotating one set by a fixed amount. (Note: This does not seem to be a problem in Experiment 2, in which the conditions are more clearly delineated.)

      (3) I wondered if the results would hold up for stimuli that were more diverse. It seems that a determined experimenter could easily design an "adversarial" version of these experiments for which the results would be unlikely to replicate. For instance: In the orientation group in Experiment 1, what if the odd-one-out was rotated 90 degrees instead of 180 degrees? Intuitively, it seems like this trial type would now be much easier, and the pattern observed here would not hold up. If it did hold up, that would provide stronger support for the authors' theory.

      It is not enough, in my opinion, to simply have some confirmatory evidence of this theory. One would have to have thoroughly tested many possible ways that theory could fail. I'm unsure that enough has been done here to convince me that these ideas would hold up across a more diverse set of stimuli.

      Response: (1) We appreciate the reviewer’s feedback regarding the justification for our experimental designs. We recognize the importance of thoroughly explaining how our stimuli were designed and how these designs correspond to the theoretical constructs being tested. In our revised version, we will enhance the introduction of Erlangen program and provide a more detailed explanation of the rationale behind our stimulus designs, aiming to enhance the clarity and transparency of our experimental approach for readers who may not be familiar with these concepts.

      (2) We appreciate the reviewer’s insight into the design of Experiment 1 and the concern regarding the potential similarity between the parallelism and orientation stimuli manipulations.

      The parallelism and orientation stimuli in Experiment 1 were first used by Olson & Attneave (1970) to support line-based models of shape coding and then adapted to measure the relative salience of different geometric properties (Chen, 1986). In the parallelism stimuli, the odd quadrant differs from the rest in line slope, while in the orientation stimuli, in contrast, the odd quadrant contains exactly the same line segments as the rest but differs in direction pointed by the angles. The result, that the odd quadrant was detected much faster in the parallelism stimuli than in the orientation stimuli, can serve as evidence for line-based models of shape coding. However, according to Chen (1986, 2005), the idea of invariants over transformations suggests a new analysis of the data: in the parallelism stimuli, the fact that line segments share the same slope essentially implies that they are parallel, and the discrimination may be actually based on parallelism. Thus, the faster discrimination of the parallelism stimuli than that of the orientation stimuli may be explained in terms of relative superiority of parallelism over orientation of angles—a Euclidean property.

      The group of stimuli in Experiment 1 has been employed by several studies to investigate scientific questions related to the Klein’s hierarchy of geometries (L. Chen, 2005; Meng et al., 2019; B. Wang et al., n.d.). Due to historical inheritance, we adopted this set of stimuli and corresponding paradigm, despite their imperfect design.

      (3) Thanks for raising the important issue of stimulus diversity and the potential for "adversarial" versions of the experiments to challenge our findings. We acknowledge the validity of your concern and recognize the need to demonstrate the robustness of our results across a range of stimuli. We plan to design additional experiments to investigate the potential implications of varying stimulus characteristics, such as different rotation angles proposed by the reviewer, on the observed patterns of performance.

    1. Author Response

      We would like to thank the editors and reviewers who took their valuable time to evaluate the manuscript from various perspectives. We are delighted that our technique was found appealing to biologists and imaging technologists. However, we received several comments that the principles and effectiveness of our techniques are often vague and difficult to understand. They also pointed out that the explanations and representations for several figures were not appropriate. We will revise the manuscript to address these issues and make the manuscript more clear and rigorous.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      Comment 1.1: “Did the UKB or HCHS datasets have information on accurate markers of insulin resistance, such as HbA1c or HOMA-IR (if fasting glucose was not available)? Looking at that data would allow us to determine the contribution of insulin resistance to the observed cortical phenotype.”

      Reply 1.1: We appreciate the insightful suggestion from the reviewer. In response, we incorporated the HbA1c into our analysis, enhancing its sensitivity to potential effects of insulin resistance. Subsequently, our analysis was reperformed, integrating HbA1c alongside non-fasting blood glucose in the PLS. This addition did not alter our main results, i.e., that of the PLS, virtual histology, and network contextualization analysis. Notably, as a result of the inclusion of HbA1c, the second latent variable now accounted for a greater shared variance (22.13%), with HbA1c showing the highest loading among MetS component variables. The manuscript has been thoroughly revised to incorporate these results.

      Comments 1.2: “(Results, p.13, 291-292) "A correlation matrix relating all considered MetS component measures is displayed in supplementary figure S12. Please clarify in this figure labels whether this was non-fasting glucose. If this is non-fasting glucose, it is not a MetS-related risk factor. The reader might be misled into thinking that fasting-glucose has a weak correlation, while its contribution (and the effect of insulin resistance) was not studied here.”

      “Table S8 and Table S9: Is the glucose metric here measured following fasting? If not, this should not be listed as a metabolic syndrome criterion. Or it should be specified that it isn't fasted glucose, otherwise, it sounds misleading.”

      Reply 1.2: We thank the reviewer for bringing this ambiguity to our attention. The initial analysis included only non-fasting plasma glucose in the PLS, as fasting plasma glucose data was unavailable for UKB and HCHS participants. Following your suggestion in reply 1.1, we have now incorporated HbA1c, a more indicative marker of insulin resistance. We retained non-fasting blood glucose in our analysis, recognizing its relevance as a diagnostic variable for type 2 diabetes mellitus, although it is less informative than fasting plasma glucose, HbA1c, or HOMA-IR. This decision is substantiated by the significant correlation found between non-fasting plasma glucose and HbA1c in our sample (r=.49).

      To enhance clarity, we have revised the methods section to explicitly mention that the study investigates non-fasting blood glucose. The revised sentence reads: “Here, we related regional cortical thickness and subcortical volumes to clinical measurements of MetS components, i.e., obesity (waist circumference, hip circumference, waist-hip ratio, body mass index), arterial hypertension (systolic blood pressure, diastolic blood pressure), dyslipidemia (high density lipoprotein, low density lipoprotein, total cholesterol, triglycerides) and insulin resistance (HbA1c, non-fasting blood glucose).”

      Additionally, we have updated the caption of supplementary figure S13 (formerly supplementary figure S12) to clearly indicate the investigation of non-fasting plasma glucose. The table detailing diagnostic MetS criteria (supplementary table S2) has also been amended to clarify the absence of fasting plasma glucose data in our study and to indicate that only data on antidiabetic therapy and diagnosis of type 2 diabetes mellitus were used as criteria for insulin resistance in the case-control analysis.

      Comment 1.3: “I do not understand how the authors can claim there is a deterministic relationship there if all the results are only correlational or comparative. Can the differences in functional connectivity and white matter fiber tracts observed not be caused by the changes in cortices they relate to? How can the authors be sure the network organisation is shaping the cortical effects and not the opposite (the cortical changes influence the network organisation)? This should be further discussed or explained.”

      Reply 1.3: We agree with the reviewer's comment on the non-causative nature of our data and have accordingly revised the discussion section to reflect a more cautious interpretation of our findings. We have carefully reframed our language to avoid any implications of causality, ensuring the narrative aligns with the correlational nature of our data. Nevertheless, we believe that exploring causal interpretations can offer valuable clinical insights. Therefore, while moderating our language, we have maintained certain speculative discussions regarding potential causative pathomechanistic pathways.

      Comment 1.4: “The hippocampus is also an area where changes have consistently been observed. Why did the authors limit their analysis to the cortex.”

      Reply 1.4: We appreciate this reviewer comment. In response, we have added volumes of Melbourne Subcortical Atlas parcels (including the hippocampus) to the analysis. Corresponding results are now shown in figure 2. The subcortical bootstrap ratios indicated that higher MetS severity was related to lower volumes across all investigated subcortical structures.

      Comment 1.5: “Which field ID of the UK biobank are the measures referring to? If possible, please specify the Field ID for each of the UKB metrics used in the study.”

      Reply 1.5: We thank the reviewer for the recommendation. The Field IDs used in our study are now listed in supplementary figure S1.

      Comment 1.6: “Several Figures were wrongly annotated, making it hard to follow the text.”

      Reply 1.6: Thank you for bringing the annotation issues to our awareness. We have thoroughly edited all annotations which should now correctly reference the figure content.

      Reviewer 2

      Comment 2.1: “Do the authors have the chance to see how the pattern relates to changes in cognitive function in the UKBB and possibly HCHS? This could help to provide some evidence about the directionality of the effect.” Reply 2.1: Thank you for your suggestion. We acknowledge the potential value of investigating gray matter morphometric data alongside longitudinal information on cognitive function. Although we concur with the significance of this approach, we are constrained by the ongoing processing of the UKB's imaging follow-up data and the pending release of the HCHS follow-up data. Consequently, our current analysis cannot incorporate this aspect for now. We plan to explore the relationship between MetS, cognition and brain morphology using longitudinal data as soon as it becomes available.

      Comment 2.2: “Also, you could project new data onto the component and establish a link with cognition in a third sample which would be even more convincing. I can offer LIFE-Adult study for this aim.”

      Reply 2.2: We are grateful for your recommendation to enhance our study's robustness by including a third sample to establish a cognitive link. While we recognize the merit of such a sensitivity analysis, we believe that our current dataset, derived from two large, independent cohorts, is sufficiently comprehensive for the scope of our current analysis. However, we are open to considering this approach in future studies and appreciate your offer of the LIFE-Adult study. We would welcome further conversation with you regarding future joint projects.

      Comment 2.3: “The sentences (p.17, ll.435 ff) seem to repeat: "Interestingly, we also observed a positive relationship between cortical thickness and MetS in the superior frontal, parietal and occipital lobe. Interpretation of this result is, however, less intuitive. We also noted a positive MetS-cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive finding that has been previously reported [60,61].”

      Reply 2.3: Thank you for making us aware of this duplication. We have deleted the first part of the section. It now reads “We also noted a positive MetS-cortical thickness association in superior frontal, parietal and occipital lobes, a less intuitive finding that has been previously reported.”

      Comment 2.4: “I would highly appreciate empirical evidence for the claim in ll. 442 "In support of this hypothesis, the determined cortical thickness abnormality pattern is consistent with the atrophy pattern found in vascular mild cognitive impairment and vascular dementia" Considering the previous reports about the co-localization of obesity-associated atrophy and AD neurodegeneration (Morys et al. 2023, DOI: 10.3233/JAD-220535), that most dementias are mixed and that MetS probably increases dementia risk through both AD and vascular mechanisms, I feel such "binary" claims on VaD/AD-related atrophy patterns should be backed up empirically.”

      Reply 2.4: Thank you for highlighting the need for clarity in differentiating between vascular and Alzheimer's dementia. We recognize the intricate overlap in dementia pathologies. Acknowledging the prevalence of mixed dementia and the influence of MetS on both AD and vascular mechanisms, we realize our original statement might have implied a specificity to vascular dementia, which was not intended.

      To address your concern, we have revised our statement to avoid an exclusive focus on vascular pathology, ensuring a more balanced representation of dementia types. Additionally, we have included Morys et al. 2023 as a reference. The section now reads: “In support of this hypothesis, the determined brain morphological abnormality pattern is consistent with the atrophy pattern found in vascular mild cognitive impairment, vascular dementia and Alzheimer’s dementia.”

      Comment 2.5: “I wonder how specific the cell-type results are to this covariance pattern. Maybe patterns of CT (independent of MetS) show similar associations with one or more of the reported celltypes? Would it be possible to additionally show the association of the first three components of general cortical thickness variation with the cell type densities?”

      Reply 2.5: Thank you for your query regarding the specificity of the cell-type results to the observed covariance pattern. To address this, we have conducted a virtual histology analysis of the first three latent variables of the main analysis PLS. The findings of this extended analysis have been detailed in the supplementary Figure S21. The imaging covariance profile of latent variable 2 was significantly associated with the density of excitatory neurons of subtype 3. The imaging covariance profile linked to latent variable 3 showed no significant association of cell type densities. Possibly, latent variable 3 represents only a noise component as it explained only 2.12% of shared variance. We hope this addition provides a clearer understanding of the specificity of our main results.

      Comment 2.6: “I agree that this multivariate approach can contribute to a more holistic understanding, yet I would like to see the discussion expanded on how to move on from here. Should we target the MetS more comprehensively or would it be best to focus on obesity (being the strongest contributor and risk factor for other "downstream" conditions such as T2DM)? A holistic approach is somewhat at odds with the in-depth investigation of specific mechanisms.”

      Reply 2.6: We value your suggestion to elaborate on the implications of our findings. Our study indicates that obesity may have the most pronounced impact on brain morphology among MetS components, suggesting it as a key contributor to the clinical-anatomical covariance pattern observed in our analysis. This highlights obesity as a primary target for future research and preventive strategies. However, we believe that our results warrant further validation, ideally through longitudinal studies, before drawing definitive clinical conclusions.

      Additionally, our study endorses a comprehensive approach to MetS, highlighting the importance of considering the syndrome as a whole to gain broader insights. We want to clarify, however, that such an approach is meant to complement, rather than replace, the study of individual cardiometabolic risk factors. The broad perspective our study adopts is facilitated by its epidemiological nature, which may not be as applicable in experimental settings that are vital for deriving mechanistic disease insights.

      To reflect these points, we have expanded the discussion in our manuscript to include a more detailed consideration of these implications and future research directions.

      Comment 2.7: “Please report the number of missing variables.”

      Reply 2.7: Thank you for your request to report the number of missing variables. We would like to direct your attention to table 1, where we have listed the number of available values for each variable in parentheses. To determine the number of missing variables, one can subtract these numbers from the total sample size.

      Comment 2.8: “Was the pattern similar in pre-clinical (pre-diabetes, pre-hypertension) vs. clinical conditions?“

      Reply 2.8: Thank you for your interest in the applicability of our findings across different MetS severity levels. Our analysis employs a continuous framework to encompass the entire range of vascular and cardiometabolic risks, including those only mildly affected by MetS. The linear relationship we observed between MetS severity and gray matter morphology patterns, as illustrated in Figure 2d, supports the interpretation that our findings apply to the entire spectrum of MetS severities.

      Comment 2.9: “How did you deal with medication (anti-hypertensive, anti-diabetic, statins..)?”

      Reply 2.9: Information on medication was considered for defining MetS for the case-control sensitivity analysis but was not included in the PLS. Detailed information can be found in table 1.

      Comment 2.10: “It would be really interesting to determine the genetic variations associated with the latent component. Have you considered doing a GWAS on this, potentially in the CHARGE consortium or with UKBB as discovery and HCHS as replication sample?”

      Reply 2.10: Thank you for your valuable suggestion regarding the implementation of a GWAS. We agree that incorporating a GWAS would provide significant insights, but we also recognize that it extends beyond the scope of our current analysis. However, we are actively planning a follow-up analysis. This subsequent analysis will encompass a comprehensive examination of both genetic variation and imaging findings in the context of MetS.

      Comment 2.11: “Please provide more information on which data fields from UKBB were used exactly (e.g. in github repository).”

      Reply 2.11: We appreciate your recommendation. The details regarding the Field IDs used in our study have been included as supplementary table S1.

      Reviewer 3

      Comments 3.1: “After a thorough review of the methods and results sections, I found no direct or strong evidence supporting the authors' claim that the identified latent variables were related to more severe MetS to worse cognitive performance. While a sub-group comparison was conducted, it did not adequately account for confounding factors such as educational level.”

      “Page 18-19 lines 431-446: the fifth paragraph in the discussion section. - As previously mentioned in the "Weaknesses" section, this study did not conduct a direct association analysis between MetS and cognitive levels without considering subgroup comparisons. Hence, I recommend the content of this paragraph warrants careful reconsideration.”

      Reply 3.1: We acknowledge the reviewer's constructive feedback regarding our analysis of cognitive data. We have performed a mediation analysis relating the subject-specific clinical PLS score of latent variable 1 representing MetS severity and cognitive test performances and testing for mediating effects of the imaging PLS score capturing the MetS-related brain morphological abnormalities. The imaging score was found to statistically mediate the relationship between the clinical PLS score and executive function and processing speed, memory, and reasoning test performance. These findings highlight brain structural differences as a relevant pathomechanistic correlate in the relationship of MetS and cognition. Corresponding information can now be found in figure 3, methods section 2.6.2, result section 3.3 and discussion section 4.2.

      Moreover, we would like to apologize for any confusion caused by previous unclear presentation. Our study further incorporates association analyses between MetS, brain structure, and cognition using MetS components, regional brain morphological measures, and cognitive performance data in a PLS to investigate whether cognitive measures contribute to the latent variable. These analyses were separately performed on the UK Biobank and HCHS datasets, due to their distinct cognitive assessments. We adjusted for age, sex, and education in the subgroup analyses by removing their effects from the input variables. These relationships are detailed in supplementary figures S16b and S17b, with loadings close to zero for age, sex, and education, confirming effective deconfounding.

      In sum, we greatly appreciate the suggestion to conduct a mediation analysis, which has substantially enhanced the strength and relevance of our analysis.

      Comment 3.2: “I would suggest the authors provide a more comprehensive description of the metrics used to assess each MetS component, such as obesity (incorporating parameters like waist circumference, hip circumference, waist-hip ratio, and body mass index) and arterial hypertension (detailing metrics like systolic and diastolic blood pressure), etc.”

      Reply 3.2: Thank you for your suggestion regarding a more detailed description of the metrics for assessing each component of MetS. We would like to point out that the specific metrics used, including those for obesity (such as waist circumference, hip circumference, waist-hip ratio, and body mass index) and arterial hypertension (including systolic and diastolic blood pressure), are comprehensively detailed in table 1 of our manuscript. We hope this table provides the clarity and specificity you are seeking regarding the MetS assessment metrics in our study.

      Comment 3.3: “I recommend the inclusion of an additional, detailed flowchart to further illustrate the procedure of virtual histology analysis. This would enhance the clarity of the methodological approach and assist readers in better comprehending the analysis method.”

      Reply 3.3: Thank you for your suggestion. Recognizing the challenges in visually representing many of our analysis steps, we have instead supplemented our manuscript with additional references. These references provide a clearer understanding of our virtual histology approach, particularly focusing on the processing of regional microarray expression data.

      The corresponding sentence reads: “Further details on the processing steps covered by ABAnnotate can be found elsewhere (https://osf.io/gcxun) [42]”

      Comment 3.4: “Why were both brain hemispheres used instead of solely utilizing the left hemisphere as the atlas, especially considering that the Allen Human Brain Atlas (AHBA) only includes gene data for the right hemisphere for two subjects?”

      Reply 3.4: Thank you for your query regarding our decision to use both brain hemispheres instead of solely the left hemisphere, especially considering the Allen Human Brain Atlas (AHBA) predominantly featuring gene data from the left hemisphere. Given the AHBA's limited spatial coverage of expression data in the right hemisphere, our approach involved mirroring the existing tissue samples across the left-right hemisphere boundary using the abagen toolbox,1 a practice supported by findings that suggest minimal lateralization of microarray expression.2,3 Further details are provided in previous work employing ABAnnotate.4 These studies are now referenced in our methods section.

      Comment 3.5: “The second latent variable was not further discussed. If this result is deemed significant, it warrants a more detailed discussion. "

      Reply 3.5: Thank you for the suggestion. We have added a paragraph to the discussion that discusses the second latent variable in greater detail. It reads: “The second latent variable accounted for 22.33% of shared variance and linked higher insulin resistance and lower dyslipidemia to lower thickness and volume in lateral frontal, posterior temporal, parietal and occipital regions. The distinct covariance profile of this latent variable, compared to the first, likely indicates a separate pathomechanistic connection between MetS components and brain morphology. Given that HbA1c and blood glucose were the most significant contributors to this variable, insulin resistance might drive the observed clinicalanatomical relationship.”

      Comment 3.6: “I suggest appending positive MetS effects after "..., insular, cingulate and temporal cortices;" for two reasons: a). The "positive MetS effects" might represent crucial findings that should not be omitted. b). Including both negative and positive effects ensures that subsequent references to "this pattern" are more precise.”

      Reply 3.6: We concur with the notion that the positive MetS effects should be highlighted as well. We modified the first discussion paragraph now mentioning them.

      Comment 3.7: “I would appreciate further clarification on this sentence and the use of the term "uniform" in this context. Does this suggest that despite the heterogeneity in the physiological and pathological characteristics of the various MetS components (e.g., obesity, hypertension), their impacts on cortical thickness manifest similarly? How is it that these diverse components lead to "uniform" effects on cortical thickness? Does this observation align with or deviate from previous findings in the literature?”

      Reply 3.7: Thank you for highlighting the ambiguity in our previous explanation. We agree that the complexity of the relationship between MetS components and brain morphology requires clearer articulation. To address this, we have revised the relevant sentence for better clarity. It now reads: „This finding indicates a relatively uniform connection between MetS and brain morphology, implying that the associative effects of various MetS components on brain structure are comparatively similar, despite the distinct pathomechanisms each component entails.“

      Comment 3.8: “Figure 1 does not have the labels "c)" and "d)". ”

      Reply 3.8: Thank you. We have modified figure 1 and made sure that the caption correctly references its content.

      Comment 3.10: “Incorrect figure/table citation:

      • Page 18 line 418: "(figure 2b and 1c)" à (figure 2b and 2c).

      • Page 18 line 419: "(supplementary figures S8 and S12-13)" à (supplementary figures S11 and S1516).

      • In the supplementary material, "Text S5 - Case-control analysis" section contains several figure or table citation errors. Please take a moment to review and correct them.”

      Reply 3.10: Thank you for bringing this to our attention. We have corrected the figure and table citation errors.

      Comment 3.11: “Page 8 line 184: The more commonly used term is "insulin resistance" rather than "insuline resistance.”

      Reply 3.11: We now use “insulin resistance” throughout the manuscript.

      Comment 3.12: “Nevertheless, variations in gene sets may introduce a degree of heterogeneity in the results (Seidlitz, et al., 2020; Martins et al., 2021). Consequently, further validation or exploratory analyses utilizing different gene sets can yield more compelling results and conclusions.”

      Reply 3.12: Thank you for your insightful comment regarding the potential heterogeneity introduced by variations in gene sets. We agree that exploring different gene sets could indeed enhance the robustness and generalizability of our findings. However, we think conducting a comprehensive methodological analysis of the available cell-type specific gene sets is a substantial effort and warrants its own investigation to thoroughly implement it and assess its implications. We also like to highlight that we are adhering to previous practices in our analysis setup.4,5

      References

      (1) Markello RD, Arnatkeviciute A, Poline JB, Fulcher BD, Fornito A, Misic B. Standardizing workflows in imaging transcriptomics with the abagen toolbox. Jbabdi S, Makin TR, Jbabdi S, Burt J, Hawrylycz MJ, eds. eLife. 2021;10:e72129. doi:10.7554/eLife.72129

      (2) Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489(7416):391-399. doi:10.1038/nature11405

      (3) Hawrylycz M, Miller JA, Menon V, et al. Canonical genetic signatures of the adult human brain. Nat Neurosci. 2015;18(12):1832-1844. doi:10.1038/nn.4171

      (4) Lotter LD, Saberi A, Hansen JY, et al. Human cortex development is shaped by molecular and cellular brain systems. Published online May 5, 2023:2023.05.05.539537. doi:10.1101/2023.05.05.539537

      (5) Lotter LD, Kohl SH, Gerloff C, et al. Revealing the neurobiology underlying interpersonal neural synchronization with multimodal data fusion. Neuroscience & Biobehavioral Reviews. 2023;146:105042. doi:10.1016/j.neubiorev.2023.105042

    1. Author Response

      Reviewer #2 (Public Review):

      This study aims to test the role of awake replay in short-term memory, a type of memory that operates on the timescale of seconds and minutes. Replay refers to a time-compressed burst of neuronal population activity during a particular oscillatory local field potential event in the hippocampus, called the sharp-wave ripple (SWR). SWRs are found during sleep and in the awake state and are always associated with the animal being quiescent. The paper compares results from three different behavioral tasks ranging in memory requirements and memory timescales. First, rats were trained on either a spatial match-to-sample task (MTS), a non-match-to-sample task (NMTS), or a task requiring the memorization of sequences (maze arms to be visited in a specific temporal order). In this initial training phase, the animals were allowed to learn the maze structure and the rules governing these tasks for all these behavioral paradigms. Then, awake sharp-SWRs were disrupted as the animal performed these tasks (both during instruction and test phases) via an online detection system combined with closed-loop electrical stimulation of the ventral hippocampal commissure. Notably, this manipulation appeared not to affect performance in all three tasks, as determined using various behavioral parameters. Trials with no stimulation or delayed stimulation serve as controls. Thus, the authors conclude that awake SWRs are not involved in these short-term memory-guided behaviors. I do have a few comments that the authors should discuss or address:

      (1) This study adds to a large number of studies investigating the role of awake SWRs in spatial learning and memory tasks. The results of these previous studies are quite contradictory and range from awake SWRs are not crucial in guiding decisions at all to SWRs are only essential during task rule learning to SWRs do guide behavior. Could the authors comment on these seemingly contradictory results? Why are these experiments now the right ones?

      The reviewer is correct that there is a large body of literature investigating awake SWRs. Most commonly, interpretations about the role of SWRs and associated replay are made based on correlations of their occurrence with behavior. These correlations do, however, not necessarily indicate that SWRs contribute to a particular cognitive process. That is why interventional studies like ours are important to clarify the contribution of SWRs.

      The acquisition of a novel task involves a number of cognitive processes, including short- and long-term memory, building a map of the environment, exploration of the solution space and incorporating (non-)rewarding feedback. Based on available evidence, SWRs could contribute to many of these processes. Our experiments were designed to exclude the long-term memory aspect and focus on the memorization of locations on a short time-scale which as we now demonstrate is not dependent on SWRs. Since the use of short-term spatial memory is one of the possible explanations for the learning deficit seen by Jadhav et al. (2012) following SWR disruption in an alternation task, our results may also narrow down the exact contribution of SWR in these studies.

      (2) None of the experiments presented here test the role of replay. I suggest making this distinction in the paper and the title clear. As the results are presented now, is it possible that the SWR content is not affected sufficiently to have a behavioral effect or that there is a bias towards detecting specific SWRs, e.g., longer SWRs?

      The reviewer is right that our experiments do not say anything about replay directly. We adapted the text to make this distinction clear.

      We address the possibility that SWR content may not be disrupted sufficiently to cause a behavioral effect in response to recommendation 1.

      Reviewer #3 (Public Review):

      In this manuscript, the authors seek to shed light on the role of awake hippocampal replay during memory tasks that are claimed to be short-term memory. For this, they make use of a real-time detection and disruption system of awake hippocampal ripples, which are used as a proxy for awake neuronal replay. The manuscript describes extensively the tasks as well as the disruption system and controls used during the experiments. The authors present numerous and solid analyses of the behavioral data acquired during the tasks. Nonetheless, the current version of the manuscript is lacking a more complete discussion in which the results are contrasted to previous similar findings, as well as mentioning the role of the awake ripple in the stabilization of hippocampal maps. Some extra analyses are also suggested below. The manuscript would also be enriched if the authors suggested alternative mechanisms for memory rehearsal. Finally, some claims of "we are first" seem inappropriate when compared to the previous literature.

      Major comments:

      How does one define short-term memory (STM) in rodents? The examples and papers cited in the first paragraphs refer mostly to human working memory tasks, from which it is known that a non- rehearsed STM lasts typically 20-30 seconds. Could the authors mention how this concept is translated to rodents? Could you clarify until what point memory is considered STM and what is the criteria to consider it has turned into long-term memory or when is it simply working memory or habit/skill?

      We agree with the reviewer that the definition of short-term memory is fluid and may differ between researchers and model systems. To avoid confusion, we reframed our study in a different context and hope that this makes the timeframes we are talking about clearer.

      Further, why should these tasks be classified as testing STM while Jadhav et al. tasks are working memory or as they now mention in this article rule learning?

      Note that short-term memory and working memory are closely related, but not identical, concepts. Whereas short-term memory refers to the retaining of information for a short period of time, working memory is generally considered to also include some manipulation of that information. Unfortunately, in the rodent literature, (spatial) working memory and short-term memory are often used interchangeably.

      Many (animal) spatial memory tasks do not test a single cognitive faculty, but likely involve a combination of short-term memory, working memory, and rule learning (among other abilities) to acquire or solve the task. As such, an unequivocal classification of behavioral tasks is not generally possible. For example, in the continuous version of the spatial alternation task used in Jadhav et al., animals may learn the rule “if I in the center arm and I came from the left goal arm, then I will next find reward in the right goal arm”. The execution of this rule would require maintaining in (short-term) memory the most recent visited goal arm. Alternatively, animals may learn the rule to turn left twice and right twice to successfully perform the task.

      One of our goals in our study was to attempt to isolate rule learning components and short-term memory components in our tasks (to be clear: we are not claiming that our tasks are pure short- term memory tasks).

      We have rewritten the introduction to reframe our study, which hopefully clarifies the points above.

      In humans, the retention of memory after a certain time is achieved by retrieving a long-term memory. How do we know if the considerable training the rats received has not allowed the use of a long-term memory strategy which allows the rats to perform well even in the absence of rehearsal (replay)? These are conceptual explanations that would help understand the key concept of STM in greater detail.

      Our experiments aimed to distinguish between the process of learning general task rules through training and the need to retain information specific to each trial or session. For example, in the NMTS task, the animals may have a long-term memory of the overall task design, but they cannot anticipate or recall in advance which specific arms will be baited in the instruction phase since they vary from one trial to another. Therefore, to complete a trial successfully, the animals must have formed some type of (short-term) memory of the instruction arms and/or of the arms that still need to be visited in the test phase. Although extended training may have resulted in a more optimized and less demanding strategy to memorize the necessary information, evidence in the literature indicates that even then (for this particular task), a functional hippocampus is required (Sasaki 2021). The question we address in our experiments is whether hippocampal SWRs (and by association, replay) are instrumental in the formation or maintenance of this memory, whether through rehearsal or other mechanisms. The rewritten introduction explains these concepts more clearly.

      Further, claims of "first" should be adjusted, since I do not see a large difference between the w (m) maze of Jadhav and these tasks. The main difference between the two projects would rather be that Jadhav tests when animals are still newer to the task while here overtrained animals are used. In Jadhav, it's unlikely that just rule learning is affected since the inbound component is not affected by disruption, which also tests rule learning. Therefore, it is still likely that the effect seen in Jadhav et al is a deficit in working memory/short-term memory. And here it is more likely, that no effect was seen since with overtrained animals other strategies (cortical, striatal, etc) were used. The authors should compare in more detail how overtrained animals were in these different projects as well as in the articles they cite for replay analysis.

      The training of the animals on the general task rules prior to SWR disruption manipulations is by design, as it better isolates the short-term memory demands required to solve the task in each trial/session. In our tasks, the rats are required to memorize a randomly chosen combination of goal arms on each day (MTS & SEQ task) or in every trial (NMTS task). Unlike the continuous alternation paradigm used by Jadhav et al. (2012), our tasks can not be solved using a stereotypical or habitual (striatal) strategy that is acquired through extended training. We can not exclude that the rats acquired an optimized and less cognitively demanding strategy that is mainly dependent on cortical structures outside the hippocampus, however evidence in the literature still indicates the requirement for a functional hippocampus (Sasaki, 2021; Okaichi and Oshima 1990; Blokland, Honig, and Raaijmakers, 1992).

      The reviewer is correct that the inbound component of the continuous alternation task in Jadhav et al. (2012) can be considered rule learning and was not affected by SWR disruption. However, we do not believe that this should be generalized to all rule learning and it is very well conceivable that SWRs contribute to the learning of more complex rules that also feature ambiguity (such as the outbound component in the continuous alternation task). We elaborate on these points in the discussion (lines 425-455).

      The main conclusion of the authors is that hippocampal replay is not the rehearsal mechanism expected in STM given that its disruption doesn't lead to behavioral changes. Could the authors hypothesize in their discussion what other neural mechanisms different from hippocampal replay may be involved in this rehearsal?

      Thank you for this suggestion. We added an extra paragraph speculating on this aspect (lines 499- 518).

      The discussion also lacks closure with respect to how the findings fit in the study of STM in human memory. This would make the article more interesting to a larger audience and highlight its translational aspect.

      We agree with the reviewer and added our insight to the discussion.

      The results describe deeply the behavioral performance of the rats and the validation of the ripple detection/disruption system. However, one important aspect missing is how the hippocampal activity and its encoding of space may be affected by the awake ripple disruption. The authors don't cite the work by Roux et al., Nature Neuroscience. 2017 where optogenetic stimulation of hippocampal neurons provided evidence that neuronal activity associated with awake hippocampal ripples during goal-directed behavior is required for both stabilizing and refining hippocampal place fields, while memory performance was not affected during ripple-locked stimulations compared to a ripple-delayed stimulation control (See supplementary Figure 7 of the mentioned article). I would like the authors to comment on their own findings and contrast them with those of Roux et al.

      We agree that it is interesting to include the results of Roux et al. in our discussion (lines 470 and 463-466).

      Line 64: Could the authors clarify what they mean by "indirect" causal evidence when discussing the contribution of papers by Jadhav, Igata, and Fernandez? Is it the fact that rodents' learning speed changed instead of showing a complete absence of learning? Or is it the fact that the disruption/prolongation is done on the hippocampal ripple and not strictly in the replay sequence?

      We apologize for the confusion and rewrote large parts of the introduction to clarify the contributions of the papers by Jadhav, Igata, and Fernandez and the difference with what our manipulations contribute. In the process, we removed the phrase ‘indirect causal evidence’.

      I would also highlight this latter difference, given that the above-mentioned authors describe their methodological approaches in terms of ripples and not in terms of replay content. For example, the use of "replay" instead of "ripple" in Line 61 results in methodological inaccurate terms such as replay disruption and replay prolongation.

      Thank you for pointing this out. We adapted the manuscript to always use ‘ripple’ or ‘sharp-wave ripple’ (SWR) when describing our results.

      Despite its apparent lack of statistical significance, the reported mean ripple detection rate during the trial and non-trial periods tend to be always higher in the disruption condition of all tasks by observing the median of the boxplots in Figure 1J, Figure 2H, and Figure 3J. It is worth investigating this further using the same linear regression method as Girardeau et al. Journal of Neuroscience, 2014 which may reduce the variability and allow comparing slopes of a cumulative number of ripples over time. This may reveal a compensatory homeostatic-like increase in the rate of ripples during the disrupted sessions, which may suggest a need for the ripple/replay occurrence in spite of it not having an effect on the rats' performance during the task.

      The reviewer makes an interesting observation and we appreciate the suggestion for further investigation. However, note that a clear trend for higher ripple rates in disruption trials/sessions is not present when comparing to non-stimulated control trials/session. Part of the variability in the observed ripple rates is likely due to the variability in the animals’ behavioral state (e.g., moving, pausing but alert, grooming, consuming reward) and the corresponding varying propensity for SWRs to occur. The behavioral variability makes application of the linear regression approach of Girardeau et al. (2014) not straightforward (note that Girardeau et al. looked at SWRs during sleep). For these reasons, we have decided to not further look into the potential disruption-induced increase of the SWR rate.

      In line 425, the authors report a median relative delay of 52.9 of their disruption system. Such a value would indicate that only around 47% of the ripple is being blocked. Is there any data from the authors or others that could reassure the reader that the 52.9% of the ripple that "leaks" is not enough for the replay phenomenon to occur? Considering the findings of Fernandez-Ruiz et al. 2019 on large-duration ripples, could the authors report the relative delay for both short and long ripples (>100 ms) separately?

      The reviewer is correct that the initial part (~35 ms) of SWRs remains intact, which is inherent to the online detection and disruption approach. In relative terms, a larger fraction of long SWRs is disrupted. As requested, we have adapted figure 4c to separately show the distribution of relative detection delays for long (duration >100ms) and short SWRs.

      As we and others have shown, the electrical stimulation temporarily suppresses spiking activity in CA1 and thus abruptly interferes with any ongoing replay, but any beginning of replay sequences before the stimulation will not be affected. Previous studies that use the same methodology to disrupt SWRs reported a behavioral performance deficit despite the detection delays (Michon et al. 2019; Girardeau et al. 2009; Jadhav et al. 2012). This suggests that the initial part of SWRs (and replay) is not sufficient to support the behavior. The delays in the current study are quantitatively similar to what we have reported before in Michon et al. (2019) and thus we are confident that we should have been able to observe a behavioral effect if present. We now elaborate on this topic in the Discussion (lines 489-498) .

      Line 494: The authors define long ripples as (>120 ms) but this doesn't coincide with the 100ms threshold from Fernandez Ruiz et al. 2019.

      Thank you for pointing this out, it is corrected in the text both in the Results (line 389) and Discussion (line 486).

      The online ripple detector used filtered the traces in the 135-255 Hz range. This is a narrower frequency range compared to online detectors used by Jadhav et al. 2012 (100-400 Hz) and Fernandez-Ruiz et al. 2019 (80-300 Hz). What motivated the use of this narrow range? Would the omittance of ripples below 135 Hz have implications in the results? Could the authors add to the supplement a figure similar to Figure 4B (FDR vs TPR) using a wider frequency range similar to the authors above in the offline detection of ripples?

      The frequency of hippocampal ripple oscillation in rat generally lies in the range of 160-225 Hz (Buzsaki, 1992). We have added a power spectrum in Figure 1d that confirms this frequency range in our experiments. Filters that include frequencies below this range (as in the studies referenced by the reviewer) likely also pass through high-frequency gamma oscillations, and filters that include frequencies above this range likely also pass through multi-unit spiking activity. The challenge for a real-time ripple detection system is to design a filter that has an acceptable trade-off between filtering in a specific (narrow) frequency range and introducing a long delay. In our study, we specifically designed a filter that is specific to the ripple frequency band and still has an acceptable low delay.

      It is unclear what criterion was used to train the rats in the NMTS task. Line 216 specifies a learning criterion of 80% fully correct trials in one session for three days in a row, while the methods in line 852 mention an average performance below 50% for at least three days in a row.

      Thank you for pointing this out. We corrected the learning criterium description in the results section (lines 108-110) to match the description in the Methods section.

      In the methods section, it is not mentioned if there was a specific region in the cortex where the tetrode was placed (Line 908).

      The detections in this tetrode were used to mark events as "false positives". The authors should be careful in line 933 when they make the statement "ripples are not present in the cortex". There have been recent publications that challenge this affirmation. See Khodagholy, Science. 2017, Nitzan, Nature Comm. 2020.

      Thank you for pointing this out. We have added the cortical region in the methods (line 882) and clarified that, as far as we know, no ripples in that part of the cortex (parietal associate cortex) have been described that are synchronous with hippocampal ripples.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This study presents a useful characterization of the biochemical consequences of a disease-associated point mutation in a nonmuscle actin. The study uses solid and well-characterized in vitro assays to explore function. In some cases the statistical analyses are inadequate and several important in vitro assays are not employed.

      Public Reviews:

      Reviewer #1 (Public Review):

      Strengths:

      The authors first perform several important controls to show that the expressed mutant actin is properly folded, and then show that the Arp2/3 complex behaves similarly with WT and mutant actin via a TIRF microscopy assay as well as a bulk pyrene-actin assay. A TIRF assay showed a small but significant reduction in the rate of elongation of the mutant actin suggesting only a mild polymerization defect.

      Based on in silico analysis of the close location of the actin point mutation and bound cofilin, cofilin was chosen for further investigation. Faster de novo nucleation by cofilin was observed with mutant actin. In contrast, the mutant actin was more slowly severed. Both effects favor the retention of filamentous mutant actin. In solution, the effect of cofilin concentration and pH was assessed for both WT and mutant actin filaments, with a more limited repertoire of conditions in a TIRF assay that directly showed slower severing of mutant actin.

      Lastly, the mutated residue in actin is predicted to interact with the cardiomyopathy loop in myosin and thus a standard in vitro motility assay with immobilized motors was used to show that non-muscle myosin 2A moved mutant actin more slowly, explained in part by a reduced affinity for the filament deduced from transient kinetic assays. By the same motility assay, myosin 5A also showed impaired interaction with the mutant filaments.

      The Discussion is interesting and concludes that the mutant actin will co-exist with WT actin in filaments, and will contribute to altered actin dynamics and poor interaction with relevant myosin motors in the cellular context. While not an exhaustive list of possible defects, this is a solid start to understanding how this mutation might trigger a disease phenotype.

      We thank the reviewer for the positive evaluation of our work.

      Weaknesses:

      • Potential assembly defects of the mutant actin could be more thoroughly investigated if the same experiment shown in Fig. 2 was repeated as a function of actin concentration, which would allow the rate of disassembly and the critical concentration to also be determined.

      The polymerization rate of individual filaments observed in TIRFM experiments showed only minor changes, as did the bulk-polymerization rate of 2 µM actin in pyrene-actin based experiments. Therefore, we decided not to perform additional pyrene-actin based experiments, in which we titrate the actin concentration, as we expect only very small changes to the critical concentration. Instead, we focused on the disturbed interaction with ABPs, as we assume these defects to be more relevant in an in vivo context. Using pyrene-based bulkexperiments, we did determine the rate of dilution-induced depolymerization of mutant filaments and compare them with the values determined for wt (Figure 5A, Table 1).

      • The more direct TIRF assay for cofilin severing was only performed at high cofilin concentration (100 nM). Lower concentrations of cofilin would also be informative, as well as directly examining by the TIRF assay the effect of cofilin on filaments composed of a 50:50 mixture of WT:mutant actin, the more relevant case for the cell.

      The TIRF assay for cofilin severing was performed initially over the cofilin concentration range from 20 to 250 nM. The results obtained in the presence of 100 nM cofilin allow a particularly informative depiction of the differences observed with mutant and WT actin. This applies to the image series showing the changes in filament length, cofilin clusters, and filament number as well as to the graphs showing time dependent changes in the number of filaments and total actin fluorescence. We have not included the results for a 50:50 mixture of WT:mutant actin because its attenuating effect is documented in several other experiments in the manuscript.

      • The more appropriate assay to determine the effect of the actin point mutation on class 5 myosin would be the inverted assay where myosin walks along single actin filaments adhered to a coverslip. This would allow an evaluation of class 5 myosin processivity on WT versus mutant actin that more closely reflects how Myo5 acts in cells, instead of the ensemble assay used appropriately for myosin 2.

      Our results with Myo5A show a less productive interaction with mutant actin filaments as indicated by a 1.7-fold reduction in the average sliding velocity and an increase in the optimal Myo5A-HMM surface density from 770 to 3100 molecules per µm2. These results indicate a reduction in binding affinity and coupling efficiency, with a likely impact on processivity. We expect only a small incremental gain in knowledge about the extent of changes by performing additional experiments with an inverted assay geometry, given that under physiological conditions the motor properties of Myo5A and other cytoskeletal myosins are modulated by other factors such as the presence of tropomyosin isoforms and other actin binding proteins.

      Reviewer #2 (Public Review):

      Greve et al. investigated the effects of a disease-associated gamma-actin mutation (E334Q) on actin filament polymerization, association of selected actin-binding proteins, and myosin activity. Recombinant wildtype and mutant proteins expressed in sf9 cells were found to be folded and stable, and the presence of the mutation altered a number of activities. Given the location of the mutation, it is not surprising that there are changes in polymerization and interactions with actin binding proteins. Nevertheless, it is important to quantify the effects of the mutation to better understand disease etiology.

      We thank the reviewer for the positive evaluation of our work.

      Some weaknesses were identified in the paper as discussed below.

      • Throughout the paper, the authors report average values and the standard-error-of-the-mean (SEM) for groups of three experiments. Reporting the SEM is not appropriate or useful for so few points, as it does not reflect the distribution of the data points. When only three points are available, it would be better to just show the three different points. Otherwise, plot the average and the range of the three points.

      We have gone through the manuscript carefully to correct any errors in the statistics, as explained below.

      Figure 1B, 5B, 5C, 5D, 8D, 9B, and 8 – figure supplement 2 all show the mean ± SD, as also correctly reported for Figure 8E and 8F in the figure legend. The statement, that these figures show the mean ± SEM was inaccurate. We corrected this mistake for all the listed figures. Furthermore, we now give the exact N for every experiment in the figure legend.

      Figure 2C, 2E, 2F, 4B, 5A, 6B-E showed the mean ± SEM. As suggested by the reviewer, we corrected the figures to show the mean ± SD.

      We still refer to the mean ± SEM in Figure 2B, where elongation rates for more than 100 filaments were recorded, and in Figure 8B, where sliding velocities for several thousand actin filaments were measured.

      • The description and characterization of the recombinant actin is incomplete. Please show gels of purified proteins. This is especially important with this preparation since the chymotrypsin step could result in internally cleaved proteins and altered properties, as shown by Ceron et al (2022). The authors should also comment on N-terminal acetylation of actin.

      We added an additional figure showing the purification strategy for the recombinant cytoskeletal γ –actin WT and p.E334Q protein with exemplary SDS-gels from different stages of purification (Figure 1 – figure supplement 1).

      In a previous paper, we reported the mass spectrometric analysis of the post-translational modifications of recombinant human β- and γ-cytoskeletal actin produced in Sf-9 cells. (Müller et al., 2013, Plos One). Recombinant actin showing complete N-terminal processing resulting in cleavage of the initial methionine and acetylation of the following aspartate (β-actin) or glutamate (γ-actin) is the predominant species in the analyzed preparations (> 95 %). While the recombinant actin in the 2013 study was produced tag-free and purified by affinity chromatography using the column-immobilized actin-binding domain of gelsolin (G4-G6), we have no reason to assume that the purification strategy using the actin-thymosin-β4 changes the efficiency of the N-terminal processing in Sf-9 cells. This is supported by our, yet unpublished, mass-spectrometric studies on recombinant human α-cardiac actin purified using the actin- thymosin-β4 fusion construct, which revealed actin species with an acetylated aspartate-3. This N-terminal modification of α-cardiac actin is catalyzed by the same actinspecific acetyltransferase (NAA80) as the acetylation of asparate-2 or glutamate-2 in cytoskeletal actin isoforms (Varland et al., 2019, Trends in Biochemical Sciences). Furthermore, additional studies that used the actin-thymosin-β4 fusion construct for the production of recombinant human cytoskeletal actin isoforms in Pichia pastoris reported robust N-terminal acetylation, when the actin was co-produced with NAA80 (In contrast to Sf-9 cells, NAA80 is not endogenously expressed in Pichia pastoris) (Hatano et al., 2020, Journal of Cell Science).

      We therefore, added the following statement to the manuscript:

      “Purification of the fusion protein by immobilized metal affinity chromatography, followed by chymotrypsin–mediated cleavage of C–terminal linker and tag sequences, results in homogeneous protein without non–native residues and native N-terminal processing, which includes cleavage of the initial methionine and acetylation of the following glutamate. “

      • The authors do not use the best technique to assess actin polymerization parameters. Although the TIRF assay is excellent for some measurements, it is not as good as the standard pyrene-actin assays that provide critical concentration, nucleation, and polymerization parameters. The authors use pyrene-actin in other parts of the paper, so it is not clear why they don't do the assays that are the standard in the actin field.

      The polymerization rate of individual filaments observed in TIRFM experiments showed only minor changes, as did the bulk-polymerization rate of 2 µM actin in pyrene-actin based experiments. Therefore, we decided not to perform additional pyrene-actin based experiments, in which we titrate the actin concentration, as we expect only very small changes to the critical concentration. Instead, we focused on the disturbed interaction with ABPs, as we assume these defects to be more relevant in an in vivo context. Using pyrene-based bulkexperiments, we did determine the rate of dilution-induced depolymerization of mutant filaments and compare them with the values determined for WT (Figure 5A, Table 1).

      • The authors' data suggest that, while the binding of cofilin-1 to both the WT and mutant actins remains similar, the major defect of the E334Q actin is that it is not as readily severed/disassembled by cofilin. What is missing is a direct measurement of the severing rate (number of breaks per second) as measured in TIRF.

      The severing rate as measured in TIRF is dependent on a number of parameters in a nonlinear manner. Therefore, we opted to show the combination of images directly showing the progress of the reaction and graphs summarizing the concomitant changes in cofilin clusters, actin filaments, actin-related fluorescence intensity and cofilin-related fluorescence intensity.

      • Figure 4 shows that the E334Q mutation increases rather than decreases the number of filaments that spontaneously assemble in the TIRF assay, but it is unclear how reduced severing would lead to increased filament numbers, rather, the opposite would be expected. A more straightforward approach would be to perform experiments where severing leads to more nuclei and therefore enhances the net bulk assembly rate.

      Figure 4 shows polymerization experiments that were started from ATP-G-actin in the presence of cofilin-1. These experiments show clearly that, especially at the higher cofilin-1 concentration (100 nM), the filament number is strongly increased in experiments performed with mutant actin. Inspection of the corresponding videos of these TIRFM experiments suggest that the increased number of filaments must result from an increased number of de novo nucleation events and not primarily from a mutation-induced change in severing susceptibility. The observation of a cofilin-stimulated increase in the de novo nucleation efficiency of actin was initially described by Andrianantoandro & Pollard (2006, Molecular Cell) using TIRFMbased experiments and is thought to arise from the stabilization of thermodynamically unfavorable actin dimers and trimers by cofilin. While the exact role of this cofilin-mediated effect in vivo is not completely clear, it is thought to contribute to cofilin-meditated actin dynamics synergistically with cofilin-mediated severing. It is therefore necessary, to clearly distinguish between the two effects of cofilin in vitro: stimulation of de novo nucleation and stimulation of filament disassembly. Our data indicated that the E334Q mutation affects these two effects differentially, as we state in the abstract and in the discussion.

      Abstract: “E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing.”

      Discussion: “Cofilin-mediated severing and nucleation were previously proposed to synergistically contribute to global actin turnover in cells (Andrianantoandro & Pollard, 2006; Du & Frieden, 1998). Our results show that the mutation affects these different cofilin functions in actin dynamics in opposite ways. Cofilin-mediated filament nucleation is more efficient for p.E334Q monomers, while cofilin-mediated severing of filaments containing p.E334Q is significantly reduced. The interaction of both actin monomers and actin filaments with ADF/cofilin proteins involves several distinct overlapping reactions. In the case of actin filaments, cofilin binding is followed by structural modification of the filament, severing and depolymerizing the filament (De La Cruz & Sept, 2010). Cofilin binding to monomeric actin is followed by the closure of the nucleotide cleft and the formation of stabilized “long-pitch” actin dimers, which stimulate nucleation (Andrianantoandro & Pollard, 2006)”.

      We interpret the reviewer's suggestion to mean that additional pyrene-actin-based bulk polymerization experiments should be performed to investigate the bulk-polymerization rate of ATP-G-actin in the presence of cofilin-1. In our understanding, these experiment would not provide additional value as 1) An observed increase of the bulk-polymerization rate cannot be directly correlated to a change of the efficiency of de novo nucleation or severing and 2) the effect of the mutation on cofilin-mediated filament disassembly was extensively analyzed in other experiments starting from preformed actin filaments. Moreover, our results are consistent with in silico modelling and normal mode analysis of the WT and mutant actin-cofilin complex.

      • Figure 5 A: in the pyrene disassembly assay, where actin is diluted below its critical concentration, cofilin enhances the rate of depolymerization by generating more free ends. The E334Q mutation leads to decreased cofilin-induced severing and therefore lower depolymerization. While these data seem convincing, it would be better to present them as an XY plot and fit the data to lines for comparison of the slopes.

      We now present the data as suggested by the reviewer. Furthermore, we determined the apparent second-order rate constant for cofilin-induced F-actin depolymerization (kc) to quantify the observed differences between WT, mutant and heterofilaments, as suggested by the reviewer.

      The paragraph describing these results was changed accordingly:

      “The observed rate constant values are linearly dependent on the concentration of cofilin–1 in the range 0–40 nM, with the slope corresponding to the apparent second– order rate constant (kC) for the cofilin-1 induced depolymerization of F–actin. In experiments performed with p.E334Q filaments, the value obtained for kC was 4.2-fold lower (0.81 × 10-4 ± 0.08 × 10-4 nM-1 s-1) compared to experiments with WT filaments (3.42 × 10-4 ± 0.22 × 10-4 nM-1 s-1). When heterofilaments were used, the effect of the mutation was reduced to a 2.2-fold difference compared to WT filaments (1.54 × 10-4 ± 0.11 × 10-4 nM-1 s-1).”

      • Figure 5 B and C: the cosedimentation data do not seem to help elucidate the underlying mechanism. While the authors report statistical significance, differences are small, especially for gel densitometry measurements where the error is high, which suggests that there may be little biological significance. Importantly, example gels from these experiments should be shown, if not the complete set included in the supplement. In B, the higher cofilin concentrations would be expected to stabilize the filaments and thus the curve should be Ushaped.

      We do not completely agree with the reviewer on this point. We think the co-sedimentation experiments are useful, as they show that cofilin-1 efficiently binds to mutant filaments, but is less efficient in stimulating disassembly in these endpoint-experiments. This information is not provided by the analysis of the effect of cofilin-1 on the bulk-depolymerization rate and adds to our understanding of the defect of the actin-cofilin interaction for the mutant.

      While we agree with the reviewer on the point that co-sedimentation experiments must be repeated several times to produce reliable data, we cannot fully grasp the reasoning behind the statement “While the authors report statistical significance, differences are small, especially for gel densitometry measurements where the error is high, which suggests that there may be little biological significance.”. We interpret this statement as advice to be cautious when extrapolating the observed perturbances of cofilin-mediated actin dynamics in vitro to the in vivo context. We think we are cautious about this throughout the manuscript.

      The author expects a U-shape curve, as high cofilin concentrations are reported to stabilize actin filaments by completely decorating the filament before severing-prone boundaries between cofilin-decorated and undecorated regions are generated. We have also performed these experiment with cytoskeletal β-actin and human cofilin-1 and never observed this U shape. This indicates that significant filament disassembly also happens at high cofilin concentrations, most likely directly after mixing of F-actin and cofilin. We cannot rule out that the incubation time plays an important role and that the U-shape only appears after longer incubation times. We also want to direct the reviewer to the publication “A Mechanism for Actin Filament Severing by Malaria Parasite Actin Depolymerizing Factor 1 via a Low Affinity Binding Interface” (Wong et al. 2013, JBC) in which comparable co-sedimentation experiments were performed (Figure 5E-G) with rabbit skeletal α-actin and human cofilin-1 and also no Ushaped curves were observed, even at higher molar excess of cofilin-1 compared to our experiments and with longer incubation times (1 hour vs. 10 minutes).

      We now included an exemplary gel showing co-sedimentation experiments performed with WT, mutant actin and different concentrations of cofilin at pH 7.8 in the manuscript (Figure 5 – figure supplement 2)

      • Figure 5 D: these data show that the binding of cofilin to WT and E334Q actin is approximately the same, with the mutant binding slightly more weakly. It would be clearer if the two plots were normalized to their respective plateaus since the difference in arbitrary units distracts from the conclusion of the figure. If the difference in the plateaus is meaningful, please explain.

      As suggested by the reviewer, we normalized the data for a better understanding of the message conveyed.

      • Figure 6: It is assumed that the authors are trying to show in this figure that cofilin binds both actins approximately the same but does not sever as readily for E334Q actin. The numerous parameters measured do not directly address what the authors are actually trying to show, which presumably is that the rate of severing is lower for E334Q than WT. It is therefore puzzling why no measurement of severing events per second per micron of actin in TIRF is made, which would give a more precise account of the underlying mechanism.

      The severing rate as measured in TIRF is dependent on a number of parameters in a nonlinear manner. Therefore, we opted to show the combination of images directly showing the progress of the reaction and graphs summarizing the concomitant changes in cofilin clusters, actin filaments, actin-related fluorescence intensity and cofilin-related fluorescence intensity.

      • Actin-activated steady-state ATPase data of the NM2A with mutant and WT actin would have been extremely useful and informative. The authors show the ability to make these types of measurements in the paper (NADH assay), and it is surprising that they are not included for assessing the myosin activity. It may be because of limited actin quantities. If this is the case, it should be indicated.

      Indeed, the measurement of the steady-state actin-activated ATPase with recombinant cytoskeletal actin is very material-intensive and therefore costly, as a complete titration of actin is required for the generation of meaningful data. Since the vast majority of our assays involving a myosin family member were performed with NM2A-HMM, we decided to perform a full actin titration of the steady-state actin-activated ATPase of NM2A-HMM with WT and mutant filaments. The results of these experiments are now shown in Figure 8C. The panel showing the results used for determining the dissociation rate constants (k-A) for the interaction of NM2C-2R with p.E334Q or WT γ –actin in the absence of nucleotide was moved to the supplement (Figure 8 – figure supplement 2).

      We added the following paragraph to the Material and Methods section concerning the Steady-State ATPase assay:

      “For measurements of the basal and actin–activated NM2A–HMM ATPase, 0.5 µM MLCKtreated HMM was used. Phalloidin–stabilized WT or mutant F-actin was added over the range of 0–25 µM. The change in absorbance at 340 nm due to oxidation of NADH was recorded in a Multiskan FC Microplate Photometer (Thermo Fisher Scientific, Waltham, MA, USA). The data were fitted to the Michaelis-Menten equation to obtain values for the actin concentration at half-maximal activation of ATP-turnover (Kapp) and for the maximum ATP-turnover at saturated actin concentration (kcat).”

      Furthermore, we added a description of the results of the experiments to the Results section of the manuscript:

      “Using a NADH-coupled enzymatic assay, we determined the ability of p.E334Q and WT filaments to activate the ATPase of NM2A-HMM over the range of 0-25 µM F-actin (Figure 8C). While we observed no significant difference in Kapp, indicated by the actin concentration at half-maximal activation, in experiments with p.E334Q filaments (2.89 ± 0.49 µM) and WT filaments (3.20 ± 0.74 µM), we observed a 28% slower maximal ATP turnover at saturating actin concentration (kcat) with p.E334Q filaments (0.076 ± 0.005 s-1 vs. 0.097 ± 0.002 s-1).”

      • (line 310) The authors state that they "noticed increased rapid dissociation and association events for E334Q filaments" in the motility assay. This observation motivates the authors to assess actin affinities of NM2A-HMM. Although differences in rigor and AM.ADP affinities are found between mutant and WT actins, the actin attachment lifetimes (many minutes) are unlikely to be related to the rapid association and dissociation event seen in the motility assay. Rather, this jiggling is more likely to be related to a lower duty ratio of the myosins, which appears to be the conclusion reached for the myosin-V data. These points should be clarified in the text.

      We changed the text in accordance with the reviewer’ suggestion. It reads now: Cytoskeletal –actin filaments move with an average sliding velocity of 195.3 ± 5.0 nm s–1 on lawns of surface immobilized NM2A–HMM molecules (Figure 8A, B). For NM2A-HMM densities below about 10,000 molecules per μm2, the average sliding speed for cytoskeletal actin filaments drops steeply (Hundt et al, 2016). Filaments formed by p.E334Q actin move 5fold slower, resulting in an observed average sliding velocity of 39.1 ± 3.2 nm/s. Filaments copolymerized from a 1:1 mixture of WT and p.E334Q actin move with an average sliding velocity of 131.2 ± 10 nm s–1 (Figure 8A, B). When equal densities of surface-attached WT and mutant filaments were used, we observed that the number of rapid dissociation and association events increased markedly for p.E334Q filaments (Figure 8 – video supplement 7– 9).

      Using a NADH-coupled enzymatic assay, we determined the ability of p.E334Q and WT filaments to activate the ATPase of NM2A-HMM over the range of 0-25 µM F-actin (Figure 8C). While we observed no significant difference in Kapp, indicated by the actin concentration at halfmaximal activation, in experiments with p.E334Q filaments (2.89 ± 0.49 µM) and WT filaments (3.20 ± 0.74 µM), we observed a 28% slower maximal ATP turnover at saturating actin concentration (kcat) with p.E334Q filaments (0.076 ± 0.005 s-1 vs. 0.097 ± 0.002 s-1). To investigate the impact of the mutation on actomyosin–affinity using transient–kinetic approaches, we determined the dissociation rate constants using a single–headed NM2A–2R construct (Figure 8D). …..

      • (line 327) The authors report that the 1/K1 value is unchanged. There are no descriptions of this experiment in the paper. I am assuming the authors measured the ATP-induced dissociation of actomyosin and determined ATP affinity (K1) from this experiment. If this is the case, they should describe the experiment and show the data, provide a second-order rate constate for ATP binding, and report the max rate of dissociation (k2). This is a kinetic experiment done frequently by this group, so the absence of these details is surprising.

      In the previous version of the manuscript, the method used to determine 1/K1 (ATP-induced dissociation of the actomyosin complex) was described in the Material and Methods paragraph “Transient kinetic analysis of the actomyosin complex” and the values obtained for 1/K1 were given in Table 1. We now included the experimental data as an additional figure in the manuscript (Figure 8 – figure supplement 3). Furthermore, we also give the maximal dissociation rate k+2 and the apparent second-order rate constant for ATP-binding (K1k+2) for the WT and mutant actomyosin complex in Table 1. Therefore, we changed the paragraph in the Results section concerning this experiment to:

      “The apparent ATP–affinity (1/K1), the maximal dissociation rate of NM2A from F-actin in the presence of ATP (k+2), and the apparent second-order rate constant of ATP binding (K1k+2) showed no significant differences for complexes formed between NM2A and WT or p.E334Q filaments (Table 1, Figure 8 – figure supplement 3).”

      and the section in the Material and Methods to:

      “The apparent ATP–affinity of the actomyosin complex was determined by mixing the apyrase–treated, pyrene–labeled, phalloidin–stabilized actomyosin complex with increasing concentrations of ATP at the stopped–flow system. Fitting an exponential function to the individual transients yields the ATP–dependent dissociation rate of NM2A–2R from F–actin (kobs). The kobs–values were plotted against the corresponding ATP concentrations and a hyperbola was fitted to the data. The fit yields the apparent ATP–affinity (1/K1) of the actomyosin complex and the maximal dissociation rate k+2.

      The apparent second–order rate constant for ATP binding (K1k+2) was determined by applying a linear fit to the data obtained at low ATP concentrations (0 – 25 µM).”

      For a better understanding of the numerous rate and equilibrium constants, we have now included a figure showing the kinetic reaction scheme of the myosin ATPase cycle (Figure 8 – figure supplement 1).

      Recommendations for the authors:

      Reviewer #1:

      • The subdomains of actin are mislabeled in Fig. 1A.

      The labeling of the subdomains has been corrected.

      • Additional experimental data addressing the 3 weaknesses noted in the public review would be informative but are not essential in my opinion. Examining the effect of cofilin on severing by the TIRF assay in more detail and using a processivity assay for myosin V (immobilized actin) would be the two aspects I would most value.

      The TIRF assay for cofilin severing was performed initially over the cofilin concentration range from 20 to 250 nM. The results obtained in the presence of 100 nM cofilin allow a particularly informative depiction of the differences observed with mutant and WT actin. This applies to the image series showing the changes in filament length, cofilin clusters, and filament number as well as to the graphs showing time dependent changes in the number of filaments and total actin fluorescence. We have not included the results for a 50:50 mixture of WT:mutant actin because its attenuating effect is documented in several other experiments in the manuscript.

      Our results with Myo5A show a less productive interaction with mutant actin filaments as indicated by a 1.7-fold reduction in the average sliding velocity and an increase in the optimal Myo5A-HMM surface density from 770 to 3100 molecules per µm2. These results indicate a reduction in binding affinity and coupling efficiency, with a likely impact on processivity. Given that Myo5A is only one of many cytoskeletal myosin motors and that the motor properties of all myosins are modulated by the presence of tropomyosin isoforms and other actin binding proteins, we expect only a small incremental gain in knowledge by performing additional experiments with an inverted assay geometry.

      Reviewer #2:

      • The authors should address the concerns regarding the statistical methodologies.

      We have gone through the manuscript carefully to correct any errors in the statistics, as explained below.

      Figure 1B, 5B, 5C, 5D, 8D, 9B, and 8 – figure supplement 2 all show the mean ± SD, as also correctly reported for Figure 8E and 8F in the figure legend. The statement, that these figures show the mean ± SEM was wrong and we corrected this mistake for all the listed figures. Furthermore, we now give the exact N for every experiment in the figure legend.

      Figure 2C, 2E, 2F, 4B, 5A, 6B-E indeed showed the mean ± SEM. As the reviewer rightly points out, this is not the appropriate way to deal with such sample sizes. We therefore corrected the figures to show the mean ± SD.

      We still refer to the mean ± SEM in Figure 2B, where elongation rates for more than 100 filaments were recorded, and in Figure 8B, where sliding velocities for several thousand actin filaments were measured.

      • The authors should present the actin titration of the steady state ATPase activity for at least one of the myosins, or preferably all of them.

      An actin titration of the steady state ATPase activity of NM-2A has been included in the revised version of the manuscript (Fig 8C).

      • The authors should consider the use of pyrene-actin in measuring the assembly/disassembly of actin.

      Values for the rate of actin assembly/disassembly measured with pyrene-actin are given in Table 1. Based on the small changes observed, we did not determine the critical actin concentration for the mutant construct.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      We thank reviewer #1 for identifying the major caveats of the paper, and have split them out into separate comments below to address them.

      Comment 1) The caveats are that ecosystem processes beyond water availability are not investigated although they are brought into play in the title and in the paper

      Author response: We disagree that water availability is the only ecosystem process investigated in this study, as herbivory, plant mortality, and the maintenance of diversity in higher trophic levels are important processes within ecosystems. We have added text to the abstract and introduction clarifying that we consider these response measures to be ecosystem processes. Further language to this effect already exists in the abstract, methods, and discussion.

      Comment 2) That herbivory beyond leaf damage was not reported (there might be none, the reader needs to be shown the evidence for this)

      Author response: This is typically how herbivory is assessed in ecological studies, and our focus is on folivores. There may be additional herbivory in the form of fluid-sucking insects, shoot/root herbivory, etc., but these were not assessed. It would be interesting to assess these other forms of herbivory to see if they respond similarly with additional studies.

      Comment 3) That herbivore diversity is defined by leaf damage (authors need to give evidence that this is a valid inference)

      Author response: We thank reviewer #1 for pointing out the lack of written support for this claim. We have modified the methods (lines 138-139; 214-217) to clarify that this is a useful proxy for insect richness in the Piper system, and have added citations demonstrating it has been found to correlate well with insect richness in tropical forests.

      Comment 4) That the plots were isolated from herbivores beyond their borders

      Author response: This was not an assumption of the study. We have modified the methods (line 200) to make this clearer to the reader.

      Comment 5) That the effects of extreme climate events were isolated to Peru

      Author response: This was not an assumption of the study, rather it is an observation. While we consider it important to include observed climate differences between sites in the interpretation of our results, it was not necessary for there to be extreme climate events at other sites as we consider manipulated water availability to represent changes in precipitation that are expected to occur at these sites with climate change.

      Comment 6) That intraspecific variation in the host plants needs to be explained and interpreted in more detail

      Author response: We thank reviewer #1 for identifying that our current explanations needed development. We have modified the introduction to explore potential mechanisms relating intraspecific diversity to ecosystem function based on recent studies, and have modified the discussion to bring focus to why the effects of intraspecific differ from interspecific.

      Reviewer #1 (Recommendations For The Authors):

      Comment 1) Pare this material down to simpler results. The most significant to me is the intraspecific variation in damage. Were this broken out and reported in some detail it could be quite interesting. I find the results to be a confusing blizzard of multiple factors that differ among sites; after reading the paper twice I could not recall the takeaway lesson beyond that drought wrecks the diversity of herbivores and sometimes even kills the host plant.

      Author response: We agree that the results are complicated given the variation in effects among sites, but this variation and complexity is important – and is in itself is one of the takeaway points. Unfortunately, nature is not simple. We have made several large edits to the results section, including the removal of methodological and otherwise redundant information, to hopefully bring the major takeaways into focus.

      Reviewer #2 (Public Review):

      Comment 1) This is an important and large experimental study examining the effects of plant species richness, plant genotypic richness, and soil water availability on herbivory patterns on Piper species in tropical forests.

      A major strength is the size of the study and the fact that it tackled so many potentially important factors simultaneously. The authors examined both interspecific plant diversity and intraspecific plant diversity. They crossed that with a water availability treatment. And they repeated the experiment across five geographically separated sites.

      The authors find that both water availability and plant diversity, intraspecific and interspecific, influence herbivore diversity and herbivory, but that the effects differ in important ways across sites. I found the study to be solid and the results to be very convincing. The results will help the field grapple with the importance of environmental change and biodiversity loss and how they structure communities and alter species interactions.

      Author response: We thank reviewer #2 for their kind words.

      Reviewer #2 (Recommendations For The Authors):

      Comment 1) I was confused about why the authors measured species diversity/richness as a proportion of the species pool. This means that the metric of richness decreases if species are added to the species pool but not the plot/experiment. I think I understand it, but I suggest the authors explain this choice.

      Author response: We thank reviewer #2 for pointing out that this was confusing. We have clarified the methods (lines 228-232) to explain that this choice was made to allow easier comparison between intra- and interspecific richness.

      Comment 2) One of the stronger estimated relationships was a positive effect of plant species richness on insect richness. I found it a little hard to interpret this relationship. Is this just because there are host species specialists? So, with more host species there are more herbivore species? Or does insect richness increase multiplicatively with increasing plant species richness? One way to look for this would be for the authors to examine the relationship between plant species richness and the average number of herbivore damage types per plant species.

      Author response: We agree that this is important for the reader to understand and have added text to the introduction and discussion sections explaining that this is the expectation based on theory and other empirical studies. We have additionally added text to the discussion (lines 386-388) pointing out that this pattern was not observed at all sites. While we agree that it would be interesting to explore if this effect was additive or multiplicative, we do not believe this is in the scope of the paper due to the methods used to measure insect richness.

      Comment 3) Unless I missed it, some important information about the models was missing. E.g., what distributions were assumed for each of the variables? Any transformations?

      Author response: We thank reviewer #2 for pointing this out, this information has been added to the methods (lines 272-274)

      Comment 4) Why is there no model with water addition affecting insect richness directly but not percent herbivory directly?

      Author response: While we originally decided to not include this model due to lack of theoretical support and low statistical performance, we have added references to this model (now model II) in the methods and results for consistency and to make model performance clearer to the reader. We have additionally moved supplemental table S1 to the main text to make the models and hypotheses tested by each model more accessible.

      Comment 5) Fig. 2. What are the percentages above the figures? Maybe PD values?

      Author response: These values are now clarified in the figure caption

      Comment 6) L364 "can differ dramatically" This is vague and confusing. Differ in what way? From each other? Did the authors really expect plant richness to have the same effect on herbivory and plant survival? What would it mean anyway for plant richness to have the same effect on herbivory and plant survival?

      Author response: We agree that the language here is confusing and thank reviewer #1 for drawing our attention to it. We have modified the discussion (lines 363-365) to clarify that the direction of effect of intraspecific richness can vary from the direction of effect of interspecific richness, rather than the effects on different response variables varying from each other.

      Comment 7) L 375 "only meaningful differences" This statement feels a little overly strong. It seems like there is a good argument for this, but there could be other things going on.

      Author response: We agree that the language here was unnecessarily strong, and have modified the discussion (lines 398-403) to focus on the lack of difference between methodologies at these two sites, and the observed differences in climate and community structure at each site.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In this study, the authors aimed to investigate how cells respond to dynamic combinations of two stresses compared to dynamic inputs of a single stress. They applied the two stresses - carbon stress and hyperosmotic stress - either in or out of phase, adding and removing glucose and sorbitol.

      Both a strength and a weakness, as well as the main discovery, is that the cells' hyperosmotic response strongly requires glucose. For in-phase stress, cells are exposed to hyperosmotic shock without glucose, limiting their ability to respond with the well-studied HOG pathway; for anti-phase stress, cells do have glucose when hyperosmotically shocked, but experience a hypo-osmotic shock when both glucose and sorbitol are simultaneously removed. Responding with the HOG pathway and so amassing intracellular glycerol amplifies the impact of this hypo-osmotic shock. Counterintuitively then, it is the presence of glucose rather than the stress of its absence that is deleterious for the cells.

      The bulk of the paper supports these conclusions with clean, compelling time-lapse microscopy, including extensive analysis of gene deletions in the HOG network and measurements of both division and death rates. The methodology the authors develop is powerful and widely applicable.

      Some discussion of the value of applying periodic inputs would be helpful. Cells are unlikely to have previously seen such inputs, and periodic stimuli may reveal behaviours that are rarely relevant to selection.

      We thank the referee for his review. To answer the reviewer’s last comment, our main objective was not to study conditions that are ecologically relevant, but rather to perturb the system in an original way to reveal new mechanisms and properties of the system. The main advantage of periodic inputs over more complex or unpredictible types of temporal fluctuations is that they can be defined with few parameters that are easy to interpret and to integrate in biophysical models. For instance, by using periodic inputs we were able to investigate how changing the phasing of two stresses impacted fitness while keeping other parameters constant (the duration of each stress was kept constant). We added two sentences at the beginning of the discussion to highlight the value of using periodic inputs.

      We do not fully agree with the reviewer’s statement that periodic stimuli may reveal behaviours that are rarely relevant to selection. Indeed, many parameters of natural environments are known to vary periodically, such as light, temperature, predation, tides. Even if the periodic stimuli we use are artificial, they can still be a valuable tool to reveal new molecular processes. For instance, null mutants have been invaluable to understand biological systems despite being unlikely to reveal behaviours relevant to selection.

      The authors' findings demonstrate the tight links that can exist between metabolism and the ability to respond to stress. Their study appears to have parted somewhat from their original aim because of the HOG pathway's reliance on glucose. It would be interesting to see if the cells behaviour is simpler in periodically varying sorbitol and a stress where there is little known connection to the HOG network, such as nitrogen stress.

      The use of periodic nitrogen stress is a very interesting suggestion from both reviewers. However, we think it represents a large amount of work that deserves its own study. In particular, it would require first identifying a relevant period at which nitrogen fluctuations have an impact on division rate similar to what we observed for glucose fluctuations before performing experiments in AS and IPS conditions.

      Nitrogen starvation is known to induce filamentous growth via activation of components of the HOG pathway (Cullen and Sprague, 2012), with potential cross-talk between filamentous growth and hyperosmotic stress response. Therefore, periodic osmotic stress and periodic nitrogen starvation may interact in a complex way.

      Reviewer #2 (Public Review):

      The authors have used microfluidic channels to study the response of budding yeast to variable environments. Namely, they tested the ability of the cells to divide when the medium was repeatedly switched between two different conditions at various frequencies. They first characterized the response to changes in glucose availability or in the presence of hyper-osmotic stress via the addition of sorbitol to the medium. Subsequently, the two stresses were combined by applying the alternatively or simultaneously (in-phase). Interestingly, the observed that the in-phase stress pattern allowed more divisions and low levels of cell mortality compared to the alternating stresses where cells were dividing slowly and many cells died. A number mutants in the HOG pathway were tested in these conditions to evaluate their responses. Moreover, the activation of the MAPK Hog1 and the transcriptional induction of the hyper-osmotic stress promoter STL1 were quantified by fluorescence microscopy.

      Overall, the manuscript is well structured and data are presented in a clear way. The time-lapse experiments were analyzed with high precision. The experiments confirm the importance of performing dynamic analysis of signal transduction pathways. While the experiments reveal some unexpected behavior, I find that the biological insights gained on this system remain relatively modest.

      In the discussion section, the authors mention two important behaviors that their data unveil: resource allocation (between glycolysis and HOG-driven adaptation) and regulation of the HOG-pathway based on the presence of glucose. These behaviors had been already observed in other reports (Sharifan et al. 2015 or Shen et al. 2023, for instance). I find that this manuscript does not provide a lot of additional insights into these processes.

      We thank the referee for his review. We agree with the reviewer that the interaction between glucose availability and osmotic stress response has been investigated in previous studies. However, this interaction was investigated using experimental procedures that differed from our approach in critical ways, and therefore the behaviors observed were not the same. In Sharifian et al. (2015), the authors identified a new negative feedback loop regulating Hog1 basal activity and described underlying molecular mechanisms. This feedback loop is unlikely to explain differences of cell fitness we observed in IPS and AS conditions, because 1) differences of division rate was still observed in hog1 mutant cells and 2) differences of death rate involve glycerol synthesis, which is independent of the feedback loop described in Sharifian et al. (2015). In Shen et al. (2023), the authors observed a stronger expression of Hog-responsive genes at lower glucose concentrations, which seems contradictory with our observation of very low pSTL1-GFP expression in absence of glucose. However, they did not use fluctuating conditions and they did not report expression of stress-response genes when glucose was totally depleted (the lower glucose concentration they used was 0.02%) as we did, which may explain the different outcomes. We added three sentences in the discussion to compare our findings to those of Shen et al. (2023).

      One clear evidence that is presented, however, is the link between glycerol accumulation during the sorbitol treatment and the cell death phenotype upon starvation in alternating stress condition. However, no explanations or hypothesis are formulated to explain the mechanism of resource allocation between glycolysis and HOG response that could explain the poor growth in alternating stresses or the lack of adaptation of Hog1 activity in absence of glucose.

      In the revised version of the manuscript, we included a new result section and a supplementary figure (Figure 4 – figure supplement 2) where we tested three hypotheses to explain the lower division rate observed in AS condition relative to IPS condition. We found no evidence supporting these hypotheses, and the mechanisms responsible for the reduced growth in AS condition therefore remains elusive.

      Another key question is to what extent the findings presented here can be extended to other types of perturbations. Would the use of alternative C-source or nitrogen starvation change the observed behaviors in dynamic stresses? If other types of stresses are used, can we expect a similar growth pattern between alternating versus in-phase stresses?

      As mentioned above in our response to the other reviewer, these are very interesting questions that we think go beyond the scope of our study due to the amount of work involved.

      Recommendations for the authors:

      Reviewer #1

      My comments are only minor.<br /> - More paragraphs would improve legibility.

      To improve legibility, we split the longer section of the Results in three paragraphs (page 12, section entitled “Osmoregulation is impaired under in-phase stresses but not under alternating stresses.” However, we kept it as one section with a single title for global coherency: each section of the results corresponds to one main figure and have one main conclusion.

      • I found AS and IPS confusing because what becomes important is whether sorbitol appears with glucose or not. For me, an acronym that makes that co-occurrence clear would be better or even better still no acronyms at all.

      We tried several alternative names for the two conditions in previous drafts of the manuscript. Based on colleagues feedback, AS and IPS acronyms appeared as a good compromise between concision and clarity. To avoid confusion, the two acronyms are precisely defined when they are first used in the Results section. We think it is more important to emphasize the co-occurrence (or not) of the two stresses, rather than the co-occurrence of glucose and sorbitol. Indeed, standard yeast medium contains glucose but no sorbitol, and therefore we defined the two periodic conditions based on differences from standard medium. Even though we avoided using acronyms as much as possible in the manuscript, the use of these two acronyms to refer to the dual fluctuations of the environment seemed essential for concision. Indeed, IPS and AS acronyms are used many times in the results (16 occurrences on page 12 alone), figures and figure legends.

      • I would consider moving some of Fig S2 to the main text: it helps clarify where Fig 2 is coming from and is referenced multiple times.

      We fully agree with the reviewer and we moved panels A-D from Figure S2 to the main Figure 2.

      • On page 10, "constantly facing a single stress that changes over time" is confusing. Perhaps "repetitively facing a single stress" instead?

      We agree this sentence could be wrongly interpreted the way it was written. We changed it to: “cells grow more slowly when facing periodic alternation of the two stresses (AS) than when facing periodic co-occurrence of these stresses (IPS)”.

      • Is there any knowledge on how cells resist hyperosmotic stress in the absence of glucose? That would help explain the IPS results.

      Based on comments from both reviewers, we surveyed the literature to flesh out the discussion of hypotheses that would help explain observed differences between AS and IPS conditions. We found few studies that investigated cell responses in the absence of glucose, and because of significant differences in the experimental approaches it remains difficult to explain our results from conclusions of these previous studies. For instance, Shen et al., 2023 described and modeled the hyperosmotic stress response at various glucose concentrations. They found that Hog1p relocation to the nucleus after hyperosmotic shock lasted longer at lower glucose concentration, which is consistent with our finding in absence of glucose. However, they did not include the absence of glucose in their experiments or periodic fluctuations of glucose concentration. In addition, their model ignores the impact of cell signaling processes involved in growth arrest in response to hyperosmotic stress or glucose depletion. It is therefore difficult to relate their conclusions to our results. We have developed the discussion of our study to include these hypotheses and to clarify what is explained or not in our IPS and AS results.

      There is knowledge on activation of the hyperosmotic stress pathway in response to glucose fluctuations, but not about the response to hyperosmotic stress in absence of glucose.

      • On page 11, Figure 5a should be Figure 4a.

      Correct.

      • I would explain the components of the HOG pathway in the caption of Fig 1 or in the text when you cite Fig 1a. They are described later, but an early overview would be useful.

      To give more context, we added the following sentences to the caption of Figure 1: “Yeast cells maintain osmotic equilibrium by regulating the intracellular concentration of glycerol. Glycerol synthesis is regulated by the activity of the HOG MAP kinase cascade that acts both in the cytoplasm (fast response) and on the transcription of target genes in the nucleus (long-term response). For simplicity, we only represented on the figure genes and proteins involved in this study.”

      • On page 16, I wasn't sure what "redirect metabolic fluxes against glycerol synthesis" meant.

      For more clarity, we modified this sentence to: “Since glucose is a metabolic precursor of glycerol, the absence of glucose may prevent glycerol synthesis and thereby fast osmoregulation."

      • For Fig 2, having a dot-dash and dash-dash lines rather than both dash-dash would be better.

      We made the proposed change, assuming the reviewer was referring to the gray dashed lines and not the colored ones.

      • In the caption of Fig 3, 2% glucose is 20 g/L.

      We thank the reviewer for catching this typo.

      • In the Materials and Methods Summary, adding how you estimated death rates would be helpful: they are not often reported.

      The calculation of death rates was explained in the Methods section. For more clarity, we modified the names of the parameters in the equation to make more explicit which ones refer to cell death.

      Reviewer #2 (Recommendations For The Authors):

      In Figure 2, it would be interesting to show individual growth rates of the perturbations at various frequencies as shown in Figures 3 c and d.

      We thank the reviewer for this suggestion. We added a new supplementary figure (Figure 2 – figure supplement 2) showing the temporal dynamics of division rates at three different frequencies of osmostress and glucose depletion. We did not include high frequencies (periods below 48 minutes) because the temporal resolution of image acquisition in our experiments (1 image every 6 minutes) was too low. Very interestingly, this new analysis suggests that the positive relationship between the frequency of glucose depletion and division rate is explained by a delay between glucose removal and growth arrest rather than a delay between glucose addition and growth recovery. We therefore added the following conclusion:

      “Under periodic fluctuations of 2% glucose, the division rate was lower during half-periods without glucose than during half-periods with glucose (Figure 2 – figure supplement 2d-f), as expected. However, this difference depended on the frequency of glucose fluctuations: the average division rate during half-periods without glucose was higher at high frequency (small period) than at low frequency (large period) of fluctuations (Figure 2 – figure supplement 2d-f). Therefore, the effect of the frequency of glucose availability on the division rate in 2% glucose is likely due to a delay between glucose removal and growth arrest: cell proliferation never stops when the frequency of glucose depletion is too fast.”

      According to Sharifan et al. 2015, I would have expected that Hog1 would not relocate in the nucleus in 0% glucose. I wonder if this is due to the use of sorbitol as a stressor or the presence of low levels of glucose in the medium. I would suggest performing some control experiments with NaCl as hyperosmotic agent and test the addition of 2-deoxy-glucose to completely block glycolysis.

      After careful reading of Sharifian et al. 2015, we fail to understand why the reviewer think Hog1 would be expected to not relocate to the nucleus after hyperosmotic stress in 0% glucose. In this previous study, the authors never combined glucose depletion with a strong hyperosmotic stress as we did in our study. They report the results of independent experiments where cells were exposed either to a single pulse of hyperosmotic stress (0.4 M NaCl) or to transient glucose starvation, but they did not combine these two stimuli. In this context, it is difficult to compare their results with ours. The fact that Sharifian et al. 2015 did not observe Hog1 nuclear relocation in 0% glucose (consistent with our result in Figure 6 – figure supplement 1a, yellow curve) is not inconsistent with our observation of Hog1 nuclear enrichment in 0% glucose + 1M sorbitol. One potential discrepancy between the two studies is the fact that they observed a small transient peak of Hog1 nuclear localization just after glucose is added back to the medium, while we failed to observe this peak in similar conditions (yellow curve in Figure 6 – figure supplement 1a). However, this could be simply explained by the temporal resolution of our experimental system: we image cells once every 6 minutes and the peak lasts less than 2 minutes in Sharifian et al. 2015. We added a sentence to discuss this minor point in the Results: “Although previous studies observed small transient (less than two minutes) peaks of Hog1-GFP nuclear localization after glucose was added back to the medium following glucose depletion (Sharifian et al., 2015, Piao et al., 2013), the temporal resolution in our experiments (one image every 6 minutes) may have been too low to detect these peaks.”.

      While we agree many additional experiments would be interesting, such as testing the effects of different stress factors or the non-metabolizable glucose analog 2-deoxy-D-glucose, we think this is beyond the scope of this study because such experiments are likely to open broad perspectives and to not be conclusive in a reasonable amount of time.

      When discussing Figure 7, the authors write that the HOG pathway is "overactivated" or "hyperactivated". I would refrain from using these terms because as seen in Figure 6, the Hog1 activity pattern, if anything, decreases as the number of alternative pulses increases. The high level of pSTL1mCitrine measured is mostly due to the long half-life of the fluorescent protein.

      We used the formulation “hyper-activation” of the HOG pathway because Mitchell et al. 2015 used it to refer to the same phenomenon in their seminal study. This "hyper-activation" refers to the fact that both the integral activation of Hog1p (sum of areas under Hog1 nuclear peaks) and the global activation of transcriptional targets is much higher during fast periodic hyperosmotic stress than during constant hyperosmotic stress. That being said, we understand the point made by the reviewer about the decreasing size of Hog1 peaks over time during repeated pulses of osmotic stress. Therefore, we slightly modified the text to refer to hyper-activation of pSTL1-mCitrine transcription or expression instead of hyper-activation of the HOG pathway. For coherency, we replaced all instances of “overactivation” by “hyper-activation”.

      Last but not least, the high level of pSTL1-mCitrine is both due to the long half-life of the protein and to the fact that pSTL1 transcription is never turned off due to high Hog1p activity under fast periodic osmostress.

      Minor comments:

      In the main text, I think it might be more intuitive to refer to doubling time in hours instead of division rates in 1/min which are harder to interpret.

      In an early draft of the manuscript, we made figures with either division rates or with doubling times (ln(2)/division rate) and we received mixed opinions from colleagues on what measure was more intuitive to interpret. Both measures are widely used in the literature, and we decided to use division rates in the final version of the figures because it was more directly related to population growth rate and to fitness. For instance, the population growth rate shown in Figure 5 is simply calculated by subtracting the death rate from the division rate. For coherency, we therefore reported division rates instead of doubling times in figures and results. However, to address the reviewer’s comment we included the doubling times (in addition to the division rates) when mentioning the most important results. For instance, page 12: “Strikingly, cells divided about twice as fast under IPS condition (1.67 x 10-3 division/min, corresponding to an average doubling time of 415 minutes) than under AS condition (9.4 x 10-4 division/min, corresponding to an average doubling time of 737 minutes)”.

      I found various capitalized version of "HOG /Hog pathway"

      We corrected this incoherency and used “HOG pathway” everywhere.

      Page 11. Figure 5a should refer to Figure 4a I believe.

      Correct.

      The methods are generally very thorough and precise. The explanation about the calculation of the division rate seems incomplete. For completeness, it would be good to mention the brand and model of valves used. In addition, it would be interesting to have an idea of the number of cells and microcolonies tracked in the various growth experiments.

      We are not sure why the reviewer found the explanation of the calculation of division rate incomplete. For more clarity, we modified the names of parameters in the equations to make them more explicit. We also added a reference to Supplementary File 1 that contains all R scripts used to calculate division rates and death rates. We included the brand and model of valves used, as requested. As for the number of cells tracked in the various experiments, we mentioned in the Methods: “we selected 25 positions (25 fields of view) of the motorized stage (Prior Scientific ProScan III) that captured 10 to 50 cells in each of the 25 growth chambers of the chip and were focused slightly below the median cell plane based on cell wall contrast.” To address the reviewer’s comment, we also included the range of number of tracked cells for each experiment in corresponding figure legends.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, we would like to thank you and all the reviewers for acknowledging the meaningful contribution of our manuscript to the field. Your useful comments helped us improve the manuscript's quality. We understood the key issues of the manuscript were the quantification of inference accuracy and applicability to methylome data. We here therefore present a revised version of the manuscript addressing all major comments.

      For each demographic inference we have added the root mean square error as demanded by the reviewers. These results confirm the previous interpretation of the graphs especially in recent times. We also added TMRCA inference analysis as requested by one reviewer as a proof of principle that integrating multiple markers can improve ARG inference.

      The discussion was rewritten to further discuss the challenges of application to empirical methylation data. We clarify that in the case epimutations are well understood and modelled, they can be integrated into a SMC framework to improve the approaches accuracy. When epimutations are not well understood, our approach can help understand the epimutations process through generations at the evolutionary time scale along the genome. Hence, in both cases our approach can be used to unveil marker evolution processes through generations, and/or deepen our understanding of the population past history. We hope our discussion underlies better how our approach is designed and can be used.

      eLife assessment

      This important study advances existing approaches for demographic inference by incorporating rapidly mutating markers such as switches in methylation state. The authors provide a solid comparison of their approach to existing methods, although the work would benefit from some additional consideration of the challenges in the empirical use of methylation data. The work will be of broad interest to population geneticists, both in terms of the novel approach and the statistical inference proposed.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors developed an extension to the pairwise sequentially Markov coalecent model that allows to simultaneously analyse multiple types of polymorphism data. In this paper, they focus on SNPs and DNA methylation data. Since methylation markers mutate at a much faster rate than SNPs, this potentially gives the method better power to infer size history in the recent past. Additionally, they explored a model where there are both local and regional epimutational processes.

      Integrating additional types of heritable markers into SMC is a nice idea which I like in principle. However, a major caveat to this approach seems to be a strong dependence on knowing the epimutation rate. In Fig. 6 it is seen that, when the epimutation rate is known, inferences do indeed look better; but this is not necessarily true when the rate is not known. A roughly similar pattern emerges in Supp. Figs. 4-7; in general, results when the rates have to be estimated don't seem that much better than when focusing on SNPs alone. This carries over to the real data analysis too: the interpretation in Fig. 7 appears to hinge on whether the rates are known or estimated, and the estimated rates differ by a large amount from earlier published ones.

      Overall, this is an interesting research direction, and I think the method may hold more promise as we get more and better epigenetic data, and in particular better knowledge of the epigenetic mutational process. At the same time, I would be careful about placing too much emphasis on new findings that emerge solely by switching to SNP+SMP analysis.

      Answer: We thank the reviewer 1 for his positive comments and acknowledging the future promises of our method as better and more reliable data will be available in different species. We appreciate the reviewer noticing the complete set of work undertaken here to integrate local and regional effects of methylation into a model containing as much knowledge of the epigenetics mutational processes as possible. Note that in Figure 2 of the manuscript we observed a gain of accuracy even when the rates are unknown. Our results thus suggests that the accuracy gain of additional marker with unknown rates is also possible, although it is most likely be scenario and rate dependent.

      At last, as noticed and highlighted by the very recent work of the Johannes lab (Yao et al. Science 2023) using phylogenetic methods, knowing the epimutation rate is essential at short time scale to avoid confounding effects of homoplasy. In our estimation of the coalescent trees, the same applies, though our model considers finite site markers. We now provide additional evidence for the potential gain of power to infer the TMRCA (Supplementary Table S7) when knowing or not the epimutation rates and revised the discussion to clarify the potential shortcomings/caveats for the analysis of real data.

      Reviewer #2 (Public Review):

      A limitation in using SNPs to understand recent histories of genomes is their low mutation frequency. Tellier et al. explore the possibility of adding hypermutable markers to SNP based methods for better resolution over short time frames. In particular, they hypothesize that epimutations (CG methylation and demethylation) could provide a useful marker for this purpose. Individual CGs in Arabidopsis tends to be either close to 100% methylated or close to 0%, and are inherited stably enough across generations that they can be treated as genetic markers. Small regions containing multiple CGs can also be treated as genetic markers based on their cumulative methylation level. In this manuscript, Tellier et al develop computational methods to use CG methylation as a hypermutable genetic marker and test them on theoretical and real data sets. They do this both for individual CGs and small regions. My review is limited to the simple question of whether using CG methylation for this purpose makes sense at a conceptual level, not at the level of evaluating specific details of the methods. I have a small concern in that it is not clear that CG methylation measurements are nearly as binary in other plants and other eukaryotes as they are in Arabidopsis. However, I see no reason why the concept of this work is not conceptually sound. Especially in the future as new sequencing technologies provide both base calling and methylating calling capabilities, using CG methylation in addition to SNPs could become a useful and feasible tool for population genetics in situations where SNPs are insufficient.

      Answer: We thank the reviewer 2 for his positive comments. Indeed, surveys of CG methylation in other plant species show that its distribution is clearly bimodal (i.e. binary). This is not the case for non-CG methylation, such as CHG and CHH (where H=C,T,A). However, these later types of methylation contexts are also not heritable across generations and can therefore not be used as heritable molecular markers.

      Reviewer #3 (Public Review):

      I very much like this approach and the idea of incorporating hypervariable markers. The method is intriguing, and the ability to e.g. estimate recombination rates, the size of DMRs, etc. is a really nice plus. I am not able to comment on the details of the statistical inference, but from what I can evaluate it seems sound and reasonable. This is an exciting new avenue for thinking about inference from genomic data. I have a few concerns about the presentation and then also questions about the use of empirical methylation data sets.

      I think a more detailed description of demographic accuracy is warranted. For example, in L245 MSMC2 identifies the bottleneck (albeit smoothed) and only slightly overestimates recent size. In the same analysis the authors' approach with unknown mu infers a nonexistent population increase by an order of magnitude that is not mentioned.

      Answer: We thank the reviewer 3 for his positive comments and refer to our answer to reviewer 1 above. We added RMSE (Root Mean Square Error) analyses to quantify the inference accuracy. We apologize for not mentioning this last point. Thank you for pointing this out and we have now fixed it (line 245-253).

      Similarly, it seems problematic that (L556) the approach requiring estimation of site and region parameters (as would presumably be needed in most empirical systems like endangered nonmodel species mentioned in the introduction) does no better than using only SNPs. Overall, I think a more objective and perhaps quantitative comparison of approaches is warranted.

      Answer : See answer to reviewer 1 above, and more elaborate answers below. We provide now new RMSE analyses to quantify the accuracy of our demographic inference (Supplementary Tables 1,6,7,8,9,10). We also discuss the validity and usefulness of our approach when the epimutation rates are unknown. In short, the discussion was rewritten to further discuss the challenges of application to empirical methylation data. We clarify that in the case epimutations are well known and modelled (as much is known in A. thaliana for example), they can be integrated into a SMC framework to improve the accuracy of the method approach. When epimutations are not well understood and rates unknown, our approach can help understand the epimutational process through generations at the evolutionary time scale. Hence, whether makers are understood or not, our approach can be used to study the marker evolutionary processes through generations and/or to deepen our understanding of the population past history. We hope our discussion underlies better how our approach is designed and can be used.

      The authors simulate methylated markers at 2% (and in some places up to 20%). In many plant genomes a large proportion of cytosines are methylated (e.g. 70% in maize: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496265/). I don't know what % of these may be polymorphic, but this leads to an order of magnitude more methylated cytosines than there are SNPs. Couldn't this mean that any appreciable error in estimating methylation threatens to be of a similar order of magnitude to the SNP data? I would welcome the authors' thoughts here.

      Answer : The reviewer is correct and this is an interesting question. First, studies show that heritable epimutations in plants are restricted to CG dinucleotides that are located well outside of the target regions of de novo methylation pathways in plants. Most of these CGs tend of fall within so-called gene body methylated regions. While it is true that plant species can differ substantially in their proportion of methylation at the genome-wide scale, the number of gene body methylated genes (i.e. genic CG methylation) is relatively similar, and at least well within the same order of magnitude (Takuno et al. Nature Plants 2016, review in Muyle et al. Genome Biol Evol 2022). Moreover, spontaneous CG epimutations in gene body methylated regions has been shown to be neutral (van Der Graaf et al. 2015, Vidali et al. 2016, Yao et al. 2023), which is an ideal property for phylogentic and demographic inference.

      Second, CG methylation calls are sometimes affected by coverage or uncertainty. Stringent filtering for reliable SMP calls typically reduces the total proportion of CG sites that can be used as input for demographic inference. Here we only kept CG sites where the methylation information could be fully trusted after SMP calling (i.e. >99.9% posteriori certainty). Overall, this explains why the percentage of sites with methylation information is so small, and why we have decided to work on simulation with 2% of reliable methylated markers.

      Nevertheless, for the sake of generality, it may be that in some species such as maize a higher percentage of polymorphic methylated sites can be used, and the number of SMPs could be higher than that of SNPs when the effective population size is very small (due to past demographic history and/or life history traits). In this case, any error in the epimutation rate and variance due to the finite site model estimation (and homoplasy) are not corrected by the lack of SNPs and can lead to mis-inference.

      A few points of discussion about the biology of methylation might be worth including. For example, methylation can differ among cell types or cells within a tissue, yet sequencing approaches evaluate a pool of cells. This results in a reasonable fraction of sites having methylation rates not clearly 0 or 1. How does this variation affect the method? Similarly, while the authors cite literature about the stable inheritance of methylation, a sentence or so more about the time scale over which this occurs would be helpful.

      Answer: We thank reviewer 3 for asking those very interesting questions, which we further developed below and mention in the discussion (lines 716-722).

      For Arabidopsis thaliana:

      Following up on our previous comment above, the majority of the CG sites that serve as input to our approach are located in body methylated genes. Previous work has shown that CG methylation in these regions shows essentially no tissue and cellular heterogeneity (e.g. Horvath et al. 2019). This means that bulk methylation measurements only show limited susceptibility to measurement error. That said, to guard against any spurious SMPs call that could arise from residual measurement variation, we applied stringent filtering of CG methylation. We have kept sites where the methylation percentage is close to either 0% or 100% (the rest being removed from the analysis). We have used similar filtering strategies in previous studies of epimutational processes in mutation accumulation lines and long-lived perennials (work of the Johannes lab). In these later studies we found that the SMP calls sufficiently accurate for inferences of phylogenetic parameters in experimental settings (Sharyhary et al. Genome Biology 2021, Yao et al. Science, 2023).

      For other species:

      It is true that currently, evaluating the methylation state of a site from a pool of cells may be problematic for some species for two main reasons: 1) it will add noise to the signal and SMP calling could be erroneous, and 2) the methylation state used in analysis might originate from different tissues at different location of the genome/methylome. Overall, this will lead to spurious SMPs and can render the inference inaccurate (see Sellinger et al 2021 for the effect of spurious SNPs). Hence, caution is advised when calling SMPs in other species and for different tissues.

      Finally, in some species methylated cytosines have mutation rates an order of magnitude higher than other nucleotides. The authors mention they assume independence, but how would violation of this assumption affect their inference?

      Answer: Indeed, we assume the mutation and epimutation process to be independent thus the probability for a SNP to occur does not depend on the local methylation state. If this was the case, the mutation rate use would indeed be wrong to a degree function of the dependency between the processes. We suggest that by ignoring this dependence, we are in the same situation as ignoring the variation of mutation rate along the genome. We have previously documented the effect of ignoring this biological feature of genomes in Strüt et al 2023 and Sellinger et al 2021. The variation in mutation rate along the genome if too extreme and not accounted for can lead to erroneous inference results. However, this problem could be easily solved (modelled) by adapting the emission matrix. To correctly model this dependency, additional knowledge is needed: either the mutation and epimutation rates must be known to quantify the dependency, or the dependency must be known to quantify the resulting rates. As far as we know, these data are at the moment not available, but could maybe be obtained using the MA lines of A. thaliana (used in Yao et al. 2023).

      Recommendations for the authors:

      All three reviewers liked this approach and found it a valuable contribution. I think it is important to address reviewer 1/3 concerns about quantifying the accuracy of inference (the TMRCA approach from reviewer 1 sounds pretty reasonable), and reviewer 1 also highlights an intriguing point about model accuracy being worse when the mutation rate is known. Additionally, I think some discussion is warranted about challenges dealing with empirical methylation data (points from Rev 2 and 3 as well as Rev 1's question about inferred vs published rates of epigenetic mutation).

      Answer : We have added tables containing the root mean square error (RMSE) of every demographic inference in the manuscript to better quantify accuracy. We have below given the explanation on why accuracy in presence of site and region epimutations can in some cases decrease when real rates are known (because methylation state at the region level needs to be first inferred). We added evidence that accounting for methylation can improve the accuracy when recovering the TMRCA along the genome when the rates are known. We also have enhanced the discussion on the challenges of dealing with epimutations data for inference. As is suggested, we hope this study will generate an interest in tackling these challenges by applying the methods to various methylome datasets from different species.

      Reviewer #1 (Recommendations For The Authors):

      Major comments:

      • For all of the simulated demographic inference results, only plots are presented. This allowsfor qualitative but not quantitative comparisons to be made across different methods. It is not easy to tell which result is actually better. For example, in Supp. Fig. 5, eSMC2 seems slightly better in the ancient past, and times the trough more effectively, while SMCm seems a bit better in the very recent past. For a more rigorous approach, it would be useful to have accompanying tables that measure e.g. mean-squared error (along with confidence intervals) for each of the different scenarios, similar to what is already done in Tables 1 and 2 for estimating $r$.

      Answer : We understand the concern of reviewer #1 for a more quantitative approach to compare the inference results. We agree that plots are not sufficient to fully grasp a method performance. To provide better supports to quantity approaches performance, we added Sup tables 1,6,8,9 and 10 containing the RMSE (in log10 for visibility) for all Figures. The root mean-squared error is calculated as in Sellinger 2021 and a description of how the root mean-squared error is calculated and now found in the method section lines 886-893.

      • 434: The discussion downplays the really odd result that inputting the true value of themutation rate, in some cases, produces much worse estimates than when they are learned from data (SFig. 6)! I can't think of any reason why this should happen other than some sort of mathematical error or software bug. I strongly encourage the authors to pin down the cause of this puzzling behaviour.

      Answer : There are unfortunately no errors in this plot and those results are perfectly normal and coherent, but we understand they can be confusing at first.

      As described in the method section and in the appendix, when accounting for regionlevel epimutations, our algorithm requires the regional methylation status which needs to be inferred as a first step from the data (real or simulated). Because region and single site epimutation events are occurring at similar rates in our simulated scenario, the methylation state of the region is very hard to correctly recover (e.g. there will be unmethylated site in methylated regions and methylated sites in unmethylated regions). In other words, the accuracy of the region estimation HMM procedure is decreased by the joint action of site and region epimutation processes.

      When subsequently applying the HMM for inference, as described in the appendix, the probabilities of two CG site being in the same or different methylation state depends on the methlylation state of the "region". Hence the mislabelling of the region methylation state is (to some extent) equivalent to spurious SMPs (or inaccurate SMP calling).

      If the true rates for site and region epimutations are given as input, the model forces the demography (and other inferred parameters) to fit the observed distribution of SMPs (given the inputted rates), resulting in the poor accuracy observed in the Figure (Now Supplementary Figure 7).

      Note: The estimated rates from real data in A. thaliana suffer from the same issue as the region and site epimutation rates are independently estimated, and the existence of regions first quantified using an independent HMM method (Denkena et al. 2022).

      However, when rates are freely inferred, they are inferred accordingly to the estimated methylation status of regions and SNPs. Therefore, even if the inferred rates are wrong, they are used by the SMC in a more consistent way.

      Note: When methylation rates violate the infinite site assumption, such as here, we first estimate the tree sequence along the genome using SNPs (i.e. DNA mutations). The algorithm then infers the epimutations rates given the inferred coalescent times and the observed methylation diversity.

      To summarise: when inputting rates to the model, if the model fails to correctly recover the region methylation status there will be conflicting information between SNPs and SMPs leading to accuracy loss. However if the rates are inferred this is realized with the help of SNPs, leading to less conflicting information and potentially smaller loss of accuracy. We apologize that the explanations were missing from the manuscript and have added them lines 449-460 and 702-716.

      A further argument is that if region and site epimutations occur at rates of at least two orders of magnitude difference, the inference results are better (and accurate) when the true rates are given. The reason is that one epimutational process overrides the other (see Supplementary Table 2). In that case one epimutation process is almost negligible and we fall back to results from Figure 5 or Supplementary Figure 6.

      • As noted at 580, all of the added power from integrating SMPs/DMRs should come fromimproved estimation of recent TMRCAs. So, another way to study how much improvement there is would be to look at the true vs. estimated/posterior TMRCAs. Although I agree that demographic inference is ultimately the most relevant task, comparing TMRCA inference would eliminate other sources of differences between the methods (different optimization schemes, algorithmic/numerical quirks, and so forth). This could be a useful addition, and may also give you more insight into why the augmented SMC methods do worse in some cases.

      Answer : We fully agree with reviewer 1. We have added a comparison in TMRCA inference as proof of principle between using or not using methylation sites. The results are written in Supplementary Table 7 and methodology is inspired by Schiffels 2014 and described at the end of the method section (line 894-907). Those results demonstrate the potential gain in accuracy when using methylation polymorphic. However, TMRCA (or ARG) inference is a very vast and complex subject in its own right. Therefore, we are developing a complete TMRCA/ARG inference investigation and an improve methodology than the one presented in this manuscript. To do so we are currently working on a manuscript focusing on this topic specifically. We hence consider further investigations of TMRCA/ARG inference beyond the scope of this current study.

      • A general remark on the derivations in Section 2 of the supplement: I checked theseformulas as best I could. But a cleaner, less tedious way of calculating these probabilities would be to express the mutation processes as continuous time Markov chains. Then all that is needed is to specify the rate matrices; computing the emission probabilities needed for the SMC methods reduces to manipulating the results of some matrix exponentials. In fact, because the processes are noninteracting, the rate matrix decomposes into a Kronecker sum of the individual rate matrices for each process, which is very easy to code up. And this structure can be exploited when computing the matrix exponential, if speed is an issue.

      Answer: We thank the reviewer for this very interesting suggestion! Unfortunately, it is a bit late to re-implement the algorithm and reshape the manuscript according to this suggestion. Speed is not yet an issue but will most likely become one in the future when integrating many different rates or when using a more complex SMC model. Hence, we added reviewer #1 suggestions to the discussion (line 648) and hope to be using it in our future projects.

      • Most (all?) of the SNP-only SMC methods allow for binning together consecutiveobservations to cut down on computation time. I did not see binning mentioned anywhere, did you consider it? If the method really processes every site, how long does it take to run?

      Answer: This is a very good question. We do the binning exactly as described in Mailund 2013 & Terhorst 2017, and added this information in the method section (lines 801-809). However, as described in Terhorst 2017, one can only bin observation of the same "type" (to compute the Baum-Welch algorithm). Therefore, the computation time gain by binning is reduced when different markers spread along the genome in high proportion. This is the approach we used throughout the study when facing multiple markers as it had the best speed performance. As for example, when the proportion of site with methylated information is 1% or less, computation time is only slightly affected (i.e. same order of magnitude).

      However, the binning method presented in Mailund 2013 can be extended to observation of different types, but parameters need to be estimated through a full likelihood approach (as presented in Figure 2). In our study this approach did not have the best speed performance. However, as our study is the first of its kind, it remains sub-optimal for now. Hence, we did not further investigate the performance of our approach in presence of many multiple different genomic marker (e.g. 5 different markers each representing ~20% of the genome each). Currently, with SMC approaches a high proportion of sites contain the information "No SNPs", making the Baum welch algorithm described in Terhorst 2017 very efficient. But when further developing our theoretical approach, we expect that most of the sites in a genome analysis will contain some "information", which could render the full likelihood approach computationally more tractable.

      • 486: The assumed site and region (de)methylation rates listed here are several OOMdifferent from what your method estimated (Supp. Tables 5-6). Yet, on simulated data your method is usually correct to within an order of magnitude (Supp. Table 4). How are we to interpret this much larger difference between the published estimates and yours? If the published estimates are not reliable, doesn't that call into question your interpretation of the blue line in Fig. 7 at 533?

      Answer: We thank the reviewer for asking this question. We believe answering this question is indeed the most interesting aspect of our study. Beyond demographic inference, our study has indeed unveiled a discrepancy between rates inferred through biological experiment and our study through the use of SNPs and branch length. There are several reasons which could explained the discrepancy between both approaches:

      • Firstly, our underlying HMM hypotheses are certainly violated. We ignoredpopulation structure, variation of mutations and recombination rate along the genome as well as the effect of selection. Hence, the branch lengths used for methylation rate estimations are to some extent inaccurate. We note that this is especially likely for the short branches of coalescent tree originating from background selection events in the coding regions and which are especially observable when using the methylation sites with a higher mutation rate than SNPs (Yao et al. 2023) at body methylated genes.

      • Secondly, calling single methylation site polymorphism is not 100 % reliable. If theerror rate is 0.1%, as the study was conducted on ~10 generations a minimum epimutation rate of 10-4 is to be expected. However, because our approach works at the evolutionary time scale, we expect that it suffers less from this bias as the proportion of diversity originating from actual epimutations, and not SMP calling error, should be greater.

      • Thirdly, as mentioned above, recovering the methylation status of a region is veryhard. Hence false region status inference could affect our inference accuracy as shown in Supplementary Figure 4.

      • Lastly and most importantly, the reason behind this discrepancy is the modelling ofepimutation and methylation between sites and regions. As we discuss, the current combination of rates and models is still limited to describe the observed diversity along the genome (as we intend in SMC methods). This is in contrast to the recent study by Yao et al. where very few regions of polymorphic SMPs are chosen, which implicitly avoids the influence of the methylation region effect. A study just published by Biffra et al. (Cell reports 2023) also uses a functional model of methylation modelling using a mix of region and site epimutation, albeit not tuned for evolutionary analyses. Thus we suggest, in line with functional studies, that epimutations are not independent from the local methylation context and may tend to stabilize the methylation state of a region. Therefore, the estimated methylation rates show a discrepancy to the previously measured ones. Indeed, the biological experiment would reveal a fast epimutation rate because epimutations can actually be tracked at sites which can mutate, while region mutation rate is much slower. However, because the methylation state of a region is rather stable through time it would reduce the methylation diversity over long time scale, and these rates would differ between methylated or unmethylated regions (i.e. the methylation rate is higher in methylated regions). Our results are thus in agreement with the observation by Biffra et al. that region methylation modelling is needed to explain patterns of methylation across the genome.

      To solve the discrepancy, one would need to develop a theoretical region + site epimutation model capable of describing the observed diversity at the evolutionary time scale (possibly based on the Biffra et al. model within an underlying population evolution model), and then use this model to reanalyse the sequence data from the biological experiment (i.e. in de Graaf et al. 2015 & Denkena et al. 2022) to re-estimate the methylation region sizes and epimutation rates.

      Minor comments:

      • 189: "SMCtheo" first occurs here, but it's not mentioned until 247 that this is the newmethod being presented.

      Answer : Fixed

      • 199: Are the estimates in this section from a single diploid sequence? Or is it n=5 (diploid) as mentioned in the earlier section?

      Answer : Yes, those results were obtained with 5 diploid individuals. We added it in the Table 1 description.

      • 336: I'm confused by the wording: it sounds like the test rejects the null if there is positivecorrelation in the methylation status across sites. But then, shouldn't 339 read "if the test is significant" (not non-significant)?

      Answer : We apologize for the confusion and rewrote the sentence line 339-348, the choice of word was indeed misleading .

      • Fig. 6: for some reason fewer simulations were run for 10Mb (panels C nad D) than for100Mb (A and B). Since it's very difficult to tell what's happening on average in the 10Mb case, I suggest running the same number of simulations.

      Answer : Yes we understand your concern. Actually, the same number of simulations were run but we plotted only the first 3 runs as it was less visually confusing. We now have added the missing lines to the plot C and D.

      Typos:

      • 104: "or or"

      • 292: build => built

      • 388: fulfil

      • 683: sample => samples

      Answer : Many thanks to reviewer 1 for pointing out the typos. They are all now fixed.

      Reviewer #2 (Recommendations For The Authors):

      The authors may find some valuable information in Pisupati et al (2023) "On the causes of gene-body methylation variation in Arabidopsis thaliana" on interpreting epimutation rates.

      Answer: Many thanks for the recommended manuscript. We add it to the cited literature as it strongly supports our use of heritability or methylation. We also added the recent Biffra et al. paper.

      Reviewer #3 (Recommendations For The Authors):

      There are many places throughout the manuscript with minor grammatical errors. Please review these. A few noted below as I read:

      L104: extra "or"

      L123: built not build

      L 160 "relies" instead of "do rely"

      L161 "events"

      L 336 "from methylation data"

      L 378 "exists"

      L 379 "regions are on average shorter" instead of "there are shorter"

      L 338 "a regional-level"

      L 349 "," instead of "but"

      L 394 DMRs

      Table 1 legend: parentheses not brackets?

      Answer : Many thanks to reviewer #3 for finding those mistakes. They are all now fixed.

      I think a paragraph in the discussion of considerations of when to use this approach might be helpful to readers. Comparison to e.g. increased sample size in MSMC2, while not necessary, might be helpful here. It may often be the case that doubling the number of haplotypes with SNP data may be easier and cheaper estimating methylation accurately.

      Answer : We discuss (lines 691-698) that our approach is always useful by design, but cannot always be used for the same purpose. If the evolutionary properties of the used marker used are not understood, we suggest that our approach can be used to investigate the marker heritability process through generations. This could help to correctly design experiments aiming to study the marker heritability through lineages. And if the properties of the marker are well understood and modelled, it can be integrated into the SMC framework to improve inference accuracy.

      Other minor notes:

      L 486 "known" is a stretch. empirically estimated seems appropriate.

      Answer : Fixed

      L 573 ARG? You are not estimating the full ARG here.

      Answer : We apologize for the wrong choice of word and have rephrased the sentence.

      Fig. 2 is not super useful and could be supplemental.

      Answer : We moved Figure 2 to the appendix (now sup fig 1)

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This study examines the role of host blood meal source, temperature, and photoperiod on the reproductive traits of Cx. quinquefasciatus, an important vector of numerous pathogens of medical importance. The host use pattern of Cx. quinquefasciatus is interesting in that it feeds on birds during spring and shifts to feeding on mammals towards fall. Various hypotheses have been proposed to explain the seasonal shift in host use in this species but have provided limited evidence. This study examines whether the shifting of host classes from birds to mammals towards autumn offers any reproductive advantages to Cx. quinquefasciatus in terms of enhanced fecundity, fertility, and hatchability of the offspring. The authors found no evidence of this, suggesting that alternate mechanisms may drive the seasonal shift in host use in Cx. quinquefasciatus.

      Strengths:

      Host blood meal source, temperature, and photoperiod were all examined together.

      Weaknesses: The study was conducted in laboratory conditions with a local population of Cx. quinquefasciatus from Argentina. I'm not sure if there is any evidence for a seasonal shift in the host use pattern in Cx. quinquefasciatus populations from the southern latitudes.

      We agree on the reviewers observation about the evidence on seasonal shift in the host use pattern in Cx. quinquefasciatus populations from southern latitudes. We include a paragraph in the Introduction section regarding this. Unfortunately, studies conducted in South America to understand host use by Culex mosquitoes are very limited, and there are virtually no studies on the seasonal feeding pattern. In Argentina, there is some evidence (Stein et al., 2013, Beranek, 2019) regarding the seasonal change in host use by Culex species, including Cx. quinquefasciatus, where the inclusion of mammals during the autumn has been observed. As part of a comprehensive study on characterising bridge vectors for SLE and WN viruses, our research group is currently working on the molecular identification of blood meals from engorged females to gain deeper insights into the seasonal feeding pattern of Culex mosquitoes. While the seasonal change in host use by Culex quinquefasciatus has not been reported in Argentina so far, there has been an observed increase in reported cases of SLE virus in humans between summer and fall (Spinsanti et al., 2008). It is based on this evidence that we hypothesise there is a seasonal change in host use by Cx. quinquefasciatus, similar to what occurs in the United States. This is also considering that both countries (Argentina and the United States) have regions with similar climatic conditions (temperate climates with thermal and hydrological seasonality). Since we work on the same species and in a similar temperate climate regimen, we assumed there is a seasonal shift in the host use by this mosquito species.

      Reviewer #1 (Recommendations for the authors):

      Abstract

      Line 23: fed on two different hosts.

      Accepted as suggested.

      I think the concluding statement should be rewritten to say that immediate reproductive outcomes do not explain the shift in host use pattern of Cx. quinquefasciatus mosquitoes from birds to mammals towards autumn.

      Accepted as suggested.

      Introduction

      No comments.

      Materials and Methods

      Please mention sample sizes in the text as well (n = ?) for each treatment.

      Accepted as suggested.

      Page 99: ......C. quinquefasciatus, since C. pipiens and its hybrids are present as well in Cordoba.

      Accepted as suggested.

      Results – Line 146: subsequently instead of posteriorly

      Accepted all changes as suggested.

      Line 148: were counted instead of was counted.

      Accepted all changes as suggested.

      Line 160: Subsequently instead of posteriorly

      Accepted all changes as suggested.

      Line 171: on fertility

      Accepted all changes as suggested.

      Line 174: there was an interaction effect on…

      Accepted all changes as suggested.

      Line 175: there were no differences in the number of eggs

      Accepted all changes as suggested.

      Discussion

      I think the first paragraph in the discussion section is redundant and should be deleted.

      The whole discussion was rewritten to be focused on our aims and results.

      Line 282: this sentence needs to be rewritten.

      Accepted as suggested.

      Line 299: at 28{degree sign}C

      Line 300: at 30{degree sign}C

      Sorry, but we are not sure about your comment here. We checked. Temperatures are written as stated, 28°C and 30°C.

      Line 363: I think the authors need to discuss more about the bigger question they were addressing. I think that the discussion section can be strengthened greatly by elaborating on whether there is evidence for a seasonal shift in host use pattern in Cx. quinquefasciatus in the southern latitudes. If yes, what alternate mechanisms they believe could be driving the seasonal change in host use in this species in the southern latitudes now that they show the 'deriving reproductive advantages' hypothesis to be not true for those populations.

      Thanks for this observation. We agree and so the Discussion section was restructured to align it with our results, as suggested.

      Reviewer #2 (Public Review):

      Summary:

      Conceptually, this study is interesting and is the first attempt to account for the potentially interactive effects of seasonality and blood source on mosquito fitness, which the authors frame as a possible explanation for previously observed host-switching of Culex quinquefasciatus from birds to mammals in the fall. The authors hypothesize that if changes in fitness by blood source change between seasons, higher fitness in birds in the summer and on mammals in the autumn could drive observed host switching. To test this, the authors fed individuals from a colony of Cx. quinquefasciatus on chickens (bird model) and mice (mammal model) and subjected each of these two groups to two different environmental conditions reflecting the high and low temperatures and photoperiod experienced in summer and autumn in Córdoba, Argentina (aka seasonality). They measured fecundity, fertility, and hatchability over two gonotrophic cycles. The authors then used a generalized linear mixed model to evaluate the impact of host species, seasonality, and gonotrophic cycle on fecundity and fertility and a null model analysis via data randomization for hatchability. The authors were trying to test their hypothesis by determining whether there was an interactive effect of season and host species on mosquito fitness. This is an interesting hypothesis; if it had been supported, it would provide support for a new mechanism driving host switching. While the authors did report an interactive impact of seasonality and host species, the directionality of the effect was the opposite of that hypothesized. While this finding is interesting and worth reporting, there are significant issues with the experimental design and the conclusions that are drawn from the results, which are described below. These issues should be addressed to make the findings trustworthy.

      Strengths:

      (1) Using a combination of laboratory feedings and incubators to simulate seasonal environmental conditions is a good, controlled way to assess the potentially interactive impact of host species and seasonality on the fitness of Culex quinquefasciatus in the lab.

      (2) The driving hypothesis is an interesting and creative way to think about a potential driver of host switching observed in the field.

      Weaknesses:

      (1) There is no replication built into this study. Egg lay is a highly variable trait, even within treatments, so it is important to see replication of the effects of treatment across multiple discrete replicates. It is standard practice to replicate mosquito fitness experiments for this reason. Furthermore, the sample size was particularly small for some groups (e.g. 15 egg rafts for the second gonotrophic cycle of mice in the autumn, which was the only group for which a decrease in fecundity and fertility was detected between 1st and 2nd gonotrophic cycles). Replicates also allow investigators to change around other variables that might impact the results for unknown reasons; for example, the incubators used for fall/summer conditions can be swapped, ensuring that the observed effects are not artefacts of other differences between treatments. While most groups had robust sample sizes, I do not trust the replicability of the results without experimental replication within the study.

      We agree egg lay is a variable trait and so we consider high numbers of mosquitoes and egg lay during experiments compared to our studies of the same topics. Evaluating variables such as fecundity, fertility, or other types of variables (collectively referred to as "life tables") is a challenging issue that depends on several intrinsic and extrinsic factors. Because all of this, in some experiments, sample sizes might not be very large, and in several articles, lower sample sizes could be found. For instance, in Richards et al. (2012), for Culex quinquefasciatus, during the second gonotrophic cycle, some experiments had 13 or even 6 egg rafts. For species like Aedes aegypti, the sample size for life table analysis is also usually small. As an example, Muttis et al. (2018) reported between 1 and 4 engorged females (without replicates). In addition, small sample size would be a problem if we would not have obtained any effect, which is not the case due to the fact that we were interested in finding an effect, regardless of the effect size. Because of this, we do find our sample sizes quite robust for our results.

      Regarding the need to repeat the experiments in order to give more robustness to the study we also agree. However, after a review of the literature (articles cited in the original manuscript), it is apparent that similar experiments are not frequently repeated as such. Examples of this are the studies of Richards et al. (2012), Demirci et al. (2014) or Telang & Skinner (2019), which even they manipulate several cages at a time as “replicates”, they are not true replicates because they summarise and manipulate all data together, and do not repeat the experiment several times. We see these “replicates” as a way of getting a greater N.

      As was stated by the reviewer, repetition is a resource and time-consuming activity that we are not able to do. Replicating the experiment poses a significant time and resources challenge. The original experiment took over three months to complete, and it is anticipated that a similar timeframe would be necessary for each replication (6 months in total considering two more replicates). Given our existing commitments and obligations, dedicating such an extensive period solely to this would impede progress on other crucial projects and responsibilities.

      Given the limitations of resources and time and the infrequent use of experimental replication in this type of studies, we performed a simulation-based analysis via a Monte Carlo approach. This approach involved generating synthetic data that mimics the expected characteristics of the original experiment and subsequently subjecting it to the same analysis routine. The main goal of this simulation was to evaluate the potential spuriousness and randomness of the results that might arise due to the experimental conditions. So, evaluating the robustness and confidence of our results and data.

      (2) Considering the hypothesis is driven by the host switching observed in the field, this phenomenon is discussed very little. I do not believe Cx. quinquefasciatus host switching has been observed in Argentina, only in the northern hemisphere, so it is possible that the species could have an entirely different ecology in Argentina. It would have been helpful to conduct a blood meal analysis prior to this experiment to determine whether using an Argentinian population was appropriate to assess this question. If the Argentinian populations don't experience host switching, then an Argentinian colony would not be the appropriate colony to use to assess this question. Given that this experiment has already been conducted with this population, this possibility should at least be acknowledged in the discussion. Or if a study showing host switching in Argentina has been conducted, it would be helpful to highlight this in the introduction and discussion.

      Thanks for this observation. We agree. However, we conducted the experiment beside host use data from Argentina since we used the mosquito species, and the centre region of Argentina (Córdoba) has a similar temperate weather regimen that those observed in the east coast of US.

      We are aware that few studies regarding host shifting in South America are available, some such that those conducted by Stein et al. (2013) and Beranek (2019) reported a moderate host switch for Culex quinquefasciatus in Argentina. We have already performed a study about seasonal host feeding patterns for this species. However, even though there are few studies regarding host shifting, our hypothesis is based mainly in the seasonality of human cases of WNV and SLEV, a pattern that has been demonstrated for our region, see for example the study of Spinsanti et al. (2008).

      We include a new paragraph in the Introduction and Discussion sections. Please see answers Reviewer #1.

      (3) The impacts of certain experimental design decisions are not acknowledged in the manuscript and warrant discussion. For example, the larvae were reared under the same conditions to ensure adults of similar sizes and development timing, but this also prevents mechanisms of action that could occur as a result of seasonality experienced by mothers, eggs, and larvae.

      We understand the confusion that may have arisen due to a lack of further details in the methodology. If we are not mistaken, you are referring to our oversight regarding the consideration of carry-over effects of larvae rearing that could potentially impact reproductive traits. When investigating the effects of temperature or other environmental factors on reproductive traits, it is possible to acclimate either larvae or adults. This is due to the significant phenotypic plasticity that mosquitoes exhibit throughout their entire ontogenetic cycle. In our study, we followed an approach similar to that of other authors where the adults are exposed to experimental conditions (temperature and photoperiod). For a similar approach you can refer to the studies conducted by Ferguson et al. (2018) for Cx. pipiens, Garcia Garcia & Londoño Benavides (2007) for Cx. quinquefasciatus or Christiansen-Jucht et al. (2014, 2015) for Anopheles gambiae.

      (4) There are aspects of the data analysis that are not fully explained and should be further clarified. For example, there is no explanation of how the levels of categorical variables were compared.

      The methodology and statistical analysis were expanded for a better understanding.

      (5) The results show the opposite trend as was predicted by the authors based on observed feeding switches from birds to mammals in the autumn. However, they only state this once at the end of the discussion and never address why they might have observed the opposite trend as was hypothesized.

      The discussion was restructured to focus on our results and our model.

      (6) Generally speaking, the discussion has information that isn't directly related to the results and/or is too detailed in certain parts. Meanwhile, it doesn't dig into the meaning of the results or the ways in which the experimental design could have influenced results.

      As mentioned above, the discussion was restructured to reflect our findings. We also included the effect that our design might have influenced our results. However, as stated above we do not fully agree that the design is inadequate for our analysis, we performed standard protocols followed by other researchers and studies in this research field.

      (7) Beyond the issue of lack of replication limiting trust in the conclusions in general, there is one conclusion reached at the end of the discussion that would not be supported, even if additional replicates are conducted. The results do not show that physiological changes in mosquitoes trigger the selection of new hosts. Host selection is never measured, so this claim cannot be made. The results don't even suggest that fitness might trigger selection because the results show that physiological changes are in the opposite direction as what would be hypothesized to produce observed host switches. Similarly, the last sentence of the abstract is not supported by the results.

      We agree with this observation. However, we did not evaluate the impact of fitness on host selection in this study. Instead, we aimed to investigate the potential influence of seasonality on mosquito fitness as a potential trigger for a shift in host selection. We agree that we have incorrectly used the term “host selection” when we should actually be discussing “host use change”. Our results indicate a seasonal alteration in mosquito fitness in response to temperature and photoperiod changes. Building upon this observation, we re-discussed our hypothesis and theoretical model to explain this seasonal shift in host use.

      (8) Throughout the manuscript, there are grammatical errors that make it difficult to understand certain sentences, especially for the results.

      All English grammar and writing of the manuscript was revised and corrected to be easily understood.

      This study is driven by an interesting question and has the potential to be a valuable contribution to the literature.

      Reviewer #2 (Recommendations for The Authors):

      I hope that the authors will consider the suggested revisions and experimental replication to improve the quality of the study and paper.

      This study tests a very interesting hypothesis. I understand that additional replicates are difficult to conduct, but I do believe that fitness studies absolutely require experimental replicates. Unless you are able to replicate the observed effects, I personally would not trust the results of this study. I hope that you will consider conducting replicates so that this important question can be answered in a more robust manner. Below, I expand upon some additional points in the public review and also provide more specific suggestions. I provided some copy-editing feedback, but was not able to point out all grammatical mistakes. I suggest that you use ChatGPT to help you edit the English. For example, you can feed ChatGPT your MS and ask it to bold the grammatical errors or you can ask it to edit grammatical errors and bold the sections that were edited. I understand that writing in a second language is very difficult (from personal experience!), so I view ChatGPT as a great tool to help even the playing field for publishing. Below are line item suggestions. Apologies that wording is curt, I was trying to be efficient in writing.

      20-21: I suggest that you emphasize that you are investigating the interactive effect.

      Accepted as suggested.

      22: they weren't "reared" (from larvae) in different conditions, they were "maintained" as adults

      Accepted as suggested.

      26-27: increased/decreased is a bit misleading since you did not evaluate these groups sequentially in time. It might be more accurate to describe it as less than/greater than. Also, if you say increased/decreased or less than/greater than, you should always say what you are comparing to. The same applies throughout the MS.

      Accepted as suggested.

      29-30: "finding the" is not correct here; could be "with the lowest..."

      Accepted as suggested.

      34-36: I do not think that your results suggest this, even if you were to replicate the results of this experiment. You haven't shown metabolic changes.

      We understand the point. Accepted as suggested.

      42-44: "one of the main responsible" should be "one of the main species responsible..."

      Accepted as suggested.

      48: I think that "host preference" is better than selection here; -philic denotes preference

      Accepted as suggested.

      50: "Moreover" isn't the correct transition word here

      Accepted as suggested.

      57: "could" isn't correct here; consider saying "... species sometimes feed primarily on mammal hosts, including humans, in certain situations."

      Accepted as suggested.

      58: Different isn't correct word here

      Accepted as suggested.

      60: delete "feeding"

      Accepted as suggested.

      66-68: I am not familiar with any blood meal analysis studies in the southern hemisphere that show host switching for Culex species between summer and autumn. If this hasn't been shown, then this critique of the host migration hypothesis doesn't make sense.

      There are some studies pointing this out (Stein et al., 2013, Beranek 2019), and unpublished data from us). However, our hypothesis has supported by epidemiological data observed in human population which indicate a seasonal activity pattern. It was explained in depth in the Introduction section.

      68: ensures is not the right word; I suggest "suggests"

      Accepted as suggested.

      68-70: this explanation isn't clear to me; please revise

      It will be revised. Accepted as suggested.

      70: change cares to care

      Accepted as suggested.

      76-77: can you explain how they were not supported by the data for the benefit of those who are not familiar with these papers please?

      Accepted as suggested.

      87-89: I suggest the following wording: "In the autumn, we expect a greater number of eggs (fecundity) and larvae (fertility) in mosquitoes after feeding on a mammal host compared to an avian host, and the opposite relationship in the summer."

      Accepted as suggested.

      99: edit for grammar

      Accepted as suggested.

      102: suggest: "...offered a blood meal from a restrained chicken twice a month"

      Accepted as suggested.

      107: powder

      Accepted as suggested.

      108: inbred? Is this the term you meant to use?

      Changed as suggested.

      109: "several" cannot be used to describe 20 generations; suggest using "over twenty generations"; also, it would be good to acknowledge in your discussion that lab adaptation could force evolution, especially since mosquitoes are kept at constant temperatures and fed with certain hosts (with easy access) in the lab. Also, it would be good to know when the experiments were conducted to know the lapse of time between the creation of the colony and the experiments.

      Accepted as suggested.

      110-111: Does humidity vary between summer and fall in Córdoba? If so, I suggest acknowledging in the discussion that if humidity differences are involved in a potential interaction between host species and seasonality, then this would not have been captured by your experimental design.

      Several variables change during seasons. We were interested in capturing the effects of temperature and photoperiod, since humidity is a variable difficult to control.

      113-116: I suggest combining into one sentence to make more concise.

      Accepted as suggested.

      135: You might be obscuring the true impact of seasonality by rearing the larvae under the same conditions. There may be signals that mothers/eggs/larvae receive that influence their behavior (e.g. I believe this is the case for diapause), so this limitation should also be acknowledged. I understand why you decided to do this to control for development time and size, but it is something that should be considered in the discussion.

      As it was explained above, Cx. quinquefasciatus do not suffer diapause in our country. Maintaining mosquitoes from adults was an approach selected by us based on other studies.

      138: edit: "with cotton pads soaked in... on plastic..."; what is plastic glass? Do you mean plastic dishes?

      Accepted as suggested.

      141: here and throughout paragraph, full should be "fully"

      Accepted as suggested.

      144: located should be "placed"

      Accepted as suggested.

      147: suggest editing to "at which point, they were fixed with 1 mL of 96% ethanol and the number of L1 larvae per raft was counted."

      Accepted as suggested.

      154-155: edit for grammar

      Accepted as suggested.

      157: Your GLM explanation doesn't say anything about how you made pairwise comparisons between your levels; did you use emmeans?

      This revised version includes a more detailed methodology and statistical analysis. Accepted as suggested.

      158-160: I don't understand why you took this approach - it seems strange to me to use this analysis, but I am not familiar with it, so it might be that I lack the knowledge to be able to adequately evaluate. Please provide more explanation so that readers can better understand this analysis. A citation for this kind of application of the analysis would be helpful.

      It was changed to be in accordance with the remaining analyses.

      173: replace neither with either

      Accepted as suggested.

      174: this applies throughout; edit to : "An interaction effect was observed..."

      Accepted as suggested.

      175: "it was not found" is grammatically incorrect; instead : "We did not find ..." or "no differences in... were detected", etc

      Accepted as suggested.

      183: "it was detected" is grammatically incorrect

      Accepted as suggested.

      185-186: "being this treatment... in terms of fitness": I do not understand what this means. Please rephrase

      Accepted as suggested.

      170-199: you should provide the effect sizes and p values in text and/or in the figure for the pairwise comparisons

      Accepted as suggested.

      193-196. These two sentences are confusing and I am not sure what you mean, especially in the first sentence.

      It was rewritten. Accepted as suggested.

      Figure 1: This figure is great and easy to read and interpret! Thank you for the comment! 218-219: it is important to state which mosquito species you are referring to here.

      Accepted as suggested.

      226-227: you definitely should acknowledge the small sample size here.

      Considered.

      227: "it was observed" should be "We observed" or "A greater hatching rate.... was observed."

      Accepted as suggested.

      228-229: is the result really comparable even though you took very different approaches to the analysis for these outcomes?

      Changed to be comparable.

      230-278: the discussion of these hypotheses is too long and detailed, especially since the comparison of mouse vs chicken wasn't your main question; you really wanted to understand this in the context of seasonality. I suggest cutting this down a lot and making room to dig into your results more, and also to discuss the potential impacts of your experimental design/limitations on the results.

      Discussion was changed to focus on our results and model. Accepted as suggested.

      281: Hoffman is an old citation; I suggest you cite a modern review.

      Accepted as suggested. We deleted it due to the re-writing of the manuscript.

      282: "It can be recognise".. I am not sure what you are trying to say here

      Accepted as suggested.

      1. After the first time you write a species name, you can abbreviate the genus in all future mentions unless it is at the beginning of a sentence.

      Accepted as suggested.

      303-305: Revise this sentence. E.g "Fewer studies are available regarding photoperiod and show mixed results; Mogi (1992) found that mid and long day lengths induced greater fecundity while Costanzo et al. (2015) did not find differences in fecundity by day length."

      Accepted as suggested.

      315-316: typically, unpublished data shouldn't be referenced; I'm not sure if eLife has a policy on this.

      We will check this with eLife guidelines. However, since the lack of evidence on this pattern we consider important to include this unpublished data.

      316: Aegypti should be lowercase

      Accepted as suggested.

      328-330: This sentence is redundant with the first sentence of the paragraph

      Accepted as suggested.

      321-336: You never reintroduced your hypothesis in your discussion. I suggest that you center your whole discussion more directly around the hypothesis that motivated the study. If you decide not to restructure your discussion, you should at least reintroduce your hypothesis here and discuss how your results do not support the hypothesis.

      Accepted as suggested.

      337-348: This paragraph is a bit confusing as you jump between fertility and hatchability

      Accepted as suggested.

      353: is viral transmission the right word to use here? I think you might mean bridge vector transmission to humans specifically?

      Accepted as suggested.

      357: you say "neither" but never define which traits you are referring to

      Accepted as suggested.

      361: I suggest "two variables previously analyzed separately..."

      Accepted as suggested.

      General: There is no statement about the availability of data; it is eLife policy to require all data to be publicly available. Also, it would be helpful to share your code to help understand how you conducted pairwise comparisons, etc.

      In the submission it was not mentioned anything about data availability. However, all data and scripts will be uploaded with the VOR if it is required.

      Recommendations for the authors:

      I found your study interesting and potentially promising. However, there are some fundamental problems with the study design and the hypothesis, including:

      <(1) Seasonality simulation - Seasonality is strongly associated with time, so it is unusual to simulate seasonal factors without accounting for time. The actual factors associated with seasonal change in reproductive output may be neither a difference in host blood meal nor temperature and photoperiod. It is therefore, odd to reduce seasonality to a difference in photoperiod and temperature in summer and autumn without even mentioning the time of year when the experiment was carried (except for the mention of February as the time the stock samples were collected from the wild).

      The temperature and photoperiod settings are established according to a representative day in both autumn and summer. To determine these settings, we utilized climate data spanning a 3-year period (2020-2022), encompassing the most frequently occurring temperatures and day lengths. The weather conditions remained notably consistent throughout this time frame, which is why the specific year was not mentioned. Moreover, including the year in laboratory experiment details is uncommon, as evident in various papers. This practice can be corroborated by referring to multiple sources (cited in the original manuscript). We mention this in the new version.

      (2) Hypothesis - While the hypothesis alludes to the 'reason' for seasonal host shift, the prediction is on the outcome of the interaction between blood meal type and season.

      It might be nicer to frame your hypothesis to be consistent with the aim, which is, testing the partial contributions of blood meal type, versus photoperiod and temperature to seasonal change in the reproductive output of Culex quinquefasciatus. A hypothesis like that can be accompanied by alternative predictions according to the expected individual and interactive effects of both factors.

      It was rewritten in the revised version to be consistent with our predictions and findings.

      Blood meal type, temperature, and photoperiod are all components of seasonality, so the strength of the study is its potential to decouple the effect of blood meal type from that of temperature and photoperiod on the seasonal reproductive output of Culex quinquefasciatus by comparing the two blood meal types under simulated summer and winter conditions. Ideally, this should have been over a natural summer and winter because a natural time difference captures the effect of other seasonal factors other than temperature and photoperiod.

      Furthermore, the hypothesis stemmed from field observations, while the study itself was conducted under laboratory conditions using a local population of Culex quinquefasciatus from Argentina. It remains uncertain whether there is supporting evidence for a seasonal shift in host usage in Culex quinquefasciatus from the stock population. Discussing the field observations within the stock population would provide valuable insights.

      It was considered in the new version.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This valuable study seeks to disentangle the different selective forces shaping the evolutionary dynamics of transposable elements (TEs) in the wild grass Brachypodium distachyon. Using haplotype-length metrics, and genetic and environmental differentiation tests, the authors present in large parts convincing evidence that positive selection on TE polymorphisms is rare, and that the distribution of TE ages points to purifying selection being the main force acting on TE evolution in this species. A caveat of this study, as of other studies that seek to assess TE insertion polymorphisms with short reads, is that the rates of false negatives and false positives are difficult to estimate, which may have major effects on the interpretation. This study will be relevant for anyone interested in the role of TEs in evolution and adaptation.

      Thank you for considering our manuscript for publication in eLife. We appreciate the constructive comments and suggestions of the reviewers. We have addressed the raised issues by the reviewers. Below, we provide a more detailed response to each of the reviewer comments.

      Public Reviews:

      Reviewer #1:

      The study presented in this manuscript presents very convincing evidence that purifying selection is the main force shaping the landscape of TE polymorphisms in B. distachyon, with only a few putatively adaptive variants detected, even though most conclusions are based on the 10% of polymorphisms contributed by retrotransposons. That first conclusion is not novel, however, as it had already been clearly established in natural A. thaliana strains (Baduel et al. Genome Biol 2021) and in experimental D. simulans lines (Langmüller et al. NAR 2023), two studies that the authors do not mention, or improperly mention. In contrast to the conclusions reached in A. thaliana, however, Horvath et al. report here a seemingly deleterious effect of TE insertions even very far away from genes (>5kb), a striking observation for a genome of relatively similar size. If confirmed, as a caveat of this study is the lack of benchmarking of the TE polymorphisms calls by a pipeline known for a high rate of false positives (see detailed Private Recommendations #1), this set of observations would make an important addition to the knowledge of TE dynamics in the wild and questioning our understanding of the main molecular mechanisms through which TEs can impact fitness.

      Thank you for your positive evaluation of our paper. We have now adjusted the manuscript to include the mentioned studies (Line 330-333) and to address the issue of false positive and false negative calls. The detailed responses to all the raised points are below.

      Reviewer #2:

      Summary:

      Transposable elements are known to have a strong potential to generate diversity and impact gene regulation, and they are thought to play an important role in plant adaptation to changing environments. Nevertheless, very few studies have performed genome-wide analyses to understand the global effect of selection on TEs in natural populations. Horvath et al. used available whole-genome re-sequencing data from a representative panel of B. distachyon accessions to detect TE insertion polymorphisms (TIPs) and estimate their time of origin. Using a thorough combination of population genomics approaches, the authors demonstrate that only a small amount of the TE polymorphisms are targeted by positive selection or potentially involved in adaptation. By comparing the age-adjusted population frequencies of TE polymorphisms and neutral SNPs, the authors found that retrotransposons are affected by purifying selection independently of their distance to genes. Finally, using forward simulations they were able to quantify the strength of selection acting on TE polymorphisms, finding that retrotransposons are mainly under moderate purifying selection, with only a minority of the insertions evolving neutrally.

      Strengths:

      Horvath et al., use a convincing set of strategies, and their conclusions are well supported by the data. I think that incorporating polymorphism's age into the analysis of purifying selection is an interesting way to reduce the possible bias introduced by the fact that SNPs and TEs polymorphisms do not occur at the same pace. The fact that TE polymorphisms far from genes are also under purifying selection is an interesting result that reinforces the idea that the trans-regulatory effect of TE insertions might not be a rare phenomenon, a matter that may be demonstrated in future studies.

      Weaknesses:

      TEs from different classes and orders strongly differ in multiple features such as size, the potential impact of close genes upon insertion, insertion/elimination ratio (ie, MITE/TIR excision, solo-LTR formation), or insertion preference. Given such diversity, it is expected that their survival rates on the genome and the strength of selection acting on them could be different. The authors differentiate DNA transposons and retrotransposons in some of the analyses, the specificities of the most abundant plant TE types (ie, LTR/Gypsy, LTR/Copia, MITE DNA transposons) are not considered.

      The authors used a short-read-based approach to detect TIPs and TAPs. It is known that detecting TE polymorphisms is challenging and can lead to false negatives, depending on the method used and the sequencing coverage. The methodology used here (TEPID) has been previously applied to other species, but it is unclear if the sensitivity of the TIP/TAP caller is equivalent to that of the SNP caller and how these potential differences may affect the results.

      Thank you for your positive evaluation of our paper. We have now adjusted the manuscript and the discussion to include the mentioned points on the different TE superfamilies and the reliability of the TE calls. The detailed responses to all the raised points are below.

      Private Recommendations:

      Reviewer #1:

      (1) TE polymorphisms (presence and absence variants) were called from short-read sequencing data using a pipeline (TEPID, Stuart et al. eLife 2016) that is known to have a low specificity as well as a low sensitivity in its detection of presence variants (Baduel et al. MIMB 2021). An assessment of the rate of false positives and false negatives in the data presented in this study and how it varies across TE superfamilies is therefore of crucial importance as it may bias all downstream analyses, especially if it impacts the identification of polymorphisms contributed by retrotransposons, as these are the basis of most conclusions of the manuscript. Nonetheless, the fact that the PCA of the polymorphisms contributed by DNA transposons is less able to distinguish genetic clades than with those contributed by retrotransposons, suggests the issue of false positives is most preeminent for DNA transposons. However, high rates of false positives may explain why no significant increase in TE frequency is detected within selective sweep regions, a result that runs against the expectation of hitch-hiking of neutral or weakly deleterious polymorphisms which the authors claim is the category of many TE polymorphisms. Furthermore, given that the reference genome belongs to the B_east clade, and the TEPID is better at calling absence than presence it may bias analyses in this clade (where clade-specific insertions will take the form of absence in other clades which are well detected) compared to other clades (where clade-specific insertions will be presence polymorphisms and may be missed). A benchmark of TE polymorphism calls could be done by de novo assembling one genome from each clade or by cross-checking at least the presence variant calls from TEPID with those made with another of the many TE calling pipelines available.

      We agree with this issue raised by both reviewers regarding the effects of false negative and false positive TE calls. We also think that some reasonable follow-ups should be done to check the potential impact of the false negative and false positive TE calls on the presented results, without turning the manuscript in a method comparison paper as this is not the main goal of this study. Therefore, we generated a subsample of our dataset that included only accession with an average genome wide mapping coverages of at least 20x, as the false negative TE call rate is correlated with the mapping coverage and a high mapping coverage is expected to lead to a reduction in the false negative TE call rates. We then used this subsample to check if our results would change if our dataset had a lower false negative TE call rate. However, reducing the rate of false negative calls through the use of only higher coverage samples did not change our results and interpretations.

      Re-running the ANCOVA analyses revealed similar results regarding the accumulation of TEs in selective sweep regions. This was added to the main text Line 143-148: “Similar results were obtained when investigating the number of fixed TE polymorphisms (Additional file 2: Table S1) and the allele frequency of TE polymorphisms (Additional file 2: Table S2) in high iHS regions using a subset of our dataset with an expected lower false negative TE call rate, that only included samples with a genome-wide mapping coverage of at least 20x (see Discussion and Materials and Methods for more details).” and in Additional file 2: Table S1 and S2.

      Further, we re-ran the age-adjusted SFS based on this subset of our dataset and found that the results and conclusions from the age-adjusted SFS were not only driven by false negative TE calls. This was also included in the text Line 338-349: “One caveat of the approach used in this study is that TE calling pipelines based on short-reads tend to have higher false positive and false negative call rates than SNP calling pipelines, which is also the case for the TEPID TE calling pipeline used here [57, 59]. A high false negative TE calling rate however might bias our TE frequency estimates toward lower frequencies, which could drive the observed patterns in the age-adjusted SFS. To assess if the false negative TE calling rate in our study substantially affected our results, we re-run the age-adjusted SFS on a subset of our dataset only including samples with a genome-wide mapping coverage of at least 20x, as higher mapping coverages are expected to reduce the false negative call rate [27, 59]. Using the TE allele frequencies estimated based on this subset of our data to estimate  frequency revealed similar results of the age-adjusted SFS based on the whole dataset (Additional file 1: Fig. S9), indicating that our observation of retrotransposons evolving under purifying selection is not solely driven by a high false negative TE calling rate.” and in Additional file 1: Fig. S9.

      The details of this analyses have been added to the materials and methods Line 493-498: “Mapping coverage is known to influence false discovery rate [27, 59]. To investigate the impact of false positive and false negative TE calls on our results, we down sampled the TE dataset to only include TEs that have been called in samples that had at least an average mapping coverage of 20x. The allele frequencies of TEs present in our high coverage dataset was recalculated only considering samples with at least an average mapping coverage of 20x. This second TE dataset was then used to check if using a dataset with a higher mapping coverage and presumably a lower false TE calling rate impacted our results.”

      (2) If confirmed, the observation that retrotransposons located more than 5kb away from genes appear to be also affected by purifying selection (L209) is indeed surprising. The authors should add a comparison with SNPs at the same distance from genes to strengthen the claim and make sure it is not the result of mapping artifacts, such as alignment quality dropping far away from genes.

      We added a comparison of the age-adjusted SFS of SNPs and retrotransposons more than 5 kb away from genes to evaluate if the observed shape of the age-adjusted SFS of retrotransposons more than 5 kb away from genes were due to artefacts. The results are included on line 383-389: “Finally, we tested whether TE polymorphisms located more than 5 kb away from genes are evolving under purifying selection could be due to mapping or other artefacts by comparing the shape of the age-adjusted SFS of retrotransposons and SNPs more than 5 kb away from genes. However, the age-adjusted SFS of SNPs 5 kb away from genes differs from the one of retrotransposons (Additional file 1: Fig. S10), indicating that the shape of the age-adjusted SFS of retrotransposons more than 5 kb away from genes is not likely to be the result of artefacts in regions of the genome far away from genes.” and Additional file 1: Fig. S10.

      (3) The authors' claim that most TE polymorphisms are under weak to moderate purifying selection (L273) relies on the comparison of the age of polymorphisms in the oldest age bin with forward simulations. However, the conclusions from these comparisons cannot be extrapolated to the fitness effects of all TE polymorphisms as variants in the oldest age bin are de facto a biased sample of the variants of a category, a point the authors highlight.

      We adjusted the mentioned paragraph to better highlight this point. Line 390-397: “To further ascertain the strength of purifying selection, we used forward simulation and showed that simulations assuming a moderately weak selection pressure (S = -5 or S = -8) against TE polymorphisms best fitted our observed data. In theory, no TE polymorphisms under strong purifying selection should be present in a natural population, as such mutations are expected to be quickly lost, especially in a predominantly selfing species where most loci are expected to be homozygous. Therefore, it is not surprising that TE polymorphisms which persist in B. distachyon are under weak to moderate selection, as also shown, for example, for the L1 retrotransposons in humans [27] or the BS retrotransposon family in Drosophila melanogaster [62].”

      L220-228 for high-effect SNPs. Indeed, the most deleterious TE polymorphisms would be purged very quickly and never contribute to variants in the oldest age bin. Unless new arguments can be made to support this claim, this conclusion should be rephrased to claim instead that even the oldest TE polymorphisms are still mostly non-neutral and under weak to moderate purifying.

      This has been adjusted. Line 231-232: “. Hence, even the oldest retrotransposon polymorphisms seem to be mostly non-neutral and are affected by purifying selection.”

      L214: replace smaller with more negative for clarity.

      Done.

      L233: Given the discussion L220-228, the oldest age bin seems to be biased in its composition and thus not useful for comparisons. The sentence should therefore be rephrased to reflect that DNA transposon polymorphisms appear to be actually less deleterious than high-effect SNPs in S9A and B based on the penultimate age bin.

      This has been fixed.

      Reviewer #2:

      • I wonder if false negative detection could artificially increase the evidence for purifying selection by increasing the amount of low-frequency variants. This could be easily checked if long-read data or genome assembly is available for any of the samples in the collection, by comparing the TIP/TAP prediction with the actual sequence.

      We agree with this point from the reviewers that false negative calls can lead to misinterpretations of the observed low-frequencies of the TEs. (But see response to the first comment of reviewer #1). Unfortunately, long-read data from the sample used here are not available to estimate false negative call rates. However, to check if the observed results are manly driven by high false negative rates, we re-run the age-adjusted SFS based on samples with at least 20x mapping coverage, which should result in the reduction the false negative TE calling rate. The results and conclusions from this second analyses were included in the text Line 338-349: “One caveat of the approach used in this study is that TE calling pipelines based on short-reads tend to have higher false positive and false negative call rates than SNP calling pipelines, which is also the case for the TEPID TE calling pipeline used here [57, 59]. A high false negative TE calling rate however might bias our TE frequency estimates toward lower frequencies, which could drive the observed patterns in the age-adjusted SFS. To assess if the false negative TE calling rate in our study substantially affected our results, we re-run the age-adjusted SFS on a subset of our dataset only including samples with a genome-wide mapping coverage of at least 20x, as higher mapping coverages are expected to reduce the false negative call rate [27, 59]. Using the TE allele frequencies estimated based on this subset of our data to estimate  frequency revealed similar results of the age-adjusted SFS based on the whole dataset (Additional file 1: Fig. S9), indicating that our observation of retrotransposons evolving under purifying selection is not solely driven by a high false negative TE calling rate.” and in Additional file 1: Fig. S9.

      • Supplementary Figure S1. DNA transposons are much worse at separating the samples in comparison to LTR-retrotransposons. Doesn´t this suggest that these two classes have very different dynamics in the population and maybe different intensities of the selection forces acting on them? Could this profile be explained as DNA transposons being older and likely more fixed in all the clades, whereas retrotransposons are more recent and more specific to some populations? Another possibility might be that some B. distachyon DNA transposons had an unusually high excision rate. In any case, in my opinion, this reinforces the need to study the different TE orders in more detail.

      Indeed, different TE orders and superfamilies can have different excision rates, age distributions and be under different selective regimes. To investigate the possibility that different TE orders are affected by very different selective regimes, we split our TE dataset into the four different TE types: Copia, Ty3, Helitron and MITE. We than re-run the age-adjusted SFS analyses and added our results to the text Line 422-430: “To further examine our conclusion on purifying selection, we investigated the selective regime affecting different retrotransposons and DNA-transposons superfamilies. Thereby, we generated age-adjusted SFS for the four most common TE superfamilies Copia, Ty3 (also known under the name Gypsy, but we will avoid using this name because of its problematic nature see [71]), Helitron and MITE and found similar deviations of the  frequency from 0 in the four investigated TE superfamilies (Additional file 1: Fig. S12–S15). These results indicate that our conclusion on the broad effect of purifying selection is not driven by a single TE superfamily but is at least common among the four most numerous TE superfamilies.” and in Additional file 1: Fig. S12- S15.

      • Line 112: "most TE polymorphisms in our dataset were young and only a few were very old". Does this change substantially among TE orders/superfamilies?

      Indeed, there are some differences in the age distribution of the TEs depending on the superfamilies, However, the differences are no substantial as the age bins in the age-adjusted SFS of the different TE superfamilies are fairly similar. See Additional file 1: Fig. S12-S15.

      • Figure 2. Is difficult to read, especially lower panels. I think the grey border of the boxplots makes visualization difficult.

      The gray borders have been removed.

    1. Author Response

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Recommendations For The Authors):

      Many of my specific issues have been addressed in the revision. However, the data shown in Reviewer Fig. 1 and 2 is not sufficiently described to assess it's reliability and these new data do not appear to have been integrated into the paper. A response that more clearly states how the manuscript has been revised to address the comments is necessary.

      We appreciate the opportunity to respond to your updated comments on our manuscript. We carefully considered the feedback and made changes to address the specific issues raised.

      In response to your question of insufficient description of the data shown in Reviewer Fig. 1 and 2, we would like to confirm that we have taken this feedback seriously. Supplementary data, including the information provided in Reviewer Figures 1 and 2, have been fully described and integrated into the body of the manuscript according to your request. We ensured that the reliability and significance of new data were clearly presented to enhance the overall synthesis of the manuscript.

      We are grateful to your valuable feedback, which undoubtedly contributed to the refinement of our manuscript. We hope that the revised version meets the standards of the journal and look forward to the opportunity for further deliberation.

      Reviewer #2 (Recommendations For The Authors):

      Additional feedback from the reviewer:

      "I think the authors have been responsive to my previous comments. However, I cannot find this new data in the main text but rather only in the response to reviewers. New data should be incorporated into the main text not the supplement as the controls are important to consider alongside the treatment groups. Lastly, while the authors include BODIPY in their approaches, their results are not quantitative. My suggestion was to include this data in a quantitative manner not just the images. Lastly, I am still somewhat puzzled about the connection with GABA. The rationale for its selection other than it was significantly changed is not strong."

      Thank you for providing us with the latest feedback. We appreciate the opportunity to address the specific concerns raised and provide a detailed response to each point.

      (1) Incorporation of New Data into the Main Text:

      We acknowledge the reviewer's comment regarding the incorporation of new data into the main text rather than solely in the response to reviewers. In response to this feedback, we have diligently revised the manuscript to ensure that the new data, including controls, is now seamlessly integrated into the main body of the text. This modification allows for a more comprehensive and contextual presentation of the data, as recommended by the reviewer.

      (2) Quantitative Presentation of BODIPY Results:

      We understand the importance of presenting quantitative data for the BODIPY results, and we appreciate the reviewer's suggestion to include this information in a quantitative manner, not just as images. In line with this valuable feedback, we have revised the relevant sections to incorporate quantitative data alongside the images, providing a more robust and comprehensive presentation of the results.

      (3) Rationale for the Selection of GABA:

      In the present study, in order to elucidate the molecular mechanisms through which pathway participates metformin-treated IR injury, we analysed gene expression profiles of each group mice, showing that similar mRNA changes are mainly concentrated in the three top pathways: lipid metabolism, carbohydrate metabolism, and amino acid metabolism. Given the close relevance between lipid metabolism and ferroptosis, and the fact of carbohydrate metabolism is a primary way to metabolize amino acids, 22 species of amino acid were detected in liver tissues using HPLC-MS/MS for further identification of key metabolites involved in the role of metformin against HIRI-induced ferroptosis. It was found that only GABA level is significantly increased by metformin treatment and FMT treatment, further verifying by the data of ELISA detection. Consequently, we identified GABA was the main metabolism of metformin protecting from HIRI and focus on the source of GABA generation.

      We would like to express our gratitude to your thorough evaluation and constructive feedback, which has undoubtedly contributed to the improvement of our manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This is an important study that provides new insights into the development and function of medullary thymus epithelial cells (mTEC). The authors provide compelling evidence to support their claims as to the differentiation and lineage outcomes of CCL21+ mTEC progenitors, which further our understanding of how central tolerance of T cells is enforced within the thymus.

      Public Reviews:

      Reviewer #1 (Public Review):

      The work by Ohigashi and colleagues addresses the developmental and lineage relationship of a newly characterized thymus epithelial cell (TEC) progenitor subset. The authors take advantage of an elegant and powerful set of experimental approaches to demonstrate that CCL21-expressing TECs appear early in thymus organogenesis and that these cells, which are centrally located, go on to give rise to medullary (m)TECs. What makes the findings intriguing is that these CCL21-expressing mTECs are a distinct subset, which do not express RANK or AIRE, and transcriptomic and lineage tracing approaches point to these cells as potential mTEC progenitor-like cells. Of note, using in vitro and in vivo precursor-product cell transfer experiments, the authors show that this subset has a developmental potential to give rise to AIRE+ self-antigen-displaying mTECs, revealing that CCL21-expressing mTECs can give rise to distinct mTEC subsets. This functional duality provides an attractive rationale for the necessary function of mTECs, which is to attract CCR7+ thymocytes that have just undergone positive selection in the thymus cortex to enter the medulla to undergo tolerance-induction against self-antigen-displaying mTECs. Overall, the work is well supported and offers new insights into the diverse functions of the medullary compartment, and how two distinct subsets of mTECs can achieve it.

      Reviewer #2 (Public Review):

      Summary:

      The authors set out to discover a developmental pathway leading to functionally diverse mTEC subsets. They show that Ccl21 is expressed early during thymus ontogeny in the medullary area. Fate-mapping gives evidence for the Ccl21 positive history of Aire positive mTECs as well as of thymic tuft cells and postnatally of a certain percentage of cTECs. Therefore, the differentiation potential of Ccl21+ TECs is tested in reaggregate thymus experiments - using embryonic or postnatal Ccl21+ TECs. From these experiments, the authors conclude that at least embryonic mTECs in large part pass through a Ccl21 positive stage prior to differentiation towards an Aire expressing or tuft cell stage.

      The authors are using Ccl21a as a marker for a bipotent progenitor that is detectable in the embryonic thymus and is still present at the adult stage mainly giving rise to mTECs. The choice of this marker gene is very interesting since Ccl21 expression can directly be linked to an important aspect in thymus biology: the expression of Ccl21 by cells in the thymic medulla allows trafficking of T cells into the medulla in order to undergo T cell selection.

      Making use of the Ccl21 detection, the authors can nicely show that cells actively expressing Ccl21 are localized throughout the medulla at an embryonic stage but also in adult thymus tissue. This suggests, that this progenitor is not accumulating at a specific area inside the medulla. This is a new finding.

      Moreover, the finding that a Ccl21+ progenitor population plays a functional role in thymocyte trafficking towards the medulla has not been described. Thus, Ccl21 expression may be used to localize a late bipotent progenitor in the thymic lobes.

      In addition, in Fig.8, the authors provide evidence that these progenitor cells have the potential to self-maintain as well as to differentiate in reaggregate experiments at E17 (not at 4 weeks of age). The first point is of great interest and importance since these cells in theory can be of therapeutic use.

      Overall assessment:

      The authors highlight a developmental pathway starting from a Ccl21-expressing TEC progenitor that contributes to a functionally diverse mTEC repertoire. This is a welcome addition to current knowledge of TEC differentiation.

      Reviewer #3 (Public Review):

      In this manuscript, the authors define the developmental trajectory resulting in a diverse mTEC compartment. Using a variety of approaches, including a novel CCL21-fate mapping model, data is presented to argue that embryonic CCL21-expressing thymocyte attracting mTECs naturally convert to into self-antigen displaying mTEC subsets, including Aire+ mTECs and thymic tuft cells. Perhaps somewhat surprisingly, a large fraction of cTECs were also marked for having expressed CCL21, suggesting that there exists some conversion of mTEC (progenitors) into cTEC, a developmentally interesting observation that could be followed up later. Overall, the experimental setup, writing, and conclusions, are all outstanding.

      Provisional author response

      We thank the editors and the reviewers for their supportive comments on our manuscript. We will revise the manuscript according to their helpful recommendations.

      Author response to recommendations

      We thank the editors and the reviewers for their supportive comments on our manuscript. We also thank the three reviewers for their helpful recommendations. We have revised the manuscript accordingly, as detailed below.

      Reviewer #1 (Recommendations For The Authors):

      There are several unanswered questions, which the authors themselves acknowledge, a principal one being whether CCL21+ mTECs represent a progenitor for yet another distinct subset of cortical (c)TECs, or whether they represent an intermediary or unique population of mTECs derived from a bipotent (cTEC/mTEC) progenitor. These questions will need to be addressed in future work as they go beyond the initial characterization of this intriguing mTEC subset.

      Indeed, our findings reported in this manuscript have stimulated many interesting questions, including those pointed out by the reviewer. We would like to address them one by one in our future work.

      The presence of GFP+ cTECs, which are lineage-traced as having expressed CCL21, begs the question as to whether these cells are generated as a consequence of later steps in mTEC differentiation or derived from earlier bipotent cells, which again the authors point out. The authors could discuss this further or perhaps experimentally address this by using a model system whereby mTEC differentiation is absent or halted (e.g., Relb ko, or TCRa/TCRd ko) and test whether GFP+ cTECs are still present.

      According to the suggestion, we have revised the manuscript by adding a statement that it is interesting to examine whether GFP+ cTEC development in Ccl21a-Cre x CAG-loxP-EGFP mice is mediated through RelB-dependent mTEC developmental progression or developing thymocyte-dependent mTEC-nurturing ‘crosstalk’ signals.

      Reviewer #2 (Recommendations For The Authors):

      Even though the manuscript highlights the functional aspect of a postnatal bipotent progenitor, there are several aspects that need further discussion.

      (1) The title is somewhat misleading since the identified TEC subset can not only be detected in embryonic, but also in postnatal thymus. Only the RTOC experiments indicate a higher developmental potential of TECs isolated from embryos, but this might as well be due to experimental difficulties as discussed in the text. Furthermore, Ccl21+ TECs are shown to differentiate postnatally into mTECs and cTECs, therefore this subset presumably belongs to a bipotent progenitor population described earlier (their ref. 22, 39).

      We are fully aware of previous studies showing that mTEC progenitors include cells that transcribe Ccl21a, and have cited them in the manuscript. The manuscript title describes our finding that thymocyte-attracting CCL21-expressing functional mTECs isolated from embryonic thymus show the capability to give rise to self-antigen-displaying mTECs. We thank the reviewer for further pointing out the possibility that postnatal CCLl21+ TECs include cells that retain the capability to differentiate into mTECs and cTECs.

      (2) In the introduction the authors claim that the "developmental progression of the self-antigen-displaying mTEC subset occurs in a single stream as mTEClow progenitors -> mTEChigh Aire-expressing cells -> mTEClow mimetic cells." line 79. So far it only could be shown that some mimetic cell types undergo an Aire+ stage; whether this is true for all mimetic cells remains to be shown. Therefore, this statement should be toned down.

      Following the suggestion, this sentence has been toned down in the revised manuscript.

      (3) In line 86, the reference to another paper, describing Ccl21a expression in a postnatal mTEC biased progenitor should be added: Nusser et al. Nature. 2022 PMID: 35614226, in which the developmental potential of the Ccl21 positive so-called postnatal progenitor is analysed by barcoding and results give evidence for differentiation into mature mTECs (see lines 94-96).

      As suggested, the Introduction of the revised manuscript now cites Nusser, et al. study showing that postnatal mTEC-biased progenitors include cells that transcribe Ccl21a.

      (4) Have a look at Extended Data Figure 2b of PMID: 35614226, wherein the population-specific gene expression pattern of the progenitor population at different time points is depicted. Ccl21a belongs to a group of genes, which identifies the postnatal progenitor, and indicates that its functionality and/or developmental potential is age-dependent. Therefore, it would be important to specify the age of the analysed mice throughout the text of the results part instead of describing them as "postnatal" only.

      As recommended, mouse age has been added to the revised manuscript and figures.

      (5) Line 113: "embryonic" needs to be replaced since the results of Fig. 1 are referring to 5-week-old mice.

      The manuscript has been revised per the reviewer’s suggestion.

      (6) Referring to Fig. 3g, line 173: It is interesting to see that, at 3 weeks of age, 95% of mTECs have a Ccl21-history but only approx. 70% of cTECs. Therefore, the earliest progenitor giving rise to the first cTECs might still be productive and feed into the cTEC lineage. This reporter would allow for the analysis of progenitor activity over time. The same could be done for mTECs since at E15 the tdTomato signal is still low compared to the assigned medullary area in Fig. 2c in order to detect when the Ccl21-expressing progenitor becomes the main source of mTECs. The finding in Fig. 4e (line196) also argues for the timed replacement of cTECs by a progenitor which locates to the medulla, thus, leading to a decline in Ccl21-history signal towards the subcapsular region at 2 weeks of age. This should be better explained/discussed.

      We appreciate the work of Nusser, et al. showing that postnatal mTEC-biased, but not embryonic cTEC-biased, TEC progenitors include cells that transcribe a detectable amount of Ccl21a (cited in the Introduction as ref. 23). It is important to clarify whether and how those postnatal TEC progenitors (23) overlap with the embryonic and postnatal CCL21-protein-expressing mTECs reported in this study. It is also interesting to shed light on how Ccl21a+ progenitors contribute to cTECs and mTECs over the ontogeny and whether the enrichment of Ccl21a+ progenitor-derived cTECs in the perimedullary area reflects a temporal replacement of cTECs derived from Ccl21a+ progenitors localized in the medulla. We would like to clarify these issues in our future work. The revised manuscript includes a discussion of these issues.

      (7) Line 304 and 355: Note that the "unstable" age-dependent gene expression profiles were already reported in Nusser et al. Nature. 2022. Not only Ccl21 expression, but other progenitor-specific genes also change their expression levels with age. The entirety of changes in gene expression during aging likely impacts the developmental potential of progenitor populations. These changes might be reflected in the negative results of the RTOC experiment using TECs of 4-week-old mice. The manuscript would benefit from a discussion in light of this "unstable" age-dependent gene expression.

      It is interesting to point out that the age-dependent difference in gene expression profiles, which was reported in TEC progenitors by Nusser, et al. (23), is also detected in CCL21-expressing mTECs in this study. Similarly to the recommendation no. 6 by reviewer 2, and as described in the revised manuscript, it is interesting to clarify whether and how embryonic and postnatal CCL21-expressing mTECs overlap with the previously reported TEC progenitors.

      (8) Line 321: as discussed above, the exact time point should be added to the text since the proportion of cTECs derived from a Ccl21+ progenitor is associated with a certain time point, "2/3 of cTECs" refers to 3 weeks of age.

      The manuscript has been revised following the reviewer’s suggestion.

      Reviewer #3 (Recommendations For The Authors):

      The one question I have, which may be more of a curiosity of this reviewer than a requirement for the manuscript, is whether thymocytes themselves are required for the conversion/maturation of attracting TECs to mTECs? For example, in CD3e-/- (or Rag-/-) mice, are mTECs arrested at the thymocyte attracting stage, or is the conversion process 'pre-programed'? In the same vein, do cTECs (or the immature cTECs) maintain CCL21 expression in the absence of mature thymocytes? These are not critical studies but are fairly straightforward (effort- and time-wise) that would aid in placing this process in the overall scope of thymus development.

      We previously showed that Aire+ mTECs are detectable in the thymus of RAG2-deficient mice, in which thymocyte development is arrested beyond the CD4/CD8 double-negative 3 stage (Hikosaka, et al. 2006; PMID: 18799150). In another work, we also showed that Aire+ mTECs and CCL21+ mTECs are detectable in the thymus of TCR-alpha-KO mice, which lack mature CD4/CD8 single-positive TCR-alpha/beta-expressing thymocytes (Lkhagvasuren, et al. 2013; PMID: 23585674). These results indicate that thymocyte maturation beyond the Rag-dependent stage is not essential for the development of Aire+ mTECs. Nonetheless, we agree with the reviewer pointing out that it is important to clarify how developing thymocytes contribute to the growth and differentiation of diverse TEC subpopulations, including GFP+ cTEC development in Ccl21a-Cre x CAG-loxP-EGFP mice. The revised manuscript includes a discussion of these issues.

    1. Author Response

      We thank eLife Senior Editor and reviewers for the comprehensive evaluation and constructive comment on our manuscript. We are grateful that all 3 reviewers recognize the value of the large pharmacological and proteomics screen of 51 cancer cell lines in relation to vitamin C IC50 values. As reviewer 1 points out, our findings are of interest as high dose vitamin C is in clinical trials. Most importantly, we show that all 51 cell lines tested can be killed at a dose range that is achievable by intravenous administration in the clinic. These pharmacological findings underscore high-dose vitamin C as a potent anti-cancer agent. Moreover, we provide an elaborate description of functional terms associated with the vitamin C IC50 values in the different cell panels (Figs 1-5) and the common denominators across panels (Figs 6, 7 and 8), thereby enhancing our biological insights of sensitivity to vitamin C treatment. This study indeed is of descriptive nature and our large scale pharmacological and proteomics scale dataset should be seen as a resource for further research. The raw and processed data will be available in the ProteomeXchange repository (accession number and reviewer password were provided before) and the resubmission will include all processed proteome and phosphoproteome data as a supplementary file.

      It is beyond the scope of our study to do mechanistic studies with knock-downs to see if we can further sensitize cancer cell lines that are less sensitive. We do not call these cell lines resistant as cell growth can be inhibited at a clinically achievable dose.

      In our detailed rebuttal we will follow up on the suggestion of reviewer 1 to put our data also in the context of NCI-60 growth inhibition data for other cytotoxic agents. This will expand our comparative analysis to cisplatin in the lung cancer panel (Fig 5A) where we show that vitamin C IC50 values and cisplatin IC50 values are not one-on-one correlated as one of the most cisplatin resistant NSCLC cell lines in our panel was very sensitive to high dose vitamin C. Furthermore, we will clarify method details and annotate mutational status in our panels and explore potential genomic associations to high-dose vitamin C sensitivity as presented in previous studies (e.g. mutant BRAF and/or KRAS tumors, https://doi.org/10.1126/science.aaa5004).

      Finally, we will critically read the manuscript and add references where needed.

    1. Author Response

      Reviewer #1 (Public Review):

      Summary:

      Heer and Sheffield used 2 photon imaging to dissect the functional contributions of convergent dopamine and noradrenaline inputs to the dorsal hippocampus CA1 in head-restrained mice running down a virtual linear path. Mice were trained to collect water rewards at the end of the track and on test days, calcium activity was recorded from dopamine (DA) axons originating in the ventral tegmental area (VTA, n=7) and noradrenaline axons from the locus coeruleus (LC, n=87) under several conditions. When mice ran laps in a familiar environment, VTA DA axons exhibited ramping activity along the track that correlated with distance to reward and velocity to some extent, while LC input activity remained constant across the track, but correlated invariantly with velocity and time to motion onset. A subset of recordings taken when the reward was removed showed diminished ramping activity in VTA DA axons, but no changes in the LC axons, confirming that DA axon activity is locked to reward availability. When mice were subsequently introduced to a new environment, the ramping to reward activity in the DA axons disappeared, while LC axons showed a dramatic increase in activity lasting 90 s (6 laps) following the environment switch. In the final analysis, the authors sought to disentangle LC axon activity induced by novelty vs. behavioral changes induced by novelty by removing periods in which animals were immobile and established that the activity observed in the first 2 laps reflected novelty-induced signal in LC axons.

      Strengths:

      The results presented in this manuscript provide insights into the specific contributions of catecholaminergic input to the dorsal hippocampus CA1 during spatial navigation in a rewarded virtual environment, offering a detailed analysis of the resolution of single axons. The data analysis is thorough and possible confounding variables and data interpretation are carefully considered.

      Weaknesses:

      Aspects of the methodology, data analysis, and interpretation diminish the overall significance of the findings, as detailed below.

      The LC axonal recordings are well-powered, but the DA axonal recordings are severely underpowered, with recordings taken from a mere 7 axons (compared to 87 LC axons). Additionally, 2 different calcium indicators with differential kinetics and sensitivity to calcium changes (GCaMP6S and GCaMP7b) were used (n=3, n=4 respectively) and the data pooled. This makes it very challenging to draw any valid conclusions from the data, particularly in the novelty experiment. The surprising lack of novelty-induced DA axon activity may be a false negative. Indeed, at least 1 axon (axon 2) appears to be showing a novelty-induced rise in activity in Figure 3C. Changes in activity in 4/7 axons are also referred to as a 'majority' occurrence in the manuscript, which again is not an accurate representation of the observed data.

      The reviewer points out a weakness in the analysis of VTA axons in our dataset. The relatively low n (currently 7) comes from the fact that VTA axons in the CA1 region of the hippocampus are very sparse and very difficult to record from (due to their sparsity and the low level of baseline fluorescence inherent in long range axon segments). This is the reason they have not been recorded from in any other lab outside of our lab. LC axons, on the other hand, are more abundant in CA1. In the paper when comparing VTA versus LC axons we deal with the mismatch in n by downsampling the LC axons to match the VTA axons and repeated this 1000 times to create a distribution. However, because the VTA axon n is relatively low, it is possible that we have not sampled the VTA axon population sufficiently and therefore have a biased population in our dataset. The issue is that it takes months for the baseline expression of GCaMP to reach sufficient levels to be able to record from VTA axons, and it is typical to find only a single axon in a FOV per animal. There are additional reasons why mice and/or axon recordings do not reach criteria and cannot be included in the dataset (these exclusion criteria are reported in the Methods section). For instance, out of the 54 DAT-Cre mice injected, images were never conducted in 36 for lack of expression or because mice failed to reach behavioral criteria. Another 11 mice were excluded for heat bubbles that developed during imaging, z-drift of the FOV, or bleaching of the GCaMP signal.

      However, we do have n=2 additional VTA axon recordings that we will add to the dataset to bring the n up from 7 to 9. We plan on re-analyzing the data with n=9 VTA axons and making comparisons to down-sampled LC axons as described above. This boost in n will increase the power of our VTA axon analysis. To more formally test whether this is sufficient for statistical tests, we plan to utilize the G*power power-analysis tool to compute statistical power for each of the different tests we use. We will report this in the next version of the paper. However, the n=2 additional axons were nor recorded in the novel environment, so the next version will remain at n=7 for the novel environment analysis. We agree with the reviewer that the lack of the novelty induced DA axon activity may be a false negative, and so we will adjust the description of our results and discussion accordingly.

      During the data collection of VTA axon activity we tried two variants of GCaMP: 6s and 7b, to see if one would increase the success rate of finding and recording from VTA axons. Given the long time-course of these experiments and the low yield in success, we pooled the GCaMP variants together to increase statistical power. Because the 2 additional VTA DA axons that were recorded from expressed GCaMP6s, the next version of the paper will have n=5 GCaMP6s, and n=4 GCaMP7b VTA DA axons, which will allow us to compare the activity of the two sensors in the familiar environment. The reviewer correctly pointed out that the sensors themselves could confound our results, and so they should not be pooled unless we can show they do not produce different signals in the axons. We will make this comparison and report the findings in the next version of the paper. If we find no significant differences, we will pool the data. If differences are detected, we will keep these axons separate for subsequent analysis and comparisons to LC axons.

      The authors conducted analysis on recording data exclusively from periods of running in the novelty experiment to isolate the effects of novelty from novelty-induced changes in behavior. However, if the goal is to distinguish between changes in locus coeruleus (LC) axon activity induced by novelty and those induced by motion, analyzing LC axon activity during periods of immobility would enhance the robustness of the results.

      This is indeed true, and this suggested analysis could further support our conclusions regarding the LC novelty signal. For the next version of the paper, we will use the periods of immobility to analyze and isolate any novelty induced activity in LC axons. However, following exposure to the novel environment, mice spend much less time immobile, therefore there may not be sufficient periods of immobility close in time to the exposure to the novel environment (which is when the novelty signal occurs). We plan to analyze mouse behavior during the early exposure to the novel environment for immobility and check whether we have enough of this behavior to perform the suggested analysis.

      The authors attribute the ramping activity of the DA axons to the encoding of the animals' position relative to reward. However, given the extensive data implicating the dorsal CA1 in timing, and the remarkable periodicity of the behavior, the fact that DA axons could be signalling temporal information should be considered.

      This is a very good point. We agree that the VTA DA axons could be signaling temporal information, as we have previously shown that these axons also exhibit ramping activity when you average their activity by time to reward (Krishnan et. al., 2022). We will conduct this analysis on this dataset. We have not, however, conducted any experiments designed to separate out time from distance, such as the experiments conducted in Kim et. al., 2020. Therefore, we cannot determine whether this is due to proximity in space to reward or time to reward. We will clarify in our text that by proximity, we mean either place or time, and cannot conclude which feature of the experience drives the VTA axon signal.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Kim, HyungGoo R., Athar N. Malik, John G. Mikhael, Pol Bech, Iku Tsutsui-Kimura, Fangmiao Sun, Yajun Zhang, et al. A Unified Framework for Dopamine Signals across Timescales. Cell 183, no. 6 (2020).

      The authors should explain and justify the use of a longer linear track (3m, as opposed to 2m in the DAT-cre mice) in the LC axon recording experiments.

      LC axon activity was recorded on a 3m track to match the track length from an experiment we recently published (Dong et al., 2021) in which mice were exposed to a novel 3m track while populations of CA1 pyramidal cells were recorded. In that paper we described the time course of place field formation on the novel track. We wanted to test if LC axons signaled novelty (as we hypothesized) and whether the time course of LC axon activity matched the time course of place field formation. We briefly discuss this in the Discussion section of this paper and hypothesize that LC axons in CA1 could open a window of plasticity in which new place fields can form.

      VTA axons were recorded on a 2m track (same VR tracks as LC axons were recorded on) to match another recent paper from our lab in which reward expectation was manipulated (Krishnan et al, 2022). In that study CA1 populations of pyramidal cells were recorded during the reward expectation experiment. To match the experience during recordings of VTA axons in CA1 to test how reward expectation may influence axon signaling along the track, we also used a 2m track. The idea was to check how VTA dopaminergic inputs to CA1 may influence CA1 population dynamics along the track.

      Although the tracks were identical for LC and VTA recordings for both the familiar and novel tracks in terms of visual cues and design, the track lengths are different (simply modulated by gain control of the rotary encoder). To account for this we normalized the lengths for our comparison analysis. This normalization allows for a direct comparison of the patterns of activity across the two types of axons, controlling for the potential confound introduced by the different track lengths. By adjusting the data to a common scale, we could assess the relative changes in activity levels at matched spatial bins, ensuring that any observed differences or similarities are due to the intrinsic properties of the axons rather than differences in track lengths. However, the different lengths do make the animal’s experience slightly different. This is somewhat offset by the observations in our study that none of the LC or VTA axon signals would be expected to be majorly influenced by variations in track length. For instance, LC axons are associated with velocity and a pre-motion initiation signal, neither of which would be influenced by track length. VTA axons are also associated with velocity, which would not influence a direct comparison to LC axon velocity signals as mice reach maximal velocity very rapidly along the track. VTA axons do ramp up in activity as they approach the reward zone, and this signal could be modulated by track length (or maybe not if the signal is encoding time to reward rather than distance). However, LC axons show no ramping to reward signals, so a comparison across axons recorded on different track lengths for this analysis is justified.

      However, to add rigor to comparisons of axon dynamics recorded along 2m and 3m tracks, we plan to plot axon activity of both sets of axons by time to reward, and actual (un-normalized) distance from reward.

      Krishnan, L.S., Heer, C., Cherian, C., Sheffield, M.E. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat Commun 13, 6662 (2022).

      Dong, C., Madar, A. D. & Sheffield, M.E. Distinct place cell dynamics in CA1 and CA3 encode experience in new environments. Nat Commun 12, 2977 (2021).

      Reviewer #2 (Public Review):

      Summary:

      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:

      • In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.
      • VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.
      • In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.
      • In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.

      Strengths:

      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.

      Weaknesses:

      (1)The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.

      (2) Some aspects of the methodology would benefit from clarification.<br /> First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.

      We thank the reviewer for helping us formalize the scientific rigor of our study. There are ten ARRIVE Guidelines and we have addressed most of them in our study already. However, there is an opportunity to add detail. We have listed below all ten points and how we have or will address each one.

      (1) Experimental design - we go into great depth explaining the experimental set-up, how we used the autofluorescent blebs as imaging controls, how we controlled for different sample sizes between the two populations, and the statistical tests used for comparisons. We also carefully accounted for animal behavior when quantifying and describing axon dynamics both in the familiar and novel environments.

      (2)Sample size - We state both the number of ROIs and mice for each analysis. Wherever we state how many axons had a certain kind of activity, we will also state the number of mice we saw this activity in. For the next version of the paper, we plan to conduct a power analysis using G*power to assess the power of our sample sizes for statistical analysis.

      (3) Inclusion/exclusion criteria - Out of the 36 NET-Cre mice injected, 15 were never recorded for either failing to reach behavioral criteria, or a lack of visible expression in axons. Out of the 54 DAT-Cre mice injected, images were never conducted in 36 for lack of expression or failing to reach behavioral criteria. Out of the remaining 21 NET-CRE, 5 were excluded for heat bubbles, z-drift, or bleaching, while 11 DAT-Cre were excluded for the same reasons. This was determined by visually assessing imaging sessions, followed by using the registration metrics output by suite2p. This registration metric conducted a PCA on the motion-corrected ROIs and plotted the first PC. If the PC drifted largely, to the point where no activity was apparent, the video was excluded from analysis.

      (4) Randomization - Already included in the paper is a description of random down sampling of LC axons to make statistical comparisons with VTA axons. LC axons were selected pseudo-randomly (only one axon per imaging session) to match VTA sampling statistics. This randomization was repeated 1000 times and comparisons were made against this random distribution.

      (5) Blinding-masking - no blinding/masking was conducted as no treatments were given that would require this. We will include this statement in the next version.

      (6) Outcomes - We defined all outcomes measured, such as those related to animal behavior and related axon signaling.

      (7) Statistical methods - None of the reviewers had any issues regarding our description of statistical methods, which we described in detail in this version of the paper.

      (8) Experimental animals - We described that DAT- Cre mice were obtained through JAX labs, and NET-Cre mice were obtained from the Tonegawa lab (Wagatsuma et al. 2017)

      (9) Experimental procedure - Already listed in detail in Methods section.

      (10) Results - Rigorously described in detail for behaviors and related axon dynamics.

      Wagatsuma, Akiko, Teruhiro Okuyama, Chen Sun, Lillian M. Smith, Kuniya Abe, and Susumu Tonegawa. “Locus Coeruleus Input to Hippocampal CA3 Drives Single-Trial Learning of a Novel Context.” Proceedings of the National Academy of Sciences 115, no. 2 (January 9, 2018): E310–16. https://doi.org/10.1073/pnas.1714082115.

      Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?

      A detailed response to this is written above for a similar comment from reviewer 1.

      Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.

      This is an error leftover from before we converted velocity from rotational units of the treadmill to cm/s. This will be corrected in the next version of the paper.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the noveltyinduced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.

      This is a great point. The decreased velocity in the novel environment could lead to a diminished novelty response in LC axons. We will add a discussion point on this in the next version. This could also be the case for VTA axons, so will add a discussion point that the lack of novelty signaling seen in VTA axons could be due to reduced velocity masking this signal.

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.

      Mice receive their water reward through a waterspout that is immobile and positioned directly in front of their mouth (which is also immobile as they are head fixed) and water delivery is triggered by a solenoid when the mice reach the end of the virtual track. Therefore, because the waterspout remains in the same place relative to the mouse, and the water reward is not delivered until they reach the end of the virtual track, there is nothing for the mice to detect. We will update the paper to make this clearer.

      Additionally, on the initial laps with no reward, the ramping activity is still present (Krishnan et al, 2022) indicating this activity is not directly related to the presence/absence of water but is instead caused by reward expectation.

      Reviewer #3 (Public Review):

      Summary:

      Heer and Sheffield provide a well-written manuscript that clearly articulates the theoretical motivation to investigate specific catecholaminergic projections to dorsal CA1 of the hippocampus during a reward-based behavior. Using 2-photon calcium imaging in two groups of cre transgenic mice, the authors examine the activity of VTA-CA1 dopamine and LC-CA1 noradrenergic axons during reward seeking in a linear track virtual reality (VR) task. The authors provide a descriptive account of VTA and LC activities during walking, approach to reward, and environment change. Their results demonstrate LC-CA1 axons are activated by walking onset, modulated by walking velocity, and heighten their activity during environment change. In contrast, VTA-CA1 axons were most activated during the approach to reward locations. Together the authors provide a functional dissociation between these catecholamine projections to CA1. A major strength of their approach is the methodological rigor of 2-photon recording, data processing, and analysis approaches. These important systems neuroscience studies provide solid evidence that will contribute to the broader field of learning and memory. The conclusions of this manuscript are mostly well supported by the data, but some additional analysis and/or experiments may be required to fully support the author's conclusions.

      Weaknesses:

      (1) During teleportation between familiar to novel environments the authors report a decrease in the freezing ratio when combining the mice in the two experimental groups (Figure 3aiii). A major conclusion from the manuscript is the difference in VTA and LC activity following environment change, given VTA and LC activity were recorded in separate groups of mice, did the authors observe a similar significant reduction in freezing ratio when analyzing the behavior in LC and VTA groups separately?

      In response to this comment, we will analyze the freezing ratios in DAT-Cre and NET-Cre mice separately. However, other members of the lab have seen the same result in other mouse strains (See Dong et al. 2021), so we do not expect to see a difference (but it is certainly worth checking).

      (2) The authors satisfactorily apply control analyses to account for the unequal axon numbers recorded in the LC and VTA groups (e.g. Figure 1). However, given the heterogeneity of responses observed in Figures 3c, 4b and the relatively low number of VTA axons recorded (compared to LC), there are some possible limitations to the author's conclusions. A conclusion that LC-CA1 axons, as a general principle, heighten their activity during novel environment presentation, would require this activity profile to be observed in some of the axons recorded in most all LC-CA1 mice.

      We agree with the reviewer’s point here. To help avoid this problem, when downsampling LC axons to compare to VTA axons, we matched the sampling statistics of the VTA axons/mice (i.e. only one LC axon was taken from each mouse to match the VTA dataset).

      However, in the next version of the paper we will also report the number of mice that we see a significant novel response in. We will also add the number of mice with significant activity for each of the measures in the familiar environment (e.g. how many mice had axons positively correlated with velocity).

      Additionally, if the general conclusion is that VTA-CA1 axons ramp activity during the approach to reward, it would be expected that this activity profile was recorded in the axons of most all VTA-CA1 mice. Can the authors include an analysis to demonstrate that each LC-CA1 mouse contained axons that were activated during novel environments and that each VTA-CA1 mouse contained axons that ramped during the approach to reward?

      As stated above, we will add the number of mice that had each activity type we reported here.

      (3) A primary claim is that LC axons projecting to CA1 become activated during novel VR environment presentation. However, the experimental design did not control for the presentation of a familiar environment. As I understand, the presentation order of environments was always familiar, then novel. For this reason, it is unknown whether LC axons are responding to novel environments or environmental change. Did the authors re-present the familiar environment after the novel environment while recording LC-CA1 activity?

      This is an important point to address. While we never varied the presentation order of the familiar vs novel environments, we did record the activity of LC axons in some of the mice in a dark environment (no VR cues) prior to exposure to the familiar environment. We will look at these axons to address whether they respond to initial exposure to the familiar environment. This will allow us to check whether they are responding to environmental change or novelty. We will add this analysis to the next version of the paper.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study assesses anatomical, behavioral, physiological, and neurochemical effects of early-life seizures in rats, describing a striking astrogliosis and deficits in cognition and electrophysiological parameters. The convincing aspects of the paper are the wide range of convergent techniques used to understand the effects of early-life seizures on behavior as well as hippocampal prefrontal cortical dynamics. While reviewers thought that the scope was impressive, there was criticism of the statistical robustness and number of animals used per study arm, as well as the lack of causal manipulations to determine cause-and-effect relationships. This paper will be of interest to neurobiologists, epileptologists, and behavioral scientists.

      We thank Joseph Gleeson as the Reviewing Editor and Laura Colgin as the Senior Editor for considering this revision of our manuscript for publication in eLife. We appreciate the positive acknowledgment of the study and the critical points raised by the reviewers. We have addressed all the excellent comments of the two reviewers, providing a detailed response for each comment. We believe that these revisions have significantly improved the quality and rigor of our study.

      We want to assure you that our experimental design was meticulously crafted, incorporating adequate control groups, and is grounded in prominent studies in systems neurophysiology focusing into early-life seizures effects, especially for capturing mild effects. We conducted statistical tests adhering to established norms and recommendations, ensuring a thorough and transparent description of the employed statistical methods. We welcome any specific suggestions to further improve this aspect.

      In fact, the concerns raised by the reviewers regarding statistical robustness may stem from a misunderstanding of the rat cohorts used in each experiment. Criticism was directed at the use of only 5 animals without a control group for acute electrophysiological recording. It is essential to clarify that this group served the sole purpose of confirming that the injection of lithium-pilocarpine would induce both behavioral and electrographic seizures. Importantly, this was a descriptive result, and no statistical test or further analysis was conducted with these data. In the revised manuscript, we have made adjustments to this description, aiming to eliminate any ambiguity, particularly addressing the issue of sample size in each experiment.

      Regarding the lack of causal manipulations, we fully agree that this approach would provide a deeper mechanistic understanding of our findings and is an essential next step. Still, developmental brain disturbances are linked to manifold intricate outcomes, so an initial observational exploration would offer insights about particular and nuanced relationships for following studies aimed at targeted interventions. In this context, our objective was to provide a comprehensive characterization of ELS effects to serve as a foundation for future research. While recognizing the relevance of causal manipulations, only a more sophisticated data analyses were able to reveal more complex aspects like specific multivariate associations and non-linear relationships that would not have been revealed by causally perturbing one or another factor at first. In the revised manuscript, we emphasized the limitation of lacking causal manipulations as well as the advantages of our approach. Also, we mentioned some possible targets for following perturbational investigations based on our findings.

      For a more detailed discussion on these matters, we invite you to review our response to reviewers.

      Reviewer 1

      In this paper, Ruggiero, Leite, and colleagues assess the effects of early-life seizures on a large number of anatomical, physiological, behavioral, and neurochemical measures. They find that prolonged early-life seizures do not lead to obvious cell loss, but lead to astrogliosis, working memory deficits on the radial arm maze, increased startle response, decreased paired pulse inhibition, and increased hippocampal-PFC LTP. There was a U-shape relationship between LTP and cognitive deficits. There is increased theta power during the awake state in ELS animals but reduced PFC theta-gamma coupling and reduced theta HPC-PFC coherence. Theta coherence seems to be similar in ACT and REM states in ELS animals while in decreases in active relative REM in controls.

      Strengths:

      The main strength of the paper is the number of convergent techniques used to understand how hippocampal PFC neural dynamics and behavior change after early-life seizures. The sheer scale, breadth, and reach of the experiments are praiseworthy. It is clear that the paper is a major contribution to the field as far as understanding the impact of early-life seizures. The LTP findings are robust and provide an important avenue for future study. The experiments are performed carefully and the analysis is appropriate. The paper is well-written and the figures are clear.

      We express our gratitude to Reviewer #1 for conducting a thoughtful and comprehensive review of our manuscript. We sincerely value both the constructive criticisms provided and your acknowledgment of the manuscript's strengths.

      Weaknesses:

      The main weakness of the paper is the lack of causal manipulations to determine whether prevention or augmentation of any of the findings has any impact on behavior or cognition. Alternatively, if other manipulations would enhance working memory in ELS animals, it would be interesting to see the effects on any of these parameters measured in the paper.

      We sincerely appreciate the insightful comments from Reviewer #1 regarding the potential benefits of including causal manipulations in our study. We wholeheartedly agree that such manipulations can provide a deeper understanding of the mechanistic underpinnings of the observed relationships and represent a crucial next step in our research trajectory.

      Our primary objective in this study was to establish a comprehensive framework through observational examinations, exploring intricate relationships across various neurobiological and behavioral variables in the aftermath of early-life seizures (ELS). By identifying these associations, our work aims to provide a foundation for future investigations that can delve into targeted interventions.

      While we acknowledge the importance of causal manipulations, we would like to underscore the advantages of our initial multivariate correlational study. Importantly, developmental brain disturbances have lasting impacts affecting multiple biological outcomes that may have intricate relationships between themselves. Firstly, although some neurobiological variables stood out from the comparisons of group means, this did not reveal some nuanced relationships within the data. The complexity of the relationships we uncovered, involving behavior, cognition, immunohistochemistry, plasticity, neurochemistry, and network dynamics, required a more elaborate analytical approach. Only through sophisticated data analysis techniques, we were able to dissect important peculiarities, such as the robust multivariate association between brain-wide astrogliosis and sensorimotor impairments, as well as non-linear relationships, such as the inverted-U relationship between plasticity and working memory. These nuances might not have been fully revealed through causal manipulations, since several variables are strongly related and consequently can affect several outcomes, leading to a false conclusion of direct causality.

      Nevertheless, we acknowledge the understatement of the limitation of lacking causal manipulations in our manuscript. To address this, we have included a dedicated section in the discussion highlighting this limitation. We emphasize the advantages of this exploratory phase, supported by a review of the literature on cause-and-effect studies that align with our findings. Additionally, we speculate on promising targets for future cause-and-effect studies based on our findings. For instance, we hypothesize that enhancing plasticity may improve working memory in control subjects, while attenuating plasticity might have a similar effect in ELS subjects. Furthermore, we propose that reactive astrogliosis and concurrent neuroinflammatory processes likely underlie sensorimotor changes in the ELS group. Lastly, we suggest that dopaminergic antagonism in the ELS group could normalize behavioral deficits, prevent the exaggerated LTP induction of the HPC-PFC pathway, reestablish the state-dependent network dynamics, and desensitize the dopaminergic response.

      [...]Also, I find the sections where correlations and dimensionality reduction techniques are used to compare all possible variables to each other less compelling than the rest of the paper (with the exception of the findings of U-shaped relationship of cognition to LTP). In fact, I think these sections take away from the impact of the actual findings.

      We appreciate the reviewer's feedback and would like to emphasize the significance of the multivariate analysis conducted in our study. Multivariate analysis extends beyond bivariate correlations and is the only type of analysis capable of comprehending the relation of data in a multidimensional way, offering a comprehensive approach to understanding complex relationships among multiple variables. By employing techniques such as principal component analysis (PCA), generalized linear models (GLM), and canonical correlation analysis (CCA), we aimed to unravel intricate patterns of covariance that explore how different variables collectively contribute to the observed outcomes and assess the impact of each independent variable (predictor) on the dependent variable (the variable to be predicted or explained). Importantly, it enables us to control for potential confounding factors by keeping all other variables constant.

      While we acknowledge that these sections may appear intricate, their inclusion is indispensable for a comprehensive understanding of the diverse variables associated with SE outcomes. We believe that these analyses offer valuable insights into the intricate dynamics of our study, providing a more holistic perspective on the altered spectrum induced by early-life seizures (ELS).

      Regarding the reviewer's observations about the impact of the U-shaped relationship between cognition and LTP, we have made graphical and textual adjustments to emphasize the significance of these findings, aiming to enhance their clarity and impact within the broader context of our research. We trust that these modifications contribute to a more compelling presentation of our results.

      […]Finally, the apomorphine section seemed to hang separately from the rest of the paper and did not seem to fit well.

      We appreciate the Reviewer #1 feedback on the apomorphine section. In order to address this point, we carefully rewrote our rationale before the results to clarify our hypothesis and chosen methodology. In our work, we performed the apomorphine experiment as a logical next step of previous data. We showed that ELS rats display REM-like oscillatory dynamics during active behavior, similar to genetically and pharmacologically hyperdopaminergic mice (Dzirasa et al., 2006). Furthermore, other results also indicated possible dopamine neurotransmission alterations, such as working memory deficits, hyperlocomotion, PPI deficits, aberrant HPC-PFC LTP, and abnormal PFC gamma coordination. Therefore, we hypothesized that ELS animals would present a state of hyperdopaminergic activity. Among the possible methodologies to investigate the hyperdopaminergic state, we choose the apomorphine sensitivity test, which is classically used and induces unambiguous behavior and neurochemical alterations in hyperdopaminergic rodents (Duval, 2023; Ellenbroek & Cools, 2002).

      Reviewer 1 (Recommendations For The Authors):

      (1) It would be useful to stain for other GABAergic interneuron markers such as somatostatin, VIP, CCK.

      (2) The authors refer to neuroinflammation but they are really referring to reactive astrogliosis. I would also suggest staining for microglial markers.

      (3) The duration of chronic electrographic seizures in ELS animals should also be calculated and presented.

      (4) Word usage: the authors frequently use the word "presents" when "demonstrates" would be more appropriate

      (1) We appreciate your insight into staining for other GABAergic interneuron markers such as somatostatin, VIP, CCK. While investigating additional interneuron types is indeed relevant, it was not the primary focus of this study for several reasons: 1) The overall neuron density, assessed through NeuN immunostaining, revealed no differences between controls and early life seizure (ELS) groups, even in brain regions susceptible to neuron death after SE (i.e., CA1). Therefore, differences in interneurons, which are more resistant to death in SE and constitute approximately 20% of the cells, are unlikely. 2) Among all interneuron subtypes, Parvalbumin-positive (PV+) interneurons represent a substantial population and are susceptible to various stressors. In the hippocampus, 24% of GABAergic neurons are PV+, whereas 14% are SST+, 10% are CCK+, and VIP+ are less than 10% (Freund and Buzsaki, 1996). Consequently, we considered PV+ interneurons to be a more sensitive subpopulation for evaluating the effects of SE. As they showed no significant difference, we do not believe that assessing smaller subtypes, such as VIP+ or CCK+ cells, would yield significant differences.

      (2) While we often see activated microglia in hippocampal sclerosis, these cells are only slightly increased in cases without hippocampal sclerosis (which are similar to our animals), as we previously published (Peixoto-Santos et al., 2012). Astrocytes are a better marker for the epileptogenic zone, as are increased in epileptogenic zones without neuron loss and are also important for controlling neuronal activity by neurotransmitter recycling and ion buffering. In fact, our present model is very similar to the mesial temporal lobe epilepsy patients with gliosis-only, which are characterized by only presenting increased reactive astrogliosis in the hippocampus, without cell loss, and also present changes in innate inflammatory response related to the presence of reactive astrocytes (Grote et al., 2023).

      (3) We have performed these calculations and added this information to the revised manuscript.

      (4) We thank the reviewer for the word usage recommendation. Indeed, we frequently used “present” throughout the manuscript to describe the observations and patterns the groups “exhibited” or “showed”. However, we believe this is truly not the most appropriate usage in the Discussion when we describe the multivariate latent factors, as we did not “present” them, but rather, we “demonstrated” their existence and significance through our analysis. We rewrote these sentences and hope this is the point the reviewer was referring to.

      References:

      Duval F. Systematic review of the apomorphine challenge test in the assessment of dopaminergic activity in schizophrenia. Healthcare. 2023 11 (1487): 1-11. doi: 10.3390/healthcare11101487.

      Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MAL. Dopaminergic control of sleep-wake states. Journal of Neuroscience. 2006 26:10577–10589. doi:10.1523/JNEUROSCI.1767-06.2006.

      Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus. 1996;6(4):347-470. doi: 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I. PMID: 8915675.

      Ellenbroek BA & Cools AR. Apomorphine susceptibility and animal models for psychopathology: genes and environment. Behavior Genetics. 2002 32 (5): 349-361. doi: 10.1023/a:1020214322065.

      Grote A, Heiland DH, Taube J, Helmstaedter C, Ravi VM, Will P, Hattingen E, Schüre JR, Witt JA, Reimers A, Elger C, Schramm J, Becker AJ, Delev D. 'Hippocampal innate inflammatory gliosis only' in pharmacoresistant temporal lobe epilepsy. Brain. 2023 Feb 13;146(2):549-560. doi: 10.1093/brain/awac293. PMID: 35978480; PMCID: PMC9924906.

      Peixoto-Santos JE, Galvis-Alonso OY, Velasco TR, Kandratavicius L, Assirati JA, Carlotti CG, Scandiuzzi RC, Serafini LN, Leite JP. Increased metallothionein I/II expression in patients with temporal lobe epilepsy. PLoS One. 2012;7(9):e44709. doi: 10.1371/journal.pone.0044709. Epub 2012 Sep 18. Erratum in: PLoS One. 2016;11(7):e0159122. PMID: 23028585; PMCID: PMC3445538.

      Reviewer 2

      In this manuscript, the authors employ a multilevel approach to investigate the relationship between the hippocampal-prefrontal (HPC-PFC) network and long-term phenotypes resulting from early-life seizures (ELS). Their research begins by establishing an ELS rat model and conducting behavioral and neuropathological studies in adulthood. Subsequently, the manuscript delves into testing hypotheses concerning HPC-PFC network dysfunction. While the results are intriguing, my enthusiasm is tempered by concerns related to the logical flow

      We thank the reviewer for bringing attention to the logical flow of the manuscript. Given the diverse array of behavioral and neurobiological variables examined in our study obtained through various methods and measures, we utterly recognize the utmost importance of a clear and coherent logical flow to provide a comprehensive understanding of the overall narrative.

      Our goal was to articulate the neurobiological findings in a manner that underscores their convergence of mechanisms, revealing a cohesive relationship between early-life seizure, cognitive deficits, sensorimotor impairments, abnormal network dynamics, aberrant plasticity, neuroinflammation and dysfunctional dopaminergic transmission.

      Briefly, an outline of our narrative could be summarized in the highlights:

      (1) ELS induces sensorimotor alterations and working memory deficits.

      (2) ELS does not induce neuronal loss, so neurobiological underpinnings may be molecular and functional.

      (3) ELS induces brain-wide astrogliosis and exaggerated HPC-PFC long-term plasticity.

      (4) ELS does not induce neuronal loss, so neurobiological underpinnings may be molecular and functional.

      (5) Sensorimotor alterations are more correlated to astrogliosis, while cognitive deficits to altered HPC-PFC plasticity.

      (6) ELS-induced functional alterations may also be observable in freely moving subjects. ELS induces state-dependent alterations in the HPC-PFC network dynamics, such as increased hippocampal theta and abnormal PFC gamma coordination during behavioral activity.

      (7) ELS leads to REM-ACT similarity, previously reported in hyperdopaminergic mice, indicating dopaminergic dysfunction.

      (8) ELS exhibits altered dopaminergic transmission and behavioral sensitivity that mirror the initial sensorimotor findings.

      (9) The literature establishes an inverted-U relationship between dopamine and cognition and PFC plasticity, which may explain our finding of an inverted-U relationship between working memory and HPC-PFC LTP across CTRL and ELS rats.

      To address this concern, we have made revisions to enhance the logical flow, ensuring a more seamless transition between the different sections of the Results by presenting clearer links between observations and following investigations. We hope these changes contribute to a more straightforward rationale and easily understandable presentation of our hypotheses and results.

      Focus on Correlations: The manuscript primarily highlights correlations as the most significant findings. For instance, it demonstrates that ELS induces cognitive and sensorimotor impairments. However, it falls short of elucidating why these deficits are specifically linked to HPC-PFC synaptic plasticity/network. Furthermore, the manuscript mentions the involvement of other brain regions like the thalamus in the long-term outcomes of ELS based on immunohistochemistry data.

      Thank you for your insightful comments, which allowed us to provide further clarification on our study's focus and findings. Our primary goal was to delve into the electrophysiological alterations within the HPC-PFC pathway. The rationale behind this choice lies in the hypothesis that, even in the absence of significant neuronal loss, functional changes in circuits closely linked to the cognitive and behavioral aspects under investigation could be identified.

      While we concentrated our electrophysiological investigation on the HPC-PFC pathway due to its well-established functional correlates in existing literature, it is essential to highlight that our data reveal broader alterations in neural circuitry. Notably, we observed an increase in GFAP in the entorhinal cortex and thalamic reticular nucleus, along with changes in the dopaminergic release within the VTA-NAc pathway. These findings suggest that the impact of early-life seizures extends beyond the HPC-PFC circuit.

      While we recognize the relevance of other brain circuits in the outcomes of ELS, we argue for a specific role of the HPC-PFC circuit in the outcomes of ELS. We will detail the supporting evidence and arguments that specifically link the HPC-PFC function to our ELS-related observations in a later comment regarding the "overinterpretation" of the HPC-PFC role. To better convey these important nuances, we have made specific modifications to the results and in the discussion section to underscore the broader implications of our findings, providing a more comprehensive understanding of the study's scope and outcomes.

      […]This raises questions about the subjective nature and persuasiveness of the statistical studies presented.

      All statistical analyses were carefully applied based on the literature and following well-established precepts and precautions. Specifically, we constructed the experimental design for univariate inferential statistics for the data related to behavioral tests, synaptic plasticity, immunohistochemistry, oscillatory activity, and dopaminergic sensitization. However, we also submitted our data to multivariate statistical analysis, which is recommended in cases with a considerable amount of data, and intend to investigate possible hidden effects. In this situation, multivariate analyses are inherently exploratory due to the possibility of using multiple measurements for each phenomenon investigated. Nevertheless, their application is not subjective and follows the same statistical rigor as univariate analyses. We firmly believe that abstaining from exploring these data, would not reach the full potential of this analytical method in dissecting the multidimensional associations within our dataset. In order to eliminate any doubt regarding the objectivity in the choice and application of statistics, we carefully rewrote the methods, highlighting the details of statistical rigor even more.

      Sample Size Concerns: The manuscript raises concerns about the adequacy of sample sizes in the study. The initial cohort for acute electrophysiology during ELS induction comprised only 5 rats, without a control group. Moreover, the behavioral tests involved 11 control and 14 ELS rats, but these same cohorts were used for over four different experiments. Subsequent electrophysiology and immunohistochemistry experiments used varying numbers of rats (7 to 11). Clarification is needed regarding whether these experiments utilized the same cohort and why the sample sizes differed. A power analysis should have been performed to justify sample sizes, especially given the complexity of the statistical analyses conducted.

      We appreciate the reviewer's thoroughness and considerations regarding the sample sizes used in our study. The concerns raised about statistical robustness seem to stem from a lack of clarity in delineating the rat cohorts used in each experiment. It is encouraging to note that several studies in the field of neurophysiology, employing similar analyses, utilize a sample size similar to what was used in our research. The choice of the sample size was based on a thorough analysis of the existing literature, considering specific experimental demands, the complexity of employed techniques, and the need to achieve statistically robust results. In response to these concerns and to enhance clarity on the sample sizes, we have made several modifications (highlighted in red) in the text. Below, we provide details for each animal cohort utilized:

      Cohort 1 - Acute Electrophysiology

      The decision to use only 5 animals without a control group for acute electrophysiological recording aimed specifically to confirm that the injection of lithium-pilocarpine would induce both behavioral and electrographic seizures. It is crucial to note that this was a descriptive result and a methodological control of the ELS model. Besides, no statistical test or further analysis was conducted on these data. We maintain the belief that a group of 5 animals is sufficient to demonstrate that the protocol induces electrographic seizures, and introducing a control group was considered unnecessary to show that saline injection does not induce electrographic seizures.

      Cohort 2 - Behavior, LTP Recording, and Immunohistochemistry

      Initially, 14 (ELS) and 11 (CTRL) rats were used for behavior assessment. The reduction in sample size for LTP and immunohistochemistry experiments was influenced by practical challenges, including mortality during LTP surgery and issues with immunohistochemical staining that hindered a proper analysis for some animals.

      Cohort 3 - Chronic Freely-Moving Electrophysiology

      A new cohort of animals (n=6 and 9 for CTRL and ELS, respectively) was used specifically for freely-moving electrophysiological data.

      Cohort 4 - Behavioral Sensitization to Psychostimulants

      A fourth cohort was utilized for assessing behavioral sensitization to psychostimulants (CTRL n=15 and ELS n=14). The reduced sample size for neurotransmitter analysis (CTRL n=8 and ELS n=9) was a deliberate selection of a subsample to ensure a sufficient sample for quantification while maintaining statistical validity

      Overinterpretation of HPC-PFC Network Dysfunction: The manuscript potentially overinterprets the role of HPC-PFC network dysfunction based on the results.

      We appreciate the insight from Reviewer #2 regarding the potential overinterpretation of the role of the hippocampal-prefrontal cortex (HPC-PFC) network dysfunction in the various alterations observed after ELS.

      The significance of HPC-PFC plasticity and network function has been extensively documented concerning cognitive, affective, and sensorimotor functions, as well as in models of neuropsychiatric diseases. Our recent review (Ruggiero et al., 2021) compiles these findings. Specifically, the HPC-PFC network has been linked to spatial working memory through a series of causal and correlational studies conducted by Floresco et al. and Gordon et al. These findings make the HPC-PFC pathway a plausible candidate for underlying alterations associated with working memory, consistent with our observation of exaggerated HPC-PFC LTP associated with poorer performance in the ELS group. Regarding the immunohistochemical observations, we concur with Reviewer #2 that these findings suggest broader-scale brain alterations related to sensorimotor dysfunction beyond the HPC-PFC circuitry. Surely, we acknowledge that these large-scale alterations may underlie brain-wide network functional changes.

      In our network dynamics study arm, we investigated HPC-PFC oscillatory activity, allowing us to discuss potential relationships between abnormal plasticity (verified in the second study arm) and network dynamics. It is important to note that while there is some anatomical specificity to the LFPs recorded in the HPC and PFC, these activities may represent larger-scale limbic-cortical dynamics. The intermediate HPC exhibits a significant influence from both dorsal and ventral HPC, and the prelimbic PFC is intricately related to both hippocampal and thalamic oscillations exhibiting under-demand state-dependent synchrony. Additionally, the state maps used in our study were initially described to distinguish states at a global forebrain network level. Even in our past studies, we have described HPC-PFC patterns of network activity (Marques et al., 2022a) that later were found to represent a part of a brain-wide synchrony pattern (Marques et al., 2022b). However, most of our findings on oscillatory dynamics were centered around theta oscillations, a well-established brain-wide activity that originates and spreads from the hippocampus and are present in the HPC-PFC circuit during activity.

      In conclusion, we believe the correlations between HPC-PFC LTP and working memory, as well as the specific alterations of theta coordinated activity, support a particular role of the HPC-PFC network dysfunction in the effects of ELS. However, the brain-wide immunochemical alterations are plausible indications of larger-scale dysfunctional networks. To address this issue, we emphasized in the discussion of network findings that the immunohistochemical and neurochemical findings endorse the need to investigate ELS effects on larger networks.

      Notably, cognitive deficits are described as subtle, with no evidence of learning deficits and only faint working memory impairments. However, sensorimotor deficits show promise. Consequently, it's essential to justify the emphasis on the HPC-PFC network as the primary mechanism underlying ELS-associated outcomes, especially when enhanced LTP is observed. Additionally, the manuscript seems to sideline neuropathological changes in the thalamus and the thalamus-to-PFC connection. The analysis lacks a direct assessment of the causal relationship between HPC-PFC dysfunction and ELS-associated outcomes, leaving a multitude of multilevel analyses yielding potential correlations without easily interpretable results.

      We thank Reviewer #2 for the thorough review and insightful comments. To better grasp the context, it is crucial to consider this characterization within the scope of our experimental design and expected outcomes. Unlike epilepsy models involving adult animals or interventions causing pronounced neuronal loss and structural modifications, our study was intentionally designed to explore moderate behavioral alterations. In fact, the mild behavioral alterations observed in ELS models and the lack of neuronal loss guided our focus on investigating changes in HPC-PFC communication.

      While our observed cognitive deficits may be milder compared to certain models, it is imperative to underscore their robustness and clinical relevance. These findings have been consistently replicated globally across various experimental models, encompassing ELS induced by hyperthermia (Chang et al., 2003; Kloc et al., 2022), kainic acid (Statsfrom et al. 1993), flurothyl (Karnam et al., 2009a; 2009b), and hypoxia (Najafian et al., 2021; Hajipour et al., 2023). Mild cognitive deficits were also evident by other research groups using the pilocarpine model in P12 (Mikulecká et al., 2019; Kubová et al., 2013; Kubová et al., 2002). Furthermore, our group replicated the working memory deficit results using an alternative paradigm (the T-maze) and a different rat strain (Sprague Dawley), enhancing the reliability of our observations (D’Agosta et al., 2023).

      The clinical perspective gains importance, considering that cognitive effects of ELS may be less severe than those in patients with long-term epilepsy. In fact, the majority of patients with childhood epilepsy exhibit mild cognitive impairment as the most common grade of severity - more than two times the rate of severe cognitive impairment (Sorg et al., 2022). Investigating the mechanisms underlying these mild cognitive changes is crucial for shedding light on neurobiological aspects not fully understood, thereby expanding our comprehension of the consequences of ELS.

      We recognize the challenges associated with conducting causal experiments in neuroscience, especially in long-term and chronic alterations as seen in our model. Isolating modifications of specific activities is indeed intricate. However, it's essential to acknowledge that neuroscience progress has not solely relied on causal experiments but has significantly advanced through correlational observations. Our findings serve as a foundational step in comprehending the repercussions of ELS, proposing mechanisms and circuits that necessitate further in-depth dissection and study in the future. We have integrated these considerations into the discussion section of the manuscript to enhance clarity.

      Overall, while the manuscript presents intriguing findings related to the HPC-PFC network and ELS outcomes, it requires a more rigorous experimental design[…]

      We thank the reviewer for acknowledging our intriguing findings. Regarding the experimental design, we are confident that all the manuscript hypotheses, design, and execution of experiments were rigorously based on the literature and carried out with all necessary controls. As stated earlier, we constructed the experimental design for univariate inferential statistics and explored associations between variables using multivariate statistics. Specifically, we achieved a rigorously experimental design following a series of guidelines. First, the planning of the sample size in each experiment and their respective controls were based on mild effects from the ELS literature. As previously indicated, the only experiment with one group was just the description of the behavioral effects and electrographic seizures after the acute injection of lithium-pilocarpine. Given the exhaustive replication of these data in the ELS literature, this result was presented descriptively as a methodological control. Second, detailed descriptions of statistics were made in both methods and results, always indicating positive and negative results. Notably, the experimental designs used in the work do not correspond to any novelty or radicalization, strictly following the literature of the field. However, new indications and references about the experimental accuracy were added to the manuscript to resolve any doubts regarding objectivity.

      References:

      Chang YC, Huang AM, Kuo YM, Wang ST, Chang YY, Huang CC. Febrile seizures impair memory and cAMP response-element binding protein activation. Ann Neurol. 2003 Dec;54(6):706-18. doi: 10.1002/ana.10789. PMID: 14681880.

      D'Agosta R, Prizon T, Zacharias LR, Marques DB, Leite JP, Ruggiero RN. Alterations in hippocampal-prefrontal cortex connectivity are associated with working memory impairments in rats subjected to early-life status epilepticus. In: NEWROSCIENCE INTERNATIONAL SYMPOSIUM, 2023, Ribeirão Preto. Poster.

      Hajipour S, Khombi Shooshtari M, Farbood Y, Ali Mard S, Sarkaki A, Moradi Chameh H, Sistani Karampour N, Ghafouri S. Fingolimod Administration Following Hypoxia Induced Neonatal Seizure Can Restore Impaired Long-term Potentiation and Memory Performance in Adult Rats. Neuroscience. 2023 May 21;519:107-119. doi: 10.1016/j.neuroscience.2023.03.023. Epub 2023 Mar 28. PMID: 36990271.

      Karnam HB, Zhou JL, Huang LT, Zhao Q, Shatskikh T, Holmes GL. Early life seizures cause long-standing impairment of the hippocampal map. Exp Neurol. 2009 Jun;217(2):378-87. doi: 10.1016/j.expneurol.2009.03.028. Epub 2009 Apr 2. PMID: 19345685; PMCID: PMC2791529.

      Karnam HB, Zhao Q, Shatskikh T, Holmes GL. Effect of age on cognitive sequelae following early life seizures in rats. Epilepsy Res. 2009 Aug;85(2-3):221-30. doi: 10.1016/j.eplepsyres.2009.03.008. Epub 2009 Apr 22. PMID: 19395239; PMCID: PMC2795326.

      Kubová H, Mareš P. Are morphologic and functional consequences of status epilepticus in infant rats progressive? Neuroscience. 2013 Apr 3;235:232-49. doi: 10.1016/j.neuroscience.2012.12.055. Epub 2013 Jan 7. PMID: 23305765.

      Kloc ML, Marchand DH, Holmes GL, Pressman RD, Barry JM. Cognitive impairment following experimental febrile seizures is determined by sex and seizure duration. Epilepsy Behav. 2022 Jan;126:108430. doi: 10.1016/j.yebeh.2021.108430. Epub 2021 Dec 10. PMID: 34902661; PMCID: PMC8748413.

      Kubová H, Mares P, Suchomelová L, Brozek G, Druga R, Pitkänen A. Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. Eur J Neurosci. 2004 Jun;19(12):3255-65. doi: 10.1111/j.0953-816X.2004.03410.x. PMID: 15217382.

      Marques DB, Ruggiero RN, Bueno-Junior LS, Rossignoli MT, and Leite JP. Prediction of Learned Resistance or Helplessness by Hippocampal-Prefrontal Cortical Network Activity during Stress. The Journal of Neuroscience. 2022a 42 (1): 81-96.. https://doi.org/10.1523/jneurosci.0128-21.2021.

      Marques DB, Rossignoli MT, Mesquita BDA, Prizon T, Zacharias LR, Ruggiero RN and Leite JP. Decoding fear or safety and approach or avoidance by brain-wide network dynamics abbreviated. bioRxiv. 2022b https://doi.org/10.1101/2022.10.13.511989.

      Mikulecká A, Druga R, Stuchlík A, Mareš P, Kubová H. Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Exp Neurol. 2019 Oct;320:113005. doi: 10.1016/j.expneurol.2019.113005. Epub 2019 Jul 3. PMID: 31278943.

      Najafian SA, Farbood Y, Sarkaki A, Ghafouri S. FTY720 administration following hypoxia-induced neonatal seizure reverse cognitive impairments and severity of seizures in male and female adult rats: The role of inflammation. Neurosci Lett. 2021 Mar 23;748:135675. doi: 10.1016/j.neulet.2021.135675. Epub 2021 Jan 28. PMID: 33516800.

      Ruggiero RN, Rossignoli MT, Marques DB, de Sousa BM, Romcy-Pereira RN, Lopes-Aguiar C and Leite JP. Neuromodulation of Hippocampal-Prefrontal Cortical Synaptic Plasticity and Functional Connectivity: Implications for Neuropsychiatric Disorders. Frontiers in Cellular Neuroscience. 2021 15 (October): 1–23. https://doi.org/10.3389/fncel.2021.732360.

      Sorg AL, von Kries R, Borggraefe I. Cognitive disorders in childhood epilepsy: a comparative longitudinal study using administrative healthcare data. J Neurol. 2022 Jul;269(7):3789-3799. doi: 10.1007/s00415-022-11008-y. Epub 2022 Feb 15. PMID: 35166927; PMCID: PMC9217877.

      Stafstrom CE, Chronopoulos A, Thurber S, Thompson JL, Holmes GL. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia. 1993 May-Jun;34(3):420-32. doi: 10.1111/j.1528-1157.1993.tb02582.x. PMID: 8504777.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      This is a short but important study. Basically, the authors show that α-synuclein overexpression's negative impact on synaptic vesicle recycling is mediated by its interaction with E-domain containing synapsins. This finding is highly relevant for synuclein function as well as for the pathophysiology of synucleinopathies. While the data is clear, functional analysis is somewhat incomplete.

      (1) The authors should present a clearer dissociation of endocytosis and exocytosis under the various conditions they study. They should quantify the rate of rise and decay of pHluorin signals. 2. In addition, I strongly recommend a few additional experiments with and without a vATPase inhibitor such as bafilomycin to estimate the relative effects on exo- vs. endocytosis. As the authors are aware bafilomycin will mask the re-acidification /endocytosis component, thus revealing pure exocytosis and thus enabling quantification of endocytosis with minimal contamination from exocytosis.

      In the revised version, we analyzed and quantified exocytosis and endocytosis separately, with bafilomycin experiments, as the reviewer suggested (new data, Fig. 1- Fig. Supp. 1A-B). Overexpression of human alpha-synuclein only attenuated exocytosis in neurons that also expressed synapsins (WT neurons and synapsin TKO neurons transduced with synapsin Ia). In parallel, we also examined endocytosis by calculating the time-constant of the decay in the fluorescence of sypHy during the endocytotic phase (Fig. 1- Fig. Supp. 1C-E). Previous studies have shown that after brief stimulus-trains – like those used in our study (20Hz/300AP) – most endocytosis occurs after the cessation of stimulation 1. Expression of human alpha-synuclein did not alter the endocytosis time-constant in any of our experiments. To summarize, the interaction of alpha-synuclein with the synapsin E domain was required for alpha-synuclein induced attenuation of exocytosis, but not endocytosis.

      Reviewer #2

      ...The paper will be improved significantly if additional experiments are added to expand and provide a more mechanistic understanding of the effect of α-syn and the intricate interplay between synapsin, α-syn, and the SV. For an enthusiastic reader, the manuscript as it looks now with only 3 figures, ends prematurely. Some of the experiments above or others could complement, expand and strengthen the current manuscript, moving it from a short communication describing the phenomenon to a coherent textbook topic. Nevertheless, this work provides new and exciting evidence for the regulation of neurotransmitter release and its regulation by synapsin and α-syn.

      (1) Did the authors try to attach E-domain for example to synapsin Ib and restore α-syn inhibition with synapsin Ib-E?

      This is an interesting idea, but in previous studies, we found that synapsin Ib does not associate with synaptic vesicles2, so it will not be present at the right location to be able to restore alpha-synuclein induced synaptic attenuation. We have also seen that this mis-localization alters synaptic properties (unpublished).

      (2) Was the expression level of Synapsin-IaScrE examined and compared to WT Synapsin-Ia in Fig 3?

      Yes, this data is now shown in Fig. 3-Fig. Supp. 1.

      (3) Were SVs dispersed in α-syn overexpression as predicted?

      We interpret the reviewer’s question and reasoning as follows. If alpha-synuclein binds to the E-domain of synapsin, a prediction in the alpha-synuclein over-expression scenario is that the overabundance of alpha-synuclein molecules would bind to and sequester the E-domain synapsins away from synaptic vesicles. In the absence of E-domain synapsins, the synaptic-vesicle clustering effects of synapsins would be lost, and there would be dispersion of synaptic vesicles. We tested this prediction, which is now shown in an additional figure (new data, Fig. 4). Indeed, the AAV-mediated over-expression of alpha-synuclein leads to a dispersion of synaptic vesicles, and this dispersion is dependent on synapsins Ia and Ib, but not IIa and IIb (please see Fig. 4D-E in the revised manuscript). Appropriate text is also added, starting with “Previous studies have shown that loss of all synapsins...” presents this data and interprets it.

      (4) How does this study coincide with the effects of α-syn on fusion pore and endocytosis? This should be at least discussed. It is also possible that the effects of α-syn on endocytosis might affect the results as if endocytosis is affected, SVs number and distribution will be also affected.

      It is difficult to reconcile our data with the idea that alpha-synuclein facilitates fusion-pore opening, as proposed by the Edwards lab 3. In fact, its difficult to reconcile this concept with their own previous data, showing that alpha-synuclein over-expression attenuates SV-recycling 4. As mentioned above, modulation of endocytosis does not seem to be a major factor in our experiments, though this does not rule out a physiologic role for alpha-synuclein in endocytosis, since all our experiments are based on over-expression paradigms. Future experiments looking at phenotypes after acute alpha-synuclein knockdown may provide more clarity. In any case, there are many purported roles of alpha-synuclein, and this is now mentioned in the last paragraph (starting with Additionally, -syn has been implicated…”

      (5) What happened after stimulation when synapsin is detached from SV, does α-syn continues to be linked to it?

      The fate of alpha-synuclein after stimulation is unclear in our experiments. Previous experiments suggest that while both synapsin and alpha-synuclein detach from the SV cluster during stimulation, synapsin returns to synapses while alpha-synuclein does not 5. However, our more recent experiments (unpublished) suggest that the activity-induced dispersion of alpha-synuclein might be phosphorylation-dependent, and that over-expression of alpha-synuclein may not be the best setting to evaluate protein dispersion. We hope to answer this question more rigorously using alpha-synuclein knock-in constructs.

      (6) The experiment with E-domain fused to syPhy assumes that α-syn will still be bound to the SV. So how does α-syn inhibit ST?

      The goal of this experiment was to force the synapsin E-domain to be in a location where it would normally be present – i.e. surface of the synaptic vesicle – by tagging it to sypHy (sypHy-E), and ask if this forced-retention would be sufficient to reinstate the alpha-synuclein mediated attenuation of SV-recycling (as shown in Fig. 3F, it does). Please note that the sypHy-E in these experiments does target to the synapses (new data, Fig. 3-Fig. Supp. 2D). In this context, we are not sure what the reviewer means by “So how does a-syn inhibit synaptic transmission?” We don’t think that alpha-synuclein needs to unbind from the SVs in order to inhibit synaptic transmission. Overall, we think that alpha-synuclein needs to cooperate with synapsins to perform its function, but as mentioned above and in the manuscript, the precise role of alpha-synuclein in this process is still unclear.

      (7) An interesting experiment will be the expression of the isolated E-domain and examining blockage of α-syn inhibition and disruption of synapsin- α-syn interaction. Have the authors examined it as was done in other models?

      We did do the experiment where we only over-expressed the isolated synapsin E-domain in neurons. We were thinking that perhaps the E-domain would have a dominant-negative effect on SV-clustering, as it did in the lamprey and other model-systems, where the E-peptide was directly injected into the axon. However, we found that in cultured hippocampal neurons, the over-expressed E-domain behaves like a soluble protein and is not enriched in synapses (see new data, Fig. 3-Fig. Supp. 2B). Also, the over-expressed E-domain cannot reinstate the synaptic attenuation induced by alpha-synuclein (new data, Fig. 3-Fig. Supp. 2C), likely because the E-domain does not target to synapses. Actually, this is why we did the syPhy-E domain experiment in the first place, to ensure that the E-domain was in the right location to have an effect.

      (8) A schematic model/scheme providing a mechanistic view of the interplay between the proteins is essential and can improve the paper.

      The only model we can confidently make right now would be stick-figures showing the site where alpha-synuclein C-terminus binds to synapsin, which is obviously not very insightful. As noted above (and in the revised version), several different functions have been attributed to alpha-synuclein, and the precise role of alpha-synuclein/synapsin interactions in regulating the SV-cycle is unclear. We hope to create a better model after getting some more data from us and our colleagues working on this challenging problem.

      References

      (1) Kononenko NL & Haucke V. (2015) Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 85, 484-496.

      (2) Gitler D, Xu Y, Kao H-T, Lin D, Lim S, Feng J, Greengard P & Augustine GJ. (2004) Molecular Determinants of Synapsin Targeting to Presynaptic Terminals. J. Neurosci. 24, 3711-3720.

      (3) Logan T, Bendor J, Toupin C, Thorn K & Edwards RH. (2017) α-Synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20, 681-689.

      (4) Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA & Edwards RH. (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66-79.

      (5) Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA & Edwards RH. (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25, 10913-10921.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1: I would have preferred to see more figures with brain images showing the cellular abundance maps and the atrophy maps. Without being able to see these figures, it's difficult for the reader to 1) validate the atrophy patterns or 2) gain intuition about how the cellular abundance maps vary across the brain. The images in Figure 1C give a small preview, but I'd like to see these maps in their entirety on the brain surface or axial image slices.

      (1) We added brain surface visualization plots of the voxel-wise cellular abundance maps to Figure 1 (lateral, dorsal, and ventral views of both hemispheres). To illustrate how their spatial distributions are associated with brain tissue damage, in Figure 2, we have also added brain surface visualizations of regional values from the atrophy t-statistic maps for the thirteen neurodegenerative conditions and the cell-type map most strongly associated with each condition. These plots allow us to observe variability across the cell-type density and atrophy maps, as well as to visually validate and compare how the patterns vary across the brain.

      Reviewer 1: FTD is an umbrella category for a family of distinct clinical syndromes with different atrophy patterns. It doesn't seem a good idea to take the average of all subjects in this group to form a single atrophy map. Instead, different average maps for each syndrome should be provided.

      (2) Considering the heterogeneity of clinical FTD syndromes, we addressed the reviewers' concerns about using the averaged atrophy map across all patients with an FTD diagnosis. As suggested, we accessed different atrophy maps for each major variant of clinical FTD, including behavioral FTD (n = 70), as well as the semantic (n = 36) and nonfluent variants of primary progressive aphasia (n = 30). These maps are based on data from the participants from the same dataset of the Frontotemporal Lobar Degeneration Neuroimaging Initiative (FTLDNI) that we originally used. Similar to our previous results using the atrophy map averaged over all FTD patients, the analysis showed significant associations of atrophy patterns with cell type densities in all three major variants (see Figure 3A). Notably, these new findings offer insights into specific differences in spatial vulnerability of different cell-types across the variants of FTD, each characterized by unique symptoms, clinical manifestations, and atrophy patterns. In response to these additions, we have updated all figures, results, and interpretations accordingly.

      Reviewer 2: In the abstract, the list of neurodegenerative disorders should be edited: frontotemporal dementia is an umbrella clinical syndrome, not a neurodegenerative disorder. Frontotemporal lobar degeneration (FTLD) is a neurodegenerative disorder, and many tauopathies are FTLDs. While the authors grab their definitional classes from various sources (i.e., published cohort, and other studies), the reader fatigues to understand the population that is being assessed.

      (3) To address potential confusion arising from the inclusion of atrophy maps from FTLD patients across two different studies, stratified based on both clinical and pathological criteria, we added clarifications regarding the assessed population and the used definitions. We used the term FTD when addressing the clinical syndromes, and the term FTLD was employed when referencing the histologically confirmed neurodegenerative pathologies. In addition, we added details on the diagnostic criteria employed for participant recruitment in the FTLDNI cohort, which data we used for atrophy maps in clinical subtypes of FTD. Lastly, throughout the text and within the figures, we systematically refined the nomenclature for FTLD pathological types, categorizing them based on their known definitions used in literature and type of proteinaceous inclusions (FTLD- 3-repeat and 4-repeat tauopathies and FTLD-TDP types A and C).

      Reviewer 1: The results section contains perhaps too much interpretation. While the information that's provided serves as an interesting review (e.g., the discussion of the blood-brain barrier), the discussion may be a better place for this.

      (4) We removed sentences with excessive interpretation but insisted on including those outlining the fundamental functions of cell types and their literature-based relevance to neurodegenerative diseases in the Results section, clarifying the significance of our findings to the readers.

      Reviewer 2: The authors based their methodology on the use of a deconvolutional cell classifier; however, do not extensively recognize that their data on gene expression are based on normal brain levels rather than on diseased ones.

      (5) We acknowledged that the gene expression data is based on normal human brain levels in figure titles and all sections of the paper (Introduction, Results, Discussion, Methods) to remind the readers that the analysis shows how changes in gray matter tissue in diseased brains correlates with healthy reference levels of cellular density.

      Reviewer 2: More information in the text needs to be provided regarding the method used to infer gene expression levels at non-sampled brain locations. The reader should not be forced to read reference 40 or investigate the methods section. Figure 1 schematics do not sufficiently explain the used method.

      (6) We added clarifications/references about the used Gaussian progress regression for imputing gene expression (Results and figure titles).

      Reviewer 2: Also, while predicted levels are uniquely based on patterns of brain atrophy, it is not possible to know whether this strategy is generalizable to all diseases (for instance, it is known that pure DLB, PD and ALS are not associated with extensive brain atrophy), or even adequately comparable between subtypes of diseases within the same class (e.g., different forms of FTLD). The authors do not acknowledge that only data based on true neuropathological assessment may prove whether their findings are true.

      (7) Although diagnoses of most dementia conditions used in our study were histologically confirmed, we added acknowledgement about the importance of neuropathological assessment (Discussion section).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer 1

      One criticism the authors have made of previous studies was that they have not distinguished between 'tonic' and 'phasic' LC activity and could not demonstrate 'time- locked phasic firing'. This has not been achieved in the present report, as an examination of Fig 1 C,D and 2 C,D shows. Previous reports in rats and monkeys, using unit recording in rats and monkeys clearly show that the latency of LC 'phasic' responses to salient or behaviorally relevant stimuli are in the range of tens of milliseconds, with a very short duration, often followed by a long-lasting inhibition. This kind of temporal precision concerning the phasic response cannot be gleaned from the time scale shown in the Figures (assuming the time scale is in seconds). We can discern a long-lasting increase in tonic firing level for the more salient stimuli (Fig 1C) (although the authors state in the discussion that "we did not observe obvious changes in tonic LC-HPC activity). This calcium imaging methodology as used in the present experiments can give us a general idea of the temporal relation of LC response to the stimulus, but apparently does not afford the millisecond resolution necessary to capture a phasic response, at least as the data are presented in the Figures.

      While we understand the reviewer’s concern with our use of the terms phasic and tonic, we believe we have represented them as accurately as possible given our data. Unfortunately, the distinction between tonic and phasic activity is somewhat arbitrary, in that there is no strict definition, to our knowledge, of the exact parameters that activity must fall into to be categorized as tonic or phasic. While it is true that phasic LC activity has typically been studied with electrophysiological approaches that afford millisecond resolution and that observed phasic responses are often extremely short, there are numerous differences between those studies and this one. Most prominently, the stimuli used to elicit a phasic response are generally extremely short (often 1ms or less) and therefore generate extremely short phasic responses (Aston-Jones and Bloom, 1981a; Aston-Jones and Cohen, 2005), but this is not to say that phasic responses might not be longer in response to a longer lasting stimulus. Moreover, tonic activity is reported to track with behavioral state on the order of dozens of seconds to minutes and is not reported in response to specific stimuli (Aston-Jones and Bloom, 1981b). The “phasic” responses we report generally decay in less than 5 seconds in our fluorescence signals. Given the slow time course of decay for GcAMP6s (a single action potential can generate a response that lasts 3 or more seconds (Chen et al., 2013)) and the GRAB sensors (GRAB-DA2h τoff = 7.2s (Sun et al., 2020)), the underlying neural responses would have lasted for a significantly shorter period. Therefore, we believe the responses we observed are much more consistent with phasic responses to long-lasting sensory stimuli (20-second tone, 1-2 second shock), than with increases in tonic activity associated with a change in behavioral state. Finally, regardless of whether these responses are exactly the same as previously reported phasic responses, our photometry and optogenetics studies provide insight about a form of LC activity that is fundamentally different than what can be gleaned from much slower dialysis, lesion, and pharmacology studies. Nonetheless, we added the following to the discussion section to clarify the limitations of our interpretation:

      “…given their relatively short duration and the fact that they are elicited specifically by salient sensory stimuli, we refer to these responses as “phasic responses.” However, because of the comparatively slow dynamics of fluorescent sensors relative to electrophysiology, we cannot rule out the possibility that these responses are somehow different in nature to previously reported phasic LC responses. Thus, some care must be taken in conflating the characteristics and/or function of the relatively short-lasting responses presented here and the extremely fast phasic responses to very brief (μs to ms) sensory stimuli reported previously.”

      Much of the data presented here can be regarded as 'proof of concept' i.e. demonstrating that Photometric imaging of calcium signalling yields similar results concerning LC responses to salient or behaviorally relevant stimuli as has been previously reported using electrophysiological unit recording. The role of dopamine as the principal player in hippocampaldependent learning also corroborates previous reports.

      Although some of the data presented in this study could be seen as “proof of concept” or “confirmatory” of previous results, we believe this work extends previous results by showing 1) the importance of hippocampal dopamine to aversive hippocampus-dependent learning and trace fear conditioning specifically, 2) that LC responses are important at the specific times of learning (i.e. CS/US onset/termination), and 3) that dopamine in the hippocampus is likely important for learning in a way that is not tied to prediction error or memory consolidation.

      No attempt was made to address the important current question of the modular organisation of Locus Coeruleus, although the authors recognize the importance of this question and propose future experiments using their methodology to record simultaneously in several LC projection sites.

      While we do recognize the importance of this modular organization, which is addressed in the discussion as the reviewer mentions, experiments addressing this organization are beyond the scope of the present study. Future work will address the possibility that LC projections to different regions show differential responses during learning.

      The phasic-tonic issue has not been resolved by these experiments. Phasic responses of LC single units are short-latency, short-lived (just 3-4 action potentials), and followed by a relatively long refraction period. Multiunit responses will have a more jittery latency and longer-lasting response (but still only tens to hundreds of milliseconds). Your figures clearly show long-lasting increases in tonic firing levels, even though you state the contrary in the discussion. Therefore, I strongly recommend removing the word 'phasic' from the title.

      Addressed above.

      Yohimbine, the Alpha 2 antagonist, administered systemically, induces a massive increase in the rate of firing of LC cells (through blockade of autoinhibition at the cell body level at terminals). I guess its effect on the receptor 'backbones' overrides the massive release of NE and/or DA, but you might want to mention this; also include the dose of all drug treatments.

      Yes, yohimbine’s effect on the GRAB-NE signal is somewhat counter-intuitive given the known effect of yohimbine on norepinephrine levels. However, our result is consistent with previous reports (Feng et al., 2019). We have added the following to the results section to clarify:

      “Thus, even though yohimbine is known to increase NE levels in the hippocampus (Abercrombie et al., 1988), its blockade effect on the GRAB-NE sensor should result in a decrease in fluorescence after administration.”

      Include time scale units on all figures (I assume it is seconds in Figs 1 &2).

      Thank you for pointing out this issue, we have added units on all figures.

      • Is it possible to have a better quality example of staining? Fig 1 B in particular is very blurry. Is the yellow double staining? Please indicate. Most of the GCaMP seems to be outside the main area of TH staining. Fig 4 B is much nicer--and it looks morphologically, like LC.

      Unfortunately, the GcAMP6s staining was very dim in our hands and resulted in relatively blurry images. Yes, in this case, yellow is double staining. Regarding the morphology, the GCaMP image is taken from a sagittal section and the shape of expression is consistent with images of LC in the sagittal plane. However, given the quality of our ChR2 images, we are confident in the specificity of expression in these mice.

      Reviewer 2

      The claim that dopamine release in dHPC is caused by LC neurons is not directly tested. Unfortunately, the most critical experiment for the claims that dopamine release comes from LC during conditioning is not tested. A lack of dopamine signal in dHPC caused by inhibition of LC during TFC would show this. It is indeed an interesting observation that chemoegenetic activation of LC causes dopamine release in the dHPC. However, in the absence of concurrent VTA inhibition or lesion, it remains a possibility that the dopamine release is mediated through indirect actions on other dopamine-expressing neurons. The authors do a good job of arguing against this interpretation in the discussion, and the literature seems appropriate for this. However, the title is still an overstatement of the data presented in this study.

      We agree with the reviewer’s comments. As indicated in the discussion, it is possible that hippocampal dopamine is increased indirectly via LC projections to dopaminergic midbrain regions. We believe that our title is consistent with this possibility. When phasic stimulation was delivered to the LC, dopamine levels increased in the hippocampus and trace fear conditioning was enhanced. The observed increase in dopamine could be direct or indirect. As the reviewer notes, we argue for the former in the discussion section. A number of experiments would be needed to show this directly (record dopamine while: inhibiting the LC, inhibiting the VTA, stimulating LC while simultaneously inhibiting the VTA etc.) and we are planning to do these in the future.

      The primary alternative interpretations of the phasic activation experiment are whether only stimulation to the cue events (both on and off), or whether only stimulation to the shock. Thus this experiment would benefit from additional data showing either a no shock control, to show that enhanced activity of the LC to the tone is not inherently aversive, or manipulations to the tone but not to the shock.

      Future work will explore whether the contribution of LC to learning is primarily due to its activation during the CS or the US. However, this is beyond the scope of this manuscript.

      Specificity of the GRAB-NE and GRAB-DA sensors should be either justified through additional experiments testing the alternative antagonist (i.e. GRAB-NE CNO+eticloprode / GRAB-DA CNO+yohimbine) or additional citations that have tested this already. It is critical for the claims of the paper to show that these sensors are specific to dopamine or norepinephrine.<br /> Although sensitivity is a potential concern, these sensors have been thoroughly vetted and used by many groups since their generation. In particular, the creators of these sensors provided extensive data showing their specificity. The GRAB-DA sensor is ~10 fold more sensitive to DA than to NE (Sun et al., 2020, cited 239 times) and the GRAB-NE sensor is ~37 fold more sensitive to NE than to DA (Feng et al., 2019, cited 371 times).

      The role of dopamine in prediction error was tested through a series of conditions whereby the shock was presented either signaled (i.e. predicted), or not. However, another way that prediction error is signaled is through the absence of an expected outcome. Admittedly it might not be possible to observe a decrease in dopamine signaling with this methodology.

      Although this is a strong point, given that the study is not primarily focused on error prediction and the low likelihood of observing the typically small decrease in signaling during expected outcome omission, we feel that additional error prediction studies are beyond the scope of this manuscript. However, further experiments as suggested by the reviewer could prove interesting in future studies.

      The difference between Fig. 6E and 6H needs to be clarified. What is shown in Fig. 6E is that the response to the shock decreases through experience (i.e. by the 10th trial). However in Fig 6H, there is no difference between signaled and signaled shock, but this is during conditioning, and not after learning (based on my understanding of the methods, line 482).

      We are not sure we fully understand what point of clarification the reviewer is asking for. However, we have clarified in the methods that the signaled vs unsignaled shock experiment took place in animals that had already been trained on TFC. Thus, all of the trials took place after the animals had learned the tone-shock association. Therefore, although the drop in shock-response could be taken as an indicator of a prediction-error like signal, all the other data points to this not being the case (no change in tone response over training, no difference in signaled vs. unsignaled responses after training).

      Unless I missed it, at no point in the manuscript is the number of subjects described. Please add the n per experiment within each section describing each experiment in the methods (Behavioral procedures). Some more details in the photometry statistical analysis would be helpful. For example, what is the n per group for every data set that is presented? How many trials per analysis?

      We thank the reviewer for pointing this out. Animal numbers have been added in the methods section in the Behavioral Procedures, Optogenetics, and Drugs sub-sections and in the figure legends. Trial numbers are included in these sections and all trials were used for analysis.

      What is the difference in experimental procedure between Fig. 2D and Fig. 3B? It seems that they are the same, and yet the LC response to the conditioned CS is not.

      Fig. 3B is simply the Day 1 data from Fig 2D presented at a different scale because the shock response is included in Fig. 3B which necessitates a larger scale on both axes. Close inspection of the figures will show that the shapes of these two curves and the error around them is the same, but the different scaling obfuscates this slightly.

      Typo in the legend of Figure 2 - D should be E.

      Thank you, we have corrected this.

      • Anatomical localization of the virus injections, and more importantly the fiber placements, is not shown. Including this information helps with replication and understanding where exactly the observations were made in dHPC to contrast with prior studies.

      Representative examples are included in the manuscript in figure 1B, 3F, 4B, and 5B.

      Reviewer 3

      While the optogenetic study was lovely, a control using the same stimulation but delivered at different time points would have been a good addition to show how critical the neural signal at tone onset, tone offset, and shock is.

      We agree that it would be interesting in future studies to delineate the specific times when LC stimulation produces a learning enhancement. It could be that LC activity is most important during one specific time period (eg. just during shock) or that all three periods of activation are required. It would also be useful to know whether stimulation at other times during learning can produce an enhancement given the potentially long-lasting effects of dopamine on HPC plasticity and learning.

      Justification for the focus on D1 receptors was lacking.

      We chose to focus on D1 receptors because previous studies have shown that these receptors are critical for memory formation or consolidation in the hippocampus. We have added a sentence justifying this in the results section.

      “To test whether dopamine is required for trace fear memory formation, we administered the dopamine D1 receptor antagonist SCH23390 (0.1mg/kg) 30 minutes before training, as D1/D5 receptors have previously been shown to be critical for other types of hippocampus dependent memory and plasticity (Frey et al., 1990; Huang and Kandel, 1995; O’Carroll et al., 2006; Wagatsuma et al., 2018).”

      The manuscript provides convincing evidence that the neural signal is not an error- correcting one by including a predicted (by a tone) and unpredicted shock. One possibility is that perhaps the unpredicted shock could be predicted by the context. Some clarification on the behavioural procedures would help understand if indeed the unsignaled shock could be predicted by the context or not.

      Mice always exhibit freezing in the training environment, so the context is definitely a predictor of shock. However, the tone is a much better predictor because it is always followed by shock while the mice spend a large amount of time in the context without being shocked. This is demonstrated by the fact that the same procedure used in the current experiments consistently produces more tone fear than context fear (Wilmot et al., 2019). While we did not do long-term memory tests here, we assume the same dissociation occurred as it has been observed very consistently across studies (Chowdhury et al., 2005; Kitamura et al., 2014; Wilmot et al., 2019). Nonetheless, it is possible that a difference between signaled and unsignaled groups was obscured by the context. We should note however, that differences between dopaminergic responses to cued and uncued rewards and aversive outcomes has been observed and these animals were also trained in the same context (Eshel et al., 2016; Matsumoto and Hikosaka, 2009; Pan et al., 2005; Schultz, 1998). Therefore, we believe this experiment does differentiate the observed dopamine response in the hippocampus from previously reported VTA dopamine prediction error signaling.

      Figure 2 - tone termination in Tone only group - no change? Stats?

      Thank you for pointing out this omission. We have added the stats to the figure legend. Although the response to tone termination decreased numerically, it did not change significantly across days. This is one point we may seek to clarify in future studies, as the difference between tone onset and termination responses is unexpected. Given the relatively small responses, it’s possible future studies with stronger signal (eg. GcAMP8) may find differences in the tone termination response across training days. This is one of the reasons we focused primarily on the responses to tone onset and shock in the rest of the manuscript.

      Fig 4 data - stimulation at time incongruent with the signal as a control for the timing of stim.

      This is addressed above.

      Fig 5 - GRAB-NE - yohimbine seems to suppress the signal below the vehicle. Not the case for GRAB-DA. Is this sig? post-hoc stats?

      Yes, this does appear to be the case for GRAB-NE, and would not be entirely surprising given that there is likely a baseline level of NE (and dopamine) in the hippocampus that produces some degree of baseline fluorescence in the vehicle group. This signal could be reduced/abolished by blocking the sensor and preventing this baseline level of NE from binding and producing fluorescence. This may not be the same for the GRAB-DA for a variety of reasons – different sensor binding affinities, different baseline neurotransmitter levels, potentially non-equivalent drug doses, etc. Because of the large number of pairwise comparisons in this data (18), we did not make post-hoc pairwise comparisons.

      Shock response curve - lines 466-474 - some explanation of what the pseudorandom order of shock presentation means.

      We have added the following explanation to this section:

      “…pseudorandom order, such that the shocks did not occur in ascending or descending order or follow the same pattern in each block,…”

      Line 126 - the extinction came out of the blue, it needs some introduction such as a statement that the animals were exposed to extinction training following conditioning.

      We have added the following earlier in that same paragraph:

      “On the second and third days, mice underwent extinction trials in which no shocks were administered.”

      References in Response

      Abercrombie ED, Keller RW, Zigmond MJ. 1988. Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: Pharmacological and behavioral studies. Neuroscience 27:897–904. doi:10.1016/0306-4522(88)90192-3

      Aston-Jones G, Bloom FE. 1981a. Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. Journal of Neuroscience 1:887–900. doi:10.1523/JNEUROSCI.01-08-00887.1981

      Aston-Jones G, Bloom FE. 1981b. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1:876–886. doi:10.1523/JNEUROSCI.01-08-00876.1981

      Aston-Jones G, Cohen JD. 2005. AN INTEGRATIVE THEORY OF LOCUS COERULEUSNOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal Performance. Annual Review of Neuroscience 28:403–450. doi:10.1146/annurev.neuro.28.061604.135709

      Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. doi:10.1038/nature12354

      Chowdhury N, Quinn JJ, Fanselow MS. 2005. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice. Behavioral Neuroscience 119:1396–1402. doi:http://dx.doi.org/10.1037/0735-7044.119.5.1396

      Eshel N, Tian J, Bukwich M, Uchida N. 2016. Dopamine neurons share common response function for reward prediction error. Nat Neurosci 19:479–486. doi:10.1038/nn.4239

      Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J, Wang H, Zhang Y, Dong A, Wu Z, Wu H, Chen W, Zhang P, Zou J, Hires SA, Zhu JJ, Cui G, Lin D, Du J, Li Y. 2019. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo Detection of Norepinephrine. Neuron 102:745-761.e8. doi:10.1016/j.neuron.2019.02.037

      Frey U, Schroeder H, Matthies H. 1990. Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Research 522:69–75. doi:10.1016/0006-8993(90)91578-5

      Huang YY, Kandel ER. 1995. D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proceedings of the National Academy of Sciences 92:2446–2450. doi:10.1073/pnas.92.7.2446

      Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S. 2014. Island Cells Control Temporal Association Memory. Science 343:896–901. doi:10.1126/science.1244634

      Matsumoto M, Hikosaka O. 2009. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–841. doi:10.1038/nature08028

      O’Carroll CM, Martin SJ, Sandin J, Frenguelli BG, Morris RGM. 2006. Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learning & memory 13:760–769.

      Pan W-X, Schmidt R, Wickens JR, Hyland BI. 2005. Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network. J Neurosci 25:6235–6242. doi:10.1523/JNEUROSCI.1478-05.2005

      Schultz W. 1998. Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology 80:1–27. doi:10.1152/jn.1998.80.1.1

      Sun F, Zhou J, Dai B, Qian T, Zeng J, Li X, Zhuo Y, Zhang Y, Wang Y, Qian C, Tan K, Feng J, Dong H, Lin D, Cui G, Li Y. 2020. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat Methods 17:1156–1166. doi:10.1038/s41592-02000981-9

      Wagatsuma A, Okuyama T, Sun C, Smith LM, Abe K, Tonegawa S. 2018. Locus coeruleus input to hippocampal CA3 drives single-trial learning of a novel context. Proceedings of the National Academy of Sciences 115:E310–E316. doi:10.1073/pnas.1714082115

      Wilmot JH, Puhger K, Wiltgen BJ. 2019. Acute Disruption of the Dorsal Hippocampus Impairs the Encoding and Retrieval of Trace Fear Memories. Frontiers in Behavioral Neuroscience 13. doi:10.3389/fnbeh.2019.00116

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The authors conducted two tasks at 300 days of separation. First, a social perception task, where Ps responded whether a pictured person either deserved or needed help. Second, an altruism task, where Ps are offered monetary allocations for themselves and a partner. Ps decide whether to accept, or a default allocation of 20 dollars each. The partners differed in perceived merit, such that they were highly deserving, undeserving, or unknown. This categorisation was decided on the basis of a prisoner's dilemma game the partner played beforehand. "Need" was also manipulated, by altering the probability that the partner must have their hand in cold water at the end of the experiment and this partner can use the money to buy themselves out. These two tasks were conducted to assess the perception of need/merit in the first instance, and how this relates to social behaviour in the second. fMRI data were collected alongside behavioural.

      The authors present many analyses of behaviour (including DDM results) and fMRI. E.g., they demonstrate that they could decode across the mentalising network whether someone was making a need or deserving judgement vs control judgement but couldn't decode need vs deserving. And that brain responses during merit inferences (merit - control) systematically covaried with participants' merit sensitivity scores in the rTPJ. They also found relationships between behaviour and rTPJ in the altruism task. And that merit sensitivity in the perception task predicted the influence of merit on social behaviour in the altruism task.

      Strengths:

      This manuscript represents a sensible model to predict social perceptions and behaviours, and a tidy study design with interesting findings. The introduction introduced the field especially brilliantly for a general audience.

      Response: We are pleased that the reviewer found the model sensible and the findings interesting! Below, we respond to each of the reviewer’s comments/critiques.

      Weaknesses: (1) The authors do acknowledge right at the end that these are small samples. This is especially the case for the correlational questions. While the limitation is acknowledged at the end, it is not truly acknowledged in the way that the data are interpreted. I.e. much is concluded from absent relationships, where the likelihood of Type II error is high in this scenario. I suggest that throughout the manuscript, authors play down their conclusions about absence of effects.

      Response: We agree with the reviewer that the limitation of small samples should be adequately reflected in the interpretation of the data. We have therefore added cautionary language to the interpretation of the correlational effects in several places of the revised manuscript. For example, we now state: “However, this absence of effects for need ought to be interpreted with caution, given the comparatively small sample size.” (pg. 33) and “As mentioned above, we cannot rule out the possibility that null findings may be due to the comparatively small sample size and should be interpreted cautiously (also see discussion)” (pg. 34-35).

      (2) I found the results section quite a marathon, and due to its length I started to lose the thread concerning the overarching aims - which had been established so neatly in the introduction. I am unsure whether all of these analyses were necessary for addressing the key questions or whether some were more exploratory. E.g. it's unclear to me what one would have predicted upfront about the decoding analyses.

      Response: We acknowledge and share the reviewer’s concern about the length of the results section and potential loss of clarity. Regarding the decoding analyses, we want to clarify that they were conducted as a sanity check to compare against the results of the univariate analysis. We didn’t have apriori hypotheses regarding these supplemental decoding analysis. We have clarified this issue in the revised version of the manuscript and moved the decoding analyses fully to the supplemental material to streamline the main text. The remaining results reported in the manuscript are indeed all based on apriori, key questions (unless specified otherwise, for example, supplemental analyses for other regions of interest for the sake of completeness). The only exception is the final set of results (Neural markers of merit sensitivity predict merit-related behavioral changes during altruistic choice) which represent posthoc tests to clarify the role of activation in the right temporoparietal junction (rTPJ) in merit-related changes in other-regard in altruistic decisions. While we acknowledge that this is a complex paper, after careful consideration we couldn’t identify any other parts of the results section to remove or report in the supplemental material.

      (3) More specifically, the decoding analyses were intriguing to me. If I understand the authors, they are decoding need vs merit, and need+merit vs control, not the content of these inferences. Do they consider that there is a distributed representation of merit that does not relate to its content but is an abstracted version that applies to all merit judgements? I certainly would not have predicted this and think the analyses raise many questions.

      Response: We thank the reviewer for sharing their thoughts on the decoding analyses and agree that this set of analyses are intriguing, yet raise additional questions, such as the neural computations required to assess content. However, we wish to clarify that the way we view our current results is very much analogous to results obtained from studies of perception in other fields. For example, in the face perception literature, it is often observed that the fusiform face area is uniformly more active, not only when a face (as opposed to an object) is on the screen, but when a compound stimulus consistent of features of a face and other features (e.g. of objects) is on the screen, but participants are instructed to attend to and identify solely the face. Moreover, multivariate activity in the FFA (but not univariate activity) is sufficient to decode the identity of the face. We view the results we report in the manuscript as more akin to the former types of analyses, where any region that is involved in the computation is uniformly more active when attention is directed to judgment-specific features. Unfortunately, the present data are not sufficient to properly answer the latter questions, about which areas enable decoding of specific intensity or identity of merit-related content. Follow-up experiments with a more optimized design are needed. Although interesting, we thus refrain from further discussing the decoding analyses in the manuscript to avoid distracting from the main findings based on the univariate comparison of brain responses observed while participants make merit or need inferences in the social perception task.

      Reviewer #2 (Public Review):

      When people help others is an important psychological and neuroscientific question. It has received much attention from the psychological side, but comparatively less from neuroscience. The paper translates some ideas from a social Psychology domain to neuroscience using a neuroeconomically oriented computational approach. In particular, the paper is concerned with the idea that people help others based on perceptions of merit/deservingness, but also because they require/need help. To this end, the authors conduct two experiments with an overlapping participant pool:

      (1) A social perception task in which people see images of people that have previously been rated on merit and need scales by other participants. In a blockwise fashion, people decide whether the depicted person a) deserves help, b) needs help, and c) whether the person uses both hands (== control condition).

      (2) In an altruism task, people make costly helping decisions by deciding between giving a certain amount of money to themselves or another person. How much the other person needs and deserves the money is manipulated.

      The authors use a sound and robust computational modelling approach for both tasks using evidence accumulation models. They analyse behavioural data for both tasks, showing that the behaviour is indeed influenced, as expected, by the deservingness and the need of the shown people. Neurally, the authors use a block-wise analysis approach to find differences in activity levels across conditions of the social perception task (there is no fMRI data for the other task). The authors do find large activation clusters in areas related to the theory of mind. Interestingly, they also find that activity in TPJ that relates to the deservingness condition correlates with people's deservingness ratings while they do the task, but also with computational parameters related to helping others in the second task, the one that was conducted many months later. Also, some behavioural parameters correlate across the two tasks, suggesting that how deserving of help others are perceived reflects a relatively stable feature that translates into concrete helping decisions later-on.

      The conclusions of the paper are overall well supported by the data.

      Response: We thank the reviewer for the positive evaluation of our study and the comprehensive summary of our main findings. We would like to clarify, though, that we did originally collect fMRI data for the independent altruism task. Unfortunately, due to COVID-19-related interruptions, only 25 participants from the sample that performed the social perception task also completed the fMRI altruism task (see pg. 18). Given the limited sample size and noise level of fMRI data, we moved anything related to the neuroimaging data of the altruism task to the supplemental material (see Note S7) and decided to focus solely on the behavior of the altruism task to address our research objectives. We apologize for any confusion.

      (1) I found that the modelling was done very thoroughly for both tasks. Overall, I had the impression that the methods are very solid with many supplementary analyses. The computational modelling is done very well.

      Response: We are pleased that the reviewer found the computational model sensible.

      (2) A slight caveat, however, regarding this aspect, is that, in my view, the tasks are relatively simplistic, so even the complex computational models do not do as much as they can in the case of more complex paradigms. For example, the bias term in the model seems to correspond to the mean response rate in a very direct way (please correct me if I am wrong).

      Response. We agree that the Bias term relates to mean responding (although it is not the sole possibility: thresholds and starting default biases can also produce changes in mean levels of responding that, without the computational model, are not possible to dissociate). However, we think that the primary value of this parameter comes not from the analysis of the social judgment task (where the reviewer is correct that the bias relates in a quite straightforward way to the mean response rate), but in the relationship of this parameter to the un-contextual generosity response in the altruism task. Here, we find that this general bias term relates not to overall generosity, but rather to the overall weight given to others’ outcomes, a finding that makes sense if the tendency to perceive others as deserving overall yields an increase in overall attention/valuation of their outcomes. Thus, a simple finding in one task relates to a more nuanced finding in another. However, we agree it is important to acknowledge the point raised by the reviewer, and now do so on pg. 20: “It is worth noting that the Bias parameters are strongly associated with (though not the sole determinant of) the mean response rate.”

      (3) Related to the simple tasks: The fMRI data is analysed in a simple block-fashion. This is in my view not appropriate to discern the more subtle neural substrates of merit/need-based decision-making or person perception. Correspondingly, the neural activation patterns (merit > control, need > control) are relatively broad and unspecific. They do not seem to differ in the classic theory of mind regions, which are the focus of the analyses.

      Response: The social perception task is modified from a well-established social inference task (Spunt & Adolphs, 2014; 2015) designed to reliably localize the mentalizing network in the brain. As such, we acknowledge that it is not optimally designed to discern the intrinsic complexities of social perception, or the specific appraisals or computations that yield more or less perception (of need or merit) in a given context. Instead, it was designed to highlight regions that are more generally recruited for performing these social perceptions/inferences.

      We heartily agree with the reviewer that it would be interesting and informative to analyze this task in a trial-wise way, with parametric variation in evidence for each image predicting parametric variation in brain activity. Unfortunately, the timing of this task is not optimal for this kind of an analysis, since trials were presented in rapid and blocked fashion. We were also limited in the amount of time we could devote to this task, since it was collected in conjunction with a number of other tasks as part of a larger effort to detail the neural correlates of social inference (reported elsewhere). Thus, we were not able to introduce the kind of jittered spacing between trials that would have enabled such analysis, despite our own wish to do so. We hope that this work will thus be a motivator for future work designed more specifically to address this interesting question, and now include a statement to this effect on pgs. 2223: “Future research may reveal additional distinctions between merit and need appraisals in trial-wise (compared to our block-wise) fMRI designs.”

      References:

      Spunt, R. P. & Adolphs, R. Validating the Why/How contrast for functional MRI studies of Theory of Mind. Neuroimage 99, 301-311, doi:10.1016/j.neuroimage.2014.05.023 (2014).

      Spunt, R. P. & Adolphs, R. Folk explanations of behavior: a specialized use of a domain-general mechanism. Psychological Science 26, 724-736, doi:10.1177/0956797615569002 (2015).

      (4) However, the relationship between neural signal and behavioural merit sensitivity in TPJ is noteworthy.

      Response: We agree with this assessment and thank the reviewer for their positive assessment; we feel that linking individual differences in merit sensitivity with variance in TPJ activity during merit judgments is one of the key findings of the study.

      (5) The latter is even more the case, as the neural signal and aspects of the behaviour are correlated across subjects with the second task that is conducted much later. Such a correlation is very impressive and suggests that the tasks are sensitive for important individual differences in helping perception/behaviour.

      Response: Again, we share the reviewer’s impression that this finding is more noteworthy for appearing in tasks separated both by considerable conceptual/paradigmatic differences, and by such a long temporal distance. These findings make us particularly excited to follow up on these results in future research.

      (6) That being said, the number of participants in the latter analyses are at the lower end of the number of participants that are these days used for across-participant correlations.

      Response: We fully agree with this assessment. Unfortunately, COVID-related disruptions in data collection, as well as the expiration of grant funds due to the delay, severely limited our ability to complete assessments in a larger sample. Future research needs to replicate these results in a larger sample. We comment on this issue in the discussion on pg. 40. If the editor or reviewer has suggestions for other ways in which we could more fully acknowledge this, we would be happy to include them.

      Reviewer #3 (Public Review):

      Summary:

      The paper aims to provide a neurocomputational account of how social perception translates into prosocial behaviors. Participants first completed a novel social perception task during fMRI scanning, in which they were asked to judge the merit or need of people depicted in different situations. Secondly, a separate altruistic choice task was used to examine how the perception of merit and need influences the weights people place on themselves, others, and fairness when deciding to provide help. Finally, a link between perception and action was drawn in those participants who completed both tasks.

      Strengths:

      The paper is overall very well written and presented, leaving the reader at ease when describing complex methods and results. The approach used by the author is very compelling, as it combines computational modeling of behavior and neuroimaging data analyses. Despite not being able to comment on the computational model, I find the approach used (to disentangle sensitivity and biases, for merit and need) very well described and derived from previous theoretical work. Results are also clearly described and interpreted.

      Response: We thank the reviewer for their positive comments regarding presentation, approach, and content.

      Weaknesses:

      My main concern relates to the selection of the social perception task, which to me is the weakest point. Such weakness has been also addressed by the same authors in the limitation section, and related to the fact that merit and need are evaluated by means of very different cues that rely on different cognitive processes (more abstract thinking for merit than need). I wonder whether and how such difference can bias the overall computational model and interpretation of the results (e.g. ideal you vary merit and need to leave all other aspects invariant).

      Response: We agree with the reviewer on the importance of future research to more fully unpack the differences in this task, and develop better ways to manipulate need and merit in more comparable fashion. However, we point out that the issue of differences in abstractness of cues for need and merit does not actually seem to have a strong influence on the parameters retrieved by the computational model. Participants seem to be equally sensitive to BOTH merit and need information, despite that information deriving from different sources, as evidenced by the fact that the magnitude of the sensitivity parameters for need and merit in the social judgment task were nearly identical, and not statistically distinguishable. Nor were other parameters related to non-decision time or threshold statistically different (see Supplemental Table S2). If our results were driven purely by differences in the difficulty or abstractness of these judgments, we would have expected to see some evidence of this in the computational model, in the form of longer non-decision times, higher thresholds, or both. We do not. Likewise, the neural underpinnings evoked by both need and merit perceptions in this task (in the mentalizing brain network) were comparable. This is not to say that there aren’t real differences in the cues that might signal these quantities in our social perception task - just that there is little direct evidence for this difference in computational parameters or evoked brain responses, and thus it is unlikely that our results (which rely on an analysis of computational parameters) are driven solely by computational model biases, or the inability of the model to adequately assess participant sensitivity to need as opposed to merit.

      A second weakness is related to the sample size which is quite small for study 2. I wonder, given that study 2 fRMI data are not analyzed, whether is possible to recover some of the participants' behavioral results, at least the ones excluded because of bad MR image quality.

      Response: We fully agree with the reviewer that increasing the sample size for the cross-task correlations would be desirable. Unfortunately, the current sample size already presents the maximum of ‘usable’ data; the approach suggested by the reviewer won’t affect the sample size. We used all participants whose behavioral data in the altruism task suggested they were performing the task in good faith and conscientiously.

      Finally, on a theoretical note, I would elaborate more on the distinction of merit and need. These concepts tap into very specific aspects of morality, which I suspect have been widely explored. At the moment I am missing a more elaborate account of this.

      Response: Need and merit are predominantly studied in separate lines of research (Molouki & Bartels, 2020) so there is relatively little theoretical research on the distinction between the two. Consequently, Siemoneit (2023) states that the relation between the concepts of need and merit in allocative distributions remains diffuse. To emphasize the distinct concepts of morality in the introduction we have now added to pg. 3: “Need and deservingness (merit) are two distinct principles of morality. The need principle involves distributing resources to those who require them, irrespective of whether they have earned them, while the "merit principle" focuses on allocating resources based on individuals' deservingness, regardless of their actual need (Wilson, 2003).”

      One of the added values of our paper to the research literature is in adding to the clarification of computational and neural underpinnings of broad concepts like merit and need. To highlight the latter point, we have added the following statement on pg. 5 to the manuscript: “Examining need and merit concurrently in this task will also help clarify the computational and neural underpinnings of related, but distinct concepts, distinguishing between them more effectively.”

      References:

      Molouki, S., & Bartels, D. M. (2020). Are future selves treated like others? Comparing determinants and levels of intrapersonal and interpersonal allocations. Cognition, 196, 104150.

      Siemoneit, A. (2023). Merit first, need and equality second: hierarchies of justice. International Review of Economics, 70(4), 537-567.

      Wilson, C. (2003). The role of a merit principle in distributive justice. The Journal of ethics, 7, 277-314.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I acknowledge the difficulty with respect to recruitment, especially in the age of covid, but is it possible for the authors to collect larger samples for their behavioural questions via online testing? Admittedly, I'm sure they don't want to wait 300 days to have the complete dataset, but I would be in favour of collecting a sample in the hundreds on these behavioural tasks, completed at a much shorter separation (if any). I believe this would strengthen the authors' conclusions considerably if they could both replicate the effects they have and check these null effects in a sample where they could draw conclusions from them. Indeed, Bayesian stats to provide evidence for the null would also help here.

      Response: We share the reviewer’s desire to see these results replicated (ideally in a sample of hundreds of participants). We have seriously considered the possibility of trying to replicate our results online, even before submitting the first version of the paper. However, it is difficult to fully replicate this paradigm online, given the elaborate story and context we engaged in to convince participants that they were playing with real others, as well as the usage of physical pain (Cold Pressor Task) for the need manipulation in the altruism task. Moreover, given comments by this reviewer that the results are already a little long, adding a new, behavioral replication would likely only add to the memory burden for the reader. We have thus opted not to include a replication study in the current work. However, we are actively working on a replication that can be completed online, using a modified experimental paradigm and different ways to manipulate need and merit. Because of the differences between that paradigm and the one described here, which would require considerable additional exposition, we have opted not to include the results of this work in the current paper. We hope to be able to publish this work as a separate, replication attempt in the future.

      Given the difficulty of wading through the results section while keeping track of the key question being answered, I would suggest moving any analyses that are less central to the supplementary. And perhaps adding some more guiding sentences at the start and end of each section to remind the reader how each informs the core question.

      Response: We deliberated for quite some time about what results could be removed, but in the end, felt that nearly all results that we already described need to be included in the paper, since each piece of the puzzle contributes to the central finding (relating parameters and behavior to neural and choice data across two separate tasks). However, we did move the decoding analysis results to the supplemental (see point below). We also take the reviewers point that the results can be made clearer. We thus have worked to include some guiding sentences at the start and end of sections to remind the readers how each analysis informs the core questions.

      I think it needs unpacking more for the reader what they should conclude from the significant need+merit vs control decoding analyses, and what they would have expected in terms of cortical representation from the decoding analyses in general.

      Response: We agree with the reviewer that given the decoding results position in the main manuscript it would need unpacking. After considering the reviewer's prior suggestion, we have reevaluated the placement of these supplemental results. Consequently, we have relocated it to the supplemental materials, as it was deemed less relevant to directly addressing the core research questions in the main manuscript. On pg. 23, the main manuscript now only states “We also employed supplemental multivariate decoding analyses (searchlight analysis 85-87), as commonly used in social perception and neuroscience research 7,58,82,88,89, corroborating our univariate findings (see Supplemental Note S6, Supplemental Table S10).”

      Reviewer #2 (Recommendations For The Authors):

      (1) I would suggest moving information on how the computational models were fitted to the main text.

      Response: The computational models are a key element of the paper and we deliberated about the more central exposure of the description of how the models were fitted in the main manuscript. However, we are concerned about the complexity and length of the article, which requires quite a lot from readers to keep in mind (as also commented on by reviewer 1). Those readers who are particularly interested in details of model fitting can still find an extensive discussion of the procedures we followed in the supplements. We thus have opted to retain the streamlined presentation in the main manuscript. However, if the editor feels that including the full and extensive description of model fitting in the main paper would significantly improve the flow and exposition of ideas, we are happy to do so.

      (2) For the fMRI analyses: Could it be worth analysing the choices in the different conditions? They could be modelled as a binary regressor (yes/no) and this one might be different across conditions (merit/need/hands). Maybe this won't work because of the tight trial timeline, but it could be another avenue to discern differences across fMRI conditions.

      Response: We thank the reviewer for this interesting suggestion! Unfortunately, the block design and rapid presentation of stimuli within each condition make it challenging to distinguish the different choices (within or across conditions). While we see the merit in the suggested analytical approach (in fact, we discussed it before the initial submission of the article), it would require some modifications of the task structure (e.g., longer inter-trial-intervals between individual stimuli) and an independent replication fMRI study. We were not able to have such a long inter-trial interval in the original design due to practical constraints on the inclusion of this paradigm in a larger effort to examine a wide variety of social judgment and inference tasks. We hope to investigate this kind of question in greater detail in future fMRI work.

      (3) The merit effects seem to be more stable across time than the need conditions. Would it be worthwhile to test if the tasks entailed a similar amount of merit and need variation? Maybe one variable varied more than the other in the task design, and that is why one type of effect might be stronger than the other?

      Response: We thank the reviewer for drawing attention to this important point. We used extensive pilot testing to select the stimuli for the social perception task, ensuring an overall similar amount of need and merit variation. For example, the social perception ratings of the independent, normative sample suggest that the social perception task entails a similar amount of need and merit variation (normative participant-specific percentage of yes responses for merit (mean ± standard deviation: 53.95 ± 13.87) and need (45.65 ± 11.07)). The results of a supplemental paired t-test (p = 0.122) indicate comparable SD for need and merit judgments. Moreover, regarding the actual fMRI participant sample, Figure S3 illustrates comparable levels of variations in need and merit perceptions (participant-specific percentage of yes responses for merit (56.70 ± 11.91) and need (48.69 ± 10.81) in the social perception task). Matching the results for the normative sample, the results of a paired t-test (p = 0.705) suggest no significant difference in variation between need and merit judgments. With respect to the altruism task, we manipulated the levels of merit and need externally (high vs. low).

      Reviewer #3 (Recommendations For The Authors):

      (1) It would be good to provide the demographics of each remaining sample.

      Response: We appreciate the attention to detail and agree with the reviewer’s suggestion. We have now added the demographics for each remaining sample to the revised manuscript.

      (2) The time range from study 1 to study 2, is quite diverse. Did you use it as a regressor of no interest?

      Response: We thank the reviewer for this interesting suggestion. We have examined this in detail in the context of our cross-task analyses (i.e., via regressions and partial correlations). Interestingly, variance in the temporal delay between both tasks does not account for any meaningful variation, and results don’t qualitatively change controlling for this factor.

      For example, when we controlled for the delay between both separate tasks (partial correlation analysis), we confirmed that variance in merit sensitivity (social perception task) still reflected meritinduced changes in overall generosity (altruism task; p = 0.020). Moreover, we confirmed that variance in merit sensitivity reflected individuals’ other-regard (p = 0.035) and self-regard (p = 0.040), but not fairness considerations (p = 0.764) guiding altruistic choices. Regarding people’s general tendency to perceive others as deserving, we found that the link between merit bias (social perception task) and overall other-regard (p = 0.008) and fairness consideration (p = 0.014) (altruism task) holds when controlling for the time range (no significant relationship between merit bias and self-regard, p = 0.191, matching results of the main paper).

      We refer to these supplemental analyses in the revised manuscript on ps. 33 and 35: “Results were qualitatively similar when statistically controlling for the delay between both tasks (partial correlations).”

      (3) Why in study 1 a dichotomous answer has been used? Would not have been better (also for modeling) a continuous variable (VAS)?

      Response: We appreciate the reviewer's thoughtful feedback. In Study 1, opting for a dichotomous response format in the social perception task (Figure 1a) was a deliberate methodological choice. This decision, driven by the study's model requirements, aligns with the common use of a computational model employing two-alternative forced choices ("yes" and "no") as decision boundaries. While drift– diffusion models for multiple-alternative forced-choice designs exist, our study's novel research questions were effectively addressed without their complexity. Finally, our model cannot accept continuous response variables as input unless they are transformed into categorical variables.

      (4) In the fMRI analyses, when you assess changes in brain activity as a function of merit, I would control for need (and the other way round), to see whether such association is specific.

      Response: Regarding the reviewer’s suggestion on controlling for need when assessing changes in brain activity as a function of merit, and vice versa, we would like to clarify the nature of our fMRI analyses in the social perception task. Our focus is on block-wise assessments (need vs. control, merit vs. control, need vs. merit blocks, following the fMRI task design from which our social perception task was modified from). We don’t assess changes in brain activity as a function of the level of perceived merit or need (i.e., “yes” vs. “no” trials within or across task blocks). Blocks are clearly defined by the task instruction given to participants prior to each block (i.e., need, merit, or control judgments). Thus, unfortunately, given the short inter-stimulus-intervals of each block, the task design is not optimal to implement the suggested approach.